Science.gov

Sample records for imaging applications part

  1. Fast transforms for acoustic imaging--part II: applications.

    PubMed

    Ribeiro, Flávio P; Nascimento, Vítor H

    2011-08-01

    In Part I ["Fast Transforms for Acoustic Imaging-Part I: Theory," IEEE Transactions on Image Processing], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT. PMID:21342849

  2. Clinical applications of imaging biomarkers. Part 1. The neuroradiologist's perspective

    PubMed Central

    Smith, E T S

    2011-01-01

    This article is concerned with the application and usage in clinical practice of techniques of detection and measurement of imaging biomarkers. Some commentaries in the article derive from a literature search and include summaries of recently published material compiled and linked to each other by extensive use of the text contained in the material examined.

  3. Cardiac Magnetic Resonance Imaging for the Investigation of Cardiovascular Disorders. Part 1: Current Applications

    PubMed Central

    Goenka, Ajit H.

    2014-01-01

    Cardiac magnetic resonance imaging is a robust noninvasive technique for investigating cardiovascular disorders. The evolution of cardiac magnetic resonance and its widening span of diagnostic and prognostic applications have generated excitement as well as uncertainty regarding its potential clinical use and its role vis-à-vis conventional imaging techniques. The purpose of this evidence-based review is to discuss some of these issues by highlighting the current (Part 1) and emerging (Part 2) applications of cardiac magnetic resonance. Familiarity with the versatility and usefulness of cardiac magnetic resonance will facilitate its wider clinical acceptance for improving the management of cardiovascular disorders. PMID:24512394

  4. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 1).

    PubMed

    Omoumi, Patrick; Becce, Fabio; Racine, Damien; Ott, Julien G; Andreisek, Gustav; Verdun, Francis R

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. PMID:26696081

  5. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 2).

    PubMed

    Omoumi, Patrick; Verdun, Francis R; Guggenberger, Roman; Andreisek, Gustav; Becce, Fabio

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. PMID:26696082

  6. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  7. A criterion for assessing homogeneity distribution in hyperspectral images. Part 2: application of homogeneity indices to solid pharmaceutical dosage forms.

    PubMed

    Rosas, Juan G; Blanco, Marcelo

    2012-11-01

    This article is the second of a series of two articles detailing the application of mixing index to assess homogeneity distribution in oral pharmaceutical solid dosage forms by image analysis. Chemical imaging (CI) is an emerging technique integrating conventional imaging and spectroscopic techniques with a view to obtaining spatial and spectral information from a sample. Near infrared chemical imaging (NIR-CI) has proved an excellent analytical tool for extracting high-quality information from sample surfaces. The primary objective of this second part was to demonstrate that the approach developed in the first part could be successfully applied to near infrared hyperspectral images of oral pharmaceutical solid dosage forms such as coated, uncoated and effervescent tablets, as well as to powder blends. To this end, we assessed a new criterion for establishing mixing homogeneity by using four different methods based on a three-dimensional (M×N×λ) data array of hyperspectral images (spectral standard deviations and correlation coefficients) or a two-dimensional (M×N) data array (concentration maps and binary images). The four methods were used applying macropixel analysis to the Poole (M(P)) and homogeneity (H%(Poole)) indices. Both indices proved useful for assessing the degree of homogeneity of pharmaceutical samples. The results testify that the proposed approach can be effectively used in the pharmaceutical industry, in the finished products (e.g., tablets) and in mixing unit operations for example, as a process analytical technology tool for the blending monitoring (see part 1). PMID:22840977

  8. Parts application handbook study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for a NASA application handbook for standard electronic parts are determined and defined. This study concentrated on identifying in detail the type of information that designers and parts engineers need and expect in a parts application handbook for the effective application of standard parts on NASA projects.

  9. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications

    NASA Astrophysics Data System (ADS)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-01

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.

  10. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications.

    PubMed

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-21

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow. PMID:27002558

  11. User's guide to image processing applications of the NOAA satellite HRPT/AVHRR data. Part 1: Introduction to the satellite system and its applications. Part 2: Processing and analysis of AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Huh, Oscar Karl; Leibowitz, Scott G.; Dirosa, Donald; Hill, John M.

    1986-01-01

    The use of NOAA Advanced Very High Resolution Radar/High Resolution Picture Transmission (AVHRR/HRPT) imagery for earth resource applications is provided for the applications scientist for use within the various Earth science, resource, and agricultural disciplines. A guide to processing NOAA AVHRR data using the hardware and software systems integrated for this NASA project is provided. The processing steps from raw data on computer compatible tapes (1B data format) through usable qualitative and quantitative products for applications are given. The manual is divided into two parts. The first section describes the NOAA satellite system, its sensors, and the theoretical basis for using these data for environmental applications. Part 2 is a hands-on description of how to use a specific image processing system, the International Imaging Systems, Inc. (I2S) Model 75 Array Processor and S575 software, to process these data.

  12. Range Imaging without Moving Parts

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Scott, V. Stanley, III; Ramos-Izquierdo, Luis

    2008-01-01

    Range-imaging instruments of a type now under development are intended to generate the equivalent of three-dimensional images from measurements of the round-trip times of flight of laser pulses along known directions. These instruments could also provide information on characteristics of targets, including roughnesses and reflectivities of surfaces and optical densities of such semi-solid objects as trees and clouds. Unlike in prior range-imaging instruments based on times of flight along known directions, there would be no moving parts; aiming of the laser beams along the known directions would not be accomplished by mechanical scanning of mirrors, prisms, or other optical components. Instead, aiming would be accomplished by using solid-state devices to switch input and output beams along different fiber-optic paths. Because of the lack of moving parts, these instruments could be extraordinarily reliable, rugged, and long-lasting. An instrument of this type would include an optical transmitter that would send out a laser pulse along a chosen direction to a target. An optical receiver coaligned with the transmitter would measure the temporally varying intensity of laser light reflected from the target to determine the distance and surface characteristics of the target. The transmitter would be a combination of devices for generating precise directional laser illumination. It would include a pulsed laser, the output of which would be coupled into a fiber-optic cable with a fan-out and solid-state optical switches that would enable switching of the laser beam onto one or more optical fibers terminated at known locations in an array on a face at the focal plane of a telescope. The array would be imaged by the telescope onto the target space. The receiver optical system could share the aforementioned telescope with the transmitter or could include a separate telescope aimed in the same direction as that of the transmitting telescope. In either case, light reflected from the target would be focused by the receiver optical system onto an array of optical fibers matching the array in the transmitter. These optical fibers would couple the received light to one or more photodetector( s). Optionally, the receiver could include solid-state optical switches for choosing which optical fiber(s) would couple light to the photodetector(s). This instrument architecture is flexible and can be optimized for a wide variety of applications and levels of performance. For example, it is scalable to any number of pixels and pixel resolutions and is compatible with a variety of ranging and photodetection methodologies, including, for example, ranging by use of modulated (including pulsed and encoded) light signals. The use of fixed arrays of optical fibers to generate controlled illumination patterns would eliminate the mechanical complexity and much of the bulk of optomechanical scanning assemblies. Furthermore, digital control of the selection of the fiber-optic pathways for the transmitted beams could afford capabilities not seen in previous three-dimensional range-imaging systems. Instruments of this type could be specialized for use as, for example, proximity detectors, three-dimensional robotic vision systems, airborne terrain-mapping systems, and inspection systems.

  13. Marking spatial parts within stereoscopic video images

    NASA Astrophysics Data System (ADS)

    Belz, Constance; Boehm, Klaus; Duong, Thanh; Kuehn, Volker; Weber, Martin

    1996-04-01

    The technology of stereoscopic imaging enables reliable online telediagnoses. Applications of telediagnosis include the fields of medicine and in general telerobotics. For allowing the participants in a telediagnosis to mark spatial parts within the stereoscopic video image, graphic tools and automatism have to be provided. The process of marking spatial parts and objects inside a stereoscopic video image is a non trivial interaction technique. The markings themselves have to be 3D elements instead of 2D markings which would lead to an alienated effect `in' the stereoscopic video image. Furthermore, one problem to be tackled here, is that the content of the stereoscopic video image is unknown. This is in contrast to 3D Virtual Reality scenes, which enable an easy 3D interaction because all the objects and their position within the 3D scene are known. The goals of our research comprised the development of new interaction paradigms and marking techniques in stereoscopic video images, as well as an investigation of input devices appropriate for this interaction task. We have implemented these interaction techniques in a test environment and integrated therefore computer graphics into stereoscopic video images. In order to evaluate the new interaction techniques a user test was carried out. The results of our research will be presented here.

  14. Neutron Imaging and Applications

    SciTech Connect

    Anderson, Ian S; McGreevy, Robert L; Bilheux, Hassina Z

    2009-04-01

    Neutron Imaging and Applications offers an introduction to the basics of neutron beam production and instrumentation in addition to the wide scope of techniques that provide unique imaging capabilities over a broad and diverse range of applications. An instructional overview of neutron sources, optics and detectors, allows readers to delve more deeply into the discussions of radiography, tomography, phase contrast imaging and prospective applications using advanced neutron holography techniques and polarized beams. A section devoted to overviews in a growing range of applications describes imaging of fuel cells and hydrogen storage devices for a robust hydrogen economy; new directions in material science and engineering; the investigation of precious artifacts of cultural heritage importance; determination of plant physiology and growth processes; imaging of biological tissues and macromolecules, and the practical elements of neutron imaging for homeland security and contraband detection. Written by key experts in the field, researchers and engineers involved with imaging technologies will find Neutron Imaging and Applications a valuable reference.

  15. Industrial Applications of Image Processing

    NASA Astrophysics Data System (ADS)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  16. Aesthetic Pursuits: Windows, Frames, Words, Images--Part II

    ERIC Educational Resources Information Center

    Burke, Ken

    2005-01-01

    In Part I of this study (Burke, 2005), the author presented the essentials of Image Presentation Theory--IPT--and its application to the analytical explication of various spatial designs in and psychological responses to images, from the illusions of depth in what is referred to as "windows" in cinema theory to the more patterned abstractions of…

  17. Aesthetic Pursuits: Windows, Frames, Words, Images--Part II

    ERIC Educational Resources Information Center

    Burke, Ken

    2005-01-01

    In Part I of this study (Burke, 2005), the author presented the essentials of Image Presentation Theory--IPT--and its application to the analytical explication of various spatial designs in and psychological responses to images, from the illusions of depth in what is referred to as "windows" in cinema theory to the more patterned abstractions of

  18. Adrenal imaging (Part 1): Imaging techniques and primary cortical lesions

    PubMed Central

    Panda, Ananya; Das, Chandan J.; Dhamija, Ekta; Kumar, Rakesh; Gupta, A. K.

    2015-01-01

    Adrenal glands can be affected by a variety of lesions. Adrenal lesions can either be primary, of adrenal origin, or secondary to other pathologies. Primary adrenal lesions can further be either of cortical or medullary origin. Functioning adrenal lesions can also give clues to the histologic diagnosis and direct workup. Over the years, various imaging techniques have been developed that have increased diagnostic accuracy and helped in better characterization of adrenal lesions non-invasively. In the first part of the two part series, we review adrenal imaging techniques and adrenal cortical tumors such as adenomas, adrenocortical tumors, adrenal hyperplasia and oncocytomas. PMID:25593820

  19. Nanotechnology and its Relationship to Interventional Radiology. Part I: Imaging

    SciTech Connect

    Power, Sarah; Slattery, Michael M.; Lee, Michael J.

    2011-04-15

    Nanotechnology refers to the design, creation, and manipulation of structures on the nanometer scale. Interventional radiology stands to benefit greatly from advances in nanotechnology because much of the ongoing research is focused toward novel methods of imaging and delivery of therapy through minimally invasive means. Through the development of new techniques and therapies, nanotechnology has the potential to broaden the horizon of interventional radiology and ensure its continued success. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part I of the article deals with an introduction to some of the basic concepts of nanotechnology and outlines some of the potential imaging applications, concentrating mainly on advances in oncological and vascular imaging.

  20. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  1. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  2. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.

    PubMed

    Shapoori, Kiyanoosh; Sadler, Jeff; Wydra, Adrian; Malyarenko, Eugene V; Sinclair, Anthony N; Maev, Roman Gr

    2015-05-01

    A new adaptive beamforming algorithm for imaging via small-aperture 1-D ultrasonic-phased arrays through composite layered structures is reported. Such structures cause acoustic phase aberration and wave refraction at undulating interfaces and can lead to significant distortion of an ultrasonic field pattern produced by conventional beamforming techniques. This distortion takes the form of defocusing the ultrasonic field transmitted through the barrier and causes loss of resolution and overall degradation of image quality. To compensate for the phase aberration and the refractional effects, we developed and examined an adaptive beamforming algorithm for small-aperture linear-phased arrays. After accurately assessing the barrier's local geometry and sound speed, the method calculates a new timing scheme to refocus the distorted beam at its original location. As a tentative application, implementation of this method for trans-skull imaging of certain types of head injuries through human skull is discussed. Simulation and laboratory results of applying the method on skull-mimicking phantoms are presented. Correction of up to 2.5 cm focal point displacement at up to 10 cm depth under our skull phantom is demonstrated. Quantitative assessment of the method in a variety of temporal focusing scenarios is also reported. Overall temporal deviation on the order of a few nanoseconds was observed between the simulated and experimental results. The single-point adaptive focusing results demonstrate strong potential of our approach for diagnostic imaging through intact human skull. The algorithms were implemented on an ultrasound advanced open-platform controlling 64 active elements on a 128-element phased array. PMID:25423646

  3. SYMPOSIUM ON MULTIMODALITY CARDIOVASCULAR MOLECULAR IMAGING IMAGING TECHNOLOGY - PART 2

    PubMed Central

    de Kemp, Robert A.; Epstein, Frederick H.; Catana, Ciprian; Tsui, Benjamin M.W.; Ritman, Erik L.

    2013-01-01

    Rationale The ability to trace or identify specific molecules within a specific anatomic location provides insight into metabolic pathways, tissue components and tracing of solute transport mechanisms. With the increasing use of small animals for research such imaging must have sufficiently high spatial resolution to allow anatomic localization as well as sufficient specificity and sensitivity to provide an accurate description of the molecular distribution and concentration. Methods Imaging methods based on electromagnetic radiation, such as PET, SPECT, MRI and CT, are increasingly applicable due to recent advances in novel scanner hardware, image reconstruction software and availability of novel molecules which have enhanced sensitivity in these methodologies. Results Micro-PET has been advanced by development of detector arrays that provide higher resolution and positron emitting elements that allow new molecular tracers to be labeled. Micro-MRI has been improved in terms of spatial resolution and sensitivity by increased magnet field strength and development of special purpose coils and associated scan protocols. Of particular interest is the associated ability to image local mechanical function and solute transport processes which can be directly related to the molecular information. This is further strengthened by the synergistic integration of the PET with MRI. Micro-SPECT has been improved by use of coded aperture imaging approaches as well as image reconstruction algorithms which can better deal with the photon limited scan data. The limited spatial resolution can be partially overcome by integrating the SPECT with CT. Micro-CT by itself provides exquisite spatial resolution of anatomy, but recent developments of high spatial resolution photon counting and spectrally-sensitive imaging arrays, combined with x-ray optical devices, have promise for actual molecular identification by virtue of the chemical bond lengths of molecules, especially of bio-polymers. Conclusion With the increasing use of small animals for evaluating new clinical imaging techniques as well as providing increased insights into patho-physiological phenomena, the availability of improved detection systems, scanning protocols and associated software, the repertoire of molecular imaging is greatly increased in sensitivity and specificity. PMID:20457793

  4. Industrial Applications of Terahertz Imaging

    NASA Astrophysics Data System (ADS)

    Zeitler, J. Axel; Shen, Yao-Chun

    This chapter gives a concise overview of potential industrial applications for terahertz imaging that have been reported over the past decade with a discussion of the major advantages and limitations of each approach. In the second half of the chapter we discuss in more detail how terahertz imaging can be used to investigate the microstructure of pharmaceutical dosage forms. A particular focus in this context is the nondestructive measurement of the coating thickness of polymer coated tablets, both by means of high resolution offline imaging in research and development as well as for in-line quality control during production.

  5. Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-02-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurological and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared to other available imaging modalities; (2) describe how ultrasound machines produce images using sound waves; (3) discuss the steps necessary to acquire and optimize an ultrasound image; (4) understand the difference ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones; and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound. Part 2 of this 2-part article will focus on the clinical applications of musculoskeletal ultrasound in clinical practice, including the ultrasonographic appearance of normal and abnormal tissues as well as specific diagnostic and interventional applications in major body regions. PMID:19627890

  6. Digital imaging applications in anatomic pathology.

    PubMed

    Leong, F Joel W-M; Leong, Anthony S-Y

    2003-03-01

    Digital imaging has progressed at a rapid rate and is likely to eventually replace chemical photography in most areas of professional and amateur digital image acquisition. In pathology, digital microscopy has implications beyond that of taking a photograph. The arguments for adopting this new medium are compelling, and given similar developments in other areas of pathology and radiologic imaging, acceptance of the digital medium should be viewed as a component of the technological evolution of the laboratory. A digital image may be stored, replicated, catalogued, employed for educational purposes, transmitted for further interpretation (telepathology), analyzed for salient features (medical vision/image analysis), or form part of a wider digital healthcare strategy. Despite advances in digital camera technology, good image acquisition still requires good microscope optics and the correct calibration of all system components, something which many neglect. The future of digital imaging in pathology is very promising and new applications in the fields of automated quantification and interpretation are likely to have profound long-term influence on the practice of anatomic pathology. This paper discusses the state of the art of digital imaging in anatomic pathology. PMID:12605090

  7. Image wavelet decomposition and applications

    NASA Technical Reports Server (NTRS)

    Treil, N.; Mallat, S.; Bajcsy, R.

    1989-01-01

    The general problem of computer vision has been investigated for more that 20 years and is still one of the most challenging fields in artificial intelligence. Indeed, taking a look at the human visual system can give us an idea of the complexity of any solution to the problem of visual recognition. This general task can be decomposed into a whole hierarchy of problems ranging from pixel processing to high level segmentation and complex objects recognition. Contrasting an image at different representations provides useful information such as edges. An example of low level signal and image processing using the theory of wavelets is introduced which provides the basis for multiresolution representation. Like the human brain, we use a multiorientation process which detects features independently in different orientation sectors. So, images of the same orientation but of different resolutions are contrasted to gather information about an image. An interesting image representation using energy zero crossings is developed. This representation is shown to be experimentally complete and leads to some higher level applications such as edge and corner finding, which in turn provides two basic steps to image segmentation. The possibilities of feedback between different levels of processing are also discussed.

  8. Deformable part models for object detection in medical images

    PubMed Central

    2014-01-01

    Background Object detection in 3-D medical images is often necessary for constraining a segmentation or registration task. It may be a task in its own right as well, when instances of a structure, e.g. the lymph nodes, are searched. Problems from occlusion, illumination and projection do not arise, making the problem simpler than object detection in photographies. However, objects of interest are often not well contrasted against the background. Influence from noise and other artifacts is much stronger and shape and appearance may vary substantially within a class. Methods Deformable models capture the characteristic shape of an anatomic object and use constrained deformation for hypothesing object boundaries in image regions of low or non-existing contrast. Learning these constraints requires a large sample data base. We show that training may be replaced by readily available user knowledge defining a prototypical deformable part model. If structures have a strong part-relationship, or if they may be found based on spatially related guiding structures, or if the deformation is rather restricted, the supporting data information suffices for solving the detection task. We use a finite element model to represent anatomic variation by elastic deformation. Complex shape variation may be represented by a hierarchical model with simpler part variation. The hierarchy may be represented explicitly as a hierarchy of sub-shapes, or implicitly by a single integrated model. Data support and model deformation of the complete model can be represented by an energy term, serving as quality-of-fit function for object detection. Results The model was applied to detection and segmentation tasks in various medical applications in 2- and 3-D scenes. It has been shown that model fitting and object detection can be carried out efficiently by a combination of a local and global search strategy using models that are parameterized for the different tasks. Conclusions A part-based elastic model represents complex within-class object variation without training. The hierarchy of parts may specify relationship to neighboring anatomical objects in object detection or a part-decomposition of a complex anatomic structure. The intuitive way to incorporate domain knowledge has a high potential to serve as easily adaptable method to a wide range of different detection tasks in medical image analysis. PMID:25077691

  9. Planning applications in image analysis

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.

    1994-01-01

    We describe two interim results from an ongoing effort to automate the acquisition, analysis, archiving, and distribution of satellite earth science data. Both results are applications of Artificial Intelligence planning research to the automatic generation of processing steps for image analysis tasks. First, we have constructed a linear conditional planner (CPed), used to generate conditional processing plans. Second, we have extended an existing hierarchical planning system to make use of durations, resources, and deadlines, thus supporting the automatic generation of processing steps in time and resource-constrained environments.

  10. Solid state radiographic image amplifiers, part C

    NASA Technical Reports Server (NTRS)

    Szepesi, Z.

    1971-01-01

    The contrast sensitivity of the radiographic amplifiers, both the storage type and nonstorage type, their absolute sensitivity, and the reproducibility of fabrication were investigated. The required 2-2T quality level was reached with the radiographic storage screen. The sensitivity threshold was 100 to 200 mR with 45 to 100 kV filtered X-rays. The quality level of the radiographic amplifier screen (without storage) was 4-4T; for a 6 mm (0.25 in.) thick aluminum specimen, a 1 mm (0.040 in.) diameter hole in a 0.25 mm (0.010 in.) thick penetrameter was detected. Its sensitivity threshold was 2 to 6 mR/min. The developed radiographic screens are applicable for uses in nondestructive testing.

  11. Merging of range images for inspection or safety applications

    NASA Astrophysics Data System (ADS)

    Mure-Dubois, James; Hügli, Heinz

    2008-08-01

    Range imagers provide useful information for part inspection, robot control, or human safety applications in industrial environments. However, some applications may require more information than range data from a single viewpoint. Therefore, multiple range images must be combined to create a three-dimensional representation of the scene. Although simple in its principle, this operation is not straightforward to implement in industrial systems, since each range image is affected by noise. In this paper, we present two specific applications where merging of range images must be performed. We use the same processing pipeline for both applications : conversion from range image to point clouds, elimination of degrees of freedom between different clouds, validation of the merged results. Nevertheless, each step in this pipeline requires dedicated algorithms for our example applications. The first application is high resolution inspection of large parts, where many range images are acquired sequentially and merged in a post-processing step, allowing to create a virtual model of the part observed, typically larger than the instrument's field of view. The key requirement in this application is high accuracy for the merging of multiple point clouds. The second application discussed is human safety in a human/robot environment: range images are used to ensure that no human is present in the robot’s zone of operation, and can trigger the robot's emergency shutdown when needed. In this case, range image merging is required to avoid uncertainties due to occlusions. The key requirement here is real-time operation, namely the merging operation should not introduce a significant latency in the data processing pipeline. For both application cases, the improvements brought by merging multiple range images are clearly illustrated.

  12. Nonscanned ladar imaging and applications

    NASA Astrophysics Data System (ADS)

    Anthes, John P.; Garcia, Philip; Pierce, Joe T.; Dressendorfer, Paul V.

    1993-10-01

    A scannerless laser detection and ranging (LADAR) system is presently in development for applications at Sandia National Laboratories. This LADAR design eliminates the need for a mechanical laser beam scanner which is often the system component that limits the use of laser radars for many applications. Range to the target scene is determined in this approach by measuring the phase shift of the intensity modulation on the received optical return compared to the reference. The approach used in this LADAR is unique because the method used to detect this phase shift is an array of time integrating detectors that also records the image of the target scene. An analytical model is presented that describes the LADAR system performance. Applications of this LADAR system also are reviewed. They include terminal guidance of advanced conventional munitions, perimeter surveillance of secure facilities, mapping potholes/cracks in the U.S. highway system for improved maintenance scheduling, active collision avoidance of commercial/private vehicles, robotic vision integrated into advanced manufacturing concepts, and a novel airborne multi-sensor system containing LADAR, SAR, and LIDAR to locate and measure the thickness of ocean oil spills.

  13. 47 CFR 27.3 - Other applicable rule parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... spectrum may be made available for experimentation. (e) Part 15. This part sets forth the requirements and.... This part sets forth the requirements and conditions applicable to commercial mobile radio service providers. (h) Part 22. This part sets forth the requirements and conditions applicable to public...

  14. 47 CFR 27.3 - Other applicable rule parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... spectrum may be made available for experimentation. (e) Part 15. This part sets forth the requirements and.... This part sets forth the requirements and conditions applicable to commercial mobile radio service providers. (h) Part 22. This part sets forth the requirements and conditions applicable to public...

  15. Adrenal imaging (Part 2): Medullary and secondary adrenal lesions

    PubMed Central

    Dhamija, Ekta; Panda, Ananya; Das, Chandan J.; Gupta, A. K.

    2015-01-01

    Adrenal malignancies can be either primary adrenal tumors or secondary metastases, with metastases representing the most common malignant adrenal lesion. While imaging cannot always clearly differentiate between various adrenal malignancies, presence of certain imaging features, in conjunction with appropriate clinical background and hormonal profile, can suggest the appropriate diagnosis. The second part of the article on adrenal imaging describes adrenal medullary tumors, secondary adrenal lesions, bilateral adrenal lesions, adrenal incidentalomas and provides an algorithmic approach to adrenal lesions based on current imaging recommendations. PMID:25593821

  16. Electromagnetic imaging methods for nondestructive evaluation applications.

    PubMed

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  17. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  18. 19 CFR 205.1 - Applicability of part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....S. COMMERCE § 205.1 Applicability of part. This part 205 applies to functions and duties of the Commission under sections 131, 301(e)(3), and 503(a) of the Trade Act of 1974. For other applicable...

  19. 47 CFR 27.3 - Other applicable rule parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements in international regulations, recommendations, agreements, and treaties. This part also contains... conditions applicable to telecommunications carriers under the Communications Assistance for Law Enforcement... part sets forth the requirements and conditions applicable to private land mobile radio services....

  20. 47 CFR 27.3 - Other applicable rule parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements in international regulations, recommendations, agreements, and treaties. This part also contains... conditions applicable to telecommunications carriers under the Communications Assistance for Law Enforcement... part sets forth the requirements and conditions applicable to private land mobile radio services....

  1. Image 100 procedures manual development: Applications system library definition and Image 100 software definition

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Decell, H. P., Jr.

    1975-01-01

    An outline for an Image 100 procedures manual for Earth Resources Program image analysis was developed which sets forth guidelines that provide a basis for the preparation and updating of an Image 100 Procedures Manual. The scope of the outline was limited to definition of general features of a procedures manual together with special features of an interactive system. Computer programs were identified which should be implemented as part of an applications oriented library for the system.

  2. 19 CFR 201.1 - Applicability of part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Applicability of part. 201.1 Section 201.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION GENERAL RULES OF GENERAL APPLICATION § 201.1 Applicability of part. This part relates generally to functions and activities of the Commission under...

  3. 19 CFR 201.1 - Applicability of part.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Applicability of part. 201.1 Section 201.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION GENERAL RULES OF GENERAL APPLICATION § 201.1 Applicability of part. This part relates generally to functions and activities of the Commission under...

  4. 19 CFR 201.1 - Applicability of part.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Applicability of part. 201.1 Section 201.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION GENERAL RULES OF GENERAL APPLICATION § 201.1 Applicability of part. This part relates generally to functions and activities of the Commission under...

  5. 19 CFR 201.1 - Applicability of part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Applicability of part. 201.1 Section 201.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION GENERAL RULES OF GENERAL APPLICATION § 201.1 Applicability of part. This part relates generally to functions and activities of the Commission under...

  6. 19 CFR 201.1 - Applicability of part.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Applicability of part. 201.1 Section 201.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION GENERAL RULES OF GENERAL APPLICATION § 201.1 Applicability of part. This part relates generally to functions and activities of the Commission under...

  7. 22 CFR 1423.1 - Applicability of this part.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Applicability of this part. 1423.1 Section 1423.1 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... LABOR PRACTICE PROCEEDINGS § 1423.1 Applicability of this part. This part is applicable to any charge...

  8. 22 CFR 1423.1 - Applicability of this part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Applicability of this part. 1423.1 Section 1423.1 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... LABOR PRACTICE PROCEEDINGS § 1423.1 Applicability of this part. This part is applicable to any charge...

  9. 22 CFR 1423.1 - Applicability of this part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Applicability of this part. 1423.1 Section 1423.1 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... LABOR PRACTICE PROCEEDINGS § 1423.1 Applicability of this part. This part is applicable to any charge...

  10. 22 CFR 1423.1 - Applicability of this part.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Applicability of this part. 1423.1 Section 1423.1 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... LABOR PRACTICE PROCEEDINGS § 1423.1 Applicability of this part. This part is applicable to any charge...

  11. 22 CFR 1423.1 - Applicability of this part.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Applicability of this part. 1423.1 Section 1423.1 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... LABOR PRACTICE PROCEEDINGS § 1423.1 Applicability of this part. This part is applicable to any charge...

  12. 47 CFR 24.2 - Other applicable rule parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Other applicable rule parts. 24.2 Section 24.2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PERSONAL COMMUNICATIONS SERVICES General Information § 24.2 Other applicable rule parts. Other FCC rule parts applicable to licensees in the...

  13. 47 CFR 24.2 - Other applicable rule parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... This part contains rules prescribing the manner in which parts of the radio frequency spectrum may be... structure registration applications. (g) Part 20 of this chapter governs commercial mobile radio...

  14. 47 CFR 24.2 - Other applicable rule parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... This part contains rules prescribing the manner in which parts of the radio frequency spectrum may be... structure registration applications. (g) Part 20 of this chapter governs commercial mobile radio...

  15. An extensible imaging platform for optical imaging applications

    NASA Astrophysics Data System (ADS)

    Paladini, Gianluca; Azar, Fred S.

    2009-02-01

    The National Institutes of Health (NIH) has recently developed an extensible imaging platform (XIP), a new open-source software development platform. XIP can be used to rapidly develop imaging applications designed to meet the needs of the optical imaging community. XIP is a state-of-the-art set of visual 'drag and drop' programming tools and associated libraries for rapid prototyping and application development. The tools include modules tailored for medical imaging, many of which are GPU hardware accelerated. They also provide a friendlier environment for utilizing popular toolkits such as ITK and VTK, and enable the visualization and processing of optical imaging data and standard DICOM data. XIP has built-in functionality for multidimensional data visualization and processing, and enables the development of independently optimized and re-usable software modules, which can be seamlessly added and interconnected to build advanced applications. XIP applications can run "stand alone", including in client/server mode for remote access. XIP also supports the DICOM WG23 "Application Hosting" standard, which will enable plug-in XIP applications to run on any DICOM host workstation. Such interoperability will enable the optical imaging community to develop and deploy modular applications across all academic/clinical/industry partners with WG23 compliant imaging workstations.

  16. GSTARS computer models and their applications, Part II: Applications

    USGS Publications Warehouse

    Simoes, F.J.M.; Yang, C.T.

    2008-01-01

    In part 1 of this two-paper series, a brief summary of the basic concepts and theories used in developing the Generalized Stream Tube model for Alluvial River Simulation (GSTARS) computer models was presented. Part 2 provides examples that illustrate some of the capabilities of the GSTARS models and how they can be applied to solve a wide range of river and reservoir sedimentation problems. Laboratory and field case studies are used and the examples show representative applications of the earlier and of the more recent versions of GSTARS. Some of the more recent capabilities implemented in GSTARS3, one of the latest versions of the series, are also discussed here with more detail. ?? 2008 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.

  17. Prototype Videodisk-Based Part-Task Thermal Imaging Trainer

    NASA Technical Reports Server (NTRS)

    Brickner, Michael S.; Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1995-01-01

    Thermal images, or infrared images, are representations of the world based on heat, instead of visible light. Research has shown that the resulting thermal image results in perceptual differences leading to difficulties in interpretation (e.g., the determination of slope angle, concavity/convexity), or increased identification latencies. A joint research project between the United States (NASA and U.S. Army) and Israel (Ministry of Defense and Israel Air Force) has resulted in the development of a prototype part-task trainer for the acquisition of perceptual skills associated with thermal imaging usage. This prototype system is videodisk-based under computer control, using recordings of thermal images. A lesson section introduces declarative knowledge, in which the basic physics and heuristics of thermal imagery are taught. An exercise section teaches procedural knowledge, with the user viewing dynamic, actual imagery, with an interactive detection/location determination task. The general philosophy and design of the trainer will be demonstrated.

  18. Brain Imaging: Applications in Psychiatry.

    ERIC Educational Resources Information Center

    Andreasen, Nancy C.

    1988-01-01

    Discusses various brain imaging techniques, including computed tomography, magnetic resonance imaging, measurement of regional cerebral blood flow, single photo emission tomography, and position emission tomography. Describes the uses of these techniques in helping to understand brain functioning. (TW)

  19. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  20. Solid-State Imager Applications At Kodak

    NASA Astrophysics Data System (ADS)

    Khosla, R. P.

    1986-05-01

    One of the most dramatic demonstrations of the continuing advancement in VLSI has been the solid-state image sensor. Since the first array demonstration in 1967, the increase in pixel density in image sensors has matched the increase in cell density in dynamic memories. Today, image sensors with densities of 360,000 elements are available for consumer applications, and sensors with well over a million elements have been developed for government and scientific applications. Although electronic imaging has dominated the commercial and government market for many years, widespread application in consumer products has been limited by the high cost and low resolution of solid-state sensors as compared to vidicon-type tubes. Now, however, the cost of image sensors for television applications has fallen to a point at which it is attractive to design consumer products such as video cameras using solid-state image sensors. As a result, image sensors have entered the consumer marketplace as well. We discuss some of the advances made at Eastman Kodak Company in two areas: very high-speed image sensors and very high-density color image sensors. A brief introduction to image sensor architecture is presented, followed by descriptions of a 2000-frame/second sensor for high-frame-rate imaging and a 360,000-pixel color sensor for imaging photographic negatives.

  1. Applications Of Image Processing In Criminalistics

    NASA Astrophysics Data System (ADS)

    Krile, Thomas F.; Walkup, John F.; Barsallo, Adonis; Olimb, Hal; Tarng, Jaw-Horng

    1987-01-01

    A review of some basic image processing techniques for enhancement and restoration of images is given. Both digital and optical approaches are discussed. Fingerprint images are used as examples to illustrate the various processing techniques and their potential applications in criminalistics.

  2. Ultrawideband radar imaging system for biomedical applications

    SciTech Connect

    Jafari, H.M.; Liu, W.; Hranilovic, S.; Deen, M.J.

    2006-05-15

    Ultrawideband (UWB) (3-10 GHz) radar imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration and resolution characteristics. The underlying principle of UWB cancer detection is a significant contrast in dielectric properties, which is estimated to be greater than 2:1 between normal and cancerous tissue, compared to a few-percent contrast in radiographic density exploited by x rays. This article presents a feasibility study of the UWB imaging of liver cancer tumors, based on the frequency-dependent finite difference time domain method. The reflection, radiation, and scattering properties of UWB pulses as they propagate through the human body are studied. The reflected and back-scattered electromagnetic energies from cancer tumors inside the liver are also investigated. An optimized, ultrawideband antenna was designed for near field operation, allowing for the reduction of the air-skin interface. It will be placed on the fat-liver tissue phantom with a malignant tumor stimulant. By performing an incremental scan over the phantom and removing early time artifacts, including reflection from the antenna ends, images based on the back-scattered signal from the tumor can be constructed. This research is part of our effort to develop a UWB cancer detection system with good detection and localization properties.

  3. Real Time Fast Ultrasound Imaging Technology and Possible Applications

    NASA Astrophysics Data System (ADS)

    Cruza, J. F.; Perez, M.; Moreno, J. M.; Fritsch, C.

    In this work, a novel hardware architecture for fast ultrasound imaging based on FPGA devices is proposed. A key difference over other approaches is the unlimited scalability in terms of active channels without performance losses. Acquisition and processing tasks share the same hardware, eliminating communication bottlenecks with smaller size and power losses. These features make this system suitable to implement the most demanding imaging applications, like 3D Phased Array, Total Focusing Method, Vector Doppler, Image Compounding, High Speed Part Scanning and advanced elastographic techniques. A single medium sized FPGA allows beamforming up to 200 scan lines simultaneously, which is enough to perform most of the above mentioned applications in strict real time.

  4. Interference imaging and it's application to material and medical imaging

    NASA Astrophysics Data System (ADS)

    Menk, R. H.

    1999-08-01

    Recently several new imaging modalities in the domain of x-rays have been invented that show dramatically improved contrast over standard imaging techniques, where the contrast is based on attenuation only. Their working principle is either interference between scattered wave fronts from a sample with a reference wave field or the selective measure of refraction properties of the sample utilizing a crystal analyzer. The first category includes multi energy x-ray holography (MEXH) and phase contrast imaging (PHC) while the latter includes diffraction enhanced imaging (DEI). The basic theory will be discussed and some recent applications in material science as well as medical imaging will be reviewed.

  5. Fluorescence lifetime imaging--techniques and applications.

    PubMed

    Becker, W

    2012-08-01

    Fluorescence lifetime imaging (FLIM) uses the fact that the fluorescence lifetime of a fluorophore depends on its molecular environment but not on its concentration. Molecular effects in a sample can therefore be investigated independently of the variable, and usually unknown concentration of the fluorophore. There is a variety of technical solutions of lifetime imaging in microscopy. The technical part of this paper focuses on time-domain FLIM by multidimensional time-correlated single photon counting, time-domain FLIM by gated image intensifiers, frequency-domain FLIM by gain-modulated image intensifiers, and frequency-domain FLIM by gain-modulated photomultipliers. The application part describes the most frequent FLIM applications: Measurement of molecular environment parameters, protein-interaction measurements by Förster resonance energy transfer (FRET), and measurements of the metabolic state of cells and tissue via their autofluorescence. Measurements of local environment parameters are based on lifetime changes induced by fluorescence quenching or conformation changes of the fluorophores. The advantage over intensity-based measurements is that no special ratiometric fluorophores are needed. Therefore, a much wider selection of fluorescence markers can be used, and a wider range of cell parameters is accessible. FLIM-FRET measures the change in the decay function of the FRET donor on interaction with an acceptor. FLIM-based FRET measurement does not have to cope with problems like donor bleedthrough or directly excited acceptor fluorescence. This relaxes the requirements to the absorption and emission spectra of the donors and acceptors used. Moreover, FLIM-FRET measurements are able to distinguish interacting and noninteracting fractions of the donor, and thus obtain independent information about distances and interacting and noninteracting protein fractions. This is information not accessible by steady-state FRET techniques. Autofluorescence FLIM exploits changes in the decay parameters of endogenous fluorophores with the metabolic state of the cells or the tissue. By resolving changes in the binding, conformation, and composition of biologically relevant compounds FLIM delivers information not accessible by steady-state fluorescence techniques. PMID:22621335

  6. Fast transforms for acoustic imaging--part I: theory.

    PubMed

    Ribeiro, Flávio P; Nascimento, Vítor H

    2011-08-01

    The classical approach for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Deconvolution methods have been proposed to enhance acoustic images and have produced significant improvements. Other proposals involve covariance fitting techniques, which avoid deconvolution altogether. However, in their traditional presentation, these enhanced reconstruction methods have very high computational costs, mostly because they have no means of efficiently transforming back and forth between a hypothetical image and the measured data. In this paper, we propose the Kronecker Array Transform (KAT), a fast separable transform for array imaging applications. Under the assumption of a separable array, it enables the acceleration of imaging techniques by several orders of magnitude with respect to the fastest previously available methods, and enables the use of state-of-the-art regularized least-squares solvers. Using the KAT, one can reconstruct images with higher resolutions than was previously possible and use more accurate reconstruction techniques, opening new and exciting possibilities for acoustic imaging. PMID:21342848

  7. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  8. Laser imaging for clinical applications

    NASA Astrophysics Data System (ADS)

    Van Houten, John P.; Cheong, Wai-Fung; Kermit, Eben L.; King, Richard A.; Spilman, Stanley D.; Benaron, David A.

    1995-03-01

    Medical optical imaging (MOI) uses light emitted into opaque tissues in order to determine the interior structure and chemical content. These optical techniques have been developed in an attempt to prospectively identify impending brain injuries before they become irreversible, thus allowing injury to be avoided or minimized. Optical imaging and spectroscopy center around the simple idea that light passes through the body in small amounts, and emerges bearing clues about tissues through which it passed. Images can be reconstructed from such data, and this is the basis of optical tomography. Over the past few years, techniques have been developed to allow construction of images from such optical data at the bedside. We have used a time-of-flight system reported earlier to monitor oxygenation and image hemorrhage in neonatal brain. This article summarizes the problems that we believe can be addressed by such techniques, and reports on some of our early results.

  9. 49 CFR 1542.1 - Applicability of this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Applicability of this part. 1542.1 Section 1542.1 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT SECURITY General § 1542.1 Applicability of this part. This part...

  10. 47 CFR 90.5 - Other applicable rule parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... certain antenna structure registration applications. (g) Part 18 deals with the operation of industrial... service applicable to certain providers in the following services in this part: (1) Industrial/business... radio equipment to the public switched telephone network. (n) Part 101 governs the operation of...

  11. 47 CFR 90.5 - Other applicable rule parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Other applicable rule parts. 90.5 Section 90.5 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES General Information § 90.5 Other applicable rule parts. Other Commission rule parts of importance that may...

  12. 47 CFR 90.5 - Other applicable rule parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Other applicable rule parts. 90.5 Section 90.5 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES General Information § 90.5 Other applicable rule parts. Other Commission rule parts of importance that may...

  13. 47 CFR 90.5 - Other applicable rule parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... certain antenna structure registration applications. (g) Part 18 deals with the operation of industrial... service applicable to certain providers in the following services in this part: (1) Industrial/business... radio equipment to the public switched telephone network. (n) Part 101 governs the operation of...

  14. 34 CFR 98.1 - Applicability of part.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Applicability of part. 98.1 Section 98.1 Education Office of the Secretary, Department of Education STUDENT RIGHTS IN RESEARCH, EXPERIMENTAL PROGRAMS, AND TESTING § 98.1 Applicability of part. This part applies to any program administered by the Secretary...

  15. 34 CFR 98.1 - Applicability of part.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Applicability of part. 98.1 Section 98.1 Education Office of the Secretary, Department of Education STUDENT RIGHTS IN RESEARCH, EXPERIMENTAL PROGRAMS, AND TESTING § 98.1 Applicability of part. This part applies to any program administered by the Secretary of Education that: (a)(1) Was transferred to...

  16. 34 CFR 98.1 - Applicability of part.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Applicability of part. 98.1 Section 98.1 Education Office of the Secretary, Department of Education STUDENT RIGHTS IN RESEARCH, EXPERIMENTAL PROGRAMS, AND TESTING § 98.1 Applicability of part. This part applies to any program administered by the Secretary of Education that: (a)(1) Was transferred to...

  17. 46 CFR 114.112 - Specific applicability for individual parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Specific applicability for individual parts. 114.112 Section 114.112 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS... PROVISIONS § 114.112 Specific applicability for individual parts. At the beginning of certain parts of...

  18. Digital image processing: a primer for JVIR authors and readers: part 2: digital image acquisition.

    PubMed

    LaBerge, Jeanne M; Andriole, Katherine P

    2003-11-01

    This is the second installment of a three-part series on digital image processing intended to prepare authors for online submission of manuscripts. In the first article of the series, we reviewed the fundamentals of digital image architecture. In this article, we describe the ways that an author can import digital images to the computer desktop. We explore the modern imaging network and explain how to import picture archiving and communications systems (PACS) images to the desktop. Options and techniques for producing digital hard copy film are also presented. PMID:14605101

  19. 17 CFR 232.10 - Application of part 232.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... uniform application form for access codes to file on EDGAR, and (2) File, by uploading as a Portable... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Application of part 232. 232...-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS General 232.10 Application of part 232....

  20. Passive terahertz imaging for security application

    NASA Astrophysics Data System (ADS)

    Guo, Lan-tao; Deng, Chao; Zhao, Yuan-meng; Zhang, Cun-lin

    2013-08-01

    The passive detection is safe for passengers and operators as no radiation. Therefore, passive terahertz (THz) imaging can be applied to human body security check. Imaging in the THz band offers the unique property of being able to identify object through a range of materials. Therefore passive THz imaging is meaningful for security applications. This attribute has always been of interest to both the civil and military marks with applications. We took advantage of a single THz detector and a trihedral scanning mirror to propose another passive THz beam scanning imaging method. This method overcame the deficiencies of the serious decline in image quality due to the movement of the focused mirror. We exploited a THz scanning mirror with a trihedral scanning mirror and an ellipsoidal mirror to streamline the structure of the system and increase the scanning speed. Then the passive THz beam scanning imaging system was developed based on this method. The parameters were set as follows: the best imaging distance was 1.7m, the image height was 2m, the image width was 1m, the minimum imaging time of per frame was 8s, and the minimum resolution was 4cm. We imaged humans with different objects hidden under their clothes, such as fruit knife, belt buckle, mobile phone, screwdriver, bus cards, keys and other items. All the tested stuffs could be detected and recognized from the image.

  1. The fundamentals of fetal MR imaging: Part 1.

    PubMed

    Plunk, Matthew R; Chapman, Teresa

    2014-01-01

    Congenital malformations detected in any fetal system using ultrasound may be further evaluated with magnetic resonance imaging (MRI) to improve counseling, to plan deliveries appropriately, and sometimes to enable fetal interventions. In this first half of a 2-part review, the history and safety factors regarding fetal MRI, as well as the practical aspects of image acquisition, are discussed. In addition, as central nervous system anomalies are most commonly and best evaluated using fetal MRI, challenging central nervous system anomalies, such as fetal ventriculomegaly, posterior anomalies, and neural tube defects, detected using prenatal ultrasound are also reviewed with a focus on the fundamental implications of these diagnoses. PMID:25060713

  2. Digital rock physics benchmarks—Part I: Imaging and segmentation

    NASA Astrophysics Data System (ADS)

    Andrä, Heiko; Combaret, Nicolas; Dvorkin, Jack; Glatt, Erik; Han, Junehee; Kabel, Matthias; Keehm, Youngseuk; Krzikalla, Fabian; Lee, Minhui; Madonna, Claudio; Marsh, Mike; Mukerji, Tapan; Saenger, Erik H.; Sain, Ratnanabha; Saxena, Nishank; Ricker, Sarah; Wiegmann, Andreas; Zhan, Xin

    2013-01-01

    The key paradigm of digital rock physics (DRP) "image and compute" implies imaging and digitizing the pore space and mineral matrix of natural rock and then numerically simulating various physical processes in this digital object to obtain such macroscopic rock properties as permeability, electrical conductivity, and elastic moduli. The steps of this process include image acquisition, image processing (noise reduction, smoothing, and segmentation); setting up the numerical experiment (object size and resolution as well as the boundary conditions); and numerically solving the field equations. Finally, we need to interpret the solution thus obtained in terms of the desired macroscopic properties. For each of these DRP steps, there is more than one method and implementation. Our goal is to explore and record the variability of the computed effective properties as a function of using different tools and workflows. Such benchmarking is the topic of the two present companion papers. Here, in the first part, we introduce four 3D microstructures, a segmented Fontainebleau sandstone sample (porosity 0.147), a gray-scale Berea sample; a gray-scale Grosmont carbonate sample; and a numerically constructed pack of solid spheres (porosity 0.343). Segmentation of the gray-scale images by three independent teams reveals the uncertainty of this process: the segmented porosity range is between 0.184 and 0.209 for Berea and between 0.195 and 0.271 for the carbonate. The implications of the uncertainty associated with image segmentation are explored in a second paper.

  3. 14 CFR 91.801 - Applicability: Relation to part 36.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... chapter. (b) Unless otherwise specified, as used in this subpart “part 36” refers to 14 CFR part 36... the islands of Hawaii in turnaround service, under part 121 or 129 of this chapter on or after... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Applicability: Relation to part 36....

  4. 14 CFR 91.801 - Applicability: Relation to part 36.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... chapter. (b) Unless otherwise specified, as used in this subpart “part 36” refers to 14 CFR part 36... the islands of Hawaii in turnaround service, under part 121 or 129 of this chapter on or after... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Applicability: Relation to part 36....

  5. 14 CFR 298.1 - Applicability of part.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS General § 298.1 Applicability of part. This part establishes classifications of air carriers known as “air taxi operators” and “commuter...

  6. 43 CFR 17.2 - Application of this part.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ASSISTED PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or National Origin § 17.2 Application of this part. (a) This part applies to any program for which...

  7. 43 CFR 17.2 - Application of this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ASSISTED PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or National Origin § 17.2 Application of this part. (a) This part applies to any program for which...

  8. 43 CFR 17.2 - Application of this part.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or National Origin § 17.2 Application of this part. (a) This part applies to any program for which Federal...

  9. 43 CFR 17.2 - Application of this part.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ASSISTED PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or National Origin § 17.2 Application of this part. (a) This part applies to any program for which...

  10. 43 CFR 17.2 - Application of this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ASSISTED PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or National Origin § 17.2 Application of this part. (a) This part applies to any program for which...

  11. 49 CFR 1546.1 - Applicability of this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FOREIGN AIR CARRIER SECURITY General § 1546.1 Applicability of this part. This part prescribes aviation security rules governing the following: (a)...

  12. Image processing applications in NDE

    SciTech Connect

    Morris, R.A.

    1980-01-01

    Nondestructive examination (NDE) can be defined as a technique or collection of techniques that permits one to determine some property of a material or object without damaging the object. There are a large number of such techniques and most of them use visual imaging in one form or another. They vary from holographic interferometry where displacements under stress are measured to the visual inspection of an objects surface to detect cracks after penetrant has been applied. The use of image processing techniques on the images produced by NDE is relatively new and can be divided into three general categories: classical image enhancement; mensuration techniques; and quantitative sensitometry. An example is discussed of how image processing techniques are used to nondestructively and destructively test the product throughout its life cycle. The product that will be followed is the microballoon target used in the laser fusion program. The laser target is a small (50 to 100 ..mu..m - dia) glass sphere with typical wall thickness of 0.5 to 6 ..mu..m. The sphere may be used as is or may be given a number of coatings of any number of materials. The beads are mass produced by the millions and the first nondestructive test is to separate the obviously bad beads (broken or incomplete) from the good ones. After this has been done, the good beads must be inspected for spherocity and wall thickness uniformity. The microradiography of the glass, uncoated bead is performed on a specially designed low-energy x-ray machine. The beads are mounted in a special jig and placed on a Kodak high resolution plate in a vacuum chamber that contains the x-ray source. The x-ray image is made with an energy less that 2 keV and the resulting images are then inspected at a magnification of 500 to 1000X. Some typical results are presented.

  13. Small pixel uncooled imaging FPAs and applications

    NASA Astrophysics Data System (ADS)

    Blackwell, Richard; Franks, Glen; Lacroix, Daniel; Hyland, Sandra; Murphy, Robert

    2010-04-01

    BAE Systems continues to make dramatic progress in uncooled microbolometer sensors and applications. This paper will review the latest advancements in microbolometer technology at BAE Systems, including the development status of 17 micrometer pixel pitch detectors and imaging modules which are entering production and will be finding their way into BAE Systems products and applications. Benefits include increased die per wafer and potential benefits to SWAP for many applications. Applications include thermal weapons sights, thermal imaging modules for remote weapon stations, vehicle situational awareness sensors and mast/pole mounted sensors.

  14. Industrial applications of process imaging and image processing

    NASA Astrophysics Data System (ADS)

    Scott, David M.; Sunshine, Gregg; Rosen, Lou; Jochen, Ed

    2001-02-01

    Process imaging is the art of visualizing events inside closed industrial processes. Image processing is the art of mathematically manipulating digitized images to extract quantitative information about such processes. Ongoing advances in camera and computer technology have made it feasible to apply these abilities to measurement needs in the chemical industry. To illustrate the point, this paper describes several applications developed at DuPont, where a variety of measurements are based on in-line, at-line, and off-line imaging. Application areas include compounding, melt extrusion, crystallization, granulation, media milling, and particle characterization. Polymer compounded with glass fiber is evaluated by a patented radioscopic (real-time X-ray imaging) technique to measure concentration and dispersion uniformity of the glass. Contamination detection in molten polymer (important for extruder operations) is provided by both proprietary and commercial on-line systems. Crystallization in production reactors is monitored using in-line probes and flow cells. Granulation is controlled by at-line measurements of granule size obtained from image processing. Tomographic imaging provides feedback for improved operation of media mills. Finally, particle characterization is provided by a robotic system that measures individual size and shape for thousands of particles without human supervision. Most of these measurements could not be accomplished with other (non-imaging) techniques.

  15. Prior image constrained image reconstruction in emerging computed tomography applications

    NASA Astrophysics Data System (ADS)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation dose efficiency improvement in multi-energy photon-counting CT, and can mitigate scatter-induced shading artifacts in cone-beam CT in full-fan and half-fan modes.

  16. Medical Applications of Microwave Imaging

    PubMed Central

    Wang, Zhao; Lim, Eng Gee; Tang, Yujun

    2014-01-01

    Ultrawide band (UWB) microwave imaging is a promising method for the detection of early stage breast cancer, based on the large contrast in electrical parameters between malignant tumour tissue and the surrounding normal breast-tissue. In this paper, the detection and imaging of a malignant tumour are performed through a tomographic based microwave system and signal processing. Simulations of the proposed system are performed and postimage processing is presented. Signal processing involves the extraction of tumour information from background information and then image reconstruction through the confocal method delay-and-sum algorithms. Ultimately, the revision of time-delay and the superposition of more tumour signals are applied to improve accuracy. PMID:25379515

  17. Computer image processing: Geologic applications

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1978-01-01

    Computer image processing of digital data was performed to support several geological studies. The specific goals were to: (1) relate the mineral content to the spectral reflectance of certain geologic materials, (2) determine the influence of environmental factors, such as atmosphere and vegetation, and (3) improve image processing techniques. For detection of spectral differences related to mineralogy, the technique of band ratioing was found to be the most useful. The influence of atmospheric scattering and methods to correct for the scattering were also studied. Two techniques were used to correct for atmospheric effects: (1) dark object subtraction, (2) normalization of use of ground spectral measurements. Of the two, the first technique proved to be the most successful for removing the effects of atmospheric scattering. A digital mosaic was produced from two side-lapping LANDSAT frames. The advantages were that the same enhancement algorithm can be applied to both frames, and there is no seam where the two images are joined.

  18. Scope and applications of translation invariant wavelets to image registration

    NASA Technical Reports Server (NTRS)

    Chettri, Samir; LeMoigne, Jacqueline; Campbell, William

    1997-01-01

    The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.

  19. Fundamental performance differences between CMOS and CCD imagers: Part II

    NASA Astrophysics Data System (ADS)

    Janesick, James; Andrews, James; Tower, John; Grygon, Mark; Elliott, Tom; Cheng, John; Lesser, Michael; Pinter, Jeff

    2007-09-01

    A new class of CMOS imagers that compete with scientific CCDs is presented. The sensors are based on deep depletion backside illuminated technology to achieve high near infrared quantum efficiency and low pixel cross-talk. The imagers deliver very low read noise suitable for single photon counting - Fano-noise limited soft x-ray applications. Digital correlated double sampling signal processing necessary to achieve low read noise performance is analyzed and demonstrated for CMOS use. Detailed experimental data products generated by different pixel architectures (notably 3TPPD, 5TPPD and 6TPG designs) are presented including read noise, charge capacity, dynamic range, quantum efficiency, charge collection and transfer efficiency and dark current generation. Radiation damage data taken for the imagers is also reported.

  20. Digital image processing: a primer for JVIR authors and readers: Part 3: Digital image editing.

    PubMed

    LaBerge, Jeanne M; Andriole, Katherine P

    2003-12-01

    This is the final installment of a three-part series on digital image processing intended to prepare authors for online submission of manuscripts. In the first two articles of the series, the fundamentals of digital image architecture were reviewed and methods of importing images to the computer desktop were described. In this article, techniques are presented for editing images in preparation for online submission. A step-by-step guide to basic editing with use of Adobe Photoshop is provided and the ethical implications of this activity are explored. PMID:14654480

  1. ENVIRONMENTAL APPLICATIONS OF SPECTRAL IMAGING

    EPA Science Inventory

    The utility of remote sensing using spectral imaging is just being realized through the investigation to a wide variety of environmental issues. Improved spectral and spatial resolution is very important to the detection of effects once regarded as unobservable. A current researc...

  2. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  3. Clinical applications of choroidal imaging technologies.

    PubMed

    Chhablani, Jay; Barteselli, Giulio

    2015-05-01

    Choroid supplies the major blood supply to the eye, especially the outer retinal structures. Its understanding has significantly improved with the advent of advanced imaging modalities such as enhanced depth imaging technique and the newer swept source optical coherence tomography. Recent literature reports the findings of choroidal changes, quantitative as well as qualitative, in various chorioretinal disorders. This review article describes applications of choroidal imaging in the management of common diseases such as age-related macular degeneration, high myopia, central serous chorioretinopathy, chorioretinal inflammatory diseases, and tumors. This article briefly discusses future directions in choroidal imaging including angiography. PMID:26139797

  4. Continuum Thermodynamics - Part II: Applications and Examples

    NASA Astrophysics Data System (ADS)

    Albers, Bettina; Wilmanski, Krzysztof

    The intention by writing Part II of the book on continuum thermodynamics was the deepening of some issues covered in Part I as well as a development of certain skills in dealing with practical problems of oscopic processes. However, the main motivation for this part is the presentation of main facets of thermodynamics which appear when interdisciplinary problems are considered. There are many monographs on the subjects of solid mechanics and thermomechanics, on fluid mechanics and on coupled fields but most of them cover only special problems in great details which are characteristic for the chosen field. It is rather seldom that relations between these fields are discussed. This concerns, for instance, large deformations of the skeleton of porous materials with diffusion (e.g. lungs), couplings of deformable particles with the fluid motion in suspensions, couplings of adsorption processes and chemical reactions in immiscible mixtures with diffusion, various multi-component aspects of the motion, e.g. of avalanches, such as segregation processes, etc...

  5. Stable image acquisition for mobile image processing applications

    NASA Astrophysics Data System (ADS)

    Henning, Kai-Fabian; Fritze, Alexander; Gillich, Eugen; Mönks, Uwe; Lohweg, Volker

    2015-02-01

    Today, mobile devices (smartphones, tablets, etc.) are widespread and of high importance for their users. Their performance as well as versatility increases over time. This leads to the opportunity to use such devices for more specific tasks like image processing in an industrial context. For the analysis of images requirements like image quality (blur, illumination, etc.) as well as a defined relative position of the object to be inspected are crucial. Since mobile devices are handheld and used in constantly changing environments the challenge is to fulfill these requirements. We present an approach to overcome the obstacles and stabilize the image capturing process such that image analysis becomes significantly improved on mobile devices. Therefore, image processing methods are combined with sensor fusion concepts. The approach consists of three main parts. First, pose estimation methods are used to guide a user moving the device to a defined position. Second, the sensors data and the pose information are combined for relative motion estimation. Finally, the image capturing process is automated. It is triggered depending on the alignment of the device and the object as well as the image quality that can be achieved under consideration of motion and environmental effects.

  6. 47 CFR 87.3 - Other applicable rule parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... General Information § 87.3 Other applicable rule parts. Other applicable CFR title 47 parts include: (a..., adjudicatory proceedings, rule making proceedings, procedures for reconsideration and review of the Commission... standards and procedures concerning marketing of radio frequency devices, and for obtaining...

  7. 47 CFR 87.3 - Other applicable rule parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... General Information § 87.3 Other applicable rule parts. Other applicable CFR title 47 parts include: (a..., adjudicatory proceedings, rule making proceedings, procedures for reconsideration and review of the Commission... standards and procedures concerning marketing of radio frequency devices, and for obtaining...

  8. 22 CFR Exhibit A to Part 204 - Application for Compensation

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Application for Compensation A Exhibit A to Part 204 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT HOUSING GUARANTY STANDARD TERMS AND CONDITIONS Pt. 204, Exh. A Exhibit A to Part 204—Application for Compensation Office of Housing and Urban Programs, Agency for International...

  9. 12 CFR Appendix B to Part 202 - Model Application Forms

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Model Application Forms B Appendix B to Part 202 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM EQUAL CREDIT OPPORTUNITY ACT (REGULATION B) Pt. 202, App. B Appendix B to Part 202—Model Application Forms 1. This appendix contains five model...

  10. Rotation Covariant Image Processing for Biomedical Applications

    PubMed Central

    Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences. PMID:23710255

  11. True 3d Images and Their Applications

    NASA Astrophysics Data System (ADS)

    Wang, Z.; wang@hzgeospace., zheng.

    2012-07-01

    A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.

  12. Remote sensing image classification algorithm based on image activity measure for image compression applications

    NASA Astrophysics Data System (ADS)

    Tian, Xin; Wu, Lin; Li, Tao; Xiong, Cheng-Yi; Li, Song

    2013-10-01

    A remote sensing image classification algorithm based on image activity measure is proposed, which is used for adaptive image compression applications. The image activity measure has been studied and the support vector machine(SVM) is introduced. Then, the relationship between the image activity measure and the distortion caused by quantization is discussed in our image compression experiments (JPEG2000, CCSDS and SPIHT). Another two image activity measures are proposed as well. Then a feature vector is constructed by image activity measures in order to describe the image compression features of different images. The test images are classified by support vector machine classifier. The effectiveness of the proposed algorithm has been tested using an image data set, which demonstrates the advantage of the proposed algorithm.

  13. 47 CFR 20.2 - Other applicable rule parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Other applicable rule parts. 20.2 Section 20.2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES COMMERCIAL MOBILE SERVICES... mobile radio services include the following: (a) Part 1. This part includes rules of practice...

  14. 49 CFR 1544.1 - Applicability of this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR SECURITY: AIR CARRIERS AND COMMERCIAL OPERATORS General § 1544.1 Applicability of this part. (a) This part prescribes aviation security... under 14 CFR part 119 for scheduled passenger operations, public charter passenger operations,...

  15. Imaging applications in speech production research

    NASA Astrophysics Data System (ADS)

    Narayanan, Shrikanth S.; Alwan, Abeer

    1996-04-01

    The primary focus of speech production research is directed towards obtaining improved understanding and quantitative characterization of the articulatory dynamics, acoustics, and cognition of both normal and pathological human speech. Such efforts are, however, frequently challenged by the lack of appropriate physical and physiological data. A great deal of attention is, hence, given to the development of novel measurement/instrumentation techniques which are desirably non invasive, safe, and do not interfere with normal speech production. Several imaging techniques have been successfully employed for studying speech production. In the first part of this paper, an overview of the various imaging techniques used in speech research such as x-rays, ultrasound, structural and functional magnetic resonance imaging, glossometry, palatography, video fibroscopy and imaging is presented. In the second part of the paper, we describe the results of our efforts to understand and model speech production mechanisms of vowels, fricatives, and lateral and rhotic consonants based on MRI data.

  16. Application of ultrasound in periodontics: Part I

    PubMed Central

    Bains, Vive K.; Mohan, Ranjana; Bains, Rhythm

    2008-01-01

    Ultrasonic is a branch of acoustics concerned with sound vibrations in frequency ranges above audible level. Ultrasound uses the transmission and reflection of acoustic energy. A pulse is propagated and its reflection is received, both by the transducer. For clinical purposes ultrasound is generated by transducers, which converts electrical energy into ultrasonic waves. This is usually achieved by magnetostriction or piezoelectricity. Primary effects of ultrasound are thermal, mechanical (cavitation and microstreaming), and chemical (sonochemicals). Knowledge of the basic and other secondary effects of ultrasound is essential for the development of techniques of application. PMID:20142941

  17. DIANE stationary neutron radiography system image quality and industrial applications

    NASA Astrophysics Data System (ADS)

    Cluzeau, S.; Huet, J.; Le Tourneur, P.

    1994-05-01

    The SODERN neutron radiography laboratory has operated since February 1993 using a sealed tube generator (GENIE 46). An experimental programme of characterization (dosimetry, spectroscopy) has confirmed the expected performances concerning: neutron flux intensity, neutron energy range, residual gamma flux. Results are given in a specific report [2]. This paper is devoted to the image performance reporting. ASTM and specific indicators have been used to test the image quality with various converters and films. The corresponding modulation transfer functions are to be determined from image processing. Some industrial applications have demonstrated the capabilities of the system: corrosion detection in aircraft parts, ammunitions filling testing, detection of polymer lacks in sandwich steel sheets, detection of moisture in a probe for geophysics, residual ceramic cores imaging in turbine blades. Various computerized electronic imaging systems will be tested to improve the industrial capabilities.

  18. Translational Applications of Molecular Imaging and Radionuclide Therapy

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.; Vera, David

    2005-06-17

    Molecular imaging is becoming a larger part of imaging research and practice. The Office of Biological and Environmental Research of the Department of Energy funds a significant number of researchers in this area. The proposal is to partially fund a workshop to inform scientists working in nuclear medicine and nuclear medicine practitioners of the recent advances of molecular imaging in nuclear medicine as well as other imaging modalities. A limited number of topics related to radionuclide therapy will also be discussed. The proposal is to request partial funds for the workshop entitled “Translational Applications of Molecular Imaging and Radionuclide Therapy” to be held prior to the Society of Nuclear Medicine Annual Meeting in Toronto, Canada in June 2005. The meeting will be held on June 17-18. This will allow scientists interested in all aspects of nuclear medicine imaging to attend. The chair of the organizing group is Dr. Michael J. Welch. The organizing committee consists of Dr. Welch, Dr. William C. Eckelman and Dr. David Vera. The goal is to invite speakers to discuss the most recent advances of modern molecular imaging and therapy. Speakers will present advances made in in vivo tagging imaging assays, technical aspects of small animal imaging, in vivo imaging and bench to bedside translational study – the role of a diagnostic scan on therapy selection. This latter topic will include discussions on α therapy and new approaches to dosimetry. Several of these topics are those funded by the Department of Energy Office of Biological and Environmental Research.

  19. The fundamentals of fetal magnetic resonance imaging: Part 2.

    PubMed

    Plunk, Matthew R; Chapman, Teresa

    2014-01-01

    Careful assessment of fetal anatomy by a combination of ultrasound and fetal magnetic resonance imaging offers the clinical teams and counselors caring for the patient information that can be critical for the management of both the mother and the fetus. In the second half of this 2-part review, we focus on space-occupying lesions in the fetal body. Because developing fetal tissues are programmed to grow rapidly, mass lesions can have a substantial effect on the formation of normal adjacent organs. Congenital diaphragmatic hernia and lung masses, fetal teratoma, and intra-abdominal masses are discussed, with an emphasis on differential etiologies and on fundamental management considerations. PMID:24974309

  20. Nitric Oxide Release Part II. Therapeutic Applications

    PubMed Central

    Carpenter, Alexis W.; Schoenfisch, Mark H.

    2012-01-01

    Summary A wide range of nitric oxide (NO)-releasing materials have emerged as potential therapeutics that exploit NO’s vast biological roles. Macromolecular NO-releasing scaffolds are particularly promising due to their ability to store and deliver larger NO payloads in a more controlled and effective manner compared to low molecular weight NO donors. While a variety of scaffolds (e.g., particles, dendrimers, and polymers/films) have been cleverly designed, the ultimate clinical utility of most NO-releasing macromolecules remains unrealized. Although not wholly predictive of clinical success, in vitro and in vivo investigations have enabled a preliminary evaluation of the therapeutic potential of such materials. Herein, we review the application of macromolecular NO therapies for cardiovascular disease, cancer, bacterial infections, and wound healing. PMID:22362384

  1. Imaging spectrometry - Technology and applications

    NASA Technical Reports Server (NTRS)

    Solomon, Jerry E.

    1989-01-01

    The development history and current status of NASA imaging-spectrometer (IS) technology are discussed in a review covering the period 1982-1988. Consideration is given to the Airborne IS first flown in 1982, the second-generation Airborne Visible and IR IS (AVIRIS), the High-Resolution IS being developed for the EOS polar platform, improved two-dimensional focal-plane arrays for the short-wave IR spectral region, and noncollinear acoustooptic tunable filters for use as spectral dispersing elements. Also examined are approaches to solving the data-processing problems posed by the high data volumes of state-of-the-art ISs (e.g., 160 MB per 600 x 600-pixel AVIRIS scene), including intelligent data editing, lossless and lossy data compression techniques, and direct extraction of scientifically meaningful geophysical and biophysical parameters.

  2. Raman chemical imaging: Development and applications

    NASA Astrophysics Data System (ADS)

    Schaeberle, Michael D.

    Recent advances in electronically tunable filters, such as acousto-optic tunable filters (AOTF) and liquid crystal tunable filters (LCTF), combined with multispectral image processing strategies make Raman chemical imaging a powerful technique for the routine analysis of material chemical architecture. Raman chemical imaging combines Raman spectroscopy and digital imaging technology to assess material molecular composition and structure. Raman spectroscopy probes molecular composition and structure without being destructive to the sample. The spectrum for an analyte within even a complex host matrix is harnessed to generate unique contrast intrinsic to the analyte species without the use of stains, dyes, or contrast agents. This thesis provides a brief introduction to the field of Raman chemical imaging by describing the major methods employed. The research presented here focuses on wide field Raman imaging in conjunction with electronically tunable filters, and therefore a general methodology for performing Raman chemical imaging analysis of unknown samples is described. The AOTF and LCTF Raman chemical imaging microscopes developed during this research are also presented. The general operating principles of the AOTF and the LCTF are briefly discussed along with their specific implementation within the microscope based imaging systems. Raman chemical imaging represents an efficient, widely applicable approach for understanding the relationship between material molecular architecture and material function, which is central to the engineering of advanced materials. AOTF Raman chemical imaging has been employed in the visualization of the architecture of polypropylene and polyurethane blended polymers. High fidelity Raman images were and domains in the 3-5 mum ranges were differentiated. The AOTF Raman chemical imaging microscope has also been applied to the histopathological characterization of human breast tissue. A foreign polymer inclusion in the tissue was identified as Dacron polyester and domains of approximately 15 mum were visualized. Combining the improved spatial and spectral resolution of LCTF Raman chemical imaging microscopy with image processing methodologies allows the strain in silicon semiconductor materials to be analyzed. By employing spectral center of mass analysis to the spectral image data, strain induced peak shifts on the order of 0.03 cmsp{-1} can be distinguished. The silicon semiconductor analysis can be extended from two to three spatial dimensions. Volumetric images of the silicon semiconductor material can be generated by using numerical deconvolution algorithms to analyze wide field LCTF Raman chemical images recorded as a function of focus position. These three-dimensional images provide a means of examining the strain distribution in a multi-layer semiconductor device.

  3. Application Of Mathematical Morphology To FLIR Images

    NASA Astrophysics Data System (ADS)

    Richardson, Craig H.; Schafer, Ronald W.

    1987-10-01

    This paper presents an application of morphological systems to the problem of locating man-made objects in Forward Looking Infra Red I FUR) images. The FUR images, consist of compact light concentrated heat) regions corresponding to the object with a darker (cooler) background with some light distractions such as trees, or a forest. The images generally have poor contrast because of the nature of heat sensitive imagery. The goal of this research is to isolate the object (when present) from its background and to provide its exact loca tion within the imaging window. The research focuses upon the selection of the morphological operations, the choice of the shape and size of the structuring elements and the sequence in which the operations are applied. Preliminary experimental results indicate that morphological transformations may be well suited for this application. The compact light areas representing man-made objects are readily separated from the larger light ridges representing trees, or forests.

  4. Applications of nuclear medicine in genitourinary imaging

    SciTech Connect

    Blaufox, M.D.; Kalika, V.; Scharf, S.; Milstein, D.

    1982-01-01

    Major advances in nuclear medicine instrumentation and radiopharmaceuticals for renal studies have occurred during the last decade. Current nuclear medicine methodology can be applied for accurate evaluation of renal function and for renal imaging in a wide variety of clinical situations. Total renal function can be estimated from the plasma clearance of agents excreted by glomerular filtration or tubular secretion, and individual function can be estimated by imaging combined with renography. A major area of radionuclide application is in the evaluation of obstructive uropathy. The introduction of diuretic renography and the use of computer-generated regions of interest offer the clinician added useful data which may aid in diagnosis and management. Imaging is of proven value also in trauma, renovascular hypertension, and acute and chronic renal failure. Methods for the evaluation of residual urine, vesicoureteral reflux, and testicular torsion have achieved increasing clinical use. These many procedures assure a meaningful and useful role for the application of nuclear medicine in genitourinary imaging.

  5. Radiofrequency thermal ablation: imaging guided therapeutic applications.

    PubMed

    Qasmi, Imran Masoud; Saeed, Farrukh; Bhatti, Muhammad Asghar

    2007-05-01

    Minimally invasive, image guided radiofrequency ablation RFA now provides an effective local treatment of isolated or localized neoplastic diseases, and is also being used as an adjunct to conventional surgery, systemic chemotherapy or radiation. It is now the front line treatment in unresectable hepatocellular carcinoma and its use in other neoplastic diseases continues to expand. This update introduces the technique to alleviate inoperable tumours and application of RFA in therapeutic imaging. PMID:17553335

  6. ICG fluorescence imaging and its medical applications

    NASA Astrophysics Data System (ADS)

    Miwa, Mitsuharu; Shikayama, Takahiro

    2008-12-01

    This paper presents a novel optical angiography system, and introduces its medical applications. We developed the optical enhanced imaging system which can observe the blood and lymphatic vessels as the Indocyanine green (ICG) fluorescence image. The imaging system consists of 760nm light emitted diode (LED) as excite light, CCD camera as a detector, a high-pass optical filter in front of the CCD and video processing system. The advantage of ICG fluorescence method is safe (radiation free), high sensitive, real time monitoring of blood and/or lymphatic flow, small size, easy to operate and cost effective compared to conventional X-ray angiography or scintigraphy. We have applied this method to several clinical applications such as breast cancer sentinel lymph node (SLN) navigation, lymph edema diagnostic and identification of liver segmentation. In each application, ICG fluorescence method shows useful result. It's indicated that this method is promising technique as optical angiography.

  7. Application of numerical methods to elasticity imaging.

    PubMed

    Castaneda, Benjamin; Ormachea, Juvenal; Rodríguez, Paul; Parker, Kevin J

    2013-03-01

    Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity. PMID:24010245

  8. Spaceborne imaging radar - Geologic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.

  9. A microwave imaging spectrometer for security applications

    NASA Astrophysics Data System (ADS)

    Jirousek, Matthias; Peichl, Markus; Suess, Helmut

    2010-04-01

    In recent years the security of people and critical infrastructures is of increasing interest. Passive microwave sensors in the range of 1 - 100 GHz are suitable for the detection of concealed objects and wide-area surveillance through poor weather and at day and night time. The enhanced extraction of significant information about an observed object is enabled by the use of a spectral sensitive system. For such a spectral radiometer in the microwave range also some depth information can be extracted. The usable frequency range is thereby dependent on the application. For through-wall imaging or detection of covert objects such as for example landmines, the lower microwave range is best suited. On the other hand a high spatial resolution requires higher frequencies or instruments with larger physical dimensions. The drawback of a large system is the required movement of a mirror or a deflecting plate in the case of a mechanical scanner system, or a huge amount of receivers in a fully-electronic instrument like a focal plane array. An innovative technique to overcome these problems is the application of aperture synthesis using a highly thinned array. The combination of spectral radiometric measurements within a wide frequency band, at a high resolution, and requiring a minimum of receivers and only minor moving parts led to the development of the ANSAS instrument (Abbildendes Niederfrequenz-Spektrometer mit Apertursynthese). ANSAS is a very flexible aperture synthesis technology demonstrator for the analysis of main features and interactions concerning high spatial resolution and spectral sensing within a wide frequency range. It consists of a rotated linear thinned array and thus the spatial frequency spectrum is measured on concentric circles. Hence the number of receivers and correlators is reduced considerably compared to a fully two-dimensional array, and measurements still can be done in a reasonable time. In this paper the basic idea of ANSAS and its setup are briefly introduced. Some first imaging results showing the basic capabilities are illustrated. Possible error sources and their impacts are discussed by simulation and compared to the measured data.

  10. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  11. Application of image guidance in pituitary surgery

    PubMed Central

    de Lara, Danielle; Filho, Leo F. S. Ditzel; Prevedello, Daniel M.; Otto, Bradley A.; Carrau, Ricardo L.

    2012-01-01

    Background: Surgical treatment of pituitary pathologies has evolved along the years, adding safety and decreasing morbidity related to the procedure. Advances in the field of radiology, coupled with stereotactic technology and computer modeling, have culminated in the contemporary and widespread use of image guidance systems, as we know them today. Image guidance navigation has become a frequently used technology that provides continuous three-dimensional information for the accurate performance of neurosurgical procedures. We present a discussion about the application of image guidance in pituitary surgeries. Methods: Major indications for image guidance neuronavigation application in pituitary surgery are presented and demonstrated with illustrative cases. Limitations of this technology are also presented. Results: Patients presenting a history of previous transsphenoidal surgeries, anatomical variances of the sphenoid sinus, tumors with a close relation to the internal carotid arteries, and extrasellar tumors are the most important indications for image guidance in pituitary surgeries. The high cost of the equipment, increased time of surgery due to setup time, and registration and the need of specific training for the operating room personnel could be pointed as limitations of this technology. Conclusion: Intraoperative image guidance systems provide real-time images, increasing surgical accuracy and enabling safe, minimally invasive interventions. However, the use of intraoperative navigation is not a replacement for surgical experience and a systematic knowledge of regional anatomy. It must be recognized as a tool by which the neurosurgeon can reduce the risk associated with surgical approach and treatment of pituitary pathologies. PMID:22826819

  12. Photoacoustic and thermoacoustic imaging for biomedical applications

    NASA Astrophysics Data System (ADS)

    Yang, Sihua; Xing, Da; Nie, Liming; Guo, Hua; Ma, Songbo

    2009-08-01

    Based on the measurement of ultrasonic waves induced by electromagnetic pulses, photoacoustic imaging and thermoacoustic imaging can reveal optical or dielectric properties of tissues that are closely related to the physiological and pathological status of tissues and they have became the promising clinical imaging modalities. In this paper, a high frame rate tomography instrument with 64-channel parallel data-acquisition system was designed and developed for photoacoustic biomedical imaging. In the system, the pulse-laser-induced ultrasonic signals are converted to voltage signals by a 128-element linear ultrasound transducer array. The 128-channel signals are acquired by the 64-channel parallel data-acquisition system twice through the 2:1 multiplexer, and the OPO (optical parametric oscillator) laser provides laser with a pulse repetition rate of 15 Hz. Therefore, the acquisition rate can reach about 7 frames per second and photoacoustic images can be displayed dynamically. Based on the above signal acquisition system, biomedical application of photoacoustic imaging was explored and successfully performed. Fast photoacoustic tomography for flow-field visualization was demonstrated by flowing object. Thermoacoustic tomography was developed to detection of low-density foreign targets in small animals which was indistinguishable with X-ray. All the experimental results show that photoacoustic and thermoacoustic imaging with fast parallel data-acquisition system is a highly-efficient approach for functional imaging of biomedical tissues.

  13. Application of optical correlation techniques to particle imaging velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1988-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of velocity vectors across an extended 2-dimensional region of the flow field. The application of optical correlation techniques to the analysis of multiple exposure laser light sheet photographs can reduce and/or simplify the data reduction time and hardware. Here, Matched Spatial Filters (MSF) are used in a pattern recognition system. Usually MSFs are used to identify the assembly line parts. In this application, the MSFs are used to identify the iso-velocity vector contours in the flow. The patterns to be recognized are the recorded particle images in a pulsed laser light sheet photograph. Measurement of the direction of the partical image displacements between exposures yields the velocity vector. The particle image exposure sequence is designed such that the velocity vector direction is determined unambiguously. A global analysis technique is used in comparison to the more common particle tracking algorithms and Young's fringe analysis technique.

  14. Fundus autofluorescence applications in retinal imaging

    PubMed Central

    Gabai, Andrea; Veritti, Daniele; Lanzetta, Paolo

    2015-01-01

    Fundus autofluorescence (FAF) is a relatively new imaging technique that can be used to study retinal diseases. It provides information on retinal metabolism and health. Several different pathologies can be detected. Peculiar AF alterations can help the clinician to monitor disease progression and to better understand its pathogenesis. In the present article, we review FAF principles and clinical applications. PMID:26139802

  15. A high resolution capacitive imaging sensor for manufacturing applications

    SciTech Connect

    Novak, J.L.; Wiczer, J.J.

    1990-09-06

    A high resolution capacitive image sensing technique for measuring edge and surface profiles during manufacturing processes has been invented. A prototype device utilizing this technique consists of two 0.020 in. (500 {mu}m) diameter electrodes fabricated on a printed circuit board with a 0.010 in. (250 {mu}m) gap between them. As the device is mechanically scanned over the workpiece, the spatial variations in the edge or surface to be measured interfere with an electric field imposed between the electrodes, altering the mutual capacitance. The sensor functions as a near field proximity sensor producing range images of surface imperfections. This sensor has been used in applications requiring a preview image of burrs on the edge of a machined part and other processes requiring an inspection image after automated deburring operations. 10 refs., 8 figs.

  16. High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.

    PubMed

    Hu, Chang-Hong; Snook, Kevin A; Cao, Pei-Jie; Shung, K Kirk

    2006-02-01

    This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned. PMID:16529105

  17. 40 CFR 51.1001 - Applicability of part 51.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PM2.5 National Ambient Air Quality Standards § 51.1001 Applicability of part 51. The provisions in subparts A through X of this part apply to areas for purposes of the PM2.5 NAAQS to the extent they are...

  18. 40 CFR 51.1001 - Applicability of part 51.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PM2.5 National Ambient Air Quality Standards § 51.1001 Applicability of part 51. The provisions in subparts A through X of this part apply to areas for purposes of the PM2.5 NAAQS to the extent they are...

  19. 40 CFR 51.1001 - Applicability of part 51.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PM2.5 National Ambient Air Quality Standards § 51.1001 Applicability of part 51. The provisions in subparts A through X of this part apply to areas for purposes of the PM2.5 NAAQS to the extent they are...

  20. 40 CFR 51.1001 - Applicability of part 51.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PM2.5 National Ambient Air Quality Standards § 51.1001 Applicability of part 51. The provisions in subparts A through X of this part apply to areas for purposes of the PM2.5 NAAQS to the extent they are...

  1. 40 CFR 51.1001 - Applicability of part 51.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PM2.5 National Ambient Air Quality Standards § 51.1001 Applicability of part 51. The provisions in subparts A through X of this part apply to areas for purposes of the PM2.5 NAAQS to the extent they are...

  2. 17 CFR 290.1 - Applicability of this part.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... RECONSTRUCTION AND DEVELOPMENT ACT 290.1 Applicability of this part. This part (Regulation EBRD) prescribes the reports to be filed with the Securities and Exchange Commission by the European Bank for Reconstruction and Development (EBRD) pursuant to section 9(a) of the European Bank for Reconstruction...

  3. 17 CFR 290.1 - Applicability of this part.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... RECONSTRUCTION AND DEVELOPMENT ACT 290.1 Applicability of this part. This part (Regulation EBRD) prescribes the reports to be filed with the Securities and Exchange Commission by the European Bank for Reconstruction and Development (EBRD) pursuant to section 9(a) of the European Bank for Reconstruction...

  4. 17 CFR 290.1 - Applicability of this part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... RECONSTRUCTION AND DEVELOPMENT ACT 290.1 Applicability of this part. This part (Regulation EBRD) prescribes the reports to be filed with the Securities and Exchange Commission by the European Bank for Reconstruction and Development (EBRD) pursuant to section 9(a) of the European Bank for Reconstruction...

  5. 17 CFR 290.1 - Applicability of this part.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... RECONSTRUCTION AND DEVELOPMENT ACT 290.1 Applicability of this part. This part (Regulation EBRD) prescribes the reports to be filed with the Securities and Exchange Commission by the European Bank for Reconstruction and Development (EBRD) pursuant to section 9(a) of the European Bank for Reconstruction...

  6. Radiation design criteria handbook. [design criteria for electronic parts applications

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Martin, K. E.; Douglas, S.

    1976-01-01

    Radiation design criteria for electronic parts applications in space environments are provided. The data were compiled from the Mariner/Jupiter Saturn 1977 electronic parts radiation test program. Radiation sensitive device types were exposed to radiation environments compatible with the MJS'77 requirements under suitable bias conditions. A total of 189 integrated circuits, transistors, and other semiconductor device types were tested.

  7. 22 CFR Exhibit A to Part 204 - Application for Compensation

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DC 20523 Ref: Guaranty dated as of _________, 19__: A.I.D. Housing Project HG-____ Gentlemen: You are... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Application for Compensation A Exhibit A to... CONDITIONS Pt. 204, Exh. A Exhibit A to Part 204—Application for Compensation Office of Housing and...

  8. 22 CFR Exhibit A to Part 204 - Application for Compensation

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DC 20523 Ref: Guaranty dated as of _________, 19__: A.I.D. Housing Project HG-____ Gentlemen: You are... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Application for Compensation A Exhibit A to... CONDITIONS Pt. 204, Exh. A Exhibit A to Part 204—Application for Compensation Office of Housing and...

  9. 22 CFR Exhibit A to Part 204 - Application for Compensation

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DC 20523 Ref: Guaranty dated as of _________, 19__: A.I.D. Housing Project HG-____ Gentlemen: You are... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Application for Compensation A Exhibit A to... CONDITIONS Pt. 204, Exh. A Exhibit A to Part 204—Application for Compensation Office of Housing and...

  10. 22 CFR Exhibit A to Part 204 - Application for Compensation

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DC 20523 Ref: Guaranty dated as of _________, 19__: A.I.D. Housing Project HG-____ Gentlemen: You are... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Application for Compensation A Exhibit A to... CONDITIONS Pt. 204, Exh. A Exhibit A to Part 204—Application for Compensation Office of Housing and...

  11. 45 CFR 611.2 - Application of part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Application of part. 611.2 Section 611.2 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION IN FEDERALLY-ASSISTED PROGRAMS OF THE NATIONAL SCIENCE FOUNDATION-EFFECTUATION OF TITLE VI OF THE CIVIL RIGHTS ACT OF 1964 611.2 Application...

  12. Imaging coherent transport in graphene. Part II: probing weak localization.

    PubMed

    Berezovsky, Jesse; Westervelt, Robert M

    2010-07-01

    Graphene has opened new avenues of research in quantum transport, with potential applications for coherent electronics. Coherent transport depends sensitively on scattering from microscopic disorder present in graphene samples: electron waves traveling along different paths interfere, changing the total conductance. Weak localization is produced by the coherent backscattering of waves, while universal conductance fluctuations are created by summing over all paths. In this work, we obtain conductance images of weak localization with a liquid-He-cooled scanning probe microscope, by using the tip to create a movable scatterer in a graphene device. This technique allows us to investigate coherent transport with a probe of size comparable to the electron wavelength. Images of magnetoconductance versus tip position map the effects of disorder by moving a single scatterer, revealing how electron interference is modified by the tip perturbation. The weak localization dip in conductivity at B = 0 is obtained by averaging magnetoconductance traces at different positions of the tip-created scatterer. The width Delta B(WL) of the dip yields an estimate of the electron coherence length L(phi) at fixed charge density. This 'scanning scatterer' method provides a new way of investigating coherent transport in graphene by directly perturbing the disorder configuration that creates these interferometric effects. PMID:20571201

  13. Uncooled LWIR imaging: applications and market analysis

    NASA Astrophysics Data System (ADS)

    Takasawa, Satomi

    2015-05-01

    The evolution of infrared (IR) imaging sensor technology for defense market has played an important role in developing commercial market, as dual use of the technology has expanded. In particular, technologies of both reduction in pixel pitch and vacuum package have drastically evolved in the area of uncooled Long-Wave IR (LWIR; 8-14 μm wavelength region) imaging sensor, increasing opportunity to create new applications. From the macroscopic point of view, the uncooled LWIR imaging market is divided into two areas. One is a high-end market where uncooled LWIR imaging sensor with sensitivity as close to that of cooled one as possible is required, while the other is a low-end market which is promoted by miniaturization and reduction in price. Especially, in the latter case, approaches towards consumer market have recently appeared, such as applications of uncooled LWIR imaging sensors to night visions for automobiles and smart phones. The appearance of such a kind of commodity surely changes existing business models. Further technological innovation is necessary for creating consumer market, and there will be a room for other companies treating components and materials such as lens materials and getter materials and so on to enter into the consumer market.

  14. Image processing applications for geologic mapping

    SciTech Connect

    Abrams, M.; Blusson, A.; Carrere, V.; Nguyen, T.; Rabu, Y.

    1985-03-01

    The use of satellite data, particularly Landsat images, for geologic mapping provides the geologist with a powerful tool. The digital format of these data permits applications of image processing to extract or enhance information useful for mapping purposes. Examples are presented of lithologic classification using texture measures, automatic lineament detection and structural analysis, and use of registered multisource satellite data. In each case, the additional mapping information provided relative to the particular treatment is evaluated. The goal is to provide the geologist with a range of processing techniques adapted to specific mapping problems.

  15. Acquisition and applications of 3D images

    NASA Astrophysics Data System (ADS)

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  16. Image enhancement technology research for army applications

    NASA Astrophysics Data System (ADS)

    Schwering, Piet B. W.; Kemp, Rob A. W.; Schutte, Klamer

    2013-06-01

    Recognition and identification ranges are limited to the quality of the images. Both the received contrast and the spatial resolution determine if objects are recognizable. Several aspects affect the image quality. First of all the sensor itself. The image quality depends on the size of the infrared detector array and the sensitivity. Second, also the intervening atmosphere, in particular over longer ranges, has an impact on the image quality. It degrades the contrast, due to transmission effects, as well as it influences the resolution, due to turbulence blur, of the image. We present studies in the field of infrared image enhancement. Several techniques are described: noise reduction, super resolution, turbulence compensation, contrast enhancement, stabilization. These techniques operate in real-time on COTS/MOTS platforms. They are especially effective in the army theatre, where long horizontal paths, and short line-of-sight limited urban operations are both present. Application of these techniques on observation masts, such as on military camp sites, and on UAVs and moving ground vehicles are discussed. Examples will be presented from several trials in which these techniques were demonstrated, including the presentation of test results.

  17. Application of diffraction enhanced imaging to bone

    NASA Astrophysics Data System (ADS)

    Connor, Dean Michael, Jr.

    Diffraction enhanced imaging (DEI) is a new x-ray-based medical imaging modality that is in its early stages of development and testing. In images generated using DEI, contrast is from absorption and refraction of x-rays and from ultra-small angle x-ray scattering (USAXS). Though accepted values for x-ray absorption in biological tissues have been established, only recently have investigators began probing for characteristic refraction and USAXS from biological tissues. For this work, a series of four experiments were performed at the National Synchrotron Light Source (Upton, NY, USA) beamline X15A to help characterize DEI of bone. In the first experiment, the USAXS profile was measured for pre- and post-fatigue loaded cortical bone. Though no clear pattern of change in the USAXS profile was found, the bone samples were shown to have a measurable USAXS signal and it was found that large refracting structures within bone (>100 microns) could be visualized. In the next two experiments, the contrast of DEI's refraction and apparent absorption images was compared to the contrast in synchrotron radiation (SR) radiographs for planar imaging of gap regions in bone and for imaging of trabecular structure in tomography mode. DEI was shown to have significant contrast-to-noise ratio gains over SR radiographs in both experiments. The planar refraction and apparent absorption signals in the gap imaging experiment were shown to be consistent with their theoretically predicted values. DEI in tomography mode (DECT) was found to have significant resolution gains over comparably obtained SRCT images. In the final experiment, a computer model was developed to predict USAXS from cortical bone and the computer model results were compared to USAXS data obtained using DEI. The scattering widths, as predicted by the computer model, suggest that osteocyte lacunae cause the experimentally measured angular spreading of the x-ray beam. The findings of these experiments provide the impetus for further studies of bone with DEI emphasizing clinical applications.

  18. Multifunctional Magnetic Nanoparticles for Medical Imaging Applications

    PubMed Central

    Fang, Chen; Zhang, Miqin

    2010-01-01

    Magnetic nanoparticles (MNPs) have attracted enormous research attention due to their unique magnetic properties that enable the detection by the non-invasive medical imaging modality—magnetic resonance imaging (MRI). By incorporating advanced features, such as specific targeting, multimodality, therapeutic delivery, the detectability and applicability of MNPs have been dramatically expanded. A delicate design on structure, composition and surface chemistry is essential to achieving desired properties in MNP systems, such as high imaging contrast and chemical stability, non-fouling surface, target specificity and/or multimodality. This article presents the design fundamentals on the development of MNP systems, from discussion of material selection for nanoparticle cores and coatings, strategies for chemical synthesis and surface modification and their merits and limitations, to conjugation of special biomolecules for intended functions, and reviews the recent advances in the field. PMID:20593005

  19. Active gated imaging for automotive safety applications

    NASA Astrophysics Data System (ADS)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  20. Clinical imaging guidelines part 2: Risks, benefits, barriers, and solutions.

    PubMed

    Malone, James; del Rosario-Perez, Maria; Van Bladel, Lodewijk; Jung, Seung Eun; Holmberg, Ola; Bettmann, Michael A

    2015-02-01

    A recent international meeting was convened by two United Nations bodies to focus on international collaboration on clinical appropriateness/referral guidelines for use in medical imaging. This paper, the second of 4 from this technical meeting, addresses barriers to the successful development/deployment of clinical imaging guidelines and means of overcoming them. It reflects the discussions of the attendees, and the issues identified are treated under 7 headings: ■ Practical Strategy for Development and Deployment of Guidelines; ■ Governance Arrangements and Concerns with Deployment of Guidelines; ■ Finance, Sustainability, Reimbursement, and Related Issues; ■ Identifying Benefits and Radiation Risks from Radiological Examinations; ■ Information Given to Patients and the Public, and Consent Issues; ■ Special Concerns Related to Pregnancy; and ■ The Research Agenda. Examples of topics identified include the observation that guideline development is a global task and there is no case for continuing it as the project of the few professional organizations that have been brave enough to make the long-term commitment required. Advocacy for guidelines should include the expectations that they will facilitate: (1) better health care delivery; (2) lower cost of that delivery; with (3) reduced radiation dose and associated health risks. Radiation protection issues should not be isolated; rather, they should be integrated with the overall health care picture. The type of dose/radiation risk information to be provided with guidelines should include the uncertainty involved and advice on application of the precautionary principle with patients. This principle may be taken as an extension of the well-established medical principle of "first do no harm." PMID:25652302

  1. Applications of superconducting bolometers in security imaging

    NASA Astrophysics Data System (ADS)

    Luukanen, A.; Leivo, M. M.; Rautiainen, A.; Grönholm, M.; Toivanen, H.; Grönberg, L.; Helistö, P.; Mäyrä, A.; Aikio, M.; Grossman, E. N.

    2012-12-01

    Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ~ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.

  2. Adaptive Optics Retinal Imaging: Emerging Clinical Applications

    PubMed Central

    Godara, Pooja; Dubis, Adam M.; Roorda, Austin; Duncan, Jacque L.; Carroll, Joseph

    2010-01-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy (SLO) and spectral domain optical coherence tomography (SD-OCT) provide clinicians with remarkably clear pictures of the living retina. While the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, these same optics induce significant aberrations that in most cases obviate cellular-resolution imaging. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. Applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, RPE cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here we review some of the advances made possible with AO imaging of the human retina, and discuss applications and future prospects for clinical imaging. PMID:21057346

  3. Detecting change with digital imaging: An application in nuclear safeguards

    SciTech Connect

    Steverson, C.A.

    1989-08-01

    Recent advances in computer and imaging technology have provided a cost effective means for the application of image processing methods in a variety of disciplines. For security and safeguards applications, image subtraction and other methods of change detection have shown security problems. This report describes research done by the Safeguards Systems Group at Los Alamos National Laboratory involving the use of image subtraction and image processing techniques for security applications. 1 ref., 12 figs.

  4. Magnetic Resonance Imaging Part I—Physical Principles

    PubMed Central

    Hendee, William R.; Morgan, Christopher J.

    1984-01-01

    Magnetic resonance (MR) imaging is the most complex imaging technology available to clinicians. Whereas most imaging technologies depict differences in one, or occasionally two, tissue characteristics, MR imaging has five tissue variables—spin density, T1 and T2 relaxation times and flow and spectral shifts—from which to construct its images. These variables can be combined in various ways by selecting pulse sequences and pulse times to emphasize any desired combination of tissue characteristics in the image. This selection is determined by the user of the MR system before imaging data are collected. If the selection is not optimal, the imaging process must be repeated at a cost of time and resources. The optimal selection of MR imaging procedures and the proper interpretation of the resultant images require a thorough understanding of the basic principles of MR imaging. Included in this understanding should be at least the rudiments of how an MR imaging signal is produced and why it decays with time; the significance of relaxation constants; the principles of scanning methods such as saturation recovery, inversion recovery and spin echo; how data obtained by these methods are used to form an image, and how the imaging data are complied by multi-slice and volumetric processes. In selecting an MR imaging unit, information about different magnet designs (resistive, superconductive and permanent) is useful. Although no bioeffects are thought to be associated with an MR imaging examination, some knowledge of the attempts to identify bioeffects is helpful in alleviating concern in patients. Images PMID:6506686

  5. Applications review for a Space Program Imaging Radar (SPIR)

    NASA Technical Reports Server (NTRS)

    Simonett, D. S.

    1976-01-01

    The needs, applications, user support, research, and theoretical studies of imaging radar are reviewed. The applications of radar in water resources, minerals and petroleum exploration, vegetation resources, ocean radar imaging, and cartography are discussed. The advantages of space imaging radar are presented, and it is recommended that imaging radar be placed on the space shuttle.

  6. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: optimisation of imaging conditions.

    PubMed

    Yang, Hao; Pennycook, Timothy J; Nellist, Peter D

    2015-04-01

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 1616 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. PMID:25481091

  7. Investigation of cardiomyopathy using cardiac magnetic resonance imaging part 1: Common phenotypes

    PubMed Central

    McDermott, Shaunagh; O’Neill, Ailbhe C; Ridge, Carole A; Dodd, Jonathan D

    2012-01-01

    Cardiac magnetic resonance imaging (CMRI) has emerged as a useful tertiary imaging tool in the investigation of patients suspected of many different types of cardiomyopathies. CMRI sequences are now of a sufficiently robust quality to enable high spatial and temporal resolution image acquisition. This has led to CMRI becoming an effective non-invasive imaging gold standard for many cardiomyopathies. In this 2-part review, we outline the typical sequences used to image cardiomyopathy, and present the imaging spectrum of cardiomyopathy. Part 1 focuses on the current classification of cardiomyopathy, basic CMRI sequences used in evaluating cardiomyopathy and the imaging spectrum of common phenotypes. PMID:22558489

  8. Laser processing for bio-microfluidics applications (part I).

    PubMed

    Khan Malek, Chantal G

    2006-08-01

    This paper reviews applications of laser-based techniques to the fabrication of microfluidic devices for biochips and addresses some of the challenges associated with the manufacture of these devices. Special emphasis is placed on the use of lasers for the rapid prototyping and production of biochips in particular for applications in which silicon is not the preferred material base. Part I of this review addresses applications and devices using UV lasers for laser ablation and surface treatment of microchannels, in particular in polymers. PMID:16773304

  9. Applications of scientific imaging in environmental toxicology

    NASA Astrophysics Data System (ADS)

    El-Demerdash, Aref M.

    The national goals of clean air, clean water, and healthy ecosystems are a few of the primary forces that drive the need for better environmental monitoring. As we approach the end of the 1990s, the environmental questions at regional to global scales are being redefined and refined in the light of developments in environmental understanding and technological capability. Research in the use of scientific imaging data for the study of the environment is urgently needed in order to explore the possibilities of utilizing emerging new technologies. The objective of this research proposal is to demonstrate the usability of a wealth of new technology made available in the last decade to providing a better understanding of environmental problems. Research is focused in two imaging techniques macro and micro imaging. Several examples of applications of scientific imaging in research in the field of environmental toxicology were presented. This was achieved on two scales, micro and macro imaging. On the micro level four specific examples were covered. First, the effect of utilizing scanning electron microscopy as an imaging tool in enhancing taxa identification when studying diatoms was presented. Second, scanning electron microscopy combined with energy dispersive x-ray analyzer were demonstrated as a valuable and effective tool for identifying and analyzing household dust samples. Third, electronic autoradiography combined with FT-IR microscopy were used to study the distribution pattern of [14C]-Malathion in rats as a result of dermal exposure. The results of the autoradiography made on skin sections of the application site revealed the presence of [ 14C]-activity in the first region of the skin. These results were evidenced by FT-IR microscopy. The obtained results suggest that the penetration of Malathion into the skin and other tissues is vehicle and dose dependent. The results also suggest the use of FT-IR microscopy imaging for monitoring the disposition of insecticides in biological tissues. Finally, in the microscale level, the penetration of household insecticides through different types of textiles fabrics. The results obtained from the fluorescence spectra, SFC and SEM showed that cotton-polyester (twill), cotton, wool and cotton thermal underwear were the least penetrable materials for the aerosols. On the other hand, acrylic and artificial silk (rayon) were the most penetrable cloth types. The most protective form of clothing will be more than one layer e.g. cotton/polyester type of clothing. (Abstract shortened by UMI.)

  10. 19 CFR 208.2 - Definitions applicable to this part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Definitions applicable to this part. 208.2 Section 208.2 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS WITH RESPECT TO COMMERCIAL AVAILABILITY OF TEXTILE FABRIC AND YARN IN SUB-SAHARAN...

  11. 19 CFR 208.1 - Applicability of part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Applicability of part. 208.1 Section 208.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS WITH RESPECT TO COMMERCIAL AVAILABILITY OF TEXTILE FABRIC AND YARN IN SUB-SAHARAN AFRICAN COUNTRIES §...

  12. 18 CFR 1302.2 - Application of this part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Application of this part. 1302.2 Section 1302.2 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY... on the grounds of race, color, or national origin in a program or activity receiving...

  13. 18 CFR 1302.2 - Application of this part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Application of this part. 1302.2 Section 1302.2 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY... on the grounds of race, color, or national origin in a program or activity receiving...

  14. 19 CFR 208.1 - Applicability of part.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Applicability of part. 208.1 Section 208.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS WITH RESPECT TO COMMERCIAL AVAILABILITY OF TEXTILE FABRIC AND YARN IN SUB-SAHARAN AFRICAN COUNTRIES §...

  15. 14 CFR 374a.8 - Prospective application of part.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Prospective application of part. 374a.8 Section 374a.8 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES §...

  16. 14 CFR 374a.8 - Prospective application of part.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Prospective application of part. 374a.8 Section 374a.8 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES §...

  17. 14 CFR 374a.8 - Prospective application of part.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Prospective application of part. 374a.8 Section 374a.8 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES §...

  18. 14 CFR 374a.8 - Prospective application of part.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Prospective application of part. 374a.8 Section 374a.8 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES §...

  19. 14 CFR 374a.8 - Prospective application of part.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Prospective application of part. 374a.8 Section 374a.8 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES §...

  20. 19 CFR 208.2 - Definitions applicable to this part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COUNTRIES § 208.2 Definitions applicable to this part. (a) Beneficiary sub-Saharan African country. The term “beneficiary sub-Saharan African country” means those countries so designated by the President under 19 U.S.C. 2466a. (b) Lesser developed beneficiary sub-Saharan African country. The term “lesser...

  1. 19 CFR 207.2 - Definitions applicable to part 207.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Definitions applicable to part 207. 207.2 Section 207.2 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF WHETHER INJURY TO DOMESTIC INDUSTRIES RESULTS FROM IMPORTS SOLD AT LESS THAN FAIR VALUE OR FROM SUBSIDIZED EXPORTS TO THE UNITED...

  2. 46 CFR 114.112 - Specific applicability for individual parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Specific applicability for individual parts. 114.112 Section 114.112 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS GENERAL PROVISIONS § 114.112 Specific...

  3. 39 CFR 3050.1 - Definitions applicable to this part.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... periodic report to the Commission. (d) Annual Compliance Determination refers to the report that 39 U.S.C... compliance report provided by the Postal Service to the Commission pursuant to 39 U.S.C. 3652, but does not... 39 Postal Service 1 2010-07-01 2010-07-01 false Definitions applicable to this part....

  4. 19 CFR 210.1 - Applicability of part.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Applicability of part. 210.1 Section 210.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE..., and 1337) and sections 2 and 1342(d)(1)(B) of the Omnibus Trade and Competitiveness Act of 1988,...

  5. 19 CFR 213.1 - Purpose and applicability of part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 213.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.1 Purpose and applicability of part. (a) Section 339 of the Tariff Act of 1930, as amended, establishes in the Commission an office known as the Trade...

  6. 19 CFR 213.1 - Purpose and applicability of part.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 213.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.1 Purpose and applicability of part. (a) Section 339 of the Tariff Act of 1930, as amended, establishes in the Commission an office known as the Trade...

  7. 19 CFR 210.1 - Applicability of part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Applicability of part. 210.1 Section 210.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE..., and 1337) and sections 2 and 1342(d)(1)(B) of the Omnibus Trade and Competitiveness Act of 1988,...

  8. 19 CFR 213.1 - Purpose and applicability of part.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 213.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.1 Purpose and applicability of part. (a) Section 339 of the Tariff Act of 1930, as amended, establishes in the Commission an office known as the Trade...

  9. 19 CFR 210.1 - Applicability of part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Applicability of part. 210.1 Section 210.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE..., and 1337) and sections 2 and 1342(d)(1)(B) of the Omnibus Trade and Competitiveness Act of 1988,...

  10. 19 CFR 210.1 - Applicability of part.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Applicability of part. 210.1 Section 210.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE..., and 1337) and sections 2 and 1342(d)(1)(B) of the Omnibus Trade and Competitiveness Act of 1988,...

  11. 19 CFR 213.1 - Purpose and applicability of part.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 213.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.1 Purpose and applicability of part. (a) Section 339 of the Tariff Act of 1930, as amended, establishes in the Commission an office known as the Trade...

  12. 19 CFR 210.1 - Applicability of part.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Applicability of part. 210.1 Section 210.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE..., and 1337) and sections 2 and 1342(d)(1)(B) of the Omnibus Trade and Competitiveness Act of 1988,...

  13. 19 CFR 213.1 - Purpose and applicability of part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 213.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.1 Purpose and applicability of part. (a) Section 339 of the Tariff Act of 1930, as amended, establishes in the Commission an office known as the Trade...

  14. 19 CFR 208.2 - Definitions applicable to this part.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COUNTRIES § 208.2 Definitions applicable to this part. (a) Beneficiary sub-Saharan African country. The term “beneficiary sub-Saharan African country” means those countries so designated by the President under 19 U.S.C. 2466a. (b) Lesser developed beneficiary sub-Saharan African country. The term “lesser...

  15. 19 CFR 208.2 - Definitions applicable to this part.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COUNTRIES § 208.2 Definitions applicable to this part. (a) Beneficiary sub-Saharan African country. The term “beneficiary sub-Saharan African country” means those countries so designated by the President under 19 U.S.C. 2466a. (b) Lesser developed beneficiary sub-Saharan African country. The term “lesser...

  16. 19 CFR 208.2 - Definitions applicable to this part.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COUNTRIES § 208.2 Definitions applicable to this part. (a) Beneficiary sub-Saharan African country. The term “beneficiary sub-Saharan African country” means those countries so designated by the President under 19 U.S.C. 2466a. (b) Lesser developed beneficiary sub-Saharan African country. The term “lesser...

  17. 19 CFR 205.1 - Applicability of part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Applicability of part. 205.1 Section 205.1 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS TO DETERMINE THE PROBABLE ECONOMIC EFFECT ON THE ECONOMY OF THE UNITED STATES OF PROPOSED MODIFICATIONS...

  18. 22 CFR Appendix A to Part 231 - Application for Compensation

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Application for Compensation A Appendix A to Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES... Arab Republic of Egypt (the “Borrower”) held by the undersigned. Of such amount $____ was not...

  19. 22 CFR Appendix A to Part 231 - Application for Compensation

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Application for Compensation A Appendix A to Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES... Arab Republic of Egypt (the “Borrower”) held by the undersigned. Of such amount $____ was not...

  20. 22 CFR Appendix A to Part 231 - Application for Compensation

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Application for Compensation A Appendix A to Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES... Arab Republic of Egypt (the “Borrower”) held by the undersigned. Of such amount $____ was not...

  1. 22 CFR Appendix A to Part 231 - Application for Compensation

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Application for Compensation A Appendix A to Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES... Arab Republic of Egypt (the “Borrower”) held by the undersigned. Of such amount $____ was not...

  2. 22 CFR Appendix A to Part 231 - Application for Compensation

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Application for Compensation A Appendix A to Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES... Arab Republic of Egypt (the “Borrower”) held by the undersigned. Of such amount $____ was not...

  3. Elastic Image Registration with Applications to Proteomics

    NASA Astrophysics Data System (ADS)

    Sorzano, C. O. S.; Thévenaz, P.; Valdés, I.; Beloso, A.; Unser, M.

    2006-10-01

    In proteomics, electrophoretic 2-D gels are used to separate the proteome according to the molecular weight and electrical charge of its constituents, which are proteins expressed by a cell or organ at a particular time and under specific conditions. One of the main applications is the analysis of differential expressions between different conditions for which certain (perhaps many) spots are present in one of the images, but not in the other. One of the difficulties of this analysis is that 2-D gels are affected by spatial distortions due to run-time differences and dye-front deformations, which results in images that are significantly dissimilar and that pose a challenging problem to image-registration algorithms. In this paper, we test the efficiency of a state-of-the-art elastic-registration algorithm that we had already introduced in the context of biomedical images. We study here the registration of simulated 2-D gels with known expression patterns and deformations. We show that our algorithm is capable of handling such situations. The proposed algorithm is publicly available at http://bigwww.epfl.ch under the name UnWarpJ.

  4. Application of GFP imaging in cancer

    PubMed Central

    Hoffman, Robert M.

    2014-01-01

    Multicolored proteins have allowed the color coding of cancer cells growing in vivo and enabled the distinction of host from tumor with single-cell resolution. Non-invasive imaging with fluorescent proteins enabled follow the dynamics of metastatic cancer to be followed in real time in individual animals. Non-invasive imaging of cancer cells expressing fluorescent proteins has enabled the real-time determination of efficacy of candidate antitumor and antimetastatic agents in mouse models. The use of fluorescent proteins to differentially label cancer cells in the nucleus and cytoplasm allow visualization of the nuclear–cytoplasmic dynamics of cancer cells in vivo, mitosis, apoptosis, cell-cycle position and differential behavior of nucleus and cytoplasm such as occurs during cancer-cell deformation and extravasation. Recent applications of the technology described here include linking fluorescent proteins with cell-cycle-specific proteins (FUCCI) such that the cells change color from red to green as they transit from G1 to S phases. With the macro and micro imaging technologies described here, essentially any in vivo process can be imaged, enabling the new field of in vivo cell biology using fluorescent proteins. PMID:25686095

  5. The application of ghost imaging in infrared imaging detection technology

    NASA Astrophysics Data System (ADS)

    Peng, Hongtao; Yang, Zhaohua; Li, Dapeng; Wu, Ling-an

    2015-11-01

    Traditional imaging are mostly based on the principle of lens imaging which is simple but the imaging result is heavily dependent on the quality of detector. It is usual to increase the detector array density or reduce the size of pixels to improve the imaging resolution, especially for infrared imaging. It will decrease the light flux causing the noise enhance relatively and add the cost on the contrary. Besides, there is a novel imaging technology called ghost imaging. We present a new infrared imaging method named computational ghost imaging only using a bucket detector without spatial resolution, which avoiding the allocation of flux on the pixel dimension as well as reducing the cost.

  6. Neck neoplasms: MR imaging. Part I. Initial evaluation.

    PubMed

    Glazer, H S; Niemeyer, J H; Balfe, D M; Devineni, V R; Emami, B; Hayden, R E; Aronberg, D J; Levitt, R G; Ward, M P; Sagel, S S

    1986-08-01

    Untreated neoplasms of the neck (tumors of the oropharynx, supraglottic area, carotid body, and thyroid, in addition to malignant lymphadenopathy) were evaluated in 23 patients with magnetic resonance (MR) imaging. The results were compared with computed tomographic (CT) scans in 20 patients. Contrast between tumor and fat was best on relatively T1-weighted images (500/30-35 [TR msec/TE msec]), whereas separation of tumor and muscle was best with relatively T2-weighted pulse sequences (1,500/90). Balanced images (1,500/30-35) provided best overall image quality and best demonstrated vascular anatomy. MR imaging was usually superior to CT in showing the relationship of tumor mass to muscle. MR imaging and contrast material-enhanced CT were equivalent in most patients in defining vascular anatomy, but MR imaging was superior when intravenous contrast material was not administered. However, CT was more helpful in showing bone and cartilage anatomy, and in some patients CT also was better in showing airway abnormalities. Despite these limitations, MR imaging is a promising imaging technique for studying neoplasms of the neck. PMID:3726111

  7. Fluorinated copolymer nanoparticles for multimodal imaging applications.

    PubMed

    Bailey, Mark M; Mahoney, Christine M; Dempah, Kassibla E; Davis, Jeffrey M; Becker, Matthew L; Khondee, Supang; Munson, Eric J; Berkland, Cory

    2010-01-01

    Nanomaterials have emerged as valuable tools in biomedical imaging techniques. Here, the synthesis and characterization of a novel fluorinated nanoparticle with potential applications as an MRI contrast agent is reported. Particles were synthesized using a free radical polymerization technique. Secondary ion mass spectrometry analysis showed that the particles' surface contained fluorinated groups and nitrogen-containing groups. Solid-state NMR spectroscopy suggested the presence of two distinct fluorine resonances, which conforms to the structure of the fluorinated monomer. Ongoing studies aim to evaluate the performance of the nanoparticles as MRI contrast agents both in vitro and in vivo. PMID:21590842

  8. A broadband imaging system for research applications.

    PubMed

    Yefremenko, V; Gordiyenko, E; Shustakova, G; Fomenko, Yu; Datesman, A; Wang, G; Pearson, J; Cohen, E E W; Novosad, V

    2009-05-01

    We have developed a compact, computer-piloted, high sensitivity broadband imaging system for laboratory research that is compatible with various detectors. Mirror optics allow application from the visible to the far infrared spectral range. A prototype tested in conjunction with a mercury cadmium telluride detector exhibits a peak detectivity of 6.7x10(10) cm Hz(1/2)/W at a wavelength of 11.8 microm. Temperature and spatial resolutions of 0.06 K and 1.6 mrad, respectively, were demonstrated. PMID:19485541

  9. A broadband imaging system for research applications.

    SciTech Connect

    Yefremenko, V.; Gordiyenko, E.; Shustakova, G.; Fomenko, Yu.; Datesman, A.; Wang, G.; Pearson, J.; Cohen, E. E. W.; Novosad, V.; Materials Science Division; B. Verkin Inst. Low Temperature. Physics and Engineering; Univ. of Chicago

    2009-01-01

    We have developed a compact, computer-piloted, high sensitivity broadband imaging system for laboratory research that is compatible with various detectors. Mirror optics allow application from the visible to the far infrared spectral range. A prototype tested in conjunction with a mercury cadmium telluride detector exhibits a peak detectivity of 6.7 x 10{sup 10} cm Hz{sup 1/2}/W at a wavelength of 11.8 {micro}m. Temperature and spatial resolutions of 0.06 K and 1.6 mrad, respectively, were demonstrated.

  10. A broadband imaging system for research applications

    PubMed Central

    Yefremenko, V.; Gordiyenko, E.; Shustakova, G.; Fomenko, Yu.; Datesman, A.; Wang, G.; Pearson, J.; Cohen, E. E. W.; Novosad, V.

    2009-01-01

    We have developed a compact, computer-piloted, high sensitivity broadband imaging system for laboratory research that is compatible with various detectors. Mirror optics allow application from the visible to the far infrared spectral range. A prototype tested in conjunction with a mercury cadmium telluride detector exhibits a peak detectivity of 6.7×1010 cm Hz1∕2∕W at a wavelength of 11.8 μm. Temperature and spatial resolutions of 0.06 K and 1.6 mrad, respectively, were demonstrated. PMID:19485541

  11. Aesthetic Pursuits: Windows, Frames, Words, Images. Part I

    ERIC Educational Resources Information Center

    Burke, Ken

    2005-01-01

    In his previous articles (1997, 1998, 1999), the author developed a theoretical and applied approach to analyzing interactions between the uses of constructive design elements in a wide range of images and the anticipated responses by their viewers. This Image Presentation Theory--IPT--is based in the traditional cinematic concepts of "window" and…

  12. Terahertz electronics for sensing and imaging applications

    NASA Astrophysics Data System (ADS)

    Shur, Michael

    2015-05-01

    Short channel field effect transistors can detect terahertz radiation. Such detection is enabled by the excitation of the plasma waves rectified due to the device nonlinearities. The resulting response has nanometer scale spatial resolution and can be modulated in the sub THz range. This technology could enable a variety of sensing, imaging, and wireless communication applications, including detection of biological and chemical hazardous agents, cancer detection, shortrange covert communications (in THz and sub-THz windows), and applications in radio astronomy. Field effect transistors implemented using III-V, III-N, Si, SiGe, and graphene have been used to detect THz radiation. Using silicon transistors in plasmonic regimes is especially appealing because of compatibility with standard readout silicon VLSI components.

  13. CT and MR Imaging Diagnosis and Staging of Hepatocellular Carcinoma: Part II. Extracellular Agents, Hepatobiliary Agents, and Ancillary Imaging Features

    PubMed Central

    Choi, Jin-Young; Lee, Jeong-Min

    2014-01-01

    Computed tomography (CT) and magnetic resonance (MR) imaging play critical roles in the diagnosis and staging of hepatocellular carcinoma (HCC). The second article of this two-part review discusses basic concepts of diagnosis and staging, reviews the diagnostic performance of CT and MR imaging with extracellular contrast agents and of MR imaging with hepatobiliary contrast agents, and examines in depth the major and ancillary imaging features used in the diagnosis and characterization of HCC. © RSNA, 2014 PMID:25247563

  14. Magnetic resonance imaging: Principles and applications

    SciTech Connect

    Kean, D.; Smith, M.

    1986-01-01

    This text covers the physics underlying magnetic resonance (MR) imaging; pulse sequences; image production; equipment; aspects of clinical imaging; and the imaging of the head and neck, thorax, abdomen and pelvis, and musculoskeletal system; and MR imaging. The book provides about 150 examples of MR images that give an overview of the pathologic conditions imaged. There is a discussion of the physics of MR imaging and also on the spin echo.

  15. A Novel Application of Musculoskeletal Ultrasound Imaging

    PubMed Central

    Eranki, Avinash; Cortes, Nelson; Ferenček, Zrinka Gregurić; Sikdar, Siddhartha

    2013-01-01

    Ultrasound is an attractive modality for imaging muscle and tendon motion during dynamic tasks and can provide a complementary methodological approach for biomechanical studies in a clinical or laboratory setting. Towards this goal, methods for quantification of muscle kinematics from ultrasound imagery are being developed based on image processing. The temporal resolution of these methods is typically not sufficient for highly dynamic tasks, such as drop-landing. We propose a new approach that utilizes a Doppler method for quantifying muscle kinematics. We have developed a novel vector tissue Doppler imaging (vTDI) technique that can be used to measure musculoskeletal contraction velocity, strain and strain rate with sub-millisecond temporal resolution during dynamic activities using ultrasound. The goal of this preliminary study was to investigate the repeatability and potential applicability of the vTDI technique in measuring musculoskeletal velocities during a drop-landing task, in healthy subjects. The vTDI measurements can be performed concurrently with other biomechanical techniques, such as 3D motion capture for joint kinematics and kinetics, electromyography for timing of muscle activation and force plates for ground reaction force. Integration of these complementary techniques could lead to a better understanding of dynamic muscle function and dysfunction underlying the pathogenesis and pathophysiology of musculoskeletal disorders. PMID:24084063

  16. Fundamental performance differences of CMOS and CCD imagers: part V

    NASA Astrophysics Data System (ADS)

    Janesick, James R.; Elliott, Tom; Andrews, James; Tower, John; Pinter, Jeff

    2013-02-01

    Previous papers delivered over the last decade have documented developmental progress made on large pixel scientific CMOS imagers that match or surpass CCD performance. New data and discussions presented in this paper include: 1) a new buried channel CCD fabricated on a CMOS process line, 2) new data products generated by high performance custom scientific CMOS 4T/5T/6T PPD pixel imagers, 3) ultimate CTE and speed limits for large pixel CMOS imagers, 4) fabrication and test results of a flight 4k x 4k CMOS imager for NRL's SoloHi Solar Orbiter Mission, 5) a progress report on ultra large stitched Mk x Nk CMOS imager, 6) data generated by on-chip sub-electron CDS signal chain circuitry used in our imagers, 7) CMOS and CMOSCCD proton and electron radiation damage data for dose levels up to 10 Mrd, 8) discussions and data for a new class of PMOS pixel CMOS imagers and 9) future CMOS development work planned.

  17. Radionuclides in Nephrourology, Part 2: Pitfalls and Diagnostic Applications

    PubMed Central

    Taylor, Andrew T.

    2015-01-01

    Radionuclide renal scintigraphy provides important functional data to assist in the diagnosis and management of patients with a variety of suspected genitourinary tract problems, but the procedures are underutilized. Maximizing the utility of the available studies (as well as the perception of utility by referring physicians) requires a clear understanding of the clinical question, attention to quality control, acquisition of the essential elements necessary to produce an informed interpretation, and production of a report that presents a coherent impression based on data contained in the report and that specifically addresses the clinical question. To help achieve these goals, part 1 of this review addressed the available radiopharmaceuticals, quality control, and quantitative indices, including the measurement of absolute and relative renal function. Part 2 assumes familiarity with part 1 and focuses on the common clinical indications of suspected obstruction and renovascular hypertension; part 2 also summarizes the status of radionuclide renal imaging in the evaluation of the transplanted kidney and the detection of infection, discusses potential pitfalls, and concludes with suggestions for future research. The series of SAM questions accompanying parts 1 and 2 has been designed to reinforce and extend points made in the review. Although the primary focus is the adult patient, aspects of the review also apply to the pediatric population. PMID:24591488

  18. C-11 radiochemistry in cancer imaging applications.

    PubMed

    Tu, Z; Mach, R H

    2010-01-01

    Carbon-11 (C-11) radiotracers are widely used for the early diagnosis of cancer, monitoring therapeutic response to cancer treatment, and pharmacokinetic investigations of anticancer drugs. PET imaging permits non-invasive monitoring of metabolic processes and molecular targets, while carbon-11 radiotracers allow a "hot-for cold" substitution of biologically active molecules. Advances in organic synthetic chemistry and radiochemistry as well as improved automated techniques for radiosynthesis have encouraged investigators in developing carbon-11 tracers for use in oncology imaging studies. The short half-life of carbon-11 (20.38 minutes) creates special challenges for the synthesis of C-11 labeled tracers; these include the challenges of synthesizing C-11 target compounds with high radiochemical yield, high radiochemical purity and high specific activity in a short time and on a very small scale. The optimization of conditions for making a carbon-11 tracer include the late introduction of the C-11 isotope, the rapid formation and purification of the target compound, and the use of automated systems to afford a high yield of the target compound in a short time. In this review paper, we first briefly introduce some basic principles of PET imaging of cancer; we then discuss principles of carbon-11 radiochemistry, focus on specific advances in radiochemistry, and describe the synthesis of C-11 radiopharmaceuticals developed for cancer imaging. The carbon-11 radiochemistry approaches described include the N,O, and S-alkylations of [(11)C]methyl iodide/[(11)C]methyl triflate and analogues of [(11)C]methyl iodide and their applications for making carbon-11 tracers; we then address recent advances in exploring a transmetallic complex mediated [(11)C]carbonyl reaction for oncologic targets. PMID:20388115

  19. Applications of Modern Hydrodynamics to Aeronautics. [in Two Parts

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1923-01-01

    The report gives, rather briefly, in part one an introduction to hydrodynamics which is designed to give those who have not yet been actively concerned with this science such a grasp of the theoretical underlying principles that they can follow the subsequent developments. In part two there follows a separate discussion of the different questions to be considered, in which the theory of aerofoils claims the greatest portion of the space. The last part is devoted to the application of the aerofoil theory to screw propellers. A table giving the most important quantities is at the end of the report. A short reference list of the literature on the subject and also a table of contents are added.

  20. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos, Stavros; Staggs, Michael C.

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  1. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos; Stavros , Staggs; Michael C.

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  2. Imaging of the aging brain. Part I. Normal findings.

    PubMed

    Drayer, B P

    1988-03-01

    A thorough knowledge of the normal changes that occur in the brain with age is critical before abnormal findings are analyzed. Magnetic resonance (MR) imaging improves the ability to distinguish normal and abnormal findings in the brain. The major changes that may occur in elderly individuals without neurologic deficits include enlargement of the ventricles, cortical sulci, and vermian subarachnoid spaces; multifocal areas of hyperintensity in the white matter and basal ganglia; a progressive prominence of hypointensity on T2-weighted images of the putamen, almost equal to that of the globus pallidus; an increase in the oxygen extraction ratio with normal or mildly decreased neuron metabolism; arteriosclerosis in large and small arteries and amyloid angiopathy in leptomeningeal cortical vessels; and decreased dopamine receptor binding in the corpus striatum. Since approximately half of the elderly population exhibits only negligible brain alterations, MR imaging may facilitate the distinction between usual (no neurologic dysfunction) and successful (no brain or vascular changes) aging. PMID:3277247

  3. Quality assurance methodology and applications to abdominal imaging PQI.

    PubMed

    Paushter, David M; Thomas, Stephen

    2016-03-01

    Quality assurance has increasingly become an integral part of medicine, with tandem goals of increasing patient safety and procedural quality, improving efficiency, lowering cost, and ultimately improving patient outcomes. This article reviews quality assurance methodology, ranging from the PDSA cycle to the application of lean techniques, aimed at operational efficiency, to continually evaluate and revise the health care environment. Alignment of goals for practices, hospitals, and healthcare organizations is critical, requiring clear objectives, adequate resources, and transparent reporting. In addition, there is a significant role played by regulatory bodies and oversight organizations in determining external benchmarks of quality, practice, and individual certification and reimbursement. Finally, practical application of quality principles to practice improvement projects in abdominal imaging will be presented. PMID:26934893

  4. Image and video fingerprinting: forensic applications

    NASA Astrophysics Data System (ADS)

    Lefebvre, Frédéric; Chupeau, Bertrand; Massoudi, Ayoub; Diehl, Eric

    2009-02-01

    Fighting movie piracy often requires automatic content identification. The most common technique to achieve this uses watermarking, but not all copyrighted content is watermarked. Video fingerprinting is an efficient alternative solution to identify content, to manage multimedia files in UGC sites or P2P networks and to register pirated copies with master content. When registering by matching copy fingerprints with master ones, a model of distortion can be estimated. In case of in-theater piracy, the model of geometric distortion allows the estimation of the capture location. A step even further is to determine, from passive image analysis only, whether different pirated versions were captured with the same camcorder. In this paper we present three such fingerprinting-based forensic applications: UGC filtering, estimation of capture location and source identification.

  5. [Clinical application of functional magnetic resonance imaging].

    PubMed

    Sugishita, Morihiro

    2002-03-01

    Three types of researches have been carried out on brain-mind relationships: 1. researches on anatomical correlates of special talents (for example, perfect pitch) or deficits (for example, dyslexia), 2. researches to examine the relationship between a given cognitive syndrome and the site of brain damage, 3. researches to localize human cognitive function in the brain in vivo using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). fMRI is a particularly important because it is noninvasive. A tutorial covering basic aspects of this methodology is presented, along with a survey of recent fMRI data related to clinical application. Future investigations of the three types enumerated above are expected to further clarify brain-mind relationships. PMID:11905006

  6. Clinical imaging guidelines part 1: a proposal for uniform methodology.

    PubMed

    Remedios, Denis; Brink, James; Holmberg, Ola; Kawooya, Michael; Mendelson, Richard; Naidoo, Anusha; Reed, Martin; Bettmann, Michael

    2015-01-01

    Inappropriate imaging can lead to unnecessary medical radiologic exposures and cost and may not answer the clinical question. Imaging referral guidelines inform the justification of radiologic procedures and facilitate the choice of the best test first, but their acceptance by referrers, use, and value may be limited by shortcomings in the methodology of development. Focusing on common, essential elements of methodology will help guideline developers. In 2012 and 2013, the International Atomic Energy Agency hosted Technical Meetings on Radiation Protection of Patients Through the Development of Appropriateness Criteria in Diagnostic Imaging. Participants identified and agreed on issues concerning development of imaging referral guidelines. Items based on the Appraisal of Guidelines for Research and Evaluation II instrument were amended with additional items including development and consensus group composition. Consensus was sought on 28 items, 18 of which were agreed should be uniform, and 10 should allow for regional differences. Further work is required to encourage, provide, and identify higher quality evidence and to agree on a grading system for recommendations. Many key areas are common to guideline developers globally, opening the way for international collaboration to help demystify, simplify, and justify. PMID:25441484

  7. Two satellite image sets for the training and validation of image processing systems for defense applications

    NASA Astrophysics Data System (ADS)

    Peterson, Michael R.; Aldridge, Shawn; Herzog, Britny; Moore, Frank

    2010-04-01

    Many image processing algorithms utilize the discrete wavelet transform (DWT) to provide efficient compression and near-perfect reconstruction of image data. Defense applications often require the transmission of data at high levels of compression over noisy channels. In recent years, evolutionary algorithms (EAs) have been utilized to optimize image transform filters that outperform standard wavelets for bandwidth-constrained compression of satellite images. The optimization of these filters requires the use of training images appropriately chosen for the image processing system's intended applications. This paper presents two robust sets of fifty images each intended for the training and validation of satellite and unmanned aerial vehicle (UAV) reconnaissance image processing algorithms. Each set consists of a diverse range of subjects consisting of cities, airports, military bases, and landmarks representative of the types of images that may be captured during reconnaissance missions. Optimized algorithms may be "overtrained" for a specific problem instance and thus exhibit poor performance over a general set of data. To reduce the risk of overtraining an image filter, we evaluate the suitability of each image as a training image. After evolving filters using each image, we assess the average compression performance of each filter across the entire set of images. We thus identify a small subset of images from each set that provide strong performance as training images for the image transform optimization problem. These images will also provide a suitable platform for the development of other algorithms for defense applications. The images are available upon request from the contact author.

  8. Applications of high-resolution remote sensing image data

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Leckie, D.; Miller, J.; Buxton, R.

    1990-01-01

    There are many situations in which the image resolution of satellite data is insufficient to provide the detail required for resource management and environmental monitoring. This paper will focus on applications of high-resolution (0.4 to 10 m) airborne multispectral and imaging spectrometer data acquired in Canada using the MEIS II multispectral line imager and the PMI imaging spectrometer. Applications discussed will include forestry, mapping, and geobotany.

  9. Development of image mappers for hyperspectral biomedical imaging applications

    PubMed Central

    Kester, Robert T.; Gao, Liang; Tkaczyk, Tomasz S.

    2010-01-01

    A new design and fabrication method is presented for creating large-format (>100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5 × 5 matrix residing within a single collecting objective's pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of <1 mrad, and an average roughness of 5.4 nm. PMID:20357875

  10. Evaluation of Polymethine Dyes as Potential Probes for Near Infrared Fluorescence Imaging of Tumors: Part - 1

    PubMed Central

    James, Nadine S.; Chen, Yihui; Joshi, Penny; Ohulchanskyy, Tymish Y.; Ethirajan, Manivannan; Henary, Maged; Strekowsk, Lucjan; Pandey, Ravindra K

    2013-01-01

    Near-infrared (NIR) organic dyes have become important for many biomedical applications, including in vivo optical imaging. Conjugation of NIR fluorescent dyes to photosensitizing molecules (photosensitizers) holds strong potential for NIR fluorescence image guided photodynamic therapy (PDT) of cancer. Therefore, we were interested in investigating the photophysical properties, in vivo tumor-affinity and fluorescence imaging potential of a series of heterocyclic polymethine dyes, which could then be conjugated to certain PDT agents. For our present study, we selected a series of symmetrical polymethine dyes containing a variety of bis-N-substituted indole or benzindole moieties linked by linear conjugation with and without a fused substituted cyclohexene ring. The N-alkyl side chain at the C-terminal position was functionalized with sulfonic, carboxylic acid, methyl ester or hydroxyl groups. Although, among the parent cyanine dyes investigated, the commercially available, cyanine dye IR783 (3) (bis-indole-N-butylsulfonate)-polymethine dye with a cyclic chloro-cyclohexene moiety showed best fluorescence-imaging ability, based on its spectral properties (λAbs=782 nm, λFl=810 nm, ε = 261,000 M-1cm-1, ΦFl≈0.08) and tumor affinity. In addition to 3, parent dyes IR820 and Cypate (6) were also selected and subjected to further modifications by introducing desired functional groups, which could enable further conjugation of the cyanine dyes to an effective photosensitizer HPPH developed in our laboratory. The synthesis and biological studies (tumor-imaging and PDT) of the resulting bifunctional conjugates are discussed in succeeding paper (Part-2 of this study). PMID:24019854

  11. Viewpoints on Medical Image Processing: From Science to Application

    PubMed Central

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  12. Perfluorocarbon Compounds: Applications In Diagnostic Imaging

    NASA Astrophysics Data System (ADS)

    Mattrey, Robert F.

    1986-06-01

    Perfluorocarbon compounds (PFC's), well known in industry and of late as synthetic oxygen carriers, have a wide range of significant applications in diagnostic imaging. Their enhancement effect is detectable by ultrasound and magnetic resonance and if radiopaque, such as perfluoroctylbromide (PFOB), by standard radiography and computed tomography (CT). We have utilized PFOB as a CT contrast agent to enhance the blood pool, and as both a CT and an ultrasound contrast agent to enhance the liver, spleen, abscesses, infarctions, and tumors or any tissue where inflammatory cells can be found. PFC's, except for the echogenic enhancement of the vascular space on their first pass to the lung, do not enhance the blood pool on ultrasound. Otherwise, ultrasound applications are similar to those observed for CT. Fluosol, which was available for human trials, is not radiopaque and therefore served as an ultrasound contrast agent. In a preliminary clinical trial, Fluosol produced tumor enhancement in man at 1.6g/kg allowing the visualization of previously missed lesions and liver and spleen enhancement at 2.4g/kg allowing the visualization of previously missed non-enhancing lesions. Perfluorocarbon toxicity seems to be related to the constituents of the emulsion rather than the perfluorocarbon itself. Improvements in the emulsifier and emulsification technology has yielded stable emulsions at high concentrations and low toxicity.

  13. Infrared imaging technology and biological applications.

    PubMed

    Kastberger, Gerald; Stachl, Reinhold

    2003-08-01

    Temperature is the most frequently measured physical quantity, second only to time. Infrared (IR) technology has been utilized successfully in astronomy (for a summary,see Hermans-Killam, 2002b) and in industrial and research settings (Gruner, 2002; Madding, 1982, 1989; Wolfe & Zissis, 1993) for decades. However, fairly recent innovations have reduced costs, increased reliability, and resulted in noncontact IR sensors offering mobile, smaller units of measurement (EOI, 2002; Flir, 2000, 2001,2002). The advantages of using IR imaging are (1) rapidity in the millisecond range, facilitating measurement of moving targets, (2) noncontact procedures, allowing measurements of hazardous or physically inaccessible objects, (3) no interference and no energy lost from the target, (4) no risk of contamination, and (5) no mechanical effect on the surface of the object. All these factors have led to IR technology's becoming an area of interest for new kinds of applications and users. In both manufacturing and quality control, temperature plays an important role as an indicator of the condition of a product or a piece of machinery (EOI, 2002; Flir, 2000, 2001, 2002; Raytek, 2002). In medical and veterinary applications, IR thermometry is increasingly used in organ diagnostics, in the evaluation of sports injuries and the progression of therapy, in disease evaluation (e.g, breast cancer, arthritis, and SARS; Flir, 2003), and in injury and inflammation examinations in horses, livestock (Tivey & Banhazi, 2002), and zoo animals (Hermans-Killam, 2002a; Thiesbrummel, 2002). Lastly, physiological expressions of life processes in animals (Kastberger, Winder, & Steindl, 2001; Stabentheiner, Kovac, & Hagmüller, 1995; Stabentheiner, Kovac, & Schmaranzer, 2002; Stabentheiner & Schmarnzer, 1987) and plants (Bermadinger-Stabentheiner & Stabentheiner, 1995) can be monitored. The most recent field in which IR technology has been applied is animal behavior. This article focuses on the practical options for noncontact IR thermometry--in particular, in biological applications. PMID:14587551

  14. Digital image processing: a primer for JVIR authors and readers: part 1: the fundamentals.

    PubMed

    LaBerge, Jeanne M; Andriole, Katherine P

    2003-10-01

    Online submission of manuscripts will be mandatory for most journals in the near future. To prepare authors for this requirement and to acquaint readers with this new development, herein the basics of digital image processing are described. From the fundamentals of digital image architecture, through acquisition, editing, and storage of digital images, the steps necessary to prepare an image for online submission are reviewed. In this article, the first of a three-part series, the structure of the digital image is described. In subsequent articles, the acquisition and editing of digital images will be reviewed. PMID:14551267

  15. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  16. Multi-class geospatial object detection and geographic image classification based on collection of part detectors

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei

    2014-12-01

    The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

  17. Practical application of new technologies for melanoma diagnosis: Part I. Noninvasive approaches.

    PubMed

    March, Jordon; Hand, Matthew; Grossman, Douglas

    2015-06-01

    Confirming a diagnosis of cutaneous melanoma requires obtaining a skin biopsy specimen. However, obtaining numerous biopsy specimens-which often happens in patients with increased melanoma risk-is associated with significant cost and morbidity. While some melanomas are easily recognized by the naked eye, many can be difficult to distinguish from nevi, and therefore there is a need and opportunity to develop new technologies that can facilitate clinical examination and melanoma diagnosis. In part I of this 2-part continuing medical education article, we will review the practical applications of emerging technologies for noninvasive melanoma diagnosis, including mobile (smartphone) applications, multispectral imaging (ie, MoleMate and MelaFind), and electrical impedance spectroscopy (Nevisense). PMID:25980998

  18. ASIE: application-specific image enhancement for face recognition

    NASA Astrophysics Data System (ADS)

    Bilgazyev, E.; Kurkure, U.; Shah, S. K.; Kakadiaris, I. A.

    2013-05-01

    In this paper, we propose a novel method to enhance low quality images. Specifically, we focus on facial images. Low quality images are often degraded by motion artifacts, sensor limitations, and noise contamination leading to loss of higher order information that is essential for face recognition. First, we demonstrate that conventional denoising and deblurring methods are not able to fully recover the latent image resulting in residual artifacts in the image. Then, we present a novel approach for image enhancement that removes these residual artifacts using sparse encoding methods. The potential of the method is demonstrated through promising results on facial images for face recognition application.

  19. [Bronchiolitis. Part 1--anatomic features, classification, clinical presentation and imaging].

    PubMed

    Kroegel, C; Haidl, P; Kohlhäufl, M; Voshaar, T

    2012-01-01

    The term "bronchiolitis" refers to a broad spectrum of common conditions related to the small airways associated with a miscellaneous aetiology, histology, clinical features and course. Due to their variability, bronchiolar disorders are generally difficult to diagnose. History (smoking, collagen vascular disease, inhalational injury, medication usage, and organ transplant) may point towards a bronchiolar process. In addition, signs of systemic and pulmonary infection and evidence of air trapping may provide diagnostic hints. Although clinical presentation, physical examination, pulmonary function tests (obstructive ventilatory defect), and plain chest radiographs may demonstrate abnormalities suggesting small airways involvement, they are often non-specific and rarely diagnostic. In contrast, the high-resolution CT (HR-CT) scanning of the chest provides three distinct HR-CT patterns that assist in the diagnosis and differential diagnosis of bronchiolar conditions: (i) a tree-in-bud pattern, (ii) ill-defined centrilobular ground-glass nodules, and (iii) a mosaic attenuation pattern (best visible on expiratory images). The present paper summarises the current knowledge, the classification, imaging, and the clinical presentation of bronchiolar disorders. PMID:22250053

  20. Numerical and Experimental Applications of TWIP Steel in Automotive Parts

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Lim, J. H.; Choi, J. B.; Oh, P. Y.

    2011-08-01

    Modern automotive design has been faced with the weight reduction problem to meet the CO2 emissions standard while achieving high safety and compact design. Such being the case, most car makers want to use the ultra high strength steels (UHSS). But there are several problems when such steels are used, due to presumed lack of formability. Since the disadvantage such as above, it has been suggested that UHSS need special forming methods or it should be used only limited process like simple bending, by many automotive research institutes. To overcome these shortcomings, Twinning Induced Plasticity (TWIP) steel for improved strength and formability has been developed by steel making company, including POSCO, Korea. Because of its characteristics, it is expected to be widely used in automotive parts. This paper aims at finding out several ways how to make effective use of TWIP steel in automotive parts. Especially, comprising about from 15 to 18% manganese and from 1.5 to 2% aluminum which was developed by POSCO for application of the automotive parts will be considered.

  1. Thermal Imaging And Its Application In Defence Systems

    NASA Astrophysics Data System (ADS)

    Akula, Aparna; Ghosh, Ripul; Sardana, H. K.

    2011-10-01

    Thermal imaging is a boon to the armed forces namely army, navy and airforce because of its day night working capability and ability to perform well in all weather conditions. Thermal detectors capture the infrared radiation emitted by all objects above absolute zero temperature. The temperature variations of the captured scene are represented as a thermogram. With the advent of infrared detector technology, the bulky cooled thermal detectors having moving parts and demanding cryogenic temperatures have transformed into small and less expensive uncooled microbolometers having no moving parts, thereby making systems more rugged requiring less maintenance. Thermal imaging due to its various advantages has a large number of applications in military and defence. It is popularly used by the army and navy for border surveillance and law enforcement. It is also used in ship collision avoidance and guidance systems. In the aviation industry it has greatly mitigated the risks of flying in low light and night conditions. They are widely used in military aviation to identify, locate and target the enemy forces. Recently, they are also being incorporated in civil aviation for health monitoring of aircrafts.

  2. Magnetic resonance imaging of the neck. Part II. Pathologic findings

    SciTech Connect

    Stark, D.D.; Moss, A.A.; Gamsu, G.; Clark, O.H.; Gooding, G.A.W.; Webb, W.R.

    1984-02-01

    Magnetic resonance (MR) images of the neck were obtained in 14 patients with thyroid, parathyroid, lymph node, or laryngeal lesions. Tumors and lymph nodes were more easily differentiated from muscle and blood vessels with MR than with CT because of the superior soft tissue contrast of MR. Tissue characterization allowed MR differentiation of thyroid nodules, thyroid cysts, and parathyroid tumors from normal thyroid tissue; however, nonspecifically increased T1 and T2 relaxation times overlapped for a variety of neoplastic and inflammatory conditions. Thyroid cyst fluid had the greatest water content and longest T1 and T2 times of all tissues studied. Parathyroid hyperplasia could not be differentiated from parathyroid adenoma; however, parathyroid tumors had slightly longer T1 and T2 times than thyroid nodules or lymph nodes. With further experience, MR tissue characterization may become a useful technique for evaluating neck masses.

  3. Application of homomorphism to secure image sharing

    NASA Astrophysics Data System (ADS)

    Islam, Naveed; Puech, William; Hayat, Khizar; Brouzet, Robert

    2011-09-01

    In this paper, we present a new approach for sharing images between l players by exploiting the additive and multiplicative homomorphic properties of two well-known public key cryptosystems, i.e. RSA and Paillier. Contrary to the traditional schemes, the proposed approach employs secret sharing in a way that limits the influence of the dealer over the protocol and allows each player to participate with the help of his key-image. With the proposed approach, during the encryption step, each player encrypts his own key-image using the dealer's public key. The dealer encrypts the secret-to-be-shared image with the same public key and then, the l encrypted key-images plus the encrypted to-be shared image are multiplied homomorphically to get another encrypted image. After this step, the dealer can safely get a scrambled image which corresponds to the addition or multiplication of the l + 1 original images ( l key-images plus the secret image) because of the additive homomorphic property of the Paillier algorithm or multiplicative homomorphic property of the RSA algorithm. When the l players want to extract the secret image, they do not need to use keys and the dealer has no role. Indeed, with our approach, to extract the secret image, the l players need only to subtract their own key-image with no specific order from the scrambled image. Thus, the proposed approach provides an opportunity to use operators like multiplication on encrypted images for the development of a secure privacy preserving protocol in the image domain. We show that it is still possible to extract a visible version of the secret image with only l-1 key-images (when one key-image is missing) or when the l key-images used for the extraction are different from the l original key-images due to a lossy compression for example. Experimental results and security analysis verify and prove that the proposed approach is secure from cryptographic viewpoint.

  4. Current urologic applications of digital imaging.

    PubMed

    Kuo, R L; Preminger, G M

    2001-02-01

    One of the most significant developments in imaging technology has been the process of digitalization. By incorporating currently available digital imaging equipment into surgical practice, urologists can be assured of obtaining real-time video images with optimal clarity and detail. In addition, one can efficiently capture and store still images that are crisper and sharper than their analog counterparts. These factors greatly improve the diagnostic capabilities and organization of today's endourologist. PMID:11248920

  5. Application of Uncooled Monolithic Thermoelectric Linear Arrays to Imaging Radiometers

    NASA Astrophysics Data System (ADS)

    Kruse, Paul W.

    Introduction Identification of Incipient Failure of Railcar Wheels Technical Description of the Model IR 1000 Imaging Radiometer Performance of the Model IR 1000 Imaging Radiometer Initial Application Summary Imaging Radiometer for Predictive and Preventive Maintenance Description Operation Specifications Summary References INDEX CONTENTS OF VOLUMES IN THIS SERIES

  6. Perfusion weighted imaging and its application in stroke

    NASA Astrophysics Data System (ADS)

    Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Xingfeng; Zhu, Fuping

    2003-05-01

    To study the technique and application of perfusion weighted imaging (PWI) in the diagnosis and medical treatment of acute stroke, 25 patients were examined by 1.5 T or 1.0 T MRI scanner. The Data analysis was done with "3D Med System" developed by our Lab to process the data and obtain apparent diffusion coefficient (ADC) map, cerebral blood volume (CBV) map, cerebral blood flow (CBF) map as well as mean transit time (MTT) map. In accute stage of stroke, normal or slightly hypointensity in T1-, hyperintensity in T2- and diffusion-weighted images were seen in the cerebral infarction areas. There were hypointensity in CBV map, CBF map and ADC map; and hyperintensity in MTT map that means this infarct area could be saved. If the hyperintensity area in MTT map was larger than the area in diffusion weighted imaging (DWI), the larger part was called penumbra and could be cured by an appropriate thrombolyitic or other therapy. The CBV, CBF and MTT maps are very important in the diagnosis and medical treatment of acute especially hyperacute stroke. Comparing with DWI, we can easily know the situation of penumbra and the effect of curvative therapy. Besides, we can also make a differential diagnosis with this method.

  7. Autoradiographic image intensification - Applications in medical radiography

    NASA Technical Reports Server (NTRS)

    Askins, B. S.

    1978-01-01

    The image of an 80 to 90 percent underexposed medical radiograph can be increased to readable density and contrast by autoradiographic image intensification. The technique consists of combining the image silver of the radiograph with a radioactive compound, thiourea labeled with sulfur-35, and then making an autoradiograph from the activated negative.

  8. 47 CFR 24.2 - Other applicable rule parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... spectrum may be made available for experimentation. (e) Part 15. This part contains rules setting out the... towers. (g) Part 20 of this chapter governs commercial mobile radio services. (h) Part 21. This...

  9. Theory of real space imaging of Fermi surface parts

    NASA Astrophysics Data System (ADS)

    Lounis, Samir; Zahn, Peter; Weismann, Alexander; Wenderoth, Martin; Ulbrich, Rainer G.; Mertig, Ingrid; Dederichs, Peter H.; Blügel, Stefan

    2011-01-01

    A scanning tunneling microscope can be used to visualize in real space effects provided by Fermi surfaces with buried impurities far below substrates acting as local probes [Weismann ScienceSCIEAS0036-807510.1126/science.1168738 323, 1190 (2009)]. After scattering at buried impurities, anisotropic electronic wave oscillations are observed on the surface as hot spots: The experiments exhibit strongly enhanced intensities in certain directions and much weaker intensities in other directions. A theory describing these features is developed based on the stationary phase approximation for the Friedel oscillations and taking into account the band structure of the host material. It is demonstrated how the Fermi surface of a material, for instance, through Fermi contours’ critical points, acts as a mirror focusing electrons that scatter at hidden impurities which allow the projection of parts of the Fermi surface, a quantity defined in reciprocal space, onto real space.

  10. An infrared high rate video imager for various space applications

    NASA Astrophysics Data System (ADS)

    Svedhem, Hâkan; Koschny, Detlef

    2010-05-01

    Modern spacecraft with high data transmission capabilities have opened up the possibility to fly video rate imagers in space. Several fields concerned with observations of transient phenomena can benefit significantly from imaging at video frame rate. Some applications are observations and characterization of bolides/meteors, sprites, lightning, volcanic eruptions, and impacts on airless bodies. Applications can be found both on low and high Earth orbiting spacecraft as well as on planetary and lunar orbiters. The optimum wavelength range varies depending on the application but we will focus here on the near infrared, partly since it allows exploration of a new field and partly because it, in many cases, allows operation both during day and night. Such an instrument has to our knowledge never flown in space so far. The only sensors of a similar kind fly on US defense satellites for monitoring launches of ballistic missiles. The data from these sensors, however, is largely inaccessible to scientists. We have developed a bread-board version of such an instrument, the SPOSH-IR. The instrument is based on an earlier technology development - SPOSH - a Smart Panoramic Optical Sensor Head, for operation in the visible range, but with the sensor replace by a cooled IR detector and new optics. The instrument is using a Sofradir 320x256 pixel HgCdTe detector array with 30µm pixel size, mounted directly on top of a four stage thermoelectric Peltier cooler. The detector-cooler combination is integrated into an evacuated closed package with a glass window on its front side. The detector has a sensitive range between 0.8 and 2.5 µm. The optical part is a seven lens design with a focal length of 6 mm and a FOV 90deg by 72 deg optimized for use at SWIR. The detector operates at 200K while the optics operates at ambient temperature. The optics and electronics for the bread-board has been designed and built by Jena-Optronik, Jena, Germany. This talk will present the design and the strong and the weak points as found through testing will be identified. Possible alternatives for improvements will be discussed and two flight applications will be outlined.

  11. Passive synthetic aperture hitchhiker imaging of ground moving targets--Part 1: image formation and velocity estimation.

    PubMed

    Wacks, Steven; Yazici, Birsen

    2014-06-01

    In the Part 1 of this two-part study, we present a method of imaging and velocity estimation of ground moving targets using passive synthetic aperture radar. Such a system uses a network of small, mobile receivers that collect scattered waves due to transmitters of opportunity, such as commercial television, radio, and cell phone towers. Therefore, passive imaging systems have significant cost, manufacturing, and stealth advantages over active systems. We describe a novel generalized Radon transform-type forward model and a corresponding filtered-backprojection-type image formation and velocity estimation method. We form a stack of position images over a range of hypothesized velocities, and show that the targets can be reconstructed at the correct position whenever the hypothesized velocity is equal to the true velocity of targets. We then use entropy to determine the most accurate velocity and image pair for each moving target. We present extensive numerical simulations to verify the reconstruction method. Our method does not require a priori knowledge of transmitter locations and transmitted waveforms. It can determine the location and velocity of multiple targets moving at different velocities. Furthermore, it can accommodate arbitrary imaging geometries. In Part 2, we present the resolution analysis and analysis of positioning errors in passive SAR images due to erroneous velocity estimation. PMID:24815619

  12. Overview of the ISO/IEC programmer's imaging kernel system application program interface

    NASA Astrophysics Data System (ADS)

    Pratt, William K.

    1992-04-01

    The Programmer's Imaging Kernel System (PIKS) is an application program interface (API) for image processing. It is one of three parts of a standard for Image Processing and Interchange being developed by the International Standards Organization (ISO) and the International Electrotechnical Commission (IEC). This paper presents an overview of the API; companion papers discuss the imaging architecture and image interchange parts of the standard. PIKS contains a rich set of operators, tools, and utilities. PIKS operators are functional elements that perform manipulations of images or of data objects extracted from images in order to enhance, restore, or assist in the extraction of information from images. These operators range from primitive operators such as convolution and histogram generation to complex, higher level operators such as adaptive histogram equalization and texture feature extraction. PIKS tools are elements that create data objects to be used by PIKS operators, e.g., the generation of filter transfer functions. PIKS utilities are elements that perform basic mechanical implementation tasks such as extracting pixels from an image. PIKS provides a fundamental operator model that supports match point translation of images prior to processing, image-related region-of-interest processing control, image/operator coordinate index assignment, and the ability to define reusable chains of operators.

  13. 40 CFR Table 4 to Subpart H of... - Applicable 40 CFR Part 63 General Provisions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... H, Table 4 Table 4 to Subpart H of Part 63Applicable 40 CFR Part 63 General Provisions 40 CFR part... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Applicable 40 CFR Part 63 General... specified in 40 CFR part 65....

  14. Algorithms for radiological image registration and their clinical application

    PubMed Central

    HAWKES, D. J.

    1998-01-01

    This paper reviews recent work in radiological image registration and provides a classification of image registration by type of transformation and by methods employed to compute the transformation. The former includes transformation of 2D images to 2D images of the same individual, transformation of 3D images to 3D images of the same individual, transformation of images to an atlas or model, transformation of images acquired from a number of individuals, transformations for image guided interventions including 2D to 3D registration and finally tissue deformation in image guided interventions. Recent work on computing transformations for registration using corresponding landmark based registration, surface based registration and voxel similarity measures, including entropy based measures, are reviewed and compared. Recently fully automated algorithms based on voxel similarity measures and, in particular, mutual information have been shown to be accurate and robust at registering images of the head when the rigid body assumption is valid. Two approaches to modelling soft tissue deformation for applications in image guided interventions are described. Validation of complex processing tasks such as image registration is vital if these algorithms are to be used in clinical practice. Three alternative validation strategies are presented. These methods are finding application outside the original domain of radiological imaging. PMID:9877290

  15. Whole-Body MR Imaging: Musculoskeletal Applications.

    PubMed

    Lecouvet, Frédéric E

    2016-05-01

    Whole-body magnetic resonance (MR) imaging has been evaluated in many oncologic and rheumatologic indications and is emerging as a powerful tool for early diagnosis, quantification of disease extent, therapeutic decision making, and treatment monitoring. This development of whole-body MR imaging comes at a time marked by the rapid development of modern, powerful, but expensive and potentially toxic treatments. In oncology, the feasibility and diagnostic performance of diffusion-weighted imaging (DWI) applied to the whole body largely contribute to the effectiveness of whole-body MR imaging. The concurrent acquisition of both anatomic and functional DWI sequences provides an intrinsically "hybrid" dimension to whole-body MR imaging studies, allowing a sensitive and specific diagnosis of bone involvement by metastases, multiple myeloma, and lymphoma, and evaluation of treatment response, representing a promising biomarker. In arthritis of the axial skeleton, mainly spondyloarthropathies, whole-body MR imaging reveals additional lesions compared with limited axial (lumbar and pelvic) studies, especially in the thoracic spine and thoracic wall, pelvic and shoulder girdles, and peripheral entheses and joints. This article provides an overview of technical aspects of whole-body MR imaging and practical recommendations for the interpretation of whole-body MR imaging studies. It reviews the currently established and potential indications for whole-body MR imaging in oncology and rheumatology, discussing the diagnostic performance, advantages, and drawbacks of the technique, and its potential roles in comparison to other imaging modalities. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27089188

  16. Applications of energy filtered imaging in biology.

    PubMed

    Shuman, H; Somlyo, A V; Safer, D; Frey, T; Somlyo, A P

    1983-01-01

    We describe the use of a magnetic sector spectrometer positioned below the projection chamber of an electron microscope for energy filtered transmission imaging. The spectrometer used has circular pole face edges and is corrected for second order aberrations. A round EM lens is placed after the sector to form a real image of the virtual achromatic image produced by the spectrometer. A slit placed in the dispersion plane allows the passage of electrons in a selected energy range. The filtered image is projected onto a transmission phosphor and acquired with a silicon intensified TV camera and stored in digital form on computer disk. Filtered images are taken at two energies, one immediately preceding (pre-edge) and one on the characteristic energy loss (edge). To obtain images showing the distribution of elements, background subtraction is performed by either subtraction or division of edge and pre-edge images. The optical properties of the imaging system are described and the results are illustrated by energy filtered images of single ferritin molecules (Fe M2,3 and C k), the phosphorus distribution in ribosomes (PL2,3) and the localization of calcium in muscle (Ca L2, 3). The major advantage of the system, compared to other energy filtered imaging methods, is that it can be readily adapted to existing high vacuum microscopes without the necessity of modifying the column to insert a spectrometer. PMID:6635570

  17. Perceived Image Quality Improvements from the Application of Image Deconvolution to Retinal Images from an Adaptive Optics Fundus Imager

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Nemeth, S. C.; Erry, G. R. G.; Otten, L. J.; Yang, S. Y.

    Aim: The objective of this project was to apply an image restoration methodology based on wavefront measurements obtained with a Shack-Hartmann sensor and evaluating the restored image quality based on medical criteria.Methods: Implementing an adaptive optics (AO) technique, a fundus imager was used to achieve low-order correction to images of the retina. The high-order correction was provided by deconvolution. A Shack-Hartmann wavefront sensor measures aberrations. The wavefront measurement is the basis for activating a deformable mirror. Image restoration to remove remaining aberrations is achieved by direct deconvolution using the point spread function (PSF) or a blind deconvolution. The PSF is estimated using measured wavefront aberrations. Direct application of classical deconvolution methods such as inverse filtering, Wiener filtering or iterative blind deconvolution (IBD) to the AO retinal images obtained from the adaptive optical imaging system is not satisfactory because of the very large image size, dificulty in modeling the system noise, and inaccuracy in PSF estimation. Our approach combines direct and blind deconvolution to exploit available system information, avoid non-convergence, and time-consuming iterative processes. Results: The deconvolution was applied to human subject data and resulting restored images compared by a trained ophthalmic researcher. Qualitative analysis showed significant improvements. Neovascularization can be visualized with the adaptive optics device that cannot be resolved with the standard fundus camera. The individual nerve fiber bundles are easily resolved as are melanin structures in the choroid. Conclusion: This project demonstrated that computer-enhanced, adaptive optic images have greater detail of anatomical and pathological structures.

  18. Stress analysis in oral obturator prostheses, part II: photoelastic imaging

    NASA Astrophysics Data System (ADS)

    Pesqueira, Aldiéris Alves; Goiato, Marcelo Coelho; da Silva, Emily Vivianne Freitas; Haddad, Marcela Filié; Moreno, Amália; Zahoui, Abbas; dos Santos, Daniela Micheline

    2014-06-01

    In part I of the study, two attachment systems [O-ring; bar-clip (BC)] were used, and the system with three individualized O-rings provided the lowest stress on the implants and the support tissues. Therefore, the aim of this study was to assess the stress distribution, through the photoelastic method, on implant-retained palatal obturator prostheses associated with different attachment systems: BOC-splinted implants with a bar connected to two centrally placed O-rings, and BOD-splinted implants with a BC connected to two distally placed O-rings (cantilever). One photoelastic model of the maxilla with oral-sinus-nasal communication with three parallel implants was fabricated. Afterward, two implant-retained palatal obturator prostheses with the two attachment systems described above were constructed. Each assembly was positioned in a circular polariscope and a 100-N axial load was applied in three different regions with implants by using a universal testing machine. The results were obtained through photograph record analysis of stress. The BOD system exhibited the highest stress concentration, followed by the BOC system. The O-ring, centrally placed on the bar, allows higher mobility of the prostheses and homogeneously distributes the stress to the region of the alveolar ridge and implants. It can be concluded that the use of implants with O-rings, isolated or connected with a bar, to rehabilitate maxillectomized patients allows higher prosthesis mobility and homogeneously distributes the stress to the alveolar ridge region, which may result in greater chewing stress distribution to implants and bone tissue. The clinical implication of the augmented bone support loss after maxillectomy is the increase of stress in the attachment systems and, consequently, a higher tendency for displacement of the prosthesis.

  19. Stress analysis in oral obturator prostheses, part II: photoelastic imaging.

    PubMed

    Pesqueira, Aldiéris Alves; Goiato, Marcelo Coelho; da Silva, Emily Vivianne Freitas; Haddad, Marcela Filié; Moreno, Amália; Zahoui, Abbas; dos Santos, Daniela Micheline

    2014-06-01

    In part I of the study, two attachment systems [O-ring; bar-clip (BC)] were used, and the system with three individualized O-rings provided the lowest stress on the implants and the support tissues. Therefore, the aim of this study was to assess the stress distribution, through the photoelastic method, on implant-retained palatal obturator prostheses associated with different attachment systems: BOC--splinted implants with a bar connected to two centrally placed O-rings, and BOD--splinted implants with a BC connected to two distally placed O-rings (cantilever). One photoelastic model of the maxilla with oral-sinus-nasal communication with three parallel implants was fabricated. Afterward, two implant-retained palatal obturator prostheses with the two attachment systems described above were constructed. Each assembly was positioned in a circular polariscope and a 100-N axial load was applied in three different regions with implants by using a universal testing machine. The results were obtained through photograph record analysis of stress. The BOD system exhibited the highest stress concentration, followed by the BOC system. The O-ring, centrally placed on the bar, allows higher mobility of the prostheses and homogeneously distributes the stress to the region of the alveolar ridge and implants. It can be concluded that the use of implants with O-rings, isolated or connected with a bar, to rehabilitate maxillectomized patients allows higher prosthesis mobility and homogeneously distributes the stress to the alveolar ridge region, which may result in greater chewing stress distribution to implants and bone tissue. The clinical implication of the augmented bone support loss after maxillectomy is the increase of stress in the attachment systems and, consequently, a higher tendency for displacement of the prosthesis. PMID:24972360

  20. Seismic shock and vibration isolation 1995. Part 2: Applications

    SciTech Connect

    Mok, G.C.; Chung, H.H.

    1995-07-11

    As pointed out in the introduction of Part 1, the isolation strategy can be used to effectively decouple a` structure from its environment and thus the structure can be protected from damaging seismic loads or unwanted vibrations and noises from the environment. The method has been used for solving vibration and shock problems in machinery and equipment for many years, but its application to the protection of structures from seismic loadings is relatively recent. Owing to the current interest generated by the Northridge and Kobe earthquakes, an but one of the papers in this publication deal with seismic isolation. The one paper on vibration isolation by Yonekura discusses a measure to protect buildings from detrimental excitations of running trains. Seismic or base isolation has been used to protect bridges, buildings, industrial facilities, and nuclear reactors from damaging seismic loads since 1970. For each of these applications base isolation offers some unique advantages that the conventional strengthening method cannot. Some of these advantages are discussed in papers presented in this publication.

  1. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    NASA Astrophysics Data System (ADS)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant literature. Let's devote a few more words to the section on pedagogical applications. It is the usual perception that the use of IR cameras for educational purposes is limited primarily to help visualize processes in thermodynamics such as heat conduction, evaporation, radiation and convection. In this book the authors show that the range of pedagogical applications of IR cameras is much wider. They describe concrete examples (from the descriptions it is clear that the authors have performed all experiments themselves) from mechanics (friction, inelastic collisions), electromagnetism (eddy currents, thermoelectric effect, analysis of standing waves in the microwave oven), optics (specular and diffuse reflection, wave optics in the IR region) and modern physics (selective absorption in gases). Readers who may want to repeat the experiments will appreciate the colour IR photos that are equipped with temperature scales from which one may learn which settings to use in order to achieve the best visibility of the phenomena to be observed. As said earlier, the decision to write a book for a wide range of readers requires authors to make certain compromises. The inclusion of interpretations and explanations at a basic level will certainly be welcomed by some readers, but due to the limited space some simplifications of this type of content were inevitable. Readers who might be put off by these simplifications should bear in mind that there are few authors who describe specialized topics such as this one and devote so much space to fundamentals. One can only wish that future authors of similar books will try to meet the standards set by this one.

  2. Image segmentation by iterative parallel region growing with application to data compression and image analysis

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    1988-01-01

    Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.

  3. Novel biomedical applications of Cerenkov radiation and radioluminescence imaging.

    PubMed

    Spinelli, Antonello E; Boschi, Federico

    2015-03-01

    The main goals of this review is to provide an up-to-date account of the different uses of Cerenkov radiation (CR) and radioluminescence imaging for pre-clinical small animal imaging. We will focus on new emerging applications such as the use of Cerenkov imaging for monitoring radionuclide and external radiotherapy in humans. Another novel application that will be described is the monitoring of radiochemical synthesis using microfluidic chips. Several pre-clinical aspects of CR will be discussed such as the development of 3D reconstruction methods for Cerenkov images and the use of CR as excitation source for nanoparticles or for endoscopic imaging. We will also include a discussion on radioluminescence imaging that is a more general method than Cerenkov imaging for the detection using optical methods of alpha and gamma emitters. PMID:25555905

  4. Application of coherent 10 micron imaging lidar

    SciTech Connect

    Simpson, M.L.; Hutchinson, D.P.; Richards, R.K.; Bennett, C.A.

    1997-04-01

    With the continuing progress in mid-IR array detector technology and high bandwidth fan-outs, i.f. electronics, high speed digitizers, and processing capability, true coherent imaging lidar is becoming a reality. In this paper experimental results are described using a 10 micron coherent imaging lidar.

  5. Imaging prostate cancer: current and future applications.

    PubMed

    el-Gabry, E A; Halpern, E J; Strup, S E; Gomella, L G

    2001-03-01

    Various treatment options are available for adenocarcinoma of the prostate--the most common malignant neoplasm among men in the United States. To select an optimum management strategy, we must be able to identify an organ-confined disease (in which local therapy such as surgery or radiation may be beneficial) vs prostate cancer beyond the confines of the gland (for which other treatment approaches may be more appropriate). At present, no standard imaging modality can by itself reliably diagnose and/or stage adenocarcinoma of the prostate. Standard transrectal ultrasound, magnetic resonance imaging (MRI), computed tomography, bone scans, and plain x-ray are not sufficiently reliable when used alone. Fortunately, advances in imaging technology have led to the development of several promising modalities. These modalities include color and power Doppler ultrasonography, ultrasound contrast agents, intermittent and harmonic ultrasound imaging, MR contrast imaging, MRI with fat suppression, MRI spectroscopy, three-dimensional MRI spectroscopy, elastography, and radioimmunoscintigraphy. These newer imaging techniques appear to improve the yield of prostate cancer detection and staging, but are limited in availability and thus require further validation. This article reviews the status of current imaging modalities for prostate cancer and identifies emerging imaging technologies that may improve the diagnosis and staging of this disease. PMID:11301831

  6. Imaging-Genetics Applications in Child Psychiatry

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Ernst, Monique; Leibenluft, Ellen

    2010-01-01

    Objective: To place imaging-genetics research in the context of child psychiatry. Method: A conceptual overview is provided, followed by discussion of specific research examples. Results: Imaging-genetics research is described linking brain function to two specific genes, for the serotonin-reuptake-transporter protein and a monoamine oxidase…

  7. Imaging-Genetics Applications in Child Psychiatry

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Ernst, Monique; Leibenluft, Ellen

    2010-01-01

    Objective: To place imaging-genetics research in the context of child psychiatry. Method: A conceptual overview is provided, followed by discussion of specific research examples. Results: Imaging-genetics research is described linking brain function to two specific genes, for the serotonin-reuptake-transporter protein and a monoamine oxidase

  8. Nuclear cardiac imaging: Principles and applications

    SciTech Connect

    Iskandrian, A.S.

    1986-01-01

    This book provides an analysis of the pathophysiologic concepts and effectiveness of the commonly available cardiac imaging modalities: thallium-201 scintigraphy, myocardial infarct avid-imaging, and radionuclide ventriculography. Emphasis is on the implications of these diagnostic procedures. Organizing an efficient laboratory, instrumentation, radiopharmaceuticals, and exercise testing are discussed.

  9. Magnetic resonance imaging: present and future applications

    PubMed Central

    Johnston, Donald L.; Liu, Peter; Wismer, Gary L.; Rosen, Bruce R.; Stark, David D.; New, Paul F.J.; Okada, Robert D.; Brady, Thomas J.

    1985-01-01

    Magnetic resonance (MR) imaging has created considerable excitement in the medical community, largely because of its great potential to diagnose and characterize many different disease processes. However, it is becoming increasingly evident that, because MR imaging is similar to computed tomography (CT) scanning in identifying structural disorders and because it is more costly and difficult to use, this highly useful technique must be judged against CT before it can become an accepted investigative tool. At present MR imaging has demonstrated diagnostic superiority over CT in a limited number of important, mostly neurologic, disorders and is complementary to CT in the diagnosis of certain other disorders. For most of the remaining organ systems its usefulness is not clear, but the lack of ionizing radiation and MR's ability to produce images in any tomographic plane may eventually prove to be advantageous. The potential of MR imaging to display in-vivo spectra, multinuclear images and blood-flow data makes it an exciting investigative technique. At present, however, MR imaging units should be installed only in medical centres equipped with the clinical and basic research facilities that are essential to evaluate the ultimate role of this technique in the care of patients. ImagesFig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14 PMID:3884120

  10. 75 FR 14212 - Proposed Generic Communications; Applicability of 10 CFR Part 21 Requirements to Applicants for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ..., 2007 (72 FR 49352), clarified the applicability of various requirements to each of the licensing... of considerations that accompanied the final rule (3150-AG24) for Part 52 (72 FR 49352; August 28... Standard Design Certifications AGENCY: Nuclear Regulatory Commission. ACTION: Notice of opportunity...

  11. The Fringe-Imaging Skin Friction Technique PC Application User's Manual

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory G.

    1999-01-01

    A personal computer application (CXWIN4G) has been written which greatly simplifies the task of extracting skin friction measurements from interferograms of oil flows on the surface of wind tunnel models. Images are first calibrated, using a novel approach to one-camera photogrammetry, to obtain accurate spatial information on surfaces with curvature. As part of the image calibration process, an auxiliary file containing the wind tunnel model geometry is used in conjunction with a two-dimensional direct linear transformation to relate the image plane to the physical (model) coordinates. The application then applies a nonlinear regression model to accurately determine the fringe spacing from interferometric intensity records as required by the Fringe Imaging Skin Friction (FISF) technique. The skin friction is found through application of a simple expression that makes use of lubrication theory to relate fringe spacing to skin friction.

  12. Uncooled thermal imaging sensor and application advances

    NASA Astrophysics Data System (ADS)

    Norton, Peter W.; Cox, Stephen; Murphy, Bob; Grealish, Kevin; Joswick, Mike; Denley, Brian; Feda, Frank; Elmali, Loriann; Kohin, Margaret

    2006-05-01

    BAE Systems continues to advance the technology and performance of microbolometer-based thermal imaging modules and systems. 640x480 digital uncooled infrared focal plane arrays are in full production, illustrated by recent production line test data for two thousand focal plane arrays. This paper presents a snapshot of microbolometer technology at BAE Systems and an overview of two of the most important thermal imaging sensor programs currently in production: a family of thermal weapons sights for the United States Army and a thermal imager for the remote weapons station on the Stryker vehicle.

  13. [Susceptibility weighted imaging. Theory and applications].

    PubMed

    Haddar, D; Haacke, Em; Sehgal, V; Delproposto, Z; Salamon, G; Seror, O; Sellier, N

    2004-11-01

    Susceptibility Weighted Imaging (SWI) is a new MR imaging technique using the BOLD effect (Blood Oxygen Level Dependent) and the differences of susceptibility between tissues. It is a 3D gradient echo, fully velocity compensated sequence. The echo time is chosen to maximize the signal cancellation in veins and a specific post-processing is applied using the phase images as a complementary source of contrast. It is very useful for the visualization of veins either normal or abnormal. It shows hemorrhage, even of small quantity, better than conventional gradient echo sequences. Its use is still limited by a long acquisition time and some remaining artifacts. PMID:15602412

  14. Application of signal detection theory to optics. [image evaluation and restoration

    NASA Technical Reports Server (NTRS)

    Helstrom, C. W.

    1973-01-01

    Basic quantum detection and estimation theory, applications to optics, photon counting, and filtering theory are studied. Recent work on the restoration of degraded optical images received at photoelectrically emissive surfaces is also reported, the data used by the method are the numbers of electrons ejected from various parts of the surface.

  15. Short-Lag Spatial Coherence Imaging on Matrix Arrays, Part I: Beamforming Methods and Simulation Studies

    PubMed Central

    Hyun, Dongwoon; Trahey, Gregg E.; Jakovljevic, Marko; Dahl, Jeremy J.

    2014-01-01

    Short-lag spatial coherence (SLSC) imaging is a beamforming technique that has demonstrated improved imaging performance compared with conventional B-mode imaging in previous studies. Thus far, the use of 1-D arrays has limited coherence measurements and SLSC imaging to a single dimension. Here, the SLSC algorithm is extended for use on 2-D matrix array transducers and applied in a simulation study examining imaging performance as a function of subaperture configuration and of incoherent channel noise. SLSC images generated with a 2-D array yielded superior contrast-to-noise ratio (CNR) and texture SNR measurements over SLSC images made on a corresponding 1-D array and over B-mode imaging. SLSC images generated with square subapertures were found to be superior to SLSC images generated with subapertures of equal surface area that spanned the whole array in one dimension. Subaperture beamforming was found to have little effect on SLSC imaging performance for subapertures up to 8 × 8 elements in size on a 64 × 64 element transducer. Additionally, the use of 8 × 8, 4 × 4, and 2 × 2 element subapertures provided 8, 4, and 2 times improvement in channel SNR along with 2640-, 328-, and 25-fold reduction in computation time, respectively. These results indicate that volumetric SLSC imaging is readily applicable to existing 2-D arrays that employ subaperture beamforming. PMID:24960700

  16. Laser applications and system considerations in ocular imaging

    PubMed Central

    Elsner, Ann E.; Muller, Matthew S.

    2009-01-01

    We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast. PMID:21052482

  17. In vivo Coherent Raman Imaging for Neuroscience Applications

    NASA Astrophysics Data System (ADS)

    Cote, Daniel

    2010-08-01

    The use of coherent Raman imaging is described for applications in neuroscience. Myelin imaging of the spinal cord can be performed with Raman imaging through the use of the vibration in carbon-hydrogen bonds, dominant in lipids. First, we demonstrate in vivo histomorphometry in live animal for characterization of myelin-related nervous system pathologies. This is used to characterize spinal cord health during multiple sclerosis. Second, Raman spectroscopy of tissue is discussed. We discuss the challenges that live animal imaging brings, together with important aspects of coherent Raman imaging in tissue.

  18. Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications

    SciTech Connect

    Abi-Jaoudeh, Nadine; Kruecker, Jochen; Kadoury, Samuel; Kobeiter, Hicham; Venkatesan, Aradhana M. Levy, Elliot Wood, Bradford J.

    2012-10-15

    Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methods of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.

  19. 14 CFR 300.0a - Applicability of 49 CFR part 99.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Applicability of 49 CFR part 99. (a) Except as provided in paragraph (b) of this section, each DOT employee... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Applicability of 49 CFR part 99. 300.0a... Conduct” in 49 CFR part 99. (b) The rules in this part shall be construed as being consistent with...

  20. 14 CFR 300.0a - Applicability of 49 CFR part 99.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Applicability of 49 CFR part 99. (a) Except as provided in paragraph (b) of this section, each DOT employee... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Applicability of 49 CFR part 99. 300.0a... Conduct” in 49 CFR part 99. (b) The rules in this part shall be construed as being consistent with...

  1. 14 CFR 300.0a - Applicability of 49 CFR part 99.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Applicability of 49 CFR part 99. (a) Except as provided in paragraph (b) of this section, each DOT employee... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Applicability of 49 CFR part 99. 300.0a... Conduct” in 49 CFR part 99. (b) The rules in this part shall be construed as being consistent with...

  2. 14 CFR 300.0a - Applicability of 49 CFR part 99.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Applicability of 49 CFR part 99. (a) Except as provided in paragraph (b) of this section, each DOT employee... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Applicability of 49 CFR part 99. 300.0a... Conduct” in 49 CFR part 99. (b) The rules in this part shall be construed as being consistent with...

  3. 17 CFR 210.1-01 - Application of Regulation S-X (17 CFR part 210).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Application of Regulation S-X (17 CFR part 210). 210.1-01 Section 210.1-01 Commodity and Securities Exchanges SECURITIES AND... (17 Cfr Part 210) § 210.1-01 Application of Regulation S-X (17 CFR part 210). (a) This part...

  4. 17 CFR 210.1-01 - Application of Regulation S-X (17 CFR part 210).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (17 Cfr Part 210) § 210.1-01 Application of Regulation S-X (17 CFR part 210). (a) This part (together... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Application of Regulation S-X (17 CFR part 210). 210.1-01 Section 210.1-01 Commodity and Securities Exchanges SECURITIES...

  5. Using stereoscopic imaging for visualization applications

    SciTech Connect

    Adelson, S.J.

    1994-02-01

    The purpose of scientific visualization is to simplify the analysis of numerical data by rendering the information as an image. Even when the image is familiar, as in the case of terrain data, preconceptions about what the image should look like and deceptive image artifacts can create misconceptions about what information is actually contained in the scene. One way of aiding the development of unambiguous visualizations is to add stereoscopic depth to the image. Despite the recent proliferation of affordable stereoscopic viewing equipment, few researchers are at this time taking advantage of stereo in their visualizations. It is generally perceived that the rendering time will have to be doubled in order to generate the pair, and so stereoscopic viewing is sacrificed in the name of expedient rendering. We show that this perception is often invalid. The second half of a stereoscopic image can be generated from the first half for a fraction of the computational cost of complete rendering, usually no more than 50% of the cost and in many cases as little as 5%. Using the techniques presented here, the benefits of stereoscopy can be added to existing visualization systems for only a small cost over current single-frame rendering methods.

  6. Application of infrared imaging in ferrocyanide tanks

    SciTech Connect

    Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

    1994-09-28

    This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

  7. Mineral mapping and applications of imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  8. A review of breast tomosynthesis. Part I. The image acquisition process

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process. PMID:23298126

  9. A review of breast tomosynthesis. Part I. The image acquisition process

    SciTech Connect

    Sechopoulos, Ioannis

    2013-01-15

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process.

  10. Compressive sampling for time critical microwave imaging applications

    PubMed Central

    O'Halloran, Martin; McGinley, Brian; Conceicao, Raquel C.; Kilmartin, Liam; Jones, Edward; Glavin, Martin

    2014-01-01

    Across all biomedical imaging applications, there is a growing emphasis placed on reducing data acquisition and imaging times. This research explores the use of a technique, known as compressive sampling or compressed sensing (CS), as an efficient technique to minimise the data acquisition time for time critical microwave imaging (MWI) applications. Where a signal exhibits sparsity in the time domain, the proposed CS implementation allows for sub-sampling acquisition in the frequency domain and consequently shorter imaging times, albeit at the expense of a slight degradation in reconstruction quality of the signals as the compression increases. This Letter focuses on ultra wideband (UWB) radar MWI applications where reducing acquisition is of critical importance therefore a slight degradation in reconstruction quality may be acceptable. The analysis demonstrates the effectiveness and suitability of CS with UWB applications. PMID:26609368

  11. Fluorescence and Cerenkov luminescence imaging. Applications in small animal research.

    PubMed

    Schwenck, J; Fuchs, K; Eilenberger, S H L; Rolle, A-M; Castaneda Vega, S; Thaiss, W M; Maier, F C

    2016-04-12

    This review addresses small animal optical imaging (OI) applications in diverse fields of basic research. In the past, OI has proven to be cost- and time-effective, allows real-time imaging as well as high-throughput analysis and does not imply the usage of ionizing radiation (with the exception of Cerenkov imaging applications). Therefore, this technique is widely spread - not only geographically, but also among very different fields of basic research - and is represented by a large body of publications. Originally used in oncology research, OI is nowadays emerging in further areas like inflammation and infectious disease as well as neurology. Besides fluorescent probe-based contrast, the feasibility of Cerenkov luminescence imaging (CLI) has been recently shown in small animals and thus represents a new route for future applications. Thus, this review will focus on examples for OI applications in inflammation, infectious disease, cell tracking as well as neurology, and provides an overview over CLI. PMID:27067794

  12. 32 CFR Appendix C to Part 284 - Submitting a Waiver Application

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... processing of a claim under 32 CFR part 281. B. Where To Submit A Waiver Application An applicant must submit... 32 National Defense 2 2010-07-01 2010-07-01 false Submitting a Waiver Application C Appendix C to... Pt. 284, App. C Appendix C to Part 284—Submitting a Waiver Application A. Who May Apply for...

  13. Mesoscopics of ultrasound and seismic waves: application to passive imaging

    NASA Astrophysics Data System (ADS)

    Larose, É.

    2006-05-01

    This manuscript deals with different aspects of the propagation of acoustic and seismic waves in heterogeneous media, both simply and multiply scattering ones. After a short introduction on conventional imaging techniques, we describe two observations that demonstrate the presence of multiple scattering in seismic records: the equipartition principle, and the coherent backscattering effect (Chap. 2). Multiple scattering is related to the mesoscopic nature of seismic and acoustic waves, and is a strong limitation for conventional techniques like medical or seismic imaging. In the following part of the manuscript (Chaps. 3 5), we present an application of mesoscopic physics to acoustic and seismic waves: the principle of passive imaging. By correlating records of ambient noise or diffuse waves obtained at two passive sensors, it is possible to reconstruct the impulse response of the medium as if a source was placed at one sensor. This provides the opportunity of doing acoustics and seismology without a source. Several aspects of this technique are presented here, starting with theoretical considerations and numerical simulations (Chaps. 3, 4). Then we present experimental applications (Chap. 5) to ultrasound (passive tomography of a layered medium) and to seismic waves (passive imaging of California, and the Moon, with micro-seismic noise). Physique mésoscopique des ultrasons et des ondes sismiques : application à l'imagerie passive. Cet article de revue rassemble plusieurs aspects fondamentaux et appliqués de la propagation des ondes acoustiques et élastiques dans les milieux hétérogènes, en régime de diffusion simple ou multiple. Après une introduction sur les techniques conventionelles d'imagerie sismique et ultrasonore, nous présentons deux expériences qui mettent en évidence la présence de diffusion multiple dans les enregistrements sismologiques : l'équipartition des ondes, et la rétrodiffusion cohérente (Chap. 2). La diffusion multiple des ondes, qui démontre l'aspect mésoscopique de leur propagation, est une limitation majeure pour les techniques d'imagerie conventionelles (imagerie médicale, sismique réflexion ou réfraction, tomographie...). La deuxième partie du document (Chaps. 3 5) est consacrée à une application de cette physique mésoscopique : le principe de l'imagerie passive. En effectuant la corrélation temporelle d'enregistrement de bruit ambiant ou d'ondes diffuses, il est possible de reconstruire la réponse impulsionnelle du milieu entre deux capteurs passifs comme si l'on avait placé une source en lieu et place d'un des capteurs. Cela offre la possibilité de faire de l'acoustique ou de la sismologie sans source. Plusieurs aspects sont présentés dans ce manuscrit : des aspects théoriques et numériques (Chaps. 3, 4), ensuite des aspects expérimentaux avec des applications (Chap. 5) à l'échelle des ultrasons (tomographie passive d'un milieu stratifié), et des applications à l'échelle de la sismologie (imagerie du sous-sol de la Californie, et même de la Lune).

  14. TM digital image products for applications. [computer compatible tapes

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Gunther, F. J.; Abrams, R. B.; Ball, D.

    1984-01-01

    The image characteristics of digital data generated by LANDSAT 4 thematic mapper (TM) are discussed. Digital data from the TM resides in tape files at various stages of image processing. Within each image data file, the image lines are blocked by a factor of either 5 for a computer compatible tape CCT-BT, or 4 for a CCT-AT and CCT-PT; in each format, the image file has a different format. Nominal geometric corrections which provide proper geodetic relationships between different parts of the image are available only for the CCT-PT. It is concluded that detector 3 of band 5 on the TM does not respond; this channel of data needs replacement. The empty bin phenomenon in CCT-AT images results from integer truncations of mixed-mode arithmetric operations.

  15. Optimizing signal and image processing applications using Intel libraries

    NASA Astrophysics Data System (ADS)

    Landré, Jérôme; Truchetet, Frédéric

    2007-01-01

    This paper presents optimized signal and image processing libraries from Intel Corporation. Intel Performance Primitives (IPP) is a low-level signal and image processing library developed by Intel Corporation to optimize code on Intel processors. Open Computer Vision library (OpenCV) is a high-level library dedicated to computer vision tasks. This article describes the use of both libraries to build flexible and efficient signal and image processing applications.

  16. Imaging Systems For Application In Harsh Environments

    NASA Astrophysics Data System (ADS)

    Grothues, H.-G.; Michaelis, H.; Behnke, T.; Bresch, W.; Koldewey, E.; Lichopoj, A.; Tschentscher, M.; Alicke, P.

    Imaging systems operating in the wavelength domain between the near UV and the mid IR (about 300 nm to > 5 (m) play a crucial role in remote sensing from orbiters and in-situ lander measurements of planetary exploration space missions. Wide-angle and high-resolution cameras, IR imagers, and imaging spectrographs provide carto- graphic information on the morphology and topography of planetary surfaces, serve to characterize landing sites with their geological features like soils and rocks, de- liver data on the spectrophotometric characteristics of minerals, and contribute to at- mospheric reasearch. Moreover, imaging systems have the important task to present scientific missions to the general public. As resources during planetary missions are usually very limited imaging payloads have to be designed to have low mass and size, low power consumption, and to effectively handle the imaging data taking into ac- count the limited computing powers, mass memories and telemetry data rates (image data compression). Furthermore, the design has to cope with extremely harsh environ- ments such as, for example, high and very low temperatures, large temperature varia- tions and gradients, high mechanical loads (shocks), e.g. during landing on a planetary surface, a hostile particle radiation environment, and dusty or chemically aggressive atmospheres. The presentation discusses the requirements to be set up for planetary mission imaging systems, and gives an overview of the most important design mea- sures to be taken in order to be compliant with these requirements (e.g. miniatur- ization of electronics, light-weight materials, athermal and radiation tolerant design). The discussion comprises all subunits of imaging systems starting with the optics / the spectrograph and the detector unit, continuing with the data processing unit, and ending with peripheral equipment like e.g. drives, deployable booms, and illumina- tion devices for lander cameras. Examples are given of already existing hardware (e.g. for Mars Pathfinder, Rosetta and MarsExpress), hardware under development (e.g. for NetLander PanCam), and hardware planned for future missions. Finally, some impli- cations and spin-offs for terrestrial geophysical research are also briefly discussed.

  17. Application of infrared imaging systems to maritime security

    NASA Astrophysics Data System (ADS)

    Zeng, Debing

    Enhancing maritime security through video based systems is a very challenging task, not only due to the different scales of vessels to be monitored, but also due to the constantly changing background and environmental conditions. Yet video systems operating in the visible part of the electromagnetic spectrum have established themselves as one of the most crucial tools in maritime security. However, certain inherent limitations such as requirements of proper scene illumination and failure under low visibility weather conditions like fog could be overcome utilizing different spectral regions. Thermal imaging systems present themselves as a good alternative in maritime security. They could overcome these problems and allow for additional detection of local variation of water temperature, yet have been rarely used efficiently in maritime environment evaluated. Here we present a first order study of the advantage of using long-wavelength infrared (LWIR) imaging for diver detection. Within these tasks we study the reasons and effects of bubbles on water surface in laboratory IR imaging study and have determined the changes in infrared emissivity and reflectivity due to the corresponding surface manifestation. This was compared and used to analyze experiments in the Hudson Estuary to the real-world applicability of infrared technology in maritime security application. Utilizing a LWIR camera, we limit ourselves on the detection of the scuba diver as well as the determination of its depth---information normally not obtainable in very low visibility water like the Hudson River. For this purpose we observed the thermal surface signature of the diver and obtained and analyzed its temporal behavior with respect to area, perimeter and infrared brightness. Additional qualitative and quantitative analyses of the area and perimeter growth show different behaviors with more or less pronounced correlation to the diver's depth---yet clearly showing a trend allowing for estimation of the diver's depth based on the IR surface manifestation. To reduce the impact of measurement and data processing errors in this natural very noisy environment, a computer based analysis process was developed and optimized for this very specific application. Based on its assessment previous contradictions in the bubble growth could be resolved.

  18. Real-time hyperspectral imaging for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  19. An airborne four-camera imaging system for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  20. Image Processing Application for Cognition (IPAC) - Traditional and Emerging Topics in Image Processing in Astronomy (Invited)

    NASA Astrophysics Data System (ADS)

    Pesenson, M.; Roby, W.; Helou, G.; McCollum, B.; Ly, L.; Wu, X.; Laine, S.; Hartley, B.

    2008-08-01

    A new application framework for advanced image processing for astronomy is presented. It implements standard two-dimensional operators, and recent developments in the field of non-astronomical image processing (IP), as well as original algorithms based on nonlinear partial differential equations (PDE). These algorithms are especially well suited for multi-scale astronomical images since they increase signal to noise ratio without smearing localized and diffuse objects. The visualization component is based on the extensive tools that we developed for Spitzer Space Telescope's observation planning tool Spot and archive retrieval tool Leopard. It contains many common features, combines images in new and unique ways and interfaces with many astronomy data archives. Both interactive and batch mode processing are incorporated. In the interactive mode, the user can set up simple processing pipelines, and monitor and visualize the resulting images from each step of the processing stream. The system is platform-independent and has an open architecture that allows extensibility by addition of plug-ins. This presentation addresses astronomical applications of traditional topics of IP (image enhancement, image segmentation) as well as emerging new topics like automated image quality assessment (QA) and feature extraction, which have potential for shaping future developments in the field. Our application framework embodies a novel synergistic approach based on integration of image processing, image visualization and image QA (iQA).

  1. Electromagnetic inverse applications for functional brain imaging

    SciTech Connect

    Wood, C.C.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.

  2. Stereo imaging velocimetry for microgravity applications

    NASA Technical Reports Server (NTRS)

    Miller, Brian B.; Meyer, Maryjo B.; Bethea, Mark D.

    1994-01-01

    Stereo imaging velocimetry is the quantitative measurement of three-dimensional flow fields using two sensors recording data from different vantage points. The system described in this paper, under development at NASA Lewis Research Center in Cleveland, Ohio, uses two CCD cameras placed perpendicular to one another, laser disk recorders, an image processing substation, and a 586-based computer to record data at standard NTSC video rates (30 Hertz) and reduce it offline. The flow itself is marked with seed particles, hence the fluid must be transparent. The velocimeter tracks the motion of the particles, and from these we deduce a multipoint (500 or more), quantitative map of the flow. Conceptually, the software portion of the velocimeter can be divided into distinct modules. These modules are: camera calibration, particle finding (image segmentation) and centroid location, particle overlap decomposition, particle tracking, and stereo matching. We discuss our approach to each module, and give our currently achieved speed and accuracy for each where available.

  3. Neural networks: Application to medical imaging

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  4. 47 CFR 27.3 - Other applicable rule parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS... to the Wireless Communications Service include the following: (a) Part 0. This part describes the... the Wireless Telecommunications Services and the procedures for filing electronically via the ULS....

  5. Sono-photoacoustic imaging of gold nanoemulsions: Part II. Real time imaging

    PubMed Central

    Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Nguyen, Thu-Mai; Lombardo, Michael; Pelivanov, Ivan; Pozzo, Lilo D.; O’Donnell, Matthew

    2015-01-01

    Photoacoustic (PA) imaging using exogenous agents can be limited by degraded specificity due to strong background signals. This paper introduces a technique called sono-photoacoustics (SPA) applied to perfluorohexane nanodroplets coated with gold nanospheres. Pulsed laser and ultrasound (US) excitations are applied simultaneously to the contrast agent to induce a phase-transition ultimately creating a transient microbubble. The US field present during the phase transition combined with the large thermal expansion of the bubble leads to 20–30 dB signal enhancement. Aqueous solutions and phantoms with very low concentrations of this agent were probed using pulsed laser radiation at diagnostic exposures and a conventional US array used both for excitation and imaging. Contrast specificity of the agent was demonstrated with a coherent differential scheme to suppress US and linear PA background signals. SPA shows great potential for molecular imaging with ultrasensitive detection of targeted gold coated nanoemulsions and cavitation-assisted theranostic approaches. PMID:25893170

  6. Sono-photoacoustic imaging of gold nanoemulsions: Part II. Real time imaging.

    PubMed

    Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Nguyen, Thu-Mai; Lombardo, Michael; Pelivanov, Ivan; Pozzo, Lilo D; O'Donnell, Matthew

    2015-03-01

    Photoacoustic (PA) imaging using exogenous agents can be limited by degraded specificity due to strong background signals. This paper introduces a technique called sono-photoacoustics (SPA) applied to perfluorohexane nanodroplets coated with gold nanospheres. Pulsed laser and ultrasound (US) excitations are applied simultaneously to the contrast agent to induce a phase-transition ultimately creating a transient microbubble. The US field present during the phase transition combined with the large thermal expansion of the bubble leads to 20-30 dB signal enhancement. Aqueous solutions and phantoms with very low concentrations of this agent were probed using pulsed laser radiation at diagnostic exposures and a conventional US array used both for excitation and imaging. Contrast specificity of the agent was demonstrated with a coherent differential scheme to suppress US and linear PA background signals. SPA shows great potential for molecular imaging with ultrasensitive detection of targeted gold coated nanoemulsions and cavitation-assisted theranostic approaches. PMID:25893170

  7. 10 CFR Appendix A to Part 600 - Generally Applicable Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Nondiscrimination in Federally Assisted Programs, 10 CFR part 1040 (45 FR 40514, June 13, 1980), as proposed to be... Contracts, Part III of Executive Order 11246 (September 24, 1965), 3 CFR 1964—65 Comp., p. 345... 1969, as amended (42 U.S.C. 4321 et seq.), 40 CFR part 1500, as implemented by (45 FR 20694, March...

  8. 10 CFR Appendix A to Part 600 - Generally Applicable Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Nondiscrimination in Federally Assisted Programs, 10 CFR part 1040 (45 FR 40514, June 13, 1980), as proposed to be... Contracts, Part III of Executive Order 11246 (September 24, 1965), 3 CFR 1964—65 Comp., p. 345... 1969, as amended (42 U.S.C. 4321 et seq.), 40 CFR part 1500, as implemented by (45 FR 20694, March...

  9. 10 CFR Appendix A to Part 600 - Generally Applicable Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Nondiscrimination in Federally Assisted Programs, 10 CFR part 1040 (45 FR 40514, June 13, 1980), as proposed to be... Contracts, Part III of Executive Order 11246 (September 24, 1965), 3 CFR 1964—65 Comp., p. 345... 1969, as amended (42 U.S.C. 4321 et seq.), 40 CFR part 1500, as implemented by (45 FR 20694, March...

  10. 10 CFR Appendix A to Part 600 - Generally Applicable Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Nondiscrimination in Federally Assisted Programs, 10 CFR part 1040 (45 FR 40514, June 13, 1980), as proposed to be... Contracts, Part III of Executive Order 11246 (September 24, 1965), 3 CFR 1964—65 Comp., p. 345... 1969, as amended (42 U.S.C. 4321 et seq.), 40 CFR part 1500, as implemented by (45 FR 20694, March...

  11. 10 CFR Appendix A to Part 600 - Generally Applicable Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Nondiscrimination in Federally Assisted Programs, 10 CFR part 1040 (45 FR 40514, June 13, 1980), as proposed to be... Contracts, Part III of Executive Order 11246 (September 24, 1965), 3 CFR 1964—65 Comp., p. 345... 1969, as amended (42 U.S.C. 4321 et seq.), 40 CFR part 1500, as implemented by (45 FR 20694, March...

  12. Applications of computer modeling to engineer better part quality

    SciTech Connect

    Bernhardt, E.C.; Bernhardt, M.R.

    1989-01-01

    Modern computer modeling tools can help define the best way to produce quality injection molded parts. They provide a way to quickly evaluate different processing options, taking into consideration part geometry, resin characteristics, process variability and plant economics. They are tools for optimizing the technical and economic aspects of producing consistent quality parts. The uses of computer models are discussed here.

  13. Clinical applications of high-resolution ocular magnetic resonance imaging.

    PubMed

    Tanitame, Keizo; Sone, Takashi; Kiuchi, Yoshiaki; Awai, Kazuo

    2012-11-01

    Magnetic resonance imaging (MRI) using fast sequences with subjects staring at a target can provide motion-free ocular images, and small receiver surface coils make it possible to produce ocular images with high spatial resolution. MRI using half-Fourier single-shot rapid acquisition with a relaxation enhancement sequence as a fast T2-weighted imaging yields useful images for the morphologic diagnosis of ocular diseases, and MRI using a fast spoiled gradient-recalled-echo sequence as a T1-weighted imaging yields additional information by the administration of gadolinium-based contrast material for assessing the vascularity of intraocular tumors. These ocular imaging techniques are useful for the evaluation of patients with angle closure glaucoma, congenital abnormality of ocular globes, intraocular tumors and several types of detachments, as well as patients after ocular surgery. In this pictorial essay, we demonstrate the clinical applications of fast high-resolution ocular MRI with fixation of the subjects' visual foci. PMID:22923185

  14. Research on the measuring technology of minute part's geometrical parameter based on image processing

    NASA Astrophysics Data System (ADS)

    Jia, Xiao-yan; Xiao, Ze-xin

    2008-03-01

    The measuring technology of minute part's geometrical parameter based on image processing is an integration of optics, the mechanics, electronics, calculation and control. Accomplishing the video alteration of measuring microscope, real-time gathering image with CCD, and compiling automatically measuring software in Visual C++6.0 environment. First to do image processing which includes denoise filter, illuminance non-uniformity adjustment and image enhancement, then to carry on the on-line automatic measuring to its geometry parameters. By measuring the minute part's geometry parameters of machineries and integrated circuit in this system, the experimental results indicate that the measuring accuracy could amount to 1 micron, and the system survey stability and usability are all good.

  15. Designing Tracking Software for Image-Guided Surgery Applications: IGSTK Experience

    PubMed Central

    Enquobahrie, Andinet; Gobbi, David; Turek, Matt; Cheng, Patrick; Yaniv, Ziv; Lindseth, Frank; Cleary, Kevin

    2009-01-01

    Objective Many image-guided surgery applications require tracking devices as part of their core functionality. The Image-Guided Surgery Toolkit (IGSTK) was designed and developed to interface tracking devices with software applications incorporating medical images. Methods IGSTK was designed as an open source C++ library that provides the basic components needed for fast prototyping and development of image-guided surgery applications. This library follows a component-based architecture with several components designed for specific sets of image-guided surgery functions. At the core of the toolkit is the tracker component that handles communication between a control computer and navigation device to gather pose measurements of surgical instruments present in the surgical scene. The representations of the tracked instruments are superimposed on anatomical images to provide visual feedback to the clinician during surgical procedures. Results The initial version of the IGSTK toolkit has been released in the public domain and several trackers are supported. The toolkit and related information are available at www.igstk.org. Conclusion With the increased popularity of minimally invasive procedures in health care, several tracking devices have been developed for medical applications. Designing and implementing high-quality and safe software to handle these different types of trackers in a common framework is a challenging task. It requires establishing key software design principles that emphasize abstraction, extensibility, reusability, fault-tolerance, and portability. IGSTK is an open source library that satisfies these needs for the image-guided surgery community. PMID:20037671

  16. Designing Tracking Software for Image-Guided Surgery Applications: IGSTK Experience.

    PubMed

    Enquobahrie, Andinet; Gobbi, David; Turek, Matt; Cheng, Patrick; Yaniv, Ziv; Lindseth, Frank; Cleary, Kevin

    2008-11-01

    OBJECTIVE: Many image-guided surgery applications require tracking devices as part of their core functionality. The Image-Guided Surgery Toolkit (IGSTK) was designed and developed to interface tracking devices with software applications incorporating medical images. METHODS: IGSTK was designed as an open source C++ library that provides the basic components needed for fast prototyping and development of image-guided surgery applications. This library follows a component-based architecture with several components designed for specific sets of image-guided surgery functions. At the core of the toolkit is the tracker component that handles communication between a control computer and navigation device to gather pose measurements of surgical instruments present in the surgical scene. The representations of the tracked instruments are superimposed on anatomical images to provide visual feedback to the clinician during surgical procedures. RESULTS: The initial version of the IGSTK toolkit has been released in the public domain and several trackers are supported. The toolkit and related information are available at www.igstk.org. CONCLUSION: With the increased popularity of minimally invasive procedures in health care, several tracking devices have been developed for medical applications. Designing and implementing high-quality and safe software to handle these different types of trackers in a common framework is a challenging task. It requires establishing key software design principles that emphasize abstraction, extensibility, reusability, fault-tolerance, and portability. IGSTK is an open source library that satisfies these needs for the image-guided surgery community. PMID:20037671

  17. 7 CFR 4290.1940 - Integration of this part with other regulations applicable to USDA's programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... applicable to this part, the Secretary will comply with subpart V of 7 CFR part 3015, “Intergovernmental... to this part, the Secretary will comply with subpart B of 7 CFR part 1806. The Secretary has not... 11738; and 40 CFR part 32. The Secretary has not delegated this responsibility to SBA pursuant to §...

  18. 7 CFR 4290.1940 - Integration of this part with other regulations applicable to USDA's programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... applicable to this part, the Secretary will comply with subpart V of 7 CFR part 3015, “Intergovernmental... to this part, the Secretary will comply with subpart B of 7 CFR part 1806. The Secretary has not... 11738; and 40 CFR part 32. The Secretary has not delegated this responsibility to SBA pursuant to §...

  19. Possibility Study of Scale Invariant Feature Transform (SIFT) Algorithm Application to Spine Magnetic Resonance Imaging.

    PubMed

    Lee, Dong-Hoon; Lee, Do-Wan; Han, Bong-Soo

    2016-01-01

    The purpose of this study is an application of scale invariant feature transform (SIFT) algorithm to stitch the cervical-thoracic-lumbar (C-T-L) spine magnetic resonance (MR) images to provide a view of the entire spine in a single image. All MR images were acquired with fast spin echo (FSE) pulse sequence using two MR scanners (1.5 T and 3.0 T). The stitching procedures for each part of spine MR image were performed and implemented on a graphic user interface (GUI) configuration. Moreover, the stitching process is performed in two categories; manual point-to-point (mPTP) selection that performed by user specified corresponding matching points, and automated point-to-point (aPTP) selection that performed by SIFT algorithm. The stitched images using SIFT algorithm showed fine registered results and quantitatively acquired values also indicated little errors compared with commercially mounted stitching algorithm in MRI systems. Our study presented a preliminary validation of the SIFT algorithm application to MRI spine images, and the results indicated that the proposed approach can be performed well for the improvement of diagnosis. We believe that our approach can be helpful for the clinical application and extension of other medical imaging modalities for image stitching. PMID:27064404

  20. Possibility Study of Scale Invariant Feature Transform (SIFT) Algorithm Application to Spine Magnetic Resonance Imaging

    PubMed Central

    Lee, Dong-Hoon; Lee, Do-Wan; Han, Bong-Soo

    2016-01-01

    The purpose of this study is an application of scale invariant feature transform (SIFT) algorithm to stitch the cervical-thoracic-lumbar (C-T-L) spine magnetic resonance (MR) images to provide a view of the entire spine in a single image. All MR images were acquired with fast spin echo (FSE) pulse sequence using two MR scanners (1.5 T and 3.0 T). The stitching procedures for each part of spine MR image were performed and implemented on a graphic user interface (GUI) configuration. Moreover, the stitching process is performed in two categories; manual point-to-point (mPTP) selection that performed by user specified corresponding matching points, and automated point-to-point (aPTP) selection that performed by SIFT algorithm. The stitched images using SIFT algorithm showed fine registered results and quantitatively acquired values also indicated little errors compared with commercially mounted stitching algorithm in MRI systems. Our study presented a preliminary validation of the SIFT algorithm application to MRI spine images, and the results indicated that the proposed approach can be performed well for the improvement of diagnosis. We believe that our approach can be helpful for the clinical application and extension of other medical imaging modalities for image stitching. PMID:27064404

  1. Infrared scanning images: An archeological application

    USGS Publications Warehouse

    Schaber, G.G.; Gumerman, G.J.

    1969-01-01

    Aerial infrared scanner images of an area near the Little Colorado River in north-central Arizona disclosed the existence of scattered clusters of parallel linear features in the ashfall area of Sunset Crater. The features are not obvious in conventional aerial photographs, and only one cluster could be recognized on the ground. Soil and pollen analyses reveal that they are prehistoric agricultural plots.

  2. 40 CFR Table 1a to Subpart G of... - Applicable 40 CFR Part 63 General Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 63, Subpt. G, Table 1A Table 1A to Subpart G of Part 63—Applicable 40 CFR Part 63 General Provisions 40 CFR part 63, subpart A, provisions applicable to subpart G § 63.1(a)(1), (a)(2), (a)(3), (a)(13... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Applicable 40 CFR Part 63...

  3. 40 CFR Table 1a to Subpart G of... - Applicable 40 CFR Part 63 General Provisions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 63, Subpt. G, Table 1A Table 1A to Subpart G of Part 63—Applicable 40 CFR Part 63 General Provisions 40 CFR part 63, subpart A, provisions applicable to subpart G § 63.1(a)(1), (a)(2), (a)(3), (a)(13... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Applicable 40 CFR Part 63...

  4. An integrated medical image database and retrieval system using a web application server.

    PubMed

    Cao, Pengyu; Hashiba, Masao; Akazawa, Kouhei; Yamakawa, Tomoko; Matsuto, Takayuki

    2003-08-01

    We developed an Integrated Medical Image Database and Retrieval System (INIS) for easy access by medical staff. The INIS mainly consisted of four parts: specific servers to save medical images from multi-vendor modalities of CT, MRI, CR, ECG and endoscopy; an integrated image database (DB) server to save various kinds of images in a DICOM format; a Web application server to connect clients to the integrated image DB and the Web browser terminals connected to an HIS system. The INIS provided a common screen design to retrieve CT, MRI, CR, endoscopic and ECG images, and radiological reports, which would allow doctors to retrieve radiological images and corresponding reports, or ECG images of a patient simultaneously on a screen. Doctors working in internal medicine on average accessed information 492 times a month. Doctors working in cardiological and gastroenterological accessed information 308 times a month. Using the INIS, medical staff could browse all or parts of a patient's medical images and reports. PMID:12909158

  5. Third Conference on Artificial Intelligence for Space Applications, part 2

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  6. 49 CFR 1182.1 - Applications covered by this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... passengers. There is no application form for these proceedings. Applicants shall file a pleading containing the information described in 49 CFR 1182.2. See 49 CFR 1002.2(f) (2) and (5) for filing fees....

  7. Review of Cardiovascular Imaging in the Journal of Nuclear Cardiology in 2015-Part 2 of 2: Myocardial perfusion imaging.

    PubMed

    Hage, Fadi G; AlJaroudi, Wael A

    2016-06-01

    In 2015, the Journal of Nuclear Cardiology (®) published many high-quality articles. In this series, we will summarize key articles that have appeared in the Journal last year to provide for the interested reader a quick review of the advancements that have recently occurred in the field. In the first article of this 2-part series, we concentrated on publications dealing with plaque imaging, cardiac positron emission tomography, computed tomography, and magnetic resonance. This review will focus on myocardial perfusion imaging summarizing advances in the field including in diagnosis, prognosis, and appropriate use. PMID:26892251

  8. Application of laser imaging for bio/geophysical studies

    NASA Astrophysics Data System (ADS)

    Hummel, J. R.; Goltz, S. M.; Depiero, N. L.; Degloria, D. P.; Pagliughi, F. M.

    1992-07-01

    SPARTA, Inc. has developed a low-cost, portable laser imager that, among other applications, can be used in bio/geophysical applications. In the application to be discussed here, the system was utilized as an imaging system for background features in a forested locale. The SPARTA mini-ladar system was used at the International Paper Northern Experimental Forest near Howland, Maine to assist in a project designed to study the thermal and radiometric phenomenology at forest edges. The imager was used to obtain data from three complex sites, a 'seed' orchard, a forest edge, and a building. The goal of the study was to demonstrate the usefulness of the laser imager as a tool to obtain geometric and internal structure data about complex 3-D objects in a natural background. The data from these images have been analyzed to obtain information about the distributions of the objects in a scene. A range detection algorithm has been used to identify individual objects in a laser image and an edge detection algorithm then applied to highlight the outlines of discrete objects. An example of an image processed in such a manner is shown. Described here are the results from the study. In addition, results are presented outlining how the laser imaging system could be used to obtain other important information about bio/geophysical systems, such as the distribution of woody material in forests.

  9. Application of Laser Imaging for Bio/geophysical Studies

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.; Goltz, S. M.; Depiero, N. L.; Degloria, D. P.; Pagliughi, F. M.

    1992-01-01

    SPARTA, Inc. has developed a low-cost, portable laser imager that, among other applications, can be used in bio/geophysical applications. In the application to be discussed here, the system was utilized as an imaging system for background features in a forested locale. The SPARTA mini-ladar system was used at the International Paper Northern Experimental Forest near Howland, Maine to assist in a project designed to study the thermal and radiometric phenomenology at forest edges. The imager was used to obtain data from three complex sites, a 'seed' orchard, a forest edge, and a building. The goal of the study was to demonstrate the usefulness of the laser imager as a tool to obtain geometric and internal structure data about complex 3-D objects in a natural background. The data from these images have been analyzed to obtain information about the distributions of the objects in a scene. A range detection algorithm has been used to identify individual objects in a laser image and an edge detection algorithm then applied to highlight the outlines of discrete objects. An example of an image processed in such a manner is shown. Described here are the results from the study. In addition, results are presented outlining how the laser imaging system could be used to obtain other important information about bio/geophysical systems, such as the distribution of woody material in forests.

  10. Biomedical applications of a new portable Raman imaging probe

    NASA Astrophysics Data System (ADS)

    Sato, Hidetoshi; Tanaka, Takeyuki; Ikeda, Teruki; Wada, Satoshi; Tashiro, Hideo; Ozaki, Yukihiro

    2001-10-01

    This article reports the outline of a new portable Raman imaging probe and its applications. This probe may be the smallest and lightest Raman imaging probe in the world. It is equipped with an interchangeable long-working distance microscope objective lens. The irradiation area is about 45 and 90 μm and the spatial resolution is 1 μm. In the present study, the Raman imaging probe was used to obtain a Raman image of diamond particles and a Raman mapping of carotenoid in Euglena.

  11. Applications of magnetic resonance image segmentation in neurology

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu

    1999-05-01

    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  12. NMR imaging of components and materials for DOE application

    SciTech Connect

    Richardson, B.R.

    1993-12-01

    The suitability for using NMR imaging to characterize liquid, polymeric, and solid materials was reviewed. The most attractive applications for NMR imaging appear to be liquid-filled porous samples, partially cured polymers, adhesives, and potting compounds, and composite polymers/high explosives containing components with widely varying thermal properties. Solid-state NMR line-narrowing and signal-enhancing markedly improve the imaging possibilities of true solid and materials. These techniques provide unique elemental and chemical shift information for highly complex materials and complement images with similar spatial resolution, such as X-ray computed tomography (CT).

  13. Aerospace Applications of Magnetic Suspension Technology, part 1

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1991-01-01

    Papers presented at the conference on aerospace applications of magnetic suspension technology are compiled. The following subject areas are covered: pointing and isolation systems; microgravity and vibration isolation; bearing applications; wind tunnel model suspension systems; large gap magnetic suspension systems; control systems; rotating machinery; science and application of superconductivity; and sensors.

  14. Emerging diagnostic and therapeutic molecular imaging applications in vascular disease

    PubMed Central

    Eraso, Luis H; Reilly, Muredach P; Sehgal, Chandra; Mohler, Emile R

    2013-01-01

    Assessment of vascular disease has evolved from mere indirect and direct measurements of luminal stenosis to sophisticated imaging methods to depict millimeter structural changes of the vasculature. In the near future, the emergence of multimodal molecular imaging strategies may enable robust therapeutic and diagnostic (‘theragnostic’) approaches to vascular diseases that comprehensively consider structural, functional, biological and genomic characteristics of the disease in individualized risk assessment, early diagnosis and delivery of targeted interventions. This review presents a summary of recent preclinical and clinical developments in molecular imaging and theragnostic applications covering diverse atherosclerosis events such as endothelial activation, macrophage infammatory activity, plaque neovascularization and arterial thrombosis. The main focus is on molecular targets designed for imaging platforms commonly used in clinical medicine including magnetic resonance, computed tomography and positron emission tomography. A special emphasis is given to vascular ultrasound applications, considering the important role this imaging platform plays in the clinical and research practice of the vascular medicine specialty. PMID:21310769

  15. Review of polarization imaging for international military application

    NASA Astrophysics Data System (ADS)

    Duan, Jin; Fu, Qiang; Mo, Chunhe; Zhu, Yong; Liu, Dan

    2013-08-01

    Polarization is a primary characteristic of electromagnetic wave. Polarization is another field of the light except the intensity, wavelength, and coherence. Polarization can indicate the different attributions that decided by objects, such as surface features, roughness, shading, shape and so on. Polarization Imaging is a useful complement to traditional intensity and spectral imaging methods with great potential in many application fields. In the future war, the advantages of polarization are significant for target detection and recognition in the increasingly complicated battlefield environment. In this paper, the research progress is generally introduced in military application in four fields: 1) target polarization characteristics and simulationenhance contrast, distinguish the target and background; 2) polarization transmission characteristics- observe target through the smoke and fog of War; 3) polarization imaging detection methods- improve the imaging quality, enhance the information available; 4) polarization image processing- improve detection and tracking performance.

  16. Infrared Imaging Tools for Diagnostic Applications in Dermatology

    PubMed Central

    Gurjarpadhye, Abhijit Achyut; Parekh, Mansi Bharat; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    2015-01-01

    Infrared (IR) imaging is a collection of non-invasive imaging techniques that utilize the IR domain of the electromagnetic spectrum for tissue assessment. A subset of these techniques construct images using back-reflected light, while other techniques rely on detection of IR radiation emitted by the tissue as a result of its temperature. Modern IR detectors sense thermal emissions and produce a heat map of surface temperature distribution in tissues. Thus, the IR spectrum offers a variety of imaging applications particularly useful in clinical diagnostic area, ranging from high-resolution, depth-resolved visualization of tissue to temperature variation assessment. These techniques have been helpful in the diagnosis of many medical conditions including skin/breast cancer, arthritis, allergy, burns, and others. In this review, we discuss current roles of IR-imaging techniques for diagnostic applications in dermatology with an emphasis on skin cancer, allergies, blisters, burns and wounds. PMID:26691203

  17. Computation of morphological texture features for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Patel, Manish J.; Kehtarnavaz, Nasser; Dougherty, Edward R.; Batman, Sinan; Sivakumar, Krishnamoorthy; Popov, Antony T.

    1998-06-01

    Texture is an important attribute which is widely used in various image analysis applications. Among texture features, morphological texture features are least utilized in medical image analysis. From a computational standpoint, extracting morphological texture features from an image is a challenging task. The computational problem is made even greater in medical imaging applications where large images such as mammograms are to be analyzed. This paper discusses an efficient method to compute morphological texture features for any geometry of a structuring element corresponding to a texture type. A benchmarking of the code on three machines (Sun SPARC 20, Pentium II based Dell 400 workstation, and SGI Power Challenge 10000XL) as well as a parallel processing implementation was performed to obtain an optimum processing configuration. A sample processed mammogram is shown to illustrate the code outcome.

  18. Recent applications of thermal imagers for security assessment

    SciTech Connect

    Bisbee, T.L.

    1997-06-01

    This paper discusses recent applications by Sandia National Laboratories of cooled and uncooled thermal infrared imagers to wide-area security assessment systems. Thermal imagers can solve many security assessment problems associated with the protection of high-value assets at military bases, secure installations, and commercial facilities. Thermal imagers can provide surveillance video from security areas or perimeters both day and night without expensive security lighting. Until fairly recently, thermal imagers required open-loop cryogenic cooling to operate. The high cost of these systems and associated maintenance requirements restricted their widespread use. However, recent developments in reliable, closed-loop, linear drive cryogenic coolers and uncooled infrared imagers have dramatically reduced maintenance requirements, extended MTBF, and are leading to reduced system cost. These technology developments are resulting in greater availability and practicality for military as well as civilian security applications.

  19. A High Performance Image Data Compression Technique for Space Applications

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack

    2003-01-01

    A highly performing image data compression technique is currently being developed for space science applications under the requirement of high-speed and pushbroom scanning. The technique is also applicable to frame based imaging data. The algorithm combines a two-dimensional transform with a bitplane encoding; this results in an embedded bit string with exact desirable compression rate specified by the user. The compression scheme performs well on a suite of test images acquired from spacecraft instruments. It can also be applied to three-dimensional data cube resulting from hyper-spectral imaging instrument. Flight qualifiable hardware implementations are in development. The implementation is being designed to compress data in excess of 20 Msampledsec and support quantization from 2 to 16 bits. This paper presents the algorithm, its applications and status of development.

  20. Applications of pulse radiolysis to imaging sciences

    SciTech Connect

    Meisel, D.

    1996-05-01

    Pulse radiolysis has been used over the last 3 decades to study a variety of physical and chemical systems, including those relevant to imaging processes. This review outlines the similarities between photolysis and radiolysis and highlight the differences. It focuses on time-resolved variants of the two disciplines, flash photolysis vs pulse radiolysis. The strength (and weakness) of the radiolytic techniques is their nonspecificity; the energy is always absorbed by the solvent and not the solute. Radiation chemistry principles that were developed for one discipline are easily transportable to another. The pulse radiolysis technique with a wide arsenal of detection techniques is currently used to identify short-lived intermediates and to determine their kinetic and thermodynamic properties. Together, these studies provide mechanistic insight into the behavior of physical systems. We demonstrate the utility of the approach in several areas of interest to imaging sciences: clustering of silver atoms, growth of silver halides, and medium effects on these systems.

  1. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications.

    PubMed

    Chavhan, Govind B; Alsabban, Zehour; Babyn, Paul S

    2014-01-01

    Diffusion-weighted (DW) imaging is an emerging technique in body imaging that provides indirect information about the microenvironment of tissues and lesions and helps detect, characterize, and follow up abnormalities. Two main challenges in the application of DW imaging to body imaging are the decreased signal-to-noise ratio of body tissues compared with neuronal tissues due to their shorter T2 relaxation time, and image degradation related to physiologic motion (eg, respiratory motion). Use of smaller b values and newer motion compensation techniques allow the evaluation of anatomic structures with DW imaging. DW imaging can be performed as a breath-hold sequence or a free-breathing sequence with or without respiratory triggering. Depending on the mobility of water molecules in their microenvironment, different normal tissues have different signals at DW imaging. Some normal tissues (eg, lymph nodes, spleen, ovarian and testicular parenchyma) are diffusion restricted, whereas others (eg, gallbladder, corpora cavernosa, endometrium, cartilage) show T2 shine-through. Epiphyses that contain fatty marrow and bone cortex appear dark on both DW images and apparent diffusion coefficient maps. Current and emerging applications of DW imaging in pediatric body imaging include tumor detection and characterization, assessment of therapy response and monitoring of tumors, noninvasive detection and grading of liver fibrosis and cirrhosis, detection of abscesses, and evaluation of inflammatory bowel disease. PMID:24819803

  2. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    PubMed Central

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Background Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. Methods We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. Results In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. Conclusion In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary. PMID:18215290

  3. X-ray imaging for security applications

    NASA Astrophysics Data System (ADS)

    Evans, J. Paul

    2004-01-01

    The X-ray screening of luggage by aviation security personnel may be badly hindered by the lack of visual cues to depth in an image that has been produced by transmitted radiation. Two-dimensional "shadowgraphs" with "organic" and "metallic" objects encoded using two different colors (usually orange and blue) are still in common use. In the context of luggage screening there are no reliable cues to depth present in individual shadowgraph X-ray images. Therefore, the screener is required to convert the 'zero depth resolution' shadowgraph into a three-dimensional mental picture to be able to interpret the relative spatial relationship of the objects under inspection. Consequently, additional cognitive processing is required e.g. integration, inference and memory. However, these processes can lead to serious misinterpretations of the actual physical structure being examined. This paper describes the development of a stereoscopic imaging technique enabling the screener to utilise binocular stereopsis and kinetic depth to enhance their interpretation of the actual nature of the objects under examination. Further work has led to the development of a technique to combine parallax data (to calculate the thickness of a target material) with the results of a basis material subtraction technique to approximate the target's effective atomic number and density. This has been achieved in preliminary experiments with a novel spatially interleaved dual-energy sensor which reduces the number of scintillation elements required by 50% in comparison to conventional sensor configurations.

  4. Terahertz parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Ogawa, Y.; Otani, C.; Kawase, K.

    2005-12-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO 3 or MgO-doped LiNbO 3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a TPO, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which illegal, while one is an over-the-counter drug.

  5. Terahertz parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Minamide, Hiroaki; Ito, Hiromasa

    2005-07-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO3 or MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave source with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni-directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a THz-wave parametric oscillator, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which are illegal, while one is an over-the-counter drug.

  6. Detecting content adaptive scaling of images for forensic applications

    NASA Astrophysics Data System (ADS)

    Fillion, Claude; Sharma, Gaurav

    2010-01-01

    Content-aware resizing methods have recently been developed, among which, seam-carving has achieved the most widespread use. Seam-carving's versatility enables deliberate object removal and benign image resizing, in which perceptually important content is preserved. Both types of modifications compromise the utility and validity of the modified images as evidence in legal and journalistic applications. It is therefore desirable that image forensic techniques detect the presence of seam-carving. In this paper we address detection of seam-carving for forensic purposes. As in other forensic applications, we pose the problem of seam-carving detection as the problem of classifying a test image in either of two classes: a) seam-carved or b) non-seam-carved. We adopt a pattern recognition approach in which a set of features is extracted from the test image and then a Support Vector Machine based classifier, trained over a set of images, is utilized to estimate which of the two classes the test image lies in. Based on our study of the seam-carving algorithm, we propose a set of intuitively motivated features for the detection of seam-carving. Our methodology for detection of seam-carving is then evaluated over a test database of images. We demonstrate that the proposed method provides the capability for detecting seam-carving with high accuracy. For images which have been reduced 30% by benign seam-carving, our method provides a classification accuracy of 91%.

  7. Aliphatic polyesters for medical imaging and theranostic applications.

    PubMed

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. PMID:26614557

  8. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 1: Compositions and Features.

    PubMed

    Stendahl, John C; Sinusas, Albert J

    2015-10-01

    Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging. PMID:26272808

  9. Software visualization techniques for real-time imaging applications

    NASA Astrophysics Data System (ADS)

    Sangwan, R. S.; Ludwig, Robert S.; Neill, Colin J.

    2005-02-01

    Real-time imaging applications are concerned with efficient and deterministic processing of digital images. These applications are predominantly written using structured programming rather than object-oriented programming with the belief that the former approach has better performance characteristics. Current research shows that this may not be the case and an object-oriented approach may not only result in efficient code but one that is more maintainable and understandable. We look at current techniques for visualizing the code for software applications to determine if they can help predict its qualities such as maintainability, understandability and performance, and suggest ways in which these techniques can be enhanced to meet the specific needs of real-time imaging applications.

  10. RNA imaging in living cells – methods and applications

    PubMed Central

    Urbanek, Martyna O; Galka-Marciniak, Paulina; Olejniczak, Marta; Krzyzosiak, Wlodzimierz J

    2014-01-01

    Numerous types of transcripts perform multiple functions in cells, and these functions are mainly facilitated by the interactions of the RNA with various proteins and other RNAs. Insight into the dynamics of RNA biosynthesis, processing and cellular activities is highly desirable because this knowledge will deepen our understanding of cell physiology and help explain the mechanisms of RNA-mediated pathologies. In this review, we discuss the live RNA imaging systems that have been developed to date. We highlight information on the design of these systems, briefly discuss their advantages and limitations and provide examples of their numerous applications in various organisms and cell types. We present a detailed examination of one application of RNA imaging systems: this application aims to explain the role of mutant transcripts in human disease pathogenesis caused by triplet repeat expansions. Thus, this review introduces live RNA imaging systems and provides a glimpse into their various applications. PMID:25483044

  11. 42 CFR 59.215 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FAMILY PLANNING SERVICES Grants for Family Planning Service Training 59.215 Applicability of 45 CFR part 74. The provisions of 45 CFR part 74, establishing uniform administrative requirements and cost... 42 Public Health 1 2013-10-01 2013-10-01 false Applicability of 45 CFR part 74. 59.215 Section...

  12. 42 CFR 59.215 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Applicability of 45 CFR part 74. 59.215 Section 59.215 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training 59.215 Applicability of 45 CFR part 74. The provisions of 45 CFR part...

  13. 42 CFR 59.215 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FAMILY PLANNING SERVICES Grants for Family Planning Service Training 59.215 Applicability of 45 CFR part 74. The provisions of 45 CFR part 74, establishing uniform administrative requirements and cost... 42 Public Health 1 2012-10-01 2012-10-01 false Applicability of 45 CFR part 74. 59.215 Section...

  14. 42 CFR 59.215 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FAMILY PLANNING SERVICES Grants for Family Planning Service Training 59.215 Applicability of 45 CFR part 74. The provisions of 45 CFR part 74, establishing uniform administrative requirements and cost... 42 Public Health 1 2011-10-01 2011-10-01 false Applicability of 45 CFR part 74. 59.215 Section...

  15. 40 CFR Table 1 to Subpart B of... - Section 112(j) Part 2 Application Due Dates

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Section 112(j) Part 2 Application Due... Act Sections, Sections 112(g) and 112(j) Pt 63, Subpt. B, Table 1 Table 1 to Subpart B of Part 63—Section 112(j) Part 2 Application Due Dates Due date MACT standard 10/30/03 Combustion...

  16. 40 CFR Table 1 to Subpart B of... - Section 112(j) Part 2 Application Due Dates

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Section 112(j) Part 2 Application Due... Act Sections, Sections 112(g) and 112(j) Pt 63, Subpt. B, Table 1 Table 1 to Subpart B of Part 63—Section 112(j) Part 2 Application Due Dates Due date MACT standard 10/30/03 Combustion...

  17. 40 CFR Table 1 to Subpart B of... - Section 112(j) Part 2 Application Due Dates

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Section 112(j) Part 2 Application Due... Act Sections, Sections 112(g) and 112(j) Pt 63, Subpt. B, Table 1 Table 1 to Subpart B of Part 63—Section 112(j) Part 2 Application Due Dates Due date MACT standard 10/30/03 Combustion...

  18. 40 CFR Table 1 to Subpart B of... - Section 112(j) Part 2 Application Due Dates

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Section 112(j) Part 2 Application Due... Act Sections, Sections 112(g) and 112(j) Pt 63, Subpt. B, Table 1 Table 1 to Subpart B of Part 63—Section 112(j) Part 2 Application Due Dates Due date MACT standard 10/30/03 Combustion...

  19. 40 CFR Table 1 to Subpart B of... - Section 112(j) Part 2 Application Due Dates

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Section 112(j) Part 2 Application Due... Act Sections, Sections 112(g) and 112(j) Pt 63, Subpt. B, Table 1 Table 1 to Subpart B of Part 63—Section 112(j) Part 2 Application Due Dates Due date MACT standard 10/30/03 Combustion...

  20. 42 CFR 86.21 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HEALTH Occupational Safety and Health Training Grants § 86.21 Applicability of 45 CFR part 74. The provisions of 45 CFR part 74, establishing uniform administrative requirements and cost principles, shall... 42 Public Health 1 2014-10-01 2014-10-01 false Applicability of 45 CFR part 74. 86.21 Section...

  1. 42 CFR 86.21 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HEALTH Occupational Safety and Health Training Grants § 86.21 Applicability of 45 CFR part 74. The provisions of 45 CFR part 74, establishing uniform administrative requirements and cost principles, shall... 42 Public Health 1 2013-10-01 2013-10-01 false Applicability of 45 CFR part 74. 86.21 Section...

  2. 42 CFR 86.21 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HEALTH Occupational Safety and Health Training Grants § 86.21 Applicability of 45 CFR part 74. The provisions of 45 CFR part 74, establishing uniform administrative requirements and cost principles, shall... 42 Public Health 1 2012-10-01 2012-10-01 false Applicability of 45 CFR part 74. 86.21 Section...

  3. 42 CFR 86.21 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HEALTH Occupational Safety and Health Training Grants § 86.21 Applicability of 45 CFR part 74. The provisions of 45 CFR part 74, establishing uniform administrative requirements and cost principles, shall... 42 Public Health 1 2010-10-01 2010-10-01 false Applicability of 45 CFR part 74. 86.21 Section...

  4. 42 CFR 86.21 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HEALTH Occupational Safety and Health Training Grants § 86.21 Applicability of 45 CFR part 74. The provisions of 45 CFR part 74, establishing uniform administrative requirements and cost principles, shall... 42 Public Health 1 2011-10-01 2011-10-01 false Applicability of 45 CFR part 74. 86.21 Section...

  5. 42 CFR 59.215 - Applicability of 45 CFR part 74.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.215 Applicability of 45 CFR part 74. The provisions of 45 CFR part 74, establishing uniform administrative requirements and cost... 42 Public Health 1 2010-10-01 2010-10-01 false Applicability of 45 CFR part 74. 59.215 Section...

  6. Surface-Sensitive Mechanical Behavior. Part II: Mechanisms and Applications

    ERIC Educational Resources Information Center

    Macmillan, Norman H.; Latanision, R. M.

    1976-01-01

    In the first part of this article, brief reviews were given of the atomic-scale mechanisms by which crystalline solids deform and the nature of the interface between such solids and their environment. In this part, the mechanisms of a representative range of surface and environment sensitive mechanical phenomena are explained. (Author/CP)

  7. 14 CFR 91.801 - Applicability: Relation to part 36.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... chapter. (b) Unless otherwise specified, as used in this subpart “part 36” refers to 14 CFR part 36...) Sections 91.803, 91.805, 91.807, 91.809, and 91.811 apply to civil subsonic jet (turbojet) airplanes with... civil subsonic jet (turbojet) airplanes covered by this subpart. This section applies to...

  8. 14 CFR 91.801 - Applicability: Relation to part 36.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... chapter. (b) Unless otherwise specified, as used in this subpart “part 36” refers to 14 CFR part 36...) Sections 91.803, 91.805, 91.807, 91.809, and 91.811 apply to civil subsonic jet (turbojet) airplanes with... civil subsonic jet (turbojet) airplanes covered by this subpart. This section applies to...

  9. 14 CFR 91.801 - Applicability: Relation to part 36.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... chapter. (b) Unless otherwise specified, as used in this subpart “part 36” refers to 14 CFR part 36...) Sections 91.803, 91.805, 91.807, 91.809, and 91.811 apply to civil subsonic jet (turbojet) airplanes with... civil subsonic jet (turbojet) airplanes covered by this subpart. This section applies to...

  10. A probabilistic approach for color correction in image mosaicking applications.

    PubMed

    Oliveira, Miguel; Sappa, Angel Domingo; Santos, Vitor

    2015-02-01

    Image mosaicking applications require both geometrical and photometrical registrations between the images that compose the mosaic. This paper proposes a probabilistic color correction algorithm for correcting the photometrical disparities. First, the image to be color corrected is segmented into several regions using mean shift. Then, connected regions are extracted using a region fusion algorithm. Local joint image histograms of each region are modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. Then, local color palette mapping functions are computed using these sets of Gaussians. The color correction is performed by applying those functions to all the regions of the image. An extensive comparison with ten other state of the art color correction algorithms is presented, using two different image pair data sets. Results show that the proposed approach obtains the best average scores in both data sets and evaluation metrics and is also the most robust to failures. PMID:25438315

  11. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer

    PubMed Central

    Chen, Chen; Wu, Chang Qiang; Chen, Tian Wu; Tang, Meng Yue; Zhang, Xiao Ming

    2015-01-01

    Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC. PMID:26579537

  12. FM-cw radar for imaging applications

    NASA Astrophysics Data System (ADS)

    Bjornholt, John E.; Wilson, Terry B.

    1998-10-01

    FM-CW radars operating in the millimeter wave or upper microwave bands can provide low cost, low power solutions for many applications requiring the resolution of targets separated by one meter or less in range. Range resolution of this quality is obtained by sweeping the radar output frequency over several hundred megahertz of bandwidth using modern techniques to achieve extremely good linearity. Because of the short wavelengths at millimeter bands, relatively good angular resolution is achievable with moderately sized antennas. Applications for FM-CW radar sensors include automotive collision warning systems, traffic monitoring, height profiling, terrain profiling, autonomous vehicle navigation, surveillance and site security systems where high resolution is required.

  13. 47 CFR 2.1400 - Application for advance approval under part 73.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Application for advance approval under part 73... Transmission Systems Advance Approval Procedure § 2.1400 Application for advance approval under part 73. (a) An original application for advance approval of a subscription TV (STV) system and one copy thereof must...

  14. 47 CFR 2.1400 - Application for advance approval under part 73.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Application for advance approval under part 73... Transmission Systems Advance Approval Procedure § 2.1400 Application for advance approval under part 73. (a) An original application for advance approval of a subscription TV (STV) system and one copy thereof must...

  15. 47 CFR 2.1400 - Application for advance approval under part 73.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Application for advance approval under part 73... Transmission Systems Advance Approval Procedure § 2.1400 Application for advance approval under part 73. (a) An original application for advance approval of a subscription TV (STV) system and one copy thereof must...

  16. 47 CFR 2.1400 - Application for advance approval under part 73.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Application for advance approval under part 73... Transmission Systems Advance Approval Procedure § 2.1400 Application for advance approval under part 73. (a) An original application for advance approval of a subscription TV (STV) system and one copy thereof must...

  17. 47 CFR 2.1400 - Application for advance approval under part 73.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Application for advance approval under part 73... Transmission Systems Advance Approval Procedure § 2.1400 Application for advance approval under part 73. (a) An original application for advance approval of a subscription TV (STV) system and one copy thereof must...

  18. Aerospace Applications of Magnetic Suspension Technology, part 2

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1991-01-01

    In order to examine the state of technology of all areas of magnetic suspension with potential aerospace applications, and to review related recent developments in sensors and control approaches, superconducting technology, and design/implementation practices, a workshop was held at NASA-Langley. Areas of concern are pointing and isolation systems, microgravity and vibration isolation, bearing applications, wind tunnel model suspension systems, large gap magnetic suspension systems, controls, rotating machinery, science and applications of superconductivity, and sensors. Papers presented are included.

  19. Applications Of Digital Image Acquisition In Anthropometry

    NASA Astrophysics Data System (ADS)

    Woolford, Barbara; Lewis, James L.

    1981-10-01

    Anthropometric data on reach and mobility have traditionally been collected by time consuming and relatively inaccurate manual methods. Three dimensional digital image acquisition promises to radically increase the speed and ease of data collection and analysis. A three-camera video anthropometric system for collecting position, velocity, and force data in real time is under development for the Anthropometric Measurement Laboratory at NASA's Johnson Space Center. The use of a prototype of this system for collecting data on reach capabilities and on lateral stability is described. Two extensions of this system are planned.

  20. Preclinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications

    PubMed Central

    Leblond, Frederic; Davis, Scott C.; Valdés, Pablo A.; Pogue, Brain W.

    2013-01-01

    Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultra-sound. PMID:20031443

  1. Application of the real-time Retinex image enhancement for endoscopic images.

    PubMed

    Okuhata, Hiroyuki; Nakamura, Hajime; Hara, Shinsuke; Tsutsui, Hiroshi; Onoye, Takao

    2013-01-01

    This paper presents a real-time image enhancement technique for gastric endoscopy, which is based on the variational approach of the Retinex theory. In order to efficiently reduce the computational cost required for image enhancement, processing layers and repeat counts of iterations are determined in accordance with software evaluation result, and as for processing architecture, the pipelining architecture can handle high resolution pictures in real-time. To show its potential, performance comparison between with and without the proposed image enhancement technique is shown using several video images obtained by endoscopy for different parts of digestive organ. PMID:24110460

  2. High speed global shutter image sensors for professional applications

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Meynants, Guy

    2015-04-01

    Global shutter imagers expand the use to miscellaneous applications, such as machine vision, 3D imaging, medical imaging, space etc. to eliminate motion artifacts in rolling shutter imagers. A low noise global shutter pixel requires more than one non-light sensitive memory to reduce the read noise. But larger memory area reduces the fill-factor of the pixels. Modern micro-lenses technology can compensate this fill-factor loss. Backside illumination (BSI) is another popular technique to improve the pixel fill-factor. But some pixel architecture may not reach sufficient shutter efficiency with backside illumination. Non-light sensitive memory elements make the fabrication with BSI possible. Machine vision like fast inspection system, medical imaging like 3D medical or scientific applications always ask for high frame rate global shutter image sensors. Thanks to the CMOS technology, fast Analog-to-digital converters (ADCs) can be integrated on chip. Dual correlated double sampling (CDS) on chip ADC with high interface digital data rate reduces the read noise and makes more on-chip operation control. As a result, a global shutter imager with digital interface is a very popular solution for applications with high performance and high frame rate requirements. In this paper we will review the global shutter architectures developed in CMOSIS, discuss their optimization process and compare their performances after fabrication.

  3. Radiation transport phenomena and modeling. Part A: Codes; Part B: Applications with examples

    SciTech Connect

    Lorence, L.J. Jr.; Beutler, D.E.

    1997-09-01

    This report contains the notes from the second session of the 1997 IEEE Nuclear and Space Radiation Effects Conference Short Course on Applying Computer Simulation Tools to Radiation Effects Problems. Part A discusses the physical phenomena modeled in radiation transport codes and various types of algorithmic implementations. Part B gives examples of how these codes can be used to design experiments whose results can be easily analyzed and describes how to calculate quantities of interest for electronic devices.

  4. Spatial-scanning hyperspectral imaging probe for bio-imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2016-03-01

    The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.

  5. Spatial-scanning hyperspectral imaging probe for bio-imaging applications.

    PubMed

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2016-03-01

    The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications. PMID:27036784

  6. Infrared photothermal imaging for standoff detection applications

    NASA Astrophysics Data System (ADS)

    Kendziora, C. A.; Jones, Robert M.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; McGill, R. Andrew

    2012-06-01

    We are developing a technique for the stand-off detection of trace analytes and residues (explosives, hazardous chemicals, drugs, etc.) using photo-thermal infrared imaging spectroscopy (PT-IRIS). Herein, we refer to this technique as "RED" for "Remote Explosives Detection" or "Resonance Enhanced Detection". This approach leverages recent developments in critical enabling micro and nano-technology components. The first component, a compact IR quantum cascade laser (QCL), is tuned to fundamental absorption bands in the analytes and directed to illuminate a surface of interest. The second component, an IR focal plane array (FPA), is used to image the surface and detect any small increase in the thermal emission upon laser illumination. We have demonstrated the technique at up to 30 meters of stand-off distance indoors and in field tests, while operating the lasers below the eye-safe intensity limit (100 mW/cm2). In this manuscript we detail several recent improvements to the method and system, as well as some recent results for explosives on complex substrates such as car panels and fabrics. We also introduce a computational framework for modeling and simulating the optical and thermal phenomena associated with the photothermal process.

  7. Applications for high-speed infrared imaging

    NASA Astrophysics Data System (ADS)

    Richards, Austin A.

    2005-03-01

    The phrase high-speed imaging is generally associated with short exposure times, fast frame rates or both. Supersonic projectiles, for example, are often impossible to see with the unaided eye, and require strobe photography to stop their apparent motion. It is often necessary to image high-speed objects in the infrared region of the spectrum, either to detect them or to measure their surface temperature. Conventional infrared cameras have time constants similar to the human eye, so they too, are often at a loss when it comes to photographing fast-moving hot targets. Other types of targets or scenes such as explosions change very rapidly with time. Visualizing those changes requires an extremely high frame rate combined with short exposure times in order to slow down a dynamic event so that it can be studied and quantified. Recent advances in infrared sensor technology and computing power have pushed the envelope of what is possible to achieve with commercial IR camera systems.

  8. Technique of diffusion weighted imaging and its application in stroke

    NASA Astrophysics Data System (ADS)

    Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Wu; He, Huiguang

    2003-05-01

    To study the application of diffusion weighted imaging and image post processing in the diagnosis of stroke, especially in acute stroke, 205 patients were examined by 1.5 T or 1.0 T MRI scanner and the images such as T1, T2 and diffusion weighted images were obtained. Image post processing was done with "3D Med System" developed by our lab to analyze data and acquire the apparent diffusion coefficient (ADC) map. In acute and subacute stage of stroke, the signal in cerebral infarction areas changed to hyperintensity in T2- and diffusion-weighted images, normal or hypointensity in T1-weighted images. In hyperacute stage, however, the signal was hyperintense just in the diffusion weighted imaes; others were normal. In the chronic stage, the signal in T1- and diffusion-weighted imaging showed hypointensity and hyperintensity in T2 weighted imaging. Because ADC declined obviously in acute and subacute stage of stroke, the lesion area was hypointensity in ADC map. With the development of the disease, ADC gradually recovered and then changed to hyperintensity in ADC map in chronic stage. Using diffusion weighted imaging and ADC mapping can make a diagnosis of stroke, especially in the hyperacute stage of stroke, and can differentiate acute and chronic stroke.

  9. Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography-part 2: image reconstruction.

    PubMed

    Correia, Teresa; Koch, Maximilian; Ale, Angelique; Ntziachristos, Vasilis; Arridge, Simon

    2016-02-21

    Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. We propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. Furthermore, structural information can be incorporated into the image reconstruction with PAD-WT to improve image quality and resolution. In this case, the weights used to average voxels in the image are calculated using the structural image, instead of the fluorescence image. The regularisation strength depends on both structural and fluorescence images, which guarantees that the method can preserve fluorescence information even when it is not structurally visible in the anatomical images. In part 1, we tested the method using a denoising problem. Here, we use simulated and in vivo mouse fDOT data to assess the algorithm performance. Our results show that the proposed PAD-WT method provides high quality and noise free images, superior to those obtained using AD. PMID:26808190

  10. Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography—part 2: image reconstruction

    NASA Astrophysics Data System (ADS)

    Correia, Teresa; Koch, Maximilian; Ale, Angelique; Ntziachristos, Vasilis; Arridge, Simon

    2016-02-01

    Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. We propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. Furthermore, structural information can be incorporated into the image reconstruction with PAD-WT to improve image quality and resolution. In this case, the weights used to average voxels in the image are calculated using the structural image, instead of the fluorescence image. The regularisation strength depends on both structural and fluorescence images, which guarantees that the method can preserve fluorescence information even when it is not structurally visible in the anatomical images. In part 1, we tested the method using a denoising problem. Here, we use simulated and in vivo mouse fDOT data to assess the algorithm performance. Our results show that the proposed PAD-WT method provides high quality and noise free images, superior to those obtained using AD.

  11. Design of site specific radiopharmaceuticals for tumor imaging. (Parts I and II)

    SciTech Connect

    Van Dort, M.E.

    1983-01-01

    Part I. Synthetic methods were developed for the preparation of several iodinated benzoic acid hydrazides as labeling moieties for indirect tagging of carbonyl-containing bio-molecules and potential tumor-imaging agents. Biodistribution studies conducted in mice on the derivatives having the I-125 label ortho to a phenolic OH demonstrated a rapid in vivo deiodination. Part II. The reported high melanin binding affinity of quinoline and other heterocyclic antimalarial drugs led to the development of many analogues of such molecules as potential melanoma-imaging agents. Once such analogue iodochloroquine does exhibit high melanin binding, but has found limited clinical use due to appreciable accumulation in non-target tissues such as the adrenal cortex and inner ear. This project developed a new series of candidate melanoma imaging agents which would be easier to radio-label, could yield higher specific activity product, and which might demonstrate more favorable pharmacokinetic and dosimetric characteristics compared to iodochloroquine.

  12. Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Chaoliang; Shi, Weisong; Gao, Wanrong

    2015-11-01

    We present an imaginary part-based correlation mapping optical coherence tomography (IMcmOCT) technique for in vivo blood vessels imaging. In the conventional correlation mapping optical coherence tomography (cmOCT) method, two adjacent frames of intensity-based structural images are correlated to extract blood flow information and the size of correlation window has to be increased to improve the signal-to-noise ratio of microcirculation maps, which may cause image blur and miss the small blood vessels. In the IMcmOCT method, the imaginary part of a depth-resolved complex analytic signal in two adjacent B-scans is correlated to reconstruct microcirculation maps. Both phantom and in vivo experiments were implemented to demonstrate that the proposed method can provide improved sensitivity for extracting blood flow information in small vessels.

  13. A quantum mechanics-based framework for image processing and its application to image segmentation

    NASA Astrophysics Data System (ADS)

    Youssry, Akram; El-Rafei, Ahmed; Elramly, Salwa

    2015-10-01

    Quantum mechanics provides the physical laws governing microscopic systems. A novel and generic framework based on quantum mechanics for image processing is proposed in this paper. The basic idea is to map each image element to a quantum system. This enables the utilization of the quantum mechanics powerful theory in solving image processing problems. The initial states of the image elements are evolved to the final states, controlled by an external force derived from the image features. The final states can be designed to correspond to the class of the element providing solutions to image segmentation, object recognition, and image classification problems. In this work, the formulation of the framework for a single-object segmentation problem is developed. The proposed algorithm based on this framework consists of four major steps. The first step is designing and estimating the operator that controls the evolution process from image features. The states associated with the pixels of the image are initialized in the second step. In the third step, the system is evolved. Finally, a measurement is performed to determine the output. The presented algorithm is tested on noiseless and noisy synthetic images as well as natural images. The average of the obtained results is 98.5 % for sensitivity and 99.7 % for specificity. A comparison with other segmentation algorithms is performed showing the superior performance of the proposed method. The application of the introduced quantum-based framework to image segmentation demonstrates high efficiency in handling different types of images. Moreover, it can be extended to multi-object segmentation and utilized in other applications in the fields of signal and image processing.

  14. Smart imaging using laser targeting: a multiple barcodes application

    NASA Astrophysics Data System (ADS)

    Amin, M. Junaid; Riza, Nabeel A.

    2014-05-01

    To the best of our knowledge, proposed is a novel variable depth of field smart imager design using intelligent laser targeting for high productivity multiple barcodes reading applications. System smartness comes via the use of an Electronically Controlled Variable Focal-Length Lens (ECVFL) to provide an agile pixel (and/or pixel set) within the laser transmitter and optical imaging receiver. The ECVFL in the receiver gives a flexible depth of field that allows clear image capture over a range of barcode locations. Imaging of a 660 nm wavelength laser line illuminated 95-bit one dimensional barcode is experimentally demonstrated via the smart imager for barcode target distances ranging from 10 cm to 54 cm. The smart system captured barcode images are evaluated using a proposed barcode reading algorithm. Experimental results after computer-based post-processing show a nine-fold increase in barcode target distance variation range (i.e., range variation increased from 2.5 cm to 24.5 cm) when compared to a conventional fixed lens imager. Applications for the smart imager include industrial multiple product tracking, marking, and inspection systems.

  15. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging

    SciTech Connect

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.; Carton, Ann-Katherine; Saab-Puong, Sylvie; Iordache, Răzvan; Muller, Serge; Jong, Roberta A.; Dromain, Clarisse

    2013-08-15

    Purpose: Dual-energy (DE) contrast-enhanced digital mammography (CEDM) uses an iodinated contrast agent in combination with digital mammography (DM) to evaluate lesions on the basis of tumor angiogenesis. In DE imaging, low-energy (LE) and high-energy (HE) images are acquired after contrast administration and their logarithms are subtracted to cancel the appearance of normal breast tissue. Often there is incomplete signal cancellation in the subtracted images, creating a background “clutter” that can impair lesion detection. This is the second component of a two-part report on anatomical noise in CEDM. In Part I the authors characterized the anatomical noise for single-energy (SE) temporal subtraction CEDM by a power law, with model parameters α and β. In this work the authors quantify the anatomical noise in DE CEDM clinical images and compare this with the noise in SE CEDM. The influence on the anatomical noise of the presence of iodine in the breast, the timing of imaging postcontrast administration, and the x-ray energy used for acquisition are each evaluated.Methods: The power law parameters, α and β, were measured from unprocessed LE and HE images and from DE subtracted images to quantify the anatomical noise. A total of 98 DE CEDM cases acquired in a previous clinical pilot study were assessed. Conventional DM images from 75 of the women were evaluated for comparison with DE CEDM. The influence of the imaging technique on anatomical noise was determined from an analysis of differences between the power law parameters as measured in DM, LE, HE, and DE subtracted images for each subject.Results: In DE CEDM, weighted image subtraction lowers β to about 1.1 from 3.2 and 3.1 in LE and HE unprocessed images, respectively. The presence of iodine has a small but significant effect in LE images, reducing β by about 0.07 compared to DM, with α unchanged. Increasing the x-ray energy, from that typical in DM to a HE beam, significantly decreases α by about 2 × 10{sup −5} mm{sup 2}, and lowers β by about 0.14 compared to LE images. A comparison of SE and DE CEDM at 4 min postcontrast shows equivalent power law parameters in unprocessed images, and lower α and β by about 3 × 10{sup −5} mm{sup 2} and 0.50, respectively, in DE versus SE subtracted images.Conclusions: Image subtraction in both SE and DE CEDM reduces β by over a factor of 2, while maintaining α below that in DM. Given the equivalent α between SE and DE unprocessed CEDM images, and the smaller anatomical noise in the DE subtracted images, the DE approach may have an advantage over SE CEDM. It will be necessary to test this potential advantage in future lesion detectability experiments, which account for realistic lesion signals. The authors' results suggest that LE images could be used in place of DM images in CEDM exam interpretation.

  16. 40 CFR 268.2 - Definitions applicable in this part.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Polychlorinated biphenyls or PCBs are halogenated organic compounds defined in accordance with 40 CFR 761.3. (f... those compounds having a carbon-halogen bond which are listed under appendix III to this part....

  17. 47 CFR 90.5 - Other applicable rule parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of importance that may be referred to with respect to licensing and operations in radio services..., and treaties. This part also contains standards and procedures concerning marketing of radio...

  18. 45 CFR 1203.2 - Application of this part.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... regulations of an agency whose responsibilities are now exercised by ACTION; (3) Assistance to any individual... under statutes now in force or hereinafter enacted may be added to Appendix A to this part. (b) In...

  19. 45 CFR 1203.2 - Application of this part.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... regulations of an agency whose responsibilities are now exercised by ACTION; (3) Assistance to any individual... under statutes now in force or hereinafter enacted may be added to Appendix A to this part. (b) In...

  20. 45 CFR 1203.2 - Application of this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... regulations of an agency whose responsibilities are now exercised by ACTION; (3) Assistance to any individual... under statutes now in force or hereinafter enacted may be added to Appendix A to this part. (b) In...

  1. Mining remote-image repositories with application to Mars Rover stereoscopic image datasets

    NASA Astrophysics Data System (ADS)

    Willis, Andrew; Shadid, Waseem; Eppes, Martha C.

    2009-02-01

    As of December 2008, the two Mars rover spacecraft Spirit and Opportunity have collected more than 4 years worth of data from nine imaging instruments producing greater than 200k images which includes both raw image data from spacecraft instruments and images generated by post-processing algorithms developed by NASA's Multimission Image Processing Laboratory (MIPL). This paper describes a prototype software system that allows scientists to browse and data-mine the images produced from NASA's Mars Exploratory Rover (MER) missions with emphasis on the automatic detection of images containing rocks that are of interest for geological research. We highlight two aspects of our prototype system: (1) software design for mining remote data repositories, (2) a computationally efficient image search engine for detecting MER images that containing rocks. Datatype abstractions made at the software design level allow users to access and visualize the source data through a single simple-to-use interface when the underlying data may originate from a local or remote image repository. Data mining queries into the MER image data are specified over chronological intervals denoted (sols) as each interval is a solar day. As in other mining applications, an automatic detection and classification algorithm is used to compute a relevance score that represents how relevant a given recorded image is to the user-specified query. Query results are presented as list of records, sorted by their relevance score, which the user may then visualize and investigate to extract information of interest. Several standard image analysis tools are provided for investigation of 2D images (e.g., histogram equalization, edge detection, etc.) and, when available, stereoscopic data is integrated with the image data using multiple windows which show both the 2D image and 3D surface geometry. The combination of data mining and a high-quality visualization interface provides MER researchers unprecedented access to the recorded data.

  2. 7 CFR 4290.1940 - Integration of this part with other regulations applicable to USDA's programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Miscellaneous § 4290.1940 Integration of this... applicable to this part, the Secretary will comply with subpart V of 7 CFR part 3015, “Intergovernmental... to this part, the Secretary will comply with subpart B of 7 CFR part 1806. The Secretary has...

  3. 7 CFR 4290.1940 - Integration of this part with other regulations applicable to USDA's programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Miscellaneous § 4290.1940 Integration of this... applicable to this part, the Secretary will comply with subpart V of 7 CFR part 3015, “Intergovernmental... to this part, the Secretary will comply with subpart B of 7 CFR part 1806. The Secretary has...

  4. 7 CFR 4290.1940 - Integration of this part with other regulations applicable to USDA's programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Miscellaneous § 4290.1940 Integration of this... applicable to this part, the Secretary will comply with subpart V of 7 CFR part 3015, “Intergovernmental... to this part, the Secretary will comply with subpart B of 7 CFR part 1806. The Secretary has...

  5. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  6. An imaging spectrometer for microgravity application

    NASA Technical Reports Server (NTRS)

    Wong, Wallace K.

    1995-01-01

    Flame structure is the result of complex interaction of mechanisms operating in both unwanted fires and controlled combustion systems. The scientific study of gas-jet diffusion flames in reduced-gravity environment is of interest because the effects of buoyancy on flow entrainment and acceleration are lessened. Measurements of flames have been restricted to cinematography, thermocouples, and radiometers. SSG, Inc. is developing an MWIR imaging spectrometer (MIS) for microgravity flame measurements. The device will be delivered to NASA Lewis at the end of this project to demonstrate flame measurements in the laboratory. With proper modifications, the MIS can be used to monitor a gas-jet flame under microgravity on a NASA Learjet or DC-9.

  7. Performance assessment of 3D surface imaging technique for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  8. The application of similar image retrieval in electronic commerce.

    PubMed

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system. PMID:24883411

  9. The Application of Similar Image Retrieval in Electronic Commerce

    PubMed Central

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system. PMID:24883411

  10. Strain Imaging: From Physiology to Practical Applications in Daily Practice.

    PubMed

    Sareen, Nishtha; Ananthasubramaniam, Karthik

    2016-01-01

    Non-Doppler, 2-dimensional strain imaging is a new echocardiographic technique for obtaining strain and strain rate measurements, which serves as a major advancement in understanding myocardial deformation. It analyzes motion in ultrasound imaging by tracking speckles in 2 dimensions. There are a lot of data emerging with multiple applications of strain imaging in the clinical practice of echocardiography. As incorporation of strain imaging in daily practice has been challenging, we intend to systematically highlight the top 10 applications of speckle-tracking echocardiography, which every cardiologist should be aware of: chemotherapy cardiotoxicity, left ventricular assessment, cardiac amyloidosis, hypertrophic obstructive cardiomyopathy, right ventricular dysfunction, valvular heart diseases (aortic stenosis and mitral regurgitation), cardiac sarcoidosis, athlete heart, left atrial assessment, and cardiac dyssynchrony. PMID:25839992

  11. A hyperspectral image analysis workbench for environmental science applications

    SciTech Connect

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-10-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or ``hyperspectral`` imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne`s Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image ``texture spectra`` derived from fractal signatures computed for subimage tiles at each wavelength.

  12. A hyperspectral image analysis workbench for environmental science applications

    SciTech Connect

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-01-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or hyperspectral'' imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne's Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image texture spectra'' derived from fractal signatures computed for subimage tiles at each wavelength.

  13. Laser processing for bio-microfluidics applications (part II).

    PubMed

    Khan Malek, Chantal G

    2006-08-01

    This paper reviews applications of laser-based techniques to the fabrication of microfluidic devices for biochips and addresses some of the challenges associated with the manufacture of these devices. Special emphasis is placed on the use of lasers for the rapid prototyping and production of biochips, in particular for applications in which silicon is not the preferred material base. This review addresses applications and devices based on ablation using femtosecond lasers, infrared lasers as well as laser-induced micro-joining, and the laser-assisted generation of micro-replication tools, for subsequent replication of polymeric chips with a technique like laser LIGA. PMID:16773302

  14. Laundering and Deinking Applications of 1H NMR Imaging

    NASA Astrophysics Data System (ADS)

    Tutunjian, P. N.; Borchardt, J. K.; Prieto, N. E.; Raney, K. H.; Ferris, J. A.

    One-dimensional 1H NMR imaging techniques are used to visualize oil removal from fabrics and paper fibers immersed in aqueous solutions of nonionic detergents. The method provides a unique approach to the study of oil-removal kinetics in nonionic detergent systems where traditional optical techniques fail due to solution turbidity. The only requirement of the NMR experiment is the use of deuterated water in order to selectively image the hydrocarbon phase. Preliminary applications to laundering and paper deinking are discussed.

  15. Application of rough set for medical images data mining

    NASA Astrophysics Data System (ADS)

    Wang, Shuyan; Wang, Chunmei; Chen, Yan

    2010-08-01

    To study the application of Rough set algorithm for diagnosis breast cancer, attribute reduction strategies of rough set are applied to the data mining of the mammography classification, proposes a medical images classifier based on association rules. Attribute reduction strategies of rough set for medical image data mining are realized. The experiment results are given. The experimental results show that the system performs well in accuracy, verified the great potential of rough set in assistant medical treatment.

  16. The application of high-speed digital image correlation.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2008-02-01

    Digital image correlation (DIC) is a method of using digital images to calculate two-dimensional displacement and deformation or for stereo systems three-dimensional shape, displacement, and deformation. While almost any imaging system can be used with DIC, there are some important challenges when working with the technique in high- and ultra-high-speed applications. This article discusses three of these challenges: camera sensor technology, camera frame rate, and camera motion mitigation. Potential solutions are treated via three demonstration experiments showing the successful application of high-speed DIC for dynamic events. The application and practice of DIC at high speeds, rather than the experimental results themselves, provide the main thrust of the discussion.

  17. Design and Applications of Bispecific Heterodimers: Molecular Imaging and beyond

    PubMed Central

    2015-01-01

    Ligand-based molecular imaging probes have been designed with high affinity and specificity for monitoring biological process and responses. Single-target recognition by traditional probes can limit their applicability for disease detection and therapy because synergistic action between disease mediators and different receptors is often involved in disease progression. Consequently, probes that can recognize multiple targets should demonstrate higher targeting efficacy and specificity than their monospecific peers. This concept has been validated by multiple bispecific heterodimer-based imaging probes that have demonstrated promising results in several animal models. This review summarizes the design strategies for bispecific peptide- and antibody-based heterodimers and their applications in molecular targeting and imaging. The design and application of bispecific heterodimer-conjugated nanomaterials are also discussed. PMID:24738564

  18. Chemical Applications of Graph Theory: Part II. Isomer Enumeration.

    ERIC Educational Resources Information Center

    Hansen, Peter J.; Jurs, Peter C.

    1988-01-01

    Discusses the use of graph theory to aid in the depiction of organic molecular structures. Gives a historical perspective of graph theory and explains graph theory terminology with organic examples. Lists applications of graph theory to current research projects. (ML)

  19. Third Conference on Artificial Intelligence for Space Applications, part 1

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  20. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    NASA Astrophysics Data System (ADS)

    Cha, Bo Kyung; Kim, Cho Rong; Jeon, Seongchae; Kim, Ryun Kyung; Seo, Chang-Woo; Yang, Keedong; Heo, Duchang; Lee, Tae-Bum; Shin, Min-Seok; Kim, Jong-Boo; Kwon, Oh-Kyung

    2013-12-01

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 μm 1 Poly 4 Metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications.

  1. View-invariant, partially occluded human detection in still images using part bases and random forest

    NASA Astrophysics Data System (ADS)

    Ko, Byoung Chul; Son, Jung Eun; Nam, Jae-Yeal

    2015-05-01

    This paper presents a part-based human detection method that is invariant to variations in the view of the human and partial occlusion by other objects. First, to address the view variance, parts are extracted from three views: frontal-rear, left profile, and right profile. Then a random set of rectangular parts are extracted from the upper, middle, and lower body as the distribution of Gaussian. Second, an individual part classifier is constructed using random forests across all parts extracted from the three views. From the part locations of each view, part vectors (PVs) are generated and part bases (PB) are also formalized by clustering PVs with their weights of each PB. For testing, a PV for the frontal-rear view is estimated using trained part detectors and is then applied to the trained PB for each view class. Then the distance is computed between the PB and PVs. After applying the same process to the other two views, the final human and its view having the minimum score are selected. The proposed method is applied to pedestrian datasets and its detection precision is, on average, 0.14 higher than related methods, while achieving a faster or comparable processing time with an average of 1.85 s per image.

  2. Biological applications of fluorescence lifetime imaging beyond microscopy

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Guo, Kevin; Almutairi, Adah; Fréchet, Jean M. J.; Fischer, Georg M.; Daltrozzo, Ewald; Achilefu, Samuel

    2010-02-01

    Fluorescence lifetime is a relatively new contrast mechanism for optical imaging in living subjects that relies on intrinsic properties of fluorophores rather than concentration dependent intensity. Drawing upon the success of fluorescence lifetime imaging microscopy (FLIM) for investigation of protein-protein interactions and intracellular physiology, in vivo fluorescence lifetime imaging (FLI) promises to dramatically increase the utility of fluorescencebased imaging in preclinical and clinical applications. Intrinsic fluorescence lifetime measurements in living tissues can distinguish pathologies such as cancer from healthy tissue. Unfortunately, intrinsic FLT contrast is limited to superficial measurements. Conventional intensity-based agents have been reported for measuring these phenomena in vitro, but translation into living animals is difficult due to optical properties of tissues. For this reason, contrast agents that can be detected in the near infrared (NIR) wavelengths are being developed by our lab and others to enhance the capabilities of this modality. FLT is less affected by concentration and thus is better for detecting small changes in physiology, as long as sufficient fluorescence signal can be measured. FLT can also improve localization of signals for improved deep tissue imaging. Examples of the utility of exogenous contrast agents will be discussed, including applications in monitoring physiologic functions, controlled drug release and cancer biology. Instrumentation for FLI will also be discussed, including planar and diffuse optical imaging in time and frequency domains. Future applications will also be discussed that are being developed in this exciting field that complement other optical modalities.

  3. Phase Sensitive X-Ray Imaging: Towards its Interdisciplinary Applications

    NASA Astrophysics Data System (ADS)

    Kottler, C.; Revol, V.; Kaufmann, R.; Urban, C.; Knop, K.; Sennhauser, U.; Jerjen, I.; Lüthi, T.; Cardot, F.; Niedermann, P.; Morel, J.-P.; Maake, C.; Walt, H.; Knop, E.; Blanc, N.

    2010-04-01

    X-ray phase imaging including phase tomography has been attracting increasing attention during the past few decades. The advantage of X-ray phase imaging is that an extremely high sensitivity is achieved for weakly absorbing materials, such as biological soft tissues, which generate a poor contrast by conventional schemes. Especially for such living samples, where the reduction of the applied dose is of paramount interest, phase sensitive measurements schemes have an inherent potential for a significant dose reduction combined with an image quality enhancement. Several methods have been invented for x-ray phase contrast imaging that either use an approach based on interferometry, diffraction or wave-field propagation. Some of these techniques have a potential for commercial applications, such as in medicine, non-destructive testing, security and inspection. The scope of this manuscript thus deals with one particular such technique that measures the diffraction caused by the specimen by means of a grating interferometer. Examples of measurements are shown that depict the potential of phase contrast imaging for future commercial applications, such as in medical imaging, non-destructive testing and inspection for quality control. The current state of the technology is briefly reviewed as well as its shortcomings to be overcome with regard to the applications.

  4. Development of prototype shielded cervical intracavitary brachytherapy applicators compatible with CT and MR imaging

    SciTech Connect

    Price, Michael J.; Jackson, Edward F.; Gifford, Kent A.; Eifel, Patricia J.; Mourtada, Firas

    2009-12-15

    Purpose: Intracavitary brachytherapy (ICBT) is an integral part of the treatment regimen for cervical cancer and, generally, outcome in terms of local disease control and complications is a function of dose to the disease bed and critical structures, respectively. Therefore, it is paramount to accurately determine the dose given via ICBT to the tumor bed as well as critical structures. This is greatly facilitated through the use of advanced three-dimensional imaging modalities, such as CT and MR, to delineate critical and target structures with an ICBT applicator inserted in vivo. These methods are not possible when using a shielded applicator due to the image artifacts generated by interovoid shielding. The authors present two prototype shielded ICBT applicators that can be utilized for artifact-free CT image acquisition. They also investigate the MR amenability and dosimetry of a novel tungsten-alloy shielding material to extend the functionality of these devices. Methods: To accomplish artifact-free CT image acquisition, a ''step-and-shoot'' (S and S) methodology was utilized, which exploits the prototype applicators movable interovoid shielding. Both prototypes were placed in imaging phantoms that positioned the applicators in clinically applicable orientations. CT image sets were acquired of the prototype applicators as well as a shielded Fletcher-Williamson (sFW) ovoid. Artifacts present in each CT image set were qualitatively compared for each prototype applicator following the S and S methodology and the sFW. To test the novel tungsten-alloy shielding material's MR amenability, they constructed a phantom applicator that mimics the basic components of an ICBT ovoid. This phantom applicator positions the MR-compatible shields in orientations equivalent to the sFW bladder and rectal shields. MR images were acquired within a gadopentetate dimeglumine-doped water tank using standard pulse sequences and examined for artifacts. In addition, Monte Carlo simulations were performed to match the attenuation due to the thickness of this new shield type with current, clinically utilized ovoid shields and a {sup 192}Ir HDR/PDR source. Results: Artifact-free CT images could be acquired of both generation applicators in a clinically applicable geometry using the S and S method. MR images were acquired of the phantom applicator containing shields, which contained minimal, clinically relevant artifacts. The thickness required to match the dosimetry of the MR-compatible and sFW rectal shields was determined using Monte Carlo simulations. Conclusions: Utilizing a S and S imaging method in conjunction with prototype applicators that feature movable interovoid shields, they were able to acquire artifact-free CT image sets in a clinically applicable geometry. MR images were acquired of a phantom applicator that contained shields composed of a novel tungsten alloy. Artifacts were largely limited to regions within the ovoid cap and are of no clinical interest. The second generation A{sup 3} utilizes this material for interovoid shielding.

  5. [Clinical applications of functional magnetic resonance imaging].

    PubMed

    Yoshiura, T

    2001-06-01

    Despite its immediate success as a tool for basic research, the clinical application of functional MRI(fMRI) is still limited. FMRI has proven useful for presurgical functional mapping of the eloquent cortices. Localization of the sensorimotor cortex by fMRI may be of relatively limited value because the sensorimotor cortex can often be readily localized by means of anatomical methods. In contrast, the language cortices may not be localized anatomically and the language dominant hemisphere has been determined by invasive Wada test. Previous reports have shown that fMRI can be a promising alternative to the Wada test. A recent clinical trial has suggested that fMRI can be used to diagnose Alzheimer's disease in its earliest stage, detecting subclinical deterioration of the memory function. FMRI may be useful to predict the future decline of memory in people with genetic risks. Monitoring of the functional recovery of post-stroke brains may be another promising clinical application of fMRI. FMRI has demonstrated functional reorganization of the brain that may be related to the restoration of motor and language functions. PMID:11496412

  6. 49 CFR Appendix B to Part 1580 - Summary of the Applicability of Part 1580

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Part 1580 Security measure and rule section Freight railroad carriers NOT transporting specified hazardous materials Freight railroad carriers transporting specified hazardous materials (§ 1580.100(b... custody and control requirements for transport of specified hazardous materials that are or may be in...

  7. Recent software developments and applications in functional imaging.

    PubMed

    Wen, Lingfeng; Eberl, Stefan; Fulham, Michael; Feng, David Dagan

    2012-09-01

    Functional imaging allows the quantification of biochemical or biophysiological changes in-vivo through the visualization of the spatial distribution and temporal changes of administrated radiopharmaceuticals. Instrumentation advances such as PET-CT (positron emission tomography - computed tomography) and PET-MR (positron emission tomography - magnetic resonance), improvements in image processing and reconstruction, the development of target and disease-specific radiotracers and improved kinetic modelling techniques, have substantially enhanced our ability to measure functional changes in normal and diseased states. Various combinations of these advances and refinements are now used in routine clinical practice for patient care. In this paper we review recent literature on software developments and applications in image restoration, motion correction, kinetic analysis, and image processing in the field of functional imaging. PMID:22335479

  8. Geological applications using an electrical micro imaging tool

    SciTech Connect

    Eubanks, D.; Seiler, D.; Russell, B.

    1995-11-20

    The resistivity micro imaging tool introduced by Halliburton produces electrical images that are being used in a variety of geological applications. The tool is a microresistivity-type imaging device with six independent articulating arms extending from the main body.Each arm is mounted with a pad containing a 25-electrode scanning array. The EMI tool and all other micro imaging devices measure changes in resistivity along the borehole wall that correspond to subtle changes in rock composition, grain texture, and fluid properties. High-end graphics software processes the data to produce highly visual 2D and 3D images of the borehole. The paper describes the use of this tool in fault analysis, fracture analysis, rock texture, strata dip analysis, and thin-bed analysis.

  9. Image fusion technology for security and surveillance applications

    NASA Astrophysics Data System (ADS)

    Riley, Tom; Smith, Moira

    2006-09-01

    Image fusion technology offers a range of potential benefits to the security and surveillance community, including increased situational awareness and enhanced detection capabilities. This paper reports on how image fusion technology is being adapted from the military arena (in which it is generally found today) to provide a new and powerful asset in the fight against crime and terrorism. The combination of detection and tracking processing with image fusion is discussed and assessed. Finally, a number of specific examples are presented which include land, air, and sea applications.

  10. X-Ray Backscatter Imaging for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel; Edwards, Talion; Toh, Chin

    2011-06-01

    Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.

  11. X-ray backscatter imaging for aerospace applications

    SciTech Connect

    Shedlock, Daniel; Edwards, Talion; Toh, Chin

    2011-06-23

    Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.

  12. A martian case study of segmenting images automatically for granulometry and sedimentology, Part 1: Algorithm

    NASA Astrophysics Data System (ADS)

    Karunatillake, Suniti; McLennan, Scott M.; Herkenhoff, Kenneth E.; Husch, Jonathan M.; Hardgrove, Craig; Skok, J. R.

    2014-02-01

    In planetary exploration, delineating individual grains in images via segmentation is a key path to sedimentological comparisons with the extensive terrestrial literature. Samples that contain a substantial fine grain component, common at Meridiani and Gusev at Mars, would involve prohibitive effort if attempted manually. Unavailability of physical samples also precludes standard terrestrial methods such as sieving. Furthermore, planetary scientists have been thwarted by the dearth of segmentation algorithms customized for planetary applications, including Mars, and often rely on sub-optimal solutions adapted from medical software. We address this with an original algorithm optimized to segment whole images from the Microscopic Imager of the Mars Exploration Rovers. While our code operates with minimal human guidance, its default parameters can be modified easily for different geologic settings and imagers on Earth and other planets, such as the Curiosity Rovers Mars Hand Lens Instrument. We assess the algorithms robustness in a companion work.

  13. Applications of digital image acquisition in anthropometry

    NASA Technical Reports Server (NTRS)

    Woolford, B.; Lewis, J. L.

    1981-01-01

    A description is given of a video kinesimeter, a device for the automatic real-time collection of kinematic and dynamic data. Based on the detection of a single bright spot by three TV cameras, the system provides automatic real-time recording of three-dimensional position and force data. It comprises three cameras, two incandescent lights, a voltage comparator circuit, a central control unit, and a mass storage device. The control unit determines the signal threshold for each camera before testing, sequences the lights, synchronizes and analyzes the scan voltages from the three cameras, digitizes force from a dynamometer, and codes the data for transmission to a floppy disk for recording. Two of the three cameras face each other along the 'X' axis; the third camera, which faces the center of the line between the first two, defines the 'Y' axis. An image from the 'Y' camera and either 'X' camera is necessary for determining the three-dimensional coordinates of the point.

  14. Landsat image registration for agricultural applications

    NASA Technical Reports Server (NTRS)

    Wolfe, R. H., Jr.; Juday, R. D.; Wacker, A. G.; Kaneko, T.

    1982-01-01

    An image registration system has been developed at the NASA Johnson Space Center (JSC) to spatially align multi-temporal Landsat acquisitions for use in agriculture and forestry research. Working in conjunction with the Master Data Processor (MDP) at the Goddard Space Flight Center, it functionally replaces the long-standing LACIE Registration Processor as JSC's data supplier. The system represents an expansion of the techniques developed for the MDP and LACIE Registration Processor, and it utilizes the experience gained in an IBM/JSC effort evaluating the performance of the latter. These techniques are discussed in detail. Several tests were developed to evaluate the registration performance of the system. The results indicate that 1/15-pixel accuracy (about 4m for Landsat MSS) is achievable in ideal circumstances, sub-pixel accuracy (often to 0.2 pixel or better) was attained on a representative set of U.S. acquisitions, and a success rate commensurate with the LACIE Registration Processor was realized. The system has been employed in a production mode on U.S. and foreign data, and a performance similar to the earlier tests has been noted.

  15. Structural analysis and application to brain imaging.

    PubMed

    Richard, N; Bernard, M; Paquereau, J

    2007-01-01

    Our goal is to organize the ElectroEncephaloGram (EEG) signal so as to describe and image various brain activities. Our work is based on a data structure, a graph, which sums up the brain activity in the spatial, temporal and frequency domains. From the information contained in the time-frequency map of EEG signals, a graph is constructed. In order to analyze the complexity of the signal, our method is based on a multi-scale approach with several levels of information extraction. To compare different EEG signals, we use techniques of graph-matching with our data structure. The developed algorithm is based on the A* algorithm that allows us to compare variations of the recorded EEG in term o f latency, frequency, energy and activated areas. The results of this project show first, that the graph is an appropriate tool to reduce the cortical activity complexity, and second, that graph-matching offers some interesting perspectives in order to describe functional brain activity. PMID:17531138

  16. Application of tomographic imaging to stability assessment

    SciTech Connect

    Maleki, Hamid; Johnston, J.

    1996-12-01

    Roof falls are one of the leading ground control problems that adversely influence productivity and worker safety in underground mines, constriction sites, and nuclear waste repositories. To control roof stability problems, the operator needs to have practical methods for measuring changes in strata conditions and criteria for defining the timing of secondary support installation. The objective of this study was to develop measurement techniques and criteria for assessing roof conditions at the mining face. An integrated rock deformation and tomographic imaging method was developed and amplified at two sites in a western U.S. trona mine. It was shown that rock damage occurred at a deformation of 30 to 60 mm (1.2 to 2.4 in) (2 to 4 pct strain) and was associated with a significant (16 pct) reduction in wave velocity. Thus, supplementary support may be installed when there is a measured change in wave velocity of at least 16 pct. Tomographic measurements can be obtained in rocks rapidly, thus providing a powerful tool for analyzing growth of failure and for installing supplementary support systems in a timely manner.

  17. Pipe line pigs have varied applications in operations. Part 2

    SciTech Connect

    Vernooy, B.

    1980-10-01

    In the early days of pipelining, it was discovered that running a swab equipped with leather disks through the line removed paraffin deposited on the pipe wall increasing the flow without increasing the power input. Blades were added to the device later to improve the efficiency of wax removal, which also decreased the number of runs and the cost of pigging. Pig developers learned from their successes as well as their failures. Part 1 of this work focused on the construction and kaliper pigs, and the second part describes the general form and function of the different operational pigs, i.e., calipers, cleaners, and spheres.

  18. The future of imaging spectroscopy - Prospective technologies and applications

    USGS Publications Warehouse

    Schaepman, M.E.; Green, R.O.; Ungar, S.G.; Curtiss, B.; Boardman, J.; Plaza, A.J.; Gao, B.-C.; Ustin, S.; Kokaly, R.; Miller, J.R.; Jacquemoud, S.; Ben-Dor, E.; Clark, R.; Davis, C.; Dozier, J.; Goodenough, D.G.; Roberts, D.; Swayze, G.; Milton, E.J.; Goetz, A.F.H.

    2006-01-01

    Spectroscopy has existed for more than three centuries now. Nonetheless, significant scientific advances have been achieved. We discuss the history of spectroscopy in relation to emerging technologies and applications. Advanced focal plane arrays, optical design, and intelligent on-board logic are prime prospective technologies. Scalable approaches in pre-processing of imaging spectrometer data will receive additional focus. Finally, we focus on new applications monitoring transitional ecological zones, where human impact and disturbance have highest impact as well as in monitoring changes in our natural resources and environment We conclude that imaging spectroscopy enables mapping of biophysical and biochemical variables of the Earth's surface and atmospheric composition with unprecedented accuracy.

  19. Performance and application of real-time hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Dombrowski, Mark S.; Willson, Paul D.; LaBaw, Clayton C.

    1998-10-01

    Hyperspectral imaging is the latest advent in imaging technology, providing the potential to extract information about the objects in a scene that is unavailable to panchromatic imagers. This increased utility, however, comes at the cost of tremendously increased data. The ultimate utility of hyperspectral imagery is in the information that can be gleaned from the spectral dimension, rather than in the hyperspectral imagery itself. To have the broadest range of applications, extraction of this information must occur in real-time. Attempting to produce and exploit complete cubes of hyperspectral imagery at video rates, however, present unique problems for both the imager and the processor, since data rates are scaled by the number of spectral planes in the cube. MIDIS, the Multi-band Identification and Discrimination Imaging Spectroradiometer, allows both real-time here are the major design innovations associated with producing high-speed, high-sensitivity hyperspectral imagers operating in the SWIR and LWIR, and of the electronics capable of handling data rates up to 160 megapixels per second, continuously. Discussion of real-time algorithms capable of exploiting the spectral dimension of the imagery is also included. Beyond design and performance issues associated with producing and processing hyperspectral imagery at such high speeds, this paper also discusses applications of real-time hyperspectral imaging technology. Example imagery includes such problems as detecting counterfeit money, inspecting surfaces, and countering CCD.

  20. Fast-scanning THz medical imaging system for clinical application

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bajwa, Neha; Fokwa, Nuhba; Tewari, Priyamvada; Singh, Rahul; Culjat, Martin; Nowroozi, Bryan; Grundfest, Warren; Taylor, Zachary

    2012-10-01

    Applications for terahertz (THz) medical imaging have proliferated over the past few years due to advancements in source/detector technology and vigorous application development. While considerable effort has been applied to improving source output power and detector sensitivity, significantly less work has been devoted to improving image acquisition method and time. The majority of THz medical imaging systems in the literature typically acquire pixels by translating the target of interest beneath a fixed illumination beam. While this single-pixel whiskbroom methodology is appropriate for in vitro models, it is unsuitable for in vivo large animal and patient imaging due to practical constraints. This paper presents a scanned beam imaging system based on prior work that enables for reduced image acquisition time while allowing the source, target and detector to remain stationary. The system employs a spinning polygonal mirror and a set of high-density polyethylene (HDPE) objective lenses, and operates at a center illumination frequency of 525GHz with ~125GHz of 3dB bandwidth. The system achieves a focused beam diameter of 1.66mm and a large depth of field of <25 mm. Images of characterization targets and ex vivo tissue samples are presented and compared to results obtained with conventional fixed beam scanning systems.

  1. Motion tracking in infrared imaging for quantitative medical diagnostic applications

    PubMed Central

    Cheng, Tze-Yuan; Herman, Cila

    2014-01-01

    In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas–Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography. PMID:24587692

  2. Motion tracking in infrared imaging for quantitative medical diagnostic applications

    NASA Astrophysics Data System (ADS)

    Cheng, Tze-Yuan; Herman, Cila

    2014-01-01

    In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas-Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography.

  3. Motion tracking in infrared imaging for quantitative medical diagnostic applications.

    PubMed

    Cheng, Tze-Yuan; Herman, Cila

    2014-01-01

    In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas-Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography. PMID:24587692

  4. Anatomical noise in contrast-enhanced digital mammography. Part I. Single-energy imaging

    SciTech Connect

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.; Carton, Ann-Katherine; Muller, Serge; Ebrahimi, Mehran; Jong, Roberta A.; Dromain, Clarisse

    2013-05-15

    Purpose: The use of an intravenously injected iodinated contrast agent could help increase the sensitivity of digital mammography by adding information on tumor angiogenesis. Two approaches have been made for clinical implementation of contrast-enhanced digital mammography (CEDM), namely, single-energy (SE) and dual-energy (DE) imaging. In each technique, pairs of mammograms are acquired, which are then subtracted with the intent to cancel the appearance of healthy breast tissue to permit sensitive detection and specific characterization of lesions. Patterns of contrast agent uptake in the healthy parenchyma, and uncanceled signal from background tissue create a 'clutter' that can mask or mimic an enhancing lesion. This type of 'anatomical noise' is often the limiting factor in lesion detection tasks, and thus, noise quantification may be useful for cascaded systems analysis of CEDM and for phantom development. In this work, the authors characterize the anatomical noise in CEDM clinical images and the authors evaluate the influence of the x-ray energy used for acquisition, the presence of iodine in the breast, and the timing of imaging postcontrast administration on anatomical noise. The results are presented in a two-part report, with SE CEDM described here, and DE CEDM in Part II. Methods: A power law is used to model anatomical noise in CEDM images. The exponent, {beta}, which describes the anatomical structure, and the constant {alpha}, which represents the magnitude of the noise, are determined from Wiener spectra (WS) measurements on images. A total of 42 SE CEDM cases from two previous clinical pilot studies are assessed. The parameters {alpha} and {beta} are measured both from unprocessed images and from subtracted images. Results: Consistent results were found between the two SE CEDM pilot studies, where a significant decrease in {beta} from a value of approximately 3.1 in the unprocessed images to between about 1.1 and 1.8 in the subtracted images was observed. Increasing the x-ray energy from that used in conventional DM to those of typical SE CEDM spectra with mean energies above 33 keV significantly decreased {alpha} by about a factor of 19, in agreement with theory. Compared to precontrast images, in the unprocessed postcontrast images at 30 s postinjection, {alpha} was larger by about 7.4 Multiplication-Sign 10{sup -7} mm{sup 2} and {beta} was decreased by 0.2. While {alpha} did not vary significantly with the time after contrast administration, {beta} from the unprocessed image WS increased linearly, and {beta} from subtracted image WS increased with an initial quadratic relationship that plateaued by about 5 min postinjection. Conclusions: The presence of an iodinated contrast agent in the breast produced small, but significant changes in the power law parameters of unprocessed CEDM images compared to the precontrast images. Image subtraction in SE CEDM significantly reduced anatomical noise compared to conventional DM, with a reduction in both {alpha} and {beta} by about a factor of 2. The data presented here, and in Part II of this work, will be useful for modeling of CEDM backgrounds, for systems characterization and for lesion detectability experiments using models that account for anatomical noise.

  5. 7 CFR 15.1 - Purpose and application of part.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... no person in the United States shall, on the ground of race, color, or national origin, be excluded... appendix to this part. They apply to money paid, property transferred, or other Federal financial... assistance by way of insurance or guaranty contract, (2) money paid, property transferred, or...

  6. 17 CFR 287.1 - Applicability of this part.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Schedule A to Part 285 GENERAL RULES AND REGULATIONS PURSUANT TO SECTION 11(a) OF THE ASIAN DEVELOPMENT... filed with the Securities and Exchange Commission by the Asian Development Bank pursuant to section 11(a) of the Asian Development Bank Act....

  7. 17 CFR 287.1 - Applicability of this part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Schedule A to Part 285 GENERAL RULES AND REGULATIONS PURSUANT TO SECTION 11(a) OF THE ASIAN DEVELOPMENT... filed with the Securities and Exchange Commission by the Asian Development Bank pursuant to section 11(a) of the Asian Development Bank Act....

  8. 17 CFR 287.1 - Applicability of this part.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Schedule A to Part 285 GENERAL RULES AND REGULATIONS PURSUANT TO SECTION 11(a) OF THE ASIAN DEVELOPMENT... filed with the Securities and Exchange Commission by the Asian Development Bank pursuant to section 11(a) of the Asian Development Bank Act....

  9. 17 CFR 287.1 - Applicability of this part.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Schedule A to Part 285 GENERAL RULES AND REGULATIONS PURSUANT TO SECTION 11(a) OF THE ASIAN DEVELOPMENT... filed with the Securities and Exchange Commission by the Asian Development Bank pursuant to section 11(a) of the Asian Development Bank Act....

  10. 17 CFR 287.1 - Applicability of this part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Schedule A to Part 285 GENERAL RULES AND REGULATIONS PURSUANT TO SECTION 11(a) OF THE ASIAN DEVELOPMENT... filed with the Securities and Exchange Commission by the Asian Development Bank pursuant to section 11(a) of the Asian Development Bank Act....

  11. 22 CFR Appendix A to Part 221 - Application for Compensation

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Part 221 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS... __, on $______ principal 1 amount of Notes held by the undersigned of the Government of Israel, on behalf of the State of Israel (the “Borrower”). Of such amount $______ was not received on such date and...

  12. 22 CFR Appendix A to Part 221 - Application for Compensation

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Part 221 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS... __, on $______ principal 1 amount of Notes held by the undersigned of the Government of Israel, on behalf of the State of Israel (the “Borrower”). Of such amount $______ was not received on such date and...

  13. 22 CFR Appendix A to Part 230 - Application for Compensation

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Part 230 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEES ISSUED UNDER THE... ___, 20_, on $__ principal amount of Notes held by the undersigned of the Government of Israel, on behalf of the State of Israel (the “Borrower”). Of such amount $__ was not received on such date and has...

  14. 22 CFR Appendix A to Part 230 - Application for Compensation

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Part 230 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEES ISSUED UNDER THE... ___, 20_, on $__ principal amount of Notes held by the undersigned of the Government of Israel, on behalf of the State of Israel (the “Borrower”). Of such amount $__ was not received on such date and has...

  15. 22 CFR Appendix A to Part 230 - Application for Compensation

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Part 230 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEES ISSUED UNDER THE... ___, 20_, on $__ principal amount of Notes held by the undersigned of the Government of Israel, on behalf of the State of Israel (the “Borrower”). Of such amount $__ was not received on such date and has...

  16. 22 CFR Appendix A to Part 230 - Application for Compensation

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Part 230 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEES ISSUED UNDER THE... ___, 20_, on $__ principal amount of Notes held by the undersigned of the Government of Israel, on behalf of the State of Israel (the “Borrower”). Of such amount $__ was not received on such date and has...

  17. 22 CFR Appendix A to Part 230 - Application for Compensation

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Part 230 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEES ISSUED UNDER THE... due on ___, 20__, on $_ principal amount of Notes held by the undersigned of the Government of Israel, on behalf of the State of Israel (the “Borrower”). Of such amount $_ was not received on such...

  18. 22 CFR Appendix A to Part 221 - Application for Compensation

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Part 221 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS... __, on $______ principal 1 amount of Notes held by the undersigned of the Government of Israel, on behalf of the State of Israel (the “Borrower”). Of such amount $______ was not received on such date and...

  19. 22 CFR Appendix A to Part 221 - Application for Compensation

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Part 221 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS... International Development, International Development Cooperation Agency, Washington, DC 20523. Ref: Guarantee... interest accrual specified in such Note. Such payment is to be made at 1 Alternate language for...

  20. 22 CFR Appendix A to Part 221 - Application for Compensation

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Part 221 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS... International Development, International Development Cooperation Agency, Washington, DC 20523. Ref: Guarantee... interest accrual specified in such Note. Such payment is to be made at 1 Alternate language for...

  1. 17 CFR 290.1 - Applicability of this part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Schedule A to Part 285 GENERAL RULES AND REGULATIONS PURSUANT TO SECTION 9(a) OF THE EUROPEAN BANK FOR... reports to be filed with the Securities and Exchange Commission by the European Bank for Reconstruction and Development (“EBRD”) pursuant to section 9(a) of the European Bank for Reconstruction...

  2. On combining image-based and ontological semantic dissimilarities for medical image retrieval applications

    PubMed Central

    Kurtz, Camille; Depeursinge, Adrien; Napel, Sandy; Beaulieu, Christopher F.; Rubin, Daniel L.

    2014-01-01

    Computer-assisted image retrieval applications can assist radiologists by identifying similar images in archives as a means to providing decision support. In the classical case, images are described using low-level features extracted from their contents, and an appropriate distance is used to find the best matches in the feature space. However, using low-level image features to fully capture the visual appearance of diseases is challenging and the semantic gap between these features and the high-level visual concepts in radiology may impair the system performance. To deal with this issue, the use of semantic terms to provide high-level descriptions of radiological image contents has recently been advocated. Nevertheless, most of the existing semantic image retrieval strategies are limited by two factors: they require manual annotation of the images using semantic terms and they ignore the intrinsic visual and semantic relationships between these annotations during the comparison of the images. Based on these considerations, we propose an image retrieval framework based on semantic features that relies on two main strategies: (1) automatic “soft” prediction of ontological terms that describe the image contents from multi-scale Riesz wavelets and (2) retrieval of similar images by evaluating the similarity between their annotations using a new term dissimilarity measure, which takes into account both image-based and ontological term relations. The combination of these strategies provides a means of accurately retrieving similar images in databases based on image annotations and can be considered as a potential solution to the semantic gap problem. We validated this approach in the context of the retrieval of liver lesions from computed tomographic (CT) images and annotated with semantic terms of the RadLex ontology. The relevance of the retrieval results was assessed using two protocols: evaluation relative to a dissimilarity reference standard defined for pairs of images on a 25-images dataset, and evaluation relative to the diagnoses of the retrieved images on a 72-images dataset. A normalized discounted cumulative gain (NDCG) score of more than 0.92 was obtained with the first protocol, while AUC scores of more than 0.77 were obtained with the second protocol. This automatical approach could provide real-time decision support to radiologists by showing them similar images with associated diagnoses and, where available, responses to therapies. PMID:25036769

  3. On combining image-based and ontological semantic dissimilarities for medical image retrieval applications.

    PubMed

    Kurtz, Camille; Depeursinge, Adrien; Napel, Sandy; Beaulieu, Christopher F; Rubin, Daniel L

    2014-10-01

    Computer-assisted image retrieval applications can assist radiologists by identifying similar images in archives as a means to providing decision support. In the classical case, images are described using low-level features extracted from their contents, and an appropriate distance is used to find the best matches in the feature space. However, using low-level image features to fully capture the visual appearance of diseases is challenging and the semantic gap between these features and the high-level visual concepts in radiology may impair the system performance. To deal with this issue, the use of semantic terms to provide high-level descriptions of radiological image contents has recently been advocated. Nevertheless, most of the existing semantic image retrieval strategies are limited by two factors: they require manual annotation of the images using semantic terms and they ignore the intrinsic visual and semantic relationships between these annotations during the comparison of the images. Based on these considerations, we propose an image retrieval framework based on semantic features that relies on two main strategies: (1) automatic "soft" prediction of ontological terms that describe the image contents from multi-scale Riesz wavelets and (2) retrieval of similar images by evaluating the similarity between their annotations using a new term dissimilarity measure, which takes into account both image-based and ontological term relations. The combination of these strategies provides a means of accurately retrieving similar images in databases based on image annotations and can be considered as a potential solution to the semantic gap problem. We validated this approach in the context of the retrieval of liver lesions from computed tomographic (CT) images and annotated with semantic terms of the RadLex ontology. The relevance of the retrieval results was assessed using two protocols: evaluation relative to a dissimilarity reference standard defined for pairs of images on a 25-images dataset, and evaluation relative to the diagnoses of the retrieved images on a 72-images dataset. A normalized discounted cumulative gain (NDCG) score of more than 0.92 was obtained with the first protocol, while AUC scores of more than 0.77 were obtained with the second protocol. This automatical approach could provide real-time decision support to radiologists by showing them similar images with associated diagnoses and, where available, responses to therapies. PMID:25036769

  4. An adjustable frame-straddling image formation system for PIV application

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Ouyang, Zhenxing; Yang, Hua

    2015-12-01

    As an important measuring method in velocity measuring field, Particle Image Velocimetry(PIV), which follows the principle of dividing the maximum displacement of tracer particles by the corresponding time, is applied more and more widely in various subjects, and the accuracy of which is influenced by the choice of the time delay to some extent. The existing PIV system usually chooses a fixed time delay, which could not meet the need of the application in measuring the vector of time varying flow field with a relatively high measuring accuracy. Considering the weakness of this, we introduce a new kind of adjustable frame-straddling image formation system for PIV application to improve the accuracy in this paper. The image formation system is implemented mainly because of two parts: a dual CCD camera system which is carefully designed to capture the frame-straddling image pairs of the flow field with an adjustable time delay controlled by the externally trigger signals, and an effective subpixel image registration algorithm, which is used to calculate vector of the time varying flow field on the hardware platform, which generates the two channels of trigger signals with the adjustable time delay according to the instantaneous calculating vector of flow field. Experiments were performed for several time varying flows to verify the effectiveness of the image formation system and the results shows that the accuracy was improved in calculating the vector of the flow field based on such image formation system to some extent.

  5. Information system modeling for biomedical imaging applications

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.

    1999-07-01

    Information system modeling has historically been relegated to a low priority among the designers of information systems. Often times, there is a rush to design and implement hardware and software solutions after only the briefest assessments of the domain requirements. Although this process results in a rapid development cycle, the system usually does not satisfy the needs of the users and the developers are forced to re-program certain aspects of the system. It would be much better to create an accurate model of the system based on the domain needs so that the implementation of the solution satisfies the needs of the users immediately. It would also be advantageous to build extensibility into the model so that updates to the system could be carried out in an organized fashion. The significance of this research is the development of a new formal framework for the construction of a multimedia medical information system. This formal framework is constructed using visual modeling which provides a way of thinking about problems using models organized around real- world ideas. These models provide an abstract way to view complex problems, making them easier for one to understand. The formal framework is the result of an object-oriented analysis and design process that translates the systems requirements and functionality into software models. The usefulness of this information framework is demonstrated with two different applications in epilepsy research and care, i.e., surgical planning of epilepsy and decision threshold determination.

  6. Driving micro-optical imaging systems towards miniature camera applications

    NASA Astrophysics Data System (ADS)

    Brückner, Andreas; Duparré, Jacques; Dannberg, Peter; Leitel, Robert; Bräuer, Andreas

    2010-05-01

    Up to now, multi channel imaging systems have been increasingly studied and approached from various directions in the academic domain due to their promising large field of view at small system thickness. However, specific drawbacks of each of the solutions prevented the diffusion into corresponding markets so far. Most severe problems are a low image resolution and a low sensitivity compared to a conventional single aperture lens besides the lack of a cost-efficient method of fabrication and assembly. We propose a microoptical approach to ultra-compact optics for real-time vision systems that are inspired by the compound eyes of insects. The demonstrated modules achieve a VGA resolution with 700x550 pixels within an optical package of 6.8mm x 5.2mm and a total track length of 1.4mm. The partial images that are separately recorded within different optical channels are stitched together to form a final image of the whole field of view by means of image processing. These software tools allow to correct the distortion of the individual partial images so that the final image is also free of distortion. The so-called electronic cluster eyes are realized by state-of-the-art microoptical fabrication techniques and offer a resolution and sensitivity potential that makes them suitable for consumer, machine vision and medical imaging applications.

  7. 49 CFR 1542.1 - Applicability of this part.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT SECURITY General § 1542.1 Applicability of.... (c) Each airport operator that receives a Security Directive or Information Circular and each person... official for Civil Aviation Security. (d) Each airport operator that does not have a security program...

  8. 49 CFR 1542.1 - Applicability of this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT SECURITY General § 1542.1 Applicability of.... (c) Each airport operator that receives a Security Directive or Information Circular and each person... official for Civil Aviation Security. (d) Each airport operator that does not have a security program...

  9. 49 CFR 1542.1 - Applicability of this part.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT SECURITY General § 1542.1 Applicability of.... (c) Each airport operator that receives a Security Directive or Information Circular and each person... official for Civil Aviation Security. (d) Each airport operator that does not have a security program...

  10. 49 CFR 1542.1 - Applicability of this part.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT SECURITY General § 1542.1 Applicability of.... (c) Each airport operator that receives a Security Directive or Information Circular and each person... official for Civil Aviation Security. (d) Each airport operator that does not have a security program...

  11. Scientific Applications of the Apple Game Port: Part II.

    ERIC Educational Resources Information Center

    Ratzlaff, Kenneth

    1984-01-01

    The Apple game port has two types of inputs: the paddle input and the button input. Scientific applications of these input-output units are discussed, examining analog inputs (potentiometers, thermistors, and photoresistors), single bit digital inputs, and single-bit outputs. (JN)

  12. 17 CFR Appendix C to Part 30 - Foreign Petitioners Granted Relief From the Application of Certain of the Part 30 Rules Pursuant...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Register citations affecting appendix C to part 30, see the List of CFR Sections Affected, which appears in... Relief From the Application of Certain of the Part 30 Rules Pursuant to § 30.10 C Appendix C to Part 30... TRANSACTIONS Pt. 30, App. C Appendix C to Part 30—Foreign Petitioners Granted Relief From the Application...

  13. 17 CFR Appendix C to Part 30 - Foreign Petitioners Granted Relief From the Application of Certain of the Part 30 Rules Pursuant...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Register citations affecting appendix C to part 30, see the List of CFR Sections Affected, which appears in... Relief From the Application of Certain of the Part 30 Rules Pursuant to § 30.10 C Appendix C to Part 30... TRANSACTIONS Pt. 30, App. C Appendix C to Part 30—Foreign Petitioners Granted Relief From the Application...

  14. Digital image measurement of specimen deformation based on CCD cameras and Image J software: an application to human pelvic biomechanics

    NASA Astrophysics Data System (ADS)

    Jia, Yongwei; Cheng, Liming; Yu, Guangrong; Lou, Yongjian; Yu, Yan; Chen, Bo; Ding, Zuquan

    2008-03-01

    A method of digital image measurement of specimen deformation based on CCD cameras and Image J software was developed. This method was used to measure the biomechanics behavior of human pelvis. Six cadaveric specimens from the third lumbar vertebra to the proximal 1/3 part of femur were tested. The specimens without any structural abnormalities were dissected of all soft tissue, sparing the hip joint capsules and the ligaments of the pelvic ring and floor. Markers with black dot on white background were affixed to the key regions of the pelvis. Axial loading from the proximal lumbar was applied by MTS in the gradient of 0N to 500N, which simulated the double feet standing stance. The anterior and lateral images of the specimen were obtained through two CCD cameras. Based on Image J software, digital image processing software, which can be freely downloaded from the National Institutes of Health, digital 8-bit images were processed. The procedure includes the recognition of digital marker, image invert, sub-pixel reconstruction, image segmentation, center of mass algorithm based on weighted average of pixel gray values. Vertical displacements of S1 (the first sacral vertebrae) in front view and micro-angular rotation of sacroiliac joint in lateral view were calculated according to the marker movement. The results of digital image measurement showed as following: marker image correlation before and after deformation was excellent. The average correlation coefficient was about 0.983. According to the 768 × 576 pixels image (pixel size 0.68mm × 0.68mm), the precision of the displacement detected in our experiment was about 0.018 pixels and the comparatively error could achieve 1.11\\perthou. The average vertical displacement of S1 of the pelvis was 0.8356+/-0.2830mm under vertical load of 500 Newtons and the average micro-angular rotation of sacroiliac joint in lateral view was 0.584+/-0.221°. The load-displacement curves obtained from our optical measure system matched the clinical results. Digital image measurement of specimen deformation based on CCD cameras and Image J software has good perspective for application in biomechanical research, which has the advantage of simple optical setup, no-contact, high precision, and no special requirement of test environment.

  15. Production Strategies for Production-Quality Parts for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Best, J. E.; Liu, Z.; Eckel, A. J.; Reed, B. D.; Fox, D. S.; Bhatt, R.; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    A combination of rapid prototyping processes (3D Systems' stereolithography and Sanders Prototyping's ModelMaker) are combined with gelcasting to produce high quality silicon nitride components that were performance tested under simulated use conditions. Two types of aerospace components were produced, a low-force rocket thruster and a simulated airfoil section. The rocket was tested in a test stand using varying mixtures of H2 and O2, whereas the simulated airfoil was tested by subjecting it to a 0.3 Mach jet-fuel burner flame. Both parts performed successfully, demonstrating the usefulness of the rapid prototyping in efforts to effect materials substitution. In addition, the simulated airfoil was used to explore the possibility of applying thermal/environmental barrier coatings and providing for internal cooling of ceramic parts. It is concluded that this strategy for processing offers the ceramic engineer all the flexibility normally associated with investment casting of superalloys.

  16. [Polyetheretherketone (PEEK). Part II: application in clinical practice].

    PubMed

    Pokorný, D; Fulín, P; Slouf, M; Jahoda, D; Landor, I; Sosna, A

    2010-01-01

    Polyetheretherketone (PEEK) is one of the up-to-date organic polymer thermoplastics with applications in orthopaedics and trauma medicine. This study presents a detailed analysis of its tests and applications in clinical medicine. A wide range of PEEK modifications and composites are commercially available, e.g., PEEK-Classix, PEEK-Optima, Endolign and Motis. They differ in their physical properties, which makes them suitable for different applications. Other forms, so-called PEEK bioactive composites, contain beta-tricalcium phosphate and hydroxyapatite. Research in this field is also concerned with the surface finish of this polymer thermoplastic and involves macroporous titanium and hydroxyapatite layers, or treatment with laser for an exactly defined surface structure. The clinical applications of PEEK and its composites include, in addition to components for spinal surgery, osteosynthesis plates, screws, intramedullary nails or external fixators, which are implants still at the stage of prototypes. In this review, attention is paid to the use of PEEK thermoplastics for joint replacement. Mid-term studies involving hundreds of patients have shown that, for instance, the VerSys Epoch Fullcoat Hip System (Zimmer) has a markedly lower stress-shielding effect. Carbon fibre-reinforced (CFR-PEEK) composites are used to make articulating components for total hip replacement. Their convenient properties allow for production of much thinner liners and an enlargement of the femoral head diameter, thus reducing the wear of joint implants. CFR-PEEK composites are particularly effective for hip resurfacing in which the Mitch PCR (Stryker) acetabular component has been used with good results. The MOTIS polymer acetabular cup (Invibio Ltd.) is another example. Further PEEK applications include the construction of finger-joint prostheses (Mathys AG), suture anchors (Stryker) and various kinds of augmentations (Medin). Based on the information obtained, the authors suggest further use for CFR-PEEK composites, such as the construction of articulating liners for total shoulder joint replacement, particularly in reverse shoulder arthroplasty. PMID:21223826

  17. Bioengineered iron-oxide nanocrystals: Applications in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Larsen, Brian A.

    Superparamagnetic Iron-Oxide nanoparticles (SPIO) are used as magnetic resonance imaging (MRI) contrast agents in clinical and research applications, effectively increasing the imaging sensitivity of MRI. Current clinical MRI applications utilizing SPIO are limited to liver and gastrointestinal imaging, but further bioengineering will expand the capabilities of SPIO enhanced MRI. This thesis presents different methods of bioengineering SPIO contrast agents for MRI applications. In particular, chemical methods are developed to manipulate contrast agent size via aggregation, modify contrast agent surface encapsulation, and biofunctionalize contrast agents for new applications. Contrast agent sizes from 15 nm to 100 nm are synthesized by nanoparticle aggregation, yielding a new method to incrementally size contrast agent sizing for specific applications. Mono- and Diethoxy silane surface chemistries are applied to SPIO to develop quasi-monolayer biocompatible contrast agent surface encapsulations. Finally, biofunctionalization enables two new applications of SPIO contrast agents, as a new MRI-based method to detect inflammation in vivo, and as a bifunctional MRI contrast agent and nanoparticle antigen delivery system.

  18. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  19. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2004-06-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  20. Dual plasmonic gold nanoparticles for multispectral photoacoustic imaging application

    NASA Astrophysics Data System (ADS)

    Raghavan, Vijay; Subhash, Hrebesh; Breathnach, Aedán.; Leahy, Martin; Dockery, Peter; Olivo, Malini

    2014-03-01

    Nanoparticle contrast agents for molecular targeted imaging have widespread interest in diagnostic applications with cellular resolution, specificity and selectivity for visualization and assessment of various disease processes. Of particular interest is gold nanoparticle owing to its tunability of the surface plasmon resonance (SPR) and its relative inertness. Here we present the synthesis of anisotropic multi-branched star shaped gold nanoparticles exhibiting dual-band plasmon absorption peaks and its application as a contrast agent for multispectral photoacoustic imaging. The transverse plasmon absorption peak of the synthesised dual plasmonic gold nanostar (DPGNS) was around 700 nm and that of longitudinal plasmon absorption in the longer wavelength region around 1050-1150 nm. Unlike most reported PA contrast agent with surface plasmon absorption in the range of 700 to 800 nm showing moderate tissue penetration, 1050-1200 nm range lies in the farther region of the optical window of biological tissue where scattering and the intrinsic optical extinction of endogenous chromophores is at its minimum. We also present a proof of principle demonstration of DPGNS as contrast agent for multispectral photoacoustic animal imaging. Our results show that DPGNS are promising for PA imaging with extended-depth imaging applications.

  1. Addressing the challenges of thermal imaging for firefighting applications

    NASA Astrophysics Data System (ADS)

    Kostrzewa, Joseph; Meyer, William H.; Poe, George; Terre, William A.; Salapow, Thomas M.; Raimondi, John

    2003-09-01

    By providing visibility through smoke and absolute darkness, thermal imaging has the potential to radically improve the effectiveness and safety of the modern firefighter. Some of the roles of thermal imaging are assisting in detection of victims; navigating through dark, smoke-filled structures; detecting indications of imminent flash-over/roll-over; identifying and attacking the seat and extension of a fire; and surveying for lingering hot spots after a fire is nearly extinguished. In many respects, thermal imaging is ideally suited for these functions. However, firefighting applications present the infrared community some unique and challenging design constraints, not the least of which is an operating environment that is in some ways more harsh than most aerospace applications. While many previous papers have described the benefits of thermal imaging for firefighters, this paper describes several specific engineering challenges of this application. These include large ambient temperature range, rapidly changing scene dynamics, extreme demands on AGC, and large dynamic range requirements. This paper describes these and other challenges in detail and explains how they were addressed and overcome in the design of Evolution 5000, a state-of-the-art thermal imager designed and manufactured by Mine Safety Appliances (MSA) using Indigo System"s Omega miniature uncooled camera core.

  2. Imaging requirements for medical applications of additive manufacturing.

    PubMed

    Huotilainen, Eero; Paloheimo, Markku; Salmi, Mika; Paloheimo, Kaija-Stiina; Bjrkstrand, Roy; Tuomi, Jukka; Markkola, Antti; Mkitie, Antti

    2014-02-01

    Additive manufacturing (AM), formerly known as rapid prototyping, is steadily shifting its focus from industrial prototyping to medical applications as AM processes, bioadaptive materials, and medical imaging technologies develop, and the benefits of the techniques gain wider knowledge among clinicians. This article gives an overview of the main requirements for medical imaging affected by needs of AM, as well as provides a brief literature review from existing clinical cases concentrating especially on the kind of radiology they required. As an example application, a pair of CT images of the facial skull base was turned into 3D models in order to illustrate the significance of suitable imaging parameters. Additionally, the model was printed into a preoperative medical model with a popular AM device. Successful clinical cases of AM are recognized to rely heavily on efficient collaboration between various disciplines - notably operating surgeons, radiologists, and engineers. The single main requirement separating tangible model creation from traditional imaging objectives such as diagnostics and preoperative planning is the increased need for anatomical accuracy in all three spatial dimensions, but depending on the application, other specific requirements may be present as well. This article essentially intends to narrow the potential communication gap between radiologists and engineers who work with projects involving AM by showcasing the overlap between the two disciplines. PMID:23901144

  3. Wavelet-based compression of pathological images for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  4. IRMA--content-based image retrieval in medical applications.

    PubMed

    Lehmann, Thomas M; Güld, Mark O; Thies, Christian; Plodowski, Bartosz; Keysers, Daniel; Ott, Bastian; Schubert, Henning

    2004-01-01

    The impact of content-based access to medical images is frequently reported but existing systems are designed for only a particular modality or context of diagnosis. Contrarily, our concept of image retrieval in medical applications (IRMA) aims at a general structure for semantic content analysis that is suitable for numerous applications in case-based reasoning or evidence-based medicine. Within IRMA, stepwise processing results in six layers of information modeling (raw data layer, registered data layer, feature layer, scheme layer, object layer, knowledge layer) incorporating medical expert knowledge. At the scheme layer, medical images are represented by a hierarchical structure of ellipses (blobs) describing image regions. Hence, image retrieval transforms to graph matching. The multilayer processing is implemented using a distributed system designed with only three core elements. The central database holds program sources, process-ing schemes, images, features, and blob trees; the scheduler balances distributed computing by addressing daemons running on all connected workstations; and the web server provides graphical user interfaces for data entry and retrieval.. PMID:15360931

  5. 49 CFR Appendix F to Part 26 - Uniform Certification Application Form

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Uniform Certification Application Form F Appendix F to Part 26 Transportation Office of the Secretary of Transportation PARTICIPATION BY DISADVANTAGED... F to Part 26—Uniform Certification Application Form ER16JN03.053 ER16JN03.054 ER16JN03.055...

  6. 49 CFR Appendix F to Part 26 - Uniform Certification Application Form

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Uniform Certification Application Form F Appendix F to Part 26 Transportation Office of the Secretary of Transportation PARTICIPATION BY DISADVANTAGED... F to Part 26—Uniform Certification Application Form ER16JN03.053 ER16JN03.054 ER16JN03.055...

  7. 49 CFR Appendix F to Part 26 - Uniform Certification Application Form

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Uniform Certification Application Form F Appendix F to Part 26 Transportation Office of the Secretary of Transportation PARTICIPATION BY DISADVANTAGED... F to Part 26—Uniform Certification Application Form ER16JN03.053 ER16JN03.054 ER16JN03.055...

  8. 49 CFR Appendix F to Part 26 - Uniform Certification Application Form

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Uniform Certification Application Form F Appendix F to Part 26 Transportation Office of the Secretary of Transportation PARTICIPATION BY DISADVANTAGED... F to Part 26—Uniform Certification Application Form ER16JN03.053 ER16JN03.054 ER16JN03.055...

  9. 40 CFR 725.67 - Applications to exempt new microorganisms from this part.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... microorganisms from this part. 725.67 Section 725.67 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Administrative Procedures § 725.67 Applications to exempt new microorganisms from this part. (a) Submission. (1... sending the applicant a written statement with the Assistant Administrator's reasons for denial....

  10. 40 CFR 725.67 - Applications to exempt new microorganisms from this part.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... microorganisms from this part. 725.67 Section 725.67 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Administrative Procedures § 725.67 Applications to exempt new microorganisms from this part. (a) Submission. (1... sending the applicant a written statement with the Assistant Administrator's reasons for denial....

  11. 40 CFR 61.01 - Lists of pollutants and applicability of part 61.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Lists of pollutants and applicability of part 61. 61.01 Section 61.01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 61.01 Lists of pollutants and applicability of part 61. (a) The following list presents...

  12. 40 CFR 61.01 - Lists of pollutants and applicability of part 61.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Lists of pollutants and applicability of part 61. 61.01 Section 61.01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 61.01 Lists of pollutants and applicability of part 61. (a) The following list presents...

  13. 40 CFR 61.01 - Lists of pollutants and applicability of part 61.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Lists of pollutants and applicability of part 61. 61.01 Section 61.01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 61.01 Lists of pollutants and applicability of part 61. (a) The following list presents...

  14. 32 CFR Attachment 3 to Part 855 - Landing Permit Application Instructions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Landing Permit Application Instructions 3 Attachment 3 to Part 855 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Att. 3 Attachment 3 to Part 855—Landing Permit Application Instructions...

  15. 32 CFR Appendix A to Part 284 - Overview of Waiver Application Process

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Overview of Waiver Application Process A Appendix A to Part 284 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF... ALLOWANCES Pt. 284, App. A Appendix A to Part 284—Overview of Waiver Application Process A. Standards...

  16. 12 CFR Appendix III to Part 27 - Fair Housing Lending Inquiry/Application Log Sheet

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Fair Housing Lending Inquiry/Application Log Sheet III Appendix III to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. III Appendix III to Part 27—Fair Housing Lending Inquiry/Application Log Sheet...

  17. 12 CFR Appendix III to Part 27 - Fair Housing Lending Inquiry/Application Log Sheet

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Fair Housing Lending Inquiry/Application Log Sheet III Appendix III to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. III Appendix III to Part 27—Fair Housing Lending Inquiry/Application Log Sheet...

  18. 12 CFR Appendix III to Part 27 - Fair Housing Lending Inquiry/Application Log Sheet

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Fair Housing Lending Inquiry/Application Log Sheet III Appendix III to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. III Appendix III to Part 27—Fair Housing Lending Inquiry/Application Log Sheet...

  19. 12 CFR Appendix III to Part 27 - Fair Housing Lending Inquiry/Application Log Sheet

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Fair Housing Lending Inquiry/Application Log Sheet III Appendix III to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. III Appendix III to Part 27—Fair Housing Lending Inquiry/Application Log Sheet...

  20. 12 CFR Appendix III to Part 27 - Fair Housing Lending Inquiry/Application Log Sheet

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Fair Housing Lending Inquiry/Application Log Sheet III Appendix III to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. III Appendix III to Part 27—Fair Housing Lending Inquiry/Application Log Sheet...