Science.gov

Sample records for imaging hsv-1 tk

  1. Assessment of α-Fetoprotein Targeted HSV1-tk Expression in Hepatocellular Carcinoma with In Vivo Imaging

    PubMed Central

    Park, Ju Hui; Kim, Kwang Il; Lee, Kyo Chul; Lee, Yong Jin; Lee, Tae Sup; Chung, Wee Sup; Lim, Sang Moo

    2015-01-01

    Abstract Tumor-specific enhancer/promoter is applicable for targeting gene expression in tumors and helpful for tumor-targeting imaging and therapy. We aimed to acquire α-fetoprotein (AFP)-producing hepatocellular carcinoma (HCC) specific images using adenovirus containing HSV1-tk gene controlled by AFP enhancer/promoter and evaluate in vivo ganciclovir (GCV)-medicated therapeutic effects on AFP-targeted HSV1-tk expression with 18F-FDG positron emission tomography (PET). Recombinant adenovirus expressing HSV1-tk under AFP enhancer/promoter was produced (AdAFP-TK) and the expression levels were evaluated by RT-PCR and 125I-IVDU uptake. GCV-mediated HSV1-tk cytotoxicity was determined by MTT assay. After the mixture of AdAFP-fLuc and AdAFP-TK was administrated, bioluminescent images (BLIs) and 18F-FHBG PET images were obtained in tumor-bearing mice. In vivo therapeutic effects of AdAFP-TK and GCV in the HuH-7 xenograft model were monitored by 18F-FDG PET. When infected with AdAFP-TK, cell viability in HuH-7 was reduced, but those in HT-29 and SK-Hep-1 were not significantly decreased at any GCV concentration less than 100 μM. AFP-targeted fLuc and HSV1-tk expression were clearly visualized by BLI and 18F-FHBG PET images in AFP-producing HCC, respectively. In vivo GCV-mediated tumor growth inhibition by AFP-targeted HSV1-tk expression was monitored by 18F-FDG PET. Recombinant AdAFP-TK could be applied for AFP-targeted HCC gene therapy and imaging in AFP-producing HCC. PMID:25545853

  2. Design of a functional cyclic HSV1-TK reporter and its application to PET imaging of apoptosis.

    PubMed

    Wang, Zhe; Wang, Fu; Hida, Naoki; Kiesewetter, Dale O; Tian, Jie; Niu, Gang; Chen, Xiaoyuan

    2015-05-01

    Positron emission tomography (PET) is a sensitive and noninvasive imaging method that is widely used to explore molecular events in living subjects. PET can precisely and quantitatively evaluate cellular apoptosis, which has a crucial role in various physiological and pathological processes. In this protocol, we describe the design and use of an engineered cyclic herpes simplex virus 1-thymidine kinase (HSV1-TK) PET reporter whose kinase activity is specifically switched on by apoptosis. The expression of cyclic TK (cTK) in healthy cells leads to inactive product, whereas the activation of apoptosis through the caspase-3 pathway cleaves cTK, thus restoring its activity and enabling PET imaging. In addition to detailing the design and construction of the cTK plasmid in this protocol, we include assays for evaluating the function and specificity of the cTK reporter in apoptotic cells, such as assays for measuring the cell uptake of PET tracer in apoptotic cells, correlating doxorubicin (Dox)-induced cell apoptosis to cTK function recovery, and in vivo PET imaging of cancer cell apoptosis, and we also include corresponding data acquisition methods. The time to build the entire cTK reporter is ∼2-3 weeks. The selection of a stable cancer cell line takes ∼4-6 weeks. The time to implement assays regarding cTK function in apoptotic cells and the in vivo imaging varies depending on the experiment. The cyclization strategy described in this protocol can also be adapted to create other reporter systems for broad biomedical applications. PMID:25927390

  3. Different strategies for reducing intestinal background radioactivity associated with imaging HSV1-tk expression using established radionucleoside probes

    PubMed Central

    Ruggiero, Alessandro; Brader, Peter; Serganova, Inna; Zanzonico, Pat; Cai, Shangde; Lipman, Neil S.; Hricak, Hedvig; Blasberg, Ronald G.

    2011-01-01

    One limitation of HSV1-tk reporter PET imaging with nucleoside analogues is the high background radioactivity in the intestine. We hypothesized that endogenous expression of thymidine kinase in bacterial flora could phosphorylate and trap such radiotracers, contributing to the high radioactivity levels in the bowel and therefore explored different strategies to increase fecal elimination of radiotracer. Methods Intestinal radioactivity was assessed by in vivo microPET imaging and ex vivo tissue sampling following intravenous injection of 18F-FEAU, 124I-FIAU or 18F-FHBG in a germ-free mouse strain. We also explored the use of an osmotic laxative agent and/or a 100% enzymatically hydrolyzed liquid diet. Results No significant differences in intestinal radioactivity were observed between germ-free and normal mice. 18F-FHBG-derived intestinal radioactivity levels were higher than those of 18F-FEAU and 124I-FIAU; the intestine-to-blood ratio was more than 20-fold higher for 18F-FHBG than for 18F-FEAU and 124I-FIAU. The combination of Peptamen and Nulytely lowered intestinal radioactivity levels and increased (2.2-fold) the HSV1-tk transduced xenograft-to-intestine ratio for 18F-FEAU. Conclusions Intestinal bacteria in germ-free mice do not contribute to the high intestinal levels of radioactivity following injection of radionucleoside analogs. The combination of Peptamen and Nulytely increased radiotracer elimination by increasing bowel motility without inducing dehydration. PMID:20128998

  4. Different strategies for reducing intestinal background radioactivity associated with imaging HSV1-tk expression using established radionucleoside probes.

    PubMed

    Ruggiero, Alessandro; Brader, Peter; Serganova, Inna; Zanzonico, Pat; Cai, Shangde; Lipman, Neil S; Hricak, Hedvig; Blasberg, Ronald G

    2010-02-01

    One limitation of HSV1-tk reporter positron emission tomography (PET) with nucleoside analogues is the high background radioactivity in the intestine. We hypothesized that endogenous expression of thymidine kinase in bacterial flora could phosphorylate and trap such radiotracers, contributing to the high radioactivity levels in the bowel, and therefore explored different strategies to increase fecal elimination of radiotracer. Intestinal radioactivity was assessed by in vivo microPET imaging and ex vivo tissue sampling following intravenous injection of 18F-FEAU, 124I-FIAU, or 18F-FHBG in a germ-free mouse strain. We also explored the use of an osmotic laxative agent and/or a 100% enzymatically hydrolyzed liquid diet. No significant differences in intestinal radioactivity were observed between germ-free and normal mice. 18F-FHBG-derived intestinal radioactivity levels were higher than those of 18F-FEAU and 124I-FIAU; the intestine to blood ratio was more than 20-fold higher for 18F-FHBG than for 18F-FEAU and 124I-FIAU. The combination of Peptamen and Nulytely lowered intestinal radioactivity levels and increased (2.2-fold) the HSV1-tk transduced xenograft to intestine ratio for 18F-FEAU. Intestinal bacteria in germ-free mice do not contribute to the high intestinal levels of radioactivity following injection of radionucleoside analogues. The combination of Peptamen and Nulytely increased radiotracer elimination by increasing bowel motility without inducing dehydration. PMID:20128998

  5. A cyclic HSV1-TK reporter for real-time PET imaging of apoptosis

    PubMed Central

    Wang, Fu; Wang, Zhe; Hida, Naoki; Kiesewetter, Dale O.; Ma, Ying; Yang, Kai; Rong, Pengfei; Liang, Jimin; Tian, Jie; Niu, Gang; Chen, Xiaoyuan

    2014-01-01

    The coordination of cell proliferation and programmed death (apoptosis) is essential for normal physiology, and imbalance in these two opposing processes is implicated in various diseases. Objective and quantitative noninvasive imaging of apoptosis would significantly facilitate rapid screening as well as validation of therapeutic chemicals. Herein, we molecularly engineered an apoptosis switch-on PET-based cyclic herpes simplex virus type 1–thymidine kinase reporter (cTK266) containing a caspase-3 recognition domain as the switch. Translation of the reporter and protein splicing in healthy mammalian cells produce an inactive cyclic chimera. Upon apoptosis, caspase-3–specific cleavage of the circular product occurs, resulting in the restoration of the thymidine kinase activity, which can be detected in living cells and animals by noninvasive PET imaging. Our results showed the high sensitivity of this reporter in dynamic and quantitative imaging of apoptosis in living subjects. This reporter could be applied as a valuable tool for high-throughput functional screening of proapoptotic and antiapoptotic compounds in preclinical models in drug development, and monitoring the destination of therapeutic cells in clinical settings. PMID:24706884

  6. Synthesis and preclinical evaluation of a new C-6 alkylated pyrimidine derivative as a PET imaging agent for HSV1-tk gene expression

    PubMed Central

    Müller, Ursina; Ross, Tobias L; Ranadheera, Charlene; Slavik, Roger; Müller, Adrienne; Born, Mariana; Trauffer, Evelyn; Sephton, Selena Milicevic; Scapozza, Leonardo; Krämer, Stefanie D; Ametamey, Simon M

    2013-01-01

    [18F]FHOMP (6-((1-[18F]-fluoro-3-hydroxypropan-2-yloxy)methyl)-5-methylpyrimidine-2,4(1H,3H)-dione), a C-6 substituted pyrimidine derivative, has been synthesized and evaluated as a potential PET agent for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene expression. [18F]FHOMP was prepared by the reaction of the tosylated precursor with tetrabutylammonium [18F]-fluoride followed by acidic cleavage of the protecting groups. In vitro cell accumulation of [18F]FHOMP and [18F]FHBG (reference) was studied with HSV1-tk transfected HEK293 (HEK293TK+) cells. Small animal PET and biodistribution studies were performed with HEK293TK+ xenograft-bearing nude mice. The role of equilibrative nucleoside transporter 1 (ENT1) in the transport and uptake of [18F] FHOMP was also examined in nude mice after treatment with ENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside phosphate (NBMPR-P). [18F]FHOMP was obtained in a radiochemical yield of ~25% (decay corrected) and the radiochemical purity was greater than 95%. The uptake of [18F]FHOMP in HSV1-TK containing HEK293TK+ cells was 52 times (at 30 min) and 244 times (at 180 min) higher than in control HEK293 cells. The uptake ratios between HEK293TK+ and HEK293 control cells for [18F]FHBG were significantly lower i.e. 5 (at 30 min) and 81 (240 min). In vivo, [18F]FHOMP accumulated to a similar extend in HEK293TK+ xenografts as [18F]FHBG but with a higher general background. Blocking of ENT1 reduced [18F]FHOMP uptake into brain from a standardized uptake value (SUV) of 0.10±0.01 to 0.06±0.02, but did not reduce the general background signal in PET. Although [18F]FHOMP does not outperform [18F]FHBG in its in vivo performance, this novel C-6 pyrimidine derivative may be a useful probe for monitoring HSV1-tk gene expression in vivo. PMID:23342302

  7. Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI

    PubMed Central

    Bar-Shir, Amnon; Liu, Guanshu; Greenberg, Marc M; Bulte, Jeff W M; Gilad, Assaf A

    2013-01-01

    In experiments involving transgenic animals or animals treated with transgenic cells, it is important to have a method to monitor the expression of the relevant genes longitudinally and noninvasively. An MRI-based reporter gene enables monitoring of gene expression in the deep tissues of living subjects. This information can be co-registered with detailed high-resolution anatomical and functional information. We describe here the synthesis of the reporter probe, 5-methyl-5,6-dihydrothymidine (5-MDHT), which can be used for imaging of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression in rodents by MRI. The protocol also includes data acquisition and data processing routines customized for chemical exchange saturation transfer (CEST) contrast mechanisms. The dihydropyrimidine 5-MDHT is synthesized through a catalytic hydrogenation of the 5,6-double bond of thymidine to yield 5,6-dihydrothymidine, which is methylated on the C-5 position of the resulting saturated pyrimidine ring. The synthesis of 5-MDHT can be completed within 5 d, and the compound is stable for more than 1 year. PMID:24177294

  8. Cold Sores (HSV-1)

    MedlinePlus

    ... Help a Friend Who Cuts? Cold Sores (HSV-1) KidsHealth > For Teens > Cold Sores (HSV-1) Print A A A Text Size What's in ... person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don't just show ...

  9. Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice.

    PubMed

    Park, Hye-Jin; Kurokawa, Masahiko; Shiraki, Kimiyasu; Nakamura, Norio; Choi, Jae-Sue; Hattori, Masao

    2005-12-01

    The antiviral activities of extracts from 5 species of marine algae collected at Haeundae (Pusan, Korea), were examined using plaque reduction assays. Although the activity of a methanol (MeOH) extract of Sargassum ringoldianum (Sargassaceae) was the most potent against several types of viruses, it was also cytotoxic. A MeOH extract of Symphyocladia latiuscula (Rhodomelaceae) and its fractions exhibited antiviral activities against acyclovir (ACV) and phosphonoacetic acid (PAA)-resistant (AP(r)) herpes simplex type 1 (HSV-1), thymidine kinase (TK(-)) deficient HSV-1 and wild type HSV-1 in vitro without cytotoxicity. The major component, 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) of a CH(2)Cl(2)-soluble fraction was active against wild type HSV-1, as well as AP(r) HSV-1 and TK(-) HSV-1 (IC(50) values of 5.48, 4.81 and 23.3 microg/ml, respectively). The therapeutic effectiveness of the MeOH extract and TDB from S. latiuscula was further examined in BALB/c mice that were cutaneously infected with HSV-1 strain 7401H. Three daily oral administrations of the MeOH extract and TDB significantly delayed the appearance of score 2 skin lesions (local vesicles) and limited the development of further score 6 (mild zosteriform) lesions in infected mice without toxicity compared with controls. In addition, TDB suppressed virus yields in the brain and skin. Therefore TDB should be a promising anti HSV agent. PMID:16327161

  10. IFI16 Restricts HSV-1 Replication by Accumulating on the HSV-1 Genome, Repressing HSV-1 Gene Expression, and Directly or Indirectly Modulating Histone Modifications

    PubMed Central

    Johnson, Karen E.; Bottero, Virginie; Flaherty, Stephanie; Dutta, Sujoy; Singh, Vivek Vikram; Chandran, Bala

    2014-01-01

    Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16

  11. Substrate specificity of three viral thymidine kinases (TK): vaccinia virus TK, feline herpesvirus TK, and canine herpesvirus TK.

    PubMed

    Solaroli, N; Johansson, M; Balzarini, J; Karlsson, A

    2006-01-01

    In search of novel suicide gene candidates we have cloned and characterized thymidine kinases from three viruses; vaccinia virus TK (VVTK), feline herpesvirus TK (FHV-TK), and canine herpesvirus TK (CHV-TK). Our studies showed that VVTK primarily is a thymidine kinase, with a substrate specificity mainly restricted to dThd and only minor affinity for dCyd. VVTK also is related closely to mammalian thymidine kinase 1 (TK1), with 66% identity and 75% general homology. Although CHV-TK and FHV-TK are sequence related to herpes simplex virus types 1 thymidine kinase (HSV1-TK), with 31% and 35% identity and a general similarity of 54%, the substrate specificity of these enzymes was restricted to dThd and thymidine analogs. PMID:17065088

  12. HSV-1 infection through inhibitory receptor, PILRalpha.

    PubMed

    Satoh, Takeshi; Arase, Hisashi

    2008-06-01

    Paired receptors that consist of highly related activating and inhibitory receptors are widely involved in the regulation of immune response. Several viruses that persistently infect hosts possess genes that encode ligands for inhibitory receptors in order to escape from host immune system. Herpes simplex virus type 1 (HSV-1) is one of the viruses that cause persistent infection. Here, we found that HSV-1-infected cells express a ligand for paired immunoglobulin like-type 2 receptor (PILR)alpha, one of paired inhibitory receptors mainly expressed on myeloid cells such as monocytes, macrophages and dendritic cells. Furthermore, we have identified that glycoprotein B (gB), an envelope protein of HSV-1, is a ligand for PILRalpha by mass spectrometry analysis. Because gB is essential for HSV-1 to infect cells, we analyzed function of PILRalpha in HSV-1 infection. When PILRalpha was transfected into CHO-K1 cells, which is resistant to HSV-1 infection, the PILRalpha-transfected CHO-K1 cells became permissive to HSV-1 infection. We further addressed weather PILRalpha is involved in the HSV-1 infection of primary human cells. CD14-positive monocytes that express both PILRalpha and HVEM, a glycoprotein D receptor, were susceptible to HSV-1 infection. In contrast, HSV-1 did not infect CD14-negative lymphocytes that express HVEM but not PILRalpha. Furthermore, HSV-1 infection of monocyte was blocked by both anti-PILRalpha mAb and anti-HVEM antiserum. These findings indicated that both gB and gD receptors play an important role in HSV-1 infection. We have shown, for the first time, that viruses use an inhibitory immune receptor to enter a cell. Invasion into hematopoietic cells by using inhibitory receptors should be beneficial to the virus because binding to inhibitory receptors may not only provide entry, but also trigger the inhibitory receptor to suppress the immune functions of the infected cell. PMID:19122386

  13. Stereospecificity of human DNA polymerases alpha, beta, gamma, delta and epsilon, HIV-reverse transcriptase, HSV-1 DNA polymerase, calf thymus terminal transferase and Escherichia coli DNA polymerase I in recognizing D- and L-thymidine 5'-triphosphate as substrate.

    PubMed Central

    Focher, F; Maga, G; Bendiscioli, A; Capobianco, M; Colonna, F; Garbesi, A; Spadari, S

    1995-01-01

    L-beta-Deoxythymidine (L-dT), the optical enantiomer of D-beta-deoxythymidine (D-dT), and L-enantiomers of nucleoside analogs, such as 5-iodo-2'-deoxy-L-uridine (L-IdU) and E-5-(2-bromovinyl)-2'-deoxy-L-uridine (L-BVdU), are not recognized in vitro by human cytosolic thymidine kinase (TK), but are phosphorylated by herpes simplex virus type 1 (HSV-1) TK and inhibit HSV-1 proliferation in infected cells. Here we report that: (i) L-dT is selectively phosphorylated in vivo to L-dTMP by HSV-1 TK and L-dTMP is further phosphorylated to the di- and triphosphate forms by non-stereospecific cellular kinases; (ii) L-dTTP not only inhibits HSV-1 DNA polymerase in vitro, but also human DNA polymerase alpha, gamma, delta and epsilon, human immunodeficiency virus reverse transcriptase (HIV-1 RT), Escherichia coli DNA polymerase 1 and calf thymus terminal transferase, although DNA polymerase beta was resistant; (iii) whereas DNA polymerase beta, gamma, delta and epsilon are unable to utilize L-dTTP as a substrate, the other DNA polymerases clearly incorporate at least one L-dTMP residue, with DNA polymerase alpha and HIV-1 RT able to further elongate the DNA chain by catalyzing the formation of the phosphodiester bond between the incorporated L-dTMP and an incoming L-dTTP; (iv) incorporated L-nucleotides at the 3'-OH terminus make DNA more resistant to 3'-->5' exonucleases. In conclusion, our results suggest a possible mechanism for the inhibition of viral proliferation by L-nucleosides. Images PMID:7544886

  14. Role of Proteolipid Protein in HSV-1 Entry in Oligodendrocytic Cells.

    PubMed

    Bello-Morales, Raquel; Crespillo, Antonio Jesús; Praena, Beatriz; Tabarés, Enrique; Revilla, Yolanda; García, Elena; Fraile-Ramos, Alberto; Baron, Wia; Krummenacher, Claude; López-Guerrero, José Antonio

    2016-01-01

    Herpes simplex virus type 1 (HSV-1) has the ability to enter many different hosts and cell types by several strategies. This highly prevalent alphaherpesvirus can enter target cells using different receptors and different pathways: fusion at a neutral pH, low-pH-dependent and low-pH-independent endocytosis. Several cell receptors for viral entry have been described, but several observations suggest that more receptors for HSV-1 might exist. In this work, we propose a novel role for the proteolipid protein (PLP) in HSV-1 entry into the human oligodendrocytic cell line HOG. Cells transfected with PLP-EGFP showed an increase in susceptibility to HSV-1. Furthermore, the infection of HOG and HOG-PLP transfected cells with the R120vGF virus--unable to replicate in ICP4-defficient cells--showed an increase in viral signal in HOG-PLP, suggesting a PLP involvement in viral entry. In addition, a mouse monoclonal antibody against PLP drastically inhibited HSV-1 entry into HOG cells. PLP and virions colocalized in confocal immunofluorescence images, and in electron microscopy images, which suggest that PLP acts at the site of entry into HOG cells. Taken together these results suggest that PLP may be involved in HSV-1 entry in human oligodendrocytic cells. PMID:26807581

  15. Role of Proteolipid Protein in HSV-1 Entry in Oligodendrocytic Cells

    PubMed Central

    Bello-Morales, Raquel; Crespillo, Antonio Jesús; Praena, Beatriz; Tabarés, Enrique; Revilla, Yolanda; García, Elena; Fraile-Ramos, Alberto; Baron, Wia; Krummenacher, Claude; López-Guerrero, José Antonio

    2016-01-01

    Herpes simplex virus type 1 (HSV-1) has the ability to enter many different hosts and cell types by several strategies. This highly prevalent alphaherpesvirus can enter target cells using different receptors and different pathways: fusion at a neutral pH, low-pH-dependent and low-pH-independent endocytosis. Several cell receptors for viral entry have been described, but several observations suggest that more receptors for HSV-1 might exist. In this work, we propose a novel role for the proteolipid protein (PLP) in HSV-1 entry into the human oligodendrocytic cell line HOG. Cells transfected with PLP-EGFP showed an increase in susceptibility to HSV-1. Furthermore, the infection of HOG and HOG-PLP transfected cells with the R120vGF virus–unable to replicate in ICP4-defficient cells- showed an increase in viral signal in HOG-PLP, suggesting a PLP involvement in viral entry. In addition, a mouse monoclonal antibody against PLP drastically inhibited HSV-1 entry into HOG cells. PLP and virions colocalized in confocal immunofluorescence images, and in electron microscopy images, which suggest that PLP acts at the site of entry into HOG cells. Taken together these results suggest that PLP may be involved in HSV-1 entry in human oligodendrocytic cells. PMID:26807581

  16. Genetic incorporation of HSV-1 thymidine kinase into the adenovirus protein IX for functional display on the virion

    SciTech Connect

    Li Jing; Le, Long; Sibley, Don A.; Mathis, J. Michael; Curiel, David T. . E-mail: david.curiel@ccc.uab.edu

    2005-08-01

    Adenoviral vectors have been exploited for a wide range of gene therapy applications. Direct genetic modification of the adenovirus capsid proteins has been employed to achieve alteration of vector tropism. We have defined the carboxy-terminus of the minor capsid protein pIX as a locus capable of presenting incorporated ligands on the virus capsid surface. Thus, we sought to exploit the possibility of incorporating functional proteins at pIX. In our current study, we incorporated the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) within pIX to determine if a larger protein of this type could retain functionality in this context. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional HSV-1 TK as a component of their capsid surface. DNA packaging and cytopathic effect were not affected by this genetic modification to the virus, while CAR-dependent binding was only marginally affected. Using an in vitro [{sup 3}H]-thymidine phosphorylation assay, we demonstrated that the kinase activity of the protein IX-TK fusion protein incorporated into adenoviral virions is functional. Analysis of cell killing after adenovirus infection showed that the protein IX-TK fusion protein could also serve as a therapeutic gene by rendering transduced cells sensitive to gancyclovir. Using 9-[4-[{sup 18}F]-fluoro-3-(hydroxymethyl)butyl]guanine ([{sup 18}F]-FHBG; a positron-emitting TK substrate), we demonstrated that we could detect specific cell binding and uptake of adenoviral virions containing the protein IX-TK fusion protein at 1 h post-infection. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional HSV-1 TK as a component of their capsid surface. The alternative display of HSV-1 TK on the capsid may offer advantages with respect to direct functional applications of this gene product. In addition, the determination of an expanded upper limit of incorporable

  17. Inhibition of HSV-1 Replication by Gene Editing Strategy

    PubMed Central

    Roehm, Pamela C.; Shekarabi, Masoud; Wollebo, Hassen S.; Bellizzi, Anna; He, Lifan; Salkind, Julian; Khalili, Kamel

    2016-01-01

    HSV-1 induced illness affects greater than 85% of adults worldwide with no permanent curative therapy. We used RNA-guided CRISPR/Cas9 gene editing to specifically target for deletion of DNA sequences of the HSV-1 genome that span the region directing expression of ICP0, a key viral protein that stimulates HSV-1 gene expression and replication. We found that CRISPR/Cas9 introduced InDel mutations into exon 2 of the ICP0 gene profoundly reduced HSV-1 infectivity in permissive human cell culture models and protected permissive cells against HSV-1 infection. CRISPR/Cas9 mediated targeting ICP0 prevented HSV-1-induced disintegration of promonocytic leukemia (PML) nuclear bodies, an intracellular event critical to productive HSV-1 infection that is initiated by interaction of the ICP0 N-terminus with PML. Combined treatment of cells with CRISPR targeting ICP0 plus the immediate early viral proteins, ICP4 or ICP27, completely abrogated HSV-1 infection. We conclude that RNA-guided CRISPR/Cas9 can be used to develop a novel, specific and efficacious therapeutic and prophylactic platform for targeted viral genomic ablation to treat HSV-1 diseases. PMID:27064617

  18. Nested PCR for detection of HSV-1 in oral mucosa

    PubMed Central

    Jalouli, Miranda-Masoumeh; Jalouli, Jamshid; Hasséus, Bengt; Öhman, Jenny; Hirsch, Jan-Michaél

    2015-01-01

    Background It has been estimated that 15%-20% of human tumours are driven by infection and inflammation, and viral infections play an important role in malignant transformation. The evidence that herpes simplex virus type 1 (HSV-1) could be involved in the aetiology of oral cancer varies from weak to persuasive. This study aimed to investigate by nested PCR (NPCR) the prevalence of HSV-1 in samples from normal oral mucosa, oral leukoplakia, and oral squamous cell carcinoma (OSCC). Material and Methods We investigated the prevalence of HSV-1 in biopsies obtained from 26 fresh, normal oral mucosa from healthy volunteers as well as 53 oral leukoplakia and 27 OSCC paraffin-embedded samples. DNA was extracted from the specimens and investigated for the presence of HSV-1 by nested polymerase chain reaction (NPCR) and DNA sequencing. Results HSV-1 was detected in 14 (54%) of the healthy samples, in 19 (36%) of the oral leukoplakia samples, and in 14 (52%) of the OSCC samples. The differences were not statistically significant. Conclusions We observed a high incidence of HSV-1 in healthy oral mucosa, oral leukoplakia, and OSCC tissues. Thus, no connection between OSCC development and presence of HSV-1 was detected. Key words:HSV-1, nested PCR, PCR. PMID:26449432

  19. Reactivation of HSV-1 following explant of tree shrew brain.

    PubMed

    Li, Lihong; Li, Zhuoran; Li, Xin; Wang, Erlin; Lang, Fengchao; Xia, Yujie; Fraser, Nigel W; Gao, Feng; Zhou, Jumin

    2016-06-01

    Herpes Simplex Virus type I (HSV-1) latently infects peripheral nervous system (PNS) sensory neurons, and its reactivation leads to recurring cold sores. The reactivated HSV-1 can travel retrograde from the PNS into the central nervous system (CNS) and is known to be causative of Herpes Simplex viral encephalitis. HSV-1 infection in the PNS is well documented, but little is known on the fate of HSV-1 once it enters the CNS. In the murine model, HSV-1 genome persists in the CNS once infected through an ocular route. To gain more details of HSV-1 infection in the CNS, we characterized HSV-1 infection of the tree shrew (Tupaia belangeri chinensis) brain following ocular inoculation. Here, we report that HSV-1 enters the tree shrew brain following ocular inoculation and HSV-1 transcripts, ICP0, ICP4, and LAT can be detected at 5 days post-infection (p.i.), peaking at 10 days p.i. After 2 weeks, ICP4 and ICP0 transcripts are reduced to a basal level, but the LAT intron region continues to be expressed. Live virus could be recovered from the olfactory bulb and brain stem tissue. Viral proteins could be detected using anti-HSV-1 antibodies and anti-ICP4 antibody, during the acute stage but not beyond. In situ hybridization could detect LAT during acute infection in most brain regions and in olfactory bulb and brain stem tissue well beyond the acute stage. Using a homogenate from these tissues' post-acute infection, we did not recover live HSV-1 virus, supporting a latent infection, but using a modified explant cocultivation technique, we were able to recover reactivated virus from these tissues, suggesting that the HSV-1 virus latently infects the tree shrew CNS. Compared to mouse, the CNS acute infection of the tree shrew is delayed and the olfactory bulb contains most latent virus. During the acute stage, a portion of the infected tree shrews exhibit symptoms similar to human viral encephalitis. These findings, together with the fact that tree shrews are closely

  20. HSV-1 Remodels Host Telomeres To Facilitate Viral Replication

    PubMed Central

    Deng, Zhong; Kim, Eui Tae; Vladimirova, Olga; Dheekollu, Jayaraju; Wang, Zhuo; Newhart, Alyshia; Liu, Dongmei; Myers, Jaclyn L.; Hensley, Scott E.; Moffat, Jennifer; Janicki, Susan M.; Fraser, Nigel W.; Knipe, David M.; Weitzman, Matthew D.; Lieberman, Paul M.

    2015-01-01

    Summary Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1, and loss of the telomere repeat DNA signal. The HSV-1 encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. shRNA depletion of TPP1 increases viral replication, arguing that TPP1inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins and ICP8 null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated pre-replication foci and promotes viral genomic replication. PMID:25497088

  1. Retention of the herpes simplex virus type 1 (HSV-1) UL37 protein on single-stranded DNA columns requires the HSV-1 ICP8 protein.

    PubMed Central

    Shelton, L S; Albright, A G; Ruyechan, W T; Jenkins, F J

    1994-01-01

    The UL37 and ICP8 proteins present in herpes simplex virus type 1 (HSV-1)-infected-cell extracts produced at 24 h postinfection coeluted from single-stranded-DNA-cellulose columns. Experiments carried out with the UL37 protein expressed by a vaccinia virus recombinant (V37) revealed that the UL37 protein did not exhibit DNA-binding activity in the absence of other HSV proteins. Analysis of extracts derived from cells coinfected with V37 and an ICP8-expressing vaccinia virus recombinant (V8) and analysis of extracts prepared from cells infected with the HSV-1 ICP8 deletion mutants d21 and n10 revealed that the retention of the UL37 protein on single-stranded DNA columns required a DNA-binding-competent ICP8 protein. Images PMID:8254765

  2. Widespread disruption of host transcription termination in HSV-1 infection.

    PubMed

    Rutkowski, Andrzej J; Erhard, Florian; L'Hernault, Anne; Bonfert, Thomas; Schilhabel, Markus; Crump, Colin; Rosenstiel, Philip; Efstathiou, Stacey; Zimmer, Ralf; Friedel, Caroline C; Dölken, Lars

    2015-01-01

    Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination. PMID:25989971

  3. Widespread disruption of host transcription termination in HSV-1 infection

    PubMed Central

    Rutkowski, Andrzej J.; Erhard, Florian; L'Hernault, Anne; Bonfert, Thomas; Schilhabel, Markus; Crump, Colin; Rosenstiel, Philip; Efstathiou, Stacey; Zimmer, Ralf; Friedel, Caroline C.; Dölken, Lars

    2015-01-01

    Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination. PMID:25989971

  4. Selective recruitment of host factors by HSV-1 replication centers

    PubMed Central

    LANG, Feng-Chao; LI, Xin; VLADMIROVA, Olga; LI, Zhuo-Ran; CHEN, Gui-Jun; XIAO, Yu; LI, Li-Hong; LU, Dan-Feng; HAN, Hong-Bo; ZHOU, Ju-Min

    2015-01-01

    Herpes simplex virus type 1 (HSV-1) enters productive infection after infecting epithelial cells, where it controls the host nucleus to make viral proteins, starts viral DNA synthesis and assembles infectious virions. In this process, replicating viral genomes are organized into replication centers to facilitate viral growth. HSV-1 is known to use host factors, including host chromatin and host transcription regulators, to transcribe its genes; however, the invading virus also encounters host defense and stress responses to inhibit viral growth. Recently, we found that HSV-1 replication centers recruit host factor CTCF but exclude βH2A.X. Thus, HSV-1 replication centers may selectively recruit cellular factors needed for viral growth, while excluding host factors that are deleterious for viral transcription or replication. Here we report that the viral replication centers selectively excluded modified histone H3, including heterochromatin mark H3K9me3, H3S10P and active chromatin mark H3K4me3, but not unmodified H3. We found a dynamic association between the viral replication centers and host RNA polymerase II. The centers also recruited components of the DNA damage response pathway, including 53BP1, BRCA1 and host antiviral protein SP100. Importantly, we found that ATM kinase was needed for the recruitment of CTCF to the viral centers. These results suggest that the HSV-1 replication centers took advantage of host signaling pathways to actively recruit or exclude host factors to benefit viral growth. PMID:26018857

  5. HSV-1 ICP0: paving the way for viral replication.

    PubMed

    Smith, Miles C; Boutell, Chris; Davido, David J

    2011-04-01

    Herpes simplex virus type 1 (HSV-1) has two distinct phases of its viral life cycle: lytic and latent. One viral immediate-early protein that is responsible for determining the balance between productive lytic replication and reactivation from latency is infected cell protein 0 (ICP0). ICP0 is a 775-amino acid really interesting new gene (RING)-finger-containing protein that possesses E3 ubiquitin ligase activity, which is required for ICP0 to activate HSV-1 gene expression, disrupt nuclear domain (ND) 10 structures, mediate the degradation of cellular proteins, and evade the host cell's intrinsic and innate antiviral defenses. This article examines our current understanding of ICP0's transactivating, E3 ubiquitin ligase, and antihost defense activities and their inter-relationships to one another. Lastly, we will discuss how these properties of ICP0 may be utilized as possible targets for HSV-1 antiviral therapies. PMID:21765858

  6. First HSV-1 non primary genital herpes in two patients.

    PubMed

    Fouéré, Sébastien; Chaine, Bénédicte; Maylin, Sarah; Minier, Marine; Vallée, Pascale; Scieux, Catherine; Lassau, François; Legoff, Jérôme; Janier, Michel

    2016-05-01

    First HSV-1 genital episodes in HSV-2 infected patients however, had never been demonstrated until the 2 cases we observed. This scarcity could reflect the lower impact of HSV-2 on western populations but questions the existence of cross-protection between viral types. PMID:27018573

  7. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/ tk-luc human breast cancer xenografts

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Fang; Lin, Yi-Yu; Wang, Hsin-Ell; Liu, Ren-Shen; Pang, Fei; Hwang, Jeng-Jong

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1- tk) and luciferase ( luc). Both 131I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/ tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/ tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/ tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  8. Synthesis and In Vitro Evaluation of 5-[18F]Fluoroalkyl Pyrimidine Nucleosides for Molecular Imaging of Herpes Simplex Virus Type-1 Thymidine Kinase Reporter Gene Expression

    PubMed Central

    Chacko, Ann-Marie; Qu, Wenchao; Kung, Hank F.

    2014-01-01

    Two novel series of 5-fluoroalkyl-2′-deoxyuridines (FPrDU, FBuDU, FPeDU) and 2′-fluoro-2′-deoxy-5-fluoroalkylarabinouridines (FFPrAU, FFBuAU, FFPeAU), having three, four or five methylene units (propyl, butyl, or pentyl) at C-5, were prepared and tested as reporter probes for imaging HSV1-tk gene expression. The Negishi coupling methodology was employed to efficiently synthesize the radiolabeling precursors. All six 5-[18F]fluoroalkyl pyrimidines were prepared readily from 3-N-benzoyl-3′,5′-di-O-benzoyl-protected 5-O-mesylate precursors in 17–35% radiochemical yield (decay-corrected). In vitro studies highlighted that all six [18F]labeled nucleosides selectively accumulated in cells expressing the HSV1-TK protein, with negligible uptake in control cells. [18F]FPrDU, [18F]FBuDU, [18F]FPeDU, and [18F]FFBuAU had the best uptake profiles. Despite selective accumulation in HSV1-tk expressing cells, all 5-fluoroalkyl pyrimidine nucleosides had low to negligible cytotoxic activity (CC50>1000–209 μM). Ultimately, results demonstrated that 5-[18F]fluoropropyl, [18F]fluorobutyl, and [18F]fluoropentyl pyrimidine nucleosides have potential as in vivo HSV1-TK PET reporter probes over a dynamic range of reporter gene expression levels. PMID:18800764

  9. Analysis of the SUMO2 Proteome during HSV-1 Infection

    PubMed Central

    Groslambert, Marine; Glass, Mandy; Orr, Anne; Hay, Ronald T.; Everett, Roger D.

    2015-01-01

    Covalent linkage to members of the small ubiquitin-like (SUMO) family of proteins is an important mechanism by which the functions of many cellular proteins are regulated. Sumoylation has roles in the control of protein stability, activity and localization, and is involved in the regulation of transcription, gene expression, chromatin structure, nuclear transport and RNA metabolism. Sumoylation is also linked, both positively and negatively, with the replication of many different viruses both in terms of modification of viral proteins and modulation of sumoylated cellular proteins that influence the efficiency of infection. One prominent example of the latter is the widespread reduction in the levels of cellular sumoylated species induced by herpes simplex virus type 1 (HSV-1) ubiquitin ligase ICP0. This activity correlates with relief from intrinsic immunity antiviral defence mechanisms. Previous work has shown that ICP0 is selective in substrate choice, with some sumoylated proteins such the promyelocytic leukemia protein PML being extremely sensitive, while RanGAP is completely resistant. Here we present a comprehensive proteomic analysis of changes in the cellular SUMO2 proteome during HSV-1 infection. Amongst the 877 potentially sumoylated species detected, we identified 124 whose abundance was decreased by a factor of 3 or more by the virus, several of which were validated by western blot and expression analysis. We found many previously undescribed substrates of ICP0 whose degradation occurs by a range of mechanisms, influenced or not by sumoylation and/or the SUMO2 interaction motif within ICP0. Many of these proteins are known or are predicted to be involved in the regulation of transcription, chromatin assembly or modification. These results present novel insights into mechanisms and host cell proteins that might influence the efficiency of HSV-1 infection. PMID:26200910

  10. A Phase I Clinical Trial of Ad5.SSTR/TK.RGD, a Novel Infectivity-Enhanced Bicistronic Adenovirus, in Patients with Recurrent Gynecologic Cancer

    PubMed Central

    Kim, Kenneth H.; Dmitriev, Igor; O’Malley, Janis P.; Wang, Minghui; Saddekni, Souheil; You, Zhiying; Preuss, Meredith A.; Harris, Raymond D.; Aurigemma, Rosemarie; Siegal, Gene P.; Zinn, Kurt R.; Curiel, David T.; Alvarez, Ronald D.

    2014-01-01

    Purpose Ad5.SSTR/TK.RGD is an infectivity-enhanced adenovirus expressing a therapeutic thymidine kinase suicide gene and a somatostatin receptor that allows for noninvasive gene transfer imaging. The purpose of this study was to identify the MTD, toxicities, clinical efficacy and biologic effects of Ad5.SSTR/TK.RGD in patients with recurrent gynecologic cancer. Experimental Design Eligible patients were treated intraperitoneally (IP) for 3 days with 1×109 to 1×1012 vp/dose of Ad5.SSTR/TK.RGD followed by intravenous ganciclovir for 14 days. Toxicity and clinical efficacy were assessed utilizing CTC Adverse Events grading and RECIST criteria. Imaging utilizing In-111 pentetreotide was obtained before and after treatment. Tissue samples were obtained to evaluate for gene transfer, generation of wild-type virus, viral shedding and antibody response. Results Twelve patients were treated in three cohorts. The most common vector-related clinical toxicities were grade 1–2 constitutional or pain symptoms, experienced most often in patients treated at the highest dose. MTD was not identified. Five patients demonstrated stable disease; all others experienced progressive disease. One patient with stable disease experienced complete resolution of disease and normalization of CA125 on further follow-up. Imaging detected increased In-111 pentetreotide retention in patients treated at the highest dose. Ancillary studies demonstrated presence of Ad5.SSTR/TK.RGD virus and HSV1-tk expression in ascites samples collected at various time points in most patients treated within the higher dose cohorts. Conclusions This study demonstrates the safety, potential efficacy, and possible gene transfer imaging capacity of Ad5.SSTR/TK.RGD in patients with recurrent gynecologic cancer. Further development of this novel gene therapeutic appears to be warranted. PMID:22510347

  11. Recent performance data on the Tektronix TK1024A imager: back-illuminated, MPP, and non-MPP operating modes

    NASA Astrophysics Data System (ADS)

    Woody, Thomas W.; Hayes, Raymond; Gladhill, Kristie W.

    1992-08-01

    The TK1024 four quadrant readout imager has been in production for several years and has evolved into a device with a high level of performance. Current production volumes are several hundred wafer starts per year (4 devices per wafer). In the last year improvements have been made in dark current with the addition of MPP unpiants and the reduction of MOSFET read noise. The paper presented at last year''s symposium focused on general performance data (SPIE vol. 1447 pgs 298 - 309 ). This paper will discuss specific test data recently observed on devices fabricated with the current process. Data on read noise conversion gain and dark current versus temperature in both non-MPP and MPP modes will be the emphasis of this paper. In addition information wifi be presented on Full Well versus operating voltages and optimal timing for MPP operation in the typical slow scan (50 kilopixels/sec) readout mode. 1.

  12. In vivo evaluation of the uptake of [(123)I]FIAU, [(123)I]IVFRU and [(123)I]IVFAU by normal mouse brain: potential for noninvasive assessment of HSV-1 thymidine kinase gene expression in gliomas.

    PubMed

    Li, H-F; Winkeler, A; Moharram, S; Knaus, E E; Dittmar, K; Stöckle, M; Heiss, W D; Wiebe, L I; Jacobs, A H; Jacob, A J

    2008-01-01

    Radioiodinated 5-iodo-1-(2-fluoro-2-deoxy-beta-D-arabinofuranosyl)uracil (F *IAU) is most commonly used for noninvasive assessment of herpes simplex virus type 1 thymidine kinase (HSV-1-tk) gene expression. However, it does not permeate the intact blood-brain barrier (BBB) because of its moderate lipophilicity. In this work, three iodo-nucleosides, FIAU, IVFRU, and IVFAU, were radiolabeled with iodine-123 and tested for permeation of the BBB in mice and for potential measurement of HSV-1-tk gene expression in gliomas. The results demonstrate that brain uptake and retention of these nucleosides is not directly related to their lipophilicity. The low brain uptake of IVFAU, in conjunction with its higher and constant brain/blood ratio, may reflect greater stability against hydrolysis of the N-glycosidic bond. In vivo PET evaluations of [(124)I]IVFRU and [(124)I]IVFAU in tumor-bearing mice are warranted. PMID:18188770

  13. A case of relapsing-remitting facial palsy and ipsilateral brachial plexopathy caused by HSV-1.

    PubMed

    Alstadhaug, Karl B; Kvarenes, Hanne W; Prytz, Jan; Vedeler, Christian

    2016-05-01

    The etiologies of Bell's palsy and brachial neuritis remain uncertain, and the conditions rarely co-occur or reoccur. Here we present a woman in her twenties who had several relapsing-remitting episodes with left-sided facial palsy and brachial neuropathy. The episodes always started with painful left-sided oral blisters. Repeat PCRs HSV-1 DNA from oral vesicular lesions were positive. Extensive screening did not reveal any other underlying cause. Findings on MRI T2-weighted brachial plexus STIR images, using a 3.0-Tesla scanner during an episode, were compatible with brachial plexus neuritis. Except a mannose-binding lectin deficiency, a congenital complement deficiency that is frequently found in the general Caucasian population, no other immunodeficiency was demonstrated in our patient. In vitro resistance to acyclovir was tested negative, but despite prophylactic treatment with the drug in high doses, relapses recurred. To our knowledge, this is the first ever reported documentation of relapsing-remitting facial and brachial plexus neuritis caused by HSV-1. PMID:26991053

  14. Gamma camera imaging of HSV-tk gene expression with [131I]-FIAU: Clinical applications in gene therapy

    SciTech Connect

    Tjuvajev, J.; Joshi, R.; Kennedy, J.

    1996-05-01

    Develop a method to image gene expression that can be used to monitor successful gene transduction in patients. Currently there are no noninvasive ways to define the extent and spatial location of gene transduction or the level of gene expression in targeted organs or tumors. Wild-type RF2 s.c. tumors were produced by implantation of 10{sup 6} cells into both flanks of Sprague Dawley R-Nu rats. Following a 46 day growth period, the left and right flank tumors reached a 5x4x3 and 3x2x1 cm size. The left tumor was inoculated with 10{sup 6} gp-STK-A2 retroviral vector-producer cells (10{sup 6}-10{sup 7} cfu/ml) in 100 {mu}l of media to induce in vivo transduction with HSV-tk gene. No carrier added 2`-fluoro-1-{beta}-D-arabinofuranosyl-5-[131I]-iodo-uracil [131I]-FIAU was synthesized and 2.8 mCi was injected i.v. 14 days after gp-STK-A2 cell inoculation. Gamma camera imaging was performed in vivo at 4,24 and 36 hours post [131I]-FIAU injection with a dual-headed gamma camera. The 24 and 36 hour images showed specific localization of retained radioactivity only in the transduced tumors. These results were confirmed using quantitative autoradiography (QAR) of the same tumors. QAR also showed significantly higher levels of retained radioactivity (>1% dose/g) in the transduced tumor than in other nontransduced areas (<0.03 %dose/g). The transduced tumor tissue had microscopic features typical of subcutaneously growing RG2 glioma and non vector-producer cells could be identified. Gene therapy trials in patients would benefit greatly from a noninvasive measure and image that could define the location, magnitude and persistence of gene expression overtime. HSV-tk and FIAU can be used as a {open_quotes}marker gene{close_quotes} - {open_quotes}marker substrate{close_quotes} combination for PET ([124-I]) or possibly SPECT ([123-I]) imaging.

  15. ICP4-induced miR-101 attenuates HSV-1 replication

    PubMed Central

    Wang, Xiangling; Diao, Caifeng; Yang, Xi; Yang, Zhen; Liu, Min; Li, Xin; Tang, Hua

    2016-01-01

    Hepes simplex Virus type 1 (HSV-1) is an enveloped DNA virus that can cause lytic and latent infection. miRNAs post-transcriptionally regulate gene expression, and our previous work has indicated that HSV-1 infection induces miR-101 expression in HeLa cells. The present study demonstrates that HSV-1-induced miR-101 is mainly derived from its precursor hsa-mir-101-2, and the HSV-1 immediate early gene ICP4 (infected-cell polypeptide 4) directly binds to the hsa-mir-101-2 promoter to activate its expression. RNA-binding protein G-rich sequence factor 1 (GRSF1) was identified as a new target of miR-101; GRSF1 binds to HSV-1 p40 mRNA and enhances its expression, facilitating viral proliferation. Together, ICP4 induces miR-101 expression, which downregulates GRSF1 expression and attenuates the replication of HSV-1. This allows host cells to maintain a permissive environment for viral replication by preventing lytic cell death. These findings indicate that HSV-1 early gene expression modulates host miRNAs to regulate molecular defense mechanisms. This study provides novel insight into host-virus interactions in HSV-1 infection and may contribute to the development of antiviral therapeutics. PMID:26984403

  16. Visualization of Mouse Neuronal Ganglia Infected by Herpes Simplex Virus 1 (HSV-1) Using Multimodal Non-Linear Optical Microscopy

    PubMed Central

    Rochette, Pierre-Alexandre; Laliberté, Mathieu; Bertrand-Grenier, Antony; Houle, Marie-Andrée; Blache, Marie-Claire; Légaré, François; Pearson, Angela

    2014-01-01

    Herpes simplex virus 1 (HSV-1) is a neurotropic virus that causes skin lesions and goes on to enter a latent state in neurons of the trigeminal ganglia. Following stress, the virus may reactivate from latency leading to recurrent lesions. The in situ study of neuronal infections by HSV-1 is critical to understanding the mechanisms involved in the biology of this virus and how it causes disease; however, this normally requires fixation and sectioning of the target tissues followed by treatment with contrast agents to visualize key structures, which can lead to artifacts. To further our ability to study HSV-1 neuropathogenesis, we have generated a recombinant virus expressing a second generation red fluorescent protein (mCherry), which behaves like the parental virus in vivo. By optimizing the application of a multimodal non-linear optical microscopy platform, we have successfully visualized in unsectioned trigeminal ganglia of mice both infected cells by two-photon fluorescence microscopy, and myelinated axons of uninfected surrounding cells by coherent anti-Stokes Raman scattering (CARS) microscopy. These results represent the first report of CARS microscopy being combined with 2-photon fluorescence microscopy to visualize virus-infected cells deep within unsectioned explanted tissue, and demonstrate the application of multimodal non-linear optical microscopy for high spatial resolution biological imaging of tissues without the use of stains or fixatives. PMID:25133579

  17. Viral Spread to Enteric Neurons Links Genital HSV-1 Infection to Toxic Megacolon and Lethality.

    PubMed

    Khoury-Hanold, William; Yordy, Brian; Kong, Philip; Kong, Yong; Ge, William; Szigeti-Buck, Klara; Ralevski, Alexandra; Horvath, Tamas L; Iwasaki, Akiko

    2016-06-01

    Herpes simplex virus 1 (HSV-1), a leading cause of genital herpes, infects oral or genital mucosal epithelial cells before infecting the peripheral sensory nervous system. The spread of HSV-1 beyond the sensory nervous system and the resulting broader spectrum of disease are not well understood. Using a mouse model of genital herpes, we found that HSV-1-infection-associated lethality correlated with severe fecal and urinary retention. No inflammation or infection of the brain was evident. Instead, HSV-1 spread via the dorsal root ganglia to the autonomic ganglia of the enteric nervous system (ENS) in the colon. ENS infection led to robust viral gene transcription, pathological inflammatory responses, and neutrophil-mediated destruction of enteric neurons, ultimately resulting in permanent loss of peristalsis and the development of toxic megacolon. Laxative treatment rescued mice from lethality following genital HSV-1 infection. These results reveal an unexpected pathogenesis of HSV associated with ENS infection. PMID:27281569

  18. Stereospecificity of human DNA polymerases alpha, beta, gamma, delta and epsilon, HIV-reverse transcriptase, HSV-1 DNA polymerase, calf thymus terminal transferase and Escherichia coli DNA polymerase I in recognizing D- and L-thymidine 5'-triphosphate as substrate.

    PubMed

    Focher, F; Maga, G; Bendiscioli, A; Capobianco, M; Colonna, F; Garbesi, A; Spadari, S

    1995-08-11

    L-beta-Deoxythymidine (L-dT), the optical enantiomer of D-beta-deoxythymidine (D-dT), and L-enantiomers of nucleoside analogs, such as 5-iodo-2'-deoxy-L-uridine (L-IdU) and E-5-(2-bromovinyl)-2'-deoxy-L-uridine (L-BVdU), are not recognized in vitro by human cytosolic thymidine kinase (TK), but are phosphorylated by herpes simplex virus type 1 (HSV-1) TK and inhibit HSV-1 proliferation in infected cells. Here we report that: (i) L-dT is selectively phosphorylated in vivo to L-dTMP by HSV-1 TK and L-dTMP is further phosphorylated to the di- and triphosphate forms by non-stereospecific cellular kinases; (ii) L-dTTP not only inhibits HSV-1 DNA polymerase in vitro, but also human DNA polymerase alpha, gamma, delta and epsilon, human immunodeficiency virus reverse transcriptase (HIV-1 RT), Escherichia coli DNA polymerase 1 and calf thymus terminal transferase, although DNA polymerase beta was resistant; (iii) whereas DNA polymerase beta, gamma, delta and epsilon are unable to utilize L-dTTP as a substrate, the other DNA polymerases clearly incorporate at least one L-dTMP residue, with DNA polymerase alpha and HIV-1 RT able to further elongate the DNA chain by catalyzing the formation of the phosphodiester bond between the incorporated L-dTMP and an incoming L-dTTP; (iv) incorporated L-nucleotides at the 3'-OH terminus make DNA more resistant to 3'-->5' exonucleases. In conclusion, our results suggest a possible mechanism for the inhibition of viral proliferation by L-nucleosides. PMID:7544886

  19. A role for 3-O-sulfotransferase isoform-4 in assisting HSV-1 entry and spread

    SciTech Connect

    Tiwari, Vaibhav; O'Donnell, Christopher D.; Oh, Myung-Jin; Valyi-Nagy, Tibor; Shukla, Deepak . E-mail: dshukla@uic.edu

    2005-12-16

    Many heparan sulfate (HS) 3-O-sulfotransferase (3-OST) isoforms generate cellular receptors for herpes simplex virus type-1 (HSV-1) glycoprotein D (gD). Interestingly, the ability of 3-OST-4 to mediate HSV-1 entry and cell-to-cell fusion has not been determined, although it is predominantly expressed in the brain, a primary target of HSV-1 infections. We report that expression of 3-OST-4 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and a mutant (Rid1) strain of HSV-1. Evidence for generation of gD receptors by 3-OST-4 was suggested by gD-mediated interference assay and the ability of 3-OST-4 expressing CHO-K1 cells to preferentially bind HSV-1 gD, which could be reversed by prior treatment of cells with HS lyases (heparinases-II/III). In addition, 3-OST-4 expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together our results suggest a role of 3-OST-4 in HSV-1 pathogenesis.

  20. Granulocytes in Ocular HSV-1 Infection: Opposing Roles of Mast Cells and Neutrophils

    PubMed Central

    Royer, Derek J.; Zheng, Min; Conrady, Christopher D.; Carr, Daniel J. J.

    2015-01-01

    Purpose. The contributions of mast cells (MCs) to immunologic defense against pathogens in the eye are unknown. We have characterized pericorneal MCs as tissue-resident innate sentinels and determined their impact on the immune response to herpes simplex virus type-1 (HSV-1), a common ocular pathogen. Methods. The impact of mast cells on the immune response to HSV-1 infection was investigated using MC-deficient KitW-sh mice. Virus titers, inflammatory cytokine production, eicosanoid profiles, cellular immune responses, and ocular pathology were evaluated and compared with C57BL/6J mice during an acute corneal HSV-1 infection. Results. Corneas of KitW-sh mice have higher viral titers, increased edema, and greater leukocyte infiltration following HSV-1 infection. Following infection, cytokine profiles were slightly elevated overall in KitW-sh mice. Eicosanoid profiles were remarkably different only when comparing uninfected corneas from both groups. Neutrophils within infected corneas expressed HSV-1 antigen, lytic genes, and served as a disease-causing vector when adoptively transferred into immunocompromised animals. Myeloid-derived suppressor cells did not infiltrate into the cornea or suppress the expansion, recruitment, or cytokine production by CD8+ T cells following acute HSV-1 infection. Conclusions. Collectively, these findings provide new insight into host defense in the cornea and the pathogenesis of HSV-1 infection by identifying previously unacknowledged MCs as protective innate sentinels for infection of the ocular surface and reinforcing that neutrophils are detrimental to corneal infection. PMID:26066745

  1. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells

    PubMed Central

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T. C.; Imren, Suzan; Lam, Vivian; Poon, Grace F. T.; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William

    2016-01-01

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light–inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation–dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell–depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  2. Establishment of HSV1 Latency in Immunodeficient Mice Facilitates Efficient In Vivo Reactivation

    PubMed Central

    Ramakrishna, Chandran; Ferraioli, Adrianna; Calle, Aleth; Nguyen, Thanh K.; Openshaw, Harry; Lundberg, Patric S.; Lomonte, Patrick; Cantin, Edouard M.

    2015-01-01

    The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1) infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR) resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins) to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD), but not low dose (LD), HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS), the majority of HD inoculated mice developed HSV1 encephalitis (HSE) rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg). T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation. PMID:25760441

  3. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells.

    PubMed

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T C; Imren, Suzan; Lam, Vivian; Poon, Grace F T; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William; Krystal, Gerald

    2016-05-26

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light-inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation-dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell-depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  4. 5-[18F]Fluoroalkyl Pyrimidine Nucleosides: Probes for PET Imaging of Herpes Simplex Virus Type-1 Thymidine Kinase Gene Expression

    PubMed Central

    Chacko, Ann-Marie; Blankemeyer, Eric; Lieberman, Brian P.; Qu, Wenchao; Kung, Hank F.

    2009-01-01

    Introduction The preliminary in vivo evaluation of novel 5-[18F]fluoroalkyl-2’-deoxyuridines ([18F]FPrDU, [18F]FBuDU, [18F]FPeDU; [18F]1a–c, respectively) and 2’-fluoro-2’-deoxy-5-[18F]fluoroalkyl-1-β-D-arabinofuranosyl uracils ([18F]FFPrAU, [18F]FFBuAU, [18F]FFPeAU; [18F]1d–f, respectively) as probes for imaging herpes simplex virus type-1 thymidine kinase (HSV1-tk) gene expression are described. Methods [18F]1a–f were successfully synthesized by a rapid and efficient two step one-pot nucleophilic fluorination reaction using 5-O-mesylate precursors and [18F]F-. For in vivo studies, tumor xenografts were grown in nude mice by implanting RG2 cells stably expressing HSV1-tk (RG2TK+) and wild-type cells (RG2). Results Biodistribution studies at 2 h p.i. revealed that the uptake of [18F]1a–b and [18F]1d–e in RG2TK+ tumors was not significantly different from control tumors. However, [18F]1c and [18F]1f had an average 1.6 and 1.7–fold higher uptake in RG2TK+ tumors than control RG2 tumors. Blood activity curves for [18F]1c and [18F]1f highlight rapid clearance of radioactivity in the blood. Dynamic small animal PET (A-PET) imaging studies of tumor-bearing mice with [18F]1c and [18F]1f showed higher initial uptake (3.5–fold and 1.4–fold, respectively) in RG2TK+ tumors than control tumors, with continued washout of activity from both tumors over time. Conclusions Biological evaluations suggest that [18F]1c and [18F]1f may have limited potential for imaging HSV1-tk gene expression due fast washout of activity from the blood thus significantly decreasing sensitivity and specificity of tracer accumulation in HSV1-tk expressing tumors. PMID:19181266

  5. The Current State of Vaccine Development for Ocular HSV-1 Infection

    PubMed Central

    Royer, DJ; Cohen, A; Carr, DJJ

    2015-01-01

    Summary HSV-1 continues to be the leading cause of infectious corneal blindness. Clinical trials for vaccines against genital HSV infection have been ongoing for more than three decades. Despite this, no approved vaccine exists, and no formal clinical trials have evaluated the impact of HSV vaccines on eye health. We review here the current state of development for an efficacious HSV-1 vaccine and call for involvement of ophthalmologists and vision researchers. PMID:25983856

  6. Pentagalloylglucose Blocks the Nuclear Transport and the Process of Nucleocapsid Egress to Inhibit HSV-1 Infection.

    PubMed

    Jin, Fujun; Ma, Kaiqi; Chen, Maoyun; Zou, Muping; Wu, Yanting; Li, Feng; Wang, Yifei

    2016-03-23

    Herpes simplex virus type 1 (HSV-1), a widespread virus, causes a variety of human viral diseases worldwide. The serious threat of drug-resistance highlights the extreme urgency to develop novel antiviral drugs with different mechanisms of action. Pentagalloylglucose (PGG) is a natural polyphenolic compound with significant anti-HSV activity; however, the mechanisms underlying its antiviral activity need to be defined by further studies. In this study, we found that PGG treatment delays the nuclear transport process of HSV-1 particles by inhibiting the upregulation of dynein (a cellular major motor protein) induced by HSV-1 infection. Furthermore, PGG treatment affects the nucleocapsid egress of HSV-1 by inhibiting the expression and disrupting the cellular localization of pEGFP-UL31 and pEGFP-UL34, which are indispensable for HSV-1 nucleocapsid egress from the nucleus. However, the over-expression of pEGFP-UL31 and pEGFP-UL34 could decrease the antiviral effect of PGG. In this study, for the first time, the antiviral activity of PGG against acyclovir-resistant virus was demonstrated in vitro, and the possible mechanisms of its anti-HSV activities were identified based on the inhibition of nuclear transport and nucleocapsid egress in HSV-1. It was further confirmed that PGG could be a promising candidate for HSV therapy, especially for drug-resistant strains. PMID:26166506

  7. [18F]FHBG PET/CT Imaging of CD34-TK75 Transduced Donor T Cells in Relapsed Allogeneic Stem Cell Transplant Patients: Safety and Feasibility

    PubMed Central

    Eissenberg, Linda G; Rettig, Michael P; Ritchey, Julie K; Prior, Julie L; Schwarz, Sally W; Frye, Jennifer; White, Brian S; Fulton, Robert S; Ghobadi, Armin; Cooper, Matthew L; Couriel, Daniel R; Seegulam, Muhammad Esa; Piwnica-Worms, David; Dehdashti, Farrokh; Cornetta, Kenneth; DiPersio, John F

    2015-01-01

    Described herein is a first-in-man attempt to both genetically modify T cells with an imagable suicide gene and track these transduced donor T cells in allogeneic stem cell transplantation recipients using noninvasive positron emission tomography/computerized tomography (PET/CT) imaging. A suicide gene encoding a human CD34-Herpes Simplex Virus-1-thymidine kinase (CD34-TK75) fusion enabled enrichment of retrovirally transduced T cells (TdT), control of graft-versus-host disease and imaging of TdT migration and expansion in vivo in mice and man. Analysis confirmed that CD34-TK75-enriched TdT contained no replication competent γ-retrovirus, were sensitive to ganciclovir, and displayed characteristic retroviral insertion sites (by targeted sequencing). Affinity-purified CD34-TK75+-selected donor T cells (1.0–13 × 105)/kg were infused into eight patients who relapsed after allogeneic stem cell transplantation. Six patients also were administered 9-[4-(18F)fluoro-3-hydroxymethyl-butyl]guanine ([18F]FHBG) to specifically track the genetically modified donor T cells by PET/CT at several time points after infusion. All patients were assessed for graft-versus-host disease, response to ganciclovir, circulating TdT cells (using both quantitative polymerase chain reaction and [18F]FHBG PET/CT imaging), TdT cell clonal expansion, and immune response to the TdT. This phase 1 trial demonstrated that genetically modified T cells and [18F]FHBG can be safely infused in patients with relapsed hematologic malignancies after allogeneic stem cell transplantation. PMID:25807290

  8. [(18)F]FHBG PET/CT Imaging of CD34-TK75 Transduced Donor T Cells in Relapsed Allogeneic Stem Cell Transplant Patients: Safety and Feasibility.

    PubMed

    Eissenberg, Linda G; Rettig, Michael P; Ritchey, Julie K; Prior, Julie L; Schwarz, Sally W; Frye, Jennifer; White, Brian S; Fulton, Robert S; Ghobadi, Armin; Cooper, Matthew L; Couriel, Daniel R; Seegulam, Muhammad Esa; Piwnica-Worms, David; Dehdashti, Farrokh; Cornetta, Kenneth; DiPersio, John F

    2015-06-01

    Described herein is a first-in-man attempt to both genetically modify T cells with an imagable suicide gene and track these transduced donor T cells in allogeneic stem cell transplantation recipients using noninvasive positron emission tomography/computerized tomography (PET/CT) imaging. A suicide gene encoding a human CD34-Herpes Simplex Virus-1-thymidine kinase (CD34-TK75) fusion enabled enrichment of retrovirally transduced T cells (TdT), control of graft-versus-host disease and imaging of TdT migration and expansion in vivo in mice and man. Analysis confirmed that CD34-TK75-enriched TdT contained no replication competent γ-retrovirus, were sensitive to ganciclovir, and displayed characteristic retroviral insertion sites (by targeted sequencing). Affinity-purified CD34-TK75(+)-selected donor T cells (1.0-13 × 10(5))/kg were infused into eight patients who relapsed after allogeneic stem cell transplantation. Six patients also were administered 9-[4-((18)F)fluoro-3-hydroxymethyl-butyl]guanine ([(18)F]FHBG) to specifically track the genetically modified donor T cells by PET/CT at several time points after infusion. All patients were assessed for graft-versus-host disease, response to ganciclovir, circulating TdT cells (using both quantitative polymerase chain reaction and [(18)F]FHBG PET/CT imaging), TdT cell clonal expansion, and immune response to the TdT. This phase 1 trial demonstrated that genetically modified T cells and [(18)F]FHBG can be safely infused in patients with relapsed hematologic malignancies after allogeneic stem cell transplantation. PMID:25807290

  9. Imaging Transgene Expression with Radionuclide Imaging Technologies1

    PubMed Central

    Gambhir, SS; Herschman, HR; Cherry, SR; Barrio, JR; Satyamurthy, N; Toyokuni, T; Phelps, ME; Larson, SM; Balaton, J; Finn, R; Sadelain, M; Tjuvajev, J

    2000-01-01

    Abstract A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (micro PET) designed specifically for studies of small animals. We review “marker/reporter gene” imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications. PMID:10933072

  10. Assessment of Anti HSV-1 Activity of Aloe Vera Gel Extract: an In Vitro Study

    PubMed Central

    Rezazadeh, Fahimeh; Moshaverinia, Maryam; Motamedifar, Mohammad; Alyaseri, Montazer

    2016-01-01

    Statement of the Problem Herpes simplex virus (HSV) infection is one of the most common and debilitating oral diseases; yet, there is no standard topical treatment to control it. The extract of Aloe vera leaves has been previously reported to have anti-inflammatory, antibacterial, and also antiviral effects. There is no data on anti-Herpes simplex virus type 1 (HSV-1) activity of Aloe vera gel. Purpose This study aimed to evaluate the anti-HSV-1 activity of Aloe vera gel in Vero cell line. Materials and Method In this study, gel extraction and cytotoxicity of various increasing concentrations of Aloe vera gel (0.2, 0.5, 1, 2, and 5%) was evaluated in Dulbecco’s Modified Eagle Medium (DMEM) containing 2% fetal bovine serum (FBS). Having been washed with phosphate buffered saline, 50 plaque-forming units (PFU) of HSV-1 was added to each well. After 1 hour of incubation at 37°C, cell monolayers in 24 well plates were exposed to different increasing concentrations of Aloe vera gel. The anti-HSV-1 activity of Aloe vera gel in different concentrations was assessed by plaque reduction assays. Data were analyzed by using One-way ANOVA. Results The cytotoxicity assay showed that Aloe vera in prearranged concentrations was cell-compatible. The inhibitory effect of various concentrations of Aloe vera was observed one hour after the Vero cell was infected with HSV-1. However, there was no significant difference between two serial concentrations (p> 0.05). One-way ANOVA also revealed no significant difference between the groups. The findings indicated a dose-dependent antiviral effect of Aloe vera. Conclusion The findings showed significant inhibitory effect of 0.2-5% Aloe vera gel on HSV-1 growth in Vero cell line. Therefore, this gel could be a useful topical treatment for oral HSV-1 infections without any significant toxicity. PMID:26966709

  11. Cathelicidin LL-37 and HSV-1 Corneal Infection: Peptide Versus Gene Therapy

    PubMed Central

    Lee, Chyan-Jang; Buznyk, Oleksiy; Kuffova, Lucia; Rajendran, Vijayalakshmi; Forrester, John V.; Phopase, Jaywant; Islam, Mohammad M.; Skog, Mårten; Ahlqvist, Jenny; Griffith, May

    2014-01-01

    Purpose To evaluate the potential utility of collagen-based corneal implants with anti–Herpes Simplex Virus (HSV)-1 activity achieved through sustained release of LL-37, from incorporated nanoparticles, as compared with cell-based delivery from model human corneal epithelial cells (HCECs) transfected to produce endogenous LL-37. Methods We tested the ability of collagen-phosphorylcholine implants to tolerate the adverse microenvironment of herpetic murine corneas. Then, we investigated the efficacy of LL-37 peptides delivered through nanoparticles incorporated within the corneal implants to block HSV-1 viral activity. In addition, LL-37 complementary DNA (cDNA) was transferred into HCECs to confer viral resistance, and their response to HSV-1 infection was examined. Results Our implants remained in herpetic murine corneas 7 days longer than allografts. LL-37 released from the implants blocked HSV-1 infection of HCECs by interfering with viral binding. However, in pre-infected HCECs, LL-37 delayed but could not prevent viral spreading nor clear viruses from the infected cells. HCECs transfected with the LL-37 expressed and secreted the peptide. Secreted LL-37 inhibited viral binding in vitro but was insufficient to protect cells completely from HSV-1 infection. Nevertheless, secreted LL-37 reduced both the incidence of plaque formation and plaque size. Conclusion LL-37 released from composite nanoparticle-hydrogel corneal implants and HCEC-produced peptide, both showed anti–HSV-1 activity by blocking binding. However, while both slowed down virus spread, neither was able on its own to completely inhibit the viruses. Translational Relevance LL-37 releasing hydrogels may have potential utility as corneal substitutes for grafting in HSV-1 infected corneas, possibly in combination with LL-37 producing therapeutic cells. PMID:24932432

  12. Circulating herpes simplex type 1 (HSV-1)-specific CD8+ T cells do not access HSV-1 latently infected trigeminal ganglia

    PubMed Central

    2011-01-01

    Background Therapeutic vaccines can be designed to enhance existing T cell memory populations for increased protection against re-infection. In the case of herpes simplex virus type 1, recurrent disease results from reactivation of latent virus in sensory ganglia, which is controlled in part by a ganglia-resident HSV-specific memory CD8+ T cell population. Thus, an important goal of a therapeutic HSV-1 vaccine would be to enhance this population. Methods HSV-1-infected mice were treated with TAK-779 to block CCR5- and CXCR3-mediated CD8+ T cell migration during both acute and latent infections. Additionally, HSV-1-specific CD8+ T cells were transferred into HSV-1 latently infected mice to mimic the effect of a therapeutic vaccine, and their migration into trigeminal ganglia (TG) was traced during steady-state latency, or during recovery of the TG-resident memory CD8+ T cell population following stress-, and corticosterone-induced depletion and HSV-1 reactivation from latency. Bromodeoxy uridine (BrdU) incorporation measured cell proliferation in vivo. Results TAK-779 treatment during acute HSV-1 infection reduced the number of infiltrating CD8+ T cells but did not alter the number of viral genome copies. TAK-779 treatment during HSV latency did not affect the size of the TG-resident memory CD8+ T cell population. Transferred HSV-specific CD8+ T cells failed to access latently infected TG during steady-state latency, or during recovery of the TG resident HSV-specific CD8+ T cell population following exposure of latently infected mice to stress and corticosterone. Recovery of the HSV-specific CD8+ T cell population after stress and corticosterone treatment occurred with homeostatic levels of cell division and did not require CD4+ T cell help. Conclusions Our findings are consistent with the notion that the CD8+ T cells in latently infected TG are a tissue-resident memory (Trm) population that is maintained without replenishment from the periphery, and that when this

  13. Lychee flower extract inhibits proliferation and viral replication of HSV-1-infected corneal epithelial cells

    PubMed Central

    Hsu, Chang-Min; Chiang, Samuel Tung-Hsing; Chang, Yuan-Yen; Chen, Yi-Chen; Yang, Deng-Jye; Chen, Ya-Yu; Lin, Hui-Wen

    2016-01-01

    Purpose Herpes simplex virus type I (HSV-1) is capable of causing a wide array of human ocular diseases. Herpes simplex virus keratitis (HSK)-induced cytopathogenicity together with the chronic immune-inflammatory reaction can trigger stromal scarring, thinning, and neovascularization which may lead to permanent vision impairment. Lychee flower extract (LFE) is known for its antioxidant and anti-inflammatory effects. Therefore, in this study, we investigated the mechanism of the Statens Seruminstitut rabbit corneal (SIRC) epithelial cells infected by HSV-1 and examined the antiviral capabilities of LFE. Methods SIRC cells were pretreated with different concentrations of LFE (0.2, 0.1, and 0.05 μg/ml) and then infected with 1 MOI of HSV-1 for 24 h. The cell viability or morphology was evaluated in this study. In addition, the supernatants and cell extracts were collected for Cell Counting Kit-8 (CCK), plaque assay, and western blotting. Results We found that HSV-1-induced cell proliferation is regulated through inhibition of the mammalian target of rapamycin (mTOR) and p70s6k phosphorylation in response to the LFE. In addition, the LFE enhanced the autophagy protein expression (Beclin-1 and light chain 3, LC3) and decreased the viral titers. Conclusions These results showed the antiviral capabilities and the protective effects of LFE. Taken together, our data indicate that LFE has potential as an anti-HSK (herpes simplex keratitis) for HSV-1 infection. PMID:26937165

  14. Membrane deformation and scission by the HSV-1 nuclear egress complex

    PubMed Central

    Bigalke, Janna M.; Heuser, Thomas; Nicastro, Daniela; Heldwein, Ekaterina E.

    2014-01-01

    The nuclear egress complex (NEC) of herpesviruses such as HSV-1 is essential for the exit of nascent capsids from the cell nucleus. The NEC drives nuclear envelope vesiculation in cells, but the precise budding mechanism and the potential involvement of cellular proteins are unclear. Here we report that HSV-1 NEC alone is sufficient for membrane budding in vitro and thus represents a complete membrane deformation and scission machinery. It forms ordered coats on the inner surface of budded vesicles, suggesting that it mediates scission by scaffolding the membrane bud and constricting the neck to the point of scission. The inward topology of NEC-mediated budding in vitro resembles capsid budding into the inner nuclear membrane during HSV-1 infection and nuclear envelope vesiculation in NEC-transfected cells. We propose that the NEC functions as minimal virus-encoded membrane-budding machinery during nuclear egress and does not require additional cellular factors. PMID:24916797

  15. Characterization of the nuclear import mechanisms of HSV-1 UL31.

    PubMed

    Cai, Mingsheng; Si, Jiang; Li, Xiaowei; Zeng, Zhancheng; Li, Meili

    2016-06-01

    As an important protein, UL31 has been demonstrated to play multiple roles in herpes simplex virus 1 (HSV-1) replication. Previous studies showed that UL31 predominantly locates in the nucleus in chemical fixed cells and live cells, however, the determining mechanisms for its nuclear translocation is not clear. In the present study, by utilizing live cells fluorescent microscopy and co-immunoprecipitation assays, the nuclear import of UL31 was characterized to be dependent on Ran-, importin α1- and transportin-1-mediated pathway. Therefore, these results will promote the understanding of UL31-mediated biological functions in HSV-1 infection cycle. PMID:26854290

  16. An In Vitro HSV-1 Reactivation Model Containing Quiescently Infected PC12 Cells

    PubMed Central

    Hogk, Ina; Kaufmann, Michaela; Finkelmeier, Doris; Rupp, Steffen

    2013-01-01

    Abstract Advances in the understanding of the infection and reactivation process of herpes simplex type 1 (HSV-1) are generally gained by monolayer cultures or extensive and cost-intensive animal models. So far, no reliable in vitro skin model exists either to investigate the molecular mechanisms involved in controlling latency and virus reactivation or to test pharmaceuticals. Here we demonstrate the first in vitro HSV-1 reactivation model generated by using the human keratinocyte cell line HaCaT grown on a collagen substrate containing primary human fibroblasts. We integrated the unique feature of a quiescently infected neuronal cell line, the rat pheochromocytoma line PC12, within the dermal layer of the three-dimensional skin equivalent. Transmission electron microscopy, a cell-based TCID50 assay, and polymerase chain reaction analysis were used to verify cell latency. Thereby viral DNA could be detected, whereas extracellular as well as intracellular virus activity could not be found. Further, the infected PC12 cells show no spontaneous reactivation within the in vitro skin equivalent. In order to simulate a physiologically comparable HSV-1 infection, we achieved a specific and pointed reactivation of quiescently HSV-1 infected PC12 cells by UVB irradiation at 1000 mJ/cm2. PMID:23914331

  17. HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140

    SciTech Connect

    Guan, Ying; Guo, Lei; Yang, Erxia; Liao, Yun; Liu, Longding; Che, Yanchun; Zhang, Ying; Wang, Lichun; Wang, Jingjing; Li, Qihan

    2014-09-15

    During HSV-1 infection, the viral UL31 protein forms a complex with the UL34 protein at the cellular nuclear membrane, where both proteins play important roles in the envelopment of viral nucleocapsids and their egress into the cytoplasm. To characterize the mechanism of HSV-1 nucleocapsid egress, we screened host proteins to identify proteins that interacted with UL31 via yeast two-hybrid analysis. Transmembrane protein 140 (TMEM140), was identified and confirmed to bind to and co-localize with UL31 during viral infection. Further studies indicated that TMEM140 inhibits HSV-1 proliferation through selectively blocking viral nucleocapsid egress during the viral assembly process. The blockage function of TMEM140 is mediated by impeding the formation of the UL31–UL34 complex due to competitive binding to UL31. Collectively, these data suggest the essentiality of the UL31–UL34 interaction in the viral nucleocapsid egress process and provide a new anti-HSV-1 strategy in viral assembly process of nucleocapsid egress. - Highlights: • Cellular TMEM140 protein interacts with HSV-1 UL31 protein during viral infection. • Increasing expression of TMEM140 leads to inhibition of HSV-1 proliferation. • Increasing expression of TMEM140 blocks HSV-1 nucleocapsid egress process. • Binding to UL31 of TMEM140 impedes formation of HSV-1 UL31–UL34 complex.

  18. KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction

    PubMed Central

    Gill, Michael B; Turner, Rachel; Stevenson, Philip G; Way, Michael

    2015-01-01

    Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology. PMID:25471072

  19. Artificial mutants generated by the insertion of random oligonucleotides into the putative nucleoside binding site of the HSV-1 thymidine kinase gene

    SciTech Connect

    Dube, D.K.; Parker, J.D.; French, D.C.; Cahill, D.S.; Dube, S.; Horwitz, M.S.Z.; Munir, K.M.; Loeb, L.A. )

    1991-12-24

    The authors have obtained 42 active artificial mutants of HSV-1 thymidine kinase by replacing codons 166 and 167 with random nucleotide sequences. Codons 166 and 167 are within the putative nucleoside binding site in the HSV-1 tk gene. The spectrum of active mutations indicates that neither Ile{sup 166} nor Ala{sup 167} is absolutely required for thymidine kinase activity. Each of these amino acids can be replaced by some but not all of the 19 other amino acids. The active mutants can be classified as high activity or low activity on two bases: (1) growth of Escherichia coli KY895 in the presence of thymidine and (2) uptake of thymidine by this strain, when harboring plasmids with the random insertions. E. coli KY895 harboring high-activity plasmids or wild-type plasmids can grow in the presence of low amounts of thymidine but are unable to grow in the presence of high amounts of thymidine. The high-activity plasmids also have an enhanced ({sup 3}H)dT uptake. The amounts of thymidine kinase activity in vitro in unfractionated extracts do not correlate with either growth at low thymidine concentration or the rate of thymidine uptake. Heat inactivation studies indicate that the mutant enzymes are without exception more temperature-sensitive than the wild-type enzyme. This thermolability could account for the less than expected thymidine kinase activity in the extracts and suggests that amino acid substitutions at Ile{sup 166} and Ala{sup 167} have produced major changes in protein stability.

  20. Inhibitors of signal peptide peptidase (SPP) affect HSV-1 infectivity in vitro and in vivo

    PubMed Central

    Allen, Sariah J.; Mott, Kevin R.; Ghiasi, Homayon

    2014-01-01

    Recently we have shown that the highly conserved herpes simplex virus glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. In this study we have demonstrated for the first time that inhibitors of SPP, such as L685,458, (Z-LL)2 ketone, aspirin, ibuprofen and DAPT, significantly reduced HSV-1 replication in tissue culture. Inhibition of SPP activity via (Z-LL)2 ketone significantly reduced viral transcripts in the nucleus of infected cells. Finally, when administered during primary infection, (Z-LL)2 ketone inhibitor reduced HSV-1 replication in the eyes of ocularly infected mice. Thus, blocking SPP activity may represent a clinically effective and expedient approach to the reduction of viral replication and the resulting pathology. PMID:24768597

  1. PML plays both inimical and beneficial roles in HSV-1 replication.

    PubMed

    Xu, Pei; Mallon, Stephen; Roizman, Bernard

    2016-05-24

    After entry into the nucleus, herpes simplex virus (HSV) DNA is coated with repressive proteins and becomes the site of assembly of nuclear domain 10 (ND10) bodies. These small (0.1-1 μM) nuclear structures contain both constant [e.g., promyelocytic leukemia protein (PML), Sp100, death-domain associated protein (Daxx), and so forth] and variable proteins, depending on the function of the cells or the stress to which they are exposed. The amounts of PML and the number of ND10 structures increase in cells exposed to IFN-β. On initiation of HSV-1 gene expression, ICP0, a viral E3 ligase, degrades both PML and Sp100. The earlier report that IFN-β is significantly more effective in blocking viral replication in murine PML(+/+) cells than in sibling PML(-/-) cells, reproduced here with human cells, suggests that PML acts as an effector of antiviral effects of IFN-β. To define more precisely the function of PML in HSV-1 replication, we constructed a PML(-/-) human cell line. We report that in PML(-/-) cells, Sp100 degradation is delayed, possibly because colocalization and merger of ICP0 with nuclear bodies containing Sp100 and Daxx is ineffective, and that HSV-1 replicates equally well in parental HEp-2 and PML(-/-) cells infected at 5 pfu wild-type virus per cell, but poorly in PML(-/-) cells exposed to 0.1 pfu per cell. Finally, ICP0 accumulation is reduced in PML(-/-) infected at low, but not high, multiplicities of infection. In essence, the very mechanism that serves to degrade an antiviral IFN-β effector is exploited by HSV-1 to establish an efficient replication domain in the nucleus. PMID:27162364

  2. In vitro effect of phototherapy with low-intensity laser on HSV-1 and epithelial cells

    NASA Astrophysics Data System (ADS)

    Eduardo, Fernanda P.; Mehnert, Dolores U.; Monezi, Telma A.; Zezell, Denise M.; Schubert, Mark M.; Eduardo, Carlos P.; Marques, Márcia M.

    2007-02-01

    The effects of phototherapy on herpes lesions have been clinically demonstrated by either preventing the lesion formation or speeding their repair. The aim of this in vitro study was analyze the effect of phototherapy on epithelial cells and HSV-1 in culture. Cultures of HSV-1 and epithelial cells (Vero cell line) were used. The irradiations were done using a GaAlAs laser (660 e 780 nm, 4.0 mm2). One, two and three irradiations with 6 h-intervals were done. The experimental groups were: Control: non-irradiated; 660 nm and 3 J/cm2 (2.8 sec); 660 nm and 5 J/cm2 (3.8 sec); 780 nm and 3 J/cm2 (1.9 sec), and 780 nm and 5 J/cm2 (2.5 sec). The HSV-1 cytopatic effect and the cell viability of irradiated cultures and controls were analyzed in four different conditions: irradiation of non-infected epithelial cells; epithelial cells irradiated prior infection; virus irradiated prior infection; irradiation of HSV infected cells. The mitochondrial activity and cytopathic effects were assessed. The number of irradiations influenced the cell growth positively and proportionally, except for the 660 nm/ 3 J/cm2 group. Any variation in cytopathic effects was observed amongst the experimental groups. The viability of infected cells prior irradiation was significantly higher than that of non-irradiated cultures when 2 irradiations were done. Under the experimental conditions of this study we concluded that phototherapy is capable of enhancing epithelial cell growth and prolonging cell viability of HSV-1 infected cells. Positive benefits of phototherapy could be resultant from prolongation of infected cells viability, corroborating with host defenses.

  3. Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors

    PubMed Central

    Blanc, Andrea Maria; Berois, Mabel Beatriz; Tomé, Lorena Magalí; Epstein, Alberto L.

    2012-01-01

    Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease. PMID:22437537

  4. IFN-γ Primes Keratinocytes for HSV-1-Induced Inflammasome Activation.

    PubMed

    Strittmatter, Gerhard E; Sand, Jennifer; Sauter, Marlies; Seyffert, Michael; Steigerwald, Robin; Fraefel, Cornel; Smola, Sigrun; French, Lars E; Beer, Hans-Dietmar

    2016-03-01

    Inflammasomes are immune complexes that induce an inflammatory response upon sensing of different stress signals. This effect is mainly mediated by activation and secretion of the proinflammatory cytokines proIL-1β and -18. Here we report that infection of human primary keratinocytes with the double-stranded DNA viruses modified vaccinia virus Ankara (MVA) or herpes simplex virus type 1 (HSV-1)-induced secretion of mature IL-1β and -18. This secretion was dependent on several inflammasome complexes; however, the absent in melanoma 2 (AIM2) inflammasome, which is activated by binding of double-stranded DNA, played the most important role. Whereas prestimulation of keratinocytes with IFN-γ moderately increased MVA-induced IL-1β and IL-18 secretion, it was essential for substantial secretion of these cytokines in response to herpes simplex virus type 1 infection. IFN-γ partially restored HSV-1 suppressed proIL-1β expression and was also required for inflammasome activation. Most importantly, IFN-γ strongly suppressed virus replication in keratinocytes in vitro and ex vivo, which was independent of inflammasome activation. Our results suggest that, similar to Herpesviridae infection in mice, HSV-1 replication in human skin is controlled by a positive feedback loop of keratinocyte-derived IL-1/IL-18 and IFN-γ expressed by immune cells. PMID:26739094

  5. Influence of macrophages on HSV-1 induced IL 2 production by human lymphocytes

    SciTech Connect

    Clouse, K.A.; Orosz, C.G.; Sheridan, J.F.

    1986-03-05

    Previous work has demonstrated that human peripheral blood mononuclear cells (PBMC) from HSV-1 seropositive individuals produce interleukin 2 (IL 2) following stimulation in vitro with uv-inactivated herpes simplex virus type 1 (HSV antigen). This study investigated the accessory macrophage (MO) and monokine requirements for IL 2 production by enriched T lymphocytes from HSV-1 seropositive individuals. Following removal of accessory MO populations, enriched T lymphocytes did not secrete IL 2 in response to HSV antigen. However, IL 2 production was restored by the addition of autologous, ..gamma..-irradiated (5000R) MO. HSV antigen-pulsed MO also induced IL 2 production by enriched T lymphocytes. Furthermore, when HSV-pulsed macrophages were treated with paraformaldehyde they no longer caused T lymphocytes to produce IL 2 unless exogenous monokines were provided. Neither exogenous monokines nor purified human IL 1 could support HSV antigen induced IL 2 production in the absence of MO. These studies demonstrated that MO are required for HSV-induced IL 2 production by T lymphocytes from HSV-1 seropositive individuals. Furthermore, these MO appear to provide two functions required for IL 2 production: viral antigen display and monokine production.

  6. HSV-1 tegument protein and the development of its genome editing technology.

    PubMed

    Xu, Xingli; Che, Yanchun; Li, Qihan

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is composed of complex structures primarily characterized by four elements: the nucleus, capsid, tegument and envelope. The tegument is an important viral component mainly distributed in the spaces between the capsid and the envelope. The development of viral genome editing technologies, such as the identification of temperature-sensitive mutations, homologous recombination, bacterial artificial chromosome, and the CRISPR/Cas9 system, has been shown to largely contribute to the rapid promotion of studies on the HSV-1 tegument protein. Many researches have demonstrated that tegument proteins play crucial roles in viral gene regulatory transcription, viral replication and virulence, viral assembly and even the interaction of the virus with the host immune system. This article briefly reviews the recent research on the functions of tegument proteins and specifically elucidates the function of tegument proteins in viral infection, and then emphasizes the significance of using genome editing technology in studies of providing new techniques and insights into further studies of HSV-1 infection in the future. PMID:27343062

  7. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis.

    PubMed

    Albecka, Anna; Laine, Romain F; Janssen, Anne F J; Kaminski, Clemens F; Crump, Colin M

    2016-01-01

    Herpes simplex virus-1 (HSV-1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin-dependent endocytosis plays a major role in this process. Dominant-negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin-dependent and -independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non-infectious HSV-1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein-sorting event during HSV-1 envelopment. PMID:26459807

  8. The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids

    SciTech Connect

    Murphy, Michael A.; Bucks, Michelle A.; O'Regan, Kevin J.; Courtney, Richard J.

    2008-07-05

    The molecular mechanisms responsible for the addition of tegument proteins into nascent herpesvirus particles are poorly understood. To better understand the tegumentation process of herpes simplex virus type 1 (HSV-1) virions, we initiated studies that showed the tegument protein pUL46 (VP11/12) has a similar cellular localization to the membrane-associated tegument protein VP22. Using membrane flotation analysis we found that pUL46 associates with membranes in both the presence and absence of other HSV-1 proteins. However, when purified virions were stripped of their envelope, the majority of pUL46 was found to associate with the capsid fraction. This strong affinity of pUL46 for capsids was confirmed by an in vitro capsid pull-down assay in which purified pUL46-GST was able to interact specifically with capsids purified from the nuclear fraction of HSV-1 infected cells. These results suggest that pUL46 displays a dynamic interaction between cellular membranes and capsids.

  9. SOCS1/3 Expression Levels in HSV-1-Infected, Cytokine-Polarized and -Unpolarized Macrophages

    PubMed Central

    Reichard, Adam Craig; Cheemarla, Nagarjuna Reddy

    2015-01-01

    Macrophage subtypes are characterized as proinflammatory (M1) or immunomodulatory and tissue remodeling (M2). Since macrophages play a pivotal role in controlling Herpes simplex virus type-1 (HSV-1) replication, effects of HSV-1 by 24 h of infection were determined in murine J774A.1 macrophages unpolarized (M0) or polarized to either an M1 or M2 phenotype. Morphology, cell viability, and expression of CD14 (co-receptor for lipopolysaccharide), CD86 (B7.2-immune co-stimulatory molecule), and suppressors of cytokine signaling (SOCS1 and SOCS3) were determined. M1 macrophages were flattened and vacuolated, while M2 cells appeared elongated with a few vacuoles. Compared with unpolarized M0 cells, M1 cells showed a 31% decrease in viability, a 2-fold increase in the number of CD14+-CD86+ cells, no change in SOCS1 expression, and an 11-fold decrease in SOCS3 expression. M2 cells exhibited a 9% decrease in viability, a 26.0% decrease in the number of CD14+-CD86+ cells, and no change in SOCS1/SOCS3 expression levels compared with M0 cells. After HSV-1 infection, all phenotypes appeared rounded, cell viabilities decreased as did numbers of M1 cells expressing CD14 and CD86. At 24 h after infection, M0 control and M2 cells showed greater virus yield than did the M1 cells, presumably reflecting the loss of viable M1 cells. SOCS1 expression was predominant in uninfected M1-polarized cells and in virus-infected control (M0) cells. SOCS1/SOCS3 expression ratio was 7:1 in uninfected M1 macrophages and approached 1:1 in M1 cells at 24 h after infection with HSV-1. In contrast, little differences were seen in SOCS1/SOCS3 expression ratios in uninfected M2-polarized cells or virus-infected M2 cells. These observations suggest that SOCS1/SOCS3 expression ratios can be used to characterize HSV-1-infected and uninfected macrophages. PMID:24956148

  10. Type I Interferon and Lymphangiogenesis in the HSV-1 Infected Cornea – Are they Beneficial to the Host?

    PubMed Central

    Bryant-Hudson, Katie; Conrady, Christopher D.; Carr, Daniel J.J.

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that can result in significant human morbidity. Within the cornea, it was thought the initial recognition of the pathogen was through Toll-like receptors expressed on/in resident cells that then elicit pro-inflammatory cytokine production, activation of anti-viral pathways, and recruitment of leukocytes. However, our lab has uncovered a novel, TLR-independent innate sensor that supersedes TLR induction of anti-viral pathways following HSV-1 infection. In addition, we have also found HSV-1 induces the genesis of lymphatic vessels into the cornea proper by a mechanism independent of TLRs and unique in the field of neovascularization. This review will focus on these two innate immune events during acute HSV-1 infection of the cornea. PMID:23876483

  11. HIV-Associated Disruption of Tight and Adherens Junctions of Oral Epithelial Cells Facilitates HSV-1 Infection and Spread

    PubMed Central

    Sufiawati, Irna; Tugizov, Sharof M.

    2014-01-01

    Herpes simplex virus (HSV) types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD). Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals. PMID:24586397

  12. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    PubMed

    Sufiawati, Irna; Tugizov, Sharof M

    2014-01-01

    Herpes simplex virus (HSV) types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD). Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals. PMID:24586397

  13. Intravesical treatment of advanced urothelial bladder cancers with oncolytic HSV-1 co-regulated by differentially expressed microRNAs.

    PubMed

    Zhang, K-X; Matsui, Y; Lee, C; Osamu, O; Skinner, L; Wang, J; So, A; Rennie, P S; Jia, W W

    2016-05-01

    Urothelial bladder cancer is the most common malignancy of the urinary tract. Although most cases are initially diagnosed as non-muscle-invasive, more than 80% of patients will develop recurrent or metastatic tumors. No effective therapy exists currently for late-stage metastatic tumors. By intravesical application, local administration of oncolytic Herpes Simplex virus (oHSV-1) can provide a promising new therapy for this disease. However, its inherent neurotoxicity has been a perceived limitation for such application. In this study, we present a novel microRNA-regulatory approach to reduce HSV-1-induced neurotoxicity by suppressing viral replication in neurons while maintaining oncolytic selectivity toward urothelial tumors. Specifically, we designed a recombinant virus that utilizes differentially expressed endogenous microR143 (non-cancerous, ubiquitous) and microR124 (neural-specific) to regulate expression of ICP-4, a gene essential for HSV-1 replication. We found that expression of ICP-4 must be controlled by a combination of both miR143 and miR124 to achieve the most effective attenuation in HSV-1-induced toxicity while retaining maximal oncolytic capacity. These results suggest that interaction between miR143 and miR124 may be required to successfully regulate HSV-1 replication. Our resent study is the first proof-in-principle that miRNA combination can be exploited to fine-tune the replication of HSV-1 to treat human cancers. PMID:26905370

  14. A Phospho-SIM in the Antiviral Protein PML is Required for Its Recruitment to HSV-1 Genomes.

    PubMed

    Smith, Miles C; Box, Andrew C; Haug, Jeffrey S; Lane, William S; Davido, David J

    2014-01-01

    Herpes simplex virus type 1 (HSV-1) is a significant human pathogen that infects a large portion of the human population. Cells deploy a variety of defenses to limit the extent to which the virus can replicate. One such factor is the promyelocytic leukemia (PML) protein, the nucleating and organizing factor of nuclear domain 10 (ND10). PML responds to a number of stimuli and is implicated in intrinsic and innate cellular antiviral defenses against HSV-1. While the role of PML in a number of cellular pathways is controlled by post-translational modifications, the effects of phosphorylation on its antiviral activity toward HSV-1 have been largely unexplored. Consequently, we mapped phosphorylation sites on PML, mutated these and other known phosphorylation sites on PML isoform I (PML-I), and examined their effects on a number of PML's activities. Our results show that phosphorylation at most sites on PML-I is dispensable for the formation of ND10s and colocalization between PML-I and the HSV-1 regulatory protein, ICP0, which antagonizes PML-I function. However, inhibiting phosphorylation at sites near the SUMO-interaction motif (SIM) of PML-I impairs its ability to respond to HSV-1 infection. Overall, our data suggest that PML phosphorylation regulates its antiviral activity against HSV-1. PMID:25513827

  15. A Phospho-SIM in the Antiviral Protein PML is Required for Its Recruitment to HSV-1 Genomes

    PubMed Central

    Smith, Miles C.; Box, Andrew C.; Haug, Jeffrey S.; Lane, William S.; Davido, David J.

    2014-01-01

    Herpes simplex virus type 1 (HSV-1) is a significant human pathogen that infects a large portion of the human population. Cells deploy a variety of defenses to limit the extent to which the virus can replicate. One such factor is the promyelocytic leukemia (PML) protein, the nucleating and organizing factor of nuclear domain 10 (ND10). PML responds to a number of stimuli and is implicated in intrinsic and innate cellular antiviral defenses against HSV-1. While the role of PML in a number of cellular pathways is controlled by post-translational modifications, the effects of phosphorylation on its antiviral activity toward HSV-1 have been largely unexplored. Consequently, we mapped phosphorylation sites on PML, mutated these and other known phosphorylation sites on PML isoform I (PML-I), and examined their effects on a number of PML’s activities. Our results show that phosphorylation at most sites on PML-I is dispensable for the formation of ND10s and colocalization between PML-I and the HSV-1 regulatory protein, ICP0, which antagonizes PML-I function. However, inhibiting phosphorylation at sites near the SUMO-interaction motif (SIM) of PML-I impairs its ability to respond to HSV-1 infection. Overall, our data suggest that PML phosphorylation regulates its antiviral activity against HSV-1. PMID:25513827

  16. Tromantadine inhibits HSV-1 induced syncytia formation and viral glycoprotein processing

    SciTech Connect

    Ickes, D.E.

    1989-01-01

    Tromantadine inhibits a late event in Herpes Simplex Virus Type 1 (HSV-1) replication, visualized by the inhibition of both the size and number of syncytia. Tromantadine can be added at any time between 1 and 9 h post infection with complete inhibition of syncytia formation. Glycan synthesis of the viral glycoproteins, important for syncytia formation, is incomplete due to tromantadine treatment. Tromantadine does not inhibit the initiation of glycosylation, since viral glycoproteins, gX{sub t}, synthesized in the presence of tromantadine still incorporate {sup 3}H-glucosamine. Tromantadine does not inhibit the transport of t e viral glycoproteins to the cell surface, since glycoproteins B, C, and D are expressed, as demonstrated by immunofluorescence. Tromantadine inhibition of HSV-1 glycoprotein processing is demonstrated by an increase in mobility of the radioimmunoprecipitated gX{sub t}, on SDS-PAGE. The gX{sub t} of KOS, a non-syncytial strain of HSV-1, had a similar increase in mobility, suggesting that the block in glycoprotein processing is a general effect of tromantadine treatment. Fucose, which is incorporated into oligosaccharides in the medial Golgi, is incorporated into gX{sub t}, indicating that the tromantadine block in glycoprotein processing occurs after this step. Lectin binding studies and SDS-PAGE analysis of gC processed in the presence of tromantadine, gC{sub t}, indicates that it has terminal galactose residues in both N- and O-linked glycans (binds Peanut and Ricin Agglutinins, respectively). The inhibition of sialylation of N-linked glycans by tromantadine was indicated by the extent of the increase in SDS-PAGE mobility of the G protein from Vesicular Stomatitis Virus. O-glycanase digestion and SDS-PAGE analysis of gC{sub t} indicate that the O-linked disaccharide NAcGal-Galactose is present.

  17. HSV-1 as a novel therapy for breast cancer meningeal metastases.

    PubMed

    Kuruppu, D; Tanabe, K K

    2015-10-01

    Meningeal metastasis is a fatal complication of breast cancer that affects 5-8% of patients. When cancer cells seed in the meninges, their subsequent growth results in severe neurological complications involving the cranial nerves, cerebrum and spinal cord, limiting life expectancy to less than 4 months. The incidences of meningeal metastases increase with prolonged lifespan resulting from treatment advances for primary breast cancer and their metastases. Currently, there is no cure. Aggressive multimodal therapies such as radiation and chemotherapy (intra-cerebrospinal fluid (CSF) and systemic) are ineffective. Therapeutic agents are often quickly cleared from the CSF, while higher doses that can achieve a therapeutic response are highly toxic. The secure guarding of the subarachnoid space by the blood-brain barrier on one side and the blood-CSF barrier on the other prevents chemotherapy from reaching cancer cells in the meninges. These challenges with treating meningeal metastases highlight the urgent need for a new therapeutic modality. An ideal treatment would be an agent that avoids rapid clearance, remains within the CSF, reaches the meninges and selectively destroys tumor cells. Replication conditional oncolytic herpes simplex virus type 1 (HSV-1) may be effective in this regard. Viral oncolysis, the destruction of cancer cells by replicating virus, is under clinical investigation for cancers that are unresponsive to current therapies. It is based on the model of multiple cycles of lytic virus replication in cancer cells that amplify the injected dose. The therapeutic potential of oncolytic HSV-1 for breast cancer meningeal metastases is discussed here. HSV-1 could be a potential novel treatment for meningeal metastases that can be translated to the clinic. PMID:26384139

  18. Degeneration and Regeneration of Corneal Nerves in Response to HSV-1 Infection

    PubMed Central

    Chucair-Elliott, Ana J.; Zheng, Min; Carr, Daniel J. J.

    2015-01-01

    Purpose. Herpes simplex virus type 1 (HSV-1) infection is one cause of neurotrophic keratitis, characterized by decreases in corneal sensation, blink reflex, and tear secretion as consequence of damage to the sensory fibers innervating the cornea. Our aim was to characterize changes in the corneal nerve network and its function in response to HSV-1 infection. Methods. C57BL/6J mice were infected with HSV-1 or left uninfected. Corneas were harvested at predetermined times post infection (pi) and assessed for β III tubulin, substance P, calcitonin gene-related peptide, and neurofilament H staining by immunohistochemistry (IHC). Corneal sensitivity was evaluated using a Cochet-Bonnet esthesiometer. Expression of genes associated with nerve repair was determined in corneas by real time RT-PCR, Western blotting, and IHC. Semaphorin 7A (SEMA 7A) neutralizing antibody or isotype control was subconjunctivally administered to infected mice. Results. The area of cornea occupied by β III tubulin immunoreactivity and sensitivity significantly decreased by day 8 pi. Modified reinnervation was observed by day 30 pi without recovery of corneal sensation. Sensory fibers were lost by day 8 pi and were still absent or abnormal at day 30 pi. Expression of SEMA 7A increased at day 8 pi, localizing to corneal epithelial cells. Neutralization of SEMA 7A resulted in defective reinnervation and lower corneal sensitivity. Conclusions. Corneal sensory nerves were lost, consistent with loss of corneal sensation at day 8 pi. At day 30 pi, the cornea reinnervated but without recovering the normal arrangement of its fibers or function. SEMA 7A expression was increased at day 8pi, likely as part of a nerve regeneration mechanism. PMID:25587055

  19. CYTOGENETIC ANALYSIS OF THE L5178Y/TK+/- YIELDS TK-/- MOUSE LYMPHOMA MUTAGENESIS ASSAY SYSTEM

    EPA Science Inventory

    The L5178Y/TK t/- TK-/- mouse lymphoma mutagen assay, which allows selection of forward mutations at the autosomal thymidine kinase (TK) locus, uses a TK t/- heterozygous cell line, TK t/- 3.7.2C Quantitation of colonies of mutant TK-/- cells in the assay forms the basis for calc...

  20. HSV-1 infection of human corneal epithelial cells: Receptor-mediated entry and trends of re-infection

    PubMed Central

    Shah, Arpeet; Farooq, Asim V.; Tiwari, Vaibhav; Kim, Min-Jung

    2010-01-01

    Purpose The human cornea is a primary target for herpes simplex virus-1 (HSV-1) infection. The goals of the study were to determine the cellular modalities of HSV-1 entry into human corneal epithelial (HCE) cells. Specific features of the study included identifying major entry receptors, assessing pH dependency, and determining trends of re-infection. Methods A recombinant HSV-1 virus expressing beta-galactosidase was used to ascertain HSV-1 entry into HCE cells. Viral replication within cells was confirmed using a time point plaque assay. Lysosomotropic agents were used to test for pH dependency of entry. Flow cytometry and immunocytochemistry were used to determine expression of three cellular receptors - nectin-1, herpesvirus entry mediator (HVEM), and paired immunoglobulin-like 2 receptor alpha (PILR-a). The necessity of these receptors for viral entry was tested using antibody-blocking. Finally, trends of re-infection were investigated using viral entry assay and flow cytometry post-primary infection. Results Cultured HCE cells showed high susceptibility to HSV-1 entry and replication. Entry was demonstrated to be pH dependent as blocking vesicular acidification decreased entry. Entry receptors expressed on the cell membrane include nectin-1, HVEM, and PILR-α. Receptor-specific antibodies blocked entry receptors, reduced viral entry and indicated nectin-1 as the primary receptor used for entry. Cells re-infected with HSV-1 showed a decrease in entry, which was correlated to decreased levels of nectin-1 as demonstrated by flow cytometry. Conclusions HSV-1 is capable of developing an infection in HCE cells using a pH dependent entry process that involves primarily nectin-1 but also the HVEM and PILR-α receptors. Re-infected cells show decreased levels of entry, correlated with a decreased level of nectin-1 receptor expression. PMID:21139972

  1. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells

    PubMed Central

    Lafaille, Fabien G; Pessach, Itai M.; Zhang, Shen-Ying; Ciancanelli, Michael J.; Herman, Melina; Abhyankar, Avinash; Ying, Shui-Wang; Keros, Sotirios; Goldstein, Peter A.; Mostoslavsky, Gustavo; Ordovas-Montanes, Jose; Jouanguy, Emmanuelle; Plancoulaine, Sabine; Tu, Edmund; Elkabetz, Yechiel; Al-Muhsen, Saleh; Tardieu, Marc; Schlaeger, Thorsten M.; Daley, George Q.; Abel, Laurent; Casanova, Jean-Laurent; Studer, Lorenz; Notarangelo, Luigi D.

    2012-01-01

    In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of TLR3 immunity are prone to HSV-1 encephalitis (HSE) 1–3. We tested the hypothesis that the pathogenesis of HSE involves non hematopoietic central nervous system (CNS)-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of IFN-β and/or IFN-γ1 in response to poly(I:C) stimulation was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-γ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele demonstrated that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was further rescued by treatment with exogenous IFN-α/β, but not IFN-γ1.Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3 pathway deficiencies. PMID:23103873

  2. Neddylation is required for herpes simplex virus type I (HSV-1)-induced early phase interferon-beta production.

    PubMed

    Zhang, Xueying; Ye, Zhenjie; Pei, Yujun; Qiu, Guihua; Wang, Qingyang; Xu, Yunlu; Shen, Beifen; Zhang, Jiyan

    2016-09-01

    Type I interferons such as interferon-beta (IFN-β) play essential roles in the host innate immune response to herpes simplex virus type I (HSV-1) infection. The transcription of type I interferon genes is controlled by nuclear factor-κB (NF-κB) and interferon regulatory factor (IRF) family members including IRF3. NF-κB activation depends on the phosphorylation of inhibitor of κB (IκB), which triggers its ubiqitination and degradation. It has been reported that neddylation inhibition by a pharmacological agent MLN4924 potently suppresses lipopolysaccharide (LPS)-induced proinflammatory cytokine production with the accumulation of phosphorylated IκBα. However, the role of neddylation in type I interferon expression remains unknown. Here, we report that neddylation inhibition with MLN4924 or upon UBA3 deficiency led to accumulation of phosphorylated IκBα, impaired IκBα degradation, and impaired NF-κB nuclear translocation in the early phase of HSV-1 infection even though phosphorylation and nuclear translocation of IRF3 were not affected. The blockade of NF-κB nuclear translocation by neddylation inhibition becomes less efficient at the later time points of HSV-1 infection. Consequently, HSV-1-induced early phase IFN-β production significantly decreased upon MLN4924 treatment and UBA3 deficiency. NF-κB inhibitor JSH-23 mimicked the effects of neddylation inhibition in the early phase of HSV-1 infection. Moreover, the effects of neddylation inhibition on HSV-1-induced early phase IFN-β production diminished in the presence of NF-κB inhibitor JSH-23. Thus, neddylation contributes to HSV-1-induced early phase IFN-β production through, at least partially, promoting NF-κB activation. PMID:27593482

  3. Constitutive and Inducible Innate Responses in Cells Infected by HSV-1-Derived Amplicon Vectors

    PubMed Central

    Tsitoura, Eliza; Epstein, Alberto L

    2010-01-01

    Amplicons are helper-dependent herpes simplex virus type 1 (HSV-1)-based vectors that can deliver very large foreign DNA sequences and, as such, are good candidates both for gene delivery and vaccine development. However, many studies have shown that innate constitutive or induced cellular responses, elicited or activated by the entry of HSV-1 particles, can play a significant role in the control of transgenic expression and in the induction of inflammatory responses. Moreover, transgene expression from helper-free amplicon stocks is often weak and transient, depending on the particular type of infected cells, suggesting that cellular responses could be also responsible for the silencing of amplicon-mediated transgene expression. This review summarizes the current experimental evidence underlying these latter concepts, focusing on the impact on transgene expression of very-early interactions between amplicon particles and the infected cells, and speculates on possible ways to counteract the cellular protective mechanisms, thus allowing stable transgene expression without enhancement of vector toxicity. PMID:20811588

  4. Quantitative comparison of the HSV-1 and HSV-2 transcriptomes using DNA microarray analysis

    SciTech Connect

    Aguilar, J.S. . E-mail: jsaguila@uci.edu; Devi-Rao, G.V.; Rice, M.K.; Sunabe, J.; Ghazal, P.; Wagner, E.K.

    2006-04-25

    The genomes of human herpes virus type-1 and type-2 share a high degree of sequence identity; yet, they exhibit important differences in pathology in their natural human host as well as in animal host and cell cultures. Here, we report the comparative analysis of the time and relative abundance profiles of the transcription of each virus type (their transcriptomes) using parallel infections and microarray analysis using HSV-1 probes which hybridize with high efficiency to orthologous HSV-2 transcripts. We have confirmed that orthologous transcripts belong to the same kinetic class; however, the temporal pattern of accumulation of 4 transcripts (U{sub L}4, U{sub L}29, U{sub L}30, and U{sub L}31) differs in infections between the two virus types. Interestingly, the protein products of these transcripts are all involved in nuclear organization and viral DNA localization. We discuss the relevance of these findings and whether they may have potential roles in the pathological differences of HSV-1 and HSV-2.

  5. A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4

    PubMed Central

    Zhao, Qian; Zhuang, Xiufen; Deng, Zhenling; Liu, Lingling; Li, Jie; Zhang, Yu; Dong, Ying; Zhang, Youhui; Zhang, Shuren; Liu, Binlei

    2015-01-01

    Virotherapy is a promising strategy for cancer treatment. Using the human telomerase reverse transcriptase promoter, we developed a novel tumor-selective replication oncolytic HSV-1. Here we showed that oHSV1-hTERT virus was cytopathic in telomerase-positive cancer cell lines but not in telomerase-negative cell lines. In intra-venous injection in mice, oHSV1-hTERT was safer than its parental oHSV1-17+. In human blood cell transduction assays, both viruses transduced few blood cells and the transduction rate for oHSV1-hTERT was even less than that for its parental virus. In vivo, oHSV1-hTERT inhibited growth of tumors and prolong survival in telomerase-positive xenograft tumor models. Therefore, we concluded that this virus may be a safe and effective therapeutic agent for cancer treatment, warranting clinical trials in humans. PMID:25972362

  6. Natural killer cell receptor expression in patients with severe and recurrent Herpes simplex virus-1 (HSV-1) infections.

    PubMed

    Carter, C; Savic, S; Cole, J; Wood, P

    2007-04-01

    Herpes simplex virus-1 (HSV-1) is an important human pathogen which in a minority of people causes severe infections. In immunocompetent hosts the infection is self limiting. However, a small minority of people have frequent attacks. As NK cells have been implicated in host protection against HSV-1, the aim of this study was to compare NK cell receptor expression in healthy controls and in patients suffering from recurrent HSV-1 reactivations using monoclonal antibodies against NK cell receptors and 3 colour flow cytometry. Eighteen patients were recruited into the study and the results were compared to a control group. The results obtained showed that overall there was no statistical difference between patient and control groups in the expression of the NK cell receptors. There were however, individuals in the patient group (in particular, two members of one family) with significantly reduced level of activating receptors compared to the control group. PMID:17706187

  7. Anti-Viral Evaluation of Sesquiterpene Coumarins from Ferula assa-foetida against HSV-1

    PubMed Central

    Ghannadi, Alireza; Fattahian, Khadijeh; Shokoohinia, Yalda; Behbahani, Mandana; Shahnoush, Alireza

    2014-01-01

    Several complications attributed with Herpes virus related infections and the emergence of drug resistant viruses prompt scientists to search for new drugs. Several terpenoids and coumarins have shown anti HSV effects while no sesquiterpene coumarins have been previously tested for HSV treatment. Three sesquiterpene coumarins badrakemin acetate (1), kellerin (2) and samarcandin diastereomer (3) were isolated from the gum resin of Ferula assa-foetida, a herbal medicine with antimicrobial, antiprotozoal and antiviral effects. Compounds were identified by 1D and 2D- NMR spectroscopies and comparison with literature data. A comparative evaluation of cytotoxicity and antiviral activity showed that kellerin (2) could significantly inhibit the cytopathic effects and reduce the viral titre of the herpes virus type 1 (HSV-1) DNA viral strain KOS at concentrations of 10, 5 and 2.5 µg/mL. PMID:25237347

  8. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  9. Focused ultrasound enhanced molecular imaging and gene therapy for multifusion reporter gene in glioma-bearing rat model

    PubMed Central

    Yang, Feng-Yi; Chang, Wen-Yuan; Lin, Wei-Ting; Hwang, Jeng-Jong; Chien, Yi-Chun; Wang, Hsin-Ell; Tsai, Min-Lan

    2015-01-01

    The ability to monitor the responses of and inhibit the growth of brain tumors during gene therapy has been severely limited due to the blood-brain barrier (BBB). A previous study has demonstrated the feasibility of noninvasive in vivo imaging with 123I-2′-fluoro-2′-deoxy-5-iodo-1-β-D-arabinofuranosyluracil (123I-FIAU) for monitoring herpes simplex virus type 1 thymidine kinase (HSV1-tk) cancer gene expression in an experimental animal model. Here, we tested the enhancement of SPECT with 123I-FIAU and ganciclovir (GCV) treatment in brain tumors after BBB disruption induced by focused ultrasound (FUS) in the presence of microbubbles. We established an orthotopic F98 glioma-bearing rat model with trifusion reporter genes. The results of this study showed that the rat model of HSV1-tk-expressing glioma cells could be successfully detected by SPECT imaging after FUS-induced BBB disruption on day 10 after implantation. Compared to the control group, animals receiving the GCV with or without sonication exhibited a significant antitumor activity (P < 0.05) of glioma cells on day 16 after implantation. Moreover, combining sonication with GCV significantly inhibited tumor growth compared with GCV alone. This study demonstrated that FUS may be used to deliver a wide variety of theranostic agents to the brain for molecular imaging and gene therapy in brain diseases. PMID:26429860

  10. The antimicrobial agent C31G is effective for therapy for HSV-1 ocular keratitis in the rabbit eye model.

    PubMed

    Hill, James M; Stern, Ethan M; Bhattacharjee, Partha S; Malamud, Daniel; Clement, Christian; Rodriguez, Paulo; Lukiw, Walter J; Ochoa, Augusto C; Foster, Timothy P; Velasco, Cruz; McFerrin, Harris E

    2013-10-01

    The amphoteric C31G solution contains equimolar alkyl dimethlyglycine and alkyl dimethyl amine oxide buffered with citric acid. C31G acts as a broad spectrum antiviral and an antibacterial. No previous in vivo studies have been done to test C31G in an animal model of HSV-1 ocular keratitis. We assessed the anti-herpetic activity of C31G in the rabbit eye model using three treatment groups: (1) 1% trifluorothymidine (TFT); (2) 0.25% C31G plus 0.5% hydroxypropyl methylcellulose (HPMC); and (3) vehicle, 0.5% HPMC. Scarified rabbit corneas were inoculated with the HSV-1 strain McKrae. On post inoculation (PI) day 3, rabbits were placed in three balanced groups based on slit-lamp examination (SLE) scores. Treatment began on PI day 3, five times a day for five consecutive days. In addition to the daily, masked SLE scoring, the eyes were assessed daily for stromal opacity, scleral inflammation, neovascularization, eyelid inflammation, inflammatory discharge, and epiphora. C31G and TFT were very effective in reducing the lesions and pathogenesis associated with HSV-1 ocular keratitis. The vehicle control scores were significantly higher and did not effectively treat HSV-1 keratitis. C31G has the potential to be used to treat herpetic keratitis as well as other herpetic topical lesions in humans. PMID:23860013

  11. Anti-HSV1 activity of brown algal polysaccharides and possible relevance to the treatment of Alzheimer's disease.

    PubMed

    Wozniak, Matthew; Bell, Tracey; Dénes, Ádám; Falshaw, Ruth; Itzhaki, Ruth

    2015-03-01

    Herpes simplex virus type 1 (HSV1) induces the formation of the characteristic abnormal molecules of Alzheimer's disease (AD) brains, beta-amyloid, and abnormally phosphorylated, AD-like tau (P-tau). Formation of these molecules is inhibited by treatment with the antiviral agent acyclovir (ACV), which prevents viral DNA replication. A totally different mechanism of antiviral action against herpes simplex viruses is shown by sulfated fucans. The antiviral activity of sulfated fucans from five brown algae (Scytothamnus australis, Marginariella boryana, Papenfussiella lutea, Splachnidium rugosum and Undaria pinnatifida) was investigated in relation to the HSV1-induced formation of beta-amyloid, and AD-like tau. Antiviral activity was also related to specific structural features of these polysaccharides. Four sulfated fucan extracts each prevented the accumulation of HSV1-induced beta-amyloid and AD-like tau in HSV1-infected Vero cells. The structures of these extracts had some similarities but also key differences, indicating that a number of structural features can cause antiviral activity. The most active sulfated fucan combined with acyclovir was particularly effective, so may be particularly suitable for further experimental testing in order to develop treatment protocols for AD patients, with the aim of slowing or stopping disease progression. PMID:25583021

  12. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis.

    PubMed

    Marino-Merlo, Francesca; Papaianni, Emanuela; Medici, Maria Antonietta; Macchi, Beatrice; Grelli, Sandro; Mosca, Claudia; Borner, Christoph; Mastino, Antonio

    2016-01-01

    The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells. PMID:27584793

  13. NT-38MerTK AS A TARGET IN GLIOBLASTOMA

    PubMed Central

    Wu, Jing; Huey, Lauren; Bash, Ryan E.; Cohen, Stephanie M.; Ewend, Matthew G.; Wang, Xiaodong; Graham, Douglas K.; Frye, Stephen V.; Earp, H. Shelton; Miller, C. Ryan

    2014-01-01

    Glioma-associated macrophages and microglia (GIM) are infiltrating immune cells that modulate the glioblastoma (GBM) micro-environment. Pharmacological targeting of GIM represents a promising therapeutic strategy. MerTK receptor tyrosine kinase triggers macrophage ingestion of apoptotic material and polarizes macrophages to an M2-like, immunosuppressive phenotype that promotes tumor growth. In addition, aberrant MerTK expression in GBM tumor cells can provide pro-survival, pro-invasion and chemo-resistance signals. We examined MerTK expression by double immunofluorescence (IF) in 40 human GBM. Both GFAP+ tumor cells and CD68+ GIM expressed MerTK. Quantification in 12 matched pairs of newly-diagnosed and recurrent GBM showed a 5.5-fold increase in MerTK/CD68+ macrophages (p = 0.002), but no consistent changes in MerTK/GFAP+ tumor cells upon recurrence. Next, we examined the efficacy of a novel UNC-developed small molecule MerTK inhibitor (MerTKI) in a genetically engineered orthotopic allograft model of GBM (TRP). GBM were established for 7 days upon stereotactic injection of luciferase-expressing TRP cells into syngeneic, immune-competent mice. Mice (N = 10-12/group) were then randomized to receive no treatment, daily MerTKI (65mg/kg p.o.), or MerTKI plus fractionated radiation (XRT, 5 Gy q.o.d x3). Median survival was 24, 22, and 41.5 days, respectively (p = 0.003), while historical survival of TRP allograft mice treated with XRT alone was 30 days. Bioluminescence imaging (BLI) showed a significant growth delay in MerTKI + XRT-treated mice (doubling time 14 versus 4-4.5 days, p < 0.0001). Two mice remain alive after 50 days of combination treatment and tumor growth remains stable with 90-99% reduction in pre-treatment BLI. Post-mortem histology and IF are pending. These results suggest that both human GBM tumor cells and GIM express MerTK and that MerTK+ GIM may increase upon disease recurrence. MerTK inhibition in an immune-competent pre-clinical model may

  14. The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons

    PubMed Central

    Nicoll, Michael P.; Hann, William; Shivkumar, Maitreyi; Harman, Laura E. R.; Connor, Viv; Coleman, Heather M.; Proença, João T.; Efstathiou, Stacey

    2016-01-01

    Herpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or β-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir. PMID:27055281

  15. The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons.

    PubMed

    Nicoll, Michael P; Hann, William; Shivkumar, Maitreyi; Harman, Laura E R; Connor, Viv; Coleman, Heather M; Proença, João T; Efstathiou, Stacey

    2016-04-01

    Herpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or β-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir. PMID:27055281

  16. Ethosomes for the delivery of anti-HSV-1 molecules: preparation, characterization and in vitro activity.

    PubMed

    Cortesi, R; Ravani, L; Zaid, A N; Menegatti, E; Romagnoli, R; Drechsler, M; Esposito, E

    2010-10-01

    This paper describes the production, characterization and in vitro activity of ethosomes containing two molecules with antiviral activity, such as acyclovir (ACY) and N1-beta-D-ribofuranosyl-pyrazole [3,4d]pyridazin-7(6p-chlorine-phenyl)-one nucleoside (N1CP). Ethosomes were prepared and morphologically characterized by Cryo-TEM. The encapsulation efficiency was 92.3 +/- 2.5% for ACY and 94.2 +/- 2.8% for N1CP. The release of the drug from vesicles, determined by a Franz cell method, indicated that both drugs were released in a controlled manner. In order to possibly guarantee the stability during long-term storage ethosome suspensions was freeze-dried. It was found that the freeze-dried ethosomes' cakes were compact, glassy characterized by low density and quick re-hydration. However, the storage time slightly influences the percentage of drug encapsulation within ethosomes showing a drug leakage after re-hydration around 10%. The antiviral activity against HSV-1 of both drugs was tested by plaque reduction assay in monolayer cultures of Vero cells. Data showed that ethosomes allowed a reduction of the ED50 of N1CP evidencing an increase of its antiviral activity. However, ACY remains more active than N1CP. No differences are appreciable between drug-containing ethosomes before and after freeze-drying. Taken together these results, ethosomal formulation could be possibly proposed as mean for topical administration of anti-herpetic molecules. PMID:21105576

  17. Conformational analysis of a quinolonic ribonucleoside with anti-HSV-1 activity

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane D.; Velloso, Marcia Helena R.; Leal, Kátia Z.; Azeredo, Rodrigo B. de V.; Sugiura, Makiko; Albuquerque, Magaly G.; Santos, Fernanda da C.; Souza, Maria Cecília B. V. de; Cunha, Anna Claudia; Seidl, Peter R.; Alencastro, Ricardo B. de; Ferreira, Vitor F.

    2011-01-01

    The infections caused by the Herpes Simplex Virus are one of the most common sources of diseases in adults and several natural nucleoside analogues are currently used in the treatment of these infections. In vitro tests of a series of quinolonic ribonucleosides derivatives synthesized by part of our group indicated that some of them have antiviral activity against HSV-1. The conformational analysis of bioactive compounds is extremely important in order to better understand their chemical structures and biological activity. In this work, we have carried out a nuclear relaxation NMR study of 6-Me ribonucleoside derivative in order to determine if the syn or anti conformation is preferential. The NMR analysis permits the determination of inter-atomic distances by using techniques which are based on nuclear relaxation and related phenomena. Those techniques are non-selective longitudinal or spin-lattice relaxation rates and NULL pulse sequence, which allow the determination of distances between pairs of hydrogen atoms. The results of NMR studies were compared with those obtained by molecular modeling.

  18. Expression of HSV-1 Receptors in EBV-Associated Lymphoproliferative Disease Determines Susceptibility to Oncolytic HSV

    PubMed Central

    Wang, Pin-Yi; Currier, Mark A; Hansford, Loen; Kaplan, David; Chiocca, E. Antonio; Uchida, Hiroaki; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.; van Kuppevelt, Toin H.; Mo, Xiaokui; Cripe, Timothy P

    2012-01-01

    Epstein-Barr virus (EBV)-associated B cell lymphoproliferative disease (LPD) after hematopoietic stem cell or solid organ transplantation remains a life-threatening complication. Expression of the virus-encoded gene product, EBER, has been shown to prevent apoptosis via blockade of PKR activation. Because PKR is a major cellular defense against Herpes simplex virus, and oncolytic HSV-1 (oHSV) mutants have shown promising anti-tumor efficacy in preclinical models, we sought to determine whether EBV-LPD cells are susceptible to infection by oHSVs. We tested three primary EBV-infected lymphocyte cell cultures from neuroblastoma (NB) patients as models of naturally acquired EBV-LPD. NB12 was most susceptible, NB122R was intermediate, and NB88R2 was essentially resistant. Despite EBER expression, PKR was activated by oHSV infection. Susceptibility to oHSV correlated with the expression of the HSV receptor, nectin-1. The resistance of NB88R2 was reversed by exogenous nectin-1 expression, whereas down-regulation of nectin-1 on NB12 decreased viral entry. Xenografts derived from the EBV-LPDs exhibited only mild (NB12) or no (NB88R2) response to oHSV injection, compared with a neuroblastoma cell line that showed a significant response. We conclude that EBV-LPDs are relatively resistant to oHSV virotherapy, in some cases due to low virus receptor expression but also due to intact anti-viral PKR signaling. PMID:23254370

  19. Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection

    SciTech Connect

    Sae-Ueng, Udom; Li, Dong; Zuo, Xiaobing; Huffman, Jamie B.; Homa, Fred L.; Rau, Donald; Evilevitch, Alex

    2014-10-01

    DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations in the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.

  20. Targeted gene transfer to nigrostriatal neurons in the rat brain by helper virus-free HSV-1 vector particles that contain either a chimeric HSV-1 glycoprotein C-GDNF or a gC-BDNF protein

    PubMed Central

    Wang, Xiaodan; Kong, Lingxin; Zhang, Guo-rong; Sun, Mei; Geller, Alfred I.

    2006-01-01

    Direct gene transfer into neurons has potential for both studying neuronal physiology and for developing gene therapy treatments for specific neurological conditions. Due to the heterogeneous cellular composition of the brain, cell-type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. The two prevalent approaches for achieving cell-type-specific expression are to use a cell-type-specific promoter to control recombinant gene expression or to modify a virus vector particle to target gene transfer to a specific cell type. Targeted gene transfer to multiple peripheral cell types has been described, but targeted gene transfer to a specific type of neuron in the brain has yet to be reported. Targeted gene transfer approaches with Herpes Simplex Virus (HSV-1) vectors have focused on modifying glycoprotein C (gC) to remove the heparin binding domain and add a binding activity for a specific protein on the cell surface. This study was designed to develop HSV-1 vectors that target gene transfer to cells that contain receptors for either glial-cell-line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF), such as nigrostriatal neurons. We isolated chimeric gC-GDNF or chimeric gC-BDNF constructs, and the resulting proteins were incorporated into HSV-1 virus particles. We performed helper virus-free HSV-1 vector packaging in the presence of each chimeric protein. The resulting vector stocks supported 2.2- to 5.0-fold targeted gene transfer to nigrostriatal neurons in the rat brain, compared to vector particles that contained wild-type (wt) gC. Gene transfer to nigrostriatal neurons by vector particles that contained chimeric gC-BDNF was reduced by preincubation with an anti-BDNF antibody. Targeted gene transfer to neurons that contain specific neurotrophic factor receptors may benefit specific physiological and gene therapy studies. PMID:15993510

  1. Subcellular Trafficking and Functional Relationship of the HSV-1 Glycoproteins N and M.

    PubMed

    Striebinger, Hannah; Funk, Christina; Raschbichler, Verena; Bailer, Susanne M

    2016-03-01

    The herpes simplex virus type 1 (HSV-1) glycoprotein N (gN/UL49.5) is a type I transmembrane protein conserved throughout the herpesvirus family. gN is a resident of the endoplasmic reticulum that in the presence of gM is translocated to the trans Golgi network. gM and gN are covalently linked by a single disulphide bond formed between cysteine 46 of gN and cysteine 59 of gM. Exit of gN from the endoplasmic reticulum requires the N-terminal core of gM composed of eight transmembrane domains but is independent of the C-terminal extension of gM. Co-transport of gN and gM to the trans Golgi network also occurs upon replacement of conserved cysteines in gM and gN, suggesting that their physical interaction is mediated by covalent and non-covalent forces. Deletion of gN/UL49.5 using bacterial artificial chromosome (BAC) mutagenesis generated mutant viruses with wild-type growth behaviour, while full deletion of gM/UL10 resulted in an attenuated phenotype. Deletion of gN/UL49.5 in conjunction with various gM/UL10 mutants reduced average plaque sizes to the same extent as either single gM/UL10 mutant, indicating that gN is nonessential for the function performed by gM. We propose that gN functions in gM-dependent as well as gM-independent processes during which it is complemented by other viral factors. PMID:26999189

  2. Subcellular Trafficking and Functional Relationship of the HSV-1 Glycoproteins N and M

    PubMed Central

    Striebinger, Hannah; Funk, Christina; Raschbichler, Verena; Bailer, Susanne M.

    2016-01-01

    The herpes simplex virus type 1 (HSV-1) glycoprotein N (gN/UL49.5) is a type I transmembrane protein conserved throughout the herpesvirus family. gN is a resident of the endoplasmic reticulum that in the presence of gM is translocated to the trans Golgi network. gM and gN are covalently linked by a single disulphide bond formed between cysteine 46 of gN and cysteine 59 of gM. Exit of gN from the endoplasmic reticulum requires the N-terminal core of gM composed of eight transmembrane domains but is independent of the C-terminal extension of gM. Co-transport of gN and gM to the trans Golgi network also occurs upon replacement of conserved cysteines in gM and gN, suggesting that their physical interaction is mediated by covalent and non-covalent forces. Deletion of gN/UL49.5 using bacterial artificial chromosome (BAC) mutagenesis generated mutant viruses with wild-type growth behaviour, while full deletion of gM/UL10 resulted in an attenuated phenotype. Deletion of gN/UL49.5 in conjunction with various gM/UL10 mutants reduced average plaque sizes to the same extent as either single gM/UL10 mutant, indicating that gN is nonessential for the function performed by gM. We propose that gN functions in gM-dependent as well as gM-independent processes during which it is complemented by other viral factors. PMID:26999189

  3. Early activation of MyD88-mediated autophagy sustains HSV-1 replication in human monocytic THP-1 cells.

    PubMed

    Siracusano, Gabriel; Venuti, Assunta; Lombardo, Daniele; Mastino, Antonio; Esclatine, Audrey; Sciortino, Maria Teresa

    2016-01-01

    Autophagy is a cellular degradation pathway that exerts numerous functions in vital biological processes. Among these, it contributes to both innate and adaptive immunity. On the other hand, pathogens have evolved strategies to manipulate autophagy for their own advantage. By monitoring autophagic markers, we showed that HSV-1 transiently induced autophagosome formation during early times of the infection of monocytic THP-1 cells and human monocytes. Autophagy is induced in THP-1 cells by a mechanism independent of viral gene expression or viral DNA accumulation. We found that the MyD88 signaling pathway is required for HSV-1-mediated autophagy, and it is linked to the toll-like receptor 2 (TLR2). Interestingly, autophagy inhibition by pharmacological modulators or siRNA knockdown impaired viral replication in both THP-1 cells and human monocytes, suggest that the virus exploits the autophagic machinery to its own benefit in these cells. Taken together, these findings indicate that the early autophagic response induced by HSV-1 exerts a proviral role, improving viral production in a semi-permissive model such as THP-1 cells and human monocytes. PMID:27509841

  4. Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection

    PubMed Central

    Lee, Heung Kyu; Zamora, Melodie; Linehan, Melissa M.; Iijima, Norifumi; Gonzalez, David; Haberman, Ann

    2009-01-01

    Although mucosal surfaces represent the main portal of entry for pathogens, the mechanism of antigen presentation by dendritic cells (DCs) that patrol various mucosal tissues remains unclear. Instead, much effort has focused on the understanding of initiation of immune responses generated against antigens delivered by injection. We examined the contributions of migratory versus lymph node–resident DC populations in antigen presentation to CD4 and CD8 T cells after needle injection, epicutaneous infection, or vaginal mucosal herpes simplex virus (HSV) 1 infection. We show that upon needle injection, HSV-1 became lymph-borne and was rapidly presented by lymph node–resident DCs to CD4 and CD8 T cells. In contrast, after vaginal HSV-1 infection, antigens were largely presented by tissue-derived migrant DCs with delayed kinetics. In addition, migrant DCs made more frequent contact with HSV-specific T cells after vaginal infection compared with epicutaneous infection. Thus, both migrant and resident DCs play an important role in priming CD8 and CD4 T cell responses, and their relative importance depends on the mode of infection in vivo. PMID:19153243

  5. Early activation of MyD88-mediated autophagy sustains HSV-1 replication in human monocytic THP-1 cells

    PubMed Central

    Siracusano, Gabriel; Venuti, Assunta; Lombardo, Daniele; Mastino, Antonio; Esclatine, Audrey; Sciortino, Maria Teresa

    2016-01-01

    Autophagy is a cellular degradation pathway that exerts numerous functions in vital biological processes. Among these, it contributes to both innate and adaptive immunity. On the other hand, pathogens have evolved strategies to manipulate autophagy for their own advantage. By monitoring autophagic markers, we showed that HSV-1 transiently induced autophagosome formation during early times of the infection of monocytic THP-1 cells and human monocytes. Autophagy is induced in THP-1 cells by a mechanism independent of viral gene expression or viral DNA accumulation. We found that the MyD88 signaling pathway is required for HSV-1-mediated autophagy, and it is linked to the toll-like receptor 2 (TLR2). Interestingly, autophagy inhibition by pharmacological modulators or siRNA knockdown impaired viral replication in both THP-1 cells and human monocytes, suggest that the virus exploits the autophagic machinery to its own benefit in these cells. Taken together, these findings indicate that the early autophagic response induced by HSV-1 exerts a proviral role, improving viral production in a semi-permissive model such as THP-1 cells and human monocytes. PMID:27509841

  6. Early collection of saliva specimens from Bell's palsy patients: quantitative analysis of HHV-6, HSV-1, and VZV.

    PubMed

    Turriziani, Ombretta; Falasca, Francesca; Maida, Paola; Gaeta, Aurelia; De Vito, Corrado; Mancini, Patrizia; De Seta, Daniele; Covelli, Edoardo; Attanasio, Giuseppe; Antonelli, Guido

    2014-10-01

    Bell's palsy is the most common cause of facial paralysis. Although it has been associated with diabetes mellitus, hypertension, pregnancy, and preeclampsia, the etiology of Bell's palsy remains unknown. The reactivation of latent herpes simplex virus (HSV) or varicella-zoster virus (VZV) with subsequent inflammation and entrapment of the facial nerve in the narrow labyrinthine segment has been implicated as a cause of facial paralysis, but the active role of these viruses in Bell's palsy is still discussed. This study quantified HSV-1 DNA, VZV DNA, and HHV-6 DNA in 95 saliva samples collected from patients within 48 hr from the onset of paralysis. HSV-1, VZV, and HHV-6 were detected in 13%, 3%, and 61% of patients, respectively. The detection rate did not differ significantly between patients and a control group of healthy donors. Interestingly, however, the value of HHV-6 DNA copies was significantly higher than that detected in healthy donors. In addition, the mean value of HHV-6 DNA recorded in patients who had at least a one grade improvement of palsy at the first visit was significantly lower than that detected in patients who showed no change in facial palsy grade or an increase of at least one grade. These findings call into question the role of HSV-1 and VZV in the etiology of Bell's palsy, and suggest that HHV-6 may be involved in the development of the disease or that the underlying disease mechanism might predispose patients to HHV-6 reactivation. PMID:24619963

  7. Optical imaging of reporter gene expression using a positron-emission-tomography probe

    NASA Astrophysics Data System (ADS)

    Liu, Hongguang; Ren, Gang; Liu, Shuanglong; Zhang, Xiaofen; Chen, Luxi; Han, Peizhen; Cheng, Zhen

    2010-11-01

    Reporter gene/reporter probe technology is one of the most important techniques in molecular imaging. Lately, many reporter gene/reporter probe systems have been coupled to different imaging modalities such as positron emission tomography (PET) and optical imaging (OI). It has been recently found that OI techniques could be used to monitor radioactive tracers in vitro and in living subjects. In this study, we further demonstrate that a reporter gene/nuclear reporter probe system [herpes simplex virus type-1 thymidine kinase (HSV1-tk) and 9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine ([18F]FHBG)] could be successfully imaged by OI in vitro and in vivo. OI with radioactive reporter probes will facilitate and broaden the applications of reporter gene/reporter probe techniques in medical research.

  8. HSV-1 infection suppresses TGF-β1 and SMAD3 expression in human corneal epithelial cells

    PubMed Central

    Nie, Yuhong; Cui, Dongmei; Pan, Zhujuan; Deng, Jiangyun; Huang, Qiang

    2008-01-01

    Purpose The present study was undertaken to investigate whether transforming growth factor-β (TGF-β) isoforms (TGF-β1, TGF-β2, and TGF-β3) and SMADs (SMAD2 and SMAD3) are involved in herpes simplex virus type 1 (HSV-1) corneal infection. Methods Human corneal epithelial cells (HCE) were infected with HSV-1 at a multiplicity of infection of 5. Cell morphological changes were observed under phase-contrast microscopy. Levels of mRNA for TGF-β isoforms 1, 2, and 3 as well as for SMAD2 and SMAD3 were measured by reverse transcription polymerase chain reaction (RT–PCR) at 0 h, 4 h, 8 h, 12 h, and 24 h after infection. Protein expression of TGF-β1, TGF-β2, SMAD3, and phospho-SMAD3 were analyzed by indirect immunofluorescence at 0 h, 12 h, and 24 h post-infection (p.i.) in HCE cells. Protein expression of TGF-β1 was also evaluated by ELISA. Results Following HSV-1 infection, a cytopathic effect in HCE cells was observed at 8 h p.i. and became significant at 24 h p.i. Compared with normal cells, the mRNA levels of TGF-β1 in HSV-1 infected HCE cells decreased significantly at 8 h, 12 h, and 24 h p.i. (p<0.01), and the expression of SMAD3 was also dramatically decreased 12 h and 24 h p.i. (p<0.01). No noticeable changes were found as a result of infection with respect to levels of TGF-β2, TGF-β3, and SMAD2 in HCE cells. Protein expression of TGF-β1, SMAD3, and phospho-SMAD3 decreased in infected cells at 12 h and 24 h p.i. compared with normal cells, but TGF-β2 had no change. Conclusions TGF-β1 and SMAD3 may be involved in the pathology of corneal diseases associated with HSV-1 infection. PMID:18776948

  9. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression.

    PubMed

    Christensen, Maria H; Jensen, Søren B; Miettinen, Juho J; Luecke, Stefanie; Prabakaran, Thaneas; Reinert, Line S; Mettenleiter, Thomas; Chen, Zhijian J; Knipe, David M; Sandri-Goldin, Rozanne M; Enquist, Lynn W; Hartmann, Rune; Mogensen, Trine H; Rice, Stephen A; Nyman, Tuula A; Matikainen, Sampsa; Paludan, Søren R

    2016-07-01

    Herpes simplex virus (HSV) 1 stimulates type I IFN expression through the cGAS-STING-TBK1 signaling axis. Macrophages have recently been proposed to be an essential source of IFN during viral infection. However, it is not known how HSV-1 inhibits IFN expression in this cell type. Here, we show that HSV-1 inhibits type I IFN induction through the cGAS-STING-TBK1 pathway in human macrophages, in a manner dependent on the conserved herpesvirus protein ICP27. This viral protein was expressed de novo in macrophages with early nuclear localization followed by later translocation to the cytoplasm where ICP27 prevented activation of IRF3. ICP27 interacted with TBK1 and STING in a manner that was dependent on TBK1 activity and the RGG motif in ICP27. Thus, HSV-1 inhibits expression of type I IFN in human macrophages through ICP27-dependent targeting of the TBK1-activated STING signalsome. PMID:27234299

  10. Down-RANKing the Threat of HSV-1: RANKL Upregulates MHC-Class-I-Restricted Anti-Viral Immunity in Herpes Simplex Virus Infection.

    PubMed

    Finsterbusch, Katja; Piguet, Vincent

    2015-11-01

    Herpes simplex virus (HSV-1) is a major cause of viral skin infection in humans. Klenner and colleagues now show that the epidermal receptor activator of NFκB ligand (RANKL) is critical for the induction of anti-viral CD8(+) effector T cells (CTL) during cutaneous HSV-1 infection. Activation via RANKL prevents Langerhans cell apoptosis, thus leading to enhanced antigen transport to regional lymph nodes, increasing the CTL-priming capacity of lymph node dendritic cells. PMID:26548487

  11. Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil.

    PubMed

    De Logu, A; Loy, G; Pellerano, M L; Bonsignore, L; Schivo, M L

    2000-12-01

    The essential oil obtained in toto from Santolina insularis was investigated for its antiviral activity on herpes simplex type 1 (HSV-1) and type 2 (HSV-2) in vitro. The IC(50) values, determined by plaque reduction assays, were 0.88 and 0.7 microg/ml for HSV-1 and HSV-2, respectively, while the CC(50) determined by the MTT test on Vero cells was 112 microg/ml, indicating a CC(50)/IC(50) ratio of 127 for HSV-1 and 160 for HSV-2. Results obtained by plaque reduction assays also indicated that the antiviral activity of S. insularis was principally due to direct virucidal effects. Antiviral activity against HSV-1 and HSV-2 was not observed in a post-attachment assay, and attachment assays indicated that virus adsorption was not inhibited. Up to 80% inhibition of HSV-1 was achieved at the concentration of 40 microg/ml by yield reduction assay. Furthermore, reduction of plaque formation assays also showed that S. insularis essential oil inhibits cell-to-cell transmission of both HSV-1 and HSV-2. PMID:11164504

  12. A STING-dependent innate-sensing pathway mediates resistance to corneal HSV-1 infection via upregulation of the antiviral effector tetherin.

    PubMed

    Royer, D J; Carr, D J J

    2016-07-01

    Type 1 interferons (IFNs; IFNα/β) mediate immunological host resistance to numerous viral infections, including herpes simplex virus type 1 (HSV-1). The pathways responsible for IFNα/β signaling during the innate immune response to acute HSV-1 infection in the cornea are incompletely understood. Using a murine ocular infection model, we hypothesized that the stimulator of IFN genes (STING) mediates resistance to HSV-1 infection at the ocular surface and preserves the structural integrity of this mucosal site. Viral pathogenesis, tissue pathology, and host immune responses during ocular HSV-1 infection were characterized by plaque assay, esthesiometry, pachymetry, immunohistochemistry, flow cytometry, and small interfering RNA transfection in wild-type C57BL/6 (WT), STING-deficient (STING(-/-)), and IFNα/β receptor-deficient (CD118(-/-)) mice at days 3-5 postinfection. The presence of STING was critical for sustained control of HSV-1 replication in the corneal epithelium and resistance to viral neuroinvasion, but loss of STING had a negligible impact with respect to gross tissue pathology. Auxiliary STING-independent IFNα/β signaling pathways were responsible for maintenance of corneal integrity. Lymphatic vessels, mast cells, and sensory innervation were compromised in CD118(-/-) mice concurrent with increased tissue edema. STING-dependent signaling led to the upregulation of tetherin, a viral restriction factor we identify is important in containing the spread of HSV-1 in vivo. PMID:26627457

  13. Molecular modeling studies of 1,4-dihydro-4-oxoquinoline ribonucleosides with anti-HSV-1 activity

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Seidl, Peter Rudolf; de Alencastro, Ricardo Bicca

    2011-12-01

    Eight human herpes viruses ( e.g., herpes simplex, varicella-zoster, Epstein-Barr, cytomegalovirus, Kaposi's sarcoma) are responsible for several diseases from sub-clinic manifestations to fatal infections, mostly in immunocompromised patients. The major limitations of the currently available antiviral drug therapy are drug resistance, host toxicity, and narrow spectrum of activity. However, some non-nucleoside 1,4-dihydro-4-oxoquinoline derivatives ( e.g., PNU-183792) [4] shows broad spectrum antiviral activity. We have developed molecular modeling studies, including molecular docking and molecular dynamics simulations, based on a model proposed by Liu and co-workers [14] in order to understand the mechanism of action of a 6-chloro substituted 1,4-dihydro-4-oxoquinoline ribonucleoside, synthesized by the synthetic group, which showed anti-HSV-1 activity [9]. The molecular docking simulations confirmed the Liu's model showing that the ligand needs to dislocate template residues from the active site in order to interact with the viral DNA polymerase enzyme, reinforcing that the interaction with the Val823 residue is pivotal for the inhibitory activity of non-nucleoside 1,4-dihydro-4-oxoquinoline derivatives, such as PNU-183792, with the HSV-1. The molecular dynamics simulations showed that the 6-chloro-benzyl group of PNU-183792 maintains its interaction with residues of the HSV-1 DNA polymerase hydrophobic pocket, considered important according to the Liu's model, and also showed that the methyl group bounded to the nitrogen atom from PNU-183792 is probably contributing to a push-pull effect with the carbonyl group.

  14. Nonthermal Dielectric Barrier Discharge (DBD) Plasma Suppresses Herpes Simplex Virus Type 1 (HSV-1) Replication in Corneal Epithelium

    PubMed Central

    Alekseev, Oleg; Donovan, Kelly; Limonnik, Vladimir; Azizkhan-Clifford, Jane

    2014-01-01

    Purpose Herpes keratitis (HK) is the leading cause of cornea-derived and infection-associated blindness in the developed world. Despite the availability of effective antivirals, some patients develop refractory disease, drug-resistant infection, and topical toxicity. A nonpharmaceutical treatment modality may offer a unique advantage in the management of such cases. This study investigated the antiviral effect of nonthermal dielectric barrier discharge (DBD) plasma, a partially ionized gas that can be applied to organic substances to produce various biological effects. Methods Human corneal epithelial cells and explanted corneas were infected with herpes simplex virus type 1 (HSV-1) and exposed to culture medium treated with nonthermal DBD plasma. The extent of infection was measured by plaque assay, quantitative PCR, and Western blot. Corneal toxicity assessment was performed with fluorescein staining, histologic examination, and 8-OHdG detection. Results Application of DBD plasma–treated medium to human corneal epithelial cells and explanted corneas produced a dose-dependent reduction of the cytopathic effect, viral genome replication, and the overall production of infectious viral progeny. Toxicity studies showed lack of detrimental effects in explanted human corneas. Conclusions Nonthermal DBD plasma substantially suppresses corneal HSV-1 infection in vitro and ex vivo without causing pronounced toxicity. Translational Relevance Nonthermal plasma is a versatile tool that holds great biomedical potential for ophthalmology, where it is being investigated for wound healing and sterilization and is already in use for ocular microsurgery. The anti-HSV-1 activity of DBD plasma demonstrated here could be directly translated to the clinic for use against drug-resistant herpes keratitis. PMID:24757592

  15. Suppressor of Cytokine Signaling 1 (SOCS1) Mitigates Anterior Uveitis and Confers Protection Against Ocular HSV-1 Infection

    PubMed Central

    Yu, Cheng-Rong; Hayashi, Kozaburo; Lee, Yun Sang; Mahdi, Rashid M.; Shen, De Fen; Chan, Chi-Chao; Egwuagu, Charles E.

    2014-01-01

    Immunological responses to pathogens are stringently regulated in the eye to prevent excessive inflammation that damage ocular tissues and compromise vision. Suppressors of cytokine signaling (SOCS) regulate intensity/duration of inflammatory responses. We have used SOCS1-deficient mice and retina-specific SOCS1 transgenic rats to investigate roles of SOCS1 in ocular herpes simplex virus (HSV-1) infection and non-infectious uveitis. We also genetically engineered cell-penetrating SOCS proteins (membrane-translocating sequence (MTS)-SOCS1, MTS-SOCS3) and examined whether they can be used to inhibit inflammatory cytokines. Overexpression of SOCS1 in transgenic rat eyes attenuated ocular HSV-1 infection while SOCS1-deficient mice developed severe non-infectious anterior uveitis, suggesting that SOCS1 may contribute to mechanism of ocular immune privilege by regulating trafficking of inflammatory cells into ocular tissues. Furthermore, MTS-SOCS1 inhibited IFN-γ-induced signal transducers and activators of transcription 1 (STAT1) activation by macrophages while MTS-SOCS3 suppressed expansion of pathogenic Th17 cells that mediate uveitis, indicating that MTS-SOCS proteins maybe used to treat ocular inflammatory diseases of infectious or autoimmune etiology. PMID:24993154

  16. Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons

    PubMed Central

    Kim, Ju Youn; Mandarino, Angelo; Chao, Moses V.; Mohr, Ian; Wilson, Angus C.

    2012-01-01

    Herpes simplex virus type-1 (HSV-1) establishes latency in peripheral neurons, creating a permanent source of recurrent infections. The latent genome is assembled into chromatin and lytic cycle genes are silenced. Processes that orchestrate reentry into productive replication (reactivation) remain poorly understood. We have used latently infected cultures of primary superior cervical ganglion (SCG) sympathetic neurons to profile viral gene expression following a defined reactivation stimulus. Lytic genes are transcribed in two distinct phases, differing in their reliance on protein synthesis, viral DNA replication and the essential initiator protein VP16. The first phase does not require viral proteins and has the appearance of a transient, widespread de-repression of the previously silent lytic genes. This allows synthesis of viral regulatory proteins including VP16, which accumulate in the cytoplasm of the host neuron. During the second phase, VP16 and its cellular cofactor HCF-1, which is also predominantly cytoplasmic, concentrate in the nucleus where they assemble an activator complex on viral promoters. The transactivation function supplied by VP16 promotes increased viral lytic gene transcription leading to the onset of genome amplification and the production of infectious viral particles. Thus regulated localization of de novo synthesized VP16 is likely to be a critical determinant of HSV-1 reactivation in sympathetic neurons. PMID:22383875

  17. ET: EPICS TCL/TK interface

    SciTech Connect

    Daly, B.

    1995-02-01

    This document describes the tc1 command and command types which are used to communicate with EPICS database servers. The application libraries upon which et is built include tc1, tk, tc1-dp, and blt. The reader of this document is assumed to be familiar with tc1/tk.

  18. Assessment of IgG Antibodies Against HSV1, HSV2, CMV and EBV in Patients with Pemphigus Vulgaris Versus Healthy People

    PubMed Central

    Ghalayani, Parichehr; Rashidi, Fateme; Saberi, Zahra

    2015-01-01

    Objectives: Regarding the implication of viruses particularly herpes in pemphigus vulgaris, we sought to assess and compare the level of immunoglobulin G (IgG) antibodies against herpes simplex virus types 1 and 2 (HSV1 and HSV2), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) in patients with pemphigus vulgaris and healthy people. Materials and Methods: In this cross-sectional study, 25 patients with pemphigus vulgaris and 27 healthy individuals comprised the experimental and control groups, respectively. Serum samples were taken from both groups; the levels of IgG antibodies against HSV1, HSV2, CMV and EBV were measured using ELISA. Results: Immunoglobulin G titer was higher for all four viruses in the patient group in comparison to the control group. This difference was significant for anti-EBV (P= 0.005), anti-CMV (P=0.0001) and anti-HSV2 (P=0.001) but not significant for anti-HSV1 (P= 0.36). Conclusion: Viruses including EBV, CMV, and HSV2 probably play a role in the pathogenesis of pemphigus in addition to the effects of genetics, toxins and other predisposing factors. In this study, no statistically significant relationship was observed between HSV1 and pemphigus vulgaris, which was probably due to the high titer of anti-HSV1 IgG in healthy individuals in the community. More studies must be done in this regard. PMID:27507994

  19. Antibody-mediated targeted gene transfer to NMDA NR1-containing neurons in rat neocortex by helper virus-free HSV-1 vector particles containing a chimeric HSV-1 glycoprotein C--Staphylococcus A protein

    PubMed Central

    Cao, Haiyan; Zhang, Guo-rong; Geller, Alfred I.

    2010-01-01

    Because of the heterogeneous cellular composition of the brain, and especially the forebrain, cell type-specific expression will benefit many potential applications of direct gene transfer. The two prevalent approaches for achieving cell type-specific expression are using a cell type-specific promoter or targeting gene transfer to a specific cell type. Targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors modifies glycoprotein C (gC) to replace the heparin binding domain, which binds to many cell types, with a binding activity for a specific cell surface protein. We previously reported targeted gene transfer to nigrostriatal neurons using chimeric gC--glial cell line-derived neurotrophic factor or gC--brain-derived neurotrophic factor protein. Unfortunately, this approach is limited to cells that express the cognate receptor for either neurotrophic factor. Thus, a general strategy for targeting gene transfer to many different types of neurons is desirable. Antibody-mediated targeted gene transfer has been developed for targeting specific virus vectors to specific peripheral cell types; a specific vector particle protein is modified to contain the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. Here, we report antibody-mediated targeted gene transfer of HSV-1 vectors to a specific type of forebrain neuron. We constructed a chimeric gC--ZZ protein, and showed this protein is incorporated into vector particles and binds Ig G. Complexes of these vector particles and an antibody to the NMDA receptor NR1 subunit supported targeted gene transfer to NR1-containing neocortical neurons in the rat brain, with long-term (2 months) expression. PMID:20599821

  20. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome.

    PubMed

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  1. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome

    PubMed Central

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W.; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  2. Long-term inducible expression in striatal neurons from helper virus-free HSV-1 vectors that contain the tetracycline-inducible promoter system

    PubMed Central

    Gao, Qingshen; Sun, Mei; Wang, Xiaodan; Zhang, Guo-rong; Geller, Alfred I.

    2006-01-01

    Direct gene transfer into neurons in the brain via a virus vector system has potential for both examining neuronal physiology and for developing gene therapy treatments for neurological diseases. Many of these applications require precise control of the levels of recombinant gene expression. The preferred method for controlling the levels of expression is by use of an inducible promoter system, and the tetracycline (tet)-inducible promoter system is the preferred system. Helper virus-free Herpes Simplex Virus (HSV-1) vectors have a number of the advantages, including their large size and efficient gene transfer. Also, we have reported long-term (14 months) expression from HSV-1 vectors that contain a modified neurofilament heavy gene promoter. A number of studies have reported short-term, inducible expression from helper virus-containing HSV-1 vector systems. However, long-term, inducible expression has not been reported using HSV-1 vectors. The goal of this study was to obtain long-term, inducible expression from helper virus-free HSV-1 vectors. We examined two different vector designs for adapting the tet promoter system to HSV-1 vectors. One design was an autoregulatory design; one transcription unit used a tet-regulated promoter to express the tet-regulated transcription factor tet-off, and another transcription unit used a tet-regulated promoter to express the Lac Z gene. In the other vector design, one transcription unit used the modified neurofilament heavy gene promoter to express tet-off, and another transcription unit used a tet-regulated promoter to express the Lac Z gene. The results showed that both vector designs supported inducible expression in cultured fibroblast or neuronal cell lines and for a short time (4 days) in the rat striatum. Of note, only the vector design that used the modified neurofilament promoter to express tet-off supported long-term (2 months) inducible expression in striatal neurons. PMID:16545782

  3. A tale of two HSV-1 helicases: roles of phage and animal virus helicases in DNA replication and recombination.

    PubMed

    Marintcheva, B; Weller, S K

    2001-01-01

    Helicases play essential roles in many important biological processes such as DNA replication, repair, recombination, transcription, splicing, and translation. Many bacteriophages and plant and animal viruses encode one or more helicases, and these enzymes have been shown to play many roles in their respective viral life cycles. In this review we concentrate primarily on the roles of helicases in DNA replication and recombination with special emphasis on the bacteriophages T4, T7, and A as model systems. We explore comparisons between these model systems and the herpesviruses--primarily herpes simplex virus. Bacteriophage utilize various pathways of recombination-dependent DNA replication during the replication of their genomes. In fact the study of recombination in the phage systems has greatly enhanced our understanding of the importance of recombination in the replication strategies of bacteria, yeast, and higher eukaryotes. The ability to "restart" the replication process after a replication fork has stalled or has become disrupted for other reasons is a critical feature in the replication of all organisms studied. Phage helicases and other recombination proteins play critical roles in the "restart" process. Parallels between DNA replication and recombination in phage and in the herpesviruses is explored. We and others have proposed that recombination plays an important role in the life cycle of the herpesviruses, and in this review, we discuss models for herpes simplex virus type 1 (HSV-1) DNA replication. HSV-1 encodes two helicases. UL9 binds specifically to the origins of replication and is believed to initiate HSV DNA replication by unwinding at the origin; the heterotrimeric helicase-primase complex, encoded by UL5, UL8, and UL52 genes, is believed to unwind duplex viral DNA at replication forks. Structure-function analyses of UL9 and the helicase-primase are discussed with attention to the roles these proteins might play during HSV replication. PMID

  4. B7 Costimulation Molecules Encoded by Replication-Defective, vhs-Deficient HSV-1 Improve Vaccine-Induced Protection against Corneal Disease

    PubMed Central

    Schrimpf, Jane E.; Tu, Eleain M.; Wang, Hong; Wong, Yee M.; Morrison, Lynda A.

    2011-01-01

    Herpes simplex virus 1 (HSV-1) causes herpes stromal keratitis (HSK), a sight-threatening disease of the cornea for which no vaccine exists. A replication-defective, HSV-1 prototype vaccine bearing deletions in the genes encoding ICP8 and the virion host shutoff (vhs) protein reduces HSV-1 replication and disease in a mouse model of HSK. Here we demonstrate that combining deletion of ICP8 and vhs with virus-based expression of B7 costimulation molecules created a vaccine strain that enhanced T cell responses to HSV-1 compared with the ICP8−vhs− parental strain, and reduced the incidence of keratitis and acute infection of the nervous system after corneal challenge. Post-challenge T cell infiltration of the trigeminal ganglia and antigen-specific recall responses in local lymph nodes correlated with protection. Thus, B7 costimulation molecules expressed from the genome of a replication-defective, ICP8−vhs− virus enhance vaccine efficacy by further reducing HSK. PMID:21826207

  5. An unusual case of acute transverse myelitis caused by HSV-1 infection.

    PubMed

    Figueroa, Danisha; Isache, Carmen; Sands, Michael; Guzman, Nilmarie

    2016-01-01

    Transverse myelitis is a neurological disorder of the spinal cord that can have a variety of etiologies. Herpes simplex virus (HSV) infection has been described as one of the causes, most commonly HSV type 2. We report here a case of an 18 year old male who presented with weakness that started in his upper extremities and rapidly evolved to quadriplegia. Magnetic resonance imaging of spine was consistent with transverse myelitis. HSV type 1 PCR testing on cerebrospinal fluid (CSF) was positive. He was started on acyclovir and steroids, but despite therapy, patient did not recover motor function. PMID:27419072

  6. Herpes Simplex Virus 1 (HSV-1) and HSV-2 Mediate Species-Specific Modulations of Programmed Necrosis through the Viral Ribonucleotide Reductase Large Subunit R1

    PubMed Central

    Yu, Xiaoliang; Li, Yun; Chen, Qin; Su, Chenhe; Zhang, Zili; Yang, Chengkui; Hu, Zhilin; Hou, Jue; Zhou, Jinying; Gong, Ling; Jiang, Xuejun

    2015-01-01

    ABSTRACT Receptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells. IMPORTANCE This study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV. PMID:26559832

  7. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense

    PubMed Central

    Wang, Xing; Li, Yun; Liu, Shan; Yu, Xiaoliang; Li, Lin; Shi, Cuilin; He, Wenhui; Li, Jun; Xu, Lei; Hu, Zhilin; Yu, Lu; Yang, Zhongxu; Chen, Qin; Ge, Lin; Zhang, Zili; Zhou, Biqi; Jiang, Xuejun; Chen, She; He, Sudan

    2014-01-01

    The receptor-interacting kinase-3 (RIP3) and its downstream substrate mixed lineage kinase domain-like protein (MLKL) have emerged as the key cellular components in programmed necrotic cell death. Receptors for the cytokines of tumor necrosis factor (TNF) family and Toll-like receptors (TLR) 3 and 4 are able to activate RIP3 through receptor-interacting kinase-1 and Toll/IL-1 receptor domain-containing adapter inducing IFN-β, respectively. This form of cell death has been implicated in the host-defense system. However, the molecular mechanisms that drive the activation of RIP3 by a variety of pathogens, other than the above-mentioned receptors, are largely unknown. Here, we report that human herpes simplex virus 1 (HSV-1) infection triggers RIP3-dependent necrosis. This process requires MLKL but is independent of TNF receptor, TLR3, cylindromatosis, and host RIP homotypic interaction motif-containing protein DNA-dependent activator of IFN regulatory factor. After HSV-1 infection, the viral ribonucleotide reductase large subunit (ICP6) interacts with RIP3. The formation of the ICP6–RIP3 complex requires the RHIM domains of both proteins. An HSV-1 ICP6 deletion mutant failed to cause effective necrosis of HSV-1–infected cells. Furthermore, ectopic expression of ICP6, but not RHIM mutant ICP6, directly activated RIP3/MLKL-mediated necrosis. Mice lacking RIP3 exhibited severely impaired control of HSV-1 replication and pathogenesis. Therefore, this study reveals a previously uncharacterized host antipathogen mechanism. PMID:25316792

  8. Repeated social stress enhances the innate immune response to a primary HSV-1 infection in the cornea and trigeminal ganglia of Balb/c mice

    PubMed Central

    Dong-Newsom, P.; Powell, N.D.; Bailey, M.T.; Padgett, D.A.; Sheridan, J.F.

    2009-01-01

    Three to 5 days after a primary HSV-1 infection, macrophages infiltrate into the trigeminal ganglia (TG) and produce anti-viral cytokines to reduce viral replication. Previous research demonstrated that social disruption stress (SDR) enhances the trafficking of monocytes/macrophages from the bone marrow to the spleen and increases pro-inflammatory cytokine production in vitro and in vivo. The impact of SDR on the trafficking of these cells to loci of herpes simplex virus type 1 (HSV-1) infection and subsequent function has not been examined. The following studies were designed to determine whether SDR would enhance the innate immune response during a primary HSV-1 infection by increasing the number of macrophages in the cornea and TG, thus increasing anti-viral cytokine production and reducing viral replication. BALB/c mice were exposed to six cycles of SDR prior to ocular infection with HSV-1 McKrae virus. Flow cytometric analysis of cells from the TG revealed an increase in the percentage of CD11b+ macrophages in SDR mice compared to controls. Immune cell infiltration into the cornea, however, could not be determined due to low cell numbers. Although gene expression of IFN-β was decreased, SDR increased gene expression of IFN-α, and TNF-α, in the cornea and TG. Examination of viral proteins showed decreased expression of infected cell protein 0 (ICP0), glycoprotein B (gB), glycoprotein H (gH) and latency-associated transcript (LAT) in the TG, however, expression of ICP0 and gB were elevated in the cornea of SDR mice. These results indicate that the innate immune response to HSV-1 was altered and enhanced by the experience of repeated social defeat. PMID:19822203

  9. Virucidal activity of a beta-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture.

    PubMed

    Reichling, Jürgen; Koch, Christine; Stahl-Biskup, Elisabeth; Sojka, Cornelia; Schnitzler, Paul

    2005-12-01

    The inhibitory activity of manuka oil against Herpes simplex virus type 1 (HSV-1) and Herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells (monkey kidney cells) using a plaque reduction assay. In order to determine the mode of antiviral action of the essential oil, manuka oil was added at different times to the cells or viruses during the infection cycle. Both HSV types were significantly inhibited when the viruses were pretreated with manuka oil 1 h prior to cell infection. At non-cytotoxic concentrations of the essential oil, plaque formation was significantly reduced by 99.5 % and 98.9 % for HSV-1 and HSV-2, respectively. The 50 % inhibitory concentration (IC (50)) of manuka oil for virus plaque formation was determined at 0.0001 % v/v ( = 0.96 microg/mL) and 0.00006 % v/v ( = 0.58 microg/mL) for HSV-1 and HSV-2, respectively. On the other hand, pretreatment of host cells with the essential oil before viral infection did not affect plaque formation. After virus penetration into the host cells only replication of HSV-1 particle was significantly inhibited to about 41 % by manuka oil. Flavesone and leptospermone, two characteristic ss-triketones of manuka oil, inhibited the virulence of HSV-1 in the same manner as the essential oil itself. When added at non-cytotoxic concentrations to the virus 1 h prior to cell infection, plaque formation was reduced by 99.1 % and 79.7 % for flavesone and leptospermone, respectively. PMID:16395648

  10. Protection provided by a herpes simplex virus 2 (HSV-2) glycoprotein C and D subunit antigen vaccine against genital HSV-2 infection in HSV-1-seropositive guinea pigs.

    PubMed

    Awasthi, Sita; Balliet, John W; Flynn, Jessica A; Lubinski, John M; Shaw, Carolyn E; DiStefano, Daniel J; Cai, Michael; Brown, Martha; Smith, Judith F; Kowalski, Rose; Swoyer, Ryan; Galli, Jennifer; Copeland, Victoria; Rios, Sandra; Davidson, Robert C; Salnikova, Maya; Kingsley, Susan; Bryan, Janine; Casimiro, Danilo R; Friedman, Harvey M

    2014-02-01

    A prophylactic vaccine for genital herpes disease remains an elusive goal. We report the results of two studies performed collaboratively in different laboratories that assessed immunogenicity and vaccine efficacy in herpes simplex virus 1 (HSV-1)-seropositive guinea pigs immunized and subsequently challenged intravaginally with HSV-2. In study 1, HSV-2 glycoproteins C (gC2) and D (gD2) were produced in baculovirus and administered intramuscularly as monovalent or bivalent vaccines with CpG and alum. In study 2, gD2 was produced in CHO cells and given intramuscularly with monophosphoryl lipid A (MPL) and alum, or gC2 and gD2 were produced in glycoengineered Pichia pastoris and administered intramuscularly as a bivalent vaccine with Iscomatrix and alum to HSV-1-naive or -seropositive guinea pigs. In both studies, immunization boosted neutralizing antibody responses to HSV-1 and HSV-2. In study 1, immunization with gC2, gD2, or both immunogens significantly reduced the frequency of genital lesions, with the bivalent vaccine showing the greatest protection. In study 2, both vaccines were highly protective against genital disease in naive and HSV-1-seropositive animals. Comparisons between gD2 and gC2/gD2 in study 2 must be interpreted cautiously, because different adjuvants, gD2 doses, and antigen production methods were used; however, significant differences invariably favored the bivalent vaccine. Immunization of naive animals with gC2/gD2 significantly reduced the number of days of vaginal shedding of HSV-2 DNA compared with that for mock-immunized animals. Surprisingly, in both studies, immunization of HSV-1-seropositive animals had little effect on recurrent vaginal shedding of HSV-2 DNA, despite significantly reducing genital disease. PMID:24284325

  11. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence

    PubMed Central

    Larsen, Inna; Craven, Mark; Brandt, Curtis R.

    2016-01-01

    Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. PMID:26962864

  12. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence.

    PubMed

    Kolb, Aaron W; Lee, Kyubin; Larsen, Inna; Craven, Mark; Brandt, Curtis R

    2016-03-01

    Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. PMID:26962864

  13. Interferon Regulator Factor 8 (IRF8) Limits Ocular Pathology during HSV-1 Infection by Restraining the Activation and Expansion of CD8+ T Cells

    PubMed Central

    Yu, Cheng-Rong; He, Chang; Mahdi, Rashid M.; Chan, Chi-Chao; Wang, Hongsheng; Morse, Herbert C.; Egwuagu, Charles E.

    2016-01-01

    Interferon Regulatory Factor-8 (IRF8) is constitutively expressed in monocytes and B cell lineages and plays important roles in immunity to pathogens and cancer. Although IRF8 expression is induced in activated T cells, the functional relevance of IRF8 in T cell-mediated immunity is not well understood. In this study, we used mice with targeted deletion of Irf8 in T-cells (IRF8KO) to investigate the role of IRF8 in T cell-mediated responses during herpes simplex virus 1 (HSV-1) infection of the eye. In contrast to wild type mice, HSV-1-infected IRF8KO mice mounted a more robust anti-HSV-1 immune response, which included marked expansion of HSV-1-specific CD8+ T cells, increased infiltration of inflammatory cells into the cornea and trigeminal ganglia (TG) and enhanced elimination of virus within the trigeminal ganglion. However, the consequence of the enhanced immunological response was the development of ocular inflammation, limbitis, and neutrophilic infiltration into the cornea of HSV-1-infected IRF8KO mice. Surprisingly, we observed a marked increase in virus-specific memory precursor effector cells (MPEC) in IRF8KO mice, suggesting that IRF8 might play a role in regulating the differentiation of effector CD8+ T cells to the memory phenotype. Together, our data suggest that IRF8 might play a role in restraining excess lymphocyte proliferation. Thus, modulating IRF8 levels in T cells can be exploited therapeutically to prevent immune-mediated ocular pathology during autoimmune and infectious diseases of the eye. PMID:27171004

  14. Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1)

    PubMed Central

    Coelho, Guilherme Rabelo; Mendonça, Ronaldo Zucatelli; Vilar, Karina de Senna; Figueiredo, Cristina Adelaide; Badari, Juliana Cuoco; Taniwaki, Noemi; Namiyama, Gisleine; de Oliveira, Maria Isabel; Curti, Suely Pires; Evelyn Silva, Patricia

    2015-01-01

    The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae). There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG) was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV). PMID:25861357

  15. Functional Overexpression of Vomeronasal Receptors Using a Herpes Simplex Virus Type 1 (HSV-1)-Derived Amplicon.

    PubMed

    Stein, Benjamin; Alonso, María Teresa; Zufall, Frank; Leinders-Zufall, Trese; Chamero, Pablo

    2016-01-01

    In mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO) detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues. Nearly 400 receptor genes have been identified in the mouse VNO, but the tuning properties of individual receptors remain poorly understood, in part due to the lack of a robust heterologous expression system. Here we develop a herpes virus-based amplicon delivery system to overexpress three types of vomeronasal receptor genes and to characterize cell responses to their proposed ligands. Through Ca2+ imaging in native VNO cells we show that virus-induced overexpression of V1rj2, V2r1b or Fpr3 caused a pronounced increase of responsivity to sulfated steroids, MHC-binding peptide or the synthetic hexapeptide W-peptide, respectively. Other related ligands were not recognized by infected individual neurons, indicating a high degree of selectivity by the overexpressed receptor. Removal of G-protein signaling eliminates Ca2+ responses, indicating that the endogenous second messenger system is essential for observing receptor activation. Our results provide a novel expression system for vomeronasal receptors that should be useful for understanding the molecular logic of VNO ligand detection. Functional expression of vomeronasal receptors and their deorphanization provides an essential requirement for deciphering the neural mechanisms controlling behavior. PMID:27195771

  16. Functional Overexpression of Vomeronasal Receptors Using a Herpes Simplex Virus Type 1 (HSV-1)-Derived Amplicon

    PubMed Central

    Stein, Benjamin; Alonso, María Teresa; Zufall, Frank; Leinders-Zufall, Trese; Chamero, Pablo

    2016-01-01

    In mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO) detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues. Nearly 400 receptor genes have been identified in the mouse VNO, but the tuning properties of individual receptors remain poorly understood, in part due to the lack of a robust heterologous expression system. Here we develop a herpes virus-based amplicon delivery system to overexpress three types of vomeronasal receptor genes and to characterize cell responses to their proposed ligands. Through Ca2+ imaging in native VNO cells we show that virus-induced overexpression of V1rj2, V2r1b or Fpr3 caused a pronounced increase of responsivity to sulfated steroids, MHC-binding peptide or the synthetic hexapeptide W-peptide, respectively. Other related ligands were not recognized by infected individual neurons, indicating a high degree of selectivity by the overexpressed receptor. Removal of G-protein signaling eliminates Ca2+ responses, indicating that the endogenous second messenger system is essential for observing receptor activation. Our results provide a novel expression system for vomeronasal receptors that should be useful for understanding the molecular logic of VNO ligand detection. Functional expression of vomeronasal receptors and their deorphanization provides an essential requirement for deciphering the neural mechanisms controlling behavior. PMID:27195771

  17. Microtubule plus end–associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells

    PubMed Central

    Jovasevic, Vladimir

    2015-01-01

    Dynamic microtubules (MTs) continuously explore the intracellular environment and, through specialized plus end–tracking proteins (+TIPs), engage a variety of targets. However, the nature of cargoes that require +TIP-mediated capture for their movement on MTs remains poorly understood. Using RNA interference and dominant-negative approaches, combined with live cell imaging, we show that herpes simplex virus particles that have entered primary human cells exploit a +TIP complex comprising end-binding protein 1 (EB1), cytoplasmic linker protein 170 (CLIP-170), and dynactin-1 (DCTN1) to initiate retrograde transport. Depletion of these +TIPs completely blocked post-entry long-range transport of virus particles and suppressed infection ∼5,000-fold, whereas transferrin uptake, early endosome organization, and dynein-dependent movement of lysosomes and mitochondria remained unaffected. These findings provide the first insights into the earliest stages of viral engagement of MTs through specific +TIPs, akin to receptors, with therapeutic implications, and identify herpesvirus particles as one of a very limited number of cargoes absolutely dependent on CLIP-170–mediated capture to initiate transport in primary human cells. PMID:26504169

  18. Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1).

    PubMed

    Coelho, Guilherme Rabelo; Mendonça, Ronaldo Zucatelli; Vilar, Karina de Senna; Figueiredo, Cristina Adelaide; Badari, Juliana Cuoco; Taniwaki, Noemi; Namiyama, Gisleine; de Oliveira, Maria Isabel; Curti, Suely Pires; Evelyn Silva, Patricia; Negri, Giuseppina

    2015-01-01

    The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae). There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG) was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV). PMID:25861357

  19. The Nectin-1α Transmembrane Domain, But Not The Cytoplasmic Tail, Influences Cell Fusion Induced by HSV-1 Glycoproteins

    PubMed Central

    Subramanian, Ravi P.; Dunn, Jennifer E.; Geraghty, Robert J.

    2006-01-01

    Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1α involved in cell fusion, we measured the ability of nectin-1α/nectin-2α chimeras, nectin-1α/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1α to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1α cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane spanning domains of nectin-1α and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1α interaction in fusion. PMID:16005040

  20. The nectin-1{alpha} transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins

    SciTech Connect

    Subramanian, Ravi P.; Dunn, Jennifer E.; Geraghty, Robert J. . E-mail: rgeragh@uky.edu

    2005-09-01

    Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1{alpha} involved in cell fusion, we measured the ability of nectin-1{alpha}/nectin-2{alpha} chimeras, nectin-1{alpha}/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1{alpha} to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1{alpha} cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane-spanning domains of nectin-1{alpha} and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1{alpha} interaction in fusion.

  1. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir.

    PubMed

    Zhou, Huicong; He, Zhiliang; Wang, Changdong; Xie, Tingting; Liu, Lin; Liu, Chuanyang; Song, Fangzhou; Ma, Yongping

    2016-01-01

    The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV) system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF) and HSV TK/GCV (BF-rTK/GCV). However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV) was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF) expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy. PMID:27275821

  2. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir

    PubMed Central

    Zhou, Huicong; He, Zhiliang; Wang, Changdong; Xie, Tingting; Liu, Lin; Liu, Chuanyang; Song, Fangzhou; Ma, Yongping

    2016-01-01

    The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV) system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF) and HSV TK/GCV (BF-rTK/GCV). However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV) was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF) expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy. PMID:27275821

  3. Defense against HSV-1 in a murine model is mediated by iNOS and orchestrated by the activation of TLR2 and TLR9 in trigeminal ganglia

    PubMed Central

    2014-01-01

    Background Herpes simplex 1 (HSV-1) causes various human clinical manifestations, ranging from simple cold sores to encephalitis. Innate immune cells recognize pathogens through Toll-like receptors (TLRs), thus initiating the immune response. Previously, we demonstrated that the immune response against HSV-1 is dependent on TLR2 and TLR9 expression and on IFN gamma production in the trigeminal ganglia (TG) of infected mice. In this work, we further investigated the cells, molecules, and mechanisms of HSV-1 infection control, especially those that are TLR-dependent. Methods C57BL/6 wild-type (WT), TLR2−/−, TLR9−/−, and TLR2/9−/− mice were intranasally infected with HSV-1. On the viral peak day, the TG and brains were collected from mice and TLR expression was measured in the TG and brain and inducible nitric oxide synthase (iNOS) expression was measured in the TG by real-time PCR. Immunofluorescence assays were performed in mice TG to detect iNOS production by F4/80+ cells. Intraperitoneal macrophages nitric oxide (NO) production was evaluated by the Griess assay. WT, CD8−/−, RAG−/−, and iNOS−/− mice were intranasally infected in a survival assay, and their cytokine expression was measured in the TG by real-time PCR. Results Infected WT mice exhibited significantly increased TLR expression, compared with their respective controls, in the TG but not in the brain. TLR-deficient mice had moderately increased TLR expression in the TG and brain in compare with the non-infected animals. iNOS expression in the WT infected mice TG was higher than in the other groups with increased production by macrophages in the WT infected mice, which did not occur in the TLR2/9−/− mice. Additionally, the intraperitoneal macrophages of the WT mice had a higher production of NO compared with those of the TLR-deficient mice. The CD8−/−, RAG−/−, and iNOS−/− mice had 100% mortality after the HSV-1 infection compared with 10% of the WT mice. Cytokines

  4. Activation of NF-κB signaling pathway in HSV-1-induced mouse facial palsy: Possible relation to therapeutic effect of glucocorticoids.

    PubMed

    Liu, W; Fan, Z; Han, Y; Xu, L; Wang, M; Zhang, D; Mao, Y; Li, J; Wang, H

    2015-03-19

    It has been documented that infection of herpes simplex virus type 1 (HSV-1) contributes to the initiation of Bell's palsy. However, the exact mechanisms responsible for this disorder have not been fully elucidated to date. A mouse model of facial palsy induced by HSV-1 provides an opportunity to investigate the alteration in activities of nuclear factor-kappa B (NF-κB) and its consequent effect on two key inflammatory factors, i.e., tumor necrosis factor (TNF)-α and cyclooxygenase-2 (COX-2), as well as the effect of glucocorticoids (GCs) in this work. I-kappa B (IκB)-α phosphorylation and NF-κB nuclear translocation were measured by western blotting, and NF-κB/DNA binding activity was assessed by electrophoretic mobility shift assay (EMSA). Results showed the IκB-α phosphorylation and degradation as well as NF-κB activation in a time-dependent manner. The expression of TNF-α and COX-2 were determined by real-time polymerase chain reaction (PCR), western blotting and/or enzyme-linked immunosorbent assay (ELISA) respectively. Concomitant with the activation, the expression and secretion of TNF-α and COX-2 were rapidly induced in HSV-1-infected paralyzed mice. Conversely, the activation of NF-κB and up-regulation of TNF-α and COX-2 were blocked by pretreatment with NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) before being inoculated with HSV-1 to mice. In addition, GCs inhibited the nuclear translocation and DNA binding activity of NF-κB via inhibiting IκB-α degradation. Meanwhile, TNF-α production and COX-2 expression were significantly reduced by GCs. In conclusion, HSV-1 inoculation induced the activation of NF-κB, expression and secretion of TNF-α and COX-2 in the facial paralyzed mice, while, glucocorticoid effectively down-regulated TNF-α and COX-2 expression in HSV-1-induced paralyzed mice. PMID:25595974

  5. Genome Wide Nucleosome Mapping for HSV-1 Shows Nucleosomes Are Deposited at Preferred Positions during Lytic Infection

    PubMed Central

    Oh, Jaewook; Sanders, Iryna F.; Chen, Eric Z.; Li, Hongzhe; Tobias, John W.; Isett, R. Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A.; Fraser, Nigel W.

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes. PMID:25710170

  6. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    PubMed

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes. PMID:25710170

  7. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic, anti-tumor effects

    PubMed Central

    Yoo, Ji Young; Hurwitz, Brian S; Bolyard, Chelsea; Yu, Jun-Ge; Zhang, Jianying; Selvendiran, Karuppaiyah; Rath, Kellie S; He, Shun; Bailey, Zachary; Eaves, David; Cripe, Timothy P; Parris, Deborah S.; Caligiuri, Michael A.; Yu, Jianhua; Old, Matthew; Kaur, Balveen

    2014-01-01

    Background Bortezomib is an FDA-approved proteasome inhibitor, and oncolytic HSV-1 (oHSV) is a promising therapeutic approach for cancer. We tested the impact of combining bortezomib with oHSV for anti-tumor efficacy. Methods The synergistic interaction between oHSV and bortezomib was calculated using Chou-Talalay analysis. Viral replication was evaluated using plaque assay and immune fluorescence. Western-blot assays were used to evaluate induction of ER stress and unfolded protein response (UPR). Inhibitors targeting Hsp90 were utilized to investigate the mechanism of cell killing. Anti-tumor efficacy in vivo was evaluated using subcutaneous and intracranial tumor xenografts of glioma and head and neck cancer. Survival was analyzed by Kaplan-Meier curves and two-sided log rank test. Results Combination treatment with bortezomib and oHSV, 34.5ENVE, displayed strong synergistic interaction in ovarian cancer, head & neck cancer, glioma, and malignant peripheral nerve sheath tumor (MPNST) cells. Bortezomib treatment induced ER stress, evident by strong induction of Grp78, CHOP, PERK and IRE1α (western blot analysis) and the UPR (induction of hsp40, 70 and 90). Bortezomib treatment of cells at both sublethal and lethal doses increased viral replication (p value <0.001), but inhibition of Hsp90 ablated this response, reducing viral replication and synergistic cell killing. The combination of bortezomib and 34.5ENVE significantly enhanced anti-tumor efficacy in multiple different tumor models in vivo. Conclusions The dramatic synergy of bortezomib and 34.5ENVE is mediated by bortezomib- induced UPR and warrants future clinical testing in patients. PMID:24815720

  8. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications

    PubMed Central

    Zou, Ming; De Koninck, Paul; Neve, Rachael L.; Friedrich, Rainer W.

    2014-01-01

    The zebrafish has various advantages as a model organism to analyze the structure and function of neural circuits but efficient viruses or other tools for fast gene transfer are lacking. We show that transgenes can be introduced directly into the adult zebrafish brain by herpes simplex type I viruses (HSV-1) or electroporation. We developed a new procedure to target electroporation to defined brain areas and identified promoters that produced strong long-term expression. The fast workflow of electroporation was exploited to express multiple channelrhodopsin-2 variants and genetically encoded calcium indicators in telencephalic neurons for measurements of neuronal activity and synaptic connectivity. The results demonstrate that HSV-1 and targeted electroporation are efficient tools for gene delivery into the zebrafish brain, similar to adeno-associated viruses and lentiviruses in other species. These methods fill an important gap in the spectrum of molecular tools for zebrafish and are likely to have a wide range of applications. PMID:24834028

  9. Identification of Replication-competent HSV-1 Cgal+ Strain Signaling Targets in Human Hepatoma Cells by Functional Organelle Proteomics*S⃞

    PubMed Central

    Santamaría, Enrique; Mora, María I.; Potel, Corinne; Fernández-Irigoyen, Joaquín; Carro-Roldán, Elvira; Hernández-Alcoceba, Rubén; Prieto, Jesús; Epstein, Alberto L.; Corrales, Fernando J.

    2009-01-01

    In the present work, we have attempted a comprehensive analysis of cytosolic and microsomal proteomes to elucidate the signaling pathways impaired in human hepatoma (Huh7) cells upon herpes simplex virus type 1 (HSV-1; Cgal+) infection. Using a combination of differential in-gel electrophoresis and nano liquid chromatography/tandem mass spectrometry, 18 spots corresponding to 16 unique deregulated cellular proteins were unambiguously identified, which were involved in the regulation of essential processes such as apoptosis, mRNA processing, cellular structure and integrity, signal transduction, and endoplasmic-reticulum-associated degradation pathway. Based on our proteomic data and additional functional studies target proteins were identified indicating a late activation of apoptotic pathways in Huh7 cells upon HSV-1 Cgal+ infection. Additionally to changes on RuvB-like 2 and Bif-1, down-regulation of Erlin-2 suggests stimulation of Ca2+-dependent apoptosis. Moreover, activation of the mitochondrial apoptotic pathway results from a time-dependent multi-factorial impairment as inferred from the stepwise characterization of constitutive pro- and anti-apoptotic factors. Activation of serine-threonine protein phosphatase 2A (PP2A) was also found in Huh7 cells upon HSV-1 Cgal+ infection. In addition, PP2A activation paralleled dephosphorylation and inactivation of downstream mitogen-activated protein (MAP) kinase pathway (MEK½, ERK½) critical to cell survival and activation of proapoptotic Bad by dephosphorylation of Ser-112. Taken together, our results provide novel molecular information that contributes to define in detail the apoptotic mechanisms triggered by HSV-1 Cgal+ in the host cell and lead to the implication of PP2A in the transduction of cell death signals and cell survival pathway arrest. PMID:19098277

  10. Lack of effect of treatment with penciclovir or acyclovir on the establishment of latent HSV-1 in primary sensory neurons in culture.

    PubMed

    Smith, R L; Morroni, J; Wilcox, C L

    2001-10-01

    Recent studies suggest reductions in establishment of herpes simplex virus, type 1 (HSV-1) latency using the nucleoside analog penciclovir compared with acyclovir in the murine model. These observations raise the possibility that the new analogs may have novel activities that directly interfere with the establishment of the latent infection, suggesting a mechanism other than simply blocking the productive infection. To determine if penciclovir has a direct action on the establishment of latency, we compared the effects of penciclovir versus acyclovir in an in vitro model of HSV-1 latency in rat dorsal root ganglia neurons in culture. In neurons in culture, both penciclovir and acyclovir were highly effective in blocking the productive infection. However, neither penciclovir nor acyclovir blocked establishment of latency as demonstrated by similar percentages of neurons expressing the latency-associated transcript (LAT). Following removal of the respective nucleoside analog, latency was maintained until reactivation was induced by nerve growth factor deprivation. Similar virus titers were recovered after induction of reactivation of latent infections, which were established in the presence of either penciclovir or acyclovir. These results indicate that neither penciclovir nor acyclovir treatment directly prevents the establishment of latent HSV-1 infections in primary sensory neurons in culture. PMID:11530184

  11. The nucleotide sequence of the gB glycoprotein gene of HSV-2 and comparison with the corresponding gene of HSV-1.

    PubMed

    Bzik, D J; Debroy, C; Fox, B A; Pederson, N E; Person, S

    1986-12-01

    The nucleotide sequence of the gB glycoprotein gene of HSV-2 has been determined and compared with the homologous gene of HSV-1. The two genes are specified by the same total number of codons (904); eight additional codons of the HSV-1 gene are found within the signal sequence, and eight additional codons of the HSV-2 gene are found at three different sites in the gene. The signal cleavage, membrane-spanning, and eight potential N-linked oligosaccharide sites, as well as 5'- and 3'-regulatory signals are largely conserved. The overall amino acid homology is 85%; least conserved are the N- and C-terminal regions of the protein. Secondary structure plots were determined for the two proteins, and the structures were compared with each other and with alterations in structure due to several mutations in the HSV-1 gB gene for which sequence analysis is available. The high homology in primary and secondary structure suggests a conserved, essential function for the gene. PMID:3024391

  12. Regulation of viral gene expression by the herpes simplex virus 1UL24 protein (HSV-1UL24 inhibits accumulation of viral transcripts).

    PubMed

    Sanabria-Solano, Carolina; Gonzalez, Carmen Elena; Richerioux, Nicolas; Bertrand, Luc; Dridi, Slimane; Griffiths, Anthony; Langelier, Yves; Pearson, Angela

    2016-08-01

    UL24 is conserved among all Herpesviridae. In herpes simplex virus 1 (HSV-1), UL24 mutations lead to reduced viral titers both in cell culture and in vivo, and reduced pathogenicity. The human cytomegalovirus ortholog of UL24 has a gene regulatory function; however, it is not known whether other UL24 orthologs also affect gene expression. We discovered that in co-transfection experiments, expression of UL24 correlated with a reduction in the expression of several viral proteins and transcripts. Substitution mutations targeting conserved residues in UL24 impaired this function. Reduced transcript levels did not appear attributable to changes in mRNA stability. The UL24 ortholog of Herpes B virus exhibited a similar activity. An HSV-1 mutant that does not express UL24 produced more viral R1 and R2 transcripts than the wild type or rescue virus relative to the amount of viral DNA. These results reveal a new role for HSV-1UL24 in regulating viral mRNA accumulation. PMID:27214229

  13. HSV-1 amplicon vectors that direct the in situ production of foot-and-mouth disease virus antigens in mammalian cells can be used for genetic immunization.

    PubMed

    D'Antuono, Alejandra; Laimbacher, Andrea S; La Torre, Jose; Tribulatti, Virginia; Romanutti, Carina; Zamorano, Patricia; Quattrocchi, Valeria; Schraner, Elisabeth M; Ackermann, Mathias; Fraefel, Cornel; Mattion, Nora

    2010-10-28

    HSV-1 amplicon vectors encoding heterologous antigens were capable to mediate in situ generation of protein synthesis and to generate a specific immune response to the corresponding antigens. In this study, foot-and-mouth disease (FMD) virus antigens were used to generate a genetic vaccine prototype. The amplicons were designed to provide a high safety profile as they do not express any HSV-1 genes when packaged using a helper virus-free system, and they are able to encapsidate several copies of the transgene or allow the simultaneous expression of different genes. Virus-like particles were produced after cell processing of the delivered DNA. Inoculation of mice with 5 × 10(5) transducing units of amplicon vectors resulted in FMDV-specific humoral responses in the absence of adjuvants, which were dependent on the in situ de novo production of the vector-encoded antigens. Challenge of mice vaccinated with these amplicons with a high dose of live virus, resulted in partial protection, with a significant reduction of viremia. This work highlights the potential use of a HSV-1 amplicon vector platform for generation of safe genetic vaccines. PMID:20851082

  14. Experiences in effective use of Tcl/Tk

    SciTech Connect

    Lee, R.W.

    1995-06-01

    Tcl/Tk (Toot Command Language and Tool Kit, pronounced ``tickle tee-kay``) is a scripting language supporting Motifm style X Window interfaces. It is extendible, allowing developers to embed additional functionality as commands in the language. However, the power and flexibility of the system leads to many variations or possibilities in its usage. We describe effective methods for taking advantage of Tcl/Tk to increase productivity and enhance the flexibility and adaptability of applications: writing simple Tcl/Tk scripts, extending the Tcl/Tk widget set, wrapping Tcl commands around existing classes and functions, and building Tcl/Tk and 3GL coprocesses. Examples are presented from working applications.

  15. Activation of caspase-3 noninvolved in the bystander effect of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system.

    PubMed

    Zhang, Zhihong; Lin, Juqiang; Chu, Jun; Ma, Yan; Zeng, Shaoqun; Luo, Qingming

    2008-01-01

    Use of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system is one of the promising approaches in the rapidly growing area of gene therapy. The "bystander effect," a phenomenon in which HSV-tk+ cells exposed to GCV are toxic to adjacent HSV-tk- cells, was reported to play an important role in suicide gene therapy. However, the mechanism by which HSV-tk/GCV induces the bystander effect is poorly understood. We monitored the activation of caspase-3 in living cells induced by the HSV-tk/GCV system using a genetically encoded fluorescence resonance energy transfer (FRET) probe CD3, , a caspase-3 recognition site fused with a cyan fluorescent protien (CFP) and a red fluorescent protein (DsRed) which we reported and named in a previous paper. Fluorescence protein (FP)-based multicolor cellular labeling, combined with the multichannel fluorescence imaging and FRET imaging techniques, provides a novel and improved approach to directly determine whether the activation of caspase-3 involved in the HSV-tk/GCV system induces cell apoptosis in tk gene-expressing cells and their neighboring cells. FRET ratio images of CD3, and fluorescence images of the fusion protein of thymidine kinase linked with green fluorescent protein (TK-GFP), indicated that HSV-tk/GCV system-induced apoptosis in human adenoid cystic carcinoma (ACC-M) cells was via a caspase-3 pathway, and the activation of caspase-3 was not involved in the bystander effect of HSV-tk/GCV system. PMID:18601533

  16. Comparison of Simplexa HSV 1 & 2 PCR with culture, immunofluorescence, and laboratory-developed TaqMan PCR for detection of herpes simplex virus in swab specimens.

    PubMed

    Gitman, Melissa R; Ferguson, David; Landry, Marie L

    2013-11-01

    The Simplexa HSV 1 & 2 direct PCR assay was compared with conventional cell culture, cytospin-enhanced direct fluorescent antibody (DFA), and a laboratory-developed real-time TaqMan PCR (LDT HSV PCR) using extracted nucleic acid for the detection of herpes simplex virus (HSV) in dermal, genital, mouth, ocular, and other swab samples. One hundred seventy-one swabs were tested prospectively, and 58 were positive for HSV (34 HSV-1 and 24 HSV-2). Cytospin-DFA detected 50 (86.2%), conventional cell culture 51 (87.9%), Simplexa direct 55 (94.8%), and LDT HSV PCR 57 (98.3%) of 58 true positives. Simplexa direct detected more positives than DFA and culture, but the differences were not significant (P = 0.0736 and P = 0.3711, respectively, by the McNemar test). Samples that were positive by all methods (n = 48) were strong positives (LDT cycle threshold [CT] value, 14.4 to 26.1). One strongly positive sample was falsely negative by LDT HSV PCR due to a failure of TaqMan probe binding. Three samples falsely negative by Simplexa direct had high CT values by LDT HSV PCR (LDT CT, 35.8 to 38.2). Omission of the DNA extraction step by Simplexa direct led to a drop in sensitivity compared to the sensitivity of LDT HSV PCR using extracted samples (94.8% versus 98.3%, respectively), but the difference was not significant (P = 0.6171). Simplexa HSV 1 & 2 direct PCR was the most expensive but required the least training of the assays used, had the lowest hands-on time and fastest assay time (75 min, versus 3 h by LDT HSV PCR), and provided the HSV type. PMID:24006008

  17. Efficacy of the Herpes Simplex Virus 2 (HSV-2) Glycoprotein D/AS04 Vaccine against Genital HSV-2 and HSV-1 Infection and Disease in the Cotton Rat Sigmodon hispidus Model

    PubMed Central

    McKay, Jamall; Mbaye, Aissatou; Sanford-Crane, Hannah; Blanco, Jorge C. G.; Huber, Ashley; Herold, Betsy C.

    2015-01-01

    ABSTRACT Subunit vaccines based on the herpes simplex virus 2 (HSV-2) glycoprotein D (gD-2) have been the major focus of HSV-2 vaccine development for the past 2 decades. Based on the promising data generated in the guinea pig model, a formulation containing truncated gD-2, aluminum salt, and MPL (gD/AS04) advanced to clinical trials. The results of these trials, however, were unexpected, as the vaccine protected against HSV-1 infection but not against HSV-2. To address this discrepancy, we developed a Depot medroxyprogesterone acetate (DMPA)-treated cotton rat Sigmodon hispidus model of HSV-2 and HSV-1 genital infection. The severity of HSV-1 genital herpes was less than that of HSV-2 genital herpes in cotton rats, and yet the model allowed for comparative evaluation of gD/AS04 immunogenicity and efficacy. Cotton rats were intramuscularly vaccinated using a prime boost strategy with gD/AS04 (Simplirix vaccine) or control vaccine formulation (hepatitis B vaccine FENDrix) and subsequently challenged intravaginally with HSV-2 or HSV-1. The gD/AS04 vaccine was immunogenic in cotton rats and induced serum IgG directed against gD-2 and serum HSV-2 neutralizing antibodies but failed to efficiently protect against HSV-2 disease or to decrease the HSV-2 viral load. However, gD/AS04 significantly reduced vaginal titers of HSV-1 and better protected animals against HSV-1 compared to HSV-2 genital disease. The latter finding is generally consistent with the clinical outcome of the Herpevac trial of Simplirix. Passive transfer of serum from gD/AS04-immunized cotton rats conferred stronger protection against HSV-1 genital disease. These findings suggest the need for alternative vaccine strategies and the identification of new correlates of protection. IMPORTANCE In spite of the high health burden of genital herpes, there is still no effective intervention against the disease. The significant gap in knowledge on genital herpes pathogenesis has been further highlighted by the

  18. Theranostic Imaging of Cancer Gene Therapy.

    PubMed

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation. PMID:27424910

  19. Protein encoded by HSV-1 stimulation-related gene 1 (HSRG1) interacts with and inhibits SV40 large T antigen.

    PubMed

    Guo, H X; Cun, W; Liu, L D; Dong, S Z; Wang, L C; Dong, C H; Li, Q H

    2006-12-01

    Herpes simplex virus (HSV)-1 stimulation-related gene 1 (HSRG1) protein expression is induced in HSV-1 infected cells. We found that HSRG1 interacts with SV40 large T antigen (LT) in yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) assay. This interaction alters LT's regulation of the SV40 promoter and its ability to influence the cell cycle. Choramphenicol acetyl-transferase (CAT) assays revealed that initiation of gene transcription by LT is changed by HSRG1 expression. HSRG1 inhibits the ability of LT to activate SV40 late gene transcription. Further data indicate that the ability of LT protein to stimulate S-phase entry is also inhibited by the expression of HSRG1. The results of a colony-forming assay suggested that expression of HSRG1 in cells transfected by LT gene decreased the rate of colony formation. Yeast two-hybrid beta-galactosidase assay revealed that amino acid residues 132-450 in LT bind HSRG1. PMID:17109635

  20. A conformational epitope mapped in the bovine herpesvirus type 1 envelope glycoprotein B by phage display and the HSV-1 3D structure.

    PubMed

    Almeida, Greyciele R; Goulart, Luiz Ricardo; Cunha-Junior, Jair P; Bataus, Luiz A M; Japolla, Greice; Brito, Wilia M E D; Campos, Ivan T N; Ribeiro, Cristina; Souza, Guilherme R L

    2015-08-01

    The selected dodecapeptide (1)DRALYGPTVIDH(12) from a phage-displayed peptide library and the crystal structure of the envelope glycoprotein B (Env gB) from Herpes Simplex Virus type 1 (HSV-1) led us to the identification of a new discontinuous epitope on the Bovine herpesvirus type 1 (BoHV-1) Env gB. In silico analysis revealed a short BoHV-1 gB motif ((338)YKRD(341)) within a epitope region, with a high similarity to the motifs shared by the dodecapeptide N-terminal region ((5)YxARD(1)) and HSV-1 Env gB ((326)YARD(329)), in which the (328)Arg residue is described to be a neutralizing antibody target. Besides the characterization of an antibody-binding site of the BoHV-1 Env gB, we have demonstrated that the phage-fused peptide has the potential to be used as a reagent for virus diagnosis by phage-ELISA assay, which discriminated BoHV-1 infected serum samples from negative ones. PMID:26267086

  1. Structural Characterization and Anti-HSV-1 and HSV-2 Activity of Glycolipids from the Marine Algae Osmundaria obtusiloba Isolated from Southeastern Brazilian Coast

    PubMed Central

    de Souza, Lauro M.; Sassaki, Guilherme L.; Romanos, Maria Teresa Villela; Barreto-Bergter, Eliana

    2012-01-01

    Glycolipids were extracted from the red alga Osmundaria obtusiloba from Southeastern Brazilian coast. The acetone insoluble material was extracted with chloroform/methanol and the lipids, enriched in glycolipids, were fractionated on a silica gel column eluted with chloroform, acetone and then methanol. Three major orcinol-positive bands were found in the acetone and methanol fractions, being detected by thin layer chromatography. The structures of the corresponding glycolipids were elucidated by ESI-MS and 1H/13C NMR analysis, on the basis of their tandem-MS behavior and HSQC, TOCSY fingerprints. For the first time, the structure of sulfoquinovosyldiacylglycerol from the red alga Osmundaria obtusiloba was characterized. This molecule exhibited potent antiviral activity against HSV-1 and HSV-2 with EC50 values of 42 µg/mL to HSV-1 and 12 µg/mL to HSV-2, respectively. Two other glycolipids, mono- and digalactosyldiacylglycerol, were also found in the alga, being characterized by ESI-MS/MS. The structural elucidation of algae glycolipids is a first step for a better understanding of the relation between these structures and their biological activities. PMID:22690151

  2. Genetics Home Reference: TK2-related mitochondrial DNA depletion syndrome, myopathic form

    MedlinePlus

    ... DNA depletion syndrome, myopathic form TK2-related mitochondrial DNA depletion syndrome, myopathic form Enable Javascript to view ... Open All Close All Description TK2 -related mitochondrial DNA depletion syndrome, myopathic form ( TK2 -MDS) is an ...

  3. Nucleotide sequences of Herpes Simplex Virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gB (VP7)

    SciTech Connect

    DeLuca, N.; Bzik, D.J.; Bond, V.C.; Person, S.; Snipes, W.

    1982-10-30

    The tsB5 strain of Herpes Simplex Virus type 1 (HSV-1) contains at least two mutations; one mutation specifies the syncytial phenotype and the other confers temperature sensitivity for virus growth. These functions are known to be located between the prototypic map coordinates 0.30 and 0.42. In this study it was demonstrated that tsB5 enters human embryonic lung (HEL) cells more rapidly than KOS, another strain of HSV-1. The EcoRI restriction fragment F from the KOS strain (map coordinates 0.315 to 0.421) was mapped with eight restriction endonucleases, and 16 recombinant plasmids were constructed which contained varying portions of the KOS genome. Recombinant viruses were generated by marker-rescue and marker-transfer cotransfection procedures, using intact DNA from one strain and a recombinant plasmid containing DNA from the other strain. The region of the crossover between the two nonisogenic strains was inferred by the identification of restriction sites in the recombinants that were characteristic of the parental strains. The recombinants were subjected to phenotypic analysis. Syncytium formation, rate of virus entry, and the production of gB were all separable by the crossovers that produced the recombinants. The KOS sequences which rescue the syncytial phenotype of tsB5 were localized to 1.5 kb (map coordinates 0.345 to 0.355), and the temperature-sensitive mutation was localized to 1.2 kb (0.360 to 0.368), giving an average separation between the mutations of 2.5 kb on the 150-kb genome. DNA sequences that specify a functional domain for virus entry were localized to the nucleotide sequences between the two mutations. All three functions could be encoded by the virus gene specifying the gB glycoprotein.

  4. USE OF DNA PURIFIED IN SITU FROM CELLS EMBEDDED IN AGAROSE PLUGS FOR THE MOLECULAR ANALYSIS OF TK-/-MUTANTS RECOVERED IN THE L5178Y TK+/- 3.7.2C MUTAGEN ASSAY SYSTEM

    EPA Science Inventory

    We have reported that tk-/- mutants recovered in the mouse L5178Y TK+/- 3.7.2C mutagen assay have often lost the tk+ allele. llele loss in tk-/- mutants is mented on Southern blots as the absence of a 6.3-kb Nco I fragment seen in both tk+/+ and tk+/- cell DNAs. or the routine sc...

  5. Using CamiTK for rapid prototyping of interactive Computer Assisted Medical Intervention applications

    PubMed Central

    Promayon, Emmanuel; Fouard, Celine; Bailet, Mathieu; Deram, Aurelien; Fiard, Gaelle; Hungr, Nikolai; Luboz, Vincent; Payan, Yohan; Sarrazin, Johan; Saubat, Nicolas; Selmi, Sonia Yuki; Voros, Sandrine; Cinquin, Philippe; Troccaz, Jocelyne

    2013-01-01

    Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc. CamiTK1 is a modular framework that helps researchers and clinicians to collaborate together in order to prototype CAMI applications by regrouping the knowledge and expertise from each discipline. It is an open-source, cross-platform generic and modular tool written in C++ which can handle medical images, surgical navigation, biomedicals simulations and robot control. This paper presents the Computer Assisted Medical Intervention ToolKit (CamiTK) and how it is used in various applications in our research team. PMID:24110841

  6. Phytochemical analysis and in vitro evaluation of the biological activity against herpes simplex virus type 1 (HSV-1) of Cedrus libani A. Rich.

    PubMed

    Loizzo, Monica Rosa; Saab, Antoine; Tundis, Rosa; Statti, Giancarlo A; Lampronti, Ilaria; Menichini, Francesco; Gambari, Roberto; Cinatl, Jindrich; Doerr, Hans Wilhelm

    2008-01-01

    Cedrus libani are widely used as traditional medicine in Lebanon for treatment of different infection diseases. In the present study we reported the phytochemical composition analyzed by GC-MS of wood essential oil and cones and leaves ethanol extracts. The main components of wood essential oil were himachalol (22.50%), beta-himachalene (21.90%), and alpha-himachalene (10.50%). Leaves ethanol extract was characterized by a high content of germacrene d (29.40%). The same extract obtained from cones essentially contained alpha-pinene (51.0%) and beta-myrcene (13.0%). Moreover, we investigated extracts, essential oil, and identified compounds for their in vitro antiviral activities against herpes simplex virus type 1 (HSV-1). Cytotoxicity was evaluated by MTT assay in Vero cells. Cones and leaves ethanol extracts exhibited an interesting activity with IC50 of 0.50 and 0.66 mg/ml, respectively, at non-cytotoxic concentration. A comparable activity was found when essential oil was tested (IC50 of 0.44 mg/ml). PMID:17482448

  7. Enzyme-Assisted Extraction of Bioactive Material from Chondrus crispus and Codium fragile and Its Effect on Herpes simplex Virus (HSV-1)

    PubMed Central

    Kulshreshtha, Garima; Burlot, Anne-Sophie; Marty, Christel; Critchley, Alan; Hafting, Jeff; Bedoux, Gilles; Bourgougnon, Nathalie; Prithiviraj, Balakrishnan

    2015-01-01

    Codium fragile and Chondrus crispus are, respectively, green and red seaweeds which are abundant along the North Atlantic coasts. We investigated the chemical composition and antiviral activity of enzymatic extracts of C. fragile (CF) and C. crispus (CC). On a dry weight basis, CF consisted of 11% protein, 31% neutral sugars, 0.8% sulfate, 0.6% uronic acids, and 49% ash, while CC contained 27% protein, 28% neutral sugars, 17% sulfate, 1.8% uronic acids, and 25% ash. Enzyme-assisted hydrolysis improved the extraction efficiency of bioactive materials. Commercial proteases and carbohydrases significantly improved (p ≤ 0.001) biomass yield (40%–70% dry matter) as compared to aqueous extraction (20%–25% dry matter). Moreover, enzymatic hydrolysis enhanced the recovery of protein, neutral sugars, uronic acids, and sulfates. The enzymatic hydrolysates exhibited significant activity against Herpes simplex virus (HSV-1) with EC50 of 77.6–126.8 μg/mL for CC and 36.5–41.3 μg/mL for CF, at a multiplicity of infection (MOI) of 0.001 ID50/cells without cytotoxity (1–200 μg/mL). The extracts obtained from proteases (P1) and carbohydrases (C3) were also effective at higher virus MOI of 0.01 ID50/cells without cytotoxity. Taken together, these results indicate the potential application of enzymatic hydrolysates of C. fragile and C. crispus in functional food and antiviral drug discovery. PMID:25603348

  8. Ocular neovascularization caused by HSV-1 infection results from breakdown of binding between VEGF-A and its soluble receptor1

    PubMed Central

    Suryawanshi, Amol; Mulik, Sachin; Sharma, Shalini; Reddy, Pradeep B. J.; Sehrawat, Sharvan

    2014-01-01

    The normal cornea is transparent which is essential for normal vision and although the angiogenic factor VEGF-A is present in the cornea, its angiogenic activity is impeded by being bound to a soluble form of the VEGF receptor-1 (sVR-1). This report investigates the effect on the balance between VEGF-A and sVR-1 that occurs following ocular infection with HSV, that causes prominent neovascularization, an essential step in the pathogenesis of the vision-impairing lesion, stromal keratitis (SK). We demonstrate that HSV-1 infection causes increased production of VEGF-A, but reduces sVR-1 levels resulting in an imbalance of VEGF-A and sVR-1 levels in ocular tissues. Moreover, the sVR-1 protein made was degraded by the metalloproteinase (MMP) enzymes MMP-2, MMP-7 and MMP-9 produced by infiltrating inflammatory cells that were principally neutrophils. Inhibition of neutrophils, or inhibition of sVR-1 breakdown with the MMP inhibitor (MMPi) marimostat, or the provision of exogenous recombinant sVR-1 protein all resulted in reduced angiogenesis. Our results make the novel observation that ocular neovascularization resulting from HSV infection involves a change in the balance between VEGF-A and its soluble inhibitory receptor. Future therapies aimed to increase the production and activity of sVR-1 protein could benefit the management of SK, an important cause of human blindness. PMID:21325621

  9. Lytic Gene Expression Is Frequent in HSV-1 Latent Infection and Correlates with the Engagement of a Cell-Intrinsic Transcriptional Response

    PubMed Central

    Ma, Joel Z.; Russell, Tiffany A.; Spelman, Tim

    2014-01-01

    Herpes simplex viruses (HSV) are significant human pathogens that provide one of the best-described examples of viral latency and reactivation. HSV latency occurs in sensory neurons, being characterized by the absence of virus replication and only fragmentary evidence of protein production. In mouse models, HSV latency is especially stable but the detection of some lytic gene transcription and the ongoing presence of activated immune cells in latent ganglia have been used to suggest that this state is not entirely quiescent. Alternatively, these findings can be interpreted as signs of a low, but constant level of abortive reactivation punctuating otherwise silent latency. Using single cell analysis of transcription in mouse dorsal root ganglia, we reveal that HSV-1 latency is highly dynamic in the majority of neurons. Specifically, transcription from areas of the HSV genome associated with at least one viral lytic gene occurs in nearly two thirds of latently-infected neurons and more than half of these have RNA from more than one lytic gene locus. Further, bioinformatics analyses of host transcription showed that progressive appearance of these lytic transcripts correlated with alterations in expression of cellular genes. These data show for the first time that transcription consistent with lytic gene expression is a frequent event, taking place in the majority of HSV latently-infected neurons. Furthermore, this transcription is of biological significance in that it influences host gene expression. We suggest that the maintenance of HSV latency involves an active host response to frequent viral activity. PMID:25058429

  10. Distinct APC Subtypes Drive Spatially Segregated CD4+ and CD8+ T-Cell Effector Activity during Skin Infection with HSV-1

    PubMed Central

    Macleod, Bethany L.; Bedoui, Sammy; Hor, Jyh Liang; Mueller, Scott N.; Russell, Tiffany A.; Hollett, Natasha A.; Heath, William R.; Tscharke, David C.

    2014-01-01

    Efficient infection control requires potent T-cell responses at sites of pathogen replication. However, the regulation of T-cell effector function in situ remains poorly understood. Here, we show key differences in the regulation of effector activity between CD4+ and CD8+ T-cells during skin infection with HSV-1. IFN-γ-producing CD4+ T cells disseminated widely throughout the skin and draining lymph nodes (LN), clearly exceeding the epithelial distribution of infectious virus. By contrast, IFN-γ-producing CD8+ T cells were only found within the infected epidermal layer of the skin and associated hair follicles. Mechanistically, while various subsets of lymphoid- and skin-derived dendritic cells (DC) elicited IFN-γ production by CD4+ T cells, CD8+ T cells responded exclusively to infected epidermal cells directly presenting viral antigen. Notably, uninfected cross-presenting DCs from both skin and LNs failed to trigger IFN-γ production by CD8+ T-cells. Thus, we describe a previously unappreciated complexity in the regulation of CD4+ and CD8+ T-cell effector activity that is subset-specific, microanatomically distinct and involves largely non-overlapping types of antigen-presenting cells (APC). PMID:25121482

  11. 2-Arachidonoyl-glycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV

    PubMed Central

    Chouinard, François; Turcotte, Caroline; Guan, Xiaochun; Larose, Marie-Chantal; Poirier, Samuel; Bouchard, Line; Provost, Véronique; Flamand, Louis; Grandvaux, Nathalie; Flamand, Nicolas

    2016-01-01

    The endocannabinoid 2-AG is highly susceptible to its hydrolysis into AA, which activates neutrophils through de novo LTB4 biosynthesis, independently of CB activation. In this study, we show that 2-AG and AA stimulate neutrophils to release antimicrobial effectors. Supernatants of neutrophils activated with nanomolar concentrations of 2-AG and AA indeed inhibited the infectivity of HSV-1 and RSV. Additionally, the supernatants of 2-AG- and AA-stimulated neutrophils strongly impaired the growth of Escherichia coli and Staphylococcus aureus. This correlated with the release of a large amount (micrograms) of α-defensins, as well as a limited amount (nanograms) of LL-37. All the effects of AA and 2-AG mentioned above were prevented by inhibiting LTB4 biosynthesis or by blocking BLT1. Importantly, neither CB2 receptor agonists nor antagonists could mimic nor prevent the effects of 2-AG, respectively. In fact, qPCR data show that contaminating eosinophils express ~100-fold more CB2 receptor mRNA than purified neutrophils, suggesting that CB2 receptor expression by human neutrophils is limited and that contaminating eosinophils are likely responsible for the previously documented CB2 expression by freshly isolated human neutrophils. The rapid conversion of 2-AG to AA and their subsequent metabolism into LTB4 promote 2-AG and AA as multifunctional activators of neutrophils, mainly exerting their effects by activating the BLT1. Considering that nanomolar concentrations of AA or 2-AG were sufficient to impair viral infectivity, this suggests potential physiological roles for 2-AG and AA as regulators of host defense in vivo. PMID:23242611

  12. A tyrosine hydroxylase-neurofilament chimeric promoter enhances long-term expression in rat forebrain neurons from helper virus-free HSV-1 vectors.

    PubMed

    Zhang, G R; Wang, X; Yang, T; Sun, M; Zhang, W; Wang, Y; Geller, A I

    2000-12-01

    Helper virus-free herpes simplex virus (HSV-1) plasmid vectors are attractive for neural gene transfer, but a promoter that supports neuronal-specific, long-term expression is required. Although expression from many promoters is unstable, a 6.8-kb, but not a 766-bp, fragment of the tyrosine hydroxylase (TH) promoter supports long-term expression. Thus, 5' upstream sequences in this promoter may enhance expression. In this study, we evaluated expression from vectors that contain 5' upstream sequences from this promoter (-0.5 to -6.8 kb) inserted at the 5' end of either a neurofilament heavy subunit (NF-H) promoter or the cytomegalovirus (CMV) immediate early promoter. The TH-NFH promoter supported expression for 6 months in the striatum, 2 months in the hippocampus, and for 1 month in both perirhinal and postrhinal cortex (the longest time points examined). Expression was targeted to neurons. The enhanced expression may require specific sequences in the TH promoter fragment because replacing this fragment with a similar sized fragment of bacteriophage lambda DNA did not enhance expression. The reverse orientation of the TH promoter fragment also enhanced expression. Insertion of insulators from the chicken beta-globin locus between the TH-NFHlac transcription unit and the vector backbone may support a modest additional enhancement in expression. Other eucaryotic sequences may also enhance expression; a S. cerevisiae (40-kb fragment)-NFH promoter enhanced expression. In contrast, the TH-CMV promoter did not enhance expression. Thus, the TH-NFH promoter may support some physiological studies that require long-term expression in forebrain neurons. PMID:11113528

  13. Effect of Azone upon the in vivo antiviral efficacy of cidofovir or acyclovir topical formulations in treatment/prevention of cutaneous HSV-1 infections and its correlation with skin target site free drug concentration in hairless mice.

    PubMed

    Afouna, Mohsen I; Fincher, Timothy K; Zaghloul, Abdel-Azim A; Reddy, Indra K

    2003-03-01

    The purpose of this study is to examine the influence of Azone upon the skin target site free drug concentration (C(*)) and its correlation with the in vivo antiviral efficacies of cidofovir (HPMPC) and acyclovir (ACV) against HSV-1 infections. Formulations of HPMPC and ACV with or without Azone were used. The in vitro skin flux experiments were performed and the C(*) values were calculated. For the in vivo efficacy studies, hairless mice cutaneously infected with HSV-1 were used and three different treatment protocols were carried out. The protocols were chosen based upon when therapy is initiated and terminated in such a way to assess the efficacy of the test drug to cure and/or prevent HSV-1 infections. A finite dose of the formulation was topically applied twice a day for the predetermined time course for each protocol and the lesions were scored on the fifth day. For ACV formulation with Azone, the C(*) values and hence the in vivo efficacy were much higher than those for that without Azone. In protocol #1, however, early treatment did not increase the in vivo efficacy of ACV when compared with the standard treatment protocol #3. In protocol #2 where the treatment was terminated on the day of virus inoculation, the efficacies for both ACV formulations were completely absent. Although the estimated C(*) values for HPMPC formulations with and without Azone were comparable, formulation with Azone was much more effective than that without Azone in all treatment protocols. HPMPC formulations with Azone at similar flux values were much more effective in "treating and preventing" HSV-1 infections than those without Azone. For ACV formulations, in contrast, addition of Azone has failed to show any effect on the preventive in vivo antiviral efficacy and the enhancement of ACV in vivo antiviral efficacy was merely the skin permeation enhancement effect of Azone. PMID:12593946

  14. Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue

    PubMed Central

    Shinn, Helen Ki; Yan, Chunri; Kim, Tae-Hwan; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Moon, Sung-Kwon; Kim, Nam-Hyung; Kim, Jayoung; Cha, Eun-Jong

    2016-01-01

    Purpose: Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. Methods: A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. Results: Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). Conclusions: These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections. PMID:27377944

  15. Characterization of a Novel Melt Curve by Use of the Roche LightCycler HSV 1/2 Analyte-Specific Reagent Real-Time PCR Assay: Frequencies of This Novel (Low) Melt Curve and Commonly Encountered (Intermediate) Melt Curves

    PubMed Central

    Almradi, Amro; Espy, Mark J.; Prada, Anne E.; Gibson, John P.; Pritt, Bobbi S.

    2014-01-01

    We characterize a novel probe binding-site polymorphism detectable solely by melt curve analysis using the Roche LightCycler HSV 1/2 analyte-specific reagent real-time PCR assay. The frequencies of this novel (47°C) and previously described intermediate (60 to 62°C) melt curves were 0.016% and 4.9%, respectively. PMID:24352998

  16. MicroRNA-H4-5p encoded by HSV-1 latency-associated transcript promotes cell proliferation, invasion and cell cycle progression via p16-mediated PI3K-Akt signaling pathway in SHSY5Y cells

    PubMed Central

    Zhao, Huiliang; Zhang, Chunying; Hou, Guangjun; Song, Jijun

    2015-01-01

    Herpes simplex virus 1 (HSV-1) microRNAs (miRNAs) mostly located in transcription-associated transcript (LAT) region have been identified that play critical roles in the intricate host-pathogen interaction networks. Increasing evidences throw new insight into the role of miRNA-mediated miRNA-mRNA cross-talk in HSV-1 latent or acute infection. In the present study, we found that hsv-1 miR-H4-5p (here termed as miR-H4b) can down-regulate the expression of cyclin-dependent kinase inhibitor 2A (CDKN2A, p16) in neuroblastoma (SHSY5Y) cell lines. Decreased expression of miR-H4b was directly related to attenuated cell proliferation and invasion as well as malfunction of cell cycle in recombinant SHSY5Y cells that stably expressing miR-H4b. Bioinformatics analysis and luciferase assays demonstrated miR-H4b can directly target p16 mRNA. MiR-H4b exerts its pro-proliferation function through inhibition of the p16-related PI3K-Akt pathways. Our findings provide, for the first time, significant clues regarding the role of herpesvirus-encoded miRNAs as a viral modulator to host cells. PMID:26221296

  17. A case of extravascular hemolysis with Tk-activation

    PubMed Central

    Yamada, Chisa; Davenport, Robertson D

    2014-01-01

    Key Clinical Message A 50-year-old female with ovarian cancer for 4 years presented with abdominal pain. She started antibiotics for possible infection, and developed extravascular hemolysis. All antigen detection tests were negative, but lectin panel suggested Tk-activation. Additional laboratory testing in conjunction with blood bank is essential to investigate rare cause of hemolysis. PMID:25356271

  18. ImTK: an open source multi-center information management toolkit

    NASA Astrophysics Data System (ADS)

    Alaoui, Adil; Ingeholm, Mary Lou; Padh, Shilpa; Dorobantu, Mihai; Desai, Mihir; Cleary, Kevin; Mun, Seong K.

    2008-03-01

    The Information Management Toolkit (ImTK) Consortium is an open source initiative to develop robust, freely available tools related to the information management needs of basic, clinical, and translational research. An open source framework and agile programming methodology can enable distributed software development while an open architecture will encourage interoperability across different environments. The ISIS Center has conceptualized a prototype data sharing network that simulates a multi-center environment based on a federated data access model. This model includes the development of software tools to enable efficient exchange, sharing, management, and analysis of multimedia medical information such as clinical information, images, and bioinformatics data from multiple data sources. The envisioned ImTK data environment will include an open architecture and data model implementation that complies with existing standards such as Digital Imaging and Communications (DICOM), Health Level 7 (HL7), and the technical framework and workflow defined by the Integrating the Healthcare Enterprise (IHE) Information Technology Infrastructure initiative, mainly the Cross Enterprise Document Sharing (XDS) specifications.

  19. Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9-5p Could Be Valuable Diagnostic Markers

    PubMed Central

    Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Kim, Ye-Hwan; Kim, Eun-Ah; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Kim, Jung Min; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Koh, Gou-Young; Moon, Sung-Kwon; Kim, Isaac Yi; Kim, Jayoung; Choi, Yung-Hyun; Kim, Wun-Jae

    2015-01-01

    Purpose: MicroRNAs (miRNAs) in biological fluids are potential biomarkers for the diagnosis and assessment of urological diseases such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa). The aim of the study was to identify and validate urinary cell-free miRNAs that can segregate patients with PCa from those with BPH. Methods: In total, 1,052 urine, 150 serum, and 150 prostate tissue samples from patients with PCa or BPH were used in the study. A urine-based miRNA microarray analysis suggested the presence of differentially expressed urinary miRNAs in patients with PCa, and these were further validated in three independent PCa cohorts, using a quantitative reverse transcriptionpolymerase chain reaction analysis. Results: The expression levels of hsa-miR-615-3p, hsv1-miR-H18, hsv2-miR-H9-5p, and hsa-miR-4316 were significantly higher in urine samples of patients with PCa than in those of BPH controls. In particular, herpes simplex virus (hsv)-derived hsv1-miR-H18 and hsv2-miR-H9-5p showed better diagnostic performance than did the serum prostate-specific antigen (PSA) test for patients in the PSA gray zone. Furthermore, a combination of urinary hsv2-miR-H9-5p with serum PSA showed high sensitivity and specificity, providing a potential clinical benefit by reducing unnecessary biopsies. Conclusions: Our findings showed that hsv-encoded hsv1-miR-H18 and hsv2-miR-H9-5p are significantly associated with PCa and can facilitate early diagnosis of PCa for patients within the serum PSA gray zone. PMID:26126436

  20. Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles

    PubMed Central

    Cao, Haiyan; Zhang, Guo-rong; Wang, Xiaodan; Kong, Lingxin; Geller, Alfred I

    2008-01-01

    Background Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1) particles that contain chimeric glycoprotein C (gC) – glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) proteins. HSV-1 vector particles containing either gC – GDNF or gC – BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH) promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression. Results Helper virus-free HSV-1 vector packaging was performed using either gC – GDNF or gC – BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal-specific promoters improved nigrostriatal

  1. 3H-Penciclovir (3H-PCV) Uptake Assay

    PubMed Central

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Thymidine Kinase from human Herpes simplex virus type 1 (HSV1-TK) in combination with specific substrate prodrug nucleotide analogue ganciclovir (GCV) has been widely used as suicidal therapeutic gene for cancer gene therapy. HSV1, and its mutant (HSV1-sr39TK) with improved substrate specificity, were used as reporter genes for PET-imaging of various biological functions in small animals, by combining with radiolabeled substrates such as 18F-FHBG and 124I-FIAU. 3H-Penciclovir (PCV) uptake assay is a method of choice used to determine the expression level of HSV1-TK in mammalian cells and tissues. HSV1-TK phosphorylate PCV and result in the formation of penciclovir monophosphate, and its subsequent phopsphorylation by cellular TK lead to the formation of penciclovir triphosphate, which is trapped selectively in cells expressing HSV-TK. 3H-Penciclovir enables the detection of penciclovir uptake of mammalian cells and tissues by radioactive procedures such as scintillation counting. Here we describe the protocol to carry out 3H-Penciclovir uptakes in mammalian cells.

  2. Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus.

    PubMed Central

    Feduchi, E; Alonso, M A; Carrasco, L

    1989-01-01

    The replication of herpes simplex virus type 1 (HSV-1) is not inhibited in either HeLa or HEp-2 cells treated with human alpha interferon (HuIFN-alpha), particularly when high multiplicities of infection are used. However, HuIFN-gamma partially inhibits HSV-1 translation in HEp-2 cells infected at low multiplicities. Under these conditions, the transcription of genes alpha 22, TK, and gamma 0 is greatly diminished. The combined addition of human tumor necrosis factor (TNF) and HuIFN-gamma to HEp-2 cells exerts a synergistic inhibition of HSV-1 translation. Cells treated with both cytokines continue synthesizing cellular proteins, even 20 h after HSV-1 infection. As little as 10 U of IFN-gamma per ml blocked HSV-1 DNA replication, provided that TNF was also present in the medium. Analyses of HSV-1 gene transcription suggest that the action of both TNF and IFN-gamma blocked a step that comes at or prior to early HSV-1 gene expression. This early step in HSV-1 replication inhibited by TNF and IFN-gamma occurs after virus attachment and entry into cells, since the internalization of radioactive HSV-1 virion particles was not blocked by the presence of the two cytokines. Therefore, we conclude that the synergistic action of TNF plus IFN-gamma affects a step in HSV-1 replication that comes after virus entry but before or at the transcription of immediate-early genes. Images PMID:2536838

  3. Embryonic Stem Cell Grafting in Normal and Infarcted Myocardium: Serial Assessment with MR Imaging and PET Dual Detection

    PubMed Central

    Qiao, Hui; Zhang, Hualei; Zheng, Yuanjie; Ponde, Datta E.; Shen, Dinggang; Gao, Fabao; Bakken, Ashley B.; Schmitz, Alexander; Kung, Hank F.; Ferrari, Victor A.; Zhou, Rong

    2009-01-01

    Purpose: To use magnetic resonance (MR) imaging and positron emission tomography (PET) dual detection of cardiac-grafted embryonic stem cells (ESCs) to examine (a) survival and proliferation of ESCs in normal and infarcted myocardium, (b) host macrophage versus grafted ESC contribution to serial MR imaging signal over time, and (c) cardiac function associated with the formation of grafts and whether improvement in cardiac function is related to cardiac differentiation of ESCs. Materials and Methods: All animal procedures were approved by the institutional animal care and use committee. Murine ESCs were stably transfected with a mutant version of herpes simplex virus type 1 thymidine kinase, HSV1-sr39tk, and also were labeled with superparamagnetic iron oxide (SPIO) particles. Cells were injected directly in the border zone of the infarcted heart or in corresponding regions of normal hearts in athymic rats. PET and MR imaging were performed longitudinally for 4 weeks in the same animals. Results: ESCs survived and underwent proliferation in the infarcted and normal hearts, as demonstrated by serial increases in 9-(4-[18F]fluoro-3-hydroxymethylbutyl) guanine PET signals. In parallel, the hypointense areas on MR images at the injection sites decreased over time. Double staining for host macrophages and SPIO particles revealed that the majority of SPIO-containing cells were macrophages at week 4 after injection. Left ventricular ejection fraction increased in the ESC-treated rats but decreased in culture media–treated rats, and border-zone function was preserved in ESC-treated animals; however, cardiac differentiation of ESCs was less than 0.5%. Conclusion: Dual-modality imaging permits complementary information in regard to cell survival and proliferation, graft formation, and effects on cardiac function. © RSNA, 2009 PMID:19244049

  4. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  5. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter

    PubMed Central

    Rasmussen, Morten; Kong, Lingxin; Zhang, Guo-rong; Liu, Meng; Wang, Xiaodan; Szabo, Gabor; Curthoys, Norman P.; Geller, Alfred I.

    2009-01-01

    Many potential uses of direct gene transfer into neurons require restricting expression to one of the two major types of forebrain neurons, glutamatergic or GABAergic neurons. Thus, it is desirable to develop virus vectors that contain either a glutamatergic or GABAergic neuron-specific promoter. The brain/kidney phosphate-activated glutaminase (PAG), the product of the GLS1 gene, produces the majority of the glutamate for release as neurotransmitter, and is a marker for glutamatergic neurons. A PAG promoter was partially characterized using a cultured kidney cell line. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. Glutamic acid decarboxylase (GAD) produces GABA; the two molecular forms of the enzyme, GAD65 and GAD67, are expressed in distinct, but largely overlapping, groups of neurons, and GAD67 is the predominant form in the neocortex. In transgenic mice, an ∼9 kb fragment of the GAD67 promoter supports expression in most classes of GABAergic neurons. Here, we constructed plasmid (amplicon) Herpes Simplex Virus (HSV-1) vectors that placed the Lac Z gene under the regulation of putative PAG, VGLUT1, or GAD67 promoters. Helper virus-free vector stocks were delivered into postrhinal cortex, and the rats were sacrificed 4 days or 2 months later. The PAG or VGLUT1 promoters supported ∼90 % glutamatergic neuron-specific expression. The GAD67 promoter supported ∼90 % GABAergic neuron-specific expression. Long-term expression was observed using each promoter. Principles for obtaining long-term expression from HSV-1 vectors, based on these and other results, are discussed. Long-term glutamatergic or GABAergic neuron-specific expression may benefit specific experiments on learning or specific gene therapy approaches. Of note, promoter analyses might identify regulatory elements that determine a glutamatergic or GABAergic

  6. Caspase-3-independent pathways proceeding in bystander effect of HSV-tk/GCV system

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Ma, Yan; Zeng, Shaoqun; Zhang, Zhihong

    2008-02-01

    HSV-tk/GCV system, which is the virus-directed enzyme/prodrug therapy of herpes simplex virus (HSV) thymidine kinase (tk) gene / the anti-viral reagent ganciclovir (GCV), is one of the promising approaches in the rapidly growing area of gene therapy. As gene therapy of cancer such as suicide gene therapy has entered the clinic, another therapy effect which is called 'bystander effect' was reported. Bystander effect can lead to killing of non-transduced tumor cells in the immediate vicinity of GCV-treated HSV-TK-positive cells. Now the magnitude of 'bystander effect' is an essential factor for this anti-tumor approach in vivo. However, the mechanism which HSV-tk/ACV brings "bystander effect" is poorly understood. In this study, we monitor the activation of caspase-3 in HSV-tk/GCV system by a FRET probe CD3, a FRET-based indicator for activity of caspase3, which is composed of an enhanced cyan fluorescent protein, a caspase-sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. Through application of CD3 we have visualized the activation of caspase-3 in tk gene positive human adenoid cystic carcinoma (ACC-M) cells but not in bystander effect of HSV-tk/GCV system induced by GCV. This finding provides needed information for understanding the mechanisms by which suicide gene approaches actually kill cancer cells, and may prove to be helpful for the clinical treatment of cancers.

  7. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT).

    PubMed

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton; Wechsler, Steven L

    2015-10-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis. PMID:26071090

  8. Characterization of a TK6-Bcl-xL gly-159-ala Human Lymphoblast Clone

    SciTech Connect

    Chyall, L.: Gauny, S.; Kronenberg, A.

    2006-01-01

    TK6 cells are a well-characterized human B-lymphoblast cell line derived from WIL-2 cells. A derivative of the TK6 cell line that was stably transfected to express a mutated form of the anti-apoptotic protein Bcl-xL (TK6-Bcl-xL gly-159- ala clone #38) is compared with the parent cell line. Four parameters were evaluated for each cell line: growth under normal conditions, plating efficiency, and frequency of spontaneous mutation to 6‑thioguanine resistance (hypoxanthine phosphoribosyl transferase locus) or trifluorothymidine resistance (thymidine kinase locus). We conclude that the mutated Bcl-xL protein did not affect growth under normal conditions, plating efficiency or spontaneous mutation frequencies at the thymidine kinase (TK) locus. Results at the hypoxanthine phosphoribosyl transferase (HPRT) locus were inconclusive. A mutant fraction for TK6‑Bcl-xL gly-159-ala clone #38 cells exposed to 150cGy of 160kVp x-rays was also calculated. Exposure to x-irradiation increased the mutant fraction of TK6‑Bcl-xL gly-159-ala clone #38 cells.

  9. An alternative mature form of subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis identified in the presence of Ca2+.

    PubMed

    Sinsereekul, Nitat; Foophow, Tita; Yamanouchi, Mai; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2011-06-01

    Pro-Tk-SP from Thermococcus kodakaraensis consists of the four domains: N-propeptide, subtilisin (EC 3.4.21.62) domain, β-jelly roll domain and C-propeptide. To analyze the maturation process of this protein, the Pro-Tk-SP derivative with the mutation of the active-site serine residue to Cys (Pro-Tk-S359C), Pro-Tk-S359C derivatives lacking the N-propeptide (ProC-Tk-S359C) and both propeptides (Tk-S359C), and a His-tagged form of the isolated C-propeptide (ProC*) were constructed. Pro-Tk-S359C was purified mostly in an autoprocessed form in which the N-propeptide is autoprocessed but the isolated N-propeptide (ProN) forms a stable complex with ProC-Tk-S359C, indicating that the N-propeptide is autoprocessed first. The subsequent maturation process was analyzed using ProC-Tk-S359C, instead of the ProN:ProC-Tk-S359C complex. The C-propeptide was autoprocessed and degraded when ProC-Tk-S359C was incubated at 80 °C in the absence of Ca(2+). However, it was not autoprocessed in the presence of Ca(2+). Comparison of the susceptibility of ProC* to proteolytic degradation in the presence and absence of Ca(2+) suggests that the C-propeptide becomes highly resistant to proteolytic degradation in the presence of Ca(2+). We propose that Pro-Tk-SP derivative lacking N-propeptide (Val114-Gly640) represents a mature form of Pro-Tk-SP in a natural environment. The enzymatic activity of ProC-Tk-S359C was higher than (but comparable to) that of Tk-S359C, suggesting that the C-propeptide is not important for activity. However, the T(m) value of ProC-Tk-S359C determined by far-UV CD spectroscopy was higher than that of Tk-S359C by 25.9 °C in the absence of Ca(2+) and 7.5 °C in the presence of Ca(2+), indicating that the C-propeptide contributes to the stabilization of ProC-Tk-S359C. PMID:21443525

  10. Isolation of an enhancer from the rat tyrosine hydroxylase promoter that supports long-term, neuronal-specific expression from a neurofilament promoter, in a helper virus-free HSV-1 vector system

    PubMed Central

    Gao, Qingshen; Sun, Mei; Wang, Xiaodan; Geller, Alfred I.

    2009-01-01

    Direct gene transfer into neurons, using a virus vector, has been used to study neuronal physiology and learning, and has potential for supporting gene therapy treatments for specific neurological diseases. Many of these applications require high-level, long-term recombinant gene expression, in forebrain neurons. We previously showed that addition of upstream sequences from the rat tyrosine hydroxylase (TH) promoter to a neurofilament heavy gene (NF-H) promoter supports long-term expression in forebrain neurons, from helper virus-free Herpes Simplex Virus (HSV-1) vectors. This element in the TH promoter satisfied the definition of an enhancer; it displayed activity at a distance from the basal promoter, and in both orientations. This enhancer supported physiological studies that required long-term expression; a modified neurofilament promoter, containing an insulator upstream of the TH-NFH promoter, supported expression in ∼11,400 striatal neurons at 6 months after gene transfer, and expression for 7, 8, or 14 months, the longest times tested. In contrast, the NF-H promoter alone does not support long-term expression, indicating that the critical sequences are in the 6.3 kb fragment of the TH promoter. In this study, we performed a deletion analysis to identify the critical sequences in the TH promoter that support long-term expression. We localized these critical sequences to an ∼320 bp fragment, and two subfragments of ∼100 bp each. Vectors that contained each of these small fragments supported levels of long-term, neuronal-specific expression that were similar to the levels supported by a vector that contained the initial 6.3 kb fragment of the TH promoter. These small fragments of the TH promoter may benefit construction of vectors for physiological studies, and may support studies on the mechanism by which this enhancer supports long-term expression. PMID:17169349

  11. Analysis of in vivo mutation in the Hprt and Tk genes of mouse lymphocytes.

    PubMed

    Dobrovolsky, Vasily N; Shaddock, Joseph G; Heflich, Robert H

    2014-01-01

    Assays measuring mutant frequencies in endogenous reporter genes are used for identifying potentially genotoxic environmental agents and discovering phenotypes prone to genomic instability and diseases, such as cancer. Here, we describe methods for identifying mouse spleen lymphocytes with mutations in the endogenous X-linked hypoxanthine guanine phosphoribosyl transferase (Hprt) gene and the endogenous autosomal thymidine kinase (Tk) gene. The selective clonal expansion of mutant lymphocytes is based upon the phenotypic properties of HPRT- and TK-deficient cells. The same procedure can be utilized for quantifying Hprt mutations in most strains of mice (and, with minor changes, in other mammalian species), while mutations in the Tk gene can be determined only in transgenic mice that are heterozygous for inactivation of this gene. Expanded mutant clones can be further analyzed to classify the types of mutations in the Tk gene (small intragenic mutations vs. large chromosomal mutations) and to determine the nature of intragenic mutation in both the Hprt and Tk genes. PMID:24623234

  12. Evidence for an involvement of thymidine kinase in the excision repair of ultraviolet-irradiated herpes simplex virus in human cells

    SciTech Connect

    Intine, R.V.; Rainbow, A.J. )

    1990-01-01

    A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in part at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair.

  13. The Syk Kinase SmTK4 of Schistosoma mansoni Is Involved in the Regulation of Spermatogenesis and Oogenesis

    PubMed Central

    Beckmann, Svenja; Buro, Christin; Dissous, Colette; Hirzmann, Jörg; Grevelding, Christoph G.

    2010-01-01

    The signal transduction protein SmTK4 from Schistosoma mansoni belongs to the family of Syk kinases. In vertebrates, Syk kinases are known to play specialized roles in signaling pathways in cells of the hematopoietic system. Although Syk kinases were identified in some invertebrates, their role in this group of animals has not yet been elucidated. Since SmTK4 is the first Syk kinase from a parasitic helminth, shown to be predominantly expressed in the testes and ovary of adult worms, we investigated its function. To unravel signaling cascades in which SmTK4 is involved, yeast two-/three-hybrid library screenings were performed with either the tandem SH2-domain, or with the linker region including the tyrosine kinase domain of SmTK4. Besides the Src kinase SmTK3 we identified a new Src kinase (SmTK6) acting upstream of SmTK4 and a MAPK-activating protein, as well as mapmodulin acting downstream. Their identities and colocalization studies pointed to a role of SmTK4 in a signaling cascade regulating the proliferation and/or differentiation of cells in the gonads of schistosomes. To confirm this decisive role we performed biochemical and molecular approaches to knock down SmTK4 combined with a novel protocol for confocal laser scanning microscopy for morphological analyses. Using the Syk kinase-specific inhibitor Piceatannol or by RNAi treatment of adult schistosomes in vitro, corresponding phenotypes were detected in the testes and ovary. In the Xenopus oocyte system it was finally confirmed that Piceatannol suppressed the activity of the catalytic kinase domain of SmTK4. Our findings demonstrate a pivotal role of SmTK4 in gametogenesis, a new function for Syk kinases in eukaryotes. PMID:20169182

  14. B Plant, TK-21-1, analytical results for the final report

    SciTech Connect

    Fritts, L.L., Westinghouse Hanford

    1996-12-09

    This document is the final laboratory report for B Plant Tk-21-1. A Resource Conservation and Recovery Act (RCRA) sample was taken from Tk-21 -1 September 26, 1996. This sample was received at 222-S Analytical Laboratory on September 27, 1996. Analyses were performed in accordance with the accompanying Request for Sample Analysis (RSA) and Letter of Instruction B PLANT RCRA SAMPLES TO 222S LABORATORY, LETTER OF INSTRUCTION (LOI) 2B-96-LOI-012-01 (LOI) (Westra, 1996). LOI was issued subsequent to RSA and replaces Letter of Instruction 2C-96-LOI-004-01 referenced in RSA.

  15. Structural analysis of herpes simplex virus by optical super-resolution imaging

    PubMed Central

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument. PMID:25609143

  16. Structural analysis of herpes simplex virus by optical super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  17. MUTAGENICITY AND CLASTOGENICITY OF ADRIAMYCIN IN L5178Y/TK+/- 3.7.2C MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    Adriamycin was a potent mutagen at the tk locus of L5178Y/TK+/- -3.7.2C mouse lymphoma cells. A dose of 5 ng/ml gave total mutant frequencies of 417/ten to the 6th power survivors (background = 110/ten to the 6th power; survival = 62%) and 350/ten to the 6th power survivors (back...

  18. CHROMOSOME 11 ABERRATIONS IN SMALL COLONY L5178Y TK-/-MUTANTS EARLY IN THEIR CLONAL HISTORY

    EPA Science Inventory

    The authors have developed a cytogenetic technique that allows observation of chromosome rearrangements associated with TK-/- mutagenesis of the L5178Y/TK+/-3.7.2C cell line early in mutant clonal history. For a series of mutagenic treatments they show that the major proportion (...

  19. PURIFICATION AND CHARACTERIZATION OF A HIGHLY THERMOSTABLE ALPHA-L-ARABINOFURANOSIDASE FROM GEOBACILLUS CALDOXYLOLYTICUS TK4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene encoding an alpha-L-arabinofuranosidase from Geobacillus caldoxylolyticus TK4, AbfATK4, was isolated, cloned, and sequenced. The deduced protein had a molecular mass of about 58 kDa, and analysis of its amino acid sequence revealed significant homology and conservation of different catalyt...

  20. Genotoxicity of microcystin-LR in human lymphoblastoid TK6 cells.

    PubMed

    Zhan, Li; Sakamoto, Hiroko; Sakuraba, Mayumi; Wu, De Sheng; Zhang, Li Shi; Suzuki, Takayoshi; Hayashi, Makoto; Honma, Masamitsu

    2004-01-10

    Toxic cyanobacteria (blue-green algae) water blooms have become a serious problem in several industrialized areas of the world. Microcystin-LR (MCLR) is a cyclic heptapeptidic toxin produced by the cyanobacteria. In the present study, we used human lymphoblastoid cell line TK6 to investigate the in vitro genotoxicity of MCLR. In a standard 4h treatment, MCLR did not induce a significant cytotoxic response at <80 microg/ml. In a prolonged 24h treatment, in contrast, it induced cytotoxic as well as mutagenic responses concentration-dependently starting at 20 microg/ml. At the maximum concentration (80 microg/ml), the micronucleus frequency and the mutation frequency at the heterozygous thymidine kinase (TK) locus were approximately five-times the control values. Molecular analysis of the TK mutants revealed that MCLR specifically induced loss of heterozygosity at the TK locus, but not point mutations or other small structural changes. These results indicate that MCLR had a clastogenic effect. We discuss the mechanisms of MCLR genotoxicity and the possibility of its being a hepatocarcinogen. PMID:14706513

  1. DIFFERENTIAL RECOVERY OF 'TK' AND 'HGPRT' INDUCED MUTANTS IN MAMMALIAN CELLS

    EPA Science Inventory

    Human genetic disease is known to result from both point mutations and chromosomal aberrations. It is therefore critical that short-term in vitro mammalian tests be evaluated as to their capabilities for detecting both types of lesions. Research to date indicates that L5178Y/TK p...

  2. Retrovirus transduction: Segregation of the viral transforming function and the Herpes Simplex virus tk gene in infectious friend spleen focus-forming virus thymidine kinase vectors

    SciTech Connect

    Joyner, A.L.; Bernstein, A.

    1983-12-01

    A series of deletions and insertions utilizing the herpesvirus thymidine kinase gene (tk) were constructed in the murine retrovirus Friend spleen focus-forming virus (SFFV). In all cases, the coding region for the SFFV-specific glycoprotein (gp55), which is implicated in erythroleukemic transformation, was left intact. These SFFV-TK and SFFV deletion vectors were analyzed for expression of tk and gp55 after DNA-mediated gene transfer. In addition, virus rescued by cotranfection of these vectors with Moloney murine leukemia virus was analyzed for infectious TK-transducing virus, gp55 expression, and erythroleukemia-inducing ability. The experiments demonstrated that deletions or insertions within the intron for the gp55 env gene can interfere with expression of gp55 after both DNA-mediated gene transfer and virus infection. In contrast, the gene transfer efficiency of the tk gene was unaffected in the SFFV-TK vectors, and high-titer infectious TK virus could be recovered. Revertant viruses capable of inducing erythroleukemia and expressing gp55 were generated after cotranfection of the SFFV-TK vectors with murine leukemia virus. The revertant viruses lost both tk sequences and the ability to transduce TK/sup -/ fibroblasts to a TK/sup +/ phenotype. These experiments demonstrate that segregation of the TK and erythroleukemia functions can occur in retrovirus vectors which initially carry both markers.

  3. Crystal structure of the TK2203 protein from Thermococcus kodakarensis, a putative extradiol dioxygenase.

    PubMed

    Nishitani, Yuichi; Simons, Jan Robert; Kanai, Tamotsu; Atomi, Haruyuki; Miki, Kunio

    2016-06-01

    The TK2203 protein from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (262 residues, 29 kDa) is a putative extradiol dioxygenase catalyzing the cleavage of C-C bonds in catechol derivatives. It contains three metal-binding residues, but has no significant sequence similarity to proteins for which structures have been determined. Here, the first crystal structure of the TK2203 protein was determined at 1.41 Å resolution to investigate its functional role. Structure analysis reveals that this protein shares the same fold and catalytic residues as other extradiol dioxygenases, strongly suggesting the same enzymatic activity. Furthermore, the important region contributing to substrate selectivity is discussed. PMID:27303894

  4. Investigation of the apoptotic way induced by digallic acid in human lymphoblastoid TK6 cells

    PubMed Central

    2012-01-01

    Background The digallic acid (DGA) purified from Pistacia lentiscus. L fruits was investigated for its antiproliferative and apoptotic activities on human lymphoblastoid TK6 cells. Methods We attempt to characterize the apoptotic pathway activated by DGA. Apoptosis was detected by DNA fragmentation, PARP cleavage and by evaluating caspase activities. Results The inhibition of lymphoblastoid cell proliferation was noted from 8.5 μg/ml of DGA. The induction of apoptosis was confirmed by DNA fragmentation and PARP cleavage. We have demonstrated that DGA induces apoptosis by activating the caspase-8 extrinsic pathway. Caspase-3 was also activated in a dose dependent manner. Conclusion In summary, DGA exhibited an apoptosis inductor effect in TK6 cells revealing thus its potential as a cancer-preventive agent. PMID:22686580

  5. TRAIL causes deletions at the HPRT and TK1 loci of clonogenically competent cells.

    PubMed

    Miles, Mark A; Shekhar, Tanmay M; Hall, Nathan E; Hawkins, Christine J

    2016-05-01

    When chemotherapy and radiotherapy are effective, they function by inducing DNA damage in cancerous cells, which respond by undergoing apoptosis. Some adverse effects can result from collateral destruction of non-cancerous cells, via the same mechanism. Therapy-related cancers, a particularly serious adverse effect of anti-cancer treatments, develop due to oncogenic mutations created in non-cancerous cells by the DNA damaging therapies used to eliminate the original cancer. Physiologically achievable concentrations of direct apoptosis inducing anti-cancer drugs that target Bcl-2 and IAP proteins possess negligible mutagenic activity, however death receptor agonists like TRAIL/Apo2L can provoke mutations in surviving cells, probably via caspase-mediated activation of the nuclease CAD. In this study we compared the types of mutations sustained in the HPRT and TK1 loci of clonogenically competent cells following treatment with TRAIL or the alkylating agent ethyl methanesulfonate (EMS). As expected, the loss-of-function mutations in the HPRT or TK1 loci triggered by exposure to EMS were almost all transitions. In contrast, only a minority of the mutations identified in TRAIL-treated clones lacking HPRT or TK1 activity were substitutions. Almost three quarters of the TRAIL-induced mutations were partial or complete deletions of the HPRT or TK1 genes, consistent with sub-lethal TRAIL treatment provoking double strand breaks, which may be mis-repaired by non-homologous end joining (NHEJ). Mis-repair of double-strand breaks following exposure to chemotherapy drugs has been implicated in the pathogenesis of therapy-related cancers. These data suggest that TRAIL too may provoke oncogenic damage to the genomes of surviving cells. PMID:26943263

  6. MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells.

    PubMed

    Healy, Luke M; Perron, Gabrielle; Won, So-Yoon; Michell-Robinson, Mackenzie A; Rezk, Ayman; Ludwin, Samuel K; Moore, Craig S; Hall, Jeffery A; Bar-Or, Amit; Antel, Jack P

    2016-04-15

    Multifocal inflammatory lesions featuring destruction of lipid-rich myelin are pathologic hallmarks of multiple sclerosis. Lesion activity is assessed by the extent and composition of myelin uptake by myeloid cells present in such lesions. In the inflamed CNS, myeloid cells are comprised of brain-resident microglia, an endogenous cell population, and monocyte-derived macrophages, which infiltrate from the systemic compartment. Using microglia isolated from the adult human brain, we demonstrate that myelin phagocytosis is dependent on the polarization state of the cells. Myelin ingestion is significantly enhanced in cells exposed to TGF-β compared with resting basal conditions and markedly reduced in classically activated polarized cells. Transcriptional analysis indicated that TGF-β-treated microglia closely resembled M0 cells. The tyrosine kinase phagocytic receptor MerTK was one of the most upregulated among a select number of differentially expressed genes in TGF-β-treated microglia. In contrast, MerTK and its known ligands, growth arrest-specific 6 and Protein S, were downregulated in classically activated cells. MerTK expression and myelin phagocytosis were higher in CNS-derived microglia than observed in monocyte-derived macrophages, both basally and under all tested polarization conditions. Specific MerTK inhibitors reduced myelin phagocytosis and the resultant anti-inflammatory biased cytokine responses for both cell types. Defining and modulating the mechanisms that regulate myelin phagocytosis has the potential to impact lesion and disease evolution in multiple sclerosis. Relevant effects would include enhancing myelin clearance, increasing anti-inflammatory molecule production by myeloid cells, and thereby permitting subsequent tissue repair. PMID:26962228

  7. Low temperature ageing of silicas Gasil-I and TK800

    NASA Astrophysics Data System (ADS)

    Collins, K. E.; Gonçalves, M. C.; Romero, R. B.; Conz, R. F.; de Camargo, V. R.; Collins, C. H.

    2008-04-01

    Gasil-I (a mesoporous silica) and TK800 (a non-porous pyrogenic silica) were investigated in the early 1970s as standard reference materials. Since then the specific surface areas of both silicas have decreased to ˜85% of their initial values, suggesting that the surface character and the ageing mechanism may be the same for both. Comparisons of the shapes of nitrogen-adsorption isotherms, confirmed by comparisons of the shape ratios for Gasil-I and TK800, indicate that Gasil-I has greater microbore character and a higher absorption at p/ p0 > 0.5 than TK800 and that the isotherm shapes have changed little since 1974. The specific volume of Gasil-I has remained nearly constant during the ageing period but the pore size distribution (PSD) has shifted markedly to higher values. Electron micrographs show that low (room) temperature gas-solid ageing results in similar enlargement at the point of contact between attached secondary particles as that which occurs in hydrothermal ageing. In the gas-solid case, this change, which accounts for the decrease in overall surface area, is attributed to the surface transport of silica material in the presence of near monolayer quantities of adsorbed water. Ageing in this manner is geometry-limited so that the rate of ageing is expected to approach zero, resulting in time-stable silicas.

  8. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia.

    PubMed

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; Deryckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  9. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia

    PubMed Central

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; DeRyckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  10. Monitoring HSV-TK/ganciclovir cancer suicide gene therapy using CdTe/CdS core/shell quantum dots.

    PubMed

    Shao, Dan; Zeng, Qinghui; Fan, Zheng; Li, Jing; Zhang, Ming; Zhang, Youlin; Li, Ou; Chen, Li; Kong, Xianggui; Zhang, Hong

    2012-06-01

    To be able to label a gene and monitor its migration are key important approaches for the clinical application of cancer suicide gene therapy. Photonic nanomaterials are introduced in this work. One of the most promised suicide genes - herpes simplex virus thymidine kinase (HSV-TK) gene - is successfully linked with CdTe/CdS core/shell quantum dots (QDs) via EDC/NHS coupling method. From confocal microscopy it was demonstrated that plasmid TK intracellular trafficking can be effectively and distinctly traced via monitoring the luminescence of the QDs up to 96 h after transfection of QDs-TK conjugates into Hela cells. MTT results show that the QDs-TK conjugates have a high efficient cytotoxicity after adding GCV into Hela cells, whereas the QDs exert no detectable deleterious effects on the cellular processes. The apoptosis induced by QDs-TK conjugates with GCV is distinctly traced partly due to the strong luminescence of the QDs. Our results indicate that photonic nanomaterials, e.g. QDs, provide a tool for monitoring TK gene delivery and anti-cancer activity. PMID:22440046

  11. Differential mutant quantitation at the mouse lymphoma tk and CHO hgprt loci.

    PubMed

    Moore, M M; Harrington-Brock, K; Doerr, C L; Dearfield, K L

    1989-09-01

    Recent reports by several laboratories indicate that not all non-essential target loci are equally capable of detecting chromosomal mutations. The present study was undertaken to determine if both the tk locus in mouse lymphoma cells and the hgprt locus in Chinese hamster ovary (CHO) cells can be used to quantitate chromosomal mutations. Seven known mutagens for the tk locus were selected. These compounds were evaluated in the mouse lymphoma assay and in a suspension adapted CHO assay for their mutagenicity. In addition to the specific locus mutagenesis analysis, mouse lymphoma and CHO cells were evaluated for the frequency of gross chromosome aberrations. From these investigations, it appears that only those compounds [2-methoxy-6-chloro-9-(3-[ethyl-2-chloroethyl] aminopropylamino)-acridine-dihydrochloride (ICR 170), ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS)] that induce significant numbers of large-colony thymidine kinase (TK) mutants also induce significant numbers of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) mutants. The four acrylates evaluated (methyl acrylate, ethyl acrylate, trimethylolpropane triacrylate and tetraethyleneglycol diacrylate) induced almost exclusively small-colony TK mutants and very few if any HGPRT mutants. Aberration analysis revealed that both the mouse lymphoma and CHO cells responded to the clastogenicity of the compounds (except for ICR 170 which was not positive in CHO cells) and that neither cell line was clearly more sensitive than the other to the clastogens tested. It is significant that the four acrylates give little or no evidence of genotoxicity when evaluated using selection for HGPRT-deficient mutants, yet are clearly clastogenic to the same cells in the same experiment. These results are consistent with the hypothesis that the hgprt locus may not be useful as a marker to evaluate the clastogenic component of a genotoxic compound. The present study adds to the increasing number of studies

  12. tkLayout: a design tool for innovative silicon tracking detectors

    NASA Astrophysics Data System (ADS)

    Bianchi, G.

    2014-03-01

    A new CMS tracker is scheduled to become operational for the LHC Phase 2 upgrade in the early 2020's. tkLayout is a software package developed to create 3d models for the design of the CMS tracker and to evaluate its fundamental performance figures. The new tracker will have to cope with much higher luminosity conditions, resulting in increased track density, harsher radiation exposure and, especially, much higher data acquisition bandwidth, such that equipping the tracker with triggering capabilities is envisaged. The design of an innovative detector involves deciding on an architecture offering the best trade-off among many figures of merit, such as tracking resolution, power dissipation, bandwidth, cost and so on. Quantitatively evaluating these figures of merit as early as possible in the design phase is of capital importance and it is best done with the aid of software models. tkLayout is a flexible modeling tool: new performance estimates and support for different detector geometries can be quickly added, thanks to its modular structure. Besides, the software executes very quickly (about two minutes), so that many possible architectural variations can be rapidly modeled and compared, to help in the choice of a viable detector layout and then to optimize it. A tracker geometry is generated from simple configuration files, defining the module types, layout and materials. Support structures are automatically added and services routed to provide a realistic tracker description. The tracker geometries thus generated can be exported to the standard CMS simulation framework (CMSSW) for full Monte Carlo studies. tkLayout has proven essential in giving guidance to CMS in studying different detector layouts and exploring the feasibility of innovative solutions for tracking detectors, in terms of design, performance and projected costs. This tool has been one of the keys to making important design decisions for over five years now and has also enabled project engineers

  13. Analysis of cellular response by exposure to acute or chronic radiation in human lymphoblastoid TK-6 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Yasumoto, J.; Takahashi, A.; Ohnishi, K.

    To clarify the biological effects of low-dose rate radiation on human health for long-term stay in space, we analyzed the induction of apoptosis and apoptosis-related gene expression after irradiation with different dose-rate in human lymphoblastoid TK-6 cells harboring wild-type p53 gene. We irradiated TK-6 cells by X-ray at 1.5 Gy (1 Gy/min) and then sampled at 25 hr after culturing. We also irradiated by gamma-ray at 1.5 Gy (1 mGy/min) and then sampled immediately or 25 hr after irradiation. For DNA ladder analysis, we extracted DNA from these samples and electrophoresed with 2% agarose gel. In addition, we extracted mRNA from these samples for DNA-array analysis. mRNA from non-irradiated cells was used as a control. After labeling the cDNA against mRNA with [α -33P]-dCTP and hybridizing onto DNA array (Human Apoptosis Expression Array, R&D Systems), we scanned the profiles of the spots by a phosphorimager (BAS5000, FUJI FILM) and calculated using a NIH Image program. The data of each DNA-array were normalized with eight kinds of house keeping genes. We analyzed the expression level of apoptosis-related genes such as p53-related, Bcl-2 family, Caspase family and Fas-related genes. DNA ladders were obviously detected in the cells exposed to a high dose-rate radiation. We detected the induction of the gene expression of apoptosis-promotive genes. In contrast, almost no apoptosis was observed in the cells exposed to the chronic radiation at a low dose-rate. In addition, we detected the induction of the gene expression of apoptosis-suppressive genes as compared with apoptosis promotive-genes immediately after chronic irradiation. These results lead the importance of biological meaning of exposure to radiation at low dose-rate from an aspect of carcinogenesis. Finally, the effects of chronic irradiation become a highly important issue in space radiation biology for human health.

  14. Development and analysis of a transformation-defective mutant of Harvey murine sarcoma tk virus and its gene product.

    PubMed Central

    Weeks, M O; Hager, G L; Lowe, R; Scolnick, E M

    1985-01-01

    The Harvey murine sarcoma virus has been cloned and induces focus formation on NIH 3T3 cells. Recombinants of this virus have been constructed which include the thymidine kinase gene of herpes simplex virus type 1 in a downstream linkage with the p21 ras gene of Harvey murine sarcoma virus. Harvey murine sarcoma tk virus rescued from cells transfected with this construct is both thymidine kinase positive and focus inducing in in vitro transmission studies. The hypoxanthine-aminopterin-thymidine selectability of the thymidine kinase gene carried by this virus has been exploited to develop three mutants defective in the p21 ras sequence. All three are focus negative and thymidine kinase positive when transmitted to suitable cells. Of these, only one encodes a p22 that is immunologically related to p21. This mutant has been used to explore the relationship between the known characteristics of p21 and cellular transformation. Data presented herein indicate that the p21 of Harvey murine sarcoma virus consists of at least two domains, one which specifies the guanine nucleotide-binding activity of p21 and the other which is involved in p21-membrane association in transformed cells. Images PMID:2985821

  15. Responses of the L5178Y tk/sup +//tk/sup -/ mouse lymphoma cell forward mutation assay. II. 18 coded chemicals

    SciTech Connect

    McGregor, D.B.; Brown, A.; Cattanach, P.; Edwards, I.; McBride, D.; Caspary, W.J.

    1988-01-01

    Eighteen chemicals were tested for their mutagenic potential in the L5178Y tk/sup +///sup -/ mouse lymphoma cell forward mutation assay by the use of procedures based upon those described previously. Cultures were exposed to the chemicals for 4 hr, then cultured for 2 days before plating in soft agar with or without trifluorothymidine (TFT), 3 ..mu..g/ml. The chemicals were tested at least twice. Significant responses were obtained with benzofuran, benzyl chloride, bromodichloromethane, butylated hydroxytoluene, chlorendic acid, o-chlorobenzalmalonitrile, 1,2,3,4-diepoxybutane, dimethyl formamide, dimethyl hydrogen phosphite, furfural, glutaraldehyde, hydroquinone, 8-hydroxyquinoline, and resorcinol. Apart from bromodichloromethane, butylated hydroxytoluene and dimethyl hydrogen phosphite, rat liver S9 mix was not a requirement for the activity of any of these compounds. Chemicals not identified as mutagens were water, tert-butyl alcohol, pyridine, and witch hazel.

  16. Identification of the herpes simplex virus DNA sequences present in six herpes simplex virus thymidine kinase-transformed mouse cell lines.

    PubMed Central

    Leiden, J M; Frenkel, N; Rapp, F

    1980-01-01

    We have used a novel filter hybridization approach to detect and map the herpes simplex virus (HSV) DNA sequences which are present in four HSV thymidine kinase (HSVtk+)-transformed cell lines which were derived by exposure of thymidine kinase negative (tk-) mouse cells to UV light-irradiated HSV type 2 (HSV-2). In addition, we have mapped the HSV-1 DNA sequences which are present in two HSV-1tk+-transformed cell lines produced by transfection of tk- mouse cells with sheared HSV-1 DNA. The results of these studies can be summarized as follows. (i) The only HSV DNA sequences which were common to all HSVtk+-transformed cells were those located between map coordinates 0.28 and 0.32. Thus, this region contains all of the viral DNA sequences which are necessary for the expression of HSV-mediated tk transformation. (ii) Many of the cell lines also contained variable amounts of non-tk gene viral DNA sequences located between map coordinates 0.11 to 0.57 and 0.82 to 1.00, suggesting that incorporation of the viral DNA sequences located between these map coordinates is a relatively random event. (iii) The viral DNA sequences located between map coordinates 0 to 0.11 and 0.57 to 0.82 were uniformly absent from all of the HSVtk+ cell lines tested, suggesting that there is a strong negative selective pressure against incorporation of these viral DNA sequences. Images PMID:6245232

  17. Crystal structure of a subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis: requirement of a C-terminal beta-jelly roll domain for hyperstability.

    PubMed

    Foophow, Tita; Tanaka, Shun-ichi; Angkawidjaja, Clement; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2010-07-23

    Tk-SP is a hyperthermostable subtilisin-like serine protease from Thermococcus kodakaraensis and is autoprocessed from its precursor (Pro-Tk-SP) with N- and C-propeptides. The crystal structure of the active-site mutant of Pro-Tk-SP lacking C-propeptide, ProN-Tk-S359A, was determined at 2.0 A resolution. ProN-Tk-S359A consists of the N-propeptide, subtilisin, and beta-jelly roll domains. Two Ca(2+) ions bind to the beta-jelly roll domain. The overall structure of ProN-Tk-S359A without the beta-jelly roll domain is similar to that of the bacterial propeptide:subtilisin complex, except that it does not contain Ca(2+) ions. To analyze the role of the beta-jelly roll domain of Tk-SP, we constructed a series of the active-site mutants of Tk-SP with (Tk-S359A/C) and without (Tk-S359A/CDeltaJ) beta-jelly roll domain. Both Tk-S359C and Tk-S359CDeltaJ exhibited protease activities in gel assay, indicating that the beta-jelly roll domain is not required for folding or activity. However, the T(m) value of Tk-S359ADeltaJ determined by far-UV CD spectroscopy in the presence of 10-mM CaCl(2) was lower than that of Tk-S359A by 29.4 degrees C. The T(m) value of Tk-S359A was decreased by 29.5 degrees C by the treatment with 10 mM ethylenediaminetetraacetic acid, indicating that the beta-jelly roll domain contributes to the stabilization of Tk-S359A only in a Ca(2+)-bound form. Tk-SP highly resembles subtilisin-like serine proteases from Pyrococcus furiosus, Thermococcus gammatolerans, and Thermococcus onnurineus in size and amino acid sequence. We propose that attachment of a beta-jelly roll domain to the C-terminus is one of the strategies of the proteins from hyperthermophiles to adapt to high-temperature environment. PMID:20595040

  18. TK gene combined with mIL-2 and mGM-CSF genes in treatment of gastric cancer

    PubMed Central

    Guo, Shan-Yu; Gu, Qin-Long; Zhu, Zheng-Gang; Hong, He-Qun; Lin, Yan-Zhen

    2003-01-01

    AIM: Cancer gene therapy has received more and more attentions in the recent decade. Various systems of gene therapy for cancer have been developed. One of the most promising choices is the suicide gene. The product of thymidine kinase (TK) gene can convert ganciclovir (GCV) to phosphorylated GCV, which inhibits the synthesis of cell DNA, and then induces the cells to death. Cytokines play an important role in anti-tumor immunity. This experiment was designed to combine the TK gene and mIL-2/mGM-CSF genes to treat gastric cancer, and was expected to produce a marked anti-tumor effect. METHODS: TK gene was constructed into the retroviral vector pLxSN, and the mIL-2 and mGM-CSF genes were inserted into the eukaryotic expressing vector pIRES. The gastric cancer cells were transfected by retroviral serum that was harvested from the package cells. In vitro study, the transfected gastric cancer cells were maintained in the GCV- contained medium, to assay the cell killing effect and bystander effect. In vivo experiment, retroviral serum and cytokines plasmid were transfected into tumor-bearing mice, to observe the changes of tumor volumes and survival of the mice. RESULTS: In vitro experiment, 20% TK gene transduced cells could cause 70%-80% of total cells to death. In vivo results showed that there was no treatment effect in control group and TK/GCV could inhibit the tumor growth. The strongest anti-tumor effect was shown in TK+mIL-2+mGM-CSF group. The pathologic examination showed necrosis of the cancer in the treated groups. CONCLUSION: TK/GCV can kill tumor cells and inhibit the tumor growth in vivo. IL-2 and GM-CSF strongly enhance the anti-tumor effect. Through the retrovirus and liposome methods, the suicide gene and cytokine genes are all expressed in the tissues. PMID:12532437

  19. Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3

    NASA Astrophysics Data System (ADS)

    Fratini, G.; Mauder, M.

    2014-07-01

    A comparison of two popular eddy-covariance software packages is presented, namely, EddyPro and TK3. Two approximately 1-month long test data sets were processed, representing typical instrumental setups (i.e., CSAT3/LI-7500 above grassland and Solent R3/LI-6262 above a forest). The resulting fluxes and quality flags were compared. Achieving a satisfying agreement and understanding residual discrepancies required several iterations and interventions of different nature, spanning from simple software reconfiguration to actual code manipulations. In this paper, we document our comparison exercise and show that the two software packages can provide utterly satisfying agreement when properly configured. Our main aim, however, is to stress the complexity of performing a rigorous comparison of eddy-covariance software. We show that discriminating actual discrepancies in the results from inconsistencies in the software configuration requires deep knowledge of both software packages and of the eddy-covariance method. In some instances, it may be even beyond the possibility of the investigator who does not have access to and full knowledge of the source code. Being the developers of EddyPro and TK3, we could discuss the comparison at all levels of details and this proved necessary to achieve a full understanding. As a result, we suggest that researchers are more likely to get comparable results when using EddyPro (v5.1.1) and TK3 (v3.11) - at least with the setting presented in this paper - than they are when using any other pair of EC software which did not undergo a similar cross-validation. As a further consequence, we also suggest that, to the aim of assuring consistency and comparability of centralized flux databases, and for a confident use of eddy fluxes in synthesis studies on the regional, continental and global scale, researchers only rely on software that have been extensively validated in documented intercomparisons.

  20. Improving the safety of cell therapy with the TK-suicide gene.

    PubMed

    Greco, Raffaella; Oliveira, Giacomo; Stanghellini, Maria Teresa Lupo; Vago, Luca; Bondanza, Attilio; Peccatori, Jacopo; Cieri, Nicoletta; Marktel, Sarah; Mastaglio, Sara; Bordignon, Claudio; Bonini, Chiara; Ciceri, Fabio

    2015-01-01

    While opening new frontiers for the cure of malignant and non-malignant diseases, the increasing use of cell therapy poses also several new challenges related to the safety of a living drug. The most effective and consolidated cell therapy approach is allogeneic hematopoietic stem cell transplantation (HSCT), the only cure for several patients with high-risk hematological malignancies. The potential of allogeneic HSCT is strictly dependent on the donor immune system, particularly on alloreactive T lymphocytes, that promote the beneficial graft-versus-tumor effect (GvT), but may also trigger the detrimental graft-versus-host-disease (GvHD). Gene transfer technologies allow to manipulate donor T-cells to enforce GvT and foster immune reconstitution, while avoiding or controlling GvHD. The suicide gene approach is based on the transfer of a suicide gene into donor lymphocytes, for a safe infusion of a wide T-cell repertoire, that might be selectively controlled in vivo in case of GvHD. The herpes simplex virus thymidine kinase (HSV-TK) is the suicide gene most extensively tested in humans. Expression of HSV-TK in donor lymphocytes confers lethal sensitivity to the anti-herpes drug, ganciclovir. Progressive improvements in suicide genes, vector technology and transduction protocols have allowed to overcome the toxicity of GvHD while preserving the antitumor efficacy of allogeneic HSCT. Several phase I-II clinical trials in the last 20 years document the safety and the efficacy of HSV-TK approach, able to maintain its clear value over the last decades, in the rapidly progressing horizon of cancer cellular therapy. PMID:25999859

  1. Improving the safety of cell therapy with the TK-suicide gene

    PubMed Central

    Greco, Raffaella; Oliveira, Giacomo; Stanghellini, Maria Teresa Lupo; Vago, Luca; Bondanza, Attilio; Peccatori, Jacopo; Cieri, Nicoletta; Marktel, Sarah; Mastaglio, Sara; Bordignon, Claudio; Bonini, Chiara; Ciceri, Fabio

    2015-01-01

    While opening new frontiers for the cure of malignant and non-malignant diseases, the increasing use of cell therapy poses also several new challenges related to the safety of a living drug. The most effective and consolidated cell therapy approach is allogeneic hematopoietic stem cell transplantation (HSCT), the only cure for several patients with high-risk hematological malignancies. The potential of allogeneic HSCT is strictly dependent on the donor immune system, particularly on alloreactive T lymphocytes, that promote the beneficial graft-versus-tumor effect (GvT), but may also trigger the detrimental graft-versus-host-disease (GvHD). Gene transfer technologies allow to manipulate donor T-cells to enforce GvT and foster immune reconstitution, while avoiding or controlling GvHD. The suicide gene approach is based on the transfer of a suicide gene into donor lymphocytes, for a safe infusion of a wide T-cell repertoire, that might be selectively controlled in vivo in case of GvHD. The herpes simplex virus thymidine kinase (HSV-TK) is the suicide gene most extensively tested in humans. Expression of HSV-TK in donor lymphocytes confers lethal sensitivity to the anti-herpes drug, ganciclovir. Progressive improvements in suicide genes, vector technology and transduction protocols have allowed to overcome the toxicity of GvHD while preserving the antitumor efficacy of allogeneic HSCT. Several phase I-II clinical trials in the last 20 years document the safety and the efficacy of HSV-TK approach, able to maintain its clear value over the last decades, in the rapidly progressing horizon of cancer cellular therapy. PMID:25999859

  2. A Zinc-Dependent Protease AMZ-tk from a Thermophilic Archaeon is a New Member of the Archaemetzincin Protein Family.

    PubMed

    Jia, Baolei; Li, Zhengqun; Liu, Jinliang; Sun, Ying; Jia, Xiaomeng; Xuan, Yuan Hu; Zhang, Jiayan; Jeon, Che Ok

    2015-01-01

    A putative zinc-dependent protease (TK0512) in Thermococcus kodakarensis KOD1 shares a conserved motif with archaemetzincins, which are metalloproteases found in archaea, bacteria, and eukarya. Phylogenetic and sequence analyses showed that TK0512 and its homologues in Thermococcaceae represent new members in the archaemetzincins family, which we named AMZ-tk. We further confirmed its proteolytic activity biochemically by overexpression of the recombinant AMZ-tk in Escherichia coli and characterization of the purified enzyme. In the presence of zinc, the purified enzyme degraded casein, while adding EDTA strongly inhibited the enzyme activity. AMZ-tk also exhibited self-cleavage activity that required Zn(2+). These results demonstrated that AMZ-tk is a zinc-dependent protease within the archaemetzincin family. The enzyme displayed activity at alkaline pHs ranging from 7.0 to 10.0, with the optimal pH being 8.0. The optimum temperature for the catalytic activity of AMZ-tk was 55°C. Quantitative reverse transcription-PCR revealed that transcription of AMZ-tk was also up-regulated after exposing the cells to 55 and 65°C. Mutant analysis suggested that Zn(2+) binding histidine and catalytic glutamate play key roles in proteolysis. AMZ-tk was thermostable on incubation for 4 h at 70°C in the presence of EDTA. AMZ-tk also retained >50% of its original activity in the presence of both laboratory surfactants and commercial laundry detergents. AMZ-tk further showed antibacterial activity against several bacteria. Therefore, AMZ-tk is of considerable interest for many purposes in view of its activity at alkaline pH, detergents, and thermostability. PMID:26733945

  3. A Zinc-Dependent Protease AMZ-tk from a Thermophilic Archaeon is a New Member of the Archaemetzincin Protein Family

    PubMed Central

    Jia, Baolei; Li, Zhengqun; Liu, Jinliang; Sun, Ying; Jia, Xiaomeng; Xuan, Yuan Hu; Zhang, Jiayan; Jeon, Che Ok

    2015-01-01

    A putative zinc-dependent protease (TK0512) in Thermococcus kodakarensis KOD1 shares a conserved motif with archaemetzincins, which are metalloproteases found in archaea, bacteria, and eukarya. Phylogenetic and sequence analyses showed that TK0512 and its homologues in Thermococcaceae represent new members in the archaemetzincins family, which we named AMZ-tk. We further confirmed its proteolytic activity biochemically by overexpression of the recombinant AMZ-tk in Escherichia coli and characterization of the purified enzyme. In the presence of zinc, the purified enzyme degraded casein, while adding EDTA strongly inhibited the enzyme activity. AMZ-tk also exhibited self-cleavage activity that required Zn2+. These results demonstrated that AMZ-tk is a zinc-dependent protease within the archaemetzincin family. The enzyme displayed activity at alkaline pHs ranging from 7.0 to 10.0, with the optimal pH being 8.0. The optimum temperature for the catalytic activity of AMZ-tk was 55°C. Quantitative reverse transcription-PCR revealed that transcription of AMZ-tk was also up-regulated after exposing the cells to 55 and 65°C. Mutant analysis suggested that Zn2+ binding histidine and catalytic glutamate play key roles in proteolysis. AMZ-tk was thermostable on incubation for 4 h at 70°C in the presence of EDTA. AMZ-tk also retained >50% of its original activity in the presence of both laboratory surfactants and commercial laundry detergents. AMZ-tk further showed antibacterial activity against several bacteria. Therefore, AMZ-tk is of considerable interest for many purposes in view of its activity at alkaline pH, detergents, and thermostability. PMID:26733945

  4. B Plant canyon sample TK-21-1 analytical results for the final report

    SciTech Connect

    Steen, F.H.

    1998-04-10

    This document is the analytical laboratory report for the TK-21-1 sample collected from the B Plant Canyon on February 18, 1998. The sample was analyzed in accordance with the Sampling and Analysis Plan for B Plant Solutions (SAP) (Simmons, 1997) in support of the B Plant decommissioning project. Samples were analyzed to provide data both to describe the material which would remain in the tanks after the B Plant transition is complete and to determine Tank Farm compatibility. The analytical results are included in the data summary table (Table 1).

  5. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-05-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the ACV-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  6. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-09-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  7. Effect of caffeine on radiation-induced apoptosis in TK6 cells

    SciTech Connect

    Zhen, W.; Vaughan, A.T.M.

    1995-02-01

    Apoptosis has been measured in cells of the human TK6 lymphoblastoid cell line by recording the release of endonuclease-digested DNA from affected cells using flow cytometry. In asynchronously dividing cells, DNA degradation characteristic of apoptosis was first seen 12 h after irradiation as a defined DNA fluorescent peak of sub-G{sub 1}-phase content, reaching a maximum of 30-50% of the population by 24-72 h. Treating cells with 2 mM caffeine either before or up to 3 h after irradiation eliminated the degradation of DNA entirely. In addition, the percentage of cells in which apoptosis could be detected microscopically decreased from 62.4 {+-} 0.95% to 16.7 {+-} 1.5% 72 h after caffeine treatment. Delaying caffeine treatment for 12 h after irradiation reduced DNA degradation by approximately 50% compared to cells receiving radiation alone. DNA degradation induced by serum deprivation was unaffected by caffeine treatment. These data support the contention that irradiation of TK6 cells produces a long-lived cellular signal which triggers apoptosis. Apoptosis produced by serum deprivation does not operate through the same pathway. 36 refs., 5 figs.

  8. Regulation of ppk Expression and In Vivo Function of Ppk in Streptomyces lividans TK24

    PubMed Central

    Ghorbel, Sofiane; Smirnov, Aleksey; Chouayekh, Hichem; Sperandio, Brice; Esnault, Catherine; Kormanec, Jan; Virolle, Marie-Joelle

    2006-01-01

    The ppk gene of Streptomyces lividans encodes an enzyme catalyzing, in vitro, the reversible polymerization of the γ phosphate of ATP into polyphosphate and was previously shown to play a negative role in the control of antibiotic biosynthesis (H. Chouayekh and M. J. Virolle, Mol. Microbiol. 43:919-930, 2002). In the present work, some regulatory features of the expression of ppk were established and the polyphosphate content of S. lividans TK24 and the ppk mutant was determined. In Pi sufficiency, the expression of ppk was shown to be low but detectable. DNA gel shift experiments suggested that ppk expression might be controlled by a repressor using ATP as a corepressor. Under these conditions, short acid-soluble polyphosphates accumulated upon entry into the stationary phase in the wild-type strain but not in the ppk mutant strain. The expression of ppk under Pi-limiting conditions was shown to be much higher than that under Pi-sufficient conditions and was under positive control of the two-component system PhoR/PhoP. Under these conditions, the polyphosphate content of the cell was low and polyphosphates were reproducibly found to be longer and more abundant in the ppk mutant strain than in the wild-type strain, suggesting that Ppk might act as a nucleoside diphosphate kinase. In light of our results, a novel view of the role of this enzyme in the regulation of antibiotic biosynthesis in S. lividans TK24 is proposed. PMID:16923894

  9. Oncolytic Adenoviruses Armed with Thymidine Kinase Can Be Traced by PET Imaging and Show Potent Antitumoural Effects by Ganciclovir Dosing

    PubMed Central

    Abate-Daga, Daniel; Andreu, Nuria; Camacho-Sánchez, Juan; Alemany, Ramon; Herance, Raúl; Millán, Olga; Fillat, Cristina

    2011-01-01

    Replication-competent adenoviruses armed with thymidine kinase (TK) combine the concepts of virotherapy and suicide gene therapy. Moreover TK-activity can be detected by noninvasive positron emission-computed tomography (PET) imaging, what could potentially facilitate virus monitoring in vivo. Here, we report the generation of a novel oncolytic adenovirus that incorporates the Tat8-TK gene under the control of the Major Late Promoter in a highly selective backbone thus providing selectivity by targeting the retinoblastoma pathway. The selective oncolytic TK virus, termed ICOVIR5-TK-L, showed reduced potency compared to a non-selective counterpart. However the combination of ICOVIR5-TK-L with ganciclovir (GCV) induced a potent antitumoural effect similar to that of wild type adenovirus in a preclinical model of pancreatic cancer. Although the treatment with GCV provoked a reduction in the viral yield, both in vitro and in vivo, a two-cycle treatment of virus and GCV resulted in an enhanced antitumoral response that correlated with high TK-activity, based on microPET measurements. Thus, TK-expressing oncolytic adenoviruses can be traced by PET imaging providing real time information on the activity of the virus and its antitumoral potency can be optimized by GCV dosing. PMID:22028820

  10. Responses of the L51781Y tk/sup +//tk/sup -/ mouse lymphoma cell forward mutation assay: III. 72 coded chemicals

    SciTech Connect

    McGregor, D.B.; Brown, A.; Cattanach, P.; Edwards, I.; McBride, D.; Riach, C.; Caspary, W.J.

    1988-01-01

    Seventy-two chemicals were tested for their mutagenic potential in the L51781Y tk/sup +///sup -/ mouse lymphoma cell forward mutation assay, using procedures based upon those described previously. Cultures were exposed to the chemicals for 4 hr, then cultured for 2 days before planting in soft agar with or without trifluorothymidine (TFT), 3 ..mu..g/ml. The chemicals were tested at least twice. Significant responses were obtained with allyl isothiocyanate, p-benzoquinone dioxime, benzyl acetate, 2-biphenylamine HCl, bis(2-chloro-1-methylethyl)ether, cadmium chloride, chlordane, chlorobenzene, chlorobenzilate, 2-chloroethanol, chlorothalonil, cytarabine x HCl, p,p'-DDE, diazinon, 2,6-dichloro-p-phenylenediamine, N,N-diethylthiourea, diglycidylresorcinol ether, 2,4-dimethoxy aniline x HCl, disperse yellow 3, endosulfan, 1,2-epoxyhexadecane, ethyl acrylate, ethyl benzene, ethylene thiourea, F D and C yellow Number 6, furan, heptachlor, isophorone, mercuric chloride, 4,4'-methylenedianiline x 2 HCl, methyl viologen, nickel sulfate x 6H/sub 2/O, 4,4'-oxydianiline, pentachloroethane, piperonyl butoxide, propyl gallate, quinoline, rotenone, 2,4,5,6-tetrachloro-4-nitro-anisole, 1,1,1,2-tetrachloroethane, trichlorfon, 2,4,6-trichlorophenol, 2,4,5-trimethoxybenzaldehyde, 1,1,3-trimethyl-2-thiourea, 1-vinyl-3-cyclopetene dioxide, vinyl toluene, and ziram. The assay was incapable of providing a clear indication of whether some chemicals were mutagens; these benzyl alcohol, 1,4-dichlorobenzene, phenol, succinic acid-2,2-dimethyl hydrazide, and toluene.

  11. Development of a novel mouse tk{sup +/-} embryonic stem cell line for use in mutagenicity studies

    SciTech Connect

    Dobrovolsky, V.N.; Casciano, D.A.; Heflich, R.H.

    1996-12-31

    A tk{sup +/-} mouse embryonic stem (ES) cell line, designated 1G2, has been created in which one allele of the thymidine kinase (tk) gene was inactivated by targeted homologous recombination. This line is an analog of the mouse lymphoma tk{sup +/-} L5178Y cell line, which is used widely to assess the mutagenicity of chemical agents. Treatment of 1G2 cells with the alkylating agent N-ethyl-N-nitrosourea (ENU) resulted in a dose-related increase in tribluorothymidine-resistant colonies. Mutant frequencies of 152 and 296 per 10{sup 6} cells were determined for 0.1 and 0.3 mg/ml doses of ENU, compared with a spontaneous mutant frequency of 15 per 10{sup 6} cells. The data indicate that tk{sup +/-} 1G2 ES cells may be useful for the creation of a transgenic mouse model for assessing in vivo mutation using an endogenous autosomal gene. 45 refs., 2 figs., 1 tab.

  12. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m

    SciTech Connect

    Kanagawa, T.; Mikami, E.

    1989-03-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  13. A predictive toxicogenomics signature to classify genotoxic versus non-genotoxic chemicals in human TK6 cells

    PubMed Central

    Williams, Andrew; Buick, Julie K.; Moffat, Ivy; Swartz, Carol D.; Recio, Leslie; Hyduke, Daniel R.; Li, Heng-Hong; Fornace, Albert J.; Aubrecht, Jiri; Yauk, Carole L.

    2015-01-01

    Genotoxicity testing is a critical component of chemical assessment. The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the DNA damage response pathways involved in response, is becoming more common. In companion papers previously published in Environmental and Molecular Mutagenesis, Li et al. (2015) [6] developed a dose optimization protocol that was based on evaluating expression changes in several well-characterized stress-response genes using quantitative real-time PCR in human lymphoblastoid TK6 cells in culture. This optimization approach was applied to the analysis of TK6 cells exposed to one of 14 genotoxic or 14 non-genotoxic agents, with sampling 4 h post-exposure. Microarray-based transcriptomic analyses were then used to develop a classifier for genotoxicity using the nearest shrunken centroids method. A panel of 65 genes was identified that could accurately classify toxicants as genotoxic or non-genotoxic. In Buick et al. (2015) [1], the utility of the biomarker for chemicals that require metabolic activation was evaluated. In this study, TK6 cells were exposed to increasing doses of four chemicals (two genotoxic that require metabolic activation and two non-genotoxic chemicals) in the presence of rat liver S9 to demonstrate that S9 does not impair the ability to classify genotoxicity using this genomic biomarker in TK6cells. PMID:26425668

  14. Auditing the TK and TPACK Confidence of Pre-Service Teachers: Are They Ready for the Profession?

    ERIC Educational Resources Information Center

    Jamieson-Proctor, Romina; Finger, Glenn; Albion, Peter

    2010-01-01

    Teacher education graduates need appropriate levels of confidence and capabilities in relation to technological knowledge (TK) as a basis for having technological pedagogical content knowledge (TPACK) to meet the challenges of learning and teaching in the 21st century. However, it should not be assumed that tomorrow's teachers enter the profession…

  15. Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis.

    PubMed

    Maruyama, Hugo; Shin, Minsang; Oda, Toshiyuki; Matsumi, Rie; Ohniwa, Ryosuke L; Itoh, Takehiko; Shirahige, Katsuhiko; Imanaka, Tadayuki; Atomi, Haruyuki; Yoshimura, Shige H; Takeyasu, Kunio

    2011-02-01

    Being distinct from bacteria and eukaryotes, Archaea constitute a third domain of living things. The DNA replication, transcription, and translation machineries of Archaea are more similar to those of eukaryotes, whereas the genes involved in metabolic processes show more similarity to their bacterial counterparts. We report here that TK0471/TrmB-like 2 (TrmBL2), in addition to histone, is a novel type of abundant chromosomal protein in the model euryarchaeon Thermococcus kodakarensis . The chromosome of T. kodakarensis can be separated into regions enriched either with histone, in which the genetic material takes on a “beads-on-a-string” appearance, or with TK0471/TrmBL2, in which it assumes a thick fibrous structure. TK0471/TrmBL2 binds to both coding and intergenic regions and represses transcription when bound to the promoter region. These results show that the archaeal chromosome is organized into heterogeneous structures and that TK0471/TrmBL2 acts as a general chromosomal protein as well as a global transcriptional repressor. PMID:21148291

  16. Sequence, Structure, and Binding Analysis of Cyclodextrinase (TK1770) from T. kodakarensis (KOD1) Using an In Silico Approach

    PubMed Central

    Ali, Ramzan; Shafiq, Muhammad Imtiaz

    2015-01-01

    Thermostable cyclodextrinase (Tk1770 CDase) from hyperthermophilic archaeon Thermococcus kodakarensis (KOD1) hydrolyzes cyclodextrins into linear dextrins. The sequence of Tk1770 CDase retrieved from UniProt was aligned with sequences of sixteen CD hydrolyzing enzymes and a phylogenetic tree was constructed using Bayesian inference. The homology model of Tk1770 CDase was constructed and optimized with Modeller v9.14 program. The model was validated with ProSA server and PROCHECK analysis. Four conserved regions and the catalytic triad consisting of Asp411, Glu437, and Asp502 of GH13 family were identified in catalytic site. Also an additional fifth conserved region downstream to the fourth region was also identified. The structure of Tk1770 CDase consists of an additional N′-domain and a helix-loop-helix motif that is conserved in all archaeal CD hydrolyzing enzymes. The N′-domain contains an extended loop region that forms a part of catalytic domain and plays an important role in stability and substrate binding. The docking of substrate into catalytic site revealed the interactions with different conserved residues involved in substrate binding and formation of enzyme-substrate complex. PMID:26819569

  17. ANALYSIS OF TRIFLUOROTHYMIDINE-RESISTANT (TFT(SUP R)) MUTANTS OF L5178Y/TK(SUP +/-) MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    Three classes of TFTr variants of L5178Y/TK+/- -3.72C mouse lymphoma cells can be identified - large colony (lambda), small colony (sigma),and tiny colony (tau). The sigma and lambda mutants are detectable in the routine mutagenesis assay using soft agar cloning. The tau mutants ...

  18. Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay.

    PubMed

    Cheung, Jennifer R; Dickinson, Donna A; Moss, Jocelyn; Schuler, Maik J; Spellman, Richard A; Heard, Pamela L

    2015-01-01

    The in vitro micronucleus assay with TK6 cells is frequently used as part of the genotoxicity testing battery for pharmaceuticals. Consequently, follow-up testing strategies are needed for positive compounds to determine their mode of action, which would then allow for deployment of appropriate in vivo follow-up strategies. We have chosen 3 micronucleus positive compounds, the clastogen etoposide, the aneugen noscapine and the cytotoxicant tunicamycin to evaluate different approaches to determine their aneugenic or clastogenic properties. Each of the three compounds were evaluated following 4 and 24h of continuous treatment by flow cytometry for micronucleus induction, the aneugenicity markers phosphorylated-histone 3 (p-H3) and polyploidy, the clastogenicity marker γH2AX and the apoptosis marker cleaved caspase 3. They were further evaluated by Western blot for mono-ubiquitinated and γH2AX. Results show that the clastogen etoposide produced a dose related increase in γH2AX and mono-ubiquitinated H2AX and a dose related decrease in p-H3 positive mitotic cells. Conversely, the aneugen produced increases in p-H3 and polyploidy with no significant increases seen in mono-ubiquitinated H2AX or γH2AX. Lastly, the cytotoxicant tunicamycin induced neither an increase in p-H3 nor γH2AX. All three compounds produced dose-related increases in cleaved caspase 3. The results from this study provide evidence that adding clastogenicity and aneugenicity markers to the in vitro micronucleus assay in TK6 cells could help to identify the mode of action of positive compounds. The combination of endpoints suggested here needs to be further evaluated by a broader set of test compounds. PMID:25726170

  19. Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3

    NASA Astrophysics Data System (ADS)

    Fratini, G.; Mauder, M.

    2014-03-01

    A comparison of two popular eddy-covariance (EC) software packages is presented, namely EddyPro and TK3. Two about one-month long test datasets were processed, representing typical instrumental setups, i.e. CSAT3/LI-7500 above grassland and Solent R3/LI-6262 above a forest. The resulting fluxes and quality flags were compared. Achieving a satisfying agreement and understanding residual discrepancies required several iterations and interventions of different nature, spanning from simple software reconfiguration to actual code manipulations. In this paper, we document our comparison exercise and show that the two software packages can provide utterly satisfying agreement when properly configured. Our main aim, however, is to stress the complexity of performing a rigorous comparison of EC software. We show that discriminating actual discrepancies in the results from inconsistencies in the software configuration requires deep knowledge of both software packages and of the eddy-covariance method itself. In some instances, it may be even beyond the possibility of the investigator who does not control the source code. Being the developers of EddyPro and TK3, we could discuss the comparison at all levels of details and this proved necessary to achieve a full understanding. As a further consequence, we also suggest that, to the aim of assuring consistency and comparability of centralized flux databases, and for a confident use of eddy fluxes in synthesis studies on the regional, continental and global scale, researchers rely on established software, notably those that have been extensively validated in documented intercomparisons.

  20. Effect of Chemical Mutagens and Carcinogens on Gene Expression Profiles in Human TK6 Cells

    PubMed Central

    Godderis, Lode; Thomas, Reuben; Hubbard, Alan E.; Tabish, Ali M.; Hoet, Peter; Zhang, Luoping; Smith, Martyn T.; Veulemans, Hendrik; McHale, Cliona M.

    2012-01-01

    Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose–response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control. PMID:22723965

  1. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    PubMed

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects. PMID:19815440

  2. Towards a consistent eddy-covariance processing: a comparison between EddyPro and TK3

    NASA Astrophysics Data System (ADS)

    Fratini, Gerardo; Mauder, Matthias; Griessbaum, Frank; Foken, Thomas

    2013-04-01

    The eddy-covariance processing sequence, needed to obtain accurate mass and energy fluxes starting from turbulence data is complex, depending on the instruments of choices and their deployment, the site characteristics, and the atmospheric turbulence peculiarities, at a minimum. Eddy-covariance software available to the community support different implementations, all valid in principle, and often the same procedures are therein implemented in different ways, or different order. In addition, many groups use "in-house" collections of scripts that may include customized implementations. It is often found that such differences do show up to the researcher who attempts a software inter-comparison, as either systematic or random differences in resulting fluxes. In this work we present a comparison of two popular eddy-covariance software, namely EddyPro and TK3. The aim of the comparison is twofold: on the one side, we want to show that the two software can provide perfectly matching fluxes. On the other side, we want to stress on what it takes to achieve this result. In fact, performing a fair and rigorous software comparison is not a trivial task, and discriminating actual discrepancies in the results from inaccuracies in the software configuration may be beyond the possibility of the researcher who does not control the source code. Being the developers of EddyPro and TK3 gave us the opportunity to discuss the comparison at all levels of details, and this proved necessary to get to a full agreement. However, normally this is not possible to the software user. As a conclusion, we want to warn against "quick and dirty" inter-comparisons as a means to validate eddy-covariance software. To the aim of assuring consistency and inter-comparability of centralized flux databases, and for a confident use of eddy fluxes on the regional, continental and global scale synthesis studies, we also warn against the proliferation of in-house software. We rather suggest researchers to

  3. Coupling cytotoxicity biomarkers with DNA damage assessment in TK6 human lymphoblast cells.

    PubMed

    Shi, Jing; Springer, Sandra; Escobar, Patricia

    2010-02-01

    There is considerable discussion within the scientific community as to the appropriate measures of cytotoxicity to use when deciding on the maximum concentration of a substance to test in vitro for its ability to induce DNA damage using the Comet assay. Conventional cytotoxicity assessment methods, such as trypan blue dye exclusion or relative cell number (cell counts) may not be the most biologically relevant measurement for cytotoxicity in this assay. Thus, we evaluated for decreased levels of adenosine triphosphate (ATP) and activation of Caspase-3/7 as well as relative cell number and trypan blue exclusion in order to understand the correlation among test compound concentration, cytotoxicity and genotoxicity outcomes in the Comet assay. We tested two non-genotoxic and non-cytotoxic compounds (d-glucose and ethanol), two non-genotoxic but cytotoxic compounds (2,4-dichlorophenol and tunicamycin) and four genotoxic and cytotoxic compounds (methyl methanesulfonate, ethyl methanesulfonate, etoposide and 4-nitroquinoline-N-oxide) in TK6 human lymphoblast cells. Our data show that measuring ATP and Caspase-3/7 levels provides more rapid and perhaps more biologically relevant measures of cytotoxicity compared with trypan blue dye exclusion and relative cell number. Furthermore, incorporating these two assays into the Comet assay also provided insight on the cytotoxic mode of action of the chemicals tested. By extrapolation, such assays may also be useful in other in vitro genotoxicity assays. PMID:20100597

  4. Monitoring S phase progression globally and locally using BrdU incorporation in TK+ yeast strains

    PubMed Central

    Lengronne, Armelle; Pasero, Philippe; Bensimon, Aaron; Schwob, Etienne

    2001-01-01

    Eukaryotic chromosome replication is initiated from numerous origins and its activation is temporally controlled by cell cycle and checkpoint mechanisms. Yeast has been very useful in defining the genetic elements required for initiation of DNA replication, but simple and precise tools to monitor S phase progression are lacking in this model organism. Here we describe a TK+ yeast strain and conditions that allow incorporation of exogenous BrdU into genomic DNA, along with protocols to detect the sites of DNA synthesis in yeast nuclei or on combed DNA molecules. S phase progression is monitored by quantification of BrdU in total yeast DNA or on individual chromosomes. Using these tools we show that yeast chromosomes replicate synchronously and that DNA synthesis occurs at discrete subnuclear foci. Analysis of BrdU signals along single DNA molecules from hydroxyurea-arrested cells reveals that replication forks stall 8–9 kb from origins that are placed 46 kb apart on average. Quantification of total BrdU incorporation suggests that 190 ‘early’ origins have fired in these cells and that late replicating territories might represent up to 40% of the yeast genome. More generally, the methods outlined here will help understand the kinetics of DNA replication in wild-type yeast and refine the phenotypes of several mutants. PMID:11266543

  5. Humic acids reduce the genotoxicity of mitomycin C in the human lymphoblastoid cell line TK6.

    PubMed

    Ferrara, G; Loffredo, E; Senesi, N; Marcos, R

    2006-01-31

    The antimutagenic/desmutagenic activity of a leonardite humic acid (LHA) and a soil humic acid (SHA) was studied in the cultured human lymphoblastoid cell line TK6 treated with mitomycin C (MMC) as reference mutagen by evaluating the induction of micronuclei (MN). Two different concentrations of HA were used, 2.5 and 10 microg/ml, in three different treatments: (1) HA alone (genotoxic test); (2) HA after 2-h pre-incubation with 0.3 microM of MMC (desmutagenic test) and (3) combinations of HA and MMC at 0.3 microM without pre-incubation (antimutagenic test). Neither of the HA used alone did produce genotoxic effects, but both HAs reduced significantly the frequencies of MN induced by MMC, especially in the desmutagenic test. A slight cell-protective effect against the cytotoxicity of MMC was also exhibited by the two HAs in the desmutagenic test. The LHA showed a desmutagenic/antimutagenic activity that was more pronounced than that of SHA, which is possibly related to the higher carboxylic group content and lower phenolic group content of LHA. These results confirm the antigenotoxic action exerted by HAs in human cells, similarly to what has been previously observed in various plant species. PMID:16386451

  6. Complete genome sequence of Hydrogenobacter thermophilus type strain (TK-6T)

    SciTech Connect

    Zeytun, Ahmet; Sikorski, Johannes; Nolan, Matt; Lapidus, Alla L.; Lucas, Susan; Han, James; Tice, Hope; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Ngatchou, Olivier Duplex; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Han, Cliff; Detter, J. Chris; Ubler, Susanne; Rohde, Manfred; Tindall, Brian; Wirth, Reinhard; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2011-01-01

    Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydrogenobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6T is of interest because of the unusually efficient hydrogen-oxidizing ability of this strain, which results in a faster generation time compared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO2 via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain derived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. A semi-mechanistic integrated toxicokinetic–toxicodynamic (TK/TD) model for arsenic(III) in hepatocytes

    PubMed Central

    Stamatelos, Spyros K.; Androulakis, Ioannis P.; Kong, Ah-Ng Tony; Georgopoulos, Panos G.

    2014-01-01

    Background A systems engineering approach is presented for describing the kinetics and dynamics that are elicited upon arsenic exposure of human hepatocytes. The mathematical model proposed here tracks the cellular reaction network of inorganic and organic arsenic compounds present in the hepatocyte and analyzes the production of toxicologically potent by-products and the signaling they induce in hepatocytes. Methods and results The present modeling effort integrates for the first time a cellular-level semi-mechanistic toxicokinetic (TK) model of arsenic in human hepatocytes with a cellular-level toxicodynamic (TD) model describing the arsenic-induced reactive oxygen species (ROS) burst, the antioxidant response, and the oxidative DNA damage repair process. The antioxidant response mechanism is described based on the Keap1-independent Nuclear Factor-erythroid 2-related factor 2 (Nrf2) signaling cascade and accounts for the upregulation of detoxifying enzymes. The ROS-induced DNA damage is simulated by coupling the TK/TD formulation with a model describing the multistep pathway of oxidative DNA repair. The predictions of the model are assessed against experimental data of arsenite-induced genotoxic damage to human hepatocytes; thereby capturing in silico the mode of the experimental dose–response curve. Conclusions The integrated cellular-level TK/TD model presented here provides significant insight into the underlying regulatory mechanism of Nrf2-regulated antioxidant response due to arsenic exposure. While computational simulations are in a fair good agreement with relevant experimental data, further analysis of the system unravels the role of a dynamic interplay among the feedback loops of the system in controlling the ROS upregulation and DNA damage response. This TK/TD framework that uses arsenic as an example can be further extended to other toxic or pharmaceutical agents. PMID:23069314

  8. TK3 eBook software to author, distribute, and use electronic course content for medical education.

    PubMed

    Morton, David A; Foreman, K Bo; Goede, Patricia A; Bezzant, John L; Albertine, Kurt H

    2007-03-01

    The methods for authoring and distributing course content are undergoing substantial changes due to advancement in computer technology. Paper has been the traditional method to author and distribute course content. Paper enables students to personalize content through highlighting and note taking but does not enable the incorporation of multimedia elements. Computers enable multimedia content but lack the capability of the user to personalize the content. Therefore, we investigated TK3 eBooks as a potential solution to incorporate the benefits of both paper and computer technology. The objective of our study was to assess the utility of TK3 eBooks in the context of authoring and distributing dermatology course content for use by second-year medical students at the University of Utah School of Medicine during the spring of 2004. We incorporated all dermatology course content into TK3 eBook format. TK3 eBooks enable students to personalize information through tools such as "notebook," "hiliter," "stickies," mark pages, and keyword search. Students were given the course content in both paper and eBook formats. At the conclusion of the dermatology course, students completed a questionnaire designed to evaluate the effectiveness of the eBooks compared with paper. Students perceived eBooks as an effective way to distribute course content and as a study tool. However, students preferred paper over eBooks to take notes during lecture. In conclusion, the present study demonstrated that eBooks provide a convenient method for authoring, distributing, and using course content but that students preferred paper to take notes during lecture. PMID:17327584

  9. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    SciTech Connect

    Yu, Zhendong; Wang, Hao; Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li; Li, Pengfei

    2009-09-04

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  10. Characteristics of genomic instability in clones of TK6 human lymphoblasts surviving exposure to 56Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.

    2002-01-01

    Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.