Science.gov

Sample records for immiscible polymer blends

  1. Effect of Organoclays on Immiscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Ha, Mai; Krishnamoorti, Ramanan

    2011-03-01

    The effect of adding organoclays on the phase behavior, rheological properties and bulk mechanical properties of immiscible polymer blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) is investigated. Traditional organoclays, prepared using alkyl ammonium chains, display a preference to segregate to the PS phase for high PS volume fraction blends where the PS forms the continuous matrix. On the other hand, for blends with low PS volume fractions, the organoclay segregates to the interface between the PS and PMMA domains and leads to a decrease in the domain size that does not change much with organoclay concentration variations from 0.1 to 2 wt %. Linear dynamic rheological data of these samples show significant increase in the low-frequency modulus of the blends with added organoclay. A thermodynamic model for estimating the interfacial modulus is proposed and the results agree well with the interfacial modulus calculated by Palierne's emulsion model. The toughness of the blends increases at low concentrations of added organoclays with the optimal improvements observed for less than 0.5 wt % added organoclay.

  2. On the coarsening of immiscible polymer blends with cocontinuous morphologies

    NASA Astrophysics Data System (ADS)

    Lopez-Barron, Carlos Rene

    Cocontinuous blends are used in a number of applications, including porous media for filtration, dessicant entrained polymers and substrates for drug delivery devices. A major drawback of these materials is that they are thermodynamically unstable, which implies that their morphology evolves into coarser structures when they are above their glass transition (or melting) temperatures. The mechanisms involved in the coarsening process are not fully understood yet. Three aspects of the coarsening process were addressed in this work: (1) thorough characterization of the microstructure during coarsening via the implementation of novel 3D imaging techniques, (2) modification of interfacial properties via addition of block copolymers in order to hinder the coarsening, and (3) determination of the connection between morphology and viscoelastic response during the coarsening process. Laser scanning confocal microscopy (LSCM) was used to image fluorescently labeled polystyrene (FLPS)/styrene-ran-acrylonitrile copolymer (SAN) blends. A methodology to obtain 3D micrographs of the blends and analyzed them to extract information of the geometry (size and local curvatures), topology (connectivity) and anisotropy (normal vectors) was implemented. From the analysis of the time evolution of the size and local curvature of the interface, two regimes of coarsening were identified: an early regime, where the characteristic size grows linearly with time and the interface evolves in a self-similar manner, and a late regime where the surface growth is neither linear nor self-similar. The measured decrease of the interface curvature was used to explain this regime transition. Symmetric diblock copolymers (BC) made of polystyrene (PS) and polymethyl methacrylate (PMMA) were used to compatibilize the blends. A dramatic decrease in the rate of coarsening was observed after adding just 1% of BC. The stabilization was particularly good for BC with an intermediate molecular weight. This result

  3. Effect of elongational flow on immiscible polymer blend/nanoparticle composites: a molecular dynamics study.

    PubMed

    Shebert, George L; Lak Joo, Yong

    2016-07-13

    Using coarse-grained nonequilibrium molecular dynamics, the dynamics of a blend of the equal ratio of immiscible polymers mixed with nanoparticles (NP) are simulated. The simulations are conducted under planar elongational flow, which affects the dispersion of the NPs and the self-assembly morphology. The goal of this study is to investigate the effect of planar elongational flow on the nanocomposite blend system as well as to thoroughly compare the blend to an analogous symmetric block copolymer (BCP) system to understand the role of the polymer structure on the morphology and NP dispersion. Two types of spherical NPs are considered: (1) selective NPs that are attracted to one of the polymer components and (2) nonselective NPs that are neutral to both components. A comparison of the blend and BCP systems reveals that for selective NP, the blend system shows a much broader NP distribution in the selective phase than the BCP phase. This is due to a more uniform distribution of polymer chain ends throughout the selective phase in the blend system than the BCP system. For nonselective NP, the blend and BCP systems show similar results for low elongation rates, but the NP peak in the BCP system broadens as elongation rates approach the order-disorder transition. In addition, the presence of NP is found to affect the morphology transitions of both the blend and BCP systems, depending on the NP type. PMID:27356215

  4. A new insight into interfaces of immiscible binary polymer blends from the free volume approach

    NASA Astrophysics Data System (ADS)

    Ramya, P.; Meghala, D.; Pasang, T.; Raj, J. M.; Chandrashekara, M. N.; Ranganathaiah, C.

    2012-06-01

    The interface width in an immiscible (PVC/PS) polymer blend is determined using hydrodynamic interaction parameter (α) derived from free volume data measured using Positron lifetime spectrometer. CONTIN program has been employed to get the free volume hole size distribution. A new definition of interface width is presented, which originates from the Kirkwood-Riseman theory and friction coefficient as per Stokes equation. Friction at the interface of a binary blend decides how close the surfaces come or stay farther resulting in narrow or broad interface width respectively.

  5. Advances in the engineering science of immiscible polymer blends: A powder route for delicate polymer precursors and a highly renewable polyamide/terephthalate blend system

    NASA Astrophysics Data System (ADS)

    Giancola, Giorgiana

    Powder processing of thermoplastic polymer composites is an effective way to achieve a high level of component homogenization in raw blends prior to melt processing, thus reducing the thermal and shear stress on the components. Polymer blends can be prepared that would otherwise not be possible due to thermodynamic incompatibility. Evaluation of this concept was conducted by processing PMMA and HDPE micron sized powders which were characterized using DSC and rheology. Optical microscopy and SEM, showed that high-quality, fine domain sized blends can be made by the compression molding process. Silica marker spheres were used to qualitatively assess the level dispersive mixing. EDS chemical analysis was effective in providing image contrast between PMMA and HDPE based on the carbonyl and ester oxygen. EDS image maps, combined with secondary electron images show that compression molding of blended powder precursors produces composites of comparable homogeneity and domain size as extrusion processing. FTIR proved valuable when assessing the intimacy of the constituents at the interface of the immiscible domains. The formation of an in-situ, PMMA nano-network structure resulting from solvent extraction and redeposition using DMF was uniquely found on the surface of these immiscible polymer blends. This work has shown that powder processing of polymers is an effective means to melt processed fragile polymers to high quality blends. Recently, efforts towards the development of sustainable materials have evolved due in part to the increase in price and limited supply of crude oil. Immiscible polymer blending is a paradigm that enables synergistic material performance in certain instances where the composite properties are superior to the sum of the constituents. The addition of PA6,10 to PTT offers an opportunity to increase the bio-based content of PTT while simultaneously maintaining or improving mechanical properties. PA6,10 and PTT are immiscible polymers that can be

  6. Suppression of phase coarsening in immiscible, co-continuous polymer blends under high temperature quiescent annealing.

    PubMed

    Liu, Xi-Qiang; Li, Ruo-Han; Bao, Rui-Ying; Jiang, Wen-Rou; Yang, Wei; Xie, Bang-Hu; Yang, Ming-Bo

    2014-05-28

    The properties of polymer blends greatly depend on the morphologies formed during processing, and the thermodynamic non-equilibrium nature of most polymer blends makes it important to maintain the morphology stability to ensure the performance stability of structural materials. Herein, the phase coarsening of co-continuous, immiscible polyamide 6 (PA6)-acrylonitrile-butadiene-styrene (ABS) blends in the melt state was studied and the effect of introduction of nano-silica particles on the stability of the phase morphology was examined. It was found that the PA6-ABS (50/50 w) blend maintained the co-continuous morphology but coarsened severely upon annealing at 230 °C. The coarsening process could be divided into two stages: a fast coarsening process at the initial stage of annealing and a second coarsening process with a relatively slow coarsening rate later. The reduction of the coarsening rate can be explained from the reduction of the global curvature of the interface. With the introduction of nano-silica, the composites also showed two stages of coarsening. However, the coarsening rate was significantly decreased and the phase morphology was stabilized. Rheological measurements indicated that a particle network structure was formed when the concentration of nano-silica particles was beyond 2 wt%. The particle network inhibited the movement of molecular chains and thus suppressed the coarsening process. PMID:24663286

  7. Effects of shear during the cooling on the rheology and morphology of immiscible polymer blends

    NASA Astrophysics Data System (ADS)

    Hammani, S.; Moulai-Mostefa, N.; Benyahia, L.; Tassin, J. F.

    2014-08-01

    The aim of this work was the generation of a microfibrillar structure in immiscible polymer blends using a new technique. The blend polymer model is the emulsion formed by a mixture of polypropylene (PP) with polystyrene (PS) in the proportion of PP10/PS90. In the first case the pellets of polystyrene and polypropylene were blended on the twin-screw mini extruder in the classical manner with different shear rates. In the second case, the same blend was prepared in the same way followed by a dynamic cooling at different shear rates. The phase morphologies of PP in the blend were determined by Scanning Electron Microscopy on two directions (transversal and longitudinal direction to the flow). In the two cases, the dispersed phase size decreased with the increase of the shear rate in the extruder. An anomaly was registered in the classical method at 200 rpm, where the size of the dispersed phase increases with the increase of the shear rate. The dynamic cooling technique recorded smaller diameters (4 to 5 times) of the dispersed phase compared to the conventional technique. In addition, the reappearance of the microfilaments at 200rpm was observed. The rheological properties were determined by RS100 (Thermo Scientific Haake). Using this new technique, it was noticed that he elastic modulus increases with one decade compared to the classical method and the complex viscosity decreases with the increase of the shear rate. An anomaly was registered in the classical technique, where the dynamic viscosity at 200rpm increases with increasing the shear rate in the extruder.

  8. Physical properties of immiscible polymers

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The demixing of immiscible polymers in low gravity is discussed. Applications of knowledge gained in this research will provide a better understanding of the role of phase segregation in determining the properties of polymer blends made from immiscible polymers. Knowledge will also be gained regarding the purification of biological materials by partitioning between the two liquid phases formed by solution of the polymers polyethylene glycol and dextran in water. Testing of new apparatus for space flight, extension of affinity phase partitioning, refinement of polymer chemistry, and demixing of isopycnic polymer phases in a one gravity environment are discussed.

  9. Mixing Efficiency, Coarsening, and Self-Compatibilization in Immiscible Polymer Blends Processed via Solid-State Shear Pulverization

    NASA Astrophysics Data System (ADS)

    Davydov, Albert; Khait, Klementina; Torkelson, John

    2000-03-01

    Solid-state shear pulverization (SSSP) is a continuous, mechanical alloying process employing simultaneous effects of high pressure and shear deformation to pulverize and mix polymers. Under certain conditions SSSP can result in limited chain scission and polymeric radical formation. In immiscible blends, these radicals may be able to recombine in interfacial regions or regions of high mixing resulting in block copolymer formation and compatibilization. The effects of SSSP on amorphous polyamide (PA)/polystyrene (PS) and PS/low density polyethylene (LDPE) blends have been studied. As compared to melt-mixed blends, SSSP yields blends with enhanced blend morphology refinement or dispersion, and in certain cases enhanced bulk mechanical properties, particularly elongation at break and impact strength. Comparisons of dispersed-phase coarsening during high temperature, liquid-state annealing of the SSSP - processed and conventionally melt-mixed blends will be discussed in terms of the potential for achieving effective compatibilization of particular blends via SSSP.

  10. Morphology Evolution of Polypropylene in Immiscible Polymer Blends for Fabrication of Nanofibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immiscible blends of cellulose acetate butyrate (CAB) and isotactic polypropylenes (iPPs) with different melting index were extruded through a two-strand rod die. The extrudates were hot-drawn at the die exit at different draw ratios by controlling the drawing speed. The morphologies of iPP fibers e...

  11. Rheological Properties of PET/PC Immiscible Polymer Blends: Effect of Catalysts and Stabilizers

    NASA Astrophysics Data System (ADS)

    Souad, Mbarek; Christian, Carrot; Mohamed, Jaziri; Yvan, Chalamet; Boubaker, Elleuch

    2008-07-01

    The rheology of PET/PC blends obtained by melt reactive blending using various transesterification catalysts has been measured in the melt at 260 °C in dynamic oscillatory shear flow. The thermal stability in the melt of PET/PC blends is a key limitation of the measurement time especially in presence of transesterification catalysts. For long residence time, a noticeable decrease of the viscosity is observed. This decrease is attributed to thermal degradation promoted by exchange reactions. The efficiency of phosphite and phenolic stabilizers, alone or in combination, has been assessed from the rheological measurements. The results show that the effectiveness of phenolic species is more important than that of phosphites. The addition of 0.3 wt-% of Irganox 1010 delays the decrease of the rheological characteristics for 10 minutes.

  12. Stripe formation in an immiscible polymer blend under electric and shear-flow fields

    NASA Astrophysics Data System (ADS)

    Na, Yang-Ho; Shibuya, Tetsunori; Ujiie, Seiji; Nagaya, Tomoyuki; Orihara, Hiroshi

    2008-04-01

    We found a stripe formation in an emulsion of a liquid crystalline polymer (LCP) and a machine oil (OIL) in electric and shear fields. Through the simultaneous measurement with a confocal scanning laser microscope and a rheometer, it was clearly shown that the formation of stripes, which are periodically arrayed, leads to the increase of the shear stress. The droplets, which are one component of the emulsion, start to be connected at low electric fields and then change into the stripes with the increase of electric field. Finally, a three-dimensional network is formed at high electric fields. The period and fluctuation of the stripe structure were also investigated in detail.

  13. Radiation effects on the immiscible polymer blend of nylon1010 and high-impact strength polystyrene (II): mechanical properties and morphology

    NASA Astrophysics Data System (ADS)

    Dong, Wenfei; Chen, Guangxin; Zhang, Wanxi

    2001-03-01

    The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon1010 matrix. With increasing of dose, the elastic modulus increased. However, the tensile strength, elongation at break and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend.

  14. Mixing of immiscible polymers using nanoporous coordination templates

    PubMed Central

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-01-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters. PMID:26130294

  15. Mixing of immiscible polymers using nanoporous coordination templates.

    PubMed

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-01-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters. PMID:26130294

  16. Thin film fabrication of PMMA/MEH-PPV immiscible blends by corona discharge coating and its application to polymer light emitting diodes.

    PubMed

    Jung, Hee Joon; Park, Youn Jung; Choi, Sang Hun; Hong, Jae-Min; Huh, June; Cho, Jun Han; Kim, Jung Hyun; Park, Cheolmin

    2007-02-13

    We introduce a new and facile process, corona discharge coating (CDC), to fabricate thin polymer films of the immiscible poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) and poly(methyl methacrylate) (PMMA) blends. The method is based on utilizing directional electric flow, known as electric wind, of the charged unipolar particles generated by corona discharge between a metallic needle and a bottom plate under high electric field (5-10 kV/cm). The electric flow rapidly spreads out the polymer solution on the bottom plate and subsequently forms a smooth and flat thin film over a large area within a few seconds. The method is found to be effective for fabricating uniform thin polymer films with areas larger than approximately 30 mm2. The thin films obtained by CDC exhibit unique microstructures where well-defined spherical and cylindrical domains of approximately 50 nm in diameter coexist. These nanosized domains are found to be much smaller than those in films made by conventional spin coating, which suggests that CDC is beneficial for fabricating phase-separated thin film structures with significantly increased interfacial areas. The effects of the applied voltage, tip-to-plate distance, and substrates on the film formation as well as the resulting microstructure are investigated. Furthermore, the light emitting performance of a device prepared by CDC is compared with one made by spin coating. PMID:17279712

  17. Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends.

    PubMed

    Mao, Cui; Zhu, Yutian; Jiang, Wei

    2012-10-24

    Polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends filled with octadecylamine-functionalized graphene (GE-ODA) have been fabricated to obtain conductive composites with a lower electrical percolation threshold according to the concept of double percolation. The dependence of the electrical properties of the composites on the morphology is examined by changing the proportion of PS and PMMA. Our results reveal that the electrical conductivity of the composites can be optimal when PS and PMMA phases form a cocontinuous structure and GE-ODA nanosheets are selectively located and percolated in the PS phase. For the PS/PMMA blend (50w/50w), the composites exhibit an extremely low electrical percolation threshold (0.5 wt %) because of the formation of a perfect double percolated structure. Moreover, the rheological properties of the composites are also measured to gain a fundamental understanding of the relationship between microstructure and electrical properties. PMID:22950786

  18. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  19. Polymer blends as high explosive binders

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1984-10-05

    One approach to high-density, high-modulus binders for explosives is to blend low-density, high-modulus polymers with high-density, low-modulus polymers. Improved properties, which miscible pairs theoretically should have, are discussed. Two attempts to achieve miscibility between a high-density fluoropolymer (Kel-F 800) and high-modulus thermoplastics (Lucite 130 and Phenoxy PKHJ) were unsuccessful. These blends are immiscible and their physical properties are additive or not significantly enhanced. Anelastic properties of the blends indicate phase separation by the presence of two glass transitions, one associated with each phase. Unfortunately, neither of these pairs has merit as an improved plastic-bonded explosive binder. However, a compatible (miscible) pair would be an improved binder if the appropriate polymer pair could be found.

  20. Porous Polyolefin Films via Polymer Blends

    NASA Astrophysics Data System (ADS)

    Macosko, Chris

    Porous polymer films have broad application including battery separators, membrane supports and filters. Polyolefins are attractive for these applications because of their solvent resistance, low electrical and thermal conductivity, easy fabrication and cost. We will describe fabrication of porous films using cocontinuous blends of a polyolefin with another polymer which can be readily removed with a solvent. Methods to image and control the cocontinuous morphology will be presented.Bell, J. R., K. Chang, C. R. Lopez-Barron, C. W. Macosko, and D. C. Morse, ''Annealing of cocontinuous polymer blends: effect of block copolymer molecular weight and architecture,'' Macromolecules 43, 5024-5032 (2010).Lopez-Barron, C. R., and C. W. Macosko, ''Direct measurement of interface anisotropy of bicontinuous structures via 3D image analysis,'' Langmuir 26, 14284-14293 (2010).Trifkovic, M., A. T. Hedegaard, K. Huston, M. Sheikhzadeh, and C. W. Macosko, ''Porous films via PE/PEO cocontinuous blends,'' Macromolecules 45, 6036-6044 (2012).Hedegaard, A.T., L.L. Gu and C. W. Macosko, ``Effect of Extensional Viscosity on Cocontinuity of Immiscible Polymer Blends'' J. Rheol. 59, 1397-1417 (2015).

  1. Morphological development of polypropylene in immiscible blends with cellulose acetate butyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotactic polypropylenes (iPP) with different melt flow indexes were melt blended with cellulose acetate butyrate (CAB) and then prepared into microspheres or nanofibers following a novel process of producing well dispersed CAB/iPP immiscible blends and subsequent removal of the CAB matrix. The morp...

  2. Mechanisms of Morphology Development and Control in Polymer- Polymer Blends

    NASA Astrophysics Data System (ADS)

    Macosko, Christopher W.

    1998-03-01

    Polymer-polymer blends continue to be the most important method for achieving optimization of properties in plastics products. Over 30 percent of all plastics are blends. While miscible blends generally give average properties between the components, immiscible blends offer synergistic possibilities such as high modulus with high toughness; high flow with high impact strength or diffusion barriers with good mechanical properties and low cost. The key to performance of these immiscible blends is their morphology. There are several important types of morphology which can lead to valuable property improvement: emulsion - small polymer spheres well dispersed in a polymer matrix. double emulsion - spheres inside spheres which are dispersed in another matrix. microlayer - thin, parallel layers of one polymer in a matrix. cocontinuous - two (or more) continuous, interpenetrating polymer phases. To be economical it is desirable to create these morphologies via melt mixing of powder or pellets in conventional compounding equipment. The melting stage during compounding is very important for morphology development. This presentation will demonstrate the role of melting or softening of each phase as well as their viscosity, elasticity and interfacial tension in morphology development. Interfacial modification with premade block copolymers or reactively formed copolymers can greatly alter morphology formation and stability. Experimental results will be presented which quantify the role of these additives. References to recent work in this area by our group are listed below: DeBrule, M. B., L. Levitt and C.W. Macosko, "The Rheology and Morphology of Layered Polymer Melts in Shear," Soc. Plastics Eng. Tech Papers (ANTEC), 84-89 (1996). Guegan, P., C. W. Macosko, T. Ishizone, A. Hirao and S. Nakahama, "Kinetics of Chain Coupling at Melt Interfaces, Macromol. 27, 4993-4997 (1994). Lee, M. S., T.P. Lodge, and C. W. Macosko, "Can Random Copolymers Serve as Effective Polymeric

  3. Viscoelastic Properties of Polymer Blends

    NASA Technical Reports Server (NTRS)

    Hong, S. D.; Moacanin, J.; Soong, D.

    1982-01-01

    Viscosity, shear modulus and other viscoelastic properties of multicomponent polymer blends are predicted from behavior of individual components, using a mathematical model. Model is extension of two-component-blend model based on Rouse-Bueche-Zimm theory of polymer viscoelasticity. Extension assumes that probabilities of forming various possible intracomponent and intercomponent entanglements among polymer molecules are proportional to relative abundances of components.

  4. Compatibilization of All-Conjugated Polymer Blends for Organic Photovoltaics.

    PubMed

    Lombeck, Florian; Sepe, Alessandro; Thomann, Ralf; Friend, Richard H; Sommer, Michael

    2016-08-23

    Compatibilization of an immiscible binary blend comprising a conjugated electron donor and a conjugated electron acceptor polymer with suitable electronic properties upon addition of a block copolymer (BCP) composed of the same building blocks is demonstrated. Efficient compatibilization during melt-annealing is feasible when the two polymers are immiscible in the melt, i.e. above the melting point of ∼250 °C of the semicrystalline donor polymer P3HT. To generate immiscibility at these high temperatures, the acceptor polymer PCDTBT is equipped with fluorinated side chains leading to an increased Flory-Huggins interaction parameter. Compatibilization in bulk and thin films is demonstrated, showing that the photovoltaic performance of pristine microphase separated and nanostructured BCPs can also be obtained for compatibilized blend films containing low contents of 10-20 wt % BCP. Thermodynamically stable domain sizes range between several tens of microns for pure blends and ∼10 nm for pure block copolymers. In addition to controlling domain size, the amount of block copolymer added dictates the ratio of edge-on and face-on P3HT crystals, with compatibilized films showing an increasing amount of face-on P3HT crystals with increasing amount of compatibilizer. This study demonstrates the prerequisites and benefits of compatibilizing all-conjugated semicrystalline polymer blends for organic photovoltaics. PMID:27482842

  5. Morphology and Rheology of Polymer/Liquid Crystal Blends

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Wu, Youjun; Zhou, Chixing

    2008-07-01

    The morphology and rheology of immiscible polymer blends has been the subjects of many researches. It is well known that the properties of blends depend on the rheology of components fluids as well as the properties of interface. For blends composed of isotropic fluids, the capillary number, defined as the ratio between the shear stress and the interfacial stress, controls the behaviors of dispersed droplet under flow field. When one component becomes an anisotropic fluid, it is expected that the anisotropic interfacial properties would greatly affect the properties of the blends. The effect of anisotropic properties of interface between a polymer and a liquid crystal (LC) on the steady and transient behavior of morphological evolution and rheology properties is the main interest of the present work. The deformation and relaxation behavior of a LC droplet immersed in a polymer matrix is investigated and compared with the predictions of our recent model.

  6. Hydrogen-bonded polymer blends

    NASA Astrophysics Data System (ADS)

    Guigley, Kevin Scott

    This thesis discusses three topics in the general area of hydrogen bonded polymer blends. The first pertains to the blending of flame retardant polyphosphazenes. Poly[bis(n-alkyoxy)phosphazenes] blends with poly(butyl methacrylate- co-4-vinyl phenol) (BMAVPh) were initially studied. These results were compared to BMAVPh blends of analogous poly (vinyl n-alkyl ethers) and the phase behavior was similar. Next, poly[bis(carboxylatophenoxy)phosphazene] blends with a structural polyurethane foam were prepared via reactive mixing. The combustion behavior of these foams was analyzed qualitatively, by a horizontal flame test, and quantitatively, by oxygen index (OI) measurements. Both of these tests indicated a modest increase in flame resistance at loadings of 20 wt% and above. In the second topic, equilibrium constants determined from low molecular weight mixtures were used to successfully predict the phase behavior of analogous polymer blends. Due consideration was given to intramolecular screening and functional group accessibility, factors that are a direct consequence of chain connectivity. In the third topic, polymer blends involving an alternating 1:1 copolymer of tetrafluoroethylene (TFE) and a hexafluoroisopropanol modified vinyl ether (HFIPVE) were studied. This copolymer is interesting for both experimental and theoretical studies of the phase behavior of polymer blends because (1) it is amorphous and has a relatively low glass transition temperature (12°C); (2) it has a relatively low solubility parameter (≈7 (cal.cm-3)-0.5); (3) it is soluble in moderately polar solvents, and (4) it contains the hexafluoroisopropanol group that is a strong hydrogen bond donor. Experimental infrared and thermal analysis studies of polymer blends with (co)polymers containing acetoxy, methacrylate and aliphatic ether groups were studied and compared to theoretical predictions of miscibility maps.

  7. Effects of nanoclay and conductive carbon black on morphology development in chaotic mixing of immiscible polymers

    NASA Astrophysics Data System (ADS)

    Dharaiya, Dhawal

    Chaotic mixing of immiscible polymer blends has been known to produce morphological features such as lamellas, fibrils and droplets. In this research work, we studied the effect of fillers, such as carbon black (CB) and organically treated nanoclay, on morphology development in an immiscible polymer system, consisting of polyamide 6 (PA6) and polypropylene (PP) in a chaotic mixer. Operating conditions were chosen such that chaotic mixing was widespread inside the mixer. The filler particles were mixed with minor component PP before blending with PA6. It was found that continuous lamellar and fibrillar morphology of PP formed early in mixing produced double percolating conductive networks with only 1 wt% CB particles. The conductive networks sustained their existence even after fibrils broke into droplets. This was attributed to migration of CB particles from the bulk of PP droplets and selective localization at the interfaces of closely spaced PP droplets. It was also found that much smaller PP droplets resulted in the presence of CB particles. Prior reports in literature indicated that organically treated nanoclay particles can act as compatibilizer of immiscible polymer blends, although no study showed that how nanoclay would influence morphology development. In this study, we showed that clay particles helped produce PP droplets of much smaller size and with narrower size distribution due to their direct influence on breakup of PP domains. The clay particles reduced interfacial tension between PP and PA6 phases. Consequently, the PP domains sustained lamellar and fibrillar forms and significantly thin fibrils were formed. These thin fibrils in turn broke rapidly into smaller droplets. It was also found that a large fraction of clay particles migrated into PA6 phase and contained intercalated PA6 chains in their galleries. This indicated that clay particles did not participate in compatibilization in this system. The effect of degradation of surface treatment of

  8. Raman Microimaging of Polymer Blends

    NASA Astrophysics Data System (ADS)

    Song, Guanghua; Waldek Zerda, Tadeusz

    2001-10-01

    Raman microimaging was used to estimate the effect of the silica filler on phase separation in polymer blends composed of brominated poly(isobutylene-co-para-methylstyrene)(BIMS),natural rubber, synthetic rubber, and cis-1-4-polybutadiene(BR).the domain sizes,relative concentration of polymer components within domains ,and distribution of particulate silica filler and zinc stearate curative were characterized for blends of different compositions and history of aging treatments. The presence of increased concentrations of precipitated silica results in better polymer morphology since domain sizes are reduced.

  9. Advanced materials based on polymer blends/polymer blend nanocomposites

    NASA Astrophysics Data System (ADS)

    Shikaleska, A. V.; Pavlovska, F. P.

    2012-09-01

    Processability, morphology, mechanical properties and rheological behavior of poly(vinylchloride) (PVC)/poly(ethylmethacrylate) (PEMA) blends and PVC/PEMA/montmorillonite (MMT) composites, prepared by melt processing in a brabender mixer, were studied. Samples were characterized using SEM, mechanical testing, DMTA and a parallel plate rheometer. Plastograms show that there is noticeable drop of fusion times and increase in melt viscosity torque of both, polymer blend and polymer blend nanocomposite, in comparison with those of neat PVC. SEM images show that homogenous dispersions are obtained. Tensile tests indicate that PVC/PEMA and PVC/PEMA/MMT samples have greater tensile strength and elastic modulus and lower elongation compared to PVC. When solid viscoelastic properties are considered (DMTA), slightly higher storage moduli are obtained whereas more prominent increase of storage modulus is observed when nanoclay particles are added in a PVC/PEMA matrix. From the calculated area of tandelta peak of all tested samples, nanocomposites exhibit the lowest damping behavior. Oscillatory measurements in a molten state were used for determining the frequency dependencies of storage G' and loss G" moduli. It was found that G" curves of neat PVC lie above those of G' suggesting that PVC behaves like viscoelastic liquid. Similar results, but with significantly higher values of G' and G" over the whole frequency range for PVC/PEMA blends were obtained. Steady shear measurements show that the presence of PEMA and nanoclay particles increases the shear stress and shear viscosity of neat PVC. In order to define the rheological equations of state the three material functions were determined. According to these functions all samples exhibit shear thinning behavior and the curves obey the power law equation. As rheological behaviour was found to be strongly dependent on blend's micro and macro structure and it is one of the main factors defining the end properties, attempt was

  10. Bottlebrush Polymer Additives for Binary Polymer Blends

    NASA Astrophysics Data System (ADS)

    Mah, Hui Zhen; Afzali, Pantea; Phan, Hanh; Qi, Luqing; Pesek, Stacy; Verduzco, Rafael; Stein, Gila

    Bottlebrush polymers are highly branched polymers that have been used in applications such as self-assembling photonics, drug delivery and stimuli-responsive surface coatings. However, they have not been widely studied as compatibilizers for polymer blends. In this study, bottlebrush polymers with poly(styrene-r-methyl methacrylate) side chains were used as additives for thin film blends of polystyrene (PS) and poly (methyl methacrylate) (PMMA). The blends were heated above the glass transition temperature to drive phase separation, and the resulting morphology was characterized with atomic force microscopy and optical microscopy. Outcomes were compared with PS/PMMA blends that contain conventional compatibilizers such as linear random copolymers of poly(styrene-r-methyl methacrylate) and diblock PS-PMMA copolymers. The bottlebrush additive accumulates at the PS/PMMA interface and drives the formation of vesicle-like droplets that assemble into longer chains. The continuity of the chains depends on the blend composition, where a network structure is achieved close to the critical composition. This unusual microstructure was not observed with the other additives, and may be a consequence of preferential wetting of the bottlebrush by the PS phase.

  11. Fabrication of Tunable Submicro- or Nano-structured Polyethylene Materials form Immiscible Blends with Cellulose Acetate Butyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low density polyethylene (LDPE) was prepared into micro- or submicro-spheres or nanofibers via melt blending or extrusion of cellulose acetate butyrate (CAB)/LDPE immiscible blends and subsequent removal of the CAB matrix. The sizes of the PE spheres or fibers can be successfully controlled by varyi...

  12. Molecular composites and polymer blends containing ionic polymers

    NASA Astrophysics Data System (ADS)

    Tsou, Li-Chun

    1997-11-01

    Polymer blends are generally immiscible due to the unfavorable thermodynamics of mixing. By the introduction of ion-dipole interaction, mechanical properties of the PPTA anion/polar polymers (such as PVP, PEO and PPrO) molecular composites have been investigated in relation to their miscibility and microstructural morphology. Optical clarity observed in the glassy PPTA anion/PVP system suggest the presence of miscibility, since the refractive indices between the two components are quite different, nsb{PVP} = 1.509 and nsb{PPTA} = 1.644. In general, the difference greater than 0.01 is sufficient to make blends opaque. DSC measurements, showing a composition dependent Tsb{g} and a melting temperature depression, also indicate the miscibility achieved at the molecular level, about 50-100 A. By using the Hoffman-Weeks plot, a negative Flory-Huggins interaction parameter, chi = -1.10, is obtained for the PPTA anion/PEO molecular composites. An irregular spherulitic pattern and a reduced crystal size suggest that PPTA anion is intimately mixed with the amorphous PEO, both inter- and intra-spherulitically. Molecular composites exhibit not only an enhanced tensile strength and modulus, but also a greater fracture toughness, Ksb{IC}, e.g., an 80% increase at a 2 wt% PPTA anion addition. An enhanced tensile strength associated with a reduced crystallinity suggests that PPTA anion is the major contributor to the superior tensile properties instead of the crystalline phase. Upon addition of PPTA anion to PPrO, a slower relaxation rate and a better thermal stability are observed. Significant enhancement is found when the monovalent K salt is replaced with a divalent Ca salt. The molecular reinforcement achieved via ion-dipole interactions is more effective than the rigid filler effect obtained in the non-ionic PPTA/PPrO blend: e.g., a modulus enhancement of 814% vs. 286%, as compared with the value for PPrO. Two phase systems with microphase separation are developed since many

  13. Chain entanglements and fracture energy in interfaces between immiscible polymers

    NASA Astrophysics Data System (ADS)

    Silvestri, Leonardo; Brown, Hugh R.; Carrà, Stefano; Carrà, Sergio

    2003-10-01

    It is a very well-known experimental fact that the toughness of interfaces obtained by joining pairs of immiscible glassy polymers is strongly correlated to the interfacial width. Several models have been proposed in the literature to estimate the fracture energy of these interfaces, but the agreement displayed with the experimental data cannot be considered satisfactory. In this paper a new model is proposed for polymers with molecular weight higher than the critical value for the onset of entanglements. The model is based on a precise and realistic calculation of the areal density of entangled strands across the interface, that is the crucial parameter determining the toughness of the glassy joints. In this paper a new fracture regime is also introduced, called "partial crazing," corresponding to a situation where, due to the fact that some of the load-bearing strands are broken during plastic deformation, the craze can start, but not fully develop. Model predictions are then compared with a series of literature fracture energy experimental data, showing excellent agreement.

  14. Superstrings in Sheared Polymer Blends

    NASA Astrophysics Data System (ADS)

    Migler, Kalman

    2000-03-01

    We report the discovery of a droplet-string-ribbon transition in concentrated polymer blends which occurs when the droplet size of the dispersed component becomes comparable to the gap between the boundary plates. Above a critical shear rate (or gap width), dispersed droplets continuously coalescence and breakup; the upper limit on their size is set by the Taylor length. Below this critical shear rate, droplets coalesce into strings and then ribbons in a four stage kinetic process. The mass ratio of string / droplet can be as large as 10^4. The transition is sharp, occurring over a shear interval of 2droplet-string transition is a manifestation of the weakening of the Rayleigh-Tomatika instability which occurs when the system becomes quasi two-dimensional. Possible applications of this technology are ultra-thin materials of high one-dimensional strength, polymer blend wires, and novel polymeric scaffolds.

  15. Electromechanically active polymer blends for actuation

    NASA Astrophysics Data System (ADS)

    Su, Ji; Ounaies, Zoubeida; Harrison, Joycelyn S.; Bar-Cohen, Yoseph; Leary, Sean P.

    2000-06-01

    Actuator mechanisms that are lightweight, durable, and efficient are needed to support telerobotic requirements, for future NASA missions. In this work, we present a series of electromechanically active polymer blends that can potentially be used as actuators for a variety of applications. This polymer blend combines an electrostrictive graft-elastomer with a ferroelectric poly (vinylidene fluoride-trifluoroethylene) polymer. Mechanical and piezoelectric properties of the blends as a function of temperature, frequency and relative composition of the two constituents in the blends have been studied. Electric field induced strain response of the blend films has also been studied as a function of the relative composition. A bending actuator device was developed incorporating the use of the polymer blend materials. The results and the possible effects of the combination of piezoelectricity and electrostriction in a material system are presented and discussed. This type of analysis may enable the design of blend compositions with optimal strain, mechanical, and dielectric properties for specific actuator applications.

  16. Polymer blends for directed self-assembly

    NASA Astrophysics Data System (ADS)

    Namie, Yuuji; Anno, Yusuke; Naruoka, Takehiko; Minegishi, Shinya; Nagai, Tomoki; Hishiro, Yoshi; Yamaguchi, Yoshikazu

    2013-03-01

    The advantage of blend DSA (Directed Self Assembly) is milder anneal condition than PS-b-PMMA BCP DSA materials and availability of conventional instruments. In this paper, blend type DSA was applied for hole patterning. Target patterns were contact hole and oval hole. Polymer phase separation behavior has been studied from the point of χN. In the case of polymer blend, χN needs to be more than 2 to give phase separation. At first the effect of polymer size was studied. When the polymer weight was low, the shrunk hole was not clean because of low χN. Furthermore, the correlation of shrink amount and χN was studied. Higher χN polymer blend system gave higher shrink amount. High χN polymer systems give clear interface, then the intermixing area would be reduced, then the attached polymer blend part became larger. The polymer blend ratio effect was also investigated. The blend ratio was varied for polymer A/ polymer B=70/30-50/50. The shrink amount of oval hole was reduced with increasing the ratio of polymer B. However, the shrink amount ratio of CDY/CDX was almost constant (~3).

  17. Controlled and high throughput fabrication of poly(trimethylene terephthalate) nanofibers via melt extrusion of immiscible blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immiscible blends of cellulose acetate butyrate (CAB) and poly(trimethylene terephthalate) (PTT) were melt extruded through a two strand rod die. The extrudates were hot-drawn at the die exit at different draw ratios. PTT fibers were obtained by removal of the CAB matrix from the drawn extrudates, a...

  18. Controlled and high throughput fabrication of poly(trimethylene terphthalate) nanofibers via melt extrusion of immiscible blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immiscible blends of cellulose acetate butyrate (CAB) and poly(trimethylene terephthalate) (PTT) were melt extruded through a two strand rod die. The extrudates were hot-drawn at the die exit at different draw ratios. PTT fibers were obtained by removal of the CAB matrix from the drawn extrudates, a...

  19. Pairwise polymer blends for oral drug delivery.

    PubMed

    Marks, Joyann A; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2014-09-01

    Blends of polymers with complementary properties hold promise for addressing the diverse, demanding polymer performance requirements in amorphous solid dispersions (ASDs), but we lack comprehensive property understanding for blends of important ASD polymers. Herein, we prepare pairwise blends of commercially available polymers polyvinylpyrrolidone (PVP), the cationic acrylate copolymer Eudragit 100 (E100), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate (CMCAB), hydroxypropyl methylcellulose (HPMC), and the new derivative cellulose acetate adipate propionate (CAAdP). This study identifies miscible binary blends that may find use, for example, in ASDs for solubility and bioavailability enhancement of poorly water-soluble drugs. Differential scanning calorimetry, FTIR spectroscopy, and film clarity were used to determine blend miscibility. Several polymer combinations including HPMCAS/PVP, HPMC/CMCAB, and PVP/HPMC appear to be miscible in all proportions. In contrast, blends of E100/PVP and E100/HPMC showed a miscibility gap. Combinations of water-soluble and hydrophobic polymers like these may permit effective balancing of ASD performance criteria such as release rate and polymer-drug interaction to prevent nucleation and crystal growth of poorly soluble drugs. Miscible polymer combinations described herein will enable further study of their drug delivery capabilities, and provide a potentially valuable set of ASD formulation tools. PMID:24823790

  20. Two glass transitions in miscible polymer blends?

    SciTech Connect

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-06-28

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  1. Polymer dynamics in binary blends

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey D.; Loring, Roger F.

    1992-09-01

    We develop a theory of the dynamics of flexible linear polymers in a melt composed of macromolecules of two molecular weights and of the same chemical species. A polymer is represented by a freely jointed chain that moves by two dynamical processes. The first is a local jump motion that may be blocked by obstacles, and the second is a slithering mode that mimics reptation. The dynamics of the obstacles are determined self-consistently by an ansatz that associates their relaxation with the dynamics of the slowest mode of conformational relaxation of a chain. The calculations of the autocorrelation function of the end-to-end vector and of the mean squared displacement of the center of mass are related exactly to the solution of a random walk problem with dynamical disorder. We calculate the necessary random walk propagator by applying the dynamical effective medium approximation. Calculations of the dependence of the self-diffusion coefficient of both components on blend composition and on molecular weights are presented. The theory is shown to provide a unified description of diffusion in the unentangled and entangled regimes.

  2. The use of Functionalized Nanoparticles as Non-specific Compatibilizers for Polymer Blends

    SciTech Connect

    W Zhang; M Lin; A Winesett; O Dhez; L Kilcoyne; H Ade; M rubinstein; K Shafi; A Ulman; et al.

    2011-12-31

    The ability to form blends of polymers offers the opportunity of creating a new class of materials with enhanced properties. In addition to the polymer components, recent advances in nanoengineering have resulted in the development of nanosized inorganic particles that can be used to improve the properties of the blend, such as the flammability and the mechanical properties. While traditional methods using copolymer compatibilizers have been used to strengthen polymer blends, here, we show that the inorganic nanosized filler additive can also serve as a compatibilizer as it can localize to the interface between the polymers. We use experimental and theoretical studies to show the fundamental mechanisms by which inorganic fillers with large aspect ratio and at least one-dimension in the nanometer range, can act as non-specific compatibilizers for polymer blends. We examine a series of nanosized fillers, ranging from nanotubes to nanoclays (with varying aspect ratios) in a model polystyrene (PS)/poly(methylmethacyralate) (PMMA) blend. Using a number of experimental techniques such as transmission electron microscopy (TEM), scanning tunneling X-ray microscopy (STXM), and atomic force microscopy (AFM) we postulate that the mechanism of compatibilization occurs as a result of the fillers forming in situ grafts with the immiscible polymers. We also use theoretical studies to show that the aspect ratio and the bending energy of the fillers play a key role in the compatibilization process. Our results indicate that the compatibilization is a general phenomenon, which should occur with all large aspect ratio nanofiller additives to polymer blends.

  3. The effect of polymer blending on environmental stress cracking resistance: Role of polycarbonate blend morphology, miscibility, and crystallinity

    NASA Astrophysics Data System (ADS)

    Hopson, Peyton Lee

    The environmental stress cracking (ESC) of polymeric materials was investigated in order to elucidate the fundamental polymer properties leading to failure. In particular, the ESC of polymer blends was studied to gain a deeper understanding of the role of phase miscibility, blend morphology, and crystallinity on failure. Initial efforts to develop an ESC test method for polymer blends were based on failure induced by fabricated residual stresses utilizing a modified slow strain rate test. The modified slow strain rate test method was applied to a polycarbonate/polyamide and polycarbonate/polyester blend. Qualitative comparisons between industrially applied bent ESC test methods and the modified slow strain rate test were drawn. Further ESC test method development involved the determination of blend ESC resistance through tensile testing in a fluid environment utilizing an Eyring-type activated process to describe ESC. The validity of the test was confirmed through comparisons of the ESC resistance data to current theories describing the effect of polymer/fluid surface tension and fluid viscosity effects on ESC. It was found that the miscible blend, a polycarbonate/copolyester blend, displayed a rule of mixtures for ESC resistance to all fluids tested, except ether. In contrast, the immiscible blend, a polycarbonate/poly(butylenes terephthalate) blend, displayed a significant negative deviation from the rule of mixtures for ESC resistance. This behavior was attributed to the development of stress sites for craze initiation at the interface between the blend components on the surface of the test sample. The differences in ether resistance compared to the trends found for the fluid ESC resistance in this study were attributed to solvent/stress induced crystallization of the polycarbonate component. DSC traces indicated that significant crystallization of the polycarbonate component was observed for samples with low ether ESC resistance. These data suggest that

  4. Biocompatible electrospun polymer blends for biomedical applications.

    PubMed

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. PMID:24604876

  5. Dynamic Heterogeneity in Interacting Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Gaikwad, Ashish; Lodge, Timothy

    2008-03-01

    Dynamic heterogeneity leading to time-temperature superposition (tTS) failure has been widely reported in non-interacting/weakly interacting miscible polymer blends. However, coupling of the component dynamic response in blends, even with a huge dynamic asymmetry in the pure components, is possible with H-bonding interactions. This study is focused on finding the minimum level of interaction necessary for thermo-rheological simplicity in blends. Blends of styrene-co-vinylphenol (PSVPh) and poly(vinyl methyl ether) (PVME) were chosen. Incorporation of styrene provides an effective way to modulate H-bonding interactions in the system. Linear viscoelastic data indicate that tTS fails for PS/PVME blends, whereas data obtained for different PVPh/PVME blends showed that tTS was obeyed a over wide temperature range. For PSVPh/PVME blends with low PSVPh content, tTS was successful. This suggests that the presence of alternating styrene and vinyl phenol units was insufficient for dynamic response decoupling. Further studies are in progress, with varying vinyl phenol content in PSVPh, to explore the influence of H-bonding on dynamic heterogeneity and blend dynamics.

  6. Controlled morphology of biodegradable polymer blends

    NASA Astrophysics Data System (ADS)

    Buddhiranon, Sasiwimon; Kyu, Thein

    2009-03-01

    Phase diagrams of biodegradable polymer blends containing poly(ɛ-caprolactone) (PCL) and poly(d,l-lactic acid) (PDLLA) having two different molecular weights were established by means of cloud point measurement and differential scanning calorimetry. Subsequently, the theoretical phase diagram was calculated self-consistently based on the combination of Flory-Huggins free energy for liquid-liquid phase separation and phase field free energy for crystal solidification. The phase diagrams thus obtained were LCST type or hour-glass type, which depended on molecular weight of PDLLA utilized. Guided by the phase diagram, the emerged morphology was determined as a function of blend concentration and temperature. It appears that the morphology control is feasible that ultimately affects the end-use property of PCL/PDLLA blends. A wide variety of morphology of biodegradable polymer may be developed with the porous structure and pore size to control scaffold porosity and the rate of drug delivery.

  7. Interfacial Slip in Polymer Blends with Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ortiz, Joseph; Jaber, Eihab; Gersappe, Dilip

    2010-03-01

    The interfacial region in polymer blends has been identified as a low viscosity region in which considerable slip can occur when the blend is subjected to shear forces. Here we use Molecular Dynamics simulations to establish the role that added nanoparticle fillers play in modifying the interfacial rheology. By choosing conditions under which the fillers are localized, either in the two phases or at the interface, we can look at the interplay between the strengthening capability of nanoparticles and the change in the interfacial slip behavior. We examine particle size, attraction between the particle and the polymer component, and the amount of filler in the material. Our studies are performed both above and below the point at which the filler particles form a transient network in the blend.

  8. Interfacial Slip in Polymer Blends with Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ortiz, Joseph; Jaber, Eihab; Gersappe, Dilip

    2009-03-01

    The interfacial region in polymer blends has been identified as a low viscosity region in which considerable slip can occur when the blend is subjected to shear forces. Here we use Molecular Dynamics simulations to establish the role that added nanoparticle fillers play in modifying the interfacial rheology. By choosing conditions under which the fillers are localized, either in the two phases or at the interface, we can look at the interplay between the strengthening capability of nanoparticles and the change in the interfacial slip behavior. We examine particle size, attraction between the particle and the polymer component, and the amount of filler in the material. Our studies are performed both above and below the point at which the filler particles form a transient network in the blend.

  9. Interfacial slip in polymer blends with nanoparticles

    NASA Astrophysics Data System (ADS)

    Ortiz, Joseph; Jaber, Eihab; Gersappe, Dilip

    2008-03-01

    The interfacial region in polymer blends has been identified as a low viscosity region in which considerable slip can occur when the blend is subjected to shear forces. Here, we use Molecular Dynamics simulations to establish the role that added nanofiller particles play in modifying the interfacial rheology. By choosing conditions under which the fillers are localized either in the two phases, or at the interface we can look at the interplay between the strengthening capability of nanoparticles, and the change in the interfacial slip behavior. We examine particle size, attraction between the particle and the polymer component and the amount of filler in the material. Our studies are performed both above and below the point at which the filler particles form a transient network in the blend.

  10. Wetting induced instabilities in miscible polymer blends

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel; Thomas, Katherine; Steiner, Ullrich; Poetes, Rosa; Morariu, Mihai

    2011-03-01

    The behaviour of miscible blends of polystyrene (PS)/poly(vinyl methyl ether)(PVME) of varying compositions has been investigated at temperatures where PS and PVME are miscible. The PVME is seen to enrich the polymer-air surface, forming a layer with a width that is comparable to the correlation length. Further heating close to the demixing temperature results in the formation of a capillary instabilities at the polymer surface exhibiting a spinodal-like pattern with a characteristic wavelength that depends on the blend composition. Formation of these instabilities is seen for all blend compositions. We propose that these wetting induced instabilities result from coupled height and composition fluctuations in the PVME enriched surface layer, driving the build-up of long wavelength fluctuations.

  11. Preparation and friction force microscopy measurements of immiscible, opposing polymer brushes.

    PubMed

    de Beer, Sissi; Kutnyanszky, Edit; Müser, Martin H; Vancso, G Julius

    2014-01-01

    Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone. PMID:25590429

  12. Preparation and Friction Force Microscopy Measurements of Immiscible, Opposing Polymer Brushes

    PubMed Central

    de Beer, Sissi; Kutnyanszky, Edit; Müser, Martin H.; Vancso, G. Julius

    2014-01-01

    Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone. PMID:25590429

  13. Conformations of polyaniline in polymer blends

    NASA Astrophysics Data System (ADS)

    Laska, Jadwiga

    2004-09-01

    Conformational studies of polyaniline (PANi) in its doped, i.e. conducting form, have been performed. The main goal of this study was to determine how the conformations depend on a dopant, solvent and a polymer matrix in polyaniline blends with classic polymers such as poly(methyl methacrylate), polystyrene, cellulose derivatives, polyamides, etc. The obtained results shown that even slight changes in polymer conformations can be easily checked by means of UV-vis-NIR or NIR only spectroscopy. On the basis of the described results, prediction of macroscopic properties of PANi samples, for example, conductivity, at the stage of preparation is possible.

  14. Engineering thermal conductivity in polymer blends

    NASA Astrophysics Data System (ADS)

    Rashidi, Vahid; Coyle, Eleanor; Kieffer, John; Pipe, Kevin

    Weak inter-chain bonding in polymers is believed to be a bottleneck for both thermal conductivity and mechanical strength. Most polymers have low thermal conductivity (~0.1 W/mK), hindering their performance in applications for which thermal management is critical (e.g., electronics packaging). In this work, we use computational methods to study how hydrogen bonding between polymer chains as well as water content can be used to engineer thermal transport in bulk polymers. We examine how changes in the number of hydrogen bonds, chain elongation, density, and vibrational density of states correlate with changes in thermal conductivity for polymer blends composed of different relative constituent fractions. We also consider the effects of bond strength, tacticity, and polymer chain mass. For certain blend fractions, we observe large increases in thermal conductivity, and we analyze these increases in terms of modifications to chain chemistry (e.g., inter-chain bonding) and chain morphology (e.g., chain alignment and radius of gyration). We observe that increasing the number of hydrogen bonds in the system results in better packing as well as better chain alignment and elongation that contribute to enhanced thermal conductivity. The Air Force Office of Scientific Research, Grant No. FA9550-14-1-0010.

  15. Colloidal aggregation in polymer blends.

    PubMed

    Benhamou, M; Ridouane, H; Hachem, E-K; Derouiche, A; Rahmoune, M

    2005-06-22

    We consider here a low-density assembly of colloidal particles immersed in a critical polymer mixture of two chemically incompatible polymers. We assume that, close to the critical point of the free mixture, the colloids prefer to be surrounded by one polymer (critical adsorption). As result, one is assisted to a reversible colloidal aggregation in the nonpreferred phase, due the existence of a long-range attractive Casimir force between particles. This aggregation is a phase transition driving the colloidal system from dilute to dense phases, as the usual gas-liquid transition. We are interested in a quantitative investigation of the phase diagram of the immersed colloids. We suppose that the positions of particles are disordered, and the disorder is quenched and follows a Gaussian distribution. To apprehend the problem, use is made of the standard phi(4) theory, where the field phi represents the composition fluctuation (order parameter), combined with the standard cumulant method. First, we derive the expression of the effective free energy of colloids and show that this is of Flory-Huggins type. Second, we find that the interaction parameter u between colloids is simply a linear combination of the isotherm compressibility and specific heat of the free mixture. Third, with the help of the derived effective free energy, we determine the complete shape of the phase diagram (binodal and spinodal) in the (Psi,u) plane, with Psi as the volume fraction of immersed colloids. The continuous "gas-liquid" transition occurs at some critical point K of coordinates (Psi(c) = 0.5,u(c) = 2). Finally, we emphasize that the present work is a natural extension of that, relative to simple liquid mixtures incorporating colloids. PMID:16035822

  16. Poly(L-lactide) and poly(butylene succinate) immiscible blends: from electrospinning to biologically active materials.

    PubMed

    Stoyanova, Nikoleta; Paneva, Dilyana; Mincheva, Rosica; Toncheva, Antoniya; Manolova, Nevena; Dubois, Philippe; Rashkov, Iliya

    2014-08-01

    For the first time the preparation of defect-free fibers from immiscible blends of high molar mass poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) in the whole range of the polyester weight ratios is shown. Electrospinning using the solvent-nonsolvent approach proved most appropriate. Moreover, electrospinning revealed crucial for the obtaining of PLA/PBS materials maintaining integrity. DSC and XRD analyses attested for a plasticizing effect and for increased PLA crystallinity at PBS addition to PLA. The mechanical properties of the PLA/PBS mats were controlled by the alignment of the fibers and changed from plastic to brittle materials upon increasing the PBS content. Drug loading and tests against pathogenic microorganisms suggested that the obtained mats can find application as antibacterial fibrous materials. PMID:24907744

  17. The solid state blending of polymers via cryogenic mechanical alloying: Effects on blend morphology and thermal transitions

    NASA Astrophysics Data System (ADS)

    Schexnaydre, Ryan J.

    Preliminary investigations of mechanical attrition (MA) resulted in particle size reduction, amorphization of semicrystalline polymers, and relatively insignificant effects on PEO or PVP molecular weight distributions. Cryogenic mechanical alloying (CMA) was extensively used to blend immiscible polymers. Globar FT-IR confirmed that no chemical compatibilizaton occurred during CMA, while a novel chemical mapping protocol developed with synchrotron FT-IR microspectroscopy allowed for qualitative and quantitative estimation of blend heterogeneities. The uniqueness of the PS/PET system led to extensive study of domain characteristics, the extent of compatibilization, and changes in PET crystallizability with CMA. Various PS/PET blend compositions (nominal 30, 50, and 70 weight percent PET) were processed by CMA and extrusion and studied comparatively. CMA compatibilized PS and PET more efficiently and controllably than extrusion. These results agreed with trends observed for domain size distribution, and CMA also created nonspheroidal domains, i.e., an efficient way to increase interphase contact. CMA, in effect, created a rigid amorphous PET phase that served the dual purpose of enhancing compatibility and stabilizing the morphology during post-CMA heating.

  18. Polyester-grafted cellulose nanowhiskers: a new approach for tuning the microstructure of immiscible polyester blends.

    PubMed

    Goffin, Anne-Lise; Habibi, Youssef; Raquez, Jean-Marie; Dubois, Philippe

    2012-07-25

    Cellulose nanowhiskers (CNW), extracted from ramie fibers by sulfuric acid hydrolysis, were used as substrates to compatibilize binary polyester blends containing 50/50 (w/w) polycaprolactone (PCL) and polylactide (PLA). To tailor their interfacial energy and fine-tune their adhesion with the components of the blend, CNW were subjected to different surface polyester grafting by the means of ring-opening polymerization. PCL and PLA homopolyesters as well as P(CL-b-LA) diblock copolymers were successfully grafted on the surface of CNW and the resulting substrates were loaded into the PCL/PLA blend by melt-blending. Morphological and rheological analyses were conducted in order to evaluate the ability of these nanoparticles to enhance the compatibility of PCL/PLA blends. Our results showed that unmodified CNW as well as (co)polyester-grafted CNW improved, at different levels, the compatibility of PCL/PLA blends by preventing from coalescence the dispersed domains. (co)polyester-grafted CNW also enhance the mechanical properties of the blend, which can be explained by the formation of cocontinuous phase morphology at the interface. Our findings suggest that (co)polyester-grafted CNW, especially CNW-g-P(CL-b-LA) diblock copolymers, can serve as a suitable nanofiller to tune the compatibility of PCL/PLA blends and their related microstructures. PMID:22738142

  19. Engineering Polymer Blends for Impact Damage Mitigation

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Smith, Russell W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Structures containing polymers such as DuPont's Surlyn® 8940, demonstrate puncture healing when impacted by a 9 millimeter projectile traveling from speeds near 300 meters per second (1,100 feet per second) to hypervelocity impacts in the micrometeoroid velocity range of 5 kilometers per second (16,000 feet per second). Surlyn® 8940 puncture heals over a temperature range of minus 30 degrees Centigrade to plus 70 degrees Centigrade and shows potential for use in pressurized vessels subject to impact damage. However, such polymers are difficult to process and limited in applicability due to their low thermal stability, poor chemical resistance and overall poor mechanical properties. In this work, several puncture healing engineered melt formulations were developed. Moldings of melt blend formulations were impacted with a 5.56 millimeter projectile with a nominal velocity of 945 meters per second (3,100 feet per second) at about 25 degrees Centigrade, 50 degrees Centigrade and 100 degrees Centigrade, depending upon the specific blend being investigated. Self-healing tendencies were determined using surface vacuum pressure tests and tensile tests after penetration using tensile dog-bone specimens (ASTM D 638-10). For the characterization of tensile properties both pristine and impacted specimens were tested to obtain tensile modulus, yield stress and tensile strength, where possible. Experimental results demonstrate a range of new puncture healing blends which mitigate damage in the ballistic velocity regime.

  20. Spherulite Growth in Polymer-Nanoparticle Blends

    NASA Astrophysics Data System (ADS)

    Ungar, Goran; Lee, Eunwoo; Zhang, Ruibin; Jang, Jyongsik

    2012-02-01

    Blends of polymers with inorganic nanoparticles (NP) were studied by polarized optical and fluorescence microscopy. Silica nanoparticles with a range of diameters from 7 to 100 nm were used. Neat NPs as well as NPs surface-functionalized with a range of groups from strongly to weakly interacting, were blended with poly(ethylene oxide). A purpose-built T-jump microscopy cell was used allowing rapid temperature equilibration at high supercoolings. Lautitzen-Hoffman type analysis revealed that, although the NPs slow down the standard growth rate G0in the order PEO - Me-treated SiO2 - untreated SiO2 - COOH-treated SiO2 - NH2-treated SiO2, the surface free energy σ decreases in the same order. This suggests that the NPs reduce macromolecular mobility, but at the same time help reduce the secondary nucleation barrier to some extent. Other polymers and NP types, including quantum dots, were also studied. The work also examines the spatial distribution of NPs in the spherulitic polymer nanocomposites.

  1. Miscibility studies on blends containing telechelic supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Wrue, Michelle; Anthamatten, Mitchell

    2007-03-01

    The incorporation of associating end groups influences the phase behavior of polymer blends. We are studying the effects of the incorporation of strong, site-selective, hydrogen-bonding groups in various polymer blend systems. We have synthesized several telechelic ureidopyrimidone (UPy) functionalized polymers. These self-complimentary functional groups have the ability to form four hydrogen bonds. When these groups are incorporated into a polymer blend, the miscibility is altered. Laser light scattering has been employed to study the phase behavior of these systems. Data from systems in which only one polymer was functionalized indicate a reduced miscibility when compared with the unfunctionalized parent blend. We are also investigating the effect of functionalizing both polymers of the blend with UPy end groups. We predict enhanced miscibility in such systems.

  2. Compatibility and Impact Resistance of Biodegradable Polymer Blends Using Clays and Natural Nanotubes

    NASA Astrophysics Data System (ADS)

    Guo, Yichen; Yuan, Xue; Zuo, Xianghao; Rafailovich, Miriam

    Montmorillonite clays and Halloysite nanotubes (HNTs) were modified by surface adsorption of resorcinol di (phenyl phosphate) (RDP) oligomers. Biodegradable poly (lactic acid) (PLA) and poly (butylene adipate-co-butylene terephthalate) (PBAT) polymers were blended together with RDP coated clays and tubes. TEM images of thin sections indicated that even though both RDP coated clay nanotubes and platelets located on the interfacial region between two immiscible polymers, only the platelets, having the larger aspect ratio, were able to reduce the PBAT domain sizes. The ability of clay platelets to partially compatibilize the blend was further confirmed by the dynamic mechanical analysis (DMA) which showed that the glass transition temperatures of two polymers tend to shift closer. Izod impact testing demonstrated that the rubbery PBAT phase greatly increased the impact strength of the unfilled blend, but addition of only 5% of clay filler decrease the impact strength by nearly 50% while a small increase was observed with nanotubes at that concentration. A simple model is proposed. The clay platelets are observed to cover the interfacial area. Although they are effective at reducing the interfacial tension, they block the entanglements between two polymer phase and increase the overall brittleness. On the other hand, the HNTs are observed to lie perpendicular to the interface, which makes them less effective in reducing interfacial tension, but far more effective at retarding micro-crack propagation.

  3. Understanding Polymorphism Formation in Electrospun Fibers of Immiscible Poly(vinylidene fluoride) Blends

    SciTech Connect

    G Zhong; L Zhang; R Su; K Wang; H Fong; L Zhu

    2011-12-31

    Effects of electric poling, mechanical stretching, and dipolar interaction on the formation of ferroelectric ({beta} and/or {gamma}) phases in poly(vinylidene fluoride) (PVDF) have been studied in electrospun fibers of PVDF/polyacrylonitrile (PAN) and PVDF/polysulfone (PSF) blends with PVDF as the minor component, using wide-angle X-ray diffraction and Fourier transform infrared techniques. Experimental results of as-electrospun neat PVDF fibers (beaded vs. bead-free) showed that mechanical stretching during electrospinning, rather than electric poling, was effective to induce ferroelectric phases. For as-electrospun PVDF blend fibers with the non-polar PSF matrix, mechanical stretching during electrospinning again was capable of inducing some ferroelectric phases in addition to the major paraelectric ({alpha}) phase. However, after removing the mechanical stretching in a confined melt-recrystallization process, only the paraelectric phase was obtained. For as-electrospun PVDF blend fibers with the polar (or ferroelectric) PAN matrix, strong intermolecular interactions between polar PAN and PVDF played an important role in the ferroelectric phase formation in addition to the mechanical stretching effect during electrospinning. Even after the removal of mechanical stretching through the confined melt-recrystallization process, a significant amount of ferroelectric phases persisted. Comparing the ferroelectric phase formation between PVDF/PSF and PVDF/PAN blend fibers, we concluded that the local electric field-dipole interactions were the determining factor for the nucleation and growth of polar PVDF phases.

  4. Enhancing the Mechanical Properties of Biodegradable Polymer Blends Using Tubular Nanoparticle Stitching of the Interfaces.

    PubMed

    Guo, Yichen; He, Shan; Yang, Kai; Xue, Yuan; Zuo, Xianghao; Yu, Yingjie; Liu, Ying; Chang, Chung-Chueh; Rafailovich, Miriam H

    2016-07-13

    "Green" polymer nanocomposites were made by melt blending biodegradable poly(lactic acid) (PLA) and poly(butylene adipate-co-butylene terephthalate) (PBAT) with either montmorillonite clays (Cloisite Na(+)), halloysite nanotubes (HNTs), the resorcinol diphenyl phosphate (RDP)-coated Cloisite Na(+), and coated HNTs. A technique for measuring the work of adhesion (Wa) between nanoparticles and their matrixes was used to determine the dispersion preference of the nanoparticles in the PLA/PBAT blend system. Transmission electron microscopy (TEM) images of thin sections indicated that even though both RDP-coated nanotubes and clay platelets segregated to the interfacial regions between the two immiscible polymers, only the platelets, having the larger specific surface area, were able to reduce the PBAT domain sizes. The ability of clay platelets to partially compatibilize the blend was further confirmed by the dynamic mechanical analysis (DMA) which showed that the glass transition temperatures of two polymers tended to shift closer. No shift was observed with either coated or uncoated HNTs samples. Izod impact testing demonstrated that the rubbery PBAT phase greatly increased the impact strength of the unfilled blend, but addition of only 5% of treated clay decreased the impact strength by nearly 50%. On the other hand, an increase of 9% relative to the unfilled blend sample was observed with the addition of 5% treated nanotubes. TEM cross-section analysis confirmed that the RDP-coated clay platelets covered most of the interfacial area. On one hand, this enabled them to reduce the interfacial tension effectively; on the other hand, it prevented chain entanglements across the phase boundary and increased the overall brittleness, which was confirmed by rheology measurements. In contrast, the RDP-coated HNTs were observed to lie perpendicular to the interface, which made them less effective in reducing interfacial tension but encouraged interfacial entanglements across

  5. A New Strategy of Lithography Based on Phase Separation of Polymer Blends

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Liu, Long; Zhuang, Zhe; Chen, Xin; Ni, Mengyang; Li, Yang; Cui, Yushuang; Zhan, Peng; Yuan, Changsheng; Ge, Haixiong; Wang, Zhenlin; Chen, Yanfeng

    2015-10-01

    Herein, we propose a new strategy of maskless lithographic approach to fabricate micro/nano-porous structures by phase separation of polystyrene (PS)/Polyethylene glycol (PEG) immiscible polymer blend. Its simple process only involves a spin coating of polymer blend followed by a development with deionized water rinse to remove PEG moiety, which provides an extremely facile, low-cost, easily accessible nanofabrication method to obtain the porous structures with wafer-scale. By controlling the weight ratio of PS/PEG polymer blend, its concentration and the spin-coating speed, the structural parameters of the porous nanostructure could be effectively tuned. These micro/nano porous structures could be converted into versatile functional nanostructures in combination with follow-up conventional chemical and physical nanofabrication techniques. As demonstrations of perceived potential applications using our developed phase separation lithography, we fabricate wafer-scale pure dielectric (silicon)-based two-dimensional nanostructures with high broadband absorption on silicon wafers due to their great light trapping ability, which could be expected for promising applications in the fields of photovoltaic devices and thermal emitters with very good performances, and Ag nanodot arrays which possess a surface enhanced Raman scattering (SERS) enhancement factor up to 1.64 × 108 with high uniformity across over an entire wafer.

  6. A New Strategy of Lithography Based on Phase Separation of Polymer Blends.

    PubMed

    Guo, Xu; Liu, Long; Zhuang, Zhe; Chen, Xin; Ni, Mengyang; Li, Yang; Cui, Yushuang; Zhan, Peng; Yuan, Changsheng; Ge, Haixiong; Wang, Zhenlin; Chen, Yanfeng

    2015-01-01

    Herein, we propose a new strategy of maskless lithographic approach to fabricate micro/nano-porous structures by phase separation of polystyrene (PS)/Polyethylene glycol (PEG) immiscible polymer blend. Its simple process only involves a spin coating of polymer blend followed by a development with deionized water rinse to remove PEG moiety, which provides an extremely facile, low-cost, easily accessible nanofabrication method to obtain the porous structures with wafer-scale. By controlling the weight ratio of PS/PEG polymer blend, its concentration and the spin-coating speed, the structural parameters of the porous nanostructure could be effectively tuned. These micro/nano porous structures could be converted into versatile functional nanostructures in combination with follow-up conventional chemical and physical nanofabrication techniques. As demonstrations of perceived potential applications using our developed phase separation lithography, we fabricate wafer-scale pure dielectric (silicon)-based two-dimensional nanostructures with high broadband absorption on silicon wafers due to their great light trapping ability, which could be expected for promising applications in the fields of photovoltaic devices and thermal emitters with very good performances, and Ag nanodot arrays which possess a surface enhanced Raman scattering (SERS) enhancement factor up to 1.64 × 10(8) with high uniformity across over an entire wafer. PMID:26515790

  7. A New Strategy of Lithography Based on Phase Separation of Polymer Blends

    PubMed Central

    Guo, Xu; Liu, Long; Zhuang, Zhe; Chen, Xin; Ni, Mengyang; Li, Yang; Cui, Yushuang; Zhan, Peng; Yuan, Changsheng; Ge, Haixiong; Wang, Zhenlin; Chen, Yanfeng

    2015-01-01

    Herein, we propose a new strategy of maskless lithographic approach to fabricate micro/nano-porous structures by phase separation of polystyrene (PS)/Polyethylene glycol (PEG) immiscible polymer blend. Its simple process only involves a spin coating of polymer blend followed by a development with deionized water rinse to remove PEG moiety, which provides an extremely facile, low-cost, easily accessible nanofabrication method to obtain the porous structures with wafer-scale. By controlling the weight ratio of PS/PEG polymer blend, its concentration and the spin-coating speed, the structural parameters of the porous nanostructure could be effectively tuned. These micro/nano porous structures could be converted into versatile functional nanostructures in combination with follow-up conventional chemical and physical nanofabrication techniques. As demonstrations of perceived potential applications using our developed phase separation lithography, we fabricate wafer-scale pure dielectric (silicon)-based two-dimensional nanostructures with high broadband absorption on silicon wafers due to their great light trapping ability, which could be expected for promising applications in the fields of photovoltaic devices and thermal emitters with very good performances, and Ag nanodot arrays which possess a surface enhanced Raman scattering (SERS) enhancement factor up to 1.64 × 108 with high uniformity across over an entire wafer. PMID:26515790

  8. The structure of a polymer blend in a volume grating

    NASA Astrophysics Data System (ADS)

    Birnkrant, Michael; Li, Christopher; Natarajan, Lalgudi V.; Tondiglia, Vincent P.; Sutherland, Richard L.; Lloyd, Pamela F.; Jakubiak, Rachel; Bunning, Timothy J.

    2008-08-01

    Holographic polymerization (H-P) has been used to fabricate polymer-dispersed liquid crystals, block copolymers and pattern inert nanoparticles. In this article, one-dimensional grating structures of Norland resin and a polymer blend were achieved using the H-P technique. A reflection grating structure known as a Bragg reflector (BR) was fabricated. The hierarchical structure and morphology of the BR were studied using synchrotron X-ray, polarized light microscopy and transmission electron microscopy. The structure of the BR containing a polymer blend displayed lamellae structures formed with periodicity of 200 nm. Polycaprolactone and Poly(L-lactide) crystals were found to be confined in ~ 60 nm thick layers in the BR. The polymer chains tended to orient themselves parallel to the grating when the two polymers where blended together. The phase separation and structure of the polymer blend inside the H-P grating could be of great interest for multifunctional optical sensors or devices.

  9. Enhancing distributive mixing of immiscible polyethylene/thermoplastic starch blend through zeolite ZSM-5 compounding sequence.

    PubMed

    Thipmanee, Ranumas; Lukubira, Sam; Ogale, Amod A; Sane, Amporn

    2016-01-20

    The aim of this work was to explore the effect of zeolite ZSM-5 (ZSM5) incorporation sequence on the phase morphology, microstructure, and performance of polyethylene/thermoplastic starch (PE/TPS) films. Two processing sequences were used for preparing PE/TPS/ZSM5 composites at a weight ratio of PE to TPS of 70:30 and ZSM5 concentrations of 1-5 wt%: (i) melt compounding of PE with ZSM5 prior to melt blending with TPS (SI); and (ii) TPS was compounded with ZSM5 prior to blending with PE (SII). Distributive mixing and mechanical properties of PE/TPS blend were greatly enhanced when ZSM5 was incorporated via SII. These were caused by both the higher affinity between PE and ZSM5, compared to that of TPS and ZSM5, and the reduction of TPS viscosity after compounding with ZSM5, leading to migration of ZSM5 from TPS dispersed phase toward PE matrix and increase in breakup of TPS droplets during SII sequence. PMID:26572416

  10. Effects of the Biodegradation on Biodegradable Polymer Blends and Polypropylene

    NASA Astrophysics Data System (ADS)

    Pereira, R. C. T.; Franchetti, S. M. M.; Agnelli, J. A. M.; Mattoso, L. H. C.

    2008-08-01

    The large use of plastics in the world generates a large amount of waste which persists around 200 years in the environment. To minimize this effect is important to search some new polymer materials: the blends of biodegradable polymers with synthetic polymers. It is a large area that needs an intensive research to investigate the blends properties and its behavior face to the different treatments to aim at the biodegradation. The blends used in this work are: some biodegradable polymers such as: poly(hydroxybutyrate) (PHB) and poly(ɛ-polycaprolactone) (PCL) with a synthetic polymer, polypropylene (PP), in lower concentration. These blends were prepared using an internal mixer (Torque Rheometer), and pressed. These films were submitted to fungus biotreatment. The films analyses will be carried out by Fourier Transform Infrared (FTIR), UV-Vis absorption (UV-Vis), Scanning Electronic Microscopy (SEM), DSC and TGA.

  11. Electric field-mediated processing of polymer blend solutions

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Krause, S.

    1993-01-01

    Multiphase polymer blends in which the minor phases are oriented in a desired direction may demonstrate unique optical, electrical, and mechanical properties. While morphology development in shear fields was studied extensively, little work has focused on effects of electric fields on phase structure. The use of electric fields for blend morphology modulation with particular attention given to solvent casting of blends in d.c. fields was explored. Both homopolymer blends (average phase sizes of several microns) and diblock copolymer/homopolymer blends (average phase sizes of hundreds of Angstroms) were investigated. Summarized are important observations and conclusions.

  12. Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation.

    PubMed

    Yong, Wai Fen; Lee, Zhi Kang; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2016-08-01

    Polyphenylenesulfone (PPSU) and sulfonated polyphenylenesulfone (sPPSU) are widely used for liquid separations in the medical and food industries. However, their potential applications for gas separation have not been studied extensively owing to their low intrinsic gas permeability. We report here for the first time that blending with sPPSU can significantly improve the gas separation performance of highly permeable polymers of intrinsic microporosity (PIMs), specifically PIM-1, because of the strong molecular interactions of the sulfonic acid groups of sPPSU with CO2 and O2 . In addition, a novel co-solvent system has been discovered to overcome the immiscibility of these polymers. The presence of a higher degree of sulfonation in sPPSU results in better gas separation performance of the blend membranes close to or above the Robeson upper bound lines for O2 /N2 , CO2 /N2 and CO2 /CH4 separations. Interestingly, the blend membranes have comparable gas selectivity to sPPSU even though their sPPSU content is only 5-20 wt %. Moreover, they also display improved anti-plasticization properties up to 30 atm (3 MPa) using a binary CO2 /CH4 feed gas. The newly developed PIM-1/sPPSU membranes are potential candidates for air separation, natural gas separation, and CO2 capture. PMID:27332951

  13. Photothermal and morphological characterization of PLA/PCL polymer blends

    NASA Astrophysics Data System (ADS)

    Correa-Pacheco, Z. N.; Jiménez-Pérez, J. L.; Sabino, M. A.; Cruz-Orea, A.; Loaiza, M.

    2015-09-01

    Nowadays, some synthetic polymers have been replaced by biodegradable polymers in order to avoid environmental contamination. Among these biodegradables polymers, aliphatic polyesters such as polylactic acid (PLA) and polycaprolactone (PCL) have been widely used. In the present study, solvent-casting films of PLA, PCL and polymer blends with and without compatibilizer (PLA grafted with maleic anhydride) were prepared. The thermal diffusivity ( α) of each sample was obtained by using the open photoacoustic cell technique. Morphology and thermal properties were determined by using scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry (DSC), respectively. The blends showed lower thermal diffusivity compared to pure polymers. However, when the compatibilizer was used, the highest value of thermal diffusivity was obtained. Also, cold crystallization with the highest value of enthalpy of fusion was observed for the compatibilized sample, which was revealed by DSC. To our knowledge, this is the first time that the thermal diffusivity of these biodegradable polymer blends is reported.

  14. Photonic polymer-blend structures and method for making

    DOEpatents

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  15. Host Plant Odors Represent Immiscible Information Entities - Blend Composition and Concentration Matter in Hawkmoths

    PubMed Central

    Haverkamp, Alexander; Hansson, Bill S.; Knaden, Markus

    2013-01-01

    Host plant choice is of vital importance for egg laying herbivorous insects that do not exhibit brood care. Several aspects, including palatability, nutritional quality and predation risk, have been found to modulate host preference. Olfactory cues are thought to enable host location. However, experimental data on odor features that allow choosing among alternative hosts while still in flight are not available. It has previously been shown that M. sexta females prefer Datura wrightii compared to Nicotiana attenuata. The bouquet of the latter is more intense and contains compounds typically emitted by plants after feeding-damage to attract the herbivore’s enemies. In this wind tunnel study, we offered female gravid hawkmoths (Manduca sexta) odors from these two ecologically relevant, attractive, non-flowering host species. M. sexta females preferred surrogate leaves scented with vegetative odors form both host species to unscented control leaves. Given a choice between species, females preferred the odor bouquet emitted by D. wrightii to that of N. attenuata. Harmonizing, i.e. adjusting, volatile intensity to similar levels did not abolish but significantly weakened this preference. Superimposing, i.e. mixing, the highly attractive headspaces of both species, however, abolished discrimination between scented and non-scented surrogate leaves. Beyond ascertaining the role of blend composition in host plant choice, our results raise the following hypotheses. (i) The odor of a host species is perceived as a discrete odor ‘Gestalt’, and its core properties are lost upon mixing two attractive scents (ii). Stimulus intensity is a secondary feature affecting olfactory-based host choice (iii). Constitutively smelling like a plant that is attracting herbivore enemies may be part of a plant’s strategy to avoid herbivory where alternative hosts are available to the herbivore. PMID:24116211

  16. White polymer light emitting diode using blend of fluorescent polymers

    NASA Astrophysics Data System (ADS)

    Prakash, Asit; Katiyar, Monica

    2012-10-01

    White polymer light emitting diodes (WPLEDs) are fabricated using poly(9,9-dioctylfluorene-2,7-diyl) (PFO) as host and poly [2-methoxy-5-(2'-ethyl-hexyloxy)]-1,4-phenylene vinylene (MEH-PPV) as guest material having structure ITO(150nm)/PEDOT:PSS(40nm)/PFO:MEH-PPV(75-90nm)/Ca(20nm)/Al(120nm). Photoluminescence spectra of blends with different MEH-PPV concentration reveal that at low doping level of MEH-PPV, blue emission from PFO and yellow emission from MEH-PPV co-exist due to incomplete energy transfer from PFO to MEH-PPV. Surface morphology of the spin coated blend films with different concentrations of MEH-PPV were studied using atomic force microscopy (AFM). It shows segregation/agglomeration of polymers at higher concentration of MEH-PPV (~2.0 wt %). Finally, WPLEDs, having MEH-PPV in the range of 0.8-2.0 wt%, were fabricated. We obtained best device at 0.8 wt% of MEH-PPV, it shows white light with Commission Internationale de l'Enclairage (CIE) coordinate of (0.30, 0.38). Electroluminescence turn-on voltage of the device was 4.0 V and maximum luminance reaches 1234 cd/m2 at 8.5 V. The luminous current and power efficiency at current density of 22 mA/cm2 were found to be 2.3 cd/A and 1.1 lm/W, respectively.

  17. Reactive extrusion of epsilon-caprolactone polymers and application of poly(lauryl lactam-b-caprolactone) as a compatibilizing agent in blends containing poly(vinyl chloride)

    NASA Astrophysics Data System (ADS)

    Kim, Byong Jun

    In this dissertation, we investigate the continuous polymerization of epsilon-caprolactone (CL) and copolymerization of CL with epsilon-caprolactam (CA), o-lauryl lactam (LA), and styrene (ST) in a modular intermeshing co-rotating twin screw extruder. We consider the variables of temperature profile, screw speed, monomer feed rate, the ratio of monomer to initiator, and feeding order of co-monomers on reactive extrusion of CL polymers. Associated with the reactive extrusion of CL, we also perform the engineering analysis of molecular weight increase and shear-induced molecular weight reduction after polymerization of CL during the reactive extrusion process. Specially designed block copolymers have played a role as compatibilizing agents in the system of immiscible polymer blends. We apply the LA-CL block copolymer (P(LA-b-CL)) produced by reactive extrusion as a compatibilizing agent in immiscible polymer blend systems: (i) poly(vinyl chloride) (PVC)/polyamide 12(PA12), (ii) PVC/polypropylene (PP), and (iii) PVC/maleic anhydride (MA)-modified ethylene-propylene-non-conjugated diene elastomer (MA-EPDM). We investigate the mechanical and thermal properties of (i) PVC/PA12 blend compatibilized with P(LA-b-CL), (ii) PVC/PP blend compatibilized with P(LA-b-CL)/PA12/MA-PP, and (iii) PVC/MA-EPDM blend compatibilized with P(LA-b-CL)/PA12.

  18. Blends of thermoplastic and elastomeric matrices with liquid crystalline polymers

    SciTech Connect

    Roggero, A.; Pedretti, U.; La Mantia, F.P.

    1995-12-01

    Liquid crystalline polymers (LCPs) present a unique balance of properties and, when added to thermoplastic (TP) or elastomeric (EL) matrices, can impart to the relevant blends specific properties that can be utilized for specific applications. As regards TP/LCP blends, the proclivity of LCPs to form fibrous structures and their low melt viscositiy allowed to obtain blends reinforced and easier to process than the pure TPs: particularly, depending on the LCP-TP structures and on the processing parameters, materials with improved processability, high modulus, enhanced impact strength and creeping resistance were obtained. As regards EL/LCP blends, that based on fluoroelastomers were in depth investigated and offered outstanding properties.

  19. Positron annihilation lifetime study of interfaces in ternary polymer blends

    NASA Astrophysics Data System (ADS)

    Meghala, D.; Ramya, P.; Pasang, T.; Raj, J. M.; Ranganathaiah, C.; Williams, J. F.

    2013-06-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (αij) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, αeff, was introduced to predict the overall miscibility of ternary blends.

  20. Controlled release of tocopherols from polymer blend films

    NASA Astrophysics Data System (ADS)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  1. Surface enrichment in polymer blends: A neutron reflection test

    SciTech Connect

    Composto, R.J.; Stein, R.S.; Kramer, E.J.; Jones, R.A.L.; Mansour, A.; Karim, A.; Felcher, G.P.

    1988-07-01

    In polymer melts of protonated and deuterated polystyrene (PS and d-PS) surface segregation of the d-PS occurs at temperatures and compositions in the one phase region close to the coexistence curve for phase separation. A neutron reflection test on a polymer blend containing 10% volume fraction of d-PS has shown that a thermal treatment caused a surface enrichment of d-PS up to 28%. The experiment demonstrates that neutron reflection measurements can generate detailed information on surface enrichment phenomena in polymer blends.

  2. Quantifying the Effect of Polymer Blending through Molecular Modelling of Cyanurate Polymers

    PubMed Central

    Crawford, Alasdair O.; Hamerton, Ian; Cavalli, Gabriel; Howlin, Brendan J.

    2012-01-01

    Modification of polymer properties by blending is a common practice in the polymer industry. We report here a study of blends of cyanurate polymers by molecular modelling that shows that the final experimentally determined properties can be predicted from first principles modelling to a good degree of accuracy. There is always a compromise between simulation length, accuracy and speed of prediction. A comparison of simulation times shows that 125ps of molecular dynamics simulation at each temperature provides the optimum compromise for models of this size with current technology. This study opens up the possibility of computer aided design of polymer blends with desired physical and mechanical properties. PMID:22970230

  3. Reaction Kinetics at the Interface between Immiscible Polymers: Competition between Diffusivity and Reactivity

    NASA Astrophysics Data System (ADS)

    Yuan, Guangcui; Wang, Mingji; Han, Charles C.

    2012-02-01

    Reactive blending processes at the interface between deuterated bisphenol-A polycarbonate (dPC) and amorphous polyamide (aPA) bilayer film were characterized by Fourier transform infrared (FTIR) and neutron reflectivity (NR). It was found that the aminolysis occurred during thermal annealing at 160 -- 180 ^oC, inducing simultaneously scission of dPC chains and formation of dPC-aPA copolymer chains. Two or three stages of reaction kinetics as a function of time were probed by FTIR, depending on the competition between chain diffusivity and chemical reactivity for sample annealing at different temperatures. The late stage was controlled by potential barrier arising from previously formed copolymer, and it appeared earlier when annealing at 160 ^oC than that at higher temperatures. A phenomenon of transient interfacial instability which origin was ascribed to the mismatching in mobility of the polymer chains on either side of the interface was observed by NR. The copolymer once formed, remains localized at the interface and inhibits the diffusion of other reactive polymer chains still present in the bulk phase toward the interface.

  4. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOEpatents

    Skotheim, Terje

    1984-01-01

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  5. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOEpatents

    Skotheim, T.

    A polymer blend is disclosed of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  6. Thermal characterization of polymer blends prepared by reactive blending of PC and PET

    SciTech Connect

    Fiorini, M.; Marchese, P.; Pilati, F.

    1996-12-31

    Several Poly(ethylene terephthalate)-Bisphenol A polycarbonate (PC/PET) blends were prepared by reactive blending poly(ethylene terephthalate) and Bisphenol A polycarbonate in a batch mixer in the presence of ester exchange catalysts with different catalytic activity, such as Titanium, Terbium, Cerium, Samarium, Europium and Calcium/Antimony compounds. The catalytic activity and mixing time have been correlated with the extent of ester-carbonate exchange reactions and hence the influence of the PET/PC block copolymers formed during the blending on miscibility has been investigated by differential scanning calorimetry. The results of the thermal characterization showed that blends with a single glass transition temperature can be prepared at different mixing time determined by the ester-carbonate exchange reaction activity of the different catalysts employed. In addition, the Tg`s values for the miscible blends were lower than those predicted by the widely used Flory-Fox equation, except from the blends prepared with the Titanium catalyst. Crystallization of PET in PC/PET blends was also investigated. Thermal analysis is a powerful technique that can be applied to the determination of miscibility in polymer blends. In this communication, the results of a differential scanning calorimetry (DSC) study on blends prepared by reactive blending PC and PET are reported.

  7. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate].

    PubMed

    Ojijo, Vincent; Sinha Ray, Suprakas; Sadiku, Rotimi

    2012-12-01

    Binary blends of two biodegradable polymers: polylactide (PLA), which has high modulus and strength but is brittle, and poly[(butylene succinate)-co-adipate] (PBSA), which is flexible and tough, were prepared through batch melt mixing. The PLA/PBSA compositions were 100/0, 90/10, 70/30, 60/40, 50/50, 40/60, 30/70, 10/90, and 0/100. Fourier-transform infrared measurements revealed the absence of any chemical interaction between the two polymers, resulting in a phase-separated morphology as shown by scanning electron microscopy (SEM). SEM micrographs showed that PLA-rich blends had smaller droplet sizes when compared to the PBSA-rich blends, which got smaller with the reduction in PBSA content due to the differences in their melt viscosities. The interfacial area of PBSA droplets per unit volume of the blend reached a maximum in the 70PLA/30PBSA blend. Thermal stability and mechanical properties were not only affected by the composition of the blend, but also by the interfacial area between the two polymers. Through differential scanning calorimetry, it was shown that molten PBSA enhanced crystallization of PLA while the stiff PLA hindered cold crystallization of PBSA. Optimal synergies of properties between the two polymers were found in the 70PLA/30PBSA blend because of the maximum specific interfacial area of the PBSA droplets. PMID:23148691

  8. Rheology of miscible polymer blends with hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyi

    Poly(4-vinylphenol) (PVPh) was blended with four different polymers: poly(vinyl methyl ether) (PVME), poly(vinyl acetate) (PVAc), poly(2-vinylpyridine) (P2VP), and poly(4-vinylpyridine) (P4VP) by solvent casting. The miscibility of these four PVPh-based blend systems was investigated using differential scanning calorimetry (DSC) and the composition-dependent glass transition temperature (Tg) was predicted by a thermodynamic theory. The hydrogen bonds between phenolic group in PVPh and ether group, carbonyl group or pyridine group was confirmed by Fourier transform infrared (FTIR) spectroscopy. The fraction of hydrogen bonds was calculated by the Coleman-Graf-Painter association model. Linear dynamic viscoelasticity of four PVPh-based miscible polymer blends with hydrogen bonding was investigated. Emphasis was placed on investigating how the linear dynamic viscoelasticity of miscible polymer blends with specific interaction might be different from that of miscible polymer blends without specific interaction. We have found that an application of time-temperature superposition (TTS) to the PVPh-based miscible blends with intermolecular hydrogen bonding is warranted even when the difference in the component glass transition temperatures is as large as about 200°C, while TTS fails for miscible polymer blends without specific interactions. On the basis of such an observation, we have concluded that hydrogen bonding suppressed concentration fluctuations in PVPh-based miscible blends. It has been found that both the intra-association (self-association) of the phenoxy hydroxyl groups in PVPh and inter-association (intermolecular interactions) between the constituent components have a profound influence on the frequency dependence of dynamic moduli in the terminal region of the PVPh-based miscible blend systems investigated. Hydrogenated functional polynorbornenes (HFPNBs) were synthesized and they were used to investigate the miscibility and rheology of HFPNB

  9. In-situ ultrasonic compatibilization of binary blends of flexible chain polyesters and aromatic liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Gunes, Kaan

    The objective of this research was to improve the properties of immiscible polymer blends by developing a new ultrasonic extrusion process. The ability of ultrasonic treatment to induce recombination reactions in polymer blends was anticipated to result in fast in-situ compatibilization of immiscible blends. In order to test this hypothesis, a new ultrasonic extruder operating at a frequency of 20 kHz at amplitudes of 5, 7.5, and 10 mum was developed. Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and wholly aromatic liquid crystalline copolyesters (LCPs) were selected to illustrate the effect of ultrasonic treatment on copolymerization of components through transesterification reactions in blends. The LCPs studied were a copolymer of hydroxybenzoic and hydroxynaphthoic acid (LCP1) and a copolymer of dioxydiphenyl, terephthalic and isophthalic acid (LCP2). PET/PEN, PET/LCP1, PEN/LCP1, and LCP1/LCP2 blends and their components were subsequently injection molded and spun into fibers. PET underwent homopolymerization and degradation, respectively, at ultrasonic amplitudes of 7.5 mum and 10 mum, while PEN underwent degradation at all amplitudes. MALDI-TOF mass spectroscopy revealed greater amounts of hydroxyl and carboxyl terminated oligomers in ultrasonically treated PET and PEN. Transesterification (copolymer formation) was observed in PET/PEN blends, which was enhanced with ultrasonic treatment, as indicated by 1H NMR and MALDI-TOF. Oxygen permeability of compression molded films of untreated and ultrasonically treated PET/PEN blends followed theoretical predictions for miscible blends. Ultrasonic treatment of LCP1 at amplitudes of 7.5 and 10 mum led to improved mechanical properties of its injection moldings. On the other hand, LCP2 underwent degradation with treatment, leading to a reduction of mechanical properties of LCP2 and LCP1/LCP2 blends. However, due to enhanced fibrillation, these blends retained synergism such that moldings exhibited

  10. Electrospinning polymer blends for biomimetic scaffolds for ACL tissue engineering

    NASA Astrophysics Data System (ADS)

    Garcia, Vanessa Lizeth

    The anterior cruciate ligament (ACL) rupture is one of the most common knee injuries. Current ACL reconstructive strategies consist of using an autograft or an allograft to replace the ligament. However, limitations have led researchers to create tissue engineered grafts, known as scaffolds, through electrospinning. Scaffolds made of natural and synthetic polymer blends have the potential to promote cell adhesion while having strong mechanical properties. However, enzymes found in the knee are known to degrade tissues and affect the healing of intra-articular injuries. Results suggest that the natural polymers used in this study modify the thermal properties and tensile strength of the synthetic polymers when blended. Scanning electron microscopy display bead-free and enzyme biodegradability of the fibers. Raman spectroscopy confirms the presence of the natural and synthetic polymers in the scaffolds while, amino acid analysis present the types of amino acids and their concentrations found in the natural polymers.

  11. Interfacial Tension in Binary Polymer Blends and the Effects of Copolymers as Emulsifying Agents

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.

    The structure and the thermodynamic state of polymeric interfaces are important features in many materials of technological interest. This is especially true for multiconstituent systems such as blends of immiscible polymers, where the interface structure can affect greatly their morphology and, thus, their mechanical properties. In this article, we first present a review of the experimental and theoretical investigations of the interfacial tension in phase-separated homopolymer blends. We emphasize the effects of temperature and molecular weight on the behavior: interfacial tension γ decreases with increasing temperature (for polymer systems exhibiting upper critical solution temperature behavior) with a temperature coefficient of the order of 10-2 dyn/(cm °C), whereas it increases with increasing molecular weight. The increase follows a γ = γ _infty ( {1 - k_{operatorname{int} } M_{n}}^{ - z} } ) dependence (with z ≈ 1 for high molecular weights), where γ ∞ is the limiting interfacial tension at infinite molecular weight and M n the number average molecular weight. Suitably chosen block or graft copolymers are widely used in blends of immiscible polymers as compatibilizers for controlling the morphology (phase structure) and the interfacial adhesion between the phases. The compatabilitizing effect is due to their interfacial activity, i.e., to their affinity to selectively segregate to the interface between the phase-separated homopolymers, thus reducing the interfacial tension between the two macrophases. The experimental and theoretical works in this area are reviewed herein. The effects of concentration, molecular weight, composition, and macromolecular architecture of the copolymeric additives are discussed. An issue that can influence the efficient utilization of a copolymeric additive as an emulsifier is the possibility of micelle formation within the homopolymer matrices when the additive is mixed with one of the components. These micelles will

  12. A Lattice Model for Segmental Dynamics of Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Colby, Ralph H.

    2006-03-01

    Thermally-driven concentration fluctuations make local regions (at the scale of monomers) have a wide range of local compositions for weakly interacting miscible blends of long chain polymers. These fluctuations remain important hundreds of degrees from the critical temperature because the entropy (and hence free energy) of mixing is small in polymer mixtures. The connected nature of the chain biases the local composition distribution, making the range of effective compositions surrounding a given monomer extend from the self-composition to environments very rich in that type of monomer. These two polymer physics issues make blends of polymers vastly more interesting than mixtures of small molecules. Time-temperature superposition can fail and motions can persist far below the glass transition temperature of the blend; both of these results are enhanced as the glass transition contrast between the two components increases. A simple lattice model is used to describe the segmental dynamics of miscible polymer blends. Concentration fluctuations and chain connectivity effects are calculated at the scale of the Kuhn length, by considering a central monomer to be surrounded, out to the second shell of monomers, by 24 lattice sites. Including the central monomer, fraction 5/25 = 0.2 of the lattice sites are part of the central monomer's chain (the self-composition) and the other 20 sites are occupied stochastically, while preserving connectivity of all chains. The resulting concentration distributions are mapped onto segmental relaxation time distributions for each blend component using the composition dependence of the glass transition and dynamic scaling. The predicted distributions are compared with experimental dielectric data on miscible polymer blends using three methods: (1) A Debye (single exponential) relaxation of each composition predicts dielectric loss peaks for each blend component which are too narrow because the lattice model ignores density fluctuations

  13. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2010-01-08

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  14. Photoinduced electron transfer in binary blends of conjugated polymers

    SciTech Connect

    Jenekhe, A.A.; Paor, L.R. de; Chen, X.L.; Tarkka, R.M.

    1996-10-01

    The authors report observations concerning the intermolecular photoinduced electron transfer through blends of n-type/p-type {pi}-conjugated organic polymers. The results of transient absorption spectroscopy, fluorescence quenching analysis, and delocalized radical ion pair generation studies imply that these materials are supramolecular materials.

  15. Novel bio-based and biodegradable polymer blends

    NASA Astrophysics Data System (ADS)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  16. Compatibilization of polymer blends with star polymers containing a gamma-cyclodextrin core and polystyrene arms

    NASA Astrophysics Data System (ADS)

    Balik, C. M.; Tonelli, A. E.; Libert, Ryan

    2012-02-01

    Cyclodextrins (CDs) are cyclic starch molecules having a hollow central cavity which can be threaded by a polymer to form an inclusion compound. This characteristic is exploited in a new type of compatibilizer: a star polymer with a gamma-CD (g-CD) core and polystyrene (PS) arms (CD-star). The mechanism of compatibilization involves threading of the CD core by a second polymer and solubilization of the threading polymer into a PS matrix by the PS star arms. In principle, the same CD-star polymer can be used to compatibilize blends of several different polymers with PS, provided that the second polymer is able to thread the CD core. We have taken the first step toward demonstrating the generality of this approach by producing compatibilized blends of PS with poly(dimethyl siloxane) (PDMS) or poly(methyl methacrylate) (PMMA) using the same CD-star polymer. Thin spun-cast films of these blends exhibit a nanoscale level of mixing, while spun-cast films of the same blends without CD-star exhibit large-scale phase separation. The number of CD-star molecules that must be threaded onto the polymer chain to achieve compatibilization is larger for PMMA than for PDMS.

  17. Direct formation of nano-pillar arrays by phase separation of polymer blend for the enhanced out-coupling of organic light emitting diodes with low pixel blurring.

    PubMed

    Lee, Cholho; Han, Kyung-Hoon; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-03-21

    We have demonstrated a simple and efficient method to fabricate OLEDs with enhanced out-coupling efficiencies and with low pixel blurring by inserting nano-pillar arrays prepared through the lateral phase separation of two immiscible polymers in a blend film. By selecting a proper solvent for the polymer and controlling the composition of the polymer blend, the nano-pillar arrays were formed directly after spin-coating of the polymer blend and selective removal of one phase, needing no complicated processes such as nano-imprint lithography. Pattern size and distribution were easily controlled by changing the composition and thickness of the polymer blend film. Phosphorescent OLEDs using the internal light extraction layer containing the nano-pillar arrays showed a 30% enhancement of the power efficiency, no spectral variation with the viewing angle, and only a small increment in pixel blurring. With these advantages, this newly developed method can be adopted for the commercial fabrication process of OLEDs for lighting and display applications. PMID:27136869

  18. Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics.

    PubMed

    Meng, Lingyi; Shang, Yuan; Li, Qikai; Li, Yongfang; Zhan, Xiaowei; Shuai, Zhigang; Kimber, Robin G E; Walker, Alison B

    2010-01-14

    We developed a model system for blend polymers with electron-donating and -accepting compounds. It is found that the optimal energy conversion efficiency can be achieved when the feature size is around 10 nm. The first reaction method is used to describe the key processes (e.g., the generation, the diffusion, the dissociation at the interface for the excitons, the drift, the injection from the electrodes, and the collection by the electrodes for the charge carries) in the organic solar cell by the dynamic Monte Carlo simulation. Our simulations indicate that a 5% power conversion efficiency (PCE) is reachable with an optimum combination of charge mobility and morphology. The parameters used in this model study correspond to a blend of novel polymers (bis(thienylenevinylene)-substituted polythiophene and poly(perylene diimide-alt-dithienothiophene)), which features a broad absorption and a high mobility. The I-V curves are well-reproduced by our simulations, and the PCE for the polymer blend can reach up to 2.2%, which is higher than the experimental value (>1%), one of the best available experimental results up to now for the all-polymer solar cells. In addition, the dependency of PCE on the charge mobility and the material structure are also investigated. PMID:20000370

  19. Lateral structuring and stability phenomena induced by block copolymers and core-shell nanogel particles at immiscible polymer/polymer interfaces

    NASA Astrophysics Data System (ADS)

    Gozen, Arif Omer

    We have investigated the parameters such as copolymer/nanoparticle concentration, architecture and molecular weight combined with film thickness, time and temperature in order to develop a molecular-level insight on how lateral interfacial structuring occurs at immiscible polymer/polymer interfaces. I order to develop a molecular-level understanding of how these 'smart' self-assembling materials and core-shell nanogel particles interact both intra- and inter-molecularly and form ordered structures in bulk, as well as at immiscible interfaces, we first focused on the response of core-shell polymer nanoparticles, designated CSNGs, composed of a cross-linked divinylbenzene core and poly(methyl methacrylate) (PMMA) arms as they segregate from PMMA homopolymer. We have demonstrated that these nanogel particles exhibit autophobic character when dispersed in high molecular weight homopolymer matrices and segregate to the interface with another fluid. We have further explored the migration of these new-generation nanogel particles (CSNG-Rs) segregating from PS homopolymer to PS/PMMA interfaces. Unlike the instability patterns observed with the CSNGs, which exhibit classical nucleation and growth mechanism with circular hole formation, we have observed an intriguing dewetting pattern and CSNG-Rs forming lateral aggregates and tentacle-like structures at the interface. In parallel with our core-shell particle studies, we have also explored the structuring of copolymer molecules that are far from equilibrium in bulk and complex laminate of polymer thin films. Our early triblock copolymer studies have proven that molecular asymmetry has a profound effect on order-disorder transition temperature. We focused primarily on the effect of the copolymer chemical composition (i.e., block sizes) on the dewetting behavior of PS/SM thin films on PMMA. We elucidate the interfacial segregation and concurrent micellization of diblock copolymers in a dynamically evolving environment with

  20. Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

    PubMed Central

    Huang, Cheng; Förste, Alexander; Schimmel, Thomas

    2015-01-01

    Summary Polymer blend lithography (PBL) is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012), PBL was demonstrated for the fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA), dissolved in methyl ethyl ketone (MEK) is used. This system forms a purely lateral structure on the substrate at controlled humidity, which means that PS droplets are formed in a PMMA matrix, whereby both phases have direct contact both to the substrate and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by a lift-off process. As a consequence, the resulting metal nanostructure is an exact replica of the pattern of the selectively removed polymer (either a perforated metal film or metal islands). The minimum diameter of these holes or metal islands demonstrated here is about 50 nm. Au, Pd, Cu, Cr and Al templates were fabricated in this work by metal PBL. The wavelength-selective optical transmission spectra due to the localized surface plasmonic effect of the holes in perforated Al films were investigated and compared to the respective hole diameter histograms. PMID:26171297

  1. Effects of compatability on the conductivity of conducting polymer blends

    SciTech Connect

    Liu, Mingjun; Nowak, C.K.; Gregory, R.V.

    1995-12-01

    The electrical conductivity of chemically synthesized polyaniline (PANI) blends with nylon 6,6 and polystyrene was measured. The conductivities of the top and bottom of the films cast from blend solutions were found to differ. This effect was most pronounced at low percent loadings of PANI. The maximum difference in conductivity between two sides of the same film was found to be five orders of magnitude in the case of a 5% PANI blend with polystyrene. In this case the conductive polymer appears to be rich on one side of the film rather than more homogeneously dispersed on both sides. SEM provides evidence for the formation of a percolation cluster on one side of the film which is most notable in polystyrene blends. X-ray and FTIR indicated that greater interaction between PANI and nylon 6,6 than PANI and polystyrene. It is proposed that the magnitude of the variation in conductivity between the two sides of the film depends on the compatibility of the conducting and insulating host polymers.

  2. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOEpatents

    Skotheim, T.

    1984-09-28

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  3. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOEpatents

    Skotheim, Terje

    1986-01-01

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  4. Characterization of Combinatorial Polymer Blend Composition Gradients by FTIR Microspectroscopy

    PubMed Central

    Eidelman, Naomi; Simon, Carl G.

    2004-01-01

    A new FTIR technique was developed for characterizing thin polymer films used in combinatorial materials science. Fourier transform infrared microspectroscopy mapping technique was used to determine the composition of polymer blend gradients. Composition gradients were made from poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid) (PDLLA) in the form of thin films (6 cm × 2 cm) deposited on IR reflective substrates. Three composition gradient films were prepared and characterized. The results demonstrate the reproducibility and feasibility of a new, high-throughput approach for preparing and characterizing polymer composition gradients. The combination of composition gradient film technology and automated nondestructive FTIR microspectroscopy makes it possible to rapidly and quantitatively characterize polymer composition gradients for use in combinatorial materials science. PMID:27366606

  5. Significantly Increasing the Ductility of High Performance Polymer Semiconductors through Polymer Blending.

    PubMed

    Scott, Joshua I; Xue, Xiao; Wang, Ming; Kline, R Joseph; Hoffman, Benjamin C; Dougherty, Daniel; Zhou, Chuanzhen; Bazan, Guillermo; O'Connor, Brendan T

    2016-06-01

    Polymer semiconductors based on donor-acceptor monomers have recently resulted in significant gains in field effect mobility in organic thin film transistors (OTFTs). These polymers incorporate fused aromatic rings and have been designed to have stiff planar backbones, resulting in strong intermolecular interactions, which subsequently result in stiff and brittle films. The complex synthesis typically required for these materials may also result in increased production costs. Thus, the development of methods to improve mechanical plasticity while lowering material consumption during fabrication will significantly improve opportunities for adoption in flexible and stretchable electronics. To achieve these goals, we consider blending a brittle donor-acceptor polymer, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT), with ductile poly(3-hexylthiophene). We found that the ductility of the blend films is significantly improved compared to that of neat PCDTPT films, and when the blend film is employed in an OTFT, the performance is largely maintained. The ability to maintain charge transport character is due to vertical segregation within the blend, while the improved ductility is due to intermixing of the polymers throughout the film thickness. Importantly, the application of large strains to the ductile films is shown to orient both polymers, which further increases charge carrier mobility. These results highlight a processing approach to achieve high performance polymer OTFTs that are electrically and mechanically optimized. PMID:27200458

  6. Interactions, Structure, and Dynamics of Polymer-Tethered Nanoparticle Blends.

    PubMed

    Agrawal, Akanksha; Wenning, Brandon M; Choudhury, Snehashis; Archer, Lynden A

    2016-08-30

    We report on the structure, jamming, and dynamics of blends of self-suspended hairy silica nanoparticles grafted with poly(ethylene glycol) (PEG) and poly(methyl methacrylate) (PMMA). We find that favorable enthalpic attraction between tethered PEG and PMMA chains augment previously reported entropic attractions between tethered polymer chains in self-suspended suspensions to enhance particle-particle correlations, increase jamming, and slow down chain dynamics. As with their single-component counterparts, the hairy SiO2-PEG/SiO2-PMMA nanoparticle blends exhibit soft glassy rheological behavior and both the energy dissipated at yielding and the plateau elastic modulus display strong maxima in the symmetric case. A comparison of the small angle X-ray scattering (SAXS) measurements with theoretical analysis from density functional theory (DFT) reveals that the addition of SiO2-PMMA to a self-suspended SiO2-PEG suspension initially leads to a higher degree of stretching of the corona chains, which produces stronger interdigitation of the tethered chains, enhanced jamming, and slower polymer relaxation than observed in the single-component materials. By means of an analysis of the heat of mixing released upon blending tethered and untethered PEG and PMMA chains, we find that the strong enthalpic attraction between the grafted polymer chains enhances entropic attractive forces produced by the space-filling constraint on tethered ligands in self-suspended suspensions to produce entangled-polymer-like physical properties in polymers with molecular weights below the thresholds normally associated with the transition to an entangled state. PMID:27479587

  7. Raman imaging of polymer gels and elastomer blends

    NASA Astrophysics Data System (ADS)

    Appel, Rainer

    2000-12-01

    The incorporation of high-resolution optics in a Raman spectrometer allows sampling from areas less than one micron in diameter. The addition of a confocal microscope improves the axial resolution to a couple of microns. The fast data collection combined with high lateral and vertical resolutions makes possible scanning experiments in which the specimen is advanced in micron size steps. Analysis of the spectra provides information on the spatial composition of the sample. For macroporous N-isopropylacrylamide (NIPA) gel the temperature induced evolution of the pore structures is characterized. This model is used to explain surface roughness of the gels and characteristics of a NIPA- acrylamide (PAAM) interface. At room temperature, the average sizes of the pores and the width of polymer-rich areas are 75 μm and 20 μm, respectively. At higher temperatures polymer chains bunch together and this process accelerates rapidly near the volume phase transition temperature (34°C). The porous structure of the NIPA extends to the gel's boundary causing surface roughness, which, like the bulk material, is temperature dependent. A shrinking process results in a dense shell on the surface. Also, the surface becomes smoother due to hydrophobic interactions between isopropyl groups in the NIPA gel. For a polymer-polymer interface we showed that different drying and diffusion times affect the topography of the interfacial region. Phase separation in binary mixtures of two polymers, polyisobutadiene (BR) and brominated poly(isobuthylene- co-para-methylstyrene) (BIMS), is studied for different compositions of the blends. Binary blends of BIMS and BR do mix better in the presence of precipitated silica and domain sizes decrease from approximate 5 μm to less than 1μm. Blend components with polar groups like BIMS, silica, and zinc stearate can be found in close proximity to each other. The blend morphology of the uncured samples is dependent upon temperature. Increased temperature

  8. Electrical properties of starch-PVA biodegradable polymer blend

    NASA Astrophysics Data System (ADS)

    Chatterjee, B.; Kulshrestha, N.; Gupta, P. N.

    2015-02-01

    Solid polymer electrolyte films were prepared by adding different contents of potassium chloride (KCl) in a polymer matrix composed of two versatile biodegradable polymers: starch and polyvinyl alcohol (PVA), using the solution cast method. The complexation of the added salt (KCl) with the polymer matrix was confirmed from an x-ray diffraction study (XRD). The evolution of a smooth and uniform morphology with the increasing content of KCl was confirmed from scanning electron microscopy (SEM). The transference number measurement established ions as the dominant charge carriers in the system. The maximum ionic conductivity ˜5.44 × 10-5 S cm-1 at ambient conditions was obtained for the film with 1.5 wt% of KCl using complex impedance spectroscopy. The ionic conductivity and dielectric constant increased with the salt content, thus affirming the amplification in the number of charge carriers. The noteworthy aspect of the investigation is the observation of appreciable ionic conductivity at a relatively low salt content. Low values of activation energy obtained from temperature-dependent ionic conductivity could be favorable from the point of view of the application. Electric modulus studies confirmed the absence of electrode polarization effects in the polymer electrolyte films. The scaling of the electric modulus shows a distribution of relaxation times in the polymer electrolyte films. The study unveils the efficiency of the starch-PVA blend, with glycerol and citric acid as additives, as a hopeful material for preparing biodegradable solid polymer electrolyte films.

  9. Novel polymer blends with thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the

  10. Novel polymer blends with thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the

  11. Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites

    NASA Astrophysics Data System (ADS)

    Brigandi, Paul James

    The use of multiphase polymer blends provides unique morphologies and properties to reduce the percolation concentration and increase conductivity of carbon-based polymer composites. These systems offer improved conductivity, temperature stability and selective distribution of the conductive filler through unique morphologies at significantly lower conductive filler concentration. In this work, the kinetic and thermodynamic effects on a series of multiphase conductive polymer composites were investigated. The polymer blend phase morphology, filler distribution, electrical conductivity, and rheological properties of CB-filled PP/PMMA/EAA conductive polymer composites were determined. Thermodynamic and kinetic parameters were found to influence the morphology development and final composite properties. The morphology and CB distribution were found to be kinetically driven when annealed for a short period of time following the shear-intensive mixing process, whereas the three-phase polymer blend morphology is driven by thermodynamics when given sufficient time under high temperature annealing conditions in the melt state. At short annealing times, the CB distribution was influenced by the compounding sequence where the CB was added after being premixed with one of the polymer phases or directly added to the three phase polymer melt, but again was thermodynamically driven at longer annealing times with the CB migrating to the EAA phase. The resistivity was found to decrease by a statistically significant amount to similar levels for all of the composite systems with increasing annealing time, providing evidence of gradual phase coalescence to a tri-continuous morphology and CB migration. The addition of CB via the PP and EAA masterbatch results in significantly faster percolation and lower resistivity compared to when added direct to the system during compounding after 30 minutes annealing by a statistically significant amount. Dynamic oscillatory shear rheology using

  12. Blended polymer materials extractable with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Cai, Mei

    Supercritical carbon dioxide is drawing more and more attention because of its unique solvent properties along with being environmentally friendly. Historically most of the commercial interests of supercritical carbon dioxide extraction are in the food industry, pharmaceutical industry, environmental preservation and polymer processing. Recently attention has shifted from the extraction of relatively simple molecules to more complex systems with a much broader range of physical and chemical transformations. However the available data show that a lot of commercially valuable substances are not soluble in supercritical carbon dioxide due to their polar structures. This fact really limits the application of SCF extraction technology to much broader industrial applications. Therefore, the study of a polymer's solubility in a given supercritical fluid and its thermodynamic behavior becomes one of the most important research topics. The major objective of this dissertation is to develop a convenient and economic way to enhance the polymer's solubility in supercritical carbon dioxide. Further objective is to innovate a new process of making metal casting parts with blended polymer materials developed in this study. The key technique developed in this study to change a polymer's solubility in SCF CO2 is to thermally blend a commercially available and CO2 non-soluble polymer material with a low molecular weight CO2 soluble organic chemical that acts as a co-solute. The mixture yields a plastic material that can be completely solubilized in SCF CO2 over a range of temperatures and pressures. It also exhibits a variety of physical properties (strength, hardness, viscosity, etc.) depending on variations in the mixture ratio. The three organic chemicals investigated as CO2 soluble materials are diphenyl carbonate, naphthalene, and benzophenone. Two commercial polymers, polyethylene glycol and polystyrene, have been investigated as CO2 non-soluble materials. The chemical

  13. Nonspecific Compatibilization of Polymer Blends Using Functionalized Clays

    NASA Astrophysics Data System (ADS)

    Fisher, Robert; Goldman, Michael; Rubinstein, Michael; Si, Mayu; Sokolov, Jonathan; Rafailovich, Miriam; Ruderman, Gregory

    2003-03-01

    Binary and tertiary blends of polystyrene (PS), polymethylmethacrylate (PMMA) , and poletheylene terephthalate (PET) were produced by melt mixing in a Brabender twin screw extruder at 100RPM, 180C . Ten weight percent Cloisite 20A clay (Southern Clay Corp) was then added to some of the mixtures after ten minutes. In one case the clay was fist melt mixed with all three polymer components separately and then the three polymer/clay composites were melt mixed together. The samples were examined with transmission electron microscopy which revealed that the addition of clay during melt mixing produced a material that was much more homogenous than the material without clay or where the clay was first mixed individually into the components. This was confirmed by DMA analysis where the melt mixed sample with clay exhibited only one glass transition for both binary and tertiary blends, whereas the sample without clay, or where clay was first mixed into the individual components showed two glass transitions. These results were interpreted in terms of an in situ grafting model where the large surface to volume ration of the clay platelets was able to drastically reduce interfacial tension and hence domain size in the blends.

  14. Blends of conjugated rigid-rod polymers: Novel supramolecular materials for electronics, optoelectronics and photonics

    SciTech Connect

    Jenekhe, S.A.

    1996-12-31

    Selected examples of binary blends of conjugated polymers will be presented to illustrate the vast scope of their supramolecular structures and electronic, optical, nonlinear optical, and optoelectronic properties.

  15. Polymer blends made of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and epoxidized natural rubber: Thermal and mechanical response

    NASA Astrophysics Data System (ADS)

    Salim, Yoga Sugama; Han, Chan Chin; Kammer, Hans-Werner; Kumar, Sudesh; Neon, Gan Seng

    2015-08-01

    The ever-increasing demand of biodegradable over conventional polymers places microbial polyhydroxyalkanoates (PHA) as an ideal choice of research material for specific applications. In this study, polymer blends made of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx) and epoxidized natural rubber (ENR) were prepared using solution casting technique. The influence of ENR on thermal, morphological and mechanical properties of P(3HB-co-3HHx) was investigated. There are two glass transition (Tg) temperatures observed using differential scanning calorimeter. This indicates that P(3HB-co-3HHx) and ENR are immiscible at macroscopic level. Although the Tg of P(3HB-co-3HHx) is seen to shift toward ENR in the least manner, infrared analysis suggests that the crystal structure of P(3HB-co-3HHx) retains its conformational structure. In terms of morphology, ENR exists as droplets in P(3HB-co-3HHx)-rich phase, e.g. at ENR weight fraction (wENR) of 0.3. In dynamic mechanical analysis, all blend compositions exhibit solid-like behavior, with storage moduli larger than loss moduli, across the frequency sweep at room temperature.

  16. Composition dependence of the interaction parameter in isotopic polymer blends

    SciTech Connect

    Londono, J.D.; Narten, A.H.; Wignall, G.D. ); Honnell, K.G.; Hsieh, E.T.; Johnson, T.W. . Research and Development); Bates, F.S. . Dept. of Chemical Engineering)

    1994-05-09

    Isotopic polymer mixtures lack the structural asymmetries and specific interactions encountered in blends of chemically distinct species. In this respect, they form ideal model systems for exploring the limitations of the widely-used Flory-Huggins (FH) lattice model and for testing and improving new theories of polymer thermodynamics. The FH interaction parameter between deuterium-labeled and unlabeled segments of the same species ([sub [chi]HD]) should in principle be independent of concentration ([phi]), through previous small-angle neutron scattering (SANS) experiments have shown that it exhibits a minimum at [phi] [approximately] 0.5 for poly(vinylethylene) (PVE) and poly(ethylethylene) (PEE). The authors report new data on polyethylene (PE) as a function of molecular weight, temperature (T), and [phi], which show qualitatively similar behavior. However, measurements on [sub [chi]HD]([phi]) for polystyrene (PS) show a maximum at [phi] [approximately]0.5, in contrast to PVE, PEE, and PE. Reproducing the concentration dependence of [phi] in different model isotopic systems should serve as a sensitive test of the way in which theories of polymer thermodynamics can account for the details of the local packing and also the effects of noncombinatorial entropy, which appear to be the main cause of the variation of [sub [chi]HD]([phi]) for PE. These data also serve to quantify the effects of isotopic substitution in SANS experiments on polyolefin blends and thus lay the ground work for definitive studies of the compatibility of branched and linear polyethylenes.

  17. Capillary Condensation in Polymer Blends: an Analysis of Phase Transitions

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina C.; Jira, Nicholas C.; Evans, Ian R.; Cohen, Matthew; D'Rozario, Julia R.; Romano, Marie T.; Sabirianov, Ildar

    We explore herein the capillary condensation for various geometries. Capillary condensation is studied in the presence of van der Waals forces. We derive the grand free energy, and we analyze the phase transitions, the absorption isotherms and the triple point. Phase transitions between full, empty and two films are investigated and the shape of the liquid is calculated. We also analyze an important application of wetting phenomena and capillary condensation in binary polymer blends and investigate the type of wetting transitions presented and the phase diagram. SUNY Oswego SCAC Grant, NSF Noyce Grant.

  18. Polymer composites and blends for battery separators: State of the art, challenges and future trends

    NASA Astrophysics Data System (ADS)

    Nunes-Pereira, J.; Costa, C. M.; Lanceros-Méndez, S.

    2015-05-01

    In lithium ion battery systems, the separator plays a key role with respect to device performance. Polymer composites and polymer blends have been frequently used as battery separators due to their suitable properties. This review presents the main issues, developments and characteristics of these polymer composites and blends for battery separator membrane applications. This review is divided into two sections regarding the composition of the materials: polymer composite materials, subdivided according to filler type, and polymer blend materials. For each category the electrolyte solutions, ionic conductivity and other relevant physical-chemical characteristics are described. This review shows the recent advances and opportunities in this area and identifies future trends and challenges.

  19. Miscibility phase diagram of ring-polymer blends: A topological effect.

    PubMed

    Sakaue, Takahiro; Nakajima, Chihiro H

    2016-04-01

    The miscibility of polymer blends, a classical problem in polymer science, may be altered, if one or both of the component do not have chain ends. Based on the idea of topological volume, we propose a mean-field theory to clarify how the topological constraints in ring polymers affect the phase behavior of the blends. While the large enhancement of the miscibility is expected for ring-linear polymer blends, the opposite trend toward demixing, albeit comparatively weak, is predicted for ring-ring polymer blends. Scaling formulas for the shift of critical point for both cases are derived. We discuss the valid range of the present theory, and the crossover to the linear polymer blends behaviors, which is expected for short chains. These analyses put forward a view that the topological constraints could be represented as an effective excluded-volume effects, in which the topological length plays a role of the screening factor. PMID:27176343

  20. Miscibility phase diagram of ring-polymer blends: A topological effect

    NASA Astrophysics Data System (ADS)

    Sakaue, Takahiro; Nakajima, Chihiro H.

    2016-04-01

    The miscibility of polymer blends, a classical problem in polymer science, may be altered, if one or both of the component do not have chain ends. Based on the idea of topological volume, we propose a mean-field theory to clarify how the topological constraints in ring polymers affect the phase behavior of the blends. While the large enhancement of the miscibility is expected for ring-linear polymer blends, the opposite trend toward demixing, albeit comparatively weak, is predicted for ring-ring polymer blends. Scaling formulas for the shift of critical point for both cases are derived. We discuss the valid range of the present theory, and the crossover to the linear polymer blends behaviors, which is expected for short chains. These analyses put forward a view that the topological constraints could be represented as an effective excluded-volume effects, in which the topological length plays a role of the screening factor.

  1. Interfacial coupling between immiscible polymers: Flow accelerates reaction and improves adhesion

    NASA Astrophysics Data System (ADS)

    Song, Jie

    As the workhorses of the plastics industry, polyolefins are consumed in the largest volume of all types of polymers. Despite their wide use, polyolefins suffer from poor adhesion and compatibility with other polar polymers due to their intrinsic low polarity and lack of functional groups. The first goal of this study is to enhance interfacial adhesion between polyolefins with other polymers through coupling reaction of functional polymers. We have used functional polyethylenes with maleic anhydride, hydroxyl, primary and secondary amino groups grafted through reactive extrusion. Functional polyolefins dramatically improved the performance of polyolefins, including adhesion, compatibility, hardness and scratch resistance, and greatly expand their applications. The second goal is to understand the factors affecting adhesion. We systematically investigated two categories of parameters. One is molecular: the type and incorporation level of functional groups. The other is processing condition: die design in extruders, reaction time and temperature. The interfacial adhesion was measured with the asymmetric dual cantilever beam test and T-peel test. The extent of reaction was quantified through measuring anchored copolymers via X-ray photoelectron spectroscopy. A quantitative correlation between adhesion and coupling reaction was developed. A coextruded bilayer system with coupling reaction at interfaces was created to clarify processing effects on the kinetics of coupling reactions. For the reaction between maleic anhydride modified polyethylene and nylon 6, the reaction rate during coextrusion through a fishtail die with compressive/extensional flow was strikingly almost two orders of magnitude larger than that through a constant thickness die without compressive flow. The latter reaction rate was close to that of quiescent lamination. We attribute the reaction acceleration through the fishtail die to the large deformation rate under the compressive/extensional flow

  2. Viscoelastic properties of entangled polymers - Ternary blends of monodisperse homopolymers

    NASA Technical Reports Server (NTRS)

    Soong, D.; Shen, M.; Hong, S. D.; Moacanin, J.; Shyu, S. S.

    1979-01-01

    In a previous publication from this laboratory, the Rouse-Bueche-Zimm molecular theory of viscoelasticity has been extended by using a transient network model to apply to binary blends of monodisperse polymers with chain entanglements. The dynamics of the entanglements were modeled both by the enhanced frictional coefficients and by the additional elastic couplings. It was recognized that entanglements not only may form between chains of the same lengths (intracomponent entanglements) but also between those of different lengths (intercomponent entanglements). At a given intercomponent entanglement, the longer chain was assumed to have the frictional coefficient of the shorter chain. Similarly, for blends consisting of several monodisperse components with different molecular weights, such modifications are also required to predict their linear viscoelastic behavior. The frequency of these interactions is assumed to be proportional to the weight ratio of the respective component chains in the blend. Equations of motion are formulated for each component and solved numerically for the relaxation time spectra. Linear viscoelastic properties such as the dynamic mechanical moduli, stress relaxation moduli, and zero-shear viscosity can then be computed for these systems by linear summation of those of the components.

  3. Development and characterization of porous polypyrrole-polylactic acid electroactive polymer blends

    NASA Astrophysics Data System (ADS)

    Chan, Christine; Chan, Ellen; Naguib, Hani E.

    2009-03-01

    Conducting polymers have sparked much research interest due to their unique ability to be electrically stimulated. However, these polymers are very brittle and have poor mechanical properties. In order to improve upon its structural integrity, it can be blended with other host polymers that have better mechanical properties. These blended composites would then possess the benefits of conductive properties while having sufficient mechanical properties to be more suitable for practical applications. Polypyrrole-polylactic acid blends were processed using chemical oxidative polymerization and compression molding, followed by gas foaming and saturation techniques to create porous structures. Characterization of these porous blends included its physical, thermal, and mechanical properties.

  4. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Darling, Seth B.

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  5. Using graphs to interrogate the atomic structure of polymer blends

    NASA Astrophysics Data System (ADS)

    Wodo, Olga; Ganapathysubramanian, Baskar

    2015-03-01

    The nanomorphology of polymer blend thin films critically affects performance especially in electronic devices. However, many aspects of the underlying physics linking morphology to performance are still poorly understood. Furthermore, there is increasing evidence that atomic organization can hold the key to efficient charge transport within organic electronic devices. In this work, we take advantage of recent advances in molecular dynamic simulations and quantify atomic-scale morphological aspects of the thin films. Specifically, we present a graph-based technique that allows quantifying the point-cloud data. In our approach, we first convert the point cloud data from atomistic simulation into a labelled, weighted, undirected graph and then use standard graph-based algorithms to calculate and quantify morphology features. The conversion of the CGMD-data into a graph preserves all the topological and geometric information about the internal structure, and local connectivity between individual atoms/beads (along and across the polymer chains). Our method provides hierarchical information about the charge paths that a hole/electron needs to take to reach the electrode (path length, fraction of intra-molecular hops, path balance). We showcase capabilities of our approach by analyzing coarse grained molecular simulations, and quantifying effect of various thermal treatment as well as electrode materials on the P3HT:PCBM blend.

  6. Improved Tumor Targeting of Polymer-based Nanovesicles Using Polymer-Lipid Blends

    PubMed Central

    Cheng, Zhiliang; Elias, Drew R.; Kamat, Neha P.; Johnston, Eric D.; Poloukhtine, Andrei; Popik, Vladimir; Hammer, Daniel A.; Tsourkas, Andrew

    2011-01-01

    Block copolymer-based vesicles have recently garnered a great deal of interest as nanoplatforms for drug delivery and molecular imaging applications due to their unique structural properties. These nanovesicles have been shown to direct their cargo to disease sites either through enhanced permeability and retention or even more efficiently via active targeting. Here we show that the efficacy of nanovesicle targeting can be significantly improved when prepared from polymer-lipid blends compared with block copolymer alone. Polymer-lipid hybrid nanovesicles were produced from the aqueous co-assembly of the diblock copolymer, poly(ethylene oxide)-block-polybutadiene (PEO-PBD), and the phospholipid, hydrogenated soy phosphatidylcholine (HSPC). The PEG-based vesicles, 117 nm in diameter, were functionalized with either folic acid or anti-HER2/neu affibodies as targeting ligands to confer specificity for cancer cells. Our results revealed that nanovesicles prepared from polymer-lipid blends led to significant improvement in cell binding compared to nanovesicles prepared from block copolymer alone in both in vitro cell studies and murine tumor models. Therefore, it is envisioned that nanovesicles composed of polymer-lipid blends may constitute a preferred embodiment for targeted drug delivery and molecular imaging applications. PMID:21899335

  7. The conformations of cyclic polymers in bidisperse blends of cyclic polymers

    NASA Astrophysics Data System (ADS)

    Lang, Michael

    2013-03-01

    The size of cyclic polymers in bidisperse blends of chemically identical molecules is analyzed by computer simulations. The compression of entangled rings can be explained by the changes in the penetrable fraction of the surface bounded by the ring. Corrections for small rings can be approximated by a concatenation probability 1 -POO that a cyclic polymer entraps at least one other cyclic polymer. Both results are in line with a previous work on the compression of entangled cyclic polymers in monodisperse melts. For entangled cyclic polymers, bond-bond correlations show a constant anti-correlation peak at a curvilinear distance of about ten segments that coincides with a horizontal tangent in the normalized mean square internal distances along the ring for sufficiently large degrees of polymerization. In consequence, the length scale of topological interactions must be considered as constant in contrast to a recent proposal by Sakaue. Our data is not in accord with an extension of the model of Cates and Deutsch to bidiperse blends of ring polymers.

  8. Molecular dynamics study on effect of elongational flow on morphology of immiscible mixtures

    NASA Astrophysics Data System (ADS)

    Tran, Chau; Kalra, Vibha

    2014-04-01

    We studied the effect of elongational flow on structure and kinetics of phase separation in immiscible blends using molecular dynamics simulations. Two different blend systems have been investigated—binary blend of polymers and binary mixture of molecular fluids. The interaction potential parameters in both material systems were chosen to ensure complete phase-separation in equilibrium. We found that elongational flow, beyond a certain rate, significantly alters the steady state morphology in such immiscible mixtures. For the case of polymer blends, perpendicular lamellar morphology was formed under elongation rates (dot \\varepsilon) from 0.05 to 0.5 MD units possibly due to the interplay of two opposing phenomena—domain deformation/rupture under elongation and aggregation of like-domains due to favorable energetic interactions. The elongation timescale at the critical rate of transition from phase-separated to the lamellar structure (dot \\varepsilon = 0.05) was found to be comparable to the estimated polymer relaxation time, suggesting a cross-over to the elongation/rupture-dominant regime. Under strong elongational flow rate, dot \\varepsilon > 0.5, the formation of disordered morphology was seen in polymer blend systems. The kinetics of phase separation was monitored by calculating domain size as a function of time for various elongational flow rates. The domain growth along the vorticity-axis was shown to follow a power law, Rz(t) ˜ t α. A growth exponent, α of 1/3 for the polymer blend and 0.5-0.6 for the fluid molecular mixture was found under elongation rates from 0.005 to 0.1. The higher growth exponent in the fluid mixture is a result of its faster diffusion time scale compared to that of polymer chains. The steady state end-to-end distance of polymer chains and viscosity of the polymer blend were examined and found to depend on the steady state morphology and elongation rate.

  9. Molecular dynamics study on effect of elongational flow on morphology of immiscible mixtures.

    PubMed

    Tran, Chau; Kalra, Vibha

    2014-04-01

    We studied the effect of elongational flow on structure and kinetics of phase separation in immiscible blends using molecular dynamics simulations. Two different blend systems have been investigated-binary blend of polymers and binary mixture of molecular fluids. The interaction potential parameters in both material systems were chosen to ensure complete phase-separation in equilibrium. We found that elongational flow, beyond a certain rate, significantly alters the steady state morphology in such immiscible mixtures. For the case of polymer blends, perpendicular lamellar morphology was formed under elongation rates (ε̇) from 0.05 to 0.5 MD units possibly due to the interplay of two opposing phenomena-domain deformation/rupture under elongation and aggregation of like-domains due to favorable energetic interactions. The elongation timescale at the critical rate of transition from phase-separated to the lamellar structure (ε̇ = 0.05) was found to be comparable to the estimated polymer relaxation time, suggesting a cross-over to the elongation/rupture-dominant regime. Under strong elongational flow rate, ε̇ > 0.5, the formation of disordered morphology was seen in polymer blend systems. The kinetics of phase separation was monitored by calculating domain size as a function of time for various elongational flow rates. The domain growth along the vorticity-axis was shown to follow a power law, Rz(t) ∼ t( α). A growth exponent, α of 1/3 for the polymer blend and 0.5-0.6 for the fluid molecular mixture was found under elongation rates from 0.005 to 0.1. The higher growth exponent in the fluid mixture is a result of its faster diffusion time scale compared to that of polymer chains. The steady state end-to-end distance of polymer chains and viscosity of the polymer blend were examined and found to depend on the steady state morphology and elongation rate. PMID:24712811

  10. Polylactic Acid-Based Polymer Blends for Durable Applications

    NASA Astrophysics Data System (ADS)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  11. Broader Understanding of Multiple Component Dynamic Processes in Miscible Polymer/Polymer Blends

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Yang, Hengxi; Green, Peter

    Utilizing two different experimental techniques, isothermal frequency sweeps and isochronal temperature sweeps, in broadband dielectric spectroscopy can allow for the identification of multiple processes derived from the same relaxation mechanism in certain polymer/polymer blends. A study of poly(vinyl methyl ether) (PVME) in bulk, miscible blends with polystyrene (PS) gives evidence of two separate relaxation processes associated exclusively with the segmental dynamics of PVME; the α0 process from the temperature sweep, related to average segmental dynamics, and the α' process from the frequency sweep, related to relaxations confined within ``frozen'' domains. The appearance of multiple processes is driven by compositional heterogeneity, mainly chain connectivity and concentration fluctuation effects. Analysis of the breadth and intensity of the dielectric loss curves gives insight into the structure and thermodynamics of the blend, which in turn can explain temperature and composition dependent dynamic trends. These results are contrasted with other miscible blend systems, polyisoprene (PI)/poly(4-tert-butylstyrene) (P4tBS) and polyisoprene (PI)/polyvinyl ether (PVE).

  12. Polaron pair mediated triplet generation in polymer/fullerene blends

    PubMed Central

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields. PMID:25735188

  13. The Effect of 3rd Component on the Melt Rheology of Polymer Blend System

    NASA Astrophysics Data System (ADS)

    Koyama, Kiyohito; Uematsu, Hideyuki; Sugimoto, Masataka; Taniguchi, Takashi; Inada, Teiichi; Iwakura, Tetsuro

    2008-07-01

    Uniaxial elongational flow behavior of polymer blend system containing three components (acrylic polymer, epoxy resin and SiO2) was investigated. The strain softening was observed at 80 °C and the strain hardening was observed at 60 °C for the same sample. We found that these non-linear properties in uniaxial elongational flow behavior can be varied by temperature change for polymer blend containing three components.

  14. Macroscopic lateral heterogeneity observed in a laterally mobile immiscible mixed polyelectrolyte-neutral polymer brush.

    PubMed

    Lee, Hoyoung; Tsouris, Vasilios; Lim, Yunho; Mustafa, Rafid; Choi, Je; Choi, Yun Hwa; Park, Hae-Woong; Meron, Mati; Lin, Binhua; Won, You-Yeon

    2014-06-01

    We studied mixed poly(ethylene oxide) (PEO) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The question we attempted to answer was: when the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Three different model mixed PEO/PDMAEMA brush systems were prepared: (1) a laterally mobile mixed brush by spreading onto the air-water interface a mixture of poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) and poly(2-(dimethylamino)ethyl methacrylate)-poly(n-butyl acrylate) (PDMAEMA-PnBA) diblock copolymers (the specific diblock copolymers used will be denoted as PEO113-PnBA100 and PDMAEMA118-PnBA100, where the subscripts refer to the number-average degrees of polymerization of the individual blocks), (2) a mobility-restricted (inseparable) version of the above mixed brush prepared using a PEO-PnBA-PDMAEMA triblock copolymer (denoted as PEO113-PnBA89-PDMAEMA120) having respective brush molecular weights matched with those of the diblock copolymers, and (3) a different laterally mobile mixed PEO and PDMAEMA brush prepared from a PEO113-PnBA100 and PDMAEMA200-PnBA103 diblock copolymer combination, which represents a further more height-mismatched mixed brush situation than described in (1). These three mixed brush systems were investigated by surface pressure-area isotherm and X-ray (XR) reflectivity measurements. These experimental data were analyzed within the theoretical framework of a continuum self-consistent field (SCF) polymer brush model. The combined experimental and theoretical results suggest that the mobile mixed brush derived using the PEO113-PnBA100 and PDMAEMA118-PnBA100 combination (i.e., mixed brush System #1) undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the more height-mismatched system (System #3) is only microscopically phase separated under comparable brush density conditions even though the lateral

  15. Macroscopic lateral heterogeneity observed in a laterally mobile immiscible mixed polyelectrolyte-neutral polymer brush

    SciTech Connect

    Lee, Hoyoung; Tsouris, Vasilios; Lim, Yunho; Mustafa, Rafid; Choi, Je; Choi, Yun Hwa; Park, Hae-Woong; Meron, Mati; Lin, Binhua; Won, You-Yeon

    2014-07-11

    We studied mixed poly(ethylene oxide) (PEO) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The question we attempted to answer was: when the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Three different model mixed PEO/PDMAEMA brush systems were prepared: (1) a laterally mobile mixed brush by spreading onto the air–water interface a mixture of poly(ethylene oxide)–poly(n-butyl acrylate) (PEO–PnBA) and poly(2-(dimethylamino)ethyl methacrylate)–poly(n-butyl acrylate) (PDMAEMA–PnBA) diblock copolymers (the specific diblock copolymers used will be denoted as PEO113–PnBA100 and PDMAEMA118–PnBA100, where the subscripts refer to the number-average degrees of polymerization of the individual blocks), (2) a mobility-restricted (inseparable) version of the above mixed brush prepared using a PEO–PnBA–PDMAEMA triblock copolymer (denoted as PEO113–PnBA89–PDMAEMA120) having respective brush molecular weights matched with those of the diblock copolymers, and (3) a different laterally mobile mixed PEO and PDMAEMA brush prepared from a PEO113–PnBA100 and PDMAEMA200–PnBA103 diblock copolymer combination, which represents a further more height-mismatched mixed brush situation than described in (1). These three mixed brush systems were investigated by surface pressure–area isotherm and X-ray (XR) reflectivity measurements. These experimental data were analyzed within the theoretical framework of a continuum self-consistent field (SCF) polymer brush model. The combined experimental and theoretical results suggest that the mobile mixed brush derived using the PEO113–PnBA100 and PDMAEMA118–PnBA100 combination (i.e., mixed brush System #1) undergoes a lateral macroscopic phase separation

  16. Optical characterization of phase transitions in pure polymers and blends

    NASA Astrophysics Data System (ADS)

    Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo

    2015-12-01

    To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.

  17. Optical characterization of phase transitions in pure polymers and blends

    SciTech Connect

    Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo

    2015-12-17

    To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.

  18. Wafer-scale arrays of nonvolatile polymer memories with microprinted semiconducting small molecule/polymer blends.

    PubMed

    Bae, Insung; Hwang, Sun Kak; Kim, Richard Hahnkee; Kang, Seok Ju; Park, Cheolmin

    2013-11-13

    Nonvolatile ferroelectric-gate field-effect transistors (Fe-FETs) memories with solution-processed ferroelectric polymers are of great interest because of their potential for use in low-cost flexible devices. In particular, the development of a process for patterning high-performance semiconducting channel layers with mechanical flexibility is essential not only for proper cell-to-cell isolation but also for arrays of flexible nonvolatile memories. We demonstrate a robust route for printing large-scale micropatterns of solution-processed semiconducting small molecules/insulating polymer blends for high performance arrays of nonvolatile ferroelectric polymer memory. The nonvolatile memory devices are based on top-gate/bottom-contact Fe-FET with ferroelectric polymer insulator and micropatterned semiconducting blend channels. Printed micropatterns of a thin blended semiconducting film were achieved by our selective contact evaporation printing, with which semiconducting small molecules in contact with a micropatterned elastomeric poly(dimethylsiloxane) (PDMS) mold were preferentially evaporated and absorbed into the PDMS mold while insulating polymer remained intact. Well-defined micrometer-scale patterns with various shapes and dimensions were readily developed over a very large area on a 4 in. wafer, allowing for fabrication of large-scale printed arrays of Fe-FETs with highly uniform device performance. We statistically analyzed the memory properties of Fe-FETs, including ON/OFF ratio, operation voltage, retention, and endurance, as a function of the micropattern dimensions of the semiconducting films. Furthermore, roll-up memory arrays were produced by successfully detaching large-area Fe-FETs printed on a flexible substrate with a transient adhesive layer from a hard substrate and subsequently transferring them to a nonplanar surface. PMID:24070419

  19. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH4SCN

    NASA Astrophysics Data System (ADS)

    Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Genova, F. Kingslin Mary; Umamaheswari, R.

    2016-05-01

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10-3 S cm-1 for 20 mol % NH4SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  20. Polylactic Acid-Based Polymer Blends for Durable Applications

    NASA Astrophysics Data System (ADS)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  1. Boundary-induced segregation in nanoscale thin films of athermal polymer blends.

    PubMed

    Teng, Chih-Yu; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-05-18

    The surface segregation of binary athermal polymer blends confined in a nanoscale thin film was investigated by dissipative particle dynamics. The polymer blend included linear/linear, star/linear, bottlebrush/linear, and rod-like/linear polymer systems. The segregation was driven by purely entropic effects and two different mechanisms were found. For the linear/linear and star/linear polymer blends, the smaller sized polymers were preferentially segregated to the boundary because their excluded volumes were smaller than those of the matrix polymers. For the bottlebrush/linear and rod-like/linear polymer blends, the polymers with a larger persistent length were preferentially segregated to the boundary because they favored staying in the depletion zone by alignment with the wall. Our simulation outcome was consistent with experimental results and also agreed with theoretical predictions - that is, a surface excess dictated by the chain ends for the branch/linear system. These consequences are of great importance in controlling the homogeneity and surface properties of polymer blend thin films. PMID:27108653

  2. Role of salt concentration in blend polymer for energy storage conversion devices

    NASA Astrophysics Data System (ADS)

    Arya, Anil; Sadiq, M.; Sharma, A. L.

    2016-05-01

    Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO, PAN and LiPF6 are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.

  3. [Phase transition in polymer blends and structure of ionomers and copolymers

    SciTech Connect

    Not Available

    1993-01-01

    The main thrust of the program in the past 3 years are summarized: SAXS instrumentation development; structure and dynamics of macro- and supra-molecules, phase transitions in polymer blends and solutions, structure of ionomers, and fractals and anisotropic systems.

  4. Phase Separation Dynamics of Polymer Blend Films Containing Polymer-Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chung, H.-J.; Ohno, K.

    2005-03-01

    Polymer blends containing nanoparticles (NP) are important in advanced technologies including opto-electronic and biosensor devices. Upon adding methyl-terminated silica NP's [22nm (NPA)] at dilute concentrations, PMMA:SAN (50:50) films (650nm) undergo early, intermediate and late stages of morphology development, similar to a PMMA:SAN film (Wang & Composto, JCP (2000)). NP's partition into the PMMA-rich phase, and slow down the kinetics of domain growth. This result is consistent with a coalescence model that predicts ξ˜ (1 / η)^1/3 t^1/3, where ξ and η are the correlation length and PMMA viscosity, respectively (Chung et al., EPL (2004)). Although the bulk η agrees with this model, a microscopic understanding of the phase separation mechanism requires knowledge of polymer-NP and NP-NP interactions. To address this issue, well-characterized silica NP's (15 nm) with densely grafted PMMA [Mw = 1.8K (NPB) and 21K (NPC)] are employed as non-interacting fillers in the PMMA-rich phase. The impact of PMMA-grafted NP on the phase separation dynamics in films, as well as the rheology of PMMA/NP composites, is investigated. Specifically, phase separation was slowest for NPB relative to films containing NPA and NPC. These studies show that wetting and domain coarsening in polymer blend films can be controlled by the judicial addition of surface modified NP.

  5. Nanoparticle induced miscibility in LCST polymer blends: critically assessing the enthalpic and entropic effects.

    PubMed

    Xavier, Priti; Rao, Praveen; Bose, Suryasarathi

    2016-01-01

    The use of copolymer and polymer blends widened the possibility of creating materials with multilayered architectures. Hierarchical polymer systems with a wide array of micro and nanostructures are generated by thermally induced phase separation (TIPS) in partially miscible polymer blends. Various parameters like the interaction between the polymers, concentration, solvent/non-solvent ratio, and quenching temperature have to be optimized to obtain these micro/nanophase structures. Alternatively, the addition of nanoparticles is another strategy to design materials with desired hetero-phase structures. The dynamics of the polymer nanocomposite depends on the statistical ordering of polymers around the nanoparticle, which is dependent on the shape of the nanoparticle. The entropic loss due to deformation of polymer chains, like the repulsive interactions due to coiling and the attractive interactions in the case of swelling has been highlighted in this perspective article. The dissipative particle dynamics has been discussed and is correlated with the molecular dynamics simulation in the case of polymer blends. The Cahn-Hillard-Cook model on variedly shaped immobile fillers has shown difference in the propagation of the composition wave. The nanoparticle shape has a contributing effect on the polymer particle interaction, which can change the miscibility window in the case of these phase separating polymer blends. Quantitative information on the effect of spherical particles on the demixing temperature is well established and further modified to explain the percolation of rod shaped particles in the polymer blends. These models correlate well with the experimental observations in context to the dynamics induced by the nanoparticle in the demixing behavior of the polymer blend. The miscibility of the LCST polymer blend depends on the enthalpic factors like the specific interaction between the components, and the solubility product and the entropic losses occurring due

  6. Partial Miscibility in Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth; Lipson, Jane

    2011-03-01

    Copolymers can be used to affect the miscibility of otherwise immiscible polymer blends by acting as compatibilizers. To better understand the energetics of these types of systems, we use a simple lattice model to study phase separation in binary copolymer/homopolymer blends. We focus on a copolymer that contains both A and B type monomers and a homopolymer that contains purely A type monomer. An example of a system that we are investigating is polyethylene mixed with either random or alternating poly(ethylene-co-propylene). The sequence effect on miscibility as the copolymer microstructure is varied from random to alternating is investigated as well. The support of GAANN is gratefully acknowledged.

  7. Biodegradable-Polymer-Blend-Based Surgical Sealant with Body-Temperature-Mediated Adhesion.

    PubMed

    Behrens, Adam M; Lee, Nora G; Casey, Brendan J; Srinivasan, Priya; Sikorski, Michael J; Daristotle, John L; Sandler, Anthony D; Kofinas, Peter

    2015-12-22

    The development of practical and efficient surgical sealants has the propensity to improve operational outcomes. A biodegradable polymer blend is fabricated as a nonwoven fiber mat in situ. After direct deposition onto the tissue of interest, the material transitions from a fiber mat to a film. This transition promotes polymer-substrate interfacial interactions leading to improved adhesion and surgical sealant performance. PMID:26554545

  8. Preparation and characterization of chitosan - polystyrene polymer blends

    NASA Astrophysics Data System (ADS)

    Mascarenhas, N. P.; Gonsalves, R. A.; Goveas, J. J.; Shetty, T. C. S.; Crasta, V.

    2016-05-01

    To enhance the physical and mechanical properties of Chitosan (CS) and to improve the functionality of CS towards some specific applications, we have blended CS with polystyrene (PS) to form blended films. The Fourier Transform Infrared Spectroscopy (FT-IR) has been performed on the prepared films to confirm functional groups and formation of the blends. Thermal analysis (TGA and DSC) is carried out to study thermal stability of the blended films. From X-ray diffraction (XRD) studies, the material reveals amorphous nature and hence it may be used for adsorption process. The versatility of the blends, such as film-forming ability, hydrophilicity, biodegradability and biocompatibility are comparable with the existing blends.

  9. Phase Separation of Silicon-Containing Polymer/Polystyrene Blends in Spin-Coated Films.

    PubMed

    Li, Yang; Hu, Kai; Han, Xiao; Yang, Qinyu; Xiong, Yifeng; Bai, Yuhang; Guo, Xu; Cui, Yushuang; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2016-04-19

    In this Article, two readily available polymers that contain silicon and have different surface tensions, polydimethylsiloxane (PDMS) and polyphenylsilsequioxane (PPSQ), were used to produce polymer blends with polystyrene (PS). Spin-coated thin films of the polymer blends were treated by O2 reactive-ion etching (RIE). The PS constituent was selectively removed by O2 RIE, whereas the silicon-containing phase remained because of the high etching resistance of silicon. This selective removal of PS substantially enhanced the contrast of the phase separation morphologies for better scanning electron microscope (SEM) and atomic force microscope (AFM) measurements. We investigated the effects of the silicon-containing constituents, polymer blend composition, concentration of the polymer blend solution, surface tension of the substrate, and the spin-coating speed on the ultimate morphologies of phase separation. The average domain size, ranging from 100 nm to 10 μm, was tuned through an interplay of these factors. In addition, the polymer blend film was formed on a pure organic layer, through which the aspect ratio of the phase separation morphologies was further amplified by a selective etching process. The formed nanostructures are compatible with existing nanofabrication techniques for pattern transfer onto substrates. PMID:27052643

  10. Improved electrical properties of free standing blend polymer for renewable energy resources

    NASA Astrophysics Data System (ADS)

    Arya, Anil; Sharma, Sweety; Sharma, A. L.

    2016-05-01

    Blend polymer electrolytes are prepared for salt concentration (Ö/Li = 4) with the constant ratio (0.5 gm) of PEO and PAN using solution casting technique. The prepared free standing solid polymeric film is characterized by Field Emission Scanning Electron Microscopy (FESEM) which confirms the homogeneous distribution of dissociated salt in blend polymer matrix. After addition of salt the ionic conductivity value is found to be of the order of 7.13 × 10-5 Scm-1 which is three orders higher when compared with pure blend polymer films. The microscopic interaction among the polymer-ion, ion-ion has been confirmed by the Fourier Transform Infrared (FTIR) Spectroscopy. A very fine correlation has been built in the electrical conductivity and FTIR result. On the basis of above finding, a prepared free standing solid polymeric film appears to be appropriate for the energy storage/conversion device applications.

  11. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  12. Rheology of Ring Polymer Melts: From Linear Contaminants to Ring-Linear Blends

    NASA Astrophysics Data System (ADS)

    Halverson, Jonathan D.; Grest, Gary S.; Grosberg, Alexander Y.; Kremer, Kurt

    2012-01-01

    Ring polymers remain a challenge to our understanding of polymer dynamics. Experiments are difficult to interpret because of the uncertainty in the purity and dispersity of the sample. Using both equilibrium and nonequilibrium molecular dynamics simulations we have investigated the structure, dynamics, and rheology of perfectly controlled ring-linear polymer blends of chains of up to about 14 entanglements per chain, comparable to experimental systems. Linear contaminants increase the zero-shear viscosity of a ring polymer melt by about 10% around one-fifth of their overlap concentration. For equal concentrations of linear and ring polymers, the blend viscosity is about twice that of the pure linear melt. The diffusion coefficient of the rings decreases dramatically, while the linear polymers are mostly unaffected. Our results are supported by a primitive path analysis.

  13. Influence of filler particle and clusters on phase separation in binary polymer blends

    SciTech Connect

    Jiang, Yi; Saxena, A. B.; Lookman, T.; Douglas, J. F.

    2001-01-01

    Polymer materials are rarely used in their pure form in applications. They are often filled with additives that improve their processability and mechanical or electrical properties. An understanding of the polymer-filler interaction and the ramifications for the properties of filled polymer blends is a matter of significant practical interest. Phase separation plays an important role in determining the morphology and properties of filled polymer composites, which usually are a blend of various macromolecular fluids, and additive particles. Despite the wide application of these blends, the development and the stability of the phase separating morphology are not fully understood. In particular, the interference of the filler induced composition waves remains unexplored. The presence of a surface induces a composition wave, which consists of stripes parallel to the surface and only exists close to the surface. The morphologies in the bulk take form of the characteristic spinodal decomposition patterns, i.e. the convoluted stripes. This surface directed phase separation has been studied both theoretically and experimentally. Recent numerical results show that an immobile spherical filler particle introduces transient target patterns in two-dimensional polymer thin films, and experimental results have confirmed the observations. The authors report simulation results of the effect of filler geometry on phase separation morphology, focusing on the interference of the composition waves on the stability of two-dimensional polymer blends (polymer thin films).

  14. Microscopy of thin polymer blend films of polystyrene and poly-n-butyl-methacrylate

    NASA Astrophysics Data System (ADS)

    Schmitt, T.; Guttmann, P.; Schmidt, O.; Müller-Buschbaum, P.; Stamm, M.; Schönhense, G.; Schmahl, G.

    2000-05-01

    The structure of thin polymer blend films of polystyrene (PS) and poly-n-butyl-methacrylate (PnBMA) was examined with Transmission X-ray Microscopy (TXM), Scanning Force Microscopy (SFM), X-Ray Photoemission Electron Microscopy (X-PEEM) and Optical Microscopy (OM). Thin films were prepared by spin casting of a toluene solution of the polymer mixture onto silicon wafers retaining the native oxide. Depending on blend composition and annealing conditions smooth films with and without holes or films with well pronounced surface features (ribbons or islands) were produced. By TXM measurements a high lateral resolution study of the as cast and the annealed polymer blend samples was performed. The contrast in TXM is due to different absorption of x-radiation of the used polymers and due to variation in thickness. With X-PEEM the lateral distribution of the two polymers near the surface was mapped by employing the characteristic Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of the polymers. The TXM technique is a microscopic method integrating over the total film thickness, whereas the X-PEEM technique is a highly surface sensitive method. TXM and X-PEEM are therefore complementary methods which provide important information on the structure of thin polymer blend films additional to the standard techniques SFM and OM.

  15. Polymer blend membranes for CO2 separation from natural gas

    NASA Astrophysics Data System (ADS)

    Mukhtar, H.; Mannan, H. A.; Minh, D.; Nasir, R.; Moshshim, D. F.; Murugesan, T.

    2016-06-01

    Polymeric membranes are dominantly used in industrial gas separation membrane processes. Enhancement in membranes permeability and/or selectivity is a key challenge faced by membrane researchers. The current work represents the effect of poyetherimide blending on separation performance of polysulfone membranes. Polysulfone/poyetherimide (PSF/PEI) blend flat sheet dense membranes were synthesized and tested for permeation analysis of CO2 and CH4 gases at 6, 8 and 10 bar pressure and 25oC temperature. Morphology and thermal properties of membranes were characterized by field emission scanning electron microscope (FESEM) and thermo gravimetric analysis (TGA) respectively. Blend membranes were dense and homogeneous as deduced from FESEM analysis. Thermal stability of synthesized blend membranes was maintained by blending with PEI as characterized by TGA results. Decrease in permeability of both gases was observed by the addition of PEI due to rigidity of PEI chains. Additionally, selectivity of synthesized blend membranes was enhanced by blending PEI and blend membranes show improved selectivity over pure PSF membrane. This new material has the capability to be used as gas separation membrane material.

  16. Electrochemical characterization of electrospun nanocomposite polymer blend electrolyte fibrous membrane for lithium battery.

    PubMed

    Padmaraj, O; Rao, B Nageswara; Venkateswarlu, M; Satyanarayana, N

    2015-04-23

    Novel hybrid (organic/inorganic) electrospun nanocomposite polymer blend electrolyte fibrous membranes with the composition poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-co-HFP)]/poly(methyl methacrylate) [P(MMA)]/magnesium aluminate (MgAl2O4)/LiPF6 were prepared by the electrospinning technique. All of the prepared electrospun P(VdF-co-HFP), PMMA blend [90% P(VdF-co-HFP)/10% PMMA], and nanocomposite polymer blend [90% P(VdF-co-HFP)/10% PMMA/x wt % MgAl2O4 (x = 2, 4, 6, and 8)] fibrous membranes were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The fibrous nanocomposite separator-cum-polymer blend electrolyte membranes were obtained by soaking the nanocomposite polymer blend membranes in an electrolyte solution containing 1 M LiPF6 in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). The newly developed fibrous nanocomposite polymer blend electrolyte [90% P(VdF-co-HFP)/10% PMMA/6 wt % MgAl2O4/LiPF6] membrane showed a low crystallinity, low average fiber diameter, high thermal stability, high electrolyte uptake, high conductivity (2.60 × 10(-3) S cm(-1)) at room temperature, and good potential stability above 4.5 V. The best properties of the fibrous nanocomposite polymer blend electrolyte (NCPBE) membrane with a 6 wt % MgAl2O4 filler content was used for the fabrication of a Li/NCPBE/LiCoO2 CR 2032 coin cell. The electrochemical performance of the fabricated CR 2032 cell was evaluated at a current density of 0.1 C-rate. The fabricated CR 2032 cell lithium battery using the newly developed NCPBE membrane delivered an initial discharge capacity of 166 mAh g(-1) and a stable cycle performance. PMID:25867205

  17. Transmission electron microscopy of polymer blends and block copolymers

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique Daniel

    Transmission electron microscopy (TEM) of soft matter is a field that warrants further investigation. Developments in sample preparation, imaging and spectroscopic techniques could lead to novel experiments that may further our understanding of the structure and the role structure plays in the functionality of various organic materials. Unlike most hard materials, TEM of organic molecules is limited by the amount of radiation damage the material can withstand without changing its structure. Despite this limitation, TEM has been and will be a powerful tool to study polymeric materials and other soft matter. In this dissertation, an introduction of TEM for polymer scientists is presented. The fundamentals of interactions of electrons with matter are described using the Schrodinger wave equation and scattering cross-sections to fully encompass coherent and incoherent scattering. The intensity, which is the product of the wave function and its complex conjugate, shows no perceptible change due to the sample. Instead, contrast is generated through the optical system of the microscope by removing scattered electrons or by generating interference due to material-induced phase changes. Perhaps the most challenging aspect of taking TEM images, however, is sample preparation, because TEM experiments require materials with approximately 50 nm thickness. Although ultramicrotomy is a well-established powerful tool for preparing biological and polymeric sections for TEM, the development of cryogenic Focused Ion Beam may enable unprecedented cross-sectional TEM studies of polymer thin films on arbitrary substrates with nanometer precision. Two examples of TEM experiments of polymeric materials are presented. The first involves quantifying the composition profile across a lamellar phase obtained in a multicomponent blend of saturated poly(butadiene) and poly(isobutylene), stabilized by a saturated poly(butadiene) copolymer serving as a surfactant, using TEM and self

  18. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    NASA Astrophysics Data System (ADS)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H.

    2016-05-01

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence of compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.

  19. Dynamics of phase separation in polymer blends studied by ultrafast scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Zhou, Dongshan; Wei, Lai; Luo, Shaochuan; Jiang, Jing; Wang, Xiaoliang; Xue, Gi

    2015-03-01

    Phase separation in polymer blends has been widely studied in material science due to the special microstructures they may form during the processes. The recently developed ultrafast scanning calorimetry (UFSC) with heating and cooling rates up to 10E5 K/s provides better chance to follow the fast de-mixing of polymer blends occurring in sub-milliseconds. In this work, the dynamics of phase separation in several proportions of poly(styrene) and poly(vinyl methyl ether) (PS/PVME) blends with different molecular weights were studied using UFSC. It shows that the phase diagrams of the blend can be easily built and that the de-mixing level can be well controlled by the fast heating and quenching program the UFSC offers. The authors appreciate the financial support of National Basic Research Program of China (973 program, 2012CB821503) and the NSF of China (21274059 and 21027006).

  20. High thermal conductivity in amorphous polymer blends by engineered interchain interactions

    NASA Astrophysics Data System (ADS)

    Kim, Gun-Ho; Lee, Dongwook; Shanker, Apoorv; Shao, Lei; Kwon, Min Sang; Gidley, David; Kim, Jinsang; Pipe, Kevin P.

    2015-03-01

    Thermal conductivity is an important property for polymers, as it often affects product reliability (for example, electronics packaging), functionality (for example, thermal interface materials) and/or manufacturing cost. However, polymer thermal conductivities primarily fall within a relatively narrow range (0.1-0.5 W m-1 K-1) and are largely unexplored. Here, we show that a blend of two polymers with high miscibility and appropriately chosen linker structure can yield a dense and homogeneously distributed thermal network. A sharp increase in cross-plane thermal conductivity is observed under these conditions, reaching over 1.5 W m-1 K-1 in typical spin-cast polymer blend films of nanoscale thickness, which is approximately an order of magnitude larger than that of other amorphous polymers.

  1. Quantitative image analysis of broadband CARS hyperspectral images of polymer blends.

    PubMed

    Lee, Young Jong; Moon, Doyoung; Migler, Kalman B; Cicerone, Marcus T

    2011-04-01

    We demonstrate that broadband coherent anti-Stokes Raman scattering (CARS) microscopy can be very useful for fast acquisition of quantitative chemical images of multilayer polymer blends. This is challenging because the raw CARS signal results from the coherent interference of resonant Raman and nonresonant background and its intensity is not linearly proportional to the concentration of molecules of interest. Here we have developed a sequence of data-processing steps to retrieve background-free and noise-reduced Raman spectra over the whole frequency range including both the fingerprint and C-H regions. Using a classical least-squares approach, we are able to decompose a Raman hyperspectral image of a tertiary polymer blend into quantitative chemical images of individual components. We use this method to acquire 3-D sectioned quantitative chemical images of a multilayer polymer blend of polystyrene, styrene-ethylene/propylene copolymer, and polypropylene that have overlapping spectral peaks. PMID:21395296

  2. AC conductivity and electrochemical studies of PVA/PEG based polymer blend electrolyte films

    NASA Astrophysics Data System (ADS)

    Polu, Anji Reddy; Kumar, Ranveer; Dehariya, Harsha

    2012-06-01

    Polymer blend electrolyte films based on Polyvinyl alcohol(PVA)/Poly(ethylene glycol)(PEG) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique. Conductivity in the temperature range 303-373 K and transference number measurements have been employed to investigate the charge transport in this polymer blend electrolyte system. The highest conductivity is found to be 9.63 × 10-5 S/cm at 30°C for sample with 30 weight percent of Mg(NO3)2 in PVA/PEG blend matrix. Transport number data shows that the charge transport in this polymer electrolyte system is predominantly due to ions. Using this electrolyte, an electrochemical cell with configuration Mg/(PVA+PEG+Mg(NO3)2)/(I2+C+electrolyte) was fabricated and its discharge characteristics profile has been studied.

  3. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    SciTech Connect

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-05-21

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature τ ≡ (T − T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

  4. Conducting polymer blends: Polypyrrole and polythiophene blends with polystyrene, polycarbonate resin, poly(vinyl alcohol) and poly(vinyl methyl ketone)

    SciTech Connect

    Wang, H.L.

    1992-01-01

    Various aromatic compounds can be polymerized by electrochemical oxidation in solution containing a supporting electrolyte. Most studies have been devoted to polypyrrole and polythiophene. In situ doping during electrochemical polymerization yields free standing conductive polymer film. One major approach to making conducting polymer blends is electrochemical synthesis after coating the host polymer on a platinum electrode. In the electrolysis of pyrrole or thiophene monomer, using (t-Bu[sub 4]N)BF[sub 4] as supporting electrolyte, and acetonitrile as solvent, monomer can diffuse through the polymer film, to produce a polypyrrole or polythiophene blend in the film. Doping occurs along with polymerization to form a conducting polymer alloy. The strongest molecular interaction in polymers, and one that is central to phase behavior, is hydrogen bonding. This mixing at the molecular level enhances the degree of miscibility between two polymers and results in macroscopic properties indicative of single phase behavior. In this dissertation, the authors describes the syntheses of conducting polymer blends: polypyrrole and polythiophene blends with polystyrene, poly(bisphenol-A-carbonate), polyvinyl alcohol and poly(vinyl methyl ketone). The syntheses are performed both electrochemically and chemically. Characterization of these blends was carried out by Fourier Transform Infrared spectroscopy, Differential Scanning Calorimetry, Thermogravimetric Analysis, Scanning Electron Microscopy, and X-ray diffraction. Percolating threshold conductivities occur from 7% to 20% for different polymer blends. The low threshold conductivity is attributed to blend homogeneity enhanced by hydrogen bonding between the carbonyl group in the insulating polymer and the N-H group in polypyrrole. Thermal stability, environmental stability, mechanical properties, crystallinity and morphological structure are also discussed. The authors have also engaged in the polymerization of imidazoles.

  5. Selective Metal Deposition on a Phase-Separated Polymer Blend Surface

    NASA Astrophysics Data System (ADS)

    Tsujioka, Tsuyoshi; Yamaguchi, Koji

    2013-07-01

    We report selective metal deposition on a phase-separated polymer blend surface. A polymer blend film consisting of polystyrene (PS) and a polystyrene-block-polybutadiene copolymer (PS-BR) was annealed, and a micro-phase-separated film was obtained. Pb was evaporated onto the phase-separated surface without an evaporation mask and was selectively deposited on the PS phase but not on the PS-BR phase. We achieved fine metal patterns corresponding to the microphase separation. This result suggests a novel method of preparing fine metal patterns for electronics and photonics.

  6. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen; Hsu, Sung-Ting

    Alkaline SPE was obtained from a blend of polyvinyl alcohol (PVA) and poly(epichlorohydrin) (PECH), PVA-PECH, by a solution-cast technique. The PVA host polymer is blended with PECH polymer to provide a polymer electrolyte with improved chemical and mechanical properties. The ionic conductivity of the PVA-PECH polymer electrolytes is between 10 -2 and 10 -3 S cm -1 at room temperature when the blend ratio is varied from 1:0.2 to 1:1. The PVA-PECH polymer was characterized by means of scanning electron microscopy, X-ray diffraction, stress-strain test, cyclic voltammetry, and a.c. impedance spectroscopy. It is found that the polymer electrolytes exhibit good mechanical strength and excellent chemical stability. The electrochemical performance of solid-state Zn-air batteries with various types of the blended polymer electrolyte films is examined by a galvanostatic discharge method.

  7. The Viscoelastic Behavior of Polymer/Oligomer Blends

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; McKenna, Gregory; Simon, Sindee

    2009-03-01

    The dynamics in athermal blends of poly(α-methyl styrene) (PaMS) and its short chain oligomer are investigated using rheometry and differential scanning calorimetry (DSC). Master curves for the dynamic shear responses, G' and G", are successfully constructed for both the pure materials and the blends, indicating the validity of the time-temperature superposition principle. The temperature dependence of the shift factor follows the WLF (Williams-Landel-Ferry) behavior over the temperature range studied, and for the blends, the dependence is dominated by the high mobility oligomer. The discrete relaxation spectra of the materials are calculated and are found to be broader for the blends than for the pure materials. A similar domination of the dynamics by the oligomer is observed in DSC enthalpy recovery studies and in the broadened glass transition from DSC. The ability to predict the dynamic responses of the blends from the responses of the neat materials is examined, and whether this prediction needs to incorporate the self-concentration idea as described in Colmenero's model will be discussed.

  8. Morphological analysis of Polyethersulfone/polyvinyl Acetate blend membrane synthesized at various polymer concentrations

    NASA Astrophysics Data System (ADS)

    Hadi, S. H. A. A.; Mannan, H. A.; Mukhtar, H.; Shaharun, M. S.; Murugesan, T.

    2016-06-01

    This paper reports the effect of varying polymer concentration i.e. solvent/polymer ratio on the morphology and gas transport behaviour of polyethersulfone/polyvinyl acetate blend membrane. The solvent used was dimethylformamide, while the manipulated variable was polymer concentration. The concentrations were varied from 75-90 weight % solvent. A homogeneous surface with dense cross-section structure membranes were successfully developed as deduced from FESEM images. The permeability of CO2 and CH4 gases increased with increasing polymer concentration and an improved CO2/CH4 selectivity was observed. These observation made from the characterization justified the applicability of the blend to be synthesized as membrane for gas separation.

  9. Efficacy of Different Block Copolymers in Facilitating Microemulsion Phases in Polymer Blend Systems

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Ganesan, Venkat

    2014-03-01

    Polymeric microemulsions are formed in a narrow range of phase diagram when a blend of immiscible homopolymers is compatibilized by copolymers. In this study, we consider the ternary blend system of A and B homopolymers mixed with block copolymers containing A and B segments, and probe the efficacy of different copolymer configurations in promoting the formation of microemulsion phases. Specifically, we consider: (a) Monodisperse diblock copolymers; (b) Diblock copolymers with bidisperse molecular weights (MW); (c) Block copolymers having MW polydispersity in one of the blocks; (d) Diblock copolymers having monodisperse MW but bidispersity in average composition; and (e) Gradient copolymers exhibiting a linear variation in the average composition. Using single chain in mean field simulations effected in two dimensions, we probe the onset of formation and the width of the bicontinuous microemulsion channel in the ternary phase diagram of homopolymer blended with compatibilizer. We rationalize our results by explicitly quantifying the interfacial activity and the influence of fluctuation effects in the respective copolymer systems.

  10. Polymer blends for LDB applications. [Long Duration Ballooning

    NASA Technical Reports Server (NTRS)

    Lichkus, Andrew M.; Harrison, Ian R.

    1991-01-01

    A series of LCP/PE blends have been studied to determine the potential of such systems to produce a high modulus balloon film material which retains the balloon fabrication and low temperature flight advantages of the current PE films. Blown films of blends of 5 and 15 percent LCP in PE have been produced which show a 28 percent enhancement in modulus over the neat PE matrix. These results are substantially lower than anticipated and are explained in terms of the LCP reinforcement aspect ratio and fibril diameter.

  11. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Zhou, Li; Huang, Long-Biao; Zhuang, Jiaqing; Sonar, Prashant; Roy, V. A. L.

    2015-01-01

    Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices. PMID:26029856

  12. Fabrication and characterization of polymer blends and composites derived from biopolymers

    NASA Astrophysics Data System (ADS)

    Sharma, Suraj

    This research focuses on fabricating blends and composites from natural polymers especially from proteins and natural epoxy, and describing the properties of plastics made from them. Specifically, plastic samples from partially denatured feathermeal and bloodmeal proteins, derived from the animal co-products (rendering) industry, were successfully produced through a compression molding process. The modulus (stiffness) of the material obtained was found to be comparable with that of commercial synthetic materials, such as polystyrene, but was found to have lower toughness characteristics, which is a common phenomenon among plastics produced from animal and plant proteins. Therefore, this study explored blending methods for improving the toughness. Plastic forming conditions for undenatured animal proteins such as chicken egg whites albumin and whey, used as a model, were established to prepare plastics from their blends with animal co-product proteins. The resultant plastic samples from these biomacromolecular blends demonstrated improved mechanical properties that were also compared with the established theoretical models known for polymer blends and composites. Moreover, plastics from albumin of chicken egg whites and human serum have demonstrated their potential in medical applications that require antibacterial properties. Another natural polymer vegetable oil-based epoxy, especially epoxidized linseed oil, showed significant potential to replace petroleum-derived resins for use as a matrix for composites in structural applications. Moreover, the research showed the benefits of ultrasonic curing, which can help in preparing the out-of-autoclave composites.

  13. The role of nanoparticle synergies in modifying the thermal properties of biodegradable polymer blends

    NASA Astrophysics Data System (ADS)

    Yang, Kai; He, Shan; Davis, Rachel; Rafailovich, Miriam; Kashiwagi, Takashi

    2012-02-01

    Most of thermoplastic polymers are brittle, when sufficient amounts are added to get flame retardant properties.Furthermore, melt-blending starch with other biodegradable polymers is difficult since very few polymers are compatible with starches.We have developed a new nanoparticles where resorcinol diphenyl phosphates (RDP) is used to modify the surface energy, allowing the particles to be dispersed within polymer.When multiple types of particles share the same coating,they can be melt blended simultaneously and synergies can be achieved, imparting properties to the nanocomposite, which cannot be achieved by any single additive. Here we show that RDP modified starch, can be extruded together with the biodegradable polymers,Ecoflex and polylactic acid,to produce flame retardant nanocomposites which can pass the UL-94-V0 test.TEM images of the blend show that the RDP-coated starch particles were well dispersed within the polymer matrix providing the flame retardant properties,while the RDP clays are reducing the interfacial tension and contributing to compatibilization. Nanomechanical measurements of the chars remaining after cone calorimetric measurements indicate that maintaining flexibility of the chars may be an additional factor in achieving good flame retardant properties.

  14. SIMS depth profiling of polymer blends with protein based drugs

    NASA Astrophysics Data System (ADS)

    Mahoney, Christine M.; Yu, Jinxiang; Fahey, Albert; Gardella, Joseph A.

    2006-07-01

    We report the results of the surface and in-depth characterization of two component blend films of poly( L-lactic acid) (PLLA) and Pluronic surfactant [poly(ethylene oxide) (A) poly(propylene oxide) (B) ABA block copolymer]. These blend systems are of particular importance for protein drug delivery, where it is expected that the Pluronic surfactant will retain the activity of the protein drug and enhance the biocompatibility of the device. Angle dependant X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) employing an SF 5+ polyatomic primary ion source were both used for monitoring the surfactant's concentration as a function of depth. The results show an increased concentration of surfactant at the surface, where the surface segregation initially increases with increasing bulk concentration and then remains constant above 5% (w/w) Pluronic. This surface segregated region is immediately followed by a depletion region with a homogeneous mixture in the bulk of the film. These results suggest the selection of the surfactant bulk concentration of the thin film matrices for drugs/proteins delivery should achieve a relatively homogeneous distribution of stabilizer/protein in the PLLA matrix. Analysis of three component blends of PLLA, Pluronic and insulin are also investigated. In the three component blends, ToF-SIMS imaging shows the spatial distribution of surfactant/protein mixtures. These data are reported also as depth profiles.

  15. A Comparative Study of Interfacial Slip in Polymer Blends with Nanoparticles and Diblock Copolymer Compatibilizers

    NASA Astrophysics Data System (ADS)

    Ortiz, Joseph; Gersappe, Dilip

    2012-02-01

    The interfacial region in polymer blends has been identified as a low viscosity region in which considerable slip can occur when the blend is subjected to shear forces. Here we use Molecular Dynamics simulations to establish and compare the roles that added nanoparticle fillers and diblock copolymers play in modifying the interfacial rheology. By choosing conditions under which the fillers and diblocks are localized, either in the two phases or at the interface, we can look at the interplay between their strengthening capabilities and the change in the interfacial slip behavior. We examine particle size, attraction between the particle and the polymer component, and the amount of filler in the material and compared this to systems including diblock copolymers at the same volume fraction. Our studies are performed, for a variety of shear values, both above and below the point at which the filler particles form a transient network in the blend.

  16. Improvement of impact strength in linear low density polyethylene (LLDPE) by blending with amorphous polymers

    SciTech Connect

    Mirabella, F.M. Jr.

    1996-12-31

    The objective of the current work was to improve the film impact strength of commercial linear low density polyethylene (LLDPE) resins, while maintaining or improving other desirable properties. The approach used was to blend rubber-like (i.e. essentially noncrystalline) polymer resins with the base resin LLDPE. The choice of the rubber-like components was largely dictated by their commercial availability. The rubber-like polymers chosen were poly (ethylene-vinyl acetate) [EVA], poly (ethylene-n-butyl acrylate) [EnBA], and poly (ethylene-propylene) rubber [EPR]. The weight percent range of addition of the rubber-like component was restricted to 5% - 20%. The preferred range was only up to 10%. The structure of the base LLDPE resin, rubber-like components and the blends thereof was characterized. The physical and mechanical properties of the blown films of the resin blends were measured and correlations between structure and properties were determined.

  17. Conjugated Polymer Blend Microspheres for Efficient, Long-Range Light Energy Transfer.

    PubMed

    Kushida, Soh; Braam, Daniel; Dao, Thang Duy; Saito, Hitoshi; Shibasaki, Kosuke; Ishii, Satoshi; Nagao, Tadaaki; Saeki, Akinori; Kuwabara, Junpei; Kanbara, Takaki; Kijima, Masashi; Lorke, Axel; Yamamoto, Yohei

    2016-05-24

    Highly luminescent π-conjugated polymeric microspheres were fabricated through self-assembly of energy-donating and energy-accepting polymers and their blends. To avoid macroscopic phase separation, the nucleation time and growth rate of each polymer in the solution were properly adjusted. Photoluminescence (PL) studies showed that efficient donor-to-acceptor energy transfer takes place inside the microspheres, revealing that two polymers are well-blended in the microspheres. Focused laser irradiation of a single microsphere excites whispering gallery modes (WGMs), where PL generated inside the sphere is confined and resonates. The wavelengths of the PL lines are finely tuned by changing the blending ratio, accompanying the systematic yellow-to-red color change. Furthermore, when several microspheres are coupled linearly, the confined PL propagates the microspheres through the contact point, and a cascade-like process converts the PL color while maintaining the WGM characteristics. The self-assembly strategy for the formation of polymeric nano- to microstructures with highly miscible polymer blends will be advantageous for optoelectronic and photonic device applications. PMID:27135760

  18. Porous devices derived from co-continuous polymer blends as a route for controlled drug release.

    PubMed

    Salehi, Pouneh; Sarazin, Pierre; Favis, Basil D

    2008-04-01

    In this study we examine the release profile of bovine serum albumin (BSA) from a porous polymer matrix derived from a co-continuous polymer blend. The porosity is generated through the selective extraction of one of the continuous phases. This is the first study to examine the approach of using morphologically tailored co-continuous polymer blends as a template for generating porous polymer materials for use in controlled release. A method for the preparation of polymeric capsules is introduced, and the effect of matrix pore size and surface area on the BSA release profile is investigated. Furthermore, the effect of surface charge on release is examined by surface modification of the porous substrate using layer-by-layer deposition techniques. Synthetic, nonerodible polymer, high-density polyethylene (HDPE), was used as a model substrate prepared by melt blending with two different styrene-ethylene-butylene copolymers. Blends with HDPE allow for the preparation of porous substrates with small pore sizes (300 and 600 nm). A blend of polylactide (PLA) and polystyrene was also used to prepare porous PLA with a larger pore size (1.5 microm). The extents of interconnectivity, surface area, and pore dimension of the prepared porous substrates were examined via gravimetric solvent extraction, BET nitrogen adsorption, mercury porosimetry, and image analysis of scanning electron microscopy micrographs. With a loading protocol into the porous HDPE and PLA involving the alternate application of pressure and vacuum, it is shown that virtually the entire porous network was accessible to BSA loading, and loading efficiencies of between 80% and 96% were obtained depending on the pore size of the carrier and the applied pressure. The release profile of BSA from the microporous structure was monitored by UV spectrophotometry. The influence of pore size, surface area, surface charge, and number of deposited layers is demonstrated. It is shown that an effective closed-cell structure

  19. Electrorheology of miscible blended liquid crystalline polymer: A dielectric property approach

    NASA Astrophysics Data System (ADS)

    Kawai, A.; Ide, Y.; Inoue, A.; Ikazaki, F.

    1998-09-01

    A miscible blended liquid crystalline polymer prepared by Asahi Chemical Industry Co. Ltd. was used to study the effect of temperature on electrorheology. The electrorheological (ER) effect was measured using a rotational viscometer at temperatures between 20 and 60 °C. The polymer showed no yield shear stress under an external electric field, and its ER effect increased with decreasing temperature. We explain the electrorheology of the miscible blended liquid crystalline polymer using our ER mechanism, based on Block's model. In our mechanism, for an ER fluid to have an appreciable ER effect, its relaxation frequency must be between 100 and 105 Hz and the difference in the dielectric constant must be large below and above the relaxation frequency. The relaxation frequency of the miscible blended liquid crystalline polymer increased with increasing temperature, and the difference in its dielectric constant below and above the relaxation frequency increased with decreasing temperature. These dielectric properties are explained by the Debye theory and account for the electrorheology of the polymer.

  20. Morphology stabilization of co-continuous polymer blends through clay nanoparticles

    NASA Astrophysics Data System (ADS)

    Altobelli, Rosaria; de Luna, Martina Salzano; Causa, Andrea; Acierno, Domenico; Filippone, Giovanni

    2016-05-01

    The influence of plate-like nanoparticles on the morphology evolution of co-continuous polymer blends during quiescent annealing is investigated thorugh viscoelastic analysis. Contextually, the effect of the molten polymer phases on the assembly dynamics and ultimate structure of the filler is also studied. A model co-continuous blend of polystyrene and poly(methyl methacrylate) (45/55 wt/wt) has been selected, and different amount of clay nanoparticles preferentially adsorbing at the polymer-polymer interface are added to this system. The filler inhibits the typical phase coarsening of the co-continuous morphology during thermal treatments even at extremely low filler volume fractions (Φ=0.4 vol.%). In addition, the time evolution of the rheological response of the filled blends resembles that of homopolymer-based nanocomposites, suggesting that the fluid phases do not appreciably alter the nanoparticle dynamics. Exploiting a simple two-phase model, the main elastic features of the filler network that builds up at sufficiently high Φ were found to prescind from the multiphasic nature of the matrix. Nonetheless, the presence of a co-continuous polymer microstructure prevented the elastic and structural features of the network to be discerned through the use of fractal models.

  1. Predicting the chromatographic retention of polymers: poly(methyl methacrylate)s and polyacryate blends.

    PubMed

    Bashir, Mubasher A; Radke, Wolfgang

    2007-09-01

    The suitability of a retention model especially designed for polymers is investigated to describe and predict the chromatographic retention behavior of poly(methyl methacrylate)s as a function of mobile phase composition and gradient steepness. It is found that three simple yet rationally chosen chromatographic experiments suffice to extract the analyte specific model parameters necessary to calculate the retention volumes. This allows predicting accurate retention volumes based on a minimum number of initial experiments. Therefore, methods for polymer separations can be developed in relatively short time. The suitability of the virtual chromatography approach to predict the separation of polymer blend is demonstrated for the first time using a blend of different polyacrylates. PMID:17586517

  2. Polyethylene-supported polyvinylidene fluoride-cellulose acetate butyrate blended polymer electrolyte for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Liu, Jiansheng; Li, Weishan; Zuo, Xiaoxi; Liu, Shengqi; Li, Zhao

    2013-03-01

    The polyethylene (PE)-supported polymer membranes based on the blended polyvinylidene fluoride (PVDF) and cellulose acetate butyrate (CAB) are prepared for gel polymer electrolyte (GPE) of lithium ion battery. The performances of the prepared membranes and the resulting GPEs are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, linear potential sweep, and charge-discharge test. The effect of the ratio of PVDF to CAB on the performance of the prepared membranes is considered. It is found that the GPE based on the blended polymer with PVDF:CAB = 2:1 (in weight) has the largest ionic conductivity (2.48 × 10-3 S cm-1) and shows good compatibility with anode and cathode of lithium ion battery. The LiCoO2/graphite battery using this GPE exhibits superior cyclic stability at room temperature, storage performance at elevated temperature, and rate performance.

  3. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  4. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Putri, Zufira; Arcana, I. Made

    2014-03-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).

  5. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    SciTech Connect

    Putri, Zufira E-mail: arcana@chem.itb.ac.id; Arcana, I Made E-mail: arcana@chem.itb.ac.id

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  6. Long-Term Sustained Ciprofloxacin Release from PMMA and Hydrophilic Polymer Blended Nanofibers.

    PubMed

    Zupančič, Špela; Sinha-Ray, Sumit; Sinha-Ray, Suman; Kristl, Julijana; Yarin, Alexander L

    2016-01-01

    Nanofibers represent an attractive novel drug delivery system for prolonged and controlled release. However, sustained release of hydrophilic drugs, like ciprofloxacin hydrochloride (CIP), from polymeric nanofibers is not an easy task. The present study investigates the effect of different hydrophobic polymers (PCL and PMMA) alone in monolithic nanofibers or with hydrophilic polymers (PVA, PEO, and chitosan) in blended nanofibers aiming to achieve sustained CIP release. CIP release from PCL nanofibers was 46% and from PMMA just 1.5% over 40 day period. Thus, PMMA holds great promise for modification of CIP release from blended nanofibers. PMMA blends with 10% PEO, PVA, or chitosan were used to electrospin nanofibers from solution in the mixture of acetic and formic acid. These nanofibers exhibited different drug-release profiles: PEO containing nanofiber mats demonstrated high burst effect, chitosan containing mats revealed very slow gradual release, and PVA containing mats yielded smaller burst effect with favorable sustained release. We have also shown that gradual sustain release of antibiotic like CIP can be additionally tuned over 18 days with various blend ratios of PMMA with PVA or chitosan reaching almost 100%. A mathematical model in agreement with the experimental observation revealed that the sustained CIP release from the blended nanofibers corresponded to the two-stage desorption process. PMID:26635214

  7. Mechanical properties of heterophase polymer blends of cryogenically fractured soy flour composite filler and poly(styrene-butadiene)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reinforcement effect of cryogenically fractured soy Flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dis...

  8. Spectral Imaging for Electroluminescence Characterization of a Polymer-Blend Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Takada, Noriyuki; Kamata, Toshihide

    2005-12-01

    Spectral imaging for electroluminescence (EL) characterization of a light-emitting diode based on blends of poly[2,7-(9,9-di-n-octylfluorene)] (PFO) and poly[2,7-(9,9-di-n-octylfluorene)-\\textit{alt}-(1,4-phenylene-((4-\\textit{sec}-butylphenyl)amino)-1,4-phenylene)] (TFB) was performed using a two-dimensional microspectroscopy imaging system. We found that EL spectral images changed markedly with increasing applied voltage. Such a variation is presumed to have originated from the transfer of emission sites in the polymer blend layer.

  9. Photo-Curable Polymer Blend Dielectrics for Advancing Organic Field-Effect Transistor Applications

    SciTech Connect

    S Kim; K Hong; M Jang; J Jang; J Anthony; H Yang; C Park

    2011-12-31

    A solution method of photo-curable and -patternable polymer gate dielectrics was introduced by using blend solutions of poly(4-dimethylsilyl styrene) (PDMSS) and poly(melamine-co-formaldehyde) acrylate (PMFA). The fabrication was optimized to produce a smooth hydrophobic gate dielectric with good insulating and solvent-resistant properties. On the optimized PDMSS/PMFA blend gate dielectric, pentacene could grow into highly ordered structure, showing high electric performances for the resulting OFETs, as well as PTCDI-C13 and TES-ADT.

  10. Structure-property relationship in rigid-rigid polymer-toughened polypropylene blends

    NASA Astrophysics Data System (ADS)

    Wei, Guangxue

    1999-11-01

    The rigid-rigid polymer toughening concept is used to toughen and strengthen isotactic polypropylene (iPP). The morphology and mechanical behavior of iPP and Noryl poly(phenylene oxide)/polystyrene blends (iPP/Noryl) are studied. It is found that the fracture toughness of iPP can be significantly improved by adding rigid Noryl particles without causing any reduction in modulus. Large Noryl particles (about 10--15 mum) are formed if no compatibilizers are utilized in the iPP/Noryl blend. An addition of a small amount of styrene-ethylene-propylene (SEP) compatibilizer causes a significant reduction in Noryl particle size. A noticeable improvement in particle-matrix interfacial adhesion is also observed. Also, the fracture energies required for both crack initiation and crack propagation of iPP are greatly increased. The results show that phase morphology has a great effect on the mechanical performance of these blends. The toughening mechanisms in blends of iPP/Noryl are studied using optical microscopy, scanning electron microscopy and transmission electron microscopy techniques. Crazing is found to be the dominant toughening mechanism in iPP/Noryl blend. A detailed investigation of fracture mechanisms reveals that Noryl particles help trigger and stabilize massive crazes in the iPP matrix. Crazing and shear banding mechanisms are found to operate sequentially in iPP/Noryl/SEP blends. As a result, the toughness of PP is significantly improved.

  11. Blends of polyester ionomers with polar polymers: Interactions, reactions, and compatibilization

    NASA Astrophysics Data System (ADS)

    Boykin, Timothy Lamar

    The compatibility of amorphous and semicrystalline polyester ionomers with various polar polymers (i.e., polyesters and polyamides) has been investigated for their potential use as minor component compatibilizers. The degree of compatibility (i.e., ranging from incompatible to miscible) between the polyester ionomers and the polar polymers was determined by evaluating the effect of blend composition on the melting behavior and phase behavior of binary blends. In addition, the origin of compatibility and/or incompatibility for each of the binary blends (i.e., polyamide/ionomer and polyester/ionomer) was determined by evaluating blends prepared by both solution and melt mixed methods. Subsequent to investigation of the binary blends, the effect of polyester ionomer addition on the compatibility of polyamide/polyester blends was investigated by evaluating the mechanical properties and phase morphology of ionomer compatibilized polyamide/polyester blends. Polyester ionomers (amorphous and semicrystalline) were shown to exhibit a high degree of compatibility (even miscibility) with polyamides, such as nylon 6,6 (N66). Compatibility was attributed to specific interactions between the metal counterion of the polyester ionomer and the amide groups of N66. The degree of compatibility (or miscibility) was shown to be dependent on the counterion type of the ionomer, with the highest degree exhibited by blends containing the divalent form of the polyester ionomers. Although polyester ionomers were shown to exhibit incompatibility with both poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), increasing the time of melt processing significantly enhanced the compatibility of the polyester ionomers with both PET and PBT. The observed enhancement in compatibility was attributed to ester-ester interchange between the polyester blend components, which was confirmed by NMR spectroscopy. The addition of polyester ionomers as a minor component compatibilizer (i

  12. Ferroelectric switching behavior in morphology controlled ferroelectric-semiconductor polymer blends for organic memory

    NASA Astrophysics Data System (ADS)

    Lim, Eunhee; Su, Gregory; Kramer, Edward; Chabinyc, Michael

    2015-03-01

    Memory is a fundamental component of all modern electronic systems. Organic ferroelectric memories are advantageous because they are thin and lightweight devices that can be made printable, foldable, and stretchable. Organic ferroelectric memories comprise a physical blend of an organic semiconducting polymer and an insulating ferroelectric polymer as the active layer in a thin film diode. Controlling the thin film morphology in these blends is important for electrical properties of the resulting device. We have found that when a semiconducting thiophene polymer with polar alkanoate side chains (P3EPT) is blended with well-studied ferroelectric polymer poly [(vinylidenefluoride-co-trifluoroethylene] P (VDF-TrFE), the resulting film has low surface roughness and more controllable domain sizes compared to the widely used poly (3-hexylthiophene). This difference allows more reliable study of the ferroelectric switching behavior in devices with domain size of about 100nm. The influence of the 3D composition measured by a combination of methods, including soft x-ray microscopy, on the electrical characteristics will be presented.

  13. Morphology of conjugated polymer/insulating polymer blends from inkjet printing and its correlation to the function of field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chen, Huipeng; Zheng, Guochen; Hu, Liqin; Yang, Huihuang; Guo, Tailiang

    Printed electronics is a rapidly developing field of research which covers any electronic devices or circuits that can be processed using direct printing techniques. Among those printing techniques, inkjet printing is a technique of increasing interest for organic field-effect transistors (FETs) due to its fully data driven and direct patterning. In this work, the morphology of conjugated polymer/insulating polymer blends from inkjet printing and their FET properties has been investigated. The crystallinity and packing of conjugated polymer has been examined by synchrotron x-ray diffraction. The detailed information about the interface and domains of polymer blends were investigated by small angle neutron scattering. It is found that the domains and polymer interface were crucial to the FET properties. Finally, the relationship between morphology and function has been established for polymer blends FET from inkjet printing.

  14. Phase Separation Kinetics of a Binary Polymer Blend with Added Random Copolymer

    NASA Astrophysics Data System (ADS)

    Waldow, Dean; Barham, Bethany; Halasa, Adel

    1998-03-01

    The phase separation kinetics of a polymer blend with increasing amounts of random copolymer was studied using wide angle light scattering. The system is a blend of polystyrene and polybutadiene, and the copolymer is an asymmetric random styrene-butadiene copolymer (80/20). The composition of the blend is near critical and the weight percentages of the added copolymer vary from 0.0 to 2.5 percent. The temperature of the cloud point increases with increasing copolymer amount indicating a destabilizing effect. Light scattering data was collected while temperature was jumped from the one-phase region into the two-phase region near the phase boundary. Early stage and intermediate stage kinetics were analyzed using Cahn-Hillard-Cook theory and scaling theory. The early stage kinetics indicate a slowing of the diffusion constants with added copolymer, and the intermediate stage kinetics suggest that the scaling theory doesn't accurately describe the data.

  15. [Phase transition in polymer blends and structure of ionomers and copolymers]. [Annual report, April 1, 1989--June 30, 1993

    SciTech Connect

    Not Available

    1993-07-01

    The main thrust of the program in the past 3 years are summarized: SAXS instrumentation development; structure and dynamics of macro- and supra-molecules, phase transitions in polymer blends and solutions, structure of ionomers, and fractals and anisotropic systems.

  16. Mechanical properties of melt-processed polymer blend of amorphous corn flour composite filler and styrene-butadiene rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The corn flour composite fillers were prepared by blending corn flour with rubber latex, dried, and cryogenically ground into powders, which were then melt-blended with rubber polymers in an internal mixer to form composites with enhanced mechanical properties. The composites prepared with melt-blen...

  17. Two-step charge photogeneration dynamics in polymer/fullerene blends for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Singh, Sanjeev; Pandit, Bill; Basel, Tek P.; Li, Sergey; Laird, Darin; Vardeny, Z. Valy

    2012-05-01

    We measured the picoseconds (ps) transient dynamics of photoexcitations in blends of poly(3-hexyl-thiophene) (P3HT; donors-D) and fullerene [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; acceptor-A), using the transient pump/probe photomodulation technique in an unprecedented broad spectral range from 0.25 to 2.5 eV, and compared the results with organic solar cell performance based on the same blends. In D-A blends with maximum domain separation such as regio-regular P3HT/PCBM with (1.2:1) weight ratio having solar cell power conversion efficiency of ˜4%, we found that, although the photogenerated intrachain excitons in the polymer nano-domains decay within ˜10 ps, no charge polarons are generated on their expense up to ˜2 ns. Instead, there is a buildup of charge transfer (CT) excitons at the D-A interfaces having the same kinetics as the exciton decay, which dissociate into separate polarons in the D and A domains at a much later time (≫1 ns). This two-step charge photogeneration process may be typical in organic bulk heterojunction cells. Although the CT excitons are photogenerated on the exciton expense much faster in D-A blends having smaller domain size such as in regio-random P3HT/PCBM, their dissociation is less efficient because of larger binding energy. This explains the poor solar cell power conversion efficiency (<0.1%) based on this blend. Our results support the two-step charge photogeneration mechanism in polymer/fullerene blends and emphasize the important role of the CT binding energy in generating free charge polarons in organic solar cells.

  18. Finite element analysis on the fracture of rubber toughened polymer blends

    SciTech Connect

    Wu, Y.; Mai, Y.W.; Wu, J.

    1997-12-31

    The effect of rubber particle volume fraction on the constitutive relation and fracture toughness of polymer blends was studied using elastic-plastic Finite Element Analysis (FEA). The effect of rubber particle cavitation on the stress-strain state at a crack tip was also investigated. Stress analysis reveals that because of the high rubber bulk modulus, the hydrostatic stress inside the rubber particle is close to that in the adjacent matrix material element. As a result, the rubber particle imposes a severe plastic constraint to the surrounding matrix and limits its plastic strain. Rubber particle cavitation can effectively release the constraint and enable large scale plastic strain to occur. Different failure criteria were used to determine the optimum rubber particle volume fraction for the polymer blends studied in this paper.

  19. Microstructural and electrical properties of CoCl2 doped HPMC/PVP polymer blend films

    NASA Astrophysics Data System (ADS)

    Somashekarappa, H.; Prakash, Y.; Mahadevaiah, Hemalatha, K.; Somashekar, R.

    2013-02-01

    Solid polymer electrolyte (SPE) based on Hydroxypropylemethylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) polymer blend films complexed with different weight ratio of CoCl2 were prepared using solution casting method and investigated using X-ray line profile analysis. An attempt has been made to study the changes in crystal imperfection parameters in HPMC/PVP blend films with the increase in concentration of CoCl2. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductivity measurements in these films show that the conductivity increases as the concentration of CoCl2 increases. These films were suitable for electro chemical applications.

  20. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability.

    PubMed

    Mano, J F; Koniarova, D; Reis, R L

    2003-02-01

    Previous studies shown that thermoplastic blends of corn starch with some biodegradable synthetic polymers (poly(epsilon-caprolactone), cellulose acetate, poly(lactic acid) and ethylene-vinyl alcohol copolymer) have good potential to be used in a series of biomedical applications. In this work the thermal behavior of these structurally complex materials is investigated by differential scanning calorimetry (DSC) and by thermogravimetric analysis (TGA). In addition, Fourier-transform infrared (FTIR) spectroscopy was used to investigate the chemical interactions between the different components. The endothermic gelatinization process (or water evaporation) observed by DSC in starch is also observed in the blends. Special attention was paid to the structural relaxation that can occur in the blends with poly(lactic acid) at body temperature that may change the physical properties of the material during its application as a biomaterial. At least three degradation mechanisms were identified in the blends by means of using TGA, being assigned to the mass loss due to the plasticizer leaching, and to the degradation of the starch and the synthetic polymer fractions. The non-isothermal kinetics of the decomposition processes was analyzed using two different integral methods. The analysis included the calculation of the activation energy of the correspondent reactions. PMID:15348484

  1. Composition Dependency of the Flory-Huggins χ Parameter in Isotopic Polymer Blends

    NASA Astrophysics Data System (ADS)

    Russell, Travis; Edwards, Brian; Khomami, Bamin

    2014-03-01

    Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 50 years. Within this theory, a parameter (χ) was developed to account for the energy of dispersion between distinct components. Thin film self-assembly of block copolymers and polymer melts depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of individual components in the system. However, Small Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a parabolic concentration dependency for χ. In order to better understand the nature of χ and develop more accurate morphological data for polymer systems, an investigation of this concentration dependency was undertaken from both structural (χS) and thermodynamic (χT) theories. Structural calculations for χS were based on the Random Phase Approximation of de Gennes, and thermodynamic information was obtained through integration of the free energy with χT defined using original Flory-Huggins Theory. Comparison of the two theories revealed that while both χS and χT possess a composition dependence, it is not the same. NSF DGE-0801470.

  2. Ultrafast photophysics of pi-conjugated polymers and polythiophene/fullerene blends for organic photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Singh, Sanjeev

    The present work reports studies of the ultrafast photoexcitations in various pristine n-conjugated polymers as well as compounds of polythiophene/fullerene blends, which act as the active layer of donor/acceptor in organic photovoltaic applications. The main technique used is the ultrafast (˜150 fs) transient photomodulation (PM) spectroscopy in the range of 0.25 to 2.5 eV using two different laser systems. In addition, two-photon-absorption and electroabsorption have also been complementary used. In organic photovoltaic studies, two different donor polymers namely, Regio-Regular-poly(3-hexylthiophene) (RR-P3HT) that forms lamellae, and Regio-Random-poly(3-hexylthiophene) (RRa-P3HT) that forms lamellae with lesser extent have been compared. The transient PM measurement of the most efficient RR-P3HT/fullerene blend shows that the decay of exciton does not result in the generation of polarons in the donor and acceptor materials, as assumed by the present model of charge dissociation in photovoltaic devices. On the contrary, the decay of exciton fits very well to the build-up of charge-transfer (CT) state in the fullerene phase, which indicates the migration of the photoexcited exciton in the polymer phase to the fullerene nano-domains. The transient PM measurement of RRa-P3HT/fullerene blend, which does not form phase-separated nano-domains, shows the formation of a CT state at the interface following by ultrafast geminate recombination. The transient PM measurement of poly(phenylene-vinylene) (PPV) derivatives show that in 2-methoxy-5-(2'-ethylhexyloxy) PPV (MEH-PPV) film there are two kinds of primary photoexcitations, namely, intrachain exciton and excimer, but only intra-chain exciton in other PPV derivative polymers. Furthermore the high-pressure study of MEHPPV film shows two kinds of polymer chain orders: isolated-chains and closely packed-chains. The high pressure mainly affects photoexcited excimers in the closely packed-chains. In contrast there is no

  3. Mode-of-Action of Self-Extinguishing Polymer Blends Containing Organoclays

    SciTech Connect

    Pack, S.; Si, M; Koo, J; Sokolov, J; Koga, T; Kashiwagi, T; Rafailovich, M

    2009-01-01

    We have shown that the addition of nanoclays is an effective means for enhancing the flame retardant properties of polymer blends. Polymer blends are difficult to render flame retardant even with the addition of flame retardant agents due to dispersion and phase segregation during the heating process. We show that the addition of 5% functionalized Cloisite 20A clays in combination with 15% decabromodiphenyl ether and 4% antimony trioxide to a polystyrene/poly(methyl methacrylate) blend can render the compound flame resistant within the UL-94-V0 standard. Using a variety of micro-characterization methods, we show that the clays are concentrated at the interfaces between the polymers in this blend and completely suppress phase segregation. The flame retardant (FR) is absorbed onto the clay surfaces, and the exfoliation of the clays also distributes the FR agent uniformly within the matrix. TGA of the nanocomposite indicates that prior to the addition of clay, the dissociation times of the individual components varied by more than 20 C, which complicated the gas-phase kinetics. Addition of the clays causes all the components to have a single dissociation temperature, which enhanced the efficacy of the FR formula in the gas phase. Cone calorimetry also indicated that the clays decreased the heat release rate (HRR) and the mass loss rate (MLR), due to the formation of a robust char. In contrast, minimal charring occurred in blends containing just the FR. SEM examination of the chars showed that the clay platelets were curved and in some cases tightly folded into nanotube-like structures. These features were only apparent in blends, indicating that they might be associated with thermal gradients across the polymer phase interface. SEM and SAXS examinations of the nanocomposites after partial exposure to the flame indicated that the clays aggregated into ribbon-like structures, approximately microns in length, after the surfactant thermally decomposed. Thermal modeling

  4. Preparation and Characterization of Novel PBAE/PLGA Polymer Blend Microparticles for DNA Vaccine Delivery

    PubMed Central

    Balashanmugam, Meenashi Vanathi; Nagarethinam, Sivagurunathan; Jagani, Hitesh; Josyula, Venkata Rao; Alrohaimi, Abdulmohsen; Udupa, Nayanabhirama

    2014-01-01

    Context. Poly(beta-amino ester) (PBAE) with its pH sensitiveness and Poly(lactic-co-glycolic acid) (PLGA) with huge DNA cargo capacity in combination prove to be highly efficient as DNA delivery system. Objective. To study the effectiveness of novel synthesized PBAE polymer with PLGA blend at different ratios in DNA vaccine delivery. Methods. In the present study, multifunctional polymer blend microparticles using a combination of PLGA and novel PBAE polymers A1 (bis(3-(propionyloxy)propyl)3,3′-(propane-1,3-diyl-bis(methylazanediyl))dipropanoate) and A2 (bis(4-(propionyloxy)butyl)3,3′-(ethane-1,2-diyl-bis(isopropylazanediyl))dipropanoate) at different ratios (85 : 15, 75 : 25, and 50 : 50) were prepared by double emulsion solvent removal method. The microparticles were characterized for cytotoxicity, transfection efficiency, and DNA encapsulation efficiency. Result. It was evident from results that among the microparticles prepared with PLGA/PBAE blend the PLGA : PBAE at 85 : 15 ratio was found to be more effective combination than the microparticles prepared with PLGA alone in terms of transfection efficiency and better DNA integrity. Microparticles made of PLGA and PBAE A1 at 85 : 15 ratio, respectively, were found to be less toxic when compared with microparticles prepared with A2 polymer. Conclusion. The results encourage the use of the synthesized PBAE polymer in combination with PLGA as an effective gene delivery system. PMID:25401137

  5. Integral equation theory of the structure and thermodynamics of polymer blends

    NASA Astrophysics Data System (ADS)

    Schweizer, Kenneth S.; Curro, John G.

    1989-10-01

    Our recently developed RISM integral equation theory of the structure and thermodynamics of homopolymer melts is generalized to polymer mixtures. The mean spherical approximation (MSA) closure to the generalized Ornstein-Zernike equations is employed, in conjunction with the neglect of explicit chain end effects and the assumption of ideality of intramolecular structure. The theory is developed in detail for binary blends, and the random phase approximation (RPA) form for concentration fluctuation scattering is rigorously obtained by enforcing incompressibility. A microscopic, wave vector-dependent expression for the effective chi parameter measured in small angle neutron scattering (SANS) experiments is derived in terms of the species-dependent direct correlation functions of the blend. The effective chi parameter is found to depend, in general, on thermodynamic state, intermolecular forces, intramolecular structure, degree of polymerization, and global architecture. The relationship between the mean field Flory-Huggins expression for the free energy of mixing and our RISM-MSA theory is determined, along with general analytical connections between the chi parameter and intermolecular pair correlations in the liquid. Detailed numerical applications to athermal and isotopic chain polymer blend models are presented for both the chi parameter and the structure. For athermal blends a negative, concentration-dependent chi parameter is found which decreases with density, structural asymmetry, and increases with molecular weight. For isotopic blends, the effective (positive) chi parameter is found to be strongly renormalized downward from its mean field enthalpic value by long range fluctuations in monomer concentration induced by polymeric connectivity and excluded volume. Both the renormalization and composition dependence of the chi parameter increase with chain length and proximity to the spinodal instability. The critical temperature is found to be proportional to

  6. Bioinspired Gradient Materials via Blending of Polymer Electrolytes and Applying Electric Forces

    PubMed Central

    Bronstein, Lyudmila M.; Ivanovskaya, Anna; Mates, Tom; Holten-Andersen, Niels; Stucky, Galen D.

    2009-01-01

    Free-standing and supported films with lateral gradient in composition were prepared using blends of poly(acrylic acid) (PAA)/sodium salt and its copolymers with acrylamide (AAm) in an applied electric field. The gradients were stabilized by complexation of carboxylate groups with metal species. To find the favorable conditions and components for successful blending and interaction with Fe and Ce species, we studied blending of the two PAA samples with molecular weights of 2,000 and 15,000 Da with two copolymers of AA and AAm (with 10 and 70 wt. % of AA units) and interaction of these blends with Fe(III) and Ce(IV) ions. The structure of the hybrid (blend) films was studied using differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, X-ray diffraction and optical microscopy. To ensure blend miscibility and efficient interaction with metal ions, the copolymer containing 70 wt.% of AA units has been used. The surface enrichment with metal species was observed at all experimental conditions studied in this work. For lateral gradient film formation, 15,000 Da PAA has been used to avoid uneven distribution of the homopolymer in the film, observed for 2,000 Da PAA. The gradient films were characterized by XPS. The lateral gradient of functionality such as COONa group or Fe content, has been obtained at different strengths of electric field applied during film formation. The use of lower voltage allows one to prevent NaOH formation and creates more favorable conditions for development of a gradient polymer film. The Ce content gradient was not observed due to formation of large Ce oxide particles (≥750 nm), masking the gradient of functionality. For the first time, free-standing films with lateral gradient in composition were prepared using an applied electric field. PMID:19105643

  7. Kinetics of Microphase Separation in Crosslinked Polymer Blend

    SciTech Connect

    Bettachy, A.; Benhamou, M.; Derouiche, A.; Fazni, A.

    2009-04-19

    The solvent effect on the early kinetics of the microphase separation (MPS) in binary crosslinked polymer was studied. In the presence of a good solvent, calculations were done using first the random phase approximation method and second an extended blob model, where a crosslinked chain is viewed as a sequence having blobs as new units. Kinetics were studied through the variation of the relaxation rate, {tau}{sub q}, upon the wave number, q, in the region around the spinodal temperature. When the temperature is changed from an initial value, T{sub i}, toward the final value, T{sub f}, very close to the critical point, the only motion allowed to the crosslinked chains is of Rouse type because of the presence of the crosslinks. The swelling effect on the MPS leads to a multiplicative renormalization of critical parameters of the molten state by factors as power of the overall monomer volume fraction, {phi}. The characteristic frequency, {omega}{sub (q)}, inverse of {tau}{sub q}, scales as {omega}(q) congruent with q{sup 6}{epsilon}{sup 3}, where {epsilon} stands for the traditional screening length. The study of kinetics of MPS is then extended in the presence of a theta solvent.

  8. Formulation and evaluation of atenolol floating bioadhesive system using optimized polymer blends

    PubMed Central

    Siddam, Haritha; Kotla, Niranjan G.; Maddiboyina, Balaji; Singh, Sima; Sunnapu, Omprakash; Kumar, Anil; Sharma, Dinesh

    2016-01-01

    Introduction: Oral sustained release gastro retentive dosage forms offer several advantages for drugs having absorption from the upper gastrointestinal tract to improve the bioavailability of medications which have narrow absorption window. The aim of the study was to develop a floating bioadhesive drug delivery system exhibiting a unique combination of floatation and bioadhesion to prolong the residence in the stomach using atenolol as a model drug. Methods: Prior to compression, polymeric blend(s) were evaluated for flow properties. The tablets were prepared by direct compression method using bioadhesive polymer like Carbopol 934P and hydrophilic polymers like HPMC K4M, HPMC K15M, and HPMC K100M. The prepared tablets were evaluated for physical characteristics, bioadhesive strength, buoyancy lag time, swelling index and in vitro drug release studies. Results: The mean bioadhesive strength was found to be in the range of 16.2 to 52.1 gm. The optimized blend (F11) showed 92.3% drug releases after 24 hrs. Whilst, increase in concentration of carbopol 934P, bioadhesive strength and swelling index was increased with slow release. The n values of optimized formulations were found in the range of 0.631-0.719 indicating non-fickian anomalous type transport mechanism. Conclusion: The study aided in developing an ideal once-a-day gastro retentive floating drug delivery system with improved floating, swelling and bioadhesive characteristics with better bioavailability. PMID:27051631

  9. Component Dynamics and the Corresponding Compositional Heterogeneity in Bulk and Thin Film Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Yang, Hengxi; Green, Peter

    2014-03-01

    Miscible polymer blends are known to be compositional heterogeneous, due to self-concentration and thermally driven compositional fluctuation. In this work we investigate the segmental dynamics of poly(vinyl methyl ether) (PVME) in miscible polymer blends of polystyrene (PS) and PVME, using broadband dielectric spectroscopy, and manifest the correspondence between the component dynamics and the compositional heterogeneity in miscible blends. A single α-relaxation is observed at high temperatures, T, obeying Vogel-Fulcher relation, whereas two separate relaxations exist at low T. One relaxation, slower and exhibiting a strong T-dependence, is associated with an average local composition with smaller PVME fraction. The other relaxation, known as α'-relaxation, is weakly T-dependent and Arrhenius-like at low T; it reflects the PVME-rich domains within the confines of glassy PS-rich domains. In PVME/PS thin films confined between aluminum (Al) substrates, an additional relaxation process, due to PVME chains that preferentially segregated to Al interfaces, emerges.

  10. Development of a Chemiresistor Sensor Based on Polymers-Dye Blend for Detection of Ethanol Vapor

    PubMed Central

    dos Reis, Marcos A. L.; Thomazi, Fabiano; Nero, Jordan Del; Roman, Lucimara S.

    2010-01-01

    The conductive blend of the poly (3,4-ethylene dioxythiophene) and polystyrene sulfonated acid (PEDOT-PSS) polymers were doped with Methyl Red (MR) dye in the acid form and were used as the basis for a chemiresistor sensor for detection of ethanol vapor. This Au | Polymers-dye blend | Au device was manufactured by chemical vapor deposition and spin-coating, the first for deposition of the metal electrodes onto a glass substrate, and the second for preparation of the organic thin film forming ∼1.0 mm2 of active area. The results obtained are the following: (i) electrical resistance dependence with atmospheres containing ethanol vapor carried by nitrogen gas and humidity; (ii) sensitivity at 1.15 for limit detection of 26.25 ppm analyte and an operating temperature of 25 °C; and (iii) the sensing process is quickly reversible and shows very a low power consumption of 20 μW. The thin film morphology of ∼200 nm thickness was analyzed by Atomic Force Microscopy (AFM), where it was observed to have a peculiarly granulometric surface favorable to adsorption. This work indicates that PEDOT-PSS doped with MR dye to compose blend film shows good performance like resistive sensor. PMID:22319273

  11. A blended polymer electret-based micro-electronic power generator

    NASA Astrophysics Data System (ADS)

    Ko, Wen-Ching; Lee, Bor-Shiun; Chen, Jia-Lun; Lin, Shun-Chi; Wu, Wen-Jong; Lee, Chih-Kung

    2008-03-01

    Recently, power harvesting technologies for low-power electronic devices have attracted much interest. In this paper, the design and fabrication methods of a micro-electrostatic power generator is presented. This power generator comprises a stator developed using an electret film for charge storage and a rotor covered by an interdigital electrode for electric power generation. The newly developed electret material is made from mixing two solutions. The first solution was made by blending polystyrene (PS) and cycloolefin copolymer (COC). The second solution was obtained by an additive process as polar molecule was added into COC. This unique two solution electret method can easily be integrated and adopted to the micro fabrication process. The charge storage capability of this new electret material was investigated and results showed that low concentration of polystyrene in the blended material will not only have more stable but also higher electrostatic charge than that of pure COC. In addition, the polar molecular additives also improve the electret properties of COC due to micro-cavities formation and the interactions between molecules and polymer. Our newly developed blended electret material has excellent mechanical properties and is easy to use when compared to using Teflon Fluorinated Ethylene Propylene (FEP) and polypropylene (PP). A feasibility study of a micro electrostatic power generator based on our blended electret material was performed. Experimental results demonstrate the feasibility and effectiveness of this new type of micro electrostatic power generator.

  12. Substrats poreux biodegradables prepares a partir de phases co-continues dans les melanges de polymeres immiscibles

    NASA Astrophysics Data System (ADS)

    Sarazin, Pierre

    2003-06-01

    In this thesis a novel approach to preparing biodegradable materials with highly structured and interconnected porosity is proposed. The method involves the controlled preparation of immiscible co-continuous polymer blends using melt-processing technology followed by a bulk solvent extraction step of one of the phases (the porogen phase). A co-continuous structure is defined as the state when each phase of the blend is fully interconnected through a continuous pathway. This method allows for the preparation of porous materials with highly controlled pore size, pore volume and pore shape which can then be transformed and shaped in various forms useful for biomedical applications. Various properties of the skin of the polymeric articles (closed-cell, open-cell, modification of the pore size) can be controlled. Initially, the study on the immiscible binary and compatibilized poly(L-lactide)/polystyrene blends (PLLA/PS) after extraction of the PS phase demonstrated that highly percolated blends exist from 40--75%PS and 40--60%PS for the binary and compatibilized blends, respectively. It is demonstrated that both the pore size and extent of co-continuity can be controlled through composition and interfacial modification. The subsequent part of our work treats of the preparation of porous PLLA from a blend of two biodegradable polymers and the performance of such porous materials. This portion of the work uses only polymer materials which have been medically approved for internal use. In this case, small amounts of the porogen phase can be tolerated in the final porous substrate. Co-continuous blends comprised of poly(L-lactide)/Poly(epsilon-caprolactone) PLLA/PCL, were prepared via melt processing. A wide range of phase sizes for the co-continuous blend is generated through a combination of concentration control and quiescent annealing. As the PLLA phase can not be dissolved selectively in PLLA/PS blends, the co-continuity range was evaluated indirectly. To precisely

  13. Molecular Dynamics Simulations on the Mechanical Properties of Blend of Polymer and Polymer Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Meng, Dong; Kumar, Sanat; Grest, Gary; Ge, Ting; Robbins, Mark

    2013-03-01

    Grafting polymers onto the surface of NPs has become one of the most effective approaches to integrate NPs into polymer melts. It then becomes crucial to be able to understand the mechanical properties of the resulting composites. Using molecular dynamics simulations we investigated how the presence of grafted NPs changes mechanical responses of an entangled polymer matrix below its glass transition temperature under uniaxial tensile deformation. It is found that comparing to neat polymer melts adding fillers slightly increases the elastic modulus as well as the yielding stress of the composites. But changes in the fracture work (total work needed to pull samples to failure) are every dependent on the loading fraction and dispersion state of NPs in polymer matrix. At small loadings fracture work is found to be significantly reduced due to polymer crazing around NPs, which is induced by local triaxial stresses, while at higher loadings a big degree of enhancement is observed because of network forming among grafted NPs.

  14. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    NASA Astrophysics Data System (ADS)

    Hemalatha, K.; Mahadevaiah, Gowtham, G. K.; Urs, G. Thejas; Somashekarappa, H.; Somashekar, R.

    2016-05-01

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO4) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO4. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements in these films show that the conductivity increases as the concentration of CuSO4 increases. These films were suitable for electro chemical applications.

  15. Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer

    DOE PAGESBeta

    Mauck, Sheli C.; Wang, Shu; Ding, Wenyue; Rohde, Brian J.; Fortune, C. Karen; Yang, Guozhen; Robertson, Megan L.; Ahn, Suk -Kyun

    2016-02-26

    Polylactide (PLA), a commercially available thermoplastic derived from plant sugars, finds applications in consumer products, disposable packaging, and textiles, among others. The widespread application of this material is limited by its brittleness, as evidenced by low tensile elongation at break, impact strength, and fracture toughness. Herein, a multifunctional vegetable oil, acrylated epoxidized soybean oil (AESO), was investigated as a biodegradable, renewable additive to improve the toughness of PLA. AESO was found to be a highly reactive oil, providing a dispersed phase with tunable properties in which the acrylate groups underwent cross-linking at the elevated temperatures required for processing the blends.more » Additionally, the presence of hydroxyl groups on AESO provided two routes for compatibilization of PLA/AESO blends: (1) reactive compatibilization through the transesterification of AESO and PLA and (2) synthesis of a PLA star polymer with an AESO core. The morphological, thermal, and mechanical behaviors of PLA/oil blends were investigated, in which the dispersed oil phase consisted of AESO, soybean oil (SYBO), or a 50/50 mixture of AESO/SYBO. The oil additives were found to toughen the PLA matrix, with significant enhancements in the elongation at break and tensile toughness values, while maintaining the glass transition temperature of neat PLA. Specifically, the blend containing PLA, AESO, SYBO, and the PLA star polymer was found to exhibit a uniform oil droplet size distribution with small average droplet size and interparticle distance, resulting in the greatest enhancements of PLA tensile properties with no observable plasticization.« less

  16. Temperature and composition-dependent density of states in organic small-molecule/polymer blend transistors

    NASA Astrophysics Data System (ADS)

    Hunter, Simon; Mottram, Alexander D.; Anthopoulos, Thomas D.

    2016-07-01

    The density of trap states (DOS) in organic p-type transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES ADT), the polymer poly(triarylamine) and blends thereof are investigated. The DOS in these devices are measured as a function of semiconductor composition and operating temperature. We show that increasing operating temperature causes a broadening of the DOS below 250 K. Characteristic trap depths of ˜15 meV are measured at 100 K, increasing to between 20 and 50 meV at room-temperature, dependent on the semiconductor composition. Semiconductor films with high concentrations of diF-TES ADT exhibit both a greater density of trap states as well as broader DOS distributions when measured at room-temperature. These results shed light on the underlying charge transport mechanisms in organic blend semiconductors and the apparent freezing-out of hole conduction through the polymer and mixed polymer/small molecule phases at temperatures below 225 K.

  17. Organic field-effect transistors based on a crosslinkable polymer blend as the semiconducting layer

    NASA Astrophysics Data System (ADS)

    Yan, He; Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J.

    2005-10-01

    For fabrication of top-gate polymer-based organic field-effect transistors (OFETs), it is essential that the semiconducting layer remain intact during spin coating of the overlying dielectric layer. This requirement severely limits the applicable solvent and materials combinations. We show here that a crosslinkable polymer blend consisting of a p-type semiconducting polymer {e.g., TFB; poly[9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine]} and an electroactive crosslinkable silyl reagent {e.g., TPDSi2; 4,4'-bis[(p-trichloro-silylpropylphenyl)phenylamino]biphenyl} is effective as the semiconducting layer in a top-gate bottom-contact OFET device. The TFB +TPDSi2 semiconducting blend is prepared by spin-coating in ambient. The crosslinking process occurs during spin-coating in air and is completed by curing at 90 °C, which renders the resulting film insoluble in common organic solvents and allows subsequent deposition of dielectric layers from a wide range of organic solvents. We also show that the presence of TPDSi2 in the semiconductor layer significantly reduces typical TFB-source-drain threshold voltages in bottom-contact devices, likely due to favorable interfacial TPDSi2-gold electrode interactions.

  18. Biodegradation and Mechanical Properties of Poly(lactic acid)/Poly(butylene succinate) Blends

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoshi; Sugimoto, Satomi

    Polymer blends were fabricated with poly(lactic acid) (PLA) with better mechanical properties and poly(butylene succinate) (PBSU) with better biodegradable properties to clarify the effect of the blending ratio on the biodegradable and mechanical properties of the blends. The specimens were heat treated to improve the reduction in stiffness due to blending. Hydrolysis and soil burial tests up to 16 weeks were conducted to investigate the biodegradation properties. Young's modulus increased with increasing contents of PLA, whereas tensile strength is lowest in the PLA/PBSU (50/50) polymer blend before biodegradation because of the immiscibility of PLA and PBSU. Young's modulus kept constant up 16 weeks both in the hydrolysis and the soil burial tests. On the other hand, tensile strength decreased remarkably in the hydrolysis tests. The observation results of the specimen surface and the fracture surface indicate that the surface and bulk degradation occur in hydrolysis and soil burial tests, respectively

  19. Dark electrochemistry and photoelectrochemistry of molecularly doped ion-exchange polymer blends

    SciTech Connect

    Crouch, A.M.; Ordonez, I.; Langford, C.H.; Lawrence, M.F.

    1988-10-20

    Ion-exchange polymer blends have been shown to produce modified electrode surfaces with high affinities for ionic reactants. The main feature of these blends is their spontaneous tendency to segregate into hydrophilic and hydrophobic domains. It is now believed that, when appropriate dye molecules are incorporated into such films and then illuminated, these systems operate under both ionic and dry electronic conduction mechanisms. The dark electrochemical measurements performed on an ion-exchange polymer containing ZnTPPS/sup 4 -/, ZnTPP, ZnPc(OPh)/sub 4/, or CuPcTS/sub 4-/, in contact with a Fe(CN)/sub 6//sup 3-/4-/ redox solution, show that the dye molecules within the film are immobile and that the high ion-exchange capability is maintained. The photoelectrochemical results obtained with the dye-loaded films indicate that electrons may be transferred from the photoexcited dyes to the polymer matrix and transported to the SnO/sub 2/ substrate electrode. The oxidized dye molecules are reduced by accepting electrons from the Fe(CN)/sub 6//sup 4 -/ species. The electronic conduction following charge separation is assumed to be intimately related to the ion-exchange polymer's tendency to segregate into hydrophilic and hydrophobic domains and also the excited-state energetics of the dye. A model which invokes the existence of large distributions of molecular ion states is proposed to explain the conduction of electrons through the hydrophobic domains of the polymer film and a detailed energy level diagram is presented to summarize the overall situation.

  20. Optoelectronic characteristics of MEH-PPV + BT blend thin films in polymer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Massah Bidgoli, M.; Mohsennia, M.; Akbari Boroumand, F.; Mohsen Nia, A.

    2015-06-01

    Due to the unique optical and electronic properties of conjugated polymers, much research has been conducted to study the effect of the incorporation of electron-transporting materials on the polymer blends’ compatibility and their capability for use in optoelectronic devices. In this work, to characterize the optoelectronic properties of blend thin films of poly [2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with benzothiadiazole (BT), polymer light- emitting diodes (PLEDs) with single-emission layers of MEH-PPV + BT blends have been fabricated. The influence of MEH-PPV + BT blend weight ratios over ITO/PEDOT:PSS/MEH-PPV + BT/Al PLEDs performances, e.g., lifetime, turn-on voltage, and current density-voltage (J-V) characteristics, has been studied. According to the obtained results, the turn-on voltage of the devices successfully decreased with the addition of the BT as an electronic transportation material. At an optimum condition, we obtained a turn-on voltage as low as 5 V and a lifetime of about 190 h for a device incorporating 65% BT. The logarithmic plots of the J-V characteristics of the fabricated devices showed a power law behavior (J ∝ Vk+1) with three distinct regions. The J-V characteristics have been explained by the Fowler-Nordheim (FN) tunneling model. It was found that the hole-injection barrier height decreases with increasing BT content in the range of 0-65%. According to the obtained results, in all of our investigations, the electroluminescence (EL) originated exclusively from the MEH-PPV material, even for the high BT contents.

  1. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate.

    PubMed

    Tipduangta, Pratchaya; Belton, Peter; Fábián, László; Wang, Li Ying; Tang, Huiru; Eddleston, Mark; Qi, Sheng

    2016-01-01

    Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated. PMID:26655957

  2. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion.

    PubMed

    Mendes, J F; Paschoalin, R T; Carmona, V B; Sena Neto, Alfredo R; Marques, A C P; Marconcini, J M; Mattoso, L H C; Medeiros, E S; Oliveira, J E

    2016-02-10

    Blends of thermoplastic cornstarch (TPS) and chitosan (TPC) were obtained by melt extrusion. The effect of TPC incorporation in TPS matrix and polymer interaction on morphology and thermal and mechanical properties were investigated. Possible interactions between the starch molecules and thermoplastic chitosan were assessed by XRD and FTIR techniques. Scanning Electron Microscopy (SEM) analyses showed a homogeneous fracture surface without the presence of starch granules or chitosan aggregates. Although the incorporation of thermoplastic chitosan caused a decrease in both tensile strength and stiffness, films with better extensibility and thermal stability were produced. PMID:26686150

  3. Structure-Property Relations in Polymer:Fullerene Blends for Organic Solar Cells.

    PubMed

    Banerji, Natalie

    2016-01-01

    Organic solar cells consist of thin films combining an electron donor (often a conjugated polymer) with an electron acceptor (often a fullerene derivative), in a blend commonly referred to as bulk heterojunction material. Charge separation between the donor and the acceptor leads to the generation of carriers, which can be extracted from photovoltaic devices in the form of photocurrent. The generation mechanism of free, extractable charges has caused a lot of controversial discussion in literature. Our research has shown that all the steps involved in charge generation are strongly dependent on the arrangement of the donor and the acceptor (i.e. the structure) of the bulk heterojunction. PMID:27561613

  4. Thin polymer films of block copolymers and blend/nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Kalloudis, Michail

    In this thesis, atomic force microscopy (AFM), transmission electron microscopy (TEM) and optical microscopy techniques were used to investigate systematically the self-assembled nanostructure behaviour of two different types of spin-cast polymer thin films: poly(isoprene-b-ethylene oxide), PI-b-PEO diblock copolymers and [poly(9,9-dioctylfluorene-co-benzothiadiazole)]:poly[9,9- dioctyfluorene-co-N-(4-butylphenyl)-diphenylamine], F8BT:TFB conjugated polymer blends. In the particular case of the polymer blend thin films, the morphology of their composites with cadmium selenide (CdSe) quantum dot (QD) nanoparticles was also investigated. For the diblock copolymer thin films, the behaviour of the nanostructures formed and the wetting behaviour on mica, varying the volume fraction of the PEO block (fPEO) and the average film thickness was explored. For the polymer blend films, the effect of the F8BT/TFB blend ratio (per weight), spin-coating parameters and solution concentration on the phase-separated nanodomains was investigated. The influence of the quantum dots on the phase separation when these were embedded in the F8BT:TFB thin films was also examined. It was found that in the case of PI-b-PEO copolymer thin films, robust nanostructures, which remained unchanged after heating/annealing and/or ageing, were obtained immediately after spin coating on hydrophilic mica substrates from aqueous solutions. The competition and coupling of the PEO crystallisation and the phase separation between the PEO and PI blocks determined the ultimate morphology of the thin films. Due to the great biocompatible properties of the PEO block (protein resistance), robust PEO-based nanostructures find important applications in the development of micro/nano patterns for biological and biomedical applications. It was also found that sub-micrometre length-scale phase-separated domains were formed in F8BT:TFB spin cast thin films. The nanophase-separated domains of F8BT-rich and TFB-rich areas

  5. Shape Memory Polymers from Blends of Elastomers and Crystalline Small Molecules

    NASA Astrophysics Data System (ADS)

    Cavicchi, Kevin; Brostowitz, Nicole; Hukill, Brent; Fairbairn, Heather

    2015-03-01

    This talk will present work on the fabrication of shape memory polymers (SMPs) by swelling natural with molten fatty acids. By this method a SMPs with excellent shape fixity and recovery can be obtained during free recovery after uniaxial deformation to 100% strain. Experiments to measure the shape memory properties under both stress and strain controlled conditions will be reported and compared. This fabrication method offers a number of advantages for preparing SMPs. First, it utilizes natural rubber as the base material for the SMP, which capitalizes on a high performance, commodity elastomer. Second, by blending a commercial polymer with a small molecule additive no additional chemistry is needed for the preparation of the SMP. Third, this route inverts the typically processing steps by crosslinking the permanent network prior to formation of the physically crosslinked reversible network. This offers a means to potentially generate a SMP from any preformed elastomeric article.

  6. Surface-induced phase behavior of polymer/nanoparticle blends with attractions.

    PubMed

    Frischknecht, Amalie L; Padmanabhan, Venkat; Mackay, Michael E

    2012-04-28

    In an athermal blend of nanoparticles and homopolymer near a hard wall, there is a first order phase transition in which the nanoparticles segregate to the wall and form a densely packed monolayer above a certain nanoparticle density. Previous investigations of this phase transition employed a fluids density functional theory (DFT) at constant packing fraction. Here we report further DFT calculations to probe the robustness of this phase transition. We find that the phase transition also occurs in athermal systems at constant pressure, the more natural experimental condition than constant packing fraction. Adding nanoparticle-polymer attractions increases the nanoparticle transition density, while sufficiently strong attractions suppress the first-order transition entirely. In this case the systems display a continuous transition to a bulk layered state. Adding attractions between the polymers and the wall has a similar effect of delaying and then suppressing the first-order nanoparticle segregation transition, but does not lead to any continuous phase transitions. PMID:22559503

  7. Miscibility of poly(lactic acid) and poly(ethylene oxide) solvent polymer blends and nanofibers made by solution blow spinning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The miscibility of blends of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) was studied in polymer solutions by dilute solution viscometry and in solution blow spun nanofibers by microscopy (SEM, TEM) and by thermal and spectral analysis. Three blends of PLA and PEO were solution blended in...

  8. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends

    NASA Astrophysics Data System (ADS)

    Li, Gang; Shrotriya, Vishal; Huang, Jinsong; Yao, Yan; Moriarty, Tom; Emery, Keith; Yang, Yang

    2005-11-01

    Converting solar energy into electricity provides a much-needed solution to the energy crisis the world is facing today. Polymer solar cells have shown potential to harness solar energy in a cost-effective way. Significant efforts are underway to improve their efficiency to the level of practical applications. Here, we report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene. Controlling the active layer growth rate results in an increased hole mobility and balanced charge transport. Together with increased absorption in the active layer, this results in much-improved device performance, particularly in external quantum efficiency. The power-conversion efficiency of 4.4% achieved here is the highest published so far for polymer-based solar cells. The solution process involved ensures that the fabrication cost remains low and the processing is simple. The high efficiency achieved in this work brings these devices one step closer to commercialization.

  9. Optimized cluster theory of polymer blends: General formulation and application to isotopic polyethylene mixtures

    NASA Astrophysics Data System (ADS)

    Melenkevitz, J.; Curro, J. G.

    1997-01-01

    A theory for the thermodynamic properties of binary polymer blends was developed and applied to predict the compositional dependence of the effective chi parameter χS in model isotopic polyethylene mixtures. The theory is a generalization of the optimized cluster theory for single component molecular fluids. Starting from exact cluster expansions for the Helmholtz free energy and pair-correlation functions in a molecular mixture developed by Chandler et al., a series of transformations was performed to yield approximate expressions for these quantities. The resulting theory was demonstrated to be equivalent to a set of diagrammatically proper integral equations. For model isotopic polyethylene blends, we calculated the various partial structure factors in the mixture and used them to predict the compositional dependence of χS. The calculated values of χS were found to be in reasonable agreement with recent neutron-scattering measurements but the theory underestimates the compositional dependence relative to the experiment. Deviations from random mixing that extend well beyond monomeric length scales were predicted in this blend system.

  10. Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends

    PubMed Central

    2014-01-01

    Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. PMID:24490650

  11. Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend

    NASA Astrophysics Data System (ADS)

    Kurpiers, Jona; Neher, Dieter

    2016-05-01

    Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions.

  12. Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend

    PubMed Central

    Kurpiers, Jona; Neher, Dieter

    2016-01-01

    Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions. PMID:27225584

  13. Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend.

    PubMed

    Kurpiers, Jona; Neher, Dieter

    2016-01-01

    Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions. PMID:27225584

  14. Application of grazing incidence x-ray diffraction to polymer blends

    SciTech Connect

    Goehner, R.P.; Garbauskas, M.F.; LeGrand, D.G. . Research and Development Center)

    1992-01-01

    The physical properties of polymer blends consisting of one or more crystallizable components are affected by the microstructure of these materials. In particular, the degree of crystallinity can be influenced by processing parameters, and the crystallinity, as well as the phase distribution, may vary as a function of depth through an injection molded part Conventional x-ray diffraction techniques can provide information regarding both phase composition and degree of crystallinity, but, because of the relative transparency of these materials to wavelengths generally available in the laboratory, these techniques provide information representative of only the bulk. By employing parallel beam optics at varying grazing incidence angles, the x-ray sampling depth can be varied without loss of resolution. This technique can be used to vary the effective analysis depth from the top several hundred angstroms for low razing incidence to centimeters for transmission diffraction patterns. Grazing incidence techniques have found initial application in the characterization of thin metallic and ceramic films. This paper demonstrates the feasibility of using parallel beam to depth profile low atomic number materials. The specific application of this optics technique to the characterization of injection molded polymers, including a blend of bisphenol-A polycarbonate (PC) and polybutylene terephthalate (PBT), will be presented.

  15. Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali E.; Naguib, Hani E.

    2016-04-01

    Shape memory materials (SMMs) are materials that can return to their virgin state and release mechanically induced strains by external stimuli. Shape memory polymers (SMPs) are a class of SMMs that show a high shape recoverability and which have attractive potential for structural applications. In this paper, we experimentally study the shape memory effect of origami based metamaterials. The main focus is on the Muira origami metamaterials. The fabrication technique used to produce origami structure is direct molding where all the geometrical features are molded from thermally virgin polymers without post folding of flat sheets. The study shows experimental investigations of shape memory metamaterials (SMMMs) made of SMPs that can be used in different applications such as medicine, robotics, and lightweight structures. The origami structure made from SMP blends, activated with uniform heating. The effect of blend composition on the shape memory behavior was studied. Also the influence of the thermomechanical and the viscoelastic properties of origami unit cell on the activation process have been discussed, and stress relaxation and shape recovery were investigated. Activation process of the unit cell has been demonstrated.

  16. Tuning the microwave absorption through engineered nanostructures in co-continuous polymer blends

    NASA Astrophysics Data System (ADS)

    Prasanna Kar, Goutam; Biswas, Sourav; Bose, Suryasarathi

    2016-06-01

    Herein, we report tailor-made properties by dispersing nanostructured materials in a co-continuous polymer blend (PVDF/ABS) that is capable of shielding electromagnetic (EM) radiation. To accomplish this, lossy materials were employed like multi-walled carbon nanotubes (MWNTs), and barium titanate (BT), (which exhibit relaxation losses in the microwave frequency domain) and ferrites (like Fe3O4). To improve the state of dispersion, the MWNTs were non-covalently modified using 3,4,9,10-perylenetetracarboxylic dianhydride (PTCD) via π–π stacking, and for effective shielding the MWNTs were conjugated with either BT or Fe3O4 nanoparticles through suitable modifications. The hybrid nanoparticles were selectively localized in the PVDF phase, governed by its polarity, and exhibited excellent microwave attenuation. In order to gain insight into the dielectric and magnetic attributes, the microwave parameters were assessed systematically. Taken together, our results uncover polymer blend as a promising candidate for designing lightweight, thermally stable microwave absorber materials.

  17. Magnetic field effects in a polymer/fullerene blend photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Jang, Hyuk-Jae; Basham, James I.; Gundlach, David J.; Richter, Curt A.

    Organic photovoltaic (OPV) systems based on blends of conjugated polymers and fullerene derivatives have shown great promise for low-cost and efficient photovoltaic applications. Recent findings suggest that a weak external magnetic field can disturb the spin configuration of excited states and subsequently change properties of OPV cells such as photocurrent. These changes are referred to as magnetic field effects (MFEs). In order to have a better understanding of the underlying mechanisms responsible for the MFEs in polymer/fullerene blend photovoltaic systems, we fabricated poly-3-hexylthiophene (P3HT):phenyl-C61-butyric acid methyl ester (PC61BM) cells and carried out photovoltaic device performance and impedance spectroscopy measurements with and without an externally applied magnetic field. A significant reduction in short circuit current (JSC) as well as open circuit voltage (VOC) was observed with an applied magnetic field of a 0.1 tesla compared to those measured without a magnetic field under the same intensity of illumination. Impedance spectroscopy data gives insights into the influence of an external magnetic field on charge generation and recombination near normal photovoltaic operating conditions.

  18. Application of grazing incidence x-ray diffraction to polymer blends

    SciTech Connect

    Goehner, R.P.; Garbauskas, M.F.; LeGrand, D.G.

    1992-10-01

    The physical properties of polymer blends consisting of one or more crystallizable components are affected by the microstructure of these materials. In particular, the degree of crystallinity can be influenced by processing parameters, and the crystallinity, as well as the phase distribution, may vary as a function of depth through an injection molded part Conventional x-ray diffraction techniques can provide information regarding both phase composition and degree of crystallinity, but, because of the relative transparency of these materials to wavelengths generally available in the laboratory, these techniques provide information representative of only the bulk. By employing parallel beam optics at varying grazing incidence angles, the x-ray sampling depth can be varied without loss of resolution. This technique can be used to vary the effective analysis depth from the top several hundred angstroms for low razing incidence to centimeters for transmission diffraction patterns. Grazing incidence techniques have found initial application in the characterization of thin metallic and ceramic films. This paper demonstrates the feasibility of using parallel beam to depth profile low atomic number materials. The specific application of this optics technique to the characterization of injection molded polymers, including a blend of bisphenol-A polycarbonate (PC) and polybutylene terephthalate (PBT), will be presented.

  19. Synthesis and fuel cell characterization of blend membranes from phenyl phosphine oxide containing flourinated novel polymers

    NASA Astrophysics Data System (ADS)

    Gürtekin Seden, Merve; Baştürk, Emre; Inan, Tülay Y.; Kayaman Apohan, Nilhan; Güngör, Atilla

    2014-12-01

    Novel fluorinated poly(arylene ether)'s are synthesized from polycondensation of bis (p-hydroxy-tetrafluoro) phenyl) phenyl phosphine oxide (PFPPO-OH) with 4,4‧-dichlorodiphenyl sulfone (DCDPS) and 2,2-bis(4-hydroxyphenyl)propane (Bisfenol A) (Copolymer 1a) or 2,2-bis(4-hydroxyphenyl) hexafluoropropane (Bisphenol AF) (Copolymer 1b). The fluorinated copolymers have been blended with sulphonated poly(ether ether ketone)-SPEEK by solvent casting method. The water uptake and proton conductivity of the blend membranes decreases with the increase of copolymer content as expected, but proton conductivity values are still comparable to that of Nafion117® membrane. Addition of hydrophobic copolymer 1b to the SPEEK caused increase in water vapor transmission. Methanol permeability of the membranes is decreased to 8.2 × 10-8 cm2 s-1 and 1.3 × 10-9 cm2 s-1 by addition of Copolymer 1a and 1b, respectively and they are much lower than that of Nafion® 117 (1.21E-06 (cm2 s-1). The blend membranes endure up to 6.5 h before it starts to dissolve. Hydrogen and oxygen permeability of the blend membranes is one-hundredth of the Nafion®. Fluorinated polymer improved chemical, mechanical, and hydrolytic stability and also phenyl phosphine oxide structure in the ionomer increased the thermal stability, gas and methanol permeability and overcomed the drawbacks of the Nafion® type membranes.

  20. Structural and ionic conductivity studies of electrospun polymer blend P(VdF-co-HFP)/PMMA electrolyte membrane for lithium battery application

    SciTech Connect

    Padmaraj, O.; Satyanarayana, N.; Venkateswarlu, M.

    2015-06-24

    A novel fibrous polymer blend [(100-x) % P(VdF-co-HFP)/x % PMMA, x = 10, 20, 30, 40, 50] electrolyte membranes were prepared by electrospinning technique. Structural, thermal and surface morphology of all the compositions of electrospun polymer blend membranes were studied by using XRD, DSC & SEM. The newly developed five different compositions of polymer blend fibrous electrolyte membranes were obtained by soaking in an electrolyte solution contains 1M LiPF{sub 6} in EC: DEC (1:1,v/v). The wet-ability and conductivity of all the compositions of polymer blend electrolyte membranes are evaluated through electrolyte uptake and impedance measurements. The polymer blend [90% P(VdF-co-HFP)/10% PMMA] electrolyte membrane showed good wet-ability and high conductivity (1.788 × 10{sup −3} Scm{sup −1}) at room temperature.

  1. Synthesis and characterization of phosphonate ester and phosphonic acid containing polymers and blends

    NASA Astrophysics Data System (ADS)

    Tamber, Harinder Singh

    1997-12-01

    TGA to estimate the thermal stability of iodinated polymers. Incorporation of 13 wt% of either monomer in MMA or VBP results in radiopacity equivalent to 2 mm of aluminum a standard used in dentistry. Finally the dimethyl vinylphosphonate ester was homopolymerized and copolymerized with VBP. The aliphatic phosphonate ester was blended with cellulose acetate and cellulose acetate butyrate. The crystallinity of CA was completely impeded when 5 wt% of PDMVP was added, and the Flory interaction parameter chi obtained for PDMVP/CA was large and negative indicating a strong interaction between this pair of polymers.

  2. Structural measurements of polymer-fullerene blend films for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Delongchamp, Dean

    2011-03-01

    Organic photovoltaic (OPV) technology has the potential to greatly lower the cost of solar cell fabrication by enabling ink-based deposition of active layers. In bulk heterojunction (BHJ) OPV devices, the power conversion efficiency critically depends on the distribution of the polymer absorber and the fullerene electron acceptor (e.g., the blend morphology). I will describe measurement methods to probe the structure of OPV devices, with a focus on the morphology of the BHJ layer. For example, the vertical distribution of absorber and electron acceptor in BHJ films follows segregation behavior similar to that of miscible polymer blends. The top (air) interface becomes rich in the polymer absorber, whereas the bottom interface composition depends on the substrate surface energy. Thin film transistors fabricated from BHJs can therefore exhibit ambipolar or hole-only transport depending on the dielectric, because of different interfacial segregation. We extend these results to practical photovoltaic devices by comparing BHJs cast upon hole transport layers that have similar work functions but different surface energies. This study includes the application of variable angle spectroscopic ellipsometry (VASE) to BHJ films, and emphasizes the importance of absorber anisotropy and vertical heterogeneity in the optical model. Additional results will describe the nanometer-scale structure in the BHJ interior. The application of solid-state nuclear magnetic resonance (SS-NMR) can reveal details about the segregation of absorber and acceptor in a BHJ film. Nanoscale BHJ morphology information can also be collected using tomographic transmission electron microscopy (TEM). Together these measurements allow us to reveal a detailed picture of BHJ morphology, explain how the morphology originates from materials and processing choices, and relate the morphology to device performance and stability.

  3. Controllable growth of porous structures from co-continuous polymer blend

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    To enable controllable generation of porous structures, a set of new fabrication techniques utilizing the annealing kinetics of co-continuous polymer blends were proposed and investigated. As the first step towards the creation of an organized porous material, a new technique based on regulating the thermal boundary conditions to controllably grow gradient porous structures was developed. In this technique, specially designed thermal boundaries were used to generate a well-defined temperature field inside a co-continuous polymer blend with fine phase structure. Because of the temperature dependency of zero-shear viscosity and its influence on phase coarsening rate, a graded phase size distribution was generated by this temperature field. After one component was selectively dissolved, a gradient porous structure was produced. To demonstrate the versatility of this technique, three different gradient porous structures were created. After the effectiveness of thermal boundary condition in developing organized porous materials was verified, the possibility of utilizing kinematic and dynamic boundary conditions to obtain extra controllability was investigated. Two types of kinematic boundary conditions, no-slip wall and 1D hard wall confinement were tested separately. It was found that no-slip wall could greatly slow down the phase coarsening rate of the nearby polymer blend. When a no-slip wall and a fully slip wall were applied at each side of a molten co-continuous blend, a pore size gradient was generated in the direction perpendicular to the wall surface with smaller pores near the no-slip wall. One directional hard wall confinement formed by a pair of fully slip parallel walls led to the formation of an aligned phase structure oriented in the vertical direction to the walls. Experiments regarding the effect of dynamic boundary condition were conducted by imposing different chemical potentials at the surface of molten blend. Fully dense surface and completely open

  4. Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Young, Nicholas Philip

    The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS

  5. Threaded molecular wires as building blocks for advanced polymer blends: WPLEDs, ultra-broadband optical amplifiers, multi color lasers

    NASA Astrophysics Data System (ADS)

    Brovelli, Sergio; Mroz, Marta; Sforazzini, Giuseppe; Virgili, Tersilla; Meinardi, Franco; Paleari, Alberto; Anderson, Harry L.; Lanzani, Guglielmo; Cacialli, Franco

    2011-03-01

    The ability to produce semiconducting polymer blends with white emission spectra, large emission cross sections and broad optical gain is critical to their application in white PLEDs, lasers and broadband amplifiers. Cyclodextrin-encapsulation is an effective means of suppressing detrimental intermolecular interactions, and energy transfer (ET) channels in polymer blends, thus enabling fabrication of white-PLEDs. We show that all such properties combine into a high impact photonic application: ultra-broad optical gain and two-color lasing in a binary polyrotaxane blend. We study the ultrafast photophysics of a blend of a conventional and an encapsulated polyfluorene. The morphology is investigated by microRaman imaging, AFM, and fluorescence lifetime microscopy. We ascribe the ultra-broad optical gain (>850 meV), and the simultaneous ASE for both constituents, to the dual effect of reduced polaron formation and suppressed ET. Our results demonstrate that polyrotaxanes could realistically represent the building blocks for advanced polymer blends with highly controlled optical properties, for applications in solid state lightning, lasers and photovoltaic technologies.

  6. Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) analysis of polyaniline salts and blends

    SciTech Connect

    Hopkins, A.R.; Rasmussen, P.G.; Basheer, R.A.; Annis, B.K.; Wignall, G.D.

    1996-06-01

    Doped polyaniline emeraldine salts (PANI-ES) exhibit good environmental stability with a high level of conductivity (1 to 300 S/cm). However, they suffer from the fact that they have poor mechanical properties and must be blended with an insulating host polymer to be useful in industrial applications. Polyaniline blends are a new type of conducting material that typically show very low onsets of conductivity unlike that of metal filled blends. This is primarily due to the unique cellular geometry of the PANI-ES that is formed within the insulating host polymer. The formation of this immiscible polymer network may be due in part to structural and conformational differences in the blend components.

  7. Flexural properties of ethyl or methyl methacrylate-UDMA blend polymers.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2010-10-01

    Light-curing polyethyl methacrylate (PEMA)-urethane dimethacrylate (UDMA) resins and polymethyl methacrylate (PMMA)-UDMA resins were prepared by two processes. For first step, PEMA or PMMA powders were fully dissolved in ethyl methacrylate (EMA) or methyl methacrylate (MMA) and then the PEMA-EMA/PMMA-MMA mixtures were mixed with UDMA. The flexural properties of cured PEMA-UDMA and PMMA-UDMA polymers were measured using two PEMA (Mw: 300,000-400,000 and 650,000-1,000,000) and three PMMA (Mw: 30,000-60,000, 350,000 and 650,000-1,000,000) powders with different molecular weight, four mixing ratios of PMMA-MMA, and three mixing ratios of PMMA-MMA mixture and UDMA oligomer. Polymers with PMMA(Mw: 350,000) MMA=25/50, and with PMMA(Mw: 350,000)-MMA/UDMA=1/2 and =1/1, showed no-fracture in a flexural test at 1 mm/min and flexural strength and flexural modulus showed no significant difference compared with those of commercially available heat- and self-curing acrylic resins (p>0.01). Within limitation of this investigation, methyl methacrylate-UDMA blend polymer of this composition is available for denture base resin. PMID:20733259

  8. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    NASA Astrophysics Data System (ADS)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  9. High density polyethylene (HDPE)/poly(ethylene terephthalate) (PET) polymer blend studies related to recycling co-mingled plastics

    NASA Astrophysics Data System (ADS)

    Tsai, Pang-Yen

    Polymer blends of virgin high density polyethylene (HDPE) and poly(ethylene terephthalate) (PET) were studied as an attempt to relate the microstructure to the mechanical properties of the blends. The virgin blends were prepared by extrusion and then injection molded into specimens for characterization. Two of the virgin blends were tested for possible compatibilization using a styrene-ethylene-butylene-styrene (SEBS) block copolymer. In addition, six blends of post-consumer resins (PCRs) of HDPE and PET were included in this work for comparison. The moduli of the virgin blends showed positive deviation from those expected from the rule of mixtures. The synergism of the composite moduli can be explained partly by a Poisson's effect. Yield strengths of the blends molded at low injection chamber temperatures (200sp°, 230sp°, and 250sp°C) followed the rule of mixtures well, because PET filaments found in the composites had very high length to diameter ratios. When the injection chamber temperature was above the PET melting point (˜254sp°C), PET filaments were found to break down into particles, and the yield strengths of the blends coincided with the values expected from the inverse rule of mixtures. Impact strengths of the virgin blends were much less than that of a HDPE homopolymer due to poor interfacial bonding between HDPE and PET. Compatibilization appeared to be advantageous since it dramatically improved the impact strength of the virgin blends. SEM micrographs of impact fractured surfaces revealed that the improved adhesion from compatibilization and the presence of numerous uniaxially aligned PET filaments in the HDPE substrate can account for the significant increases in fracture resistance of the compatibilized blends. Mechanical performance of the PCRs was inferior to that of the virgin blends. Aside from polymer degradation and contamination due to repeated processing and handling, absence of PET filaments and interfacial bonding could be

  10. Correlation between Photovoltaic Performance and Interchain Ordering Induced Delocalization of Electronics States in Conjugated Polymer Blends.

    PubMed

    Chandrasekaran, Naresh; Gann, Eliot; Jain, Nakul; Kumar, Anshu; Gopinathan, Sreelekha; Sadhanala, Aditya; Friend, Richard H; Kumar, Anil; McNeill, Christopher R; Kabra, Dinesh

    2016-08-10

    In this paper we correlate the solar cell performance with bimolecular packing of donor:acceptor bulk heterojunction (BHJ) organic solar cells (OSCs), where interchain ordering of the donor molecule and its influence on morphology, optical properties, and charge carrier dynamics of BHJ solar cells are studied in detail. Solar cells that are fabricated using more ordered defect free 100% regioregular poly(3-hexylthiophene) (DF-P3HT) as the donor polymer show ca. 10% increase in the average power conversion efficiency (PCE) when compared to that of the solar cell fabricated using 92% regioregularity P3HT, referred to as rr-P3HT. EQE and UV-vis absorption spectrum show a clear increase in the 607 nm vibronic shoulder of the DF-P3HT blend suggesting better interchain ordering which was also reflected in the less Urbach energy (Eu) value for this system. The increase in ordering inside the blend has enhanced the hole-mobility which is calculated from the single carrier device J-V characteristics. Electroluminance (EL) studies on the DF-P3HT system showed a red-shifted peak when compared to rr-P3HT-based devices suggesting low CT energy states in DF-P3HT. The morphologies of the blend films are studied using AFM and grazing-incidence wide-angle X-ray scattering (GIWAXS) suggesting increase in the roughness and phase segregation which could enhance the internal scattering of the light inside the device and improvement in the crystallinity along alkyl and π-stacking direction. Hence, higher PCE, lower Eu, red-shifted EL emission, high hole-mobility, and better crystallinity suggest improved interchain ordering has facilitated a more delocalized HOMO state in DF-P3HT-based BHJ solar cells. PMID:27415029