Science.gov

Sample records for immobilize chloride contaminated

  1. Ageing of a phosphate ceramic used to immobilize chloride contaminated actinide waste

    SciTech Connect

    Metcalfe, Brian L.; Donald, Ian W.; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

    2009-03-31

    AWE has developed a process for the immobilization of ILW waste containing a significant quantity of chloride using Ca3(PO4)2 as the host material. Waste ions are incorporated into two phosphate based phases, chlorapatite, Ca5(PO4)3Cl, and spodiosite, Ca2(PO4)Cl. Non-active trials performed at AWE using samarium as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process using actinide-doped material were performed at PNNL which confirmed the immobilized wasteform resistant to aqueous leaching. Initial leach trials conducted on 239Pu /241Am loaded ceramic at 40°C/28 days gave normalized mass losses of 1.2 x 10-5 g.m-2 and 2.7 x 10-3 g.m-2 for Pu and Cl respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced by 238Pu. No changes to the crystalline structure of the waste were detected using XRD after the samples had experienced a radiation dose of 4 x 1018 α.g-1. Leach trials showed that there had been an increase in the P and Ca release rates but no change in the Pu release rate.

  2. Ageing of a phosphate ceramic used to immobilize chloride contaminated actinide waste

    NASA Astrophysics Data System (ADS)

    Metcalfe, B. L.; Donald, I. W.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2009-03-01

    A process for the immobilization of intermediate level waste containing a significant quantity of chloride using Ca3(PO4)2 as the host material has been developed. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Non-active trials performed using Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, were performed at PNNL which confirmed the wasteform resistant to aqueous leaching. Initial leach trials conducted on 239Pu/241Am loaded ceramic at 313 K/28 days gave normalized mass losses of 1.2 × 10-5 g m-2 and 2.7 × 10-3 g m-2 for Pu and Cl, respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced with 238Pu. No changes to the crystalline structure of the waste were detected in the XRD spectra after the samples had experienced an α radiation fluence of 4 × 1018 g-1. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.

  3. Ageing of a phosphate ceramic used to immobilize chloride-contaminated actinide waste

    SciTech Connect

    Metcalfe, Brian; Donald, Ian W.; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

    2009-03-31

    At AWE, we have developed a process for the immobilization of ILW waste containing a significant quantity of chloride with Ca3(PO4)2 as the host material. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Non-active trials performed at AWE with Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, wer performed at PNNL where the waste form was found to be resistant to aqueous leaching. Initial leach trials conducted on 239Pu /241Am loaded ceramic at 40°C/28 days gave normalized mass losses of 1.2 x 10-5 g.m-2 and 2.7 x 10-3 g.m-2 for Pu and Cl respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced with 238Pu. No changes to the crystalline structure of the waste were detected in the XRD patterns after the samples had experienced an α radiation dose of 4 x 1018 g-1. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.

  4. Immobilization of microalgae for biosorption and degradation of butyltin chlorides.

    PubMed

    Zhang, L; Huang, G; Yu, Y

    1998-07-01

    Since the discovery of their biocidal properties in the 1950s, organotin compounds have found a large spectrum of industrial applications such as wood and textile preservatives, fungicides and pesticides, and antifouling paint on ships and fishing equipment. The fate and environmental impact of butyltins have been the subjects of a large body of research in the last decades. Biosorption and degradation of butyltin compounds by immobilized microalgae chlorella were studied in this paper, aiming to find an alternative way to solve organotin pollution problem. Chlorella emersonii cells were entrapped in a calcium aginate matrix. The cell growth rates, respiratory rate and chlorophyll a content were studied and compared. Results showed that immobilized chlorella had increased respiratory and growth rates, and almost equal chlorophyll a content when compared with free cells. Cell leakage was slight during the 20-day experimental period Cell leakage from the matrix was unrelated to cell growth within the matrix. Immobilized chlorella was applied to deal with butytin contaminated aquatic solutions. Immobilized chlorella had increased degradation rates of tri-, di-, and mono-butyltin chlorides in aquatic solutions, and lower biological accumulation factors on cells, than free cells, which indicates a potential use for tackleing organotin polluted water body. PMID:9663338

  5. Understanding microwave vessel contamination by chloride species.

    PubMed

    Recchia, Sandro; Spanu, Davide; Bianchi, Davide; Dossi, Carlo; Pozzi, Andrea; Monticelli, Damiano

    2016-10-01

    Microwaves are widely used to assist digestion, general sample treatment and synthesis. The use of aqua regia is extensively adopted for the closed vessel mineralization of samples prior to trace element detection, leading to the contamination of microwave vessels by chlorine containing species. The latter are entrapped in the polymeric matrix of the vessels, leading to memory effects that are difficult to remove, among which the risk of silver incomplete recoveries by removal of the sparingly soluble chloride is the predominant one. In the present paper, we determined by mass spectrometry that hydrogen chloride is the species entrapped in the polymeric matrix and responsible for vessel contamination. Moreover, several decontamination treatments were considered to assess their efficiency, demonstrating that several cleaning cycles with water, nitric acid or silver nitrate in nitric acid were inefficient in removing chloride contamination (contamination reduction around 90%). Better results (≈95% decrease) were achieved by a single decontamination step in alkaline environment (sodium hydroxide or ammonia). Finally, a thermal treatment in a common laboratory oven (i.e. without vacuum and ventilation) was tested: a one hour heating at 150°C leads to a 98.5% decontamination, a figure higher than the ones obtained by wet treatments which requires comparable time. The latter treatment is a major advancement with respect to existing treatments as it avoids the need of a vacuum oven for at least 17h as presently proposed in the literature. PMID:27474275

  6. Immobilization of fission products arising from pyrometallurgical reprocessing in chloride media

    NASA Astrophysics Data System (ADS)

    Leturcq, G.; Grandjean, A.; Rigaud, D.; Perouty, P.; Charlot, M.

    2005-12-01

    Spent nuclear fuel reprocessing to recover energy-producing elements such as uranium or plutonium can be performed by a pyrochemical process. In such method, the actinides and fission products are extracted by electrodeposition in a molten chloride medium. These processes generate chlorinated alkali salt flows contaminated by fission products, mainly Cs, Ba, Sr and rare earth elements constituting high-level waste. Two possible alternatives are investigated for managing this wasteform; a protocol is described for dechlorinating the fission products to allow vitrification, and mineral phases capable of immobilizing chlorides are listed to allow specification of a dedicated ceramic matrix suitable for containment of these chlorinated waste streams. The results of tests to synthesize chlorosilicate phases are also discussed.

  7. in situ Calcite Precipitation for Contaminant Immobilization

    SciTech Connect

    Yoshiko Fujita; Robert W. Smith

    2009-08-01

    in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at

  8. Immobilization of horseradish peroxidase on amidoximated acrylic polymer activated by cyanuric chloride.

    PubMed

    Mohamed, Saleh A; Al-Ghamdi, Saeed S; El-Shishtawy, Reda M

    2016-10-01

    Horseradish peroxidase (HRP) was immobilized on amidoximated acrylic fabric after being activated with cyanuric chloride. FT-IR spectroscopy and scanning electron microscopy were used to characterize fabrics. The maximum immobilization efficiency of HRP (70%) was detected at 4% cyanuric chloride and pH 7.0. The immobilized enzyme retained 45% of its initial activity after ten reuses. The immobilization of enzyme on the carrier is saturated after 6h of incubation time. The pH was shifted from 7.0 for soluble HRP to 7.5-8.0 for the immobilized enzyme. The soluble HRP and immobilized HRP had the same optimum activity at 40°C. The immobilized HRP is more thermal stable than soluble HRP. Substrate analogues were oxidized by immobilized HRP with higher efficiencies than those of soluble HRP. Km values of the soluble HRP and the immobilized HRP were 31 and 37mM for guiacol and 5.0 and 7.8mM for H2O2, respectively. The immobilized HRP had higher efficiency for removal of phenol than that of soluble HRP. The immobilized HRP had higher resistance toward heavy metal ions compared to the soluble enzyme. The immobilized HRP was more stable against high concentration of urea, Triton X-100 and isopropanol. The immobilized HRP exhibited high resistance to proteolysis by trypsin than soluble enzyme. In conclusion, the immobilized HRP could be used as a potential efficient catalyst for the removal of aromatic pollutants from wastewater. PMID:27264646

  9. Immobilization of radioactive strontium in contaminated soils by phosphate treatment

    SciTech Connect

    Kim, K.H.; Ammons, J.T. . Dept. of Plant and Soil Science); Lee, S.Y. )

    1990-01-01

    The feasibility of in situ phosphate- and metal- (calcium, aluminum, and iron) solution treatment for {sup 90}Sr immobilization was investigated. Batch and column experiments were performed to find optimum conditions for coprecipitation of {sup 90}Sr with Ca-, Al-, and Fe-phosphate compounds in contaminated soils. Separate columns were packed with artificially {sup 85}Sr-contaminated acid soil as well as {sup 90}Sr-contaminated soil from the Oak Ridge Reservation. After metal-phosphate treatment, the columns were then leached successively with either tapwater or 0.001 M CaCl{sub 2} solution. Most of the {sup 85}Sr coprecipitated with the metal phosphate compounds. Immobilization of {sup 85}Sr and {sup 90}Sr was affected by such factors as solution pH, metal and phosphate concentration, metal-to-phosphate ratio, and soil characteristics. Equilibration time after treatments also affected {sup 85}Sr immobilization. Many technology aspects still need to be investigated before field applications are feasible, but these experiments indicate that phosphate-based in situ immobilization should prevent groundwater contamination and will be useful as a treatment technology for {sup 90}Sr-contaminated sites. 15 refs., 3 figs., 1 tab.

  10. Chloride contamination of concrete by interaction with PVC combustion gases

    SciTech Connect

    Climent-Llorca, M.A.; Viqueira-Perez, E.; Vera-Almenar, G. de; Lopez-Atalaya, M.M.

    1998-02-01

    Chloride contamination of concrete by interaction with PVC combustion gases has been studied in a small-scale testing chamber, which allows simulating the conditions probably prevailing in PVC fires of different magnitude through variation of the quotient between mass of burnt PVC and exposed concrete surface (PVC/S). In all cases, a steep gradient of chloride concentration with depth is found after the fire: most chloride is detected in the outermost layer at depths below 5 mm. Surface chloride contents (within 5 mm) for prestressed and reinforced concretes, tested with a high (PVC/S) ratio, are as high as 2.5 and 5% by weight of cement, respectively. Chloride concentrations in concrete near the steels are below the corrosion thresholds after the fire, but they can rise by diffusion to values able to induce rebar corrosion, especially if concrete is exposed to a humid atmosphere.

  11. Immobilization of uranium in contaminated soil by natural apatite addition

    SciTech Connect

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana

    2007-07-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

  12. Studies on acetone powder and purified rhus laccase immobilized on zirconium chloride for oxidation of phenols.

    PubMed

    Lu, Rong; Miyakoshi, Tetsuo

    2012-01-01

    Rhus laccase was isolated and purified from acetone powder obtained from the exudates of Chinese lacquer trees (Rhus vernicifera) from the Jianshi region, Hubei province of China. There are two blue bands appearing on CM-sephadex C-50 chromatography column, and each band corresponding to Rhus laccase 1 and 2, the former being the major constituent, and each had an average molecular weight of approximately 110 kDa. The purified and crude Rhus laccases were immobilized on zirconium chloride in ammonium chloride solution, and the kinetic properties of free and immobilized Rhus laccase, such as activity, molecular weight, optimum pH, and thermostability, were examined. In addition, the behaviors on catalytic oxidation of phenols also were conducted. PMID:22545205

  13. [Immobilization impact of different fixatives on heavy metals contaminated soil].

    PubMed

    Wu, Lie-shan; Zeng, Dong-mei; Mo, Xiao-rong; Lu, Hong-hong; Su, Cui-cui; Kong, De-chao

    2015-01-01

    Four kinds of amendments including humus, ammonium sulfate, lime, superphosphate and their complex combination were added to rapid immobilize the heavy metals in contaminated soils. The best material was chosen according to the heavy metals' immobilization efficiency and the Capacity Values of the fixative in stabilizing soil heavy metals. The redistributions of heavy metals were determined by the European Communities Bureau of Referent(BCR) fraction distribution experiment before and after treatment. The results were as follows: (1) In the single material treatment, lime worked best with the dosage of 2% compared to the control group. In the compound amendment treatments, 2% humus combined with 2% lime worked best, and the immobilization efficiency of Pb, Cu, Cd, Zn reached 98.49%, 99.40%, 95.86%, 99.21%, respectively. (2) The order of Capacity Values was lime > humus + lime > ammonium sulfate + lime > superphosphate > ammonium sulfate + superphosphate > humus + superphosphate > humus > superphosphate. (3) BCR sequential extraction procedure results indicated that 2% humus combined with 2% lime treatment were very effective in immobilizing heavy metals, better than 2% lime treatment alone. Besides, Cd was activated firstly by 2% humus treatment then it could be easily changed into the organic fraction and residual fraction after the subsequent addition of 2% lime. PMID:25898680

  14. Immobilization of chloride-rich radioactive wastes produced by pyrochemical operations

    SciTech Connect

    McDaniel, E.W.; Terry, J.W.

    1997-08-01

    A a result of its former role as a producer of nuclear weapons components, the Rocky Flats Environmental Technology Site (RFETS), Golden, Colorado accumulated a variety of plutonium-contaminated materials. When the level of contamination exceeded a predetermined level (the economic discard limit), the materials were classified as residues rather than waste and were stored for later recovery of the plutonium. Although large quantities of residues were processed, others, primarily those more difficult to process, remain in storage at the site. It is planned for the residues with lower concentrations of plutonium to be disposed of as wastes at an appropriate disposal facility, probably the Waste Isolation Pilot Plant (WIPP). Because the plutonium concentration is too high or because the physical or chemical form would be difficult to get into a form acceptable to WIPP, it may not be possible to dispose of a portion of the residues at WIPP. The pyrochemical salts are among the residues that are difficult to dispose of. For a large percentage of the pyrochemical salts, safeguards controls are required, but WIPP was not designed to accommodate safeguards controls. A potential solution would be to immobilize the salts. These immobilized salts would contain substantially higher plutonium concentrations than is currently permissible but would be suitable for disposal at WIPP. This document presents the results of a review of three immobilization technologies to determine if mature technologies exist that would be suitable to immobilize pyrochemical salts: cement-based stabilization, low-temperature vitrification, and polymer encapsulation. The authors recommend that flow sheets and life-cycle costs be developed for cement-based and low-temperature glass immobilization.

  15. Biosorption of metal contaminants using immobilized biomass--Field studies

    SciTech Connect

    Jeffers, T.H.; Bennett, P.G.; Corwin, R.R.

    1993-01-01

    The US Bureau of Mines has developed porous beads containing immobilized biological materials such as sphagnum peat moss for extracting metal contaminants from waste waters. The beads, designated as BIO-FIX beads, have removed toxic metals from over 100 waters in laboratory tests. These waters include acid mine drainage (AMD) water from mining sites, metallurgical and chemical industry waste water, and contaminated ground water. Following the laboratory studies, cooperative field tests were conducted to evaluate the metal adsorption properties of the beads in column and low-maintenance circuits, determine bead stability in varied climatic situations, and demonstrate the beads' potential as a viable waste water treatment technique. Field results indicated that BIO-FIX beads readily adsorbed cadmium, lead, and other toxic metals from dilute waters; effluents frequently met drinking water standards and other discharge criteria. The beads exhibited excellent handling characteristics in both column and low-maintenance circuits, and continued to extract metal ions after repeated loading-elution cycles. Based on laboratory and field data, cost evaluations for using BIO-FIX technology to treat two AMD waters were prepared. Operating costs for BIO-FIX treatment, which ranged from $1.40 to $2.30 per 1,000 gal of water treated, were comparable with chemical precipitation costs.

  16. [In situ immobilization remediation of heavy metals-contaminated soils: a review].

    PubMed

    Wang, Li-Qun; Luo, Lei; Ma, Yi-Bing; Wei, Dong-Pu; Hua, Luo

    2009-05-01

    In situ immobilization of heavy metals in contaminated soils by adding extraneous active amendments has been considered as a cost-effective measure for contaminated soil remediation. Application of immobilization amendments can decrease the available fractions of heavy metals or change their redox states, and thus, effectively decrease the mobility, bioavailability, and toxicity of the heavy metals in soils. This paper summarized the present researches about the in situ immobilization of heavy metals in soils, including kinds of immobilization amendments, research methods, immobilization indexes, immobilization mechanisms, and relevant environmental risk assessment. The mostly applied amendments include clay minerals, phosphates, organic composts, and microbes. Due to the complexity of soil matrix and the limitations of current analytical techniques, the exact immobilization mechanisms have not been clarified, which could include precipitation, chemical adsorption and ion exchange, surface precipitation, formation of stable complexes with organic ligands, and redox reaction. The prospects and limitations of in situ immobilization of heavy metals in soils were discussed. Future work should focus on the elucidation of immobilization mechanisms at molecular scale, with specific attention be paid to the potential risks of applying immobilization amendments and its long-term effects on field soils. PMID:19803184

  17. Two-year stability of immobilization effect of sepiolite on Cd contaminants in paddy soil.

    PubMed

    Liang, Xuefeng; Xu, Yi; Xu, Yingming; Wang, Pengchao; Wang, Lin; Sun, Yuebing; Huang, Qingqing; Huang, Rong

    2016-07-01

    The long-term stability of immobilization effect of immobilization agents was critical to the remediation practices. Two years consecutive in situ field-scale demonstration was conducted in Hunan province, with the purpose to certify the long-term stability of immobilization effect of sepiolite on Cd contaminants in paddy soil in the aspect of soil extraction and plant uptake. Natural sepiolite was selected as immobilization, and rice was the model plant. The immobilization effect of sepiolite on Cd contaminants in paddy soil was significant in the first year and remained at the second year. The Cd content of brown rice, 0.025 M HCl extractable Cd content and exchangeable Cd content of paddy soil decreased remarkably. The application of sepiolite led to an obvious increase in pH value of paddy soil and carbonate bounded fraction of Cd in soil. The immobilization effect was maintained even at the second year without any additional amendments. The results indicated the interaction of sepiolite and cadmium was a long-term process. The additional sepiolite at the second year had no significant lift effect on immobilization so that it was unnecessary to add sepiolite every year based on the immobilization effect and operation cost. The dynamics of available Cu, Zn, and Mn contents in paddy soil in two consecutive years indicated sepiolite had negligible effects on the bioavailability of trace metals. The result of the current research confirmed the stability of immobilization effect of sepiolite. PMID:26993515

  18. Microbially Mediated Immobilization of Contaminants Through In Situ Biostimulation

    SciTech Connect

    Scott Fendorf

    2003-07-31

    In most natural environments, a multitude of metabolic substrates are resent simultaneously. Organisms that can utilize uranium as a metabolic substrate for respiration also may have the ability to use a variety of other oxidized substrates as electron acceptors. Thus, these substrates are, in effect, competing for electrons that are being passed through the electron transport chain during respiration. To assess the feasibility of in situ immobilization of uranium in subsurface environments and to understand the cycling of uranium, it is necessary to discern the chemical and/or biological conditions dictating which terminal electron acceptor(s) will be utilized.

  19. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.

    PubMed

    Navarro, Andrés; Cardellach, Esteve; Corbella, Mercé

    2011-02-28

    Immobilization processes were used to chemically stabilize soil contaminated with Cu, Pb and Zn from mine tailings and industrial impoundments. We examined the effectiveness of ordinary Portland cement (OPC), phosphoric acid and MgO at immobilizing Cu, Pb and Zn in soil contaminated by either mine tailings or industrial and mine wastes. The effectiveness was evaluated using column leaching experiments and geochemical modelling, in which we assessed possible mechanisms for metal immobilization using PHREEQC and Medusa numerical codes. Experimental results showed that Cu was mobilized in all the experiments, whereas Pb immobilization with H(3)PO(4) may have been related to the precipitation of chloropyromorphite. Thus, the Pb concentrations of leachates of pure mining and industrial contaminated soils (32-410 μg/l and 430-1000 μg/l, respectively) were reduced to 1-60 and 3-360 μg/l, respectively, in the phosphoric acid experiment. The mobilization of Pb at high alkaline conditions, when Pb(OH)(4)(-) is the most stable species, may be the main obstacle to the use of OPC and MgO in the immobilization of this metal. In the mining- and industry-contaminated soil, Zn was retained by OPC but removed by MgO. The experiments with OPC showed the Zn decrease in the leachates of mining soil from 226-1960 μg/l to 92-121 μg/l. In the industrial contaminated soil, the Zn decrease in the leachates was most elevated, showing >2500 μg/l in the leachates of contaminated soil and 76-173 μg/l in the OPC experiment. Finally, when H(3)PO(4) was added, Zn was mobilized. PMID:21190796

  20. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils.

    PubMed

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-05-30

    Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P<0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments. PMID:25725344

  1. Preparation and Characterization of a Calcium Phosphate Ceramic for the Immobilization of Chloride-containing Intermediate Level Waste

    SciTech Connect

    Metcalfe, Brian; Donald, Ian W.; Scheele, Randall D.; Strachan, Denis M.

    2003-12-01

    Attention has recently been given to the immobilization of special categories of radioactive wastes, some of which contain high concentrations of actinide chlorides. Although vitrification in phosphate glass has been proposed, this was rejected because of the high losses of chloride. On the basis of non-radioactive and, more recently, radioactive studies, we have shown that calcium phosphate is an effective host for immobilizing the chloride constituents [1]. In this instance, the chlorine is retained as chloride, rather than evolved as a chlorine-bearing gas. The immobilized product is in the form of a free-flowing, non-hygroscopic powder, in which the chlorides are chemically combined within the mineral phases chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Data from studies on non-radioactive simulated waste consisting of a mixture of CaCl2 and SmCl3, and radioactive simulated waste composed of CaCl2 with PuCl3 or PuCl3 and AmCl3, are presented and compared. The XRD data confirm the presence of chlorapatite and spodiosite in the non-radioactive and radioactive materials. The durability of all specimens was measured with a modified MCC-1 test. Releases of Cl after 28 days were 1.6 x 10-3 g m-2 for the non-radioactive specimens and 7 x 10-3 g m-2 for the Pu-bearing specimens. Releases of Ca after 28 days were 0.3 x 10-3 and 2.0 x 10-3 g m-2 for the non-radioactive composition and the Pu composition, respectively, whilst release of Pu from the radioactive specimens was lower for the mixed Pu/Am specimen at 1.2 x 10-5g m-2. The release of Am from the mixed Pu/Am composition was exceptionally low at 2.4 x 10-7 g m-2. Overall, the release rate data suggest that the ceramics dissolve congruently, followed by precipitation of Sm, Pu and Am as less soluble phases, possibly oxides or phosphates. The differences in behaviour noted between non-radioactive and radioactive specimens are interpreted in terms of the crystal chemistry of the individual systems.

  2. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction. PMID:18969896

  3. Radioactively contaminated electric arc furnace dust as an addition to the immobilization mortar in low- and medium-activity repositories.

    PubMed

    Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel

    2004-05-15

    Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar. PMID:15212272

  4. Solar detoxification of nitroglycerine-contaminated water using immobilized Titania

    SciTech Connect

    Muradov, N.Z. )

    1994-03-01

    A solar-driven photocatalytic process based on TiO[sub 2] has been developed to destroy nitroglycerine (NG) in aqueous solutions. The study involved the design and construction of a plate type photoreactor with immobilized TiO[sub 2] (Degussa P25). The bench scale experiments with the solar (one sun) photocatalytic system demonstrated destruction of NG from an initial concentration of 500 to less than 1 ppm, with CO[sub 2], nitrate ion and water being the major products of the decomposition. the platinization of TiO[sub 2] surface did not significantly affect the rate of NG decomposition. Rhodamine dye, as a model compound, was also photocatalytically decomposed in the solar photoreactor from concentrations of 10 to less than 0.01 ppm in 20 min.

  5. Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants.

    PubMed

    Ammann, Erik M; Gasser, Christoph A; Hommes, Gregor; Corvini, Philippe F-X

    2014-02-01

    Immobilization is an important method to increase enzyme stability and allow enzyme reuse. One interesting application in the field of environmental biotechnology is the immobilization of laccase to eliminate phenolic contaminants via oxidation. Fumed silica nanoparticles have interesting potential as support material for laccase immobilization via sorption-assisted immobilization in the perspective of applications such as the elimination of micropollutants in aqueous phases. Based on these facts, the present work aimed to formulate laccase-nanoparticle conjugates with defined laccase combinations in order to obtain nanobiocatalysts, which are active over a broad range of pH values and possess a large substrate spectrum to suitably address pollution by multiple contaminants. A multi-enzymatic approach was investigated by immobilizing five different types of laccases originating from a Thielavia genus, Coriolopsis polyzona, Cerrena unicolor, Pleurotus ostreatus, and Trametes versicolor onto fumed silica nanoparticles, separately and in combinations. The laccases differed concerning their pH optima and substrate affinity. Exploiting their differences allowed the formulation of tailor-made nanobiocatalysts. In particular, the production of a nanobiocatalyst could be achieved that retained a higher percentage of its relative activity over the tested pH range (3-7) compared to the dissolved or separately immobilized enzymes. Furthermore, a nanobiocatalyst could be formulated able to oxidize a broader substrate range than the dissolved or separately immobilized enzymes. Thereby, the potential of the nanobiocatalyst for application in biochemical oxidation applications such as the elimination of multiple target pollutants in biologically treated wastewater has been illustrated. PMID:23812279

  6. Immobilization of chromium-contaminated soil by means of microwave energy.

    PubMed

    Tai, H S; Jou, C J

    1999-03-19

    To reduce the amount of hazardous wastes contaminated by heavy metals, a new technology to immobilize heavy metal ions is desired. Microwave (MW) technology which can be used to vitrify the contaminated soil wastes and immobilize the heavy metal ions for this purpose to satisfy the leachate test standard. We found that 90%+ of the chromium-contaminated soil went through the glass/ceramic transformation and was thus vitrified after being radiated with MW for 60 min. The chromium ion (Cr6+) concentration in the leaching test of all the vitrified soil samples is less than 1 mg/l, below the USEPA regulatory limit of 5.0 mg/l. This technology may become a major treatment method for hazardous wastes if the large-scale field test proves to be successful. In this paper, we will present the experimental conditions, the results and the future projects. PMID:10337402

  7. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality.

    PubMed

    Udeigwe, Theophilus K; Eze, Peter N; Teboh, Jasper M; Stietiya, Mohammed H

    2011-01-01

    Contaminants such as nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), arsenic (As), heavy metals, and infectious pathogens are often associated with agricultural systems. Various soil and water remediation techniques including the use of chemical amendments have been employed to reduce the risks associated with these contaminants. This paper reviews the use of chemical amendments for immobilizing principal agricultural contaminants, the chemistry of contaminant immobilization, and the environmental consequences associated with the use of these chemical products. The commonly used chemical amendments were grouped into aluminum-, calcium-, and iron-containing products. Other products of interest include phosphorus-containing compounds and silicate clays. Mechanisms of contaminant immobilization could include one or a combination of the following: surface precipitation, adsorption to mineral surfaces (ion exchange and formation of stable complexes), precipitation as salts, and co-precipitation. The reaction pH, redox potential, clay minerals, and organic matter are potential factors that could control contaminant-immobilization processes. Reviews of potential environmental implications revealed that undesirable substances such as trace elements, fluoride, sulfate, total dissolved solids, as well as radioactive materials associated with some industrial wastes used as amendment could be leached to ground water or lost through runoff to receiving water bodies. The acidity or alkalinity associated with some of the industrial-waste amendments could also constitute a substantial environmental hazard. Chemical amendments could introduce elements capable of inducing or affecting the activities of certain lithotrophic microbes that could influence vital geochemical processes such as mineral dissolution and formation, weathering, and organic matter mineralization. PMID:20832118

  8. Chloride contamination effects on proton exchange membrane fuel cell performance and durability

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Haijiang; Qian, Weimin; Zhang, Shengsheng; Wessel, Silvia; Cheng, Tommy T. H.; Shen, Jun; Wu, Shaohong

    2011-08-01

    Chlorine is a major fuel contaminant when by-product hydrogen from the chlor-alkali industry is used as the fuel for proton exchange membrane (PEM) fuel cells. Understanding the effects of chlorine contamination on fuel cell performance and durability is essential to address fuel cell applications for the automotive and stationary markets. This paper reports our findings of chloride contamination effects on PEM fuel cell performance and durability, as our first step in understanding the effects of chlorine contamination. Fuel cell contamination tests were conducted by injecting ppm levels of contaminant into the fuel cell from either the fuel stream or the air stream. In situ and ex situ diagnosis were performed to investigate the contamination mechanisms. The results show that cell voltage during chloride contamination is characterized by an initial sudden drop followed by a plateau, regardless of which side the contaminant is introduced into the fuel cell. The drop in cell performance is predominantly due to increased cathode charge transfer resistance as a result of electrochemical catalyst surface area (ECSA) loss attributable to the blocking of active sites by Cl- and enhanced Pt dissolution.

  9. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils. PMID:27197655

  10. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.

    PubMed

    Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas

    2014-12-01

    Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil. PMID:25249043

  11. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  12. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  13. Phytoextraction of chloride from a cement kiln dust (CKD) contaminated landfill with Phragmites australis.

    PubMed

    McSorley, Kaitlin; Rutter, Allison; Cumming, Robert; Zeeb, Barbara A

    2016-05-01

    Cement kiln dust (CKD) is a globally produced by-product from cement manufacturing that is stockpiled or landfilled. Elevated concentrations of chloride pose toxic threats to plants and aquatic communities, as the anion is highly mobile in water and can leach into surrounding water sources. Re-vegetation and in situ phytoextraction of chloride from a CKD landfill in Bath, ON, Canada, was investigated with the resident invasive species Phragmites australis (haplotype M). Existing stands of P. australis were transplanted from the perimeter of the site into the highest areas of contamination (5.9×10(3)μg/g). Accumulation in the shoots of P. australis was quantified over one growing season by collecting samples from the site on a bi-weekly basis and analyzing for chloride. Concentrations decreased significantly from early May (24±2.2×10(3)μg/g) until mid-June (15±2.5×10(3)μg/g), and then remained stable from June to August. Shoot chloride accumulation was not significantly affected by water level fluctuations at the site, however elevated potassium concentrations in the soil may have contributed to uptake. Based on shoot chloride accumulation and total biomass, it was determined that phytoextraction from the CKD landfill can remove 65±4kg/km(2) of chloride per season. Based on this extraction rate, removal of chloride present in the highly contaminated top 10cm of soil can be achieved in 3-9years. This is the first study to apply phytotechnologies at a CKD landfill, and to successfully demonstrate in situ phytoextraction of chloride. PMID:26597371

  14. Hydrogels for immobilization of bacteria used in the treatment of metal-contaminated wastes

    NASA Astrophysics Data System (ADS)

    Degiorgi, C. Fernández; Pizarro, R. A.; Smolko, E. E.; Lora, S.; Carenza, M.

    2002-01-01

    Polymeric matrices prepared by gamma irradiation of 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate at -78°C in the presence of water and glycerol and poly(vinyl alcohol) membranes were examined as carriers for immobilization of bacterial cells in experiments of metal decontamination. Bacterial strains capable of growing in the presence of heavy metals were selected from soil and water from the Rı´o de la Plata coasts in Argentina and cultured in the hydrophilic membranes with the aim of bioremediation of the standard contaminated solutions. The results obtained indicate that removal from free bacteria was more efficient for Pb(II) and Cd(II) than for Cr(III) and Cu(II). It was ascertained that all metals could be immobilized in the polymer matrices to some extent. The Cr(III) ion concentration in bacteria immobilized on the acrylic hydrogel was approximately double of that found in the poly(vinyl alcohol) membrane.

  15. Preparation and optimization of a drug delivery system based on berberine chloride-immobilized MgAl hydrotalcite.

    PubMed

    Djebbi, Mohamed Amine; Bouaziz, Zaineb; Elabed, Alae; Sadiki, Moulay; Elabed, Soumya; Namour, Philippe; Jaffrezic-Renault, Nicole; Amara, Abdesslem Ben Haj

    2016-06-15

    Hydrotalcite (HT), also known as a layered double hydroxide (LDH) compound, has been widely used in past years in the formulation of drugs due to its specific properties including good biocompatibility, null toxicity, high chemical stability and pH-dependent solubility which aid in drug controlled release. In this work, berberine chloride (BBC) class antibacterial agent was immobilized into magnesium-aluminum LDH in order to improve the drug efficiency as well as to achieve the controlled release property. BBC molecules were immobilized into MgAl LDH through a conventional ion exchange reaction and co-precipitation method. The ion-exchange experiments of BBC on MgAl LDH were investigated with particular attention paid to the influence of the layer charge, the nature of the intercalated anion and the morphology. The immobilization efficiency was dependent upon the LDH properties and the immobilization process. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and contact angle measurements revealed that the interaction of BBC with MgAl LDH occurs by adsorption rather than intercalation of BBC within LDH layers. In vitro anti-bacterial tests were carried out using disc diffusion assay to prove the effectiveness of these novel biohybrid beads as a controlled drug delivery method. Consequently, the BBC-LDH co-precipitated formulation revealed an enhanced anti-bacterial activity compared to the ion-exchanged formulation not only due to an improvement of chemical stability and retained amount of BBC molecules but also due to the release property. PMID:27109050

  16. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar.

    PubMed

    Cao, Xinde; Ma, Lena; Liang, Yuan; Gao, Bin; Harris, Willie

    2011-06-01

    Biochar produced from waste biomass is increasingly being recognized as a green, cost-effective amendment for environmental remediation. This work was to determine the ability of biochar to immobilize heavy metal Pb and organic pesticide atrazine in contaminated soils. Biochar prepared from dairy manure was incubated with contaminated soils at rates of 0, 2.5, and 5.0% by weight for 210 d. A commercial activated carbon (AC) was included as a comparison. The AC was effective in immobilizing atrazine, but was ineffective for Pb. However, biochar was effective in immobilizing both atrazine and Pb and the effectiveness was enhanced with increasing incubation time and biochar rates. After 210 d, soils treated with the highest rate of 5.0% biochar showed more than 57% and 66% reduction in Pb and atrazine concentrations in 0.01 M CaCl(2) extraction, respectively. Lead and atrazine concentrations in the toxicity characteristic leaching procedure solutions were reduced by 70-89% and 53-77%, respectively. Uptake of Pb and atrazine by earthworms (Eisenia fetida) was reduced by up to 79% and 73%. Phosphorus originally contained in biochar reacted with soil Pb to form insoluble hydroxypyromorphite Pb(5)(PO(4))(3)(OH), as determined by X-ray diffraction, which was presumably responsible for soil Pb immobilization, whereas atrazine stabilization may result from its adsorption by biochar demonstrated by the significant exponential decrease of extractable atrazine with increasing organic C in biochar (r(2) > 0.97, p < 0.05). The results highlighted the potential of dairy-manure biochar as a unique amendment for immobilization of both heavy metal and organic contaminants in cocontaminated soils. PMID:21542567

  17. Lead immobilization and phosphorus availability in phosphate-amended, mine-contaminated soils.

    PubMed

    Osborne, Lydia R; Baker, Leslie L; Strawn, Daniel G

    2015-01-01

    Over a century of mining activities in the Coeur d'Alene mining district in Idaho have contaminated soils of the downstream basin with lead, arsenic, zinc, and cadmium. Elevated soil-Pb levels are a significant hazard to the health of humans and wildlife in the region. One in situ treatment approach for remediating Pb-contaminated soils is application of phosphorus to promote the formation of lead phosphate minerals that have low solubility. However, this remediation strategy may result in excess P runoff to surface waters, which can lead to eutrophication, particularly when used in riparian areas. Research presented in this paper describes experiments in which monopotassium phosphate (KHPO) solution was applied to two Pb-contaminated soils from the Coeur d'Alene River valley to determine how P loading rates affect both Pb immobilization and P mobility and to determine if an optimal P amendment rate can be predicted. Toxicity characteristic leaching procedure extractions were used to assess changes in Pb availability for uptake by an organism or mobilization through the soil, and Bray extractions were used to assess P availability for leaching out of the soil system. For the two soils tested, increasing phosphate amendment caused decreasing Pb extractability. Phosphorus amendment rates above approximately 70 mg kg, however, did not provide any additional Pb immobilization. Phosphorus availability increased with increasing phosphate application rate. An empirical relationship is presented that predicts extractable Pb as a function of extractable P. This relationship allows for prediction of the amount of Pb that can be immobilized at specified P leaching amounts, such as regulatory levels that have been established to minimize risks for surface water degradation. Results suggest that phosphate can be used to immobilize Pb in contaminated wetland or riparian areas without posing risks of P loading to surface waters. PMID:25602333

  18. Microbially Induced Calcite Precipitation for Subsurface Immobilization of Contaminants

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Fujita, Y.; Ginn, T. R.; Hubbard, S. S.; Dafflon, B.; Delwiche, M.; Gebrehiwet, T.; Henriksen, J. R.; Peterson, J.; Taylor, J. L.

    2011-12-01

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of the greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have found that calcite precipitation and co-precipitation of Sr can be accelerated by the activity of urea hydrolyzing microorganisms, that higher calcite precipitation rates can result in increased Sr partitioning, and that nutrient additions can stimulate ureolytic activity. To extend our understanding of microbially induced calcite precipitation (MICP) in an aquifer setting a continuous recirculation field experiment evaluating MICP was conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO. In this experiment, groundwater extracted from an onsite well was amended with urea (total mass of 42.5 kg) and molasses (a carbon and electron donor) and re-injected into a well approximately 4 meters up-gradient for a period of 12 days followed by 10 months of groundwater sampling and monitoring. Crosshole radar and electrical tomographic data were collected prior, during, and after the MICP treatment. The urea and molasses treatment resulted in an enhanced population of sediment associated urea hydrolyzing organisms as evidenced by increases in the number of ureC gene copies, increases in 14C urea hydrolysis rates, and long-term observations of ammonium (a urea hydrolysis product) in the injection, extraction and down gradient monitoring wells. Permeability changes and increases in the calcite saturation indexes in the well field suggest that mineral precipitation has occurred; ongoing analysis of field samples seeks to confirm this. Changes in dielectric constant and electrical conductivity were used to interpret the spatiotemporal distribution of the injectate and subsequent calcite precipitation. Modeling activities are underway to

  19. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils.

    PubMed

    Yan, Yin; Zhou, Yi Qun; Liang, Cheng Hua

    2015-01-01

    A laboratory investigation was conducted to evaluate the efficiency of four phosphate fertilizers, including diammonium phosphate (DAP), potassium phosphate monobasic (MPP), calcium superphosphateon (SSP), and calcium phosphate tribasic (TCP), in terms of the toxicity and bioavailability of Cd in contaminated soils. The efficiency of immobilization was evaluated on the basis of two criteria: (a) the reduction of extractable Cd concentration below the TCLP regulatory level and (b) the Cd changes associated with specific operational soil fractions on the basis of sequential extraction data. Results showed that after 50 d immobilization, the extractable concentrations of Cd in DAP, MPP, SSP, and TCP treated soils decreased from 42.64 mg/kg (in the control) to 23.86, 21.86, 33.89, and 35.59 mg/kg, respectively, with immobilization efficiency in the order of MPP > DAP > SSP > TCP. Results from the assessment of Cd speciation via the sequential extraction procedure revealed that the soluble exchangeable fraction of Cd in soils treated with phosphate fertilizers, especially TCP, was considerably reduced. In addition, the reduction was correspondingly related to the increase in the more stable forms of Cd, that is, the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (according to the molar ratio of PO4/Cd) increased. Immobilization was the most effective under the molar ratio of PO4/Cd at 4:1. PMID:25915051

  20. Evaluation of Phosphate Fertilizers for the Immobilization of Cd in Contaminated Soils

    PubMed Central

    Yan, Yin; Zhou, Yi Qun; Liang, Cheng Hua

    2015-01-01

    A laboratory investigation was conducted to evaluate the efficiency of four phosphate fertilizers, including diammonium phosphate (DAP), potassium phosphate monobasic (MPP), calcium superphosphateon (SSP), and calcium phosphate tribasic (TCP), in terms of the toxicity and bioavailability of Cd in contaminated soils. The efficiency of immobilization was evaluated on the basis of two criteria: (a) the reduction of extractable Cd concentration below the TCLP regulatory level and (b) the Cd changes associated with specific operational soil fractions on the basis of sequential extraction data. Results showed that after 50 d immobilization, the extractable concentrations of Cd in DAP, MPP, SSP, and TCP treated soils decreased from 42.64 mg/kg (in the control) to 23.86, 21.86, 33.89, and 35.59 mg/kg, respectively, with immobilization efficiency in the order of MPP > DAP > SSP > TCP. Results from the assessment of Cd speciation via the sequential extraction procedure revealed that the soluble exchangeable fraction of Cd in soils treated with phosphate fertilizers, especially TCP, was considerably reduced. In addition, the reduction was correspondingly related to the increase in the more stable forms of Cd, that is, the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (according to the molar ratio of PO4/Cd) increased. Immobilization was the most effective under the molar ratio of PO4/Cd at 4:1. PMID:25915051

  1. Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants.

    PubMed

    Cervantes, Francisco J; Gonzalez-Estrella, Jorge; Márquez, Arturo; Alvarez, Luis H; Arriaga, Sonia

    2011-01-01

    A novel technique to immobilize humic substances (HS) on an anion exchange resin is presented. Immobilized HS were demonstrated as an effective solid-phase redox mediator (RM) during the reductive biotransformation of carbon tetrachloride (CT) and the azo model compound, Reactive Red 2 (RR2). Immobilized HS increased ∼4-fold the extent of CT reduction to chloroform by a humus-reducing consortium in comparison to incubations lacking HS. Immobilized HS also increased 2-fold the second-order rate constant of decolorization of RR2 as compared with sludge incubations lacking HS. To our knowledge, the present study constitutes the first demonstration of immobilized HS serving as an effective solid-phase RM during the reductive biotransformation of priority contaminants. The immobilizing technique developed could be appropriate for enhancing the redox biotransformation of recalcitrant pollutants in anaerobic wastewater treatment systems. PMID:20801024

  2. FIELD AND LABORATORY EVIDENCE FOR INTRINSIC BIODEGRADATION OF VINYL CHLORIDE CONTAMINATION IN A FE(III)-REDUCING AQUIFER

    EPA Science Inventory

    Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biod...

  3. [Differential Effect and Mechanism of in situ Immobilization of Cadmium Contamination in Soil Using Diatomite Produced from Different Areas].

    PubMed

    Zhu, Jian; Wang, Ping; Lin, Yan; Lei, Ming-jing; Chen, Yang

    2016-02-15

    In order to understand the difference of in situ immobilization effect and mechanism of Cd contamination in soil using diatomite produced from different areas, the test was conducted using diatomite produced from Yunnan Tengchong, Jilin Linjiang, Zhejiang Shengzhou and Henan Xinyang of China as modifiers to immobilize cadmium contamination in simulated soil. The results indicated that the diatomite from all the four producing areas could effectively immobilize available Cd in soil, decreasing the available Cd content in soil by 27.7%, 28.5%, 30.1% and 57.2%, respectively when the adding concentration was 30 g x kg(-1). Their ability for immobilizing available Cd in soil followed the sequence of Henan Xinyang > Zhejiang Shengzhou > Jilin Linjiang > Yunnan Tengchong. It was also found that the physical and chemical properties of diatomite played a main role in soil cadmium immobilization, lower bulk density, larger specific surface area, more micro pores and wider distribution range of aperture were more favorable for available Cd immobilization. The results also showed that, the diatomite could control Cd contamination by changing soil physical and chemical properties, among these properties, pH and organic matter content were the key factors, increasing soil pH value and organic matter content was favorable for available cadmium immobilization, while the soil water content had little effect on available cadmium immobilization. The control of soil cadmium contamination by using diatomite to change cation exchange capacity was limited by time in some degree. The diatomite produced from Henan Xinyang, Zhejiang Shengzhou and Yunnan Tengchong increased the soil pH value and organic matter content, and was favorable for available Cd immobilization, while the diatomite from Jilin Linjiang showed converse effect. PMID:27363165

  4. [Effect and mechanism of immobilization of cadmium and lead compound contaminated soil using new hybrid material].

    PubMed

    Wang, Lin; Xu, Ying-Ming; Liang, Xue-Feng; Sun, Yang; Qin, Xu

    2011-02-01

    The effect of new hybrid material and its compound treatments with phosphate on immobilization of cadmium and lead in contaminated soil was investigated using a pot-culture experiment, and the immobilization mechanism of hybrid material was clarified through analysis of heavy metal fractions, sorption equilibration experiment and X-ray photoelectron spectroscopy (XPS). The single treatments of hybrid material could not significantly promote growth of Brassica chinensis, while the compound treatments of hybrid material and phosphate markedly increased dry biomass of shoots and roots, with maximal increases of 75.53% and 151.22%, respectively. Different hybrid material treatments could significantly reduce Cd and Pb concentrations in shoots, with maximal reductions of 66.79% and 48.62%, respectively, and the compound amendment treatments appeared more efficient than the single amendment treatments in reducing Cd and Pb uptake of B. chinensis. Different hybrid material treatments could significantly decrease concentrations of toxicity characteristic leaching procedure (TCLP) extractable Cd and Pb, and the compound hybrid material treatments appeared more efficient than the single treatments in reducing TCLP extractable Cd and Pb. Through the formation of bidentate ligand between metal ions and surface sulfhydryl by complexing reaction, the hybrid material could absorb and fix mobile fractions of Cd and Pb in soil, and promote transformation of acid extractable Cd and Pb into residual fraction, resulting in significant reduction of heavy metals bioavailability and mobility and then fixing remediation of contaminated soil. In summary, the compound treatment of hybrid material and phosphate is the most effective treatment for immobilization of Cd and Pb in contaminated soils, and the hybrid material inactivates Cd and Pb in soil mainly through special chemical adsorption. PMID:21528587

  5. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.

    PubMed

    Park, Jin Hee; Bolan, Nanthi S; Chung, Jae Woo; Naidu, Ravi; Megharaj, Mallavarapu

    2011-08-01

    Lead is a highly toxic element and forms stable compounds with phosphate, which is commonly used to immobilize Pb in soils. However, few studies have monitored the long-term stability of immobilized Pb, which is a critical factor in determining the effectiveness of the in situ stabilization technique. Both soluble and insoluble phosphate compounds were tested for Pb immobilization, and its subsequent mobility and bioavailability in a contaminated soil from a shooting range. Adding tricalcium phosphate, hydroxyapatite, rock phosphate and potassium dihydrogen phosphate reduced the concentration of ammonium-nitrate-extractable Pb in the contaminated soil by 78.6%, 48.3%, 40.5% and 80.1%, respectively. Insoluble phosphate amendments significantly reduced leached Pb concentration from the column while soluble potassium dihydrogen phosphate compound increased P and Pb concentrations in the leachate. Rock phosphate reduced Pb accumulation in earthworms by 21.9% compared to earthworms in the control treatment. The long-term stability of immobilized Pb was evaluated after 2 years' incubation of the contaminated soil with rock phosphate or soluble phosphate compounds. Bioavailable Pb concentration as measured by simple bioavailability extraction test (SBET) showed the long-term stability of immobilized Pb by P amendments. Therefore, Pb immobilization using phosphate compounds is an effective remediation technique for Pb-contaminated soils. PMID:21748178

  6. Field and laboratory evidence for intrinsic biodegradation of vinyl chloride contamination in a Fe(III)-reducing aquifer

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Wilson, J.T.

    1998-01-01

    Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biodegradability of vinyl chloride under anaerobic conditions. In this study, a combination of field geochemical analyses and laboratory radiotracer ([1,2-14C] vinyl chloride) experiments was utilized to assess the potential for intrinsic biodegradation of vinyl chloride contamination in an Fe(III)-reducing, anaerobic aquifer. Microcosm experiments conducted under Fe(III)-reducing conditions with material from the Fe(III)-reducing, chlorinated-ethene contaminated aquifer demonstrated significant oxidation of [1,2-14C] vinyl chloride to 14CO2 with no detectable production of ethene or other reductive dehalogenation products. Rates of degradation derived from the microcosm experiments (0.9-1.3% d-1) were consistent with field-estimated rates (0.03-0.2% d-1) of apparent vinyl chloride degradation. Field estimates of apparent vinyl chloride biodegradation were calculated using two distinct approaches; 1) a solute dispersion model and 2) a mass balance assessment. These findings demonstrate that degradation under Fe(III) reducing conditions can be an environmentally significant mechanism for intrinsic bioremediation of vinyl chloride in anaerobic ground-water systems.

  7. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter.

    PubMed

    Uchimiya, Minori; Lima, Isabel M; Klasson, K Thomas; Wartelle, Lynda H

    2010-08-01

    Contamination of soil interstitial waters by labile heavy metals such as Cu(II), Cd(II), and Ni(II) is of worldwide concern. Carbonaceous materials such as char and activated carbon have received considerable attention in recent years as soil amendment for both sequestering heavy metal contaminants and releasing essential nutrients like sulfur. Information is currently lacking in how aging impacts the integrity of biochars as soil amendment for both agricultural and environmental remediation purposes. Major contributors to biochar aging in soils are: sorption of environmental constituents, especially natural organic matter (NOM), and oxidation. To investigate the impact of NOM and organic fractions of chars, we employed broiler litter-derived chars and steam-activated carbons that underwent varying degrees of carbonization, in the presence and absence of NOM having known carboxyl contents. For aging by oxidation, we employed phosphoric acid activated carbons that underwent varying degrees of oxidation during activation. The results suggest that the organic fractions of biochars, and NOM having high carboxyl contents can mobilize Cu(II) retained by alkaline soil. Base treatment of broiler litter-derived char formed at low pyrolysis temperature (350 degrees C) improved the immobilization of all heavy metals investigated, and the extent of immobilization was similar to, or slightly greater than pecan shell-derived phosphoric acid activated carbons. Portions of total sulfur were released in soluble form in soil amended with broiler litter-derived carbons, but not pecan shell-derived phosphoric acid activated carbons. PMID:20542314

  8. The effects of a stannous chloride-based water treatment system in a mercury contaminated stream

    SciTech Connect

    Mathews, Teresa J.; Looney, Brian B.; Smith, John G.; Miller, Carrie L.; Peterson, Mark J.; Bryan, A. Lawrence; Southworth, George R.

    2015-06-09

    Remediation of mercury (Hg)-contaminated watersheds is often challenging because of the complex nature of Hg biogeochemistry. Stream ecosystems have been shown to be particularly susceptible to Hg contamination and bioaccumulation in fish. Decreasing total Hg loading to stream systems, however, has shown variable performance in decreasing Hg concentrations in fish tissues. In this study, we assess the impacts of an innovative treatment system in reducing releases of Hg to a small stream system in the southeastern United States. The treatment system, installed in 2007, removes Hg from water using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations in the receiving stream, Tims Branch, decreased from > 100 to ~10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel (Esox americanus) decreased by 70 % at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to MeHg production and bioaccumulation. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream with minimal impacts on the environment due to the increased Sn in the system.

  9. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-11-15

    Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad(®) 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC>unmodified bentonite>Arquad-bentonite). The MIOC variably increased the microbial count (10-43%) as well as activities (respiration 3-44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils. PMID:26022853

  10. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea.

    PubMed

    Ok, Yong Sik; Kim, Sung-Chul; Kim, Dong-Kuk; Skousen, Jeffrey G; Lee, Jin-Soo; Cheong, Young-Wook; Kim, Su-Jung; Yang, Jae E

    2011-01-01

    The cadmium (Cd) content of rice grain grown in metal-contaminated paddy soils near abandoned metal mines in South Korea was found to exceed safety guidelines (0.2 mg Cd kg⁻¹) set by the Korea Food and Drug Administration (KFDA). However, current remediation technologies for heavy metal-contaminated soils have limited application with respect to rice paddy soils. Laboratory and greenhouse experiments were conducted to assess the effects of amending contaminated rice paddy soils with zerovalent iron (ZVI), lime, humus, compost, and combinations of these compounds to immobilize Cd and inhibit Cd translocation to rice grain. Sequential extraction analysis revealed that treatment with the ameliorants induced a 50-90% decrease in the bioavailable Cd fractions when compared to the untreated control soil. When compared to the control, Cd uptake by rice was decreased in response to treatment with ZVI + humus (69%), lime (65%), ZVI + compost (61%), compost (46%), ZVI (42%), and humus (14%). In addition, ameliorants did not influence rice yield when compared to that of the control. Overall, the results of this study indicated that remediation technologies using ameliorants effectively reduce Cd bioavailability and uptake in contaminated rice paddy soils. PMID:21052787

  11. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal

    NASA Astrophysics Data System (ADS)

    Donald, I. W.; Metcalfe, B. L.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2007-03-01

    Chloride-containing radioactive wastes are generated during the pyrochemical reprocessing of Pu metal. Immobilization of these wastes in borosilicate glass or Synroc-type ceramics is not feasible due to the very low solubility of chlorides in these hosts. Alternative candidates have therefore been sought including phosphate-based glasses, crystalline ceramics and hybrid glass/ceramic systems. These studies have shown that high losses of chloride or evolution of chlorine gas from the melt make vitrification an unacceptable solution unless suitable off-gas treatment facilities capable of dealing with these corrosive by-products are available. On the other hand, both sodium aluminosilicate and calcium phosphate ceramics are capable of retaining chloride in stable mineral phases, which include sodalite, Na 8(AlSiO 4) 6Cl 2, chlorapatite, Ca 5(PO 4) 3Cl, and spodiosite, Ca 2(PO 4)Cl. The immobilization process developed in this study involves a solid state process in which waste and precursor powders are mixed and reacted in air at temperatures in the range 700-800 °C. The ceramic products are non-hygroscopic free-flowing powders that only require encapsulation in a relatively low melting temperature phosphate-based glass to produce a monolithic wasteform suitable for storage and ultimate disposal.

  12. The effects of a stannous chloride-based water treatment system in a mercury contaminated stream.

    PubMed

    Mathews, Teresa J; Looney, Brian B; Bryan, A Lawrence; Smith, John G; Miller, Carrie L; Southworth, George R; Peterson, Mark J

    2015-11-01

    We assessed the impacts of an innovative Hg water treatment system on a small, industrially-contaminated stream in the southeastern United States. The treatment system, installed in 2007, removes Hg from wastewater using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations in the receiving stream, Tims Branch, decreased from >100 to ∼10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel (Esox americanus) decreased by 70% at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to methylmercury (MeHg) production or bioaccumulation in this system. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream, but future studies are needed to assess longer term impacts of Sn on the environment. PMID:26070084

  13. Solubility and changes of mercury binding forms in contaminated soils after immobilization treatment

    SciTech Connect

    Biester, H.; Zimmer, H.

    1998-09-15

    Mobility at different pH and binding forms of mercury (Hg) have been investigated in three Hg-contaminated soils after immobilization treatment with alkali-polysulfide (APS) and trimercapto-s-triazine trisodium salt solution (TMT). Changes of solid-phase Hg binding forms after immobilization were determined by Hg pyrolysis. Hg concentrations in the water extracts of all samples increased after treatments due to the formation of soluble mercury sulfides (APS treatment), and the mobilization of humic acid bound Hg at the high pH of the reagents. In contrast, Hg concentrations decreased sharply at low pH due to decomposition of soluble mercury sulfides and precipitation of humic acid-bound Hg. Inorganic Hg compounds such as Hg{sup 0} or HgCl{sub 2} are effectively transformed to mercury sulfides by APS treatment, whereas TMT could transform HgCl{sub 2} but not Hg{sup 0}. Both reagents were found to affect humic acid bound Hg by way of increasing Hg desorption temperatures, although APS was found not to desorb Hg completely from humic acids and TMT-Hg complexes are actually incorporated into humic acids.

  14. Microscopic analysis of Pu-contaminated incinerator ash: Implications for immobilization

    SciTech Connect

    Buck, E.C.

    1997-10-01

    In this paper, a nanometer-scale mineralogical study with analytical transmission electron microscopy (AEM) of plutonium-bearing incinerator ash from the Rocky Flats Environmental Technology Site (RFETS) in Colorado is described. The findings from this work may have implications for the present effort to immobilize plutonium waste. Around 70% of the plutonium ash in the DOE weapons complex is stored at RFETS. The ash was formed from the combustion of contaminated wastes generated from plutonium processing. The RFETS incinerator ash composition has been determined by Blum et al. The ash was formed at temperatures estimated to be between 200 C and 900 C and contains up to 14 wt% Pu. Ash is a generic term used to describe the by-product of combustion and owing to the variability in the inorganic components.

  15. Biosorption of metal contaminants using immobilized biomass: A laboratory study. Rept. of Investigations/1991

    SciTech Connect

    Jeffers, T.H.; Ferguson, C.R.; Bennett, P.G.

    1991-01-01

    The U.S. Bureau of Mines has developed porous beads containing immobilized biological materials for removing metal contaminants from waste waters. The beads, designated as BIO-FIX beads, are prepared by blending biomass, such as sphagnum peat moss or algae, into a polymer solution and spraying the mixture into water. Laboratory studies were conducted to determine bead sorption and elution characteristics. Batch and continuous tests demonstrated that BIO-FIX beads sorbed arsenic, cadmium, lead, and other toxic metals from acid mine drainage waters collected from several sites. Selectivity for heavy and toxic metal ions over calcium and magnesium was demonstrated. The beads exhibited excellent metal sorption and handling characteristics in stirred tanks, column contactors, and a low-maintenance passive system. The sorption process was reversible, and metal ions were eluted from the beads using dilute mineral acids. Cyclic tests indicated that the beads continued to extract metal ions after repeated loading-elution cycles.

  16. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid.

    PubMed

    Su, Xiaojuan; Zhu, Jun; Fu, Qingling; Zuo, Jichao; Liu, Yonghong; Hu, Hongqing

    2015-02-01

    Understanding the effects of oxalic acid (OA) on the immobilization of Pb(II) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A series of phosphate amendments with/without oxalic acid were applied to two anthropogenic contaminated soils. We investigated the immobilization of Pb(II) by KH2PO4, phosphate rock (PR), activated phosphate rock (APR) and synthetic hydroxyapatite (HAP) at different phosphate:Pb (P:Pb) molar ratios (0, 0.6, 2.0 and 4.0) in the presence/absence of 50 mmol oxalic acid/kg soil, respectively. The effects of treatments were evaluated using single extraction with deionized water or CaCl2, Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) methods. Our results showed that the concentration of water extractable, exchangeable and TCLP-Pb all decreased with incubation time. The concentration of water-extractable Pb after 120 days was reduced by 100% when soils were amended with APR, HAP and HAP+OA, and the TCLP-Pb was <5 mg/L for the red soil at P:Pb molar ratio 4.0. Water-soluble Pb could not be detected and the TCLP-Pb was <5 mg/L at all treatments applied to the yellow-brown soil. BCR results indicated that APR was most effective, although a slight enhancement of water-soluble phosphate was detected at the P:Pb molar ratio 4.0 at the beginning of incubation. Oxalic acid activated phosphates, and so mixing insoluble phosphates with oxalic acid may be a useful strategy to improve their effectiveness in reducing Pb bioavailability. PMID:25662240

  17. The effects of a stannous chloride-based remediation system in a mercury contaminated stream

    DOE PAGESBeta

    Mathews, Teresa J; Looney, Brian; BryanJr., Larry; Smith, John G; Miller, Carrie L; Peterson, Mark J

    2015-01-01

    Remediation of mercury (Hg)-contaminated watersheds is often challenging because of the complex nature of Hg biogeochemistry. Stream ecosystems have been shown to be particularly susceptible to Hg contamination and bioaccumulation in fish. Decreasing total Hg loading to stream systems, however, has shown variable performance in decreasing Hg concentrations in fish tissues. In this study, we assess the impacts of an innovative treatment system in reducing releases of Hg to a small stream system in the southeastern United States. The treatment system, installed in 2007, removes Hg from water using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations inmore » the receiving stream, Tims Branch, decreased from > 100 to ~10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel (Esox americanus) decreased by 70 % at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to MeHg production and bioaccumulation. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream with minimal impacts on the environment due to the increased Sn in the system.« less

  18. The effects of a stannous chloride-based water treatment system in a mercury contaminated stream

    DOE PAGESBeta

    Mathews, Teresa J.; Looney, Brian B.; Smith, John G.; Miller, Carrie L.; Peterson, Mark J.; Bryan, A. Lawrence; Southworth, George R.

    2015-06-09

    Remediation of mercury (Hg)-contaminated watersheds is often challenging because of the complex nature of Hg biogeochemistry. Stream ecosystems have been shown to be particularly susceptible to Hg contamination and bioaccumulation in fish. Decreasing total Hg loading to stream systems, however, has shown variable performance in decreasing Hg concentrations in fish tissues. In this study, we assess the impacts of an innovative treatment system in reducing releases of Hg to a small stream system in the southeastern United States. The treatment system, installed in 2007, removes Hg from water using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations inmore » the receiving stream, Tims Branch, decreased from > 100 to ~10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel (Esox americanus) decreased by 70 % at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to MeHg production and bioaccumulation. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream with minimal impacts on the environment due to the increased Sn in the system.« less

  19. Meta-analysis of biochar potential for pollutant immobilization and stabilization in contaminated soils

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Marsz, Aleksandra; Fristak, Vladimir

    2015-04-01

    Biochar is the pyrolysis product of biomass, preferably from agricultural and forestry residues and waste materials. Characterized by a polyaromatic structure rich in carbon, it offers a microporous structure with a high specific surface area and active functional groups as binding sites. Because of the high sorption capacity for organic and inorganic soil pollutants biochar is an interesting tool for in-situ soil remediation. Especially if the reduction of contaminant bioavailability and the protection of groundwater from pollutants in the vadose zone are the most relevant issues for remediating a polluted site without excavation and removal of the soil, an in-situ application of biochar may offer a promising remediation strategy. The resulting interest of deploying biochar as sorbent for soil contaminants has stimulated a wealth of studies to develop successful applications for environmental technology. However, the existing studies do not always agree on the efficacy for different pollutants and on the most relevant char and soil characteristics that determine the rate of success when using biochar as sorbent. This makes it necessary to apply advanced literature assessment techniques to allow for the recognition of the extent and the significance of the efficacy of a given pollutant treatment technique. A meta-analysis is a study assessment technique that allows extracting a harmonized answer to a specific research question that has been studied more often than one time, even if the results are partially conflicting. Such a technique also allows getting an overview about the degree of consensus or contradiction in the answers to the question if biochar can be applied successfully for immobilizing certain soil contaminants. The meta-analysis results can also be used to quantify the average extent of effects of a certain treatment, depending on the characteristics of the sorbent and on the application rate. By checking 104 published papers in the peer

  20. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  1. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion.

    PubMed

    Theodoratos, Panagiotis; Papassiopi, Nymphodora; Xenidis, Anthimos

    2002-10-01

    The objective of this work was to evaluate the efficiency of monobasic calcium phosphate for the stabilization of heavy metals in contaminated soils. The treatment was applied on a soil sample from the Lavrion mining area, Greece, heavily contaminated with Pb, Zn, Cd and As and characterized as toxic in respect to Pb according to the US EPA toxicity characteristics leaching procedure (TCLP). The efficiency of stabilization was evaluated based on two criteria: (a) the reduction of metals mobility below the TCLP regulatory limits; (b) the reduction of phytoaccumulation. Phytoaccumulation was evaluated both indirectly by applying leaching tests using EDTA, DTPA and NaHCO(3) solutions and directly by carrying out pot experiments with Phaseolus vulgaris as plant indicator. This treatment was found to immobilize Pb and Cd, whereas As and Zn were slightly mobilized. No effect on phytoaccumulation was observed. Moreover, the treatment had a negative effect on plants growth, which was combined with a strong deficiency of Ca in the tissue of leaves. PMID:12169417

  2. Biosorption of metal contaminants using immobilized biomass: Field studies. Report of Investigations/1993

    SciTech Connect

    Jeffers, T.H.; Bennett, P.G.; Corwin, R.R.

    1993-01-01

    The U.S. Bureau of Mines has developed porous beads containing immobilized biological materials such as sphagnum peat moss for extracting metal contaminants from waste waters. The beads, designated as BIO-FIX beads, have removed toxic metals from over 100 waters in laboratory tests. These waters include acid mine drainage (AMD) water from mining sites, metallurgical and chemical industry waste water, and contaminated ground water. Following the laboratory studies, cooperative field tests were conducted to evaluate the metal adsorption properties of the beads in column and low-maintenance circuits, determine bead stability in varied climatic situations, and demonstrate the beads' potential as a viable waste water treatment technique. Field results indicated that BIO-FIX beads readily adsorbed cadmium, lead, and other toxic metals from dilute waters; effluents frequently met drinking water standards and other discharge criteria. The beads exhibited excellent handling characteristics in both column and low-maintenance circuits, and continued to extract metal ions after repeated loading-elution cycles.

  3. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].

    PubMed

    Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng

    2014-12-01

    A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil. PMID:25826946

  4. Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water

    SciTech Connect

    Vengosh, A.; Pankratov, I.

    1998-09-01

    To establish geochemical tools for tracing the origin of ground water contamination, the authors examined the variations of Cl/Br and Cl/F (weight) ratios in (1) domestic waste water from the Dan Region Sewage Reclamation Project and from reservoirs in the central coast of Israel; (2) associated contaminated ground water; and (3) pristine ground water from the Mediterranean coastal aquifer of Israel. The data show that supply water, anthropogenic NaCl and fluoridation control the Cl/Br and Cl/F ratios of domestic waste water, and conventional sewage treatment does not affect the anthropogenic inorganic signals. The Cl/Br ratios of ground water contaminated with sewage effluent reflect conservative mixing proportions of sewage and regional ground water components. Sensitivity tests demonstrate that it is possible to detect and distinguish sewage contamination from marine ratios after a sewage contribution of 5 to 15% is mixed with regional ground water. Mixing with Br-enriched fresh water however, would reduce this sensitivity. Since the high Cl/Br signal of sewage effluents is distinguishable from other anthropogenic sources with low Cl/Br ratios and from natural contamination sources, Cl/Br ratios can therefore be a useful inorganic tracer for identification of the origin of contaminated ground water. The Cl/F ratios of sewage-contaminated ground water were higher than those in the original sewage effluent, which suggests retention of fluoride into the aquifer solid phase.

  5. A comparative study of the most effective amendment for Pb, Zn and Cd immobilization in contaminated soils.

    PubMed

    Szrek, Dominik; Bajda, Tomasz; Manecki, Maciej

    2011-01-01

    The problem of an extensive contamination of soils with metals can be resolved using an in situ chemical immobilization technology. Five substances (natural zeolite, bog iron ore, "Polifoska 15" fertilizer, triple superphosphate, diammonium phosphate) were tested to determine their efficiency to immobilize Zn, Pb and Cd in smelter-contaminated soil in the Upper Silesia region. Soil samples were collected at three sites located in the vincity of a Pb-Zn smelter and a sludge landfill near the town of Bukowno. Effective reduction of leachable and fitoavailable Zn, Pb and Cd concentrations in soil was observed after addition of diammonium phosphate, "Polifoska 15" fertilizer and bog iron ore amendments. Additional test proved that immobilization effect gained by these amendments sustains at low-temperature conditions. It was noticed that phosphate addition resulted in lowering pH and mobilization of As(V) in soils. Good immobilization effectiveness and lack of major adverse effects of bog iron application suggest that this is the method of choice. PMID:21961559

  6. Immobilization of Pb from contaminated water, soils, and wastes by phosphate rock. Annual report, 15 March 1993-14 September 1994

    SciTech Connect

    Ma, Q.Y.; Logan, T.J.; Traina, S.J.

    1994-10-01

    This research studies the feasibility of using phosphate rock and hydroxyapatite to immobilize Pb from aqueous solutions and contaminated soils, investigated the effects of CaCO3, aqueous Ca, Na, and K, and EDTA on aqueous Pb immobilization by hydroxyapatite, examined the stability of hydroxypyromorphite in the presence of high concentrations of anion exhange resin, aqueous Ca(+2), and EDTA, and determined the feasibility of using hydroxyapatite in immobilizing AsO4-3.

  7. Selection of support materials for immobilization of Burkholderia cepacia PCL3 in treatment of carbofuran-contaminated water.

    PubMed

    Laocharoen, S; Plangklang, P; Reungsang, A

    2013-01-01

    This study investigated the utilization of agricultural matrices as the support materials for cell immobilization to improve the technique of bioremediation. Coir, bulrush, banana stem and water hyacinth stem in both delignified and undelignified forms were used to immobilize Burkholderia cepacia PCL3 in bioremediation of carbofuran at 5 mg l(-1) in synthetic wastewater. Undelignified coir was found to be the most suitable support material for cell immobilization, giving the short half-life of carbofuran of 3.40 d (2.8 times shorter than the treatments with free cells). In addition, it could be reused three times without a loss in ability to degrade carbofuran. The growth and degradation ability of free cells were completely inhibited at the initial carbofuran concentrations of 250 mg l(-1), while there was no inhibitory effect of carbofuran on the immobilized cells. The results indicated a great potential for using the agricultural matrices as support material for cell immobilization to improve the overall efficiency of carbofuran bioremediation in contaminated water by B. cepacia PCL3. PMID:24527620

  8. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation.

    PubMed

    Suja, E; Nancharaiah, Y V; Venugopalan, V P

    2014-11-15

    Microbial granules cultivated in an aerobic bubble column sequencing batch reactor were used for reduction of Pd(II) and formation of biomass associated Pd(0) nanoparticles (Bio-Pd) for reductive transformation of organic and inorganic contaminants. Addition of Pd(II) to microbial granules incubated under fermentative conditions resulted in rapid formation of Bio-Pd. The reduction of soluble Pd(II) to biomass associated Pd(0) was predominantly mediated by H2 produced through fermentation. X-ray diffraction and scanning electron microscope analysis revealed that the produced Pd nanoparticles were associated with the microbial granules. The catalytic activity of Bio-Pd was determined using p-nitrophenol and Cr(VI) as model compounds. Reductive transformation of p-nitrophenol by Bio-Pd was ∼20 times higher in comparison to microbial granules without Pd. Complete reduction of up to 0.25 mM of Cr(VI) by Bio-Pd was achieved in 24 h. Bio-Pd synthesis using self-immobilized microbial granules is advantageous and obviates the need for nanoparticle encapsulation or use of barrier membranes for retaining Bio-Pd in practical applications. In short, microbial granules offer a dual purpose system for Bio-Pd production and retention, wherein in situ generated H2 serves as electron donor powering biotransformations. PMID:25223898

  9. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.

    PubMed

    Wang, Yu; Fang, Zhanqiang; Kang, Yuan; Tsang, Eric Pokeung

    2014-06-30

    The toxic effect of Cr(VI)-contaminated soil remediated by sodium carboxymethyl cellulose stabilized nanoscale zero-valent iron (CMC-stabilized nZVI) was assessed through in vitro toxicity and phytotoxicity tests. In vitro tests showed that 0.09 g L(-1) of Fe(0) nanoparticles (soil-to-solution ratio was 1 g:5 mL) significantly reduced the toxicity characteristic leaching procedure (TCLP) leachability and physiological based extraction test (PBET) bioaccessibility of Cr by 82% and 58%, respectively. Sequential extraction procedures (SEP) revealed that exchangeable (EX) Cr was completely converted to Fe-Mn oxides (OX) and organic matter (OM). Accordingly, phytotoxicity tests indicated that after 72-h remediation, Cr uptakes by edible rape and Chinese cabbage were suppressed by 61% and 36%, respectively. Moreover, no significant increase in Cr uptake was observed for either species after a 1-month static period for the amended soil. Regarding Fe absorption, germination and seedling growth, both plant species were significantly affected by CMC-nZVI-exposed soils. However, similar phytotoxicity tests conducted after 1 month showed an improvement in cultivation for both plants. Overall, this study demonstrated that CMC-nZVI could significantly enhance Cr immobilization, which reduced its leachability, bioavailability and bioaccumulation by plants. From a detoxification perspective, such remediation is technologically feasible and shows great potential in field applications. PMID:24880637

  10. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment.

    PubMed

    Bian, Rongjun; Joseph, Stephen; Cui, Liqiang; Pan, Genxing; Li, Lianqing; Liu, Xiaoyu; Zhang, Afeng; Rutlidge, Helen; Wong, Singwei; Chia, Chee; Marjo, Chris; Gong, Bin; Munroe, Paul; Donne, Scott

    2014-05-15

    Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010-2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues' Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure. PMID:24685528

  11. Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites

    PubMed Central

    Coleman, Nicholas V.; Mattes, Timothy E.; Gossett, James M.; Spain, Jim C.

    2002-01-01

    Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day−1), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day−1), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (Ks) values for VC were between 0.5 and 3.2 μM, while Ks values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC. PMID:12450841

  12. Leaching of chloride, sulphate, heavy metals, dissolved organic carbon and phenolic organic pesticides from contaminated concrete.

    PubMed

    Van Praagh, M; Modin, H

    2016-10-01

    Concrete samples from demolition waste of a former pesticide plant in Sweden were analysed for total contents and leachate concentrations of potentially hazardous inorganic substances, TOC, phenols, as well as for pesticide compounds such as phenoxy acids, chlorophenols and chlorocresols. Leachates were produced by means of modified standard column leaching tests and pH-stat batch tests. Due to elevated contents of chromium and lead, as well as due to high chloride concentrations in the first leachate from column tests at L/S 0.1, recycling of the concrete as a construction material in groundworks is likely to be restricted according to Swedish guidelines. The studied pesticide compounds appear to be relatively mobile at the materials own pH>12, 12, 9 and 7. Potential leaching of pesticide residues from recycled concrete to ground water and surface water might exceed water quality guidelines for the remediation site and the EU Water Framework Directive. Results of this study stress the necessity to systematically study the mechanism behind mobility of organic contaminants from alkaline construction and demolition wastes rather than rely on total content limit values. PMID:27449537

  13. Contamination of vinyl chloride in shallow urban rivers in Osaka, Japan.

    PubMed

    Yamamoto, K; Fukushima, M; Kakutani, N; Tsuruho, K

    2001-02-01

    Vinyl chloride (VC) contamination had taken place in heavily polluted shallow rivers (Taishogawa and lower Hiranogawa Rivers) in Osaka, Japan. VC concentrations ranged from below detection limit to 55.6 micrograms l-1 (mean: 3.35 micrograms l-1, standard deviation: 5.96 micrograms l-1). Of 55 volatile organic compounds (VOCs) analyzed, concentrations of cis-1,2-dichloroethene (c-DCE), tetrachloroethene (PCE) and trichloroethene (TCE) were significantly correlated to VC concentrations in the rivers, indicating that they share common sources. The four VOCs were invariably present at approximate relative ratios of about 1:2.7:1.5:0.31 (VC: c-DCE: PCE: TCE). The similarity between sampling dates in the distribution pattern of the four VOCs concentrations were observed, but their concentrations were different between the dates. The concentrations of the four VOCs decreased with distance down the river. A sample from the upper Taishogawa River in July 1997 had 55.6 micrograms l-1 of VC, 152 micrograms l-1 of c-DCE, 86.2 micrograms l-1 of PCE and 18.4 micrograms l-1 of TCE, respectively. These values are about an order of magnitude higher than the other sites over the study period and are likely indicative of point source inputs. PMID:11229012

  14. Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments

    SciTech Connect

    Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

    2004-11-14

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this manuscript is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  15. Techniques for Assessing the Performance of In Situ Bioreduction and Immobilization of Metals and Radionuclides in Contaminated Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Watson, D. B.; Jardine, P. M.

    2005-05-01

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this presentation is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  16. Evaluation of Soluble Phosphate Sources for Nickel and Uranium Immobilization in Contaminated Sediment

    NASA Astrophysics Data System (ADS)

    Majs, F.; Seaman, J. C.

    2006-12-01

    A batch equilibration study was conducted to compare the effectiveness of various forms of P on immobilizing two contaminants of interest (U and Ni; COIs) in exposed sediment. Four P amendments were evaluated at levels ranging from 0 to 10 g kg-1 of sediment: trisodium trimetaphosphate (TP3), reagent-grade dodecasodium phytate (Na-IP6), precipitated calcium phytate (Ca-IP6), and reagent-grade hydroxyapatite (HA). Samples were equilibrated in 0.001 M CaCl2 for seven days. Dissolved concentrations of the COIs, together with dissolved organic carbon (DOC) and pH of the supernatant, were measured. A preliminary kinetic study indicated that seven days was sufficient to achieve equilibrium even with the least soluble amendment, e.g. HA. Redistribution of the COIs after equilibration was determined using selective extraction procedures: the USEPA Toxicity Characteristic Leaching Procedure (TCLP) and sequential extraction (SE) method with eight operationally defined phases. The solubility of Ni decreased at the lowest addition level (2 g kg-1 sediment) for all amendments. However, a negative relationship between dissolved Ni concentrations and increasing amendment level was observed only for HA. Only HA and Ca-IP6 were effective in lowering dissolved U concentrations at all amendment levels, and again only HA exhibited a desired negative relationship in decreasing dissolved U concentration. The Na-IP6 amendment increased soil pH from 4.5 to nearly 7.5, whereas other amendments increased pH only moderately. The DOC for the sediment treated with Na-IP6 increased beyond what could be attributed to IP6 addition (i.e., 50×). In contrast, TP3, Ca-IP6, and HA treatments increased DOC by 8×, 6×, and 3×, respectively. The increase in DOC for Na-IP6 was attributed to the dispersion of soil organic matter. All amendments with the exception of Na-IP6 proved to be efficient in lowering TCLP leachability of COIs, even after correcting for COIs removed during the initial batch

  17. An integrated approach to safer plant production on metal contaminated soils using species selection and chemical immobilization.

    PubMed

    Kim, Hyuck Soo; Seo, Byoung-Hwan; Bae, Jun-Sik; Kim, Won-Il; Owens, Gary; Kim, Kwon-Rae

    2016-09-01

    In order to examine the species specific accumulation of heavy metals in medicinal crops, seven different common medicinal plants were cultivated on a Cd (55mgkg(-1)) and Pb (1283mgkg(-1)) contaminated soil. Subsequently, the effect of various immobilizing agents, applied in isolation and in combination, on Cd and Pb uptake by two medicinal plant species was examined. Cadmium and Pb root concentrations in medicinal plants grown in the control soil varied between 0.5 and 2.6mgkg(-1) for Cd and 3.2 and 36.4mgkg(-1) for Pb. The highest accumulation occurred in Osterici Radix (Ostericum koreanum) and Ginger (Zingiber officinale) and the lowest in Yam (Dioscorea batatas). Application of immobilizing agents significantly reduced both Cd and Pb concentrations in all medicinal plants examined, where the most effective single immobilizing agent was lime fertilizer (LF). Application of combination treatments involving sorption agents such as compost together with lime further decreased Cd and Pb concentrations from 1.3 and 25.3mgkg(-1) to 0.2 and 4.3mgkg(-1), respectively, which was well below the corresponding WHO guidelines. Thus appropriate immobilizing agents in combination with species selection can be practically used for safer medicinal plant production. PMID:27213564

  18. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment.

    PubMed

    Ba, Sidy; Arsenault, Alexandre; Hassani, Thanina; Jones, J Peter; Cabana, Hubert

    2013-12-01

    Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed. PMID:23051065

  19. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.

    PubMed

    Park, Jin Hee; Bolan, Nanthi; Megharaj, Mallavarapu; Naidu, Ravi

    2011-01-15

    The mobility and bioavailability of lead (Pb) in soils can be mitigated by its immobilization using both soluble and insoluble phosphate (P) compounds. The effectiveness of insoluble P sources on Pb immobilization depends on their rate of dissolution which can be enhanced by phosphate solubilizing bacteria (PSB). In this study, the effect of soluble (potassium dihydrogen phosphate) and insoluble (rock phosphate in the presence and absence of PSB) P compounds on the immobilization of Pb, and leaching of Pb and P was examined using both naturally contaminated (SR soil: NH₄NO₃ extractable Pb: 28.7 mg/kg, pH: 5.88, organic matter: 0.7%) and Pb spiked (AH soil: NH(4)NO(3) extractable Pb: 42.7 mg/kg, pH: 5.23, organic matter: 10.9%) soils. Phosphate compounds were added at the rate of 200 mg P/kg and 800 mg P/kg for SR and AH soils, respectively. Soluble P treatment immobilized 80% and 57% of Pb in SR and AH soils, respectively. Insoluble rock phosphate immobilized 40% and 9% of Pb without PSB, and 60% and 17% with PSB in SR and AH soils, respectively. Lead leaching was the lowest when soils were amended with rock phosphate in the presence of PSB, which reduced Pb leaching by 36% for SR soil and 18% for AH soil compared to the control. The leaching of Pb increased when the soils were amended with soluble P because soluble P treatment increased dissolved organic carbon (DOC) concentration of soil, thereby increasing Pb mobility. Soluble P treatment significantly increased P leaching and 9% of total added P was leached from low P retaining AH soil. The optimum level of P amendment is a critical issue when soluble P is used as a Pb immobilizing agent because of eutrophication resulting from excessive P leaching to surface and ground water. While the soluble P compound was effective in the immobilization of Pb, it resulted in P leaching which increased with increasing levels of P addition. However, rock phosphate amendment with PSB achieved the immobilization of Pb with

  20. Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate.

    PubMed

    Yang, Zhihui; Liu, Lin; Chai, Liyuan; Liao, Yingping; Yao, Wenbin; Xiao, Ruiyang

    2015-08-01

    A low crystalline Fe-oxyhydroxy sulfate (FeOS) was used to immobilize arsenic (As) in soils in this study. The effects of FeOS amount, treatment time and soil moisture on As immobilization were investigated. The results showed that water-soluble and NaHCO3-extractable As were immobilized by 53.4-99.8 and 13.8-73.3% respectively, with 1-10% of FeOS addition. The highest immobilization of water-soluble (98.5%) and NaHCO3-extractable arsenic (47.2%) was achieved under condition of 4% of FeOS and 80% of soil moisture. Further, more amounts of FeOS addition resulted in less time requirement for As immobilization. Sequential chemical extraction experiment revealed that easily mobile arsenic phase was transferred to less mobile phase. The FeOS-bonded As may play a significant role in arsenic immobilization. Under leaching with simulated acid rain at 60 times pore volumes, accumulation amount of As release from untreated soil and soil amended with FeOS were 98.4 and 1.2 mg, respectively, which correspond to 7.69 and 0.09% of total As amounts in soil. The result showed that the low crystalline FeOS can be used as a suitable additive for arsenic immobilization in soils. PMID:25911284

  1. Selective removal of iron contaminations from zinc-chloride melts by cementation with zinc

    SciTech Connect

    Devilee, R.A.; Sandwijk, A. van; Reuter, M.A.

    1999-08-01

    An investigation into the cementation of iron chloride from a zinc-chloride melt at 400 C has been carried out with zinc powder. The variables studies include preparation of the chloride melt and the amount of zinc added. The effect of lead, copper, and cadmium on cementation of iron has also been investigated. According to the results, it is possible to reduce the iron concentration in zinc-chloride melts to 20 ppm with a small excess of zinc. The preparation of the melt proved to be very important. Insufficient purification of the melt with respect to oxides, hydroxides, and water resulted in a low reaction rate and high residual iron concentration.

  2. Selective removal of iron contaminations from zinc-chloride melts by cementation with zinc

    NASA Astrophysics Data System (ADS)

    Devilee, R. A.; van Sandwijk, A.; Reuter, M. A.

    1999-08-01

    An investigation into the cementation of iron chloride from a zinc-chloride melt at 400 °C has been carried out with zinc powder. The variables studied include preparation of the chloride melt and the amount of zinc added. The effect of lead, copper, and cadmium on cementation of iron has also been investigated. According to the results, it is possible to reduce the iron concentration in zinc-chloride melts to 20 ppm with a small excess of zinc. The preparation of the melt proved to be very important. Insufficient purification of the melt with respect to oxides, hydroxides, and water resulted in a low reaction rate and high residual iron concentration.

  3. Ammonia gas transport and reactions in unsaturated sediments: implications for use as an amendment to immobilize inorganic contaminants.

    PubMed

    Zhong, L; Szecsody, J E; Truex, M J; Williams, M D; Liu, Y

    2015-05-30

    Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has a potential for use in treating inorganic contaminants (such as uranium) because it induces a high pore-water pH, causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application of this treatment, further knowledge of ammonia transport in porous media and the geochemical reactions induced by ammonia treatment is needed. Laboratory studies were conducted to support calculations needed for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate inter-phase (gas/sediment/pore water) reactions, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions, such as flow rate, gas concentration, and water content. Uranium-contaminated sediment was treated with ammonia gas to demonstrate U immobilization. Ammonia gas quickly partitions into sediment pore water and increases the pH up to 13.2. Injected ammonia gas advection front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Sodium, aluminum, and silica pore-water concentrations increase upon exposure to ammonia and then decline as aluminosilicates precipitate when the pH declines due to buffering. Up to 85% of the water-leachable U was immobilized by ammonia treatment. PMID:25723886

  4. Microfoams as Reactant Transport Media for In-Situ Immobilization of Radionuclide and Metallic Contaminants in Deep Vadose Zone

    NASA Astrophysics Data System (ADS)

    Wellman, D. M.; Zhong, L.; Mattigod, S.; Jansik, D.

    2009-12-01

    The U.S. Department of Energy (DOE) is currently addressing issues related to remediation of Cr, U and Tc contamination in the deep vadose zone at the Hanford Site in Washington State. One of the transformational technology alternatives being considered by the DOE Office of Environmental Management, is the use of Reactant Carrier Microfoams (RCM) for in-situ immobilization of contaminants. Foam injection technology for Enhance Oil Recovery (EOR) has well-established pedigree. Use of surfactant foams have also been explored for mobilizing DNAPL from sediments. However, the novel concept of using RCM for in situ immobilization contaminants in the deep vadose zone has not been explored, therefore, presents many daunting challenges for successful implementation. Scienists at Pacific Northwest National Laboratory (PNNL), leveraged previous EMSP-funded studies on microfoams conducted at LBNL with the goal to formulate robust stable microfoams for delivering reductive and/or precipitating reactants to the deep subsurface. Following an extensive literature review, a protocol was deisnged to select appropriate surfactant blends, and tested three different methods of foam generation namely, Venturi foam generato , high-speed gas entrainment and porous plate method. The resulting RCMs were characterized as to their quality, stability, bubble size distribution, surface tension and viscosity. The foam stabilities as a function of reactant (polyphosphate and polysulfides) concentrations and entrained polyatomic gases were also examined. Based on these experiments, optimal carrier foam compositions were identified for each Hanford deep vadose zone Contaminant of Concern (COC) namely U(VI) and Cr(VI). Finally, MSE Technology Applications, Inc (MSE) in collaboration with PNNL, conducted a series of scale-up reactant carrier foam injection tests to evaluate the efficacy of this technology for potential deep vadose zone remediation.

  5. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification.

    PubMed

    Rajapaksha, Anushka Upamali; Chen, Season S; Tsang, Daniel C W; Zhang, Ming; Vithanage, Meththika; Mandal, Sanchita; Gao, Bin; Bolan, Nanthi S; Ok, Yong Sik

    2016-04-01

    The use of biochar has been suggested as a means of remediating contaminated soil and water. The practical applications of conventional biochar for contaminant immobilization and removal however need further improvements. Hence, recent attention has focused on modification of biochar with novel structures and surface properties in order to improve its remediation efficacy and environmental benefits. Engineered/designer biochars are commonly used terms to indicate application-oriented, outcome-based biochar modification or synthesis. In recent years, biochar modifications involving various methods such as, acid treatment, base treatment, amination, surfactant modification, impregnation of mineral sorbents, steam activation and magnetic modification have been widely studied. This review summarizes and evaluates biochar modification methods, corresponding mechanisms, and their benefits for contaminant management in soil and water. Applicability and performance of modification methods depend on the type of contaminants (i.e., inorganic/organic, anionic/cationic, hydrophilic/hydrophobic, polar/non-polar), environmental conditions, remediation goals, and land use purpose. In general, modification to produce engineered/designer biochar is likely to enhance the sorption capacity of biochar and its potential applications for environmental remediation. PMID:26820777

  6. Covalent immobilization of lipase, glycerol kinase, glycerol-3-phosphate oxidase & horseradish peroxidase onto plasticized polyvinyl chloride (PVC) strip & its application in serum triglyceride determination

    PubMed Central

    Chauhan, Nidhi; Narang, Jagriti; Pundir, Chandra Shekhar

    2014-01-01

    Background & objectives: Reusable biostrip consisting enzymes immobilized onto alkylamine glass beads affixed on plasticized PVC strip for determination of triglyceride (TG) suffers from high cost of beads and their detachments during washings for reuse, leading to loss of activity. The purpose of this study was to develop a cheaper and stable biostrip for investigation of TG levels in serum. Methods: A reusable enzyme-strip was prepared for TG determination by co-immobilizing lipase, glycerol kinase (GK), glycerol-3-phosphate oxidase (GPO) and peroxidase (HRP) directly onto plasticized polyvinyl chloride (PVC) strip through glutaraldehyde coupling. The method was evaluated by studying its recovery, precision and reusability. Results: The enzyme-strip showed optimum activity at pH 7.0, 35°C and a linear relationship between its activity and triolein concentration in the range 0.1 to 15 mM. The strip was used for determination of serum TG. The detection limit of the method was 0.1 mM. Analytical recovery of added triolein was 96 per cent. Within and between batch coefficients of variation (CV) were 2.2 and 3.7 per cent, respectively. A good correlation (r=0.99) was found between TG values by standard enzymic colrimetric method employing free enzymes and the present method. The strip lost 50 per cent of its initial activity after its 200 uses during the span of 100 days, when stored at 4°C. Interpretation & conclusions: The nitrating acidic treatment of plasticized PVC strip led to glutaraldehyde coupling of four enzymes used for enzymic colourimetric determination of serum TG. The strip provided 200 reuses of enzymes with only 50 per cent loss of its initial activity. The method could be used for preparation of other enzyme strips also. PMID:24927348

  7. SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    BENECKE MW; CHRONISTER GB; TRUEX MJ

    2012-01-30

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  8. [Effects of Phosphate Rock and Decomposed Rice Straw Application on Lead Immobilization in a Contaminated Soil].

    PubMed

    Tang, Fan; Hu, Hong-qing; Su, Xiao-juan; Fu, Qing-ling; Zhu, Jun

    2015-08-01

    The soils treated with phosphate rock (PR) and oxalic acid activated phosphate rock (APR) mixed with decomposed rice straw were incubated in different moisture conditions for 60 days to study the effect on the basic property of the soil and on the speciation variation of Pb. The results showed that all these three types of immobilizing materials increased the pH, the Olsen-P, the exchangeable Ca and the soil cation exchange capacity, and APR showed more obvious effect; the pH and the exchangeable Ca of soil in the flooding treatment were higher than those in normal water treatment (70%), but the Olsen-P of soil in normal water treatment was a little bit more. These materials reduced exchangeable Ph fraction, and converted it into unavailable fraction. But the APR was better than raw PR in immobilizing lead, and the exchangeable Pb fraction was reduced by 40.3% and 24.2%, compared with the control, respectively, and the immobilization effect was positively correlated with the dosage. Decomposed rice straw could transform the exchangeable Ph fraction in soil into organic-bound fraction, while the flooding treatment changed it into the Fe-Mn oxide-bound and residue fractions. PMID:26592041

  9. STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE ZONE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    CHRONISTER GB

    2011-01-14

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site in Richland, Washington. This paper describes processes and technologies being developed to use in the ongoing effort to remediate the contamination in the deep vadose zone at the Hanford Site.

  10. Contaminant Immobilization and Nutrient Release by Biochar Soil Amendment: Roles of Natural Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of soil interstitial waters by labile heavy metals such as CuII, CdII, and NiII is of worldwide concern. Carbonaceous materials such as char and activated carbon have received considerable attention in recent years as soil amendment for both sequestering heavy metal contaminants and r...

  11. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    EPA Science Inventory

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  12. Biological treatment of TNT-contaminated soil. 2: Biologically induced immobilization of the contaminants and full-scale application

    SciTech Connect

    Lenke, H.; Daun, G.; Sieglen, U.; Knackmuss, H.J.; Warrelmann, J.; Walter, U.; Hund, K.

    1998-07-01

    Anaerobic treatment of originally contaminated soil from a former ammunition plant was carried out in a laboratory slurry reactor. While fermenting glucose to ethanol, acetate, and propionate, the anaerobic bacteria completely reduced the nitro groups of 2,4,6-trinitrotoluene (TNT) and aminodinitrotoluenes, which led to a complete and irreversible binding of the reduced products to the soil. 2,4-dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine were also reduced in the soil slurry and were no longer detectable after the anaerobic treatment. To mineralize the fermentation products, a subsequent aerobic treatment was necessary to complete the bioremediation process. This bioremediation process was tested in a technical scale at Hessisch Lichtenau-Hirschhagen, Germany. A sludge reactor (Terranox system) was filled with 18 m{sup 3} of contaminated soil (main contaminants were TNT, 2,4-dinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine) and 10 m{sup 3} of water. The anaerobic stage was carried out by periodical feeding of sucrose. The sludge was subsequently dewatered and treated aerobically. Chemical analysis revealed an overall reduction of more than 99% of the contaminants. Ecotoxicological tests performed with various aquatic systems (luminescent bacteria, daphnids, algae) and terrestrial systems (respiring bacteria, nitrifying bacteria, cress plants, earth worms) showed that residual toxicity could not be detected after the anaerobic/aerobic treatment.

  13. Mercury Toxicity and Contamination of Households from the Use of Skin Creams Adulterated with Mercurous Chloride (Calomel).

    PubMed

    Copan, Lori; Fowles, Jeff; Barreau, Tracy; McGee, Nancy

    2015-09-01

    Inorganic mercury, in the form of mercurous chloride, or calomel, is intentionally added to some cosmetic products sold through informal channels in Mexico and the US for skin lightening and acne treatment. These products have led to multiple cases of mercury poisoning but few investigations have addressed the contamination of cream users' homes. We report on several cases of mercury poisoning among three Mexican-American families in California from use of mercury-containing skin creams. Each case resulted in widespread household contamination and secondary contamination of family members. Urine mercury levels in cream users ranged from 37 to 482 µg/g creatinine and in non-users from non-detectable to 107 µg/g creatinine. Air concentrations of up to 8 µg/m³ of mercury within homes exceeded the USEPA/ATSDR health-based guidance and action level of <1.0 μg/m³. Mercury contamination of cream users' homes presented a multi-pathway exposure environment to residents. Homes required extensive decontamination, including disposal of most household items, to achieve acceptable air levels. The acceptable air levels used were not designed to consider multi-pathway exposure scenarios. These findings support that the calomel is able to change valence form to elemental mercury and volatilize once exposed to the skin or surfaces in the indoor environment. PMID:26364641

  14. Mercury Toxicity and Contamination of Households from the Use of Skin Creams Adulterated with Mercurous Chloride (Calomel)

    PubMed Central

    Copan, Lori; Fowles, Jeff; Barreau, Tracy; McGee, Nancy

    2015-01-01

    Inorganic mercury, in the form of mercurous chloride, or calomel, is intentionally added to some cosmetic products sold through informal channels in Mexico and the US for skin lightening and acne treatment. These products have led to multiple cases of mercury poisoning but few investigations have addressed the contamination of cream users’ homes. We report on several cases of mercury poisoning among three Mexican-American families in California from use of mercury-containing skin creams. Each case resulted in widespread household contamination and secondary contamination of family members. Urine mercury levels in cream users ranged from 37 to 482 µg/g creatinine and in non-users from non-detectable to 107 µg/g creatinine. Air concentrations of up to 8 µg/m3 of mercury within homes exceeded the USEPA/ATSDR health-based guidance and action level of <1.0 μg/m3. Mercury contamination of cream users’ homes presented a multi-pathway exposure environment to residents. Homes required extensive decontamination, including disposal of most household items, to achieve acceptable air levels. The acceptable air levels used were not designed to consider multi-pathway exposure scenarios. These findings support that the calomel is able to change valence form to elemental mercury and volatilize once exposed to the skin or surfaces in the indoor environment. PMID:26364641

  15. Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar.

    PubMed

    Park, Jin Hee; Lee, Seul-Ji; Lee, Myoung-Eun; Chung, Jae Woo

    2016-04-20

    There have been contradictory viewpoints whether soil amendments immobilize or mobilize heavy metals. Therefore, this study evaluated the mobility and bioavailability of Pb, Cu, and Cd in contaminated soil (1218 mg Pb per kg, 63.2 mg Cu per kg, 2.8 mg Cd per kg) amended with peat moss (0.22, 0.43, and 1.29% carbon ratio) and peat moss-derived biochar (0.38, 0.75, and 2.26% carbon ratio) at 0.5, 1, 3% levels. The more peat moss added, the stronger both mobility and bioavailability of Pb, Cu, and Cd would be. In contrast, the addition of peat moss-derived biochar significantly reduced both mobility and bioavailability of heavy metals through the coordination of metal electrons to C[double bond, length as m-dash]C (π-electron) bonds and increased pH. Maximum immobilization was observed in 3% peat moss-derived biochar treatment after 10 days of incubation, which was measured at 97.8%, 100%, and 77.2% for Pb, Cu, and Cd, respectively. Since peat moss and peat moss-derived biochar showed conflicting effectiveness in mobility and bioavailability of heavy metals, soil amendments should be carefully applied to soils for remediation purposes. PMID:27055368

  16. Semi-analytical Solution for the Contaminant Transport in Fractured Porous Media with Mobile-Immobile Method

    NASA Astrophysics Data System (ADS)

    Zhou, R.; Zhan, H.

    2015-12-01

    With the consideration of advection, dispersion, adsorption and first order decay in the fracture and rock matrix in a single fracture model, a new semi-analytical solution is derived using the Mobile-Immobile Method. It can be used to estimate the concentration at any location at any time precisely within the fracture and rock matrix. Most fractures found underground are filled with the conglomerate, sand, clay and other kinds of possible porous media. The existence of those filling ingredients leads to the isolated pore space within the fracture, which is also called immobile zone. Certain assumptions have be made: the diffusion is the only way that the contamination travels from the fracture to the matrix as the large permeability difference between them; the diffusive transport is dominant in the rock matrix while the advective-dispersive transport plays the major role in the fracture. Experimental data have been collected from literatures to compare the performance of this semi-analytical solution from the classical analytical solution. The comparison shows that the semi-analytical solution simulates it better when the mobile zone percentage is limited. Also, the effects of matrix diffusion, dispersivity and Darcy velocity in the fracture, fracture aperture, first order mass transfer rate and mobile zone percentage on solute transport are demonstrated through the sensitivity analysis, concentration profiles and breakthrough curves. By modifying the boundary conditions and adding an advection term in the rock matrix governing equation, this model can be extended to a two-layer solute transport model.

  17. Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil.

    PubMed

    García-Delgado, Carlos; Alfaro-Barta, Irene; Eymar, Enrique

    2015-03-21

    Soils impregnated with creosote contain high concentrations of polycyclic aromatic hydrocarbons (PAH). To bioremediate these soils and avoid PAH spread, different bioremediation strategies were tested, based on natural attenuation, biochar application, wheat straw biostimulation, Pleurotus ostreatus mycoremediation, and the novel sequential application of biochar for 21 days and P. ostreatus 21 days more. Soil was sampled after 21 and 42 days after the remediation application. The efficiency and effectiveness of each remediation treatment were assessed according to PAH degradation and immobilization, fungal and bacterial development, soil eco-toxicity and legal considerations. Natural attenuation and biochar treatments did not achieve adequate PAH removal and soil eco-toxicity reduction. Biostimulation showed the highest bacterial development but low PAH degradation rate. Mycoremediation achieved the best PAH degradation rate and the lowest bioavailable fraction and soil eco-toxicity. This bioremediation strategy achieved PAH concentrations below Spanish legislation for contaminated soils (RD 9/2005). Sequential application of biochar and P. ostreatus was the second treatment most effective for PAH biodegradation and immobilization. However, the activity of P. ostreatus was increased by previous biochar application and PAH degradation efficiency was increased. Therefore, the combined strategy for PAH degradation have high potential to increase remediation efficiency. PMID:25506817

  18. Effect of chloride contamination in MON-1 propellant on crack growth properties of metals

    NASA Technical Reports Server (NTRS)

    Moran, C. M.; Toth, L. R.

    1981-01-01

    The effect of a high level of chloride content (800 ppm) in MON-1 propellant on the crack growth properties of seven materials was investigated. Sustained load tests were conducted at 49 C (120 F) temperature with thin gauge tensile specimens having a semi-elliptical surface flaw. Alloys included aluminum 1100, 3003, 5086 and 6061; corrosion resistant steel types A286 and 347; and titanium 6Al-4V. The configurations tested with precracked flaws exposed to MON-1 were: parent or base metal, center weld, and heat affected zone. It was concluded that this chloride level in MON-1 does not affect the stress corrosion, crack growth properties of these alloys after 1000 hour exposure duration under high stresses.

  19. Effect of faults on fluid flow and chloride contamination in a carbonate aquifer system

    USGS Publications Warehouse

    Maslia, M.L.; Prowell, D.C.

    1990-01-01

    A unified, multidiscipline hypothesis is proposed to explain the anomalous pattern by which chloride has been found in water of the Upper Floridan aquifer in Brunswick, Glynn County, Georgia. Analyses of geophysical, hydraulic, water chemistry, and aquifer test data using the equivalent porous medium (EPM) approach are used to support the hypothesis and to improve further the understanding of the fracture-flow system in this area. Using the data presented herein we show that: (1) four major northeast-southwest trending faults, capable of affecting the flow system of the Upper Floridan aquifer, can be inferred from structural analysis of geophysical data and from regional fault patterns; (2) the proposed faults account for the anomalous northeastward elongation of the potentiometric surface of the Upper Floridan aquifer; (3) the faults breach the nearly impermeable units that confine the Upper Floridan aquifer from below, allowing substantial quantities of water to leak vertically upward; as a result, aquifer transmissivity need not be excessively large (as previously reported) to sustain the heavy, long-term pumpage at Brunswick without developing a steep cone of depression in the potentiometric surface; (4) increased fracturing at the intersection of the faults enhances the development of conduits that allow the upward migration of high-chloride water in response to pumping from the Upper Floridan aquifer; and (5) the anomalous movement of the chloride plume is almost entirely controlled by the faults. ?? 1990.

  20. Hydrochloric acid aerosol and gaseous hydrogen chloride partitioning in a cloud contaminated by solid rocket exhaust

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1980-01-01

    Partitioning of hydrogen chloride between hydrochloric acid aerosol and gaseous HCl in the lower atmosphere was experimentally investigated in a solid rocket exhaust cloud diluted with humid ambient air. Airborne measurements were obtained of gaseous HCl, total HCl, relative humidity and temperature to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions of HCl aerosol formation accurately predict the measured HCl partitioning over a range of total HCl concentrations from 0.6 to 16 ppm.

  1. In-situ immobilization of an anthropogenic arsenic contamination at a military site in Northern Germany

    NASA Astrophysics Data System (ADS)

    Holländer, Hartmut; Krüger, Timo; Stummeyer, Jens; Harazim, Bodo; Boochs, Peter-Wilhelm; Billib, Max

    2015-04-01

    The groundwater at the investigated military site in Northern Germany is contaminated with arsenic (As)-containing chemical warfare agents. The maximum total As-concentration (Astot) at the site was 9 mg/l. Astot is predominantly organically bound As (Asorg) and thus mainly occurs in the form of phenylized As compounds. Inorganic compounds (Asinorg: As3+ and As5+, each

  2. Corrosion of simulated bearing components of three bearing steels in the presence of chloride-contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Bamberger, E. N.; Nahm, A. H.

    1983-01-01

    Corrosion tests were run with AISI 52100, AISI M-50 and AMS 5794 under conditions that simulate the crevice corrosion found in aircraft ball and roller bearings rejected at overhaul for corrosion. Test specimens were fabricated that simulated the contacts of balls or rollers and the raceways. Corrosion cells were assembled in the presence of a lubricant contaminated with water and chloride ions. The cell was then thermally cycled between 339 K (150 F) and 276 K (37 F). The corrosion observed after 14 cycles was that of crevice and pitting corrosion typically found in aircraft bearings. AMS 5749 showed a very slight amount of corrosion. No appreciable differences were noted between AISI 52100 and AISI M-50, but both showed much greater corrosion than AMS 5749. The corrosion pits observed in AISI M-50 appeared to be fewer in number but generally deeper and larger than in AISI 52100.

  3. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils.

    PubMed

    Liu, Jie; Chen, Shaohua; Ding, Jie; Xiao, Ying; Han, Haitao; Zhong, Guohua

    2015-12-01

    The degrading microorganisms isolated from environment usually fail to degrade pollutants when used for bioremediation of contaminated soils; thus, additional treatments are needed to enhance biodegradation. In the present study, the potential of sugarcane bagasse as bacteria-immobilizing support was investigated in mesotrione biodegradation. A novel isolate Bacillus pumilus HZ-2 was applied in bacterial immobilization, which was capable of degrading over 95 % of mesotrione at initial concentrations ranging from 25 to 200 mg L(-1) within 4 days in flask-shaking tests. Scanning electron microscope (SEM) images showed that the bacterial cells were strongly absorbed and fully dispersed on bagasse surface after immobilization. Specially, 86.5 and 82.9 % of mesotrione was eliminated by bacteria immobilized on bagasse of 100 and 60 mesh, respectively, which indicated that this immobilization was able to maintain a high degrading activity of the bacteria. Analysis of the degradation products determined 2-amino-4-methylsulfonylbenzoic acid (AMBA) and 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) as the main metabolites in the biodegradation pathway of mesotrione. In the sterile soil, approximately 90 % of mesotrione was degraded after supplementing 5.0 % of molasses in bacteria-bagasse composite, which greatly enhanced microbial adaptability and growth in the soil environment. In the field tests, over 75 % of mesotrione in soil was degraded within 14 days. The immobilized preparation demonstrated that mesotrione could be degraded at a wide range of pH values (5.0-8.0) and temperatures (25-35 °C), especially at low concentrations of mesotrione (5 to 20 mg kg(-1)). These results showed that sugarcane bagasse might be a good candidate as bacteria-immobilizing support to enhance mesotrione degradation by Bacillus p. HZ-2 in contaminated soils. PMID:26337896

  4. Ammonia Gas Transport and Reactions in Unsaturated Sediments: Implications for Use as an Amendment to Immobilize Inorganic Contaminants

    SciTech Connect

    Zhong, Lirong; Szecsody, James E.; Truex, Michael J.; Williams, Mark D.; Liu, Yuanyuan

    2015-05-01

    Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has been studied and has a potential for use in treating inorganic contaminants such as uranium because it induces a high pore-water pH causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application, knowledge of ammonia transport and the geochemical reactions induced by ammonia is needed. Laboratory studies were conducted to support calculations needed for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate reactions among gas, sediment, and water, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions. Ammonia gas quickly partitions into sediment pore water and increases pH up to 13.2. Injected ammonia gas front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Measured diffusion front movement was 0.05, 0.03, and 0.02 cm/hr. in sediments with 2.0%, 8.7%, and 13.0% water content, respectively. Sodium, aluminum, and silica pore-water concentrations increase on exposure to ammonia and then decline as aluminosilicates precipitate with declining pH. When uranium is present in the sediment and pore water, up to 85% of the water-leachable uranium was immobilized by ammonia treatment.

  5. Olive mill waste biochar: a promising soil amendment for metal immobilization in contaminated soils.

    PubMed

    Hmid, Amine; Al Chami, Ziad; Sillen, Wouter; De Vocht, Alain; Vangronsveld, Jaco

    2015-01-01

    The potential use of biochar from olive mill waste for in situ remediation of metal contaminated soils was evaluated. Biochar was mixed with metal contaminated soil originating from the vicinity of an old zinc smelter. Soil-biochar mixtures were equilibrated for 30 and 90 days. At these time points, Ca(NO3)2 exchangeable metals were determined, and effects of the biochar amendment on soil toxicity were investigated using plants, bacteria, and earthworms. Bean (Phaseolus vulgaris) growth, metal content, antioxidative enzymes activities, and soluble protein contents were determined. Furthermore, effects on soil microbial communities (activity, diversity, richness) were examined using Biolog ECOplates. After 120 days of soil-biochar equilibration, effects on weight and reproduction of Eisenia foetida were evaluated. With increasing biochar application rate and equilibration period, Ca(NO3)2 exchangeable metals decreased, and growth of bean plants improved; leaf metal contents reduced, the activities of antioxidative stress enzymes decreased, and soluble protein contents increased. Soil microbial activity, richness, and diversity were augmented. Earthworm mortality lowered, and their growth and reproduction showed increasing trends. PMID:25146122

  6. Estimated risks of water and saliva contamination by phthalate diffusion from plasticized polyvinyl chloride.

    PubMed

    Corea-Téllez, Kira S; Bustamante-Montes, Patricia; García-Fábila, Magdalena; Hernández-Valero, María A; Vázquez-Moreno, Flavio

    2008-10-01

    Phthalates are additives commonly used to convert hard polyvinyl chloride (PVC) resins into flexible and workable plastics employed in the production of chewable rubber toys and other soft-plastic products. In theory, phthalates can diffuse in small quantities to the surface of a product, and from there they can enter the environment and the human body. The purpose of this study was to determine the diffusion of phthalates from plasticized PVC in water and artificial saliva; to determine the migration of di(2-ethylhexyl) (DEHP) phthalate in human saliva using gas chromatography; to compare the experimental values with theoretical values calculated using a model based on the principles of molecular diffusion in fluids; and to use the experimental values to estimate daily doses of DEHP received by Mexican children and infants using plastic and soft-plastic products (e.g., pacifiers, chewable toys, and bottles). Our findings indicated phthalate diffusion of 0.36 microg/cm2 per hour and 4.10 microg/cm2 per hour, respectively, in water and artificial saliva. The average value of phthalate diffusion in vivo was 6.04 microg/cm2 per hour. The daily oral phthalate exposure in Mexican infants and toddlers from oral use of rubber toys and soft-plastic products is 18.12 microg/kg. These daily doses are considerably lower than the maximum daily phthalate intake recommended by an international public health committee. PMID:18990931

  7. Mapping of road-salt-contaminated groundwater discharge and estimation of chloride load to a small stream in southern New Hampshire, USA

    USGS Publications Warehouse

    Harte, P.T.; Trowbridge, P.R.

    2010-01-01

    Concentrations of chloride in excess of State of New Hampshire water-quality standards (230 mg/l) have been measured in watersheds adjacent to an interstate highway (I-93) in southern New Hampshire. A proposed widening plan for I-93 has raised concerns over further increases in chloride. As part of this effort, road-salt-contaminated groundwater discharge was mapped with terrain electrical conductivity (EC) electromagnetic (EM) methods in the fall of 2006 to identify potential sources of chloride during base-flow conditions to a small stream, Policy Brook. Three different EM meters were used to measure different depths below the streambed (ranging from 0 to 3 m). Results from the three meters showed similar patterns and identified several reaches where high EC groundwater may have been discharging. Based on the delineation of high (up to 350 mmhos/m) apparent terrain EC, seven-streambed piezometers were installed to sample shallow groundwater. Locations with high specific conductance in shallow groundwater (up to 2630 mmhos/m) generally matched locations with high streambed (shallow subsurface) terrain EC. A regression equation was used to convert the terrain EC of the streambed to an equivalent chloride concentration in shallow groundwater unique for this site. Utilizing the regression equation and estimates of onedimensional Darcian flow through the streambed, a maximum potential groundwater chloride load was estimated at 188 Mg of chloride per year. Changes in chloride concentration in stream water during streamflow recessions showed a linear response that indicates the dominant process affecting chloride is advective flow of chloride-enriched groundwater discharge. Published in 2010 by John Wiley & Sons, Ltd.

  8. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil.

    PubMed

    Rizwan, Muhammad Shahid; Imtiaz, Muhammad; Chhajro, Muhammad Afzal; Huang, Guoyong; Fu, Qingling; Zhu, Jun; Aziz, Omar; Hu, Hongqing

    2016-11-01

    Soil contamination with heavy metals has become a global environmental health concern. In the present study, European Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) techniques were used to evaluate the Pb and Cu subsequent transformations, immobilizing impact of pyrolytic and non-pyrolytic rice and castor straws and their efficiency to reduce the metals mobility and leachability in the polluted soil. Obtained results highlight the potential of biochar over non-pyrolytic residues to enhance the immobilization of Pb and Cu in the soil. Castor leaves-derived biochar (CLB), castor stem-derived biochar (CSB), and rice straw-derived biochar (RSB) prominently decreased the mobility (acid-soluble fraction) of Pb 49.8%, 31.1%, and 31.9%, respectively, while Cu decreased 15.8%, 11.5%, and 12%, respectively, as compare to control. Sequential extraction showed that biochar treatments prominently modified the proportioning of Pb and Cu from acid soluble to a less bioavailable fraction and increased the geochemical stability in the polluted soil as compared to relative feedstocks as well as the controlled soil. Additionally, the soil pH increased markedly after the addition of biochar. Compared with control, the TCLP-extractable Pb and Cu were reduced to 29.2-41.4% and 5.7-22.8% from the soil respectively by the application of CLB. The immobilization and reduction in leachability of Pb and Cu were correlated with the soil pH. The biochar effect on the Pb immobilization was much better as compared to Cu in co-contaminated soil. Overall addition of CLB offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil. PMID:26934087

  9. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    PubMed

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. PMID:23863395

  10. Metal immobilization in hazardous contaminated minesoils after marble slurry waste application. A field assessment at the Tharsis mining district (Spain).

    PubMed

    Fernández-Caliani, J C; Barba-Brioso, C

    2010-09-15

    A one-year field trial was conducted at the abandoned mine site of Tharsis (Spain) in order to assess the potential value of waste sludge generated during the processing of marble stone, as an additive for assisting natural remediation of heavily contaminated acid mine soils. An amendment of 22 cmol(c) of lime per kilogram of soil was applied to raise the pH level from 3.2 to above 6. The amendment application was effective in reducing concentrations of Al, Fe, Mn, sulfate and potentially hazardous trace elements (mainly Cu, Pb, Zn and Cd) in the most labile metal pools (water-soluble and EDTA-extractable fractions). Geochemical equilibrium calculations indicate that sulfate complexes and free metal ions were the dominant aqueous species in the soil solution. Metal coprecipitation with nanocrystalline ferric oxyhydroxides may be the major chemical mechanism of amendment-induced immobilization. The alleviating effect of the soil amendment on the metal bioavailability and phytotoxicity showed promise for assisting natural revegetation of the mine land. PMID:20541314

  11. Summary report on geochemical barrier special study. [Geochemically modify tailings to immobilize contaminants with modifiers such as peat, limestone, and hydrated lime

    SciTech Connect

    Not Available

    1988-12-01

    Long-term management of uranium mill tailings must provide assurance that soluble contaminants will not migrate beyond the Point of Compliance. Conventional management alternatives provide containment through the use of physical barriers which are designed to prevent migration of water through the tailings pile. An alternative is to geochemically modify the tailings to immobilize the contaminants. This investigation examined three potential geochemical modifiers to determine their ability to immobilize inorganic groundwater contaminants found in uranium mill tailings. These modifiers were hydrated lime (Ca(OH)[sub 2]), limestone (CaCO[sub 3]), and a sphaegnum peat moss. This investigation focused on both the geochemical interactions between the tailings and the modifiers, and the effects the modifiers had on the physical strength of the tailings. The geochemical investigations began with characterization of the tailings by X-ray diffraction and scanning electron microscopy. This was followed by batch leaching experiments in which various concentrations of each modifier were added to tailings in shaker flasks and allowed to come to equilibrium. Finally, column experiments were conducted to simulate flow through a tailings pile. The results show that all of the modifiers were at least moderately effective at immobilizing most of the groundwater contaminants of concern at uranium mill tailings sites. Hydrated lime was able to achieve 90 percent concentration reduction of arsenic, cadmium, selenium, uranium, and sulfate when added at a two percent concentration. Limestone was somewhat less effective and peat removed greater than 90 percent of arsenic, lead, uranium, and sulfate at a one percent concentration. The column tests showed that kinetic and/or mass transfer limitations are important and that sufficient time must be allowed for the immobilization reactions to occur.

  12. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    SciTech Connect

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.; Brown, Christopher F.; Jantzen, Carol; Pierce, Eric M.

    2012-05-01

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the ability of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).

  13. Equilibrium and kinetic modeling of contaminant immobilization by activated carbon amended to sediments in the field.

    PubMed

    Rakowska, Magdalena I; Kupryianchyk, Darya; Koelmans, Albert A; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-12-15

    Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of PAHs and PCBs to powdered and granular activated carbons (AC) after three different sediment treatments: sediment mixed with powdered AC (PAC), sediment mixed with granular AC (GAC), and addition of GAC followed by 2 d mixing and subsequent removal ('sediment stripping'). Remediation efficiency was assessed by quantifying fluxes of PAHs towards SPME passive samplers inserted in the sediment top layer, which showed that the efficiency decreased in the order of PAC > GAC stripping > GAC addition. Sorption was very strong to PAC, with Log KAC (L/kg) values up to 10.5. Log KAC values for GAC ranged from 6.3-7.1 and 4.8-6.2 for PAHs and PCBs, respectively. Log KAC values for GAC in the stripped sediment were 7.4-8.6 and 5.8-7.7 for PAH and PCB. Apparent first order adsorption rate constants for GAC (kGAC) in the stripping scenario were calculated with a first-order kinetic model and ranged from 1.6 × 10(-2) (PHE) to 1.7 × 10(-5) d(-1) (InP). Sorption affinity parameters did not change within 9 months post treatment, confirming the longer term effectiveness of AC in field applications for PAC and GAC. PMID:25262554

  14. In situ vitrification: Immobilizing radioactive contaminants in place by melting soils into man-made rocks

    SciTech Connect

    Jacobs, G.K.; Spalding, B.P. ); Tixier, J.S. )

    1992-01-01

    From 1951 to 1966 over 1 [times] 10[sup 6] Ci of Cs-137, Sr-90, and other radioisotopes in liquid wastes were disposed of in shallow seepage pits at ORNL. In situ methods to stabilize these sites are being investigated because of radiation exposure risks to personnel during excavation and removal activities. A field test at ORNL of In Situ Vitrification (ISV) was performed to evaluate its ability to resistance heating through graphite electrodes to melt contaminated soils in place. The resulting small lava lake cools and solidifies to a rock consisting of glassy and crystalline material. Volatile products released from the surface of the melt are collected and treated. The Sr-90 was incorporated into mineral phases and residual glass that form upon solidification. The Cs-137, however, is incompatible with the mineral structures and is concentrated into the small amount of residual glass that is trapped in the interstices between mineral grains. Leach tests were performed on samples of sludge, sludge + soil, crushed ISV rock, crushed ISV rock + soil, and low surface area fragments of ISV rock. First, sequential extractions with 0.1 N CaCl[sub 2] were used. Then, sequential treatments with 0.1 N HCl were used. Approximately 10% of the Sr-90 was released from the sludge, with or without soil, after CaCl[sub 2] was applied. Subsequent treatment with HCl released essentially all the Sr-90. The Sr-90 in the crushed ISV rock was resistant to cation exchange, with only 0.4% leached after treatment with CaCl[sub 2]. Treatment with HCl released only 4% of the total Sr-90 present in the crushed ISV rock. The low surface area fragments, more representative of expected field conditions, released 10 [times] less of the Sr-90 than the crushed ISV rock samples. The Cs-137 was not significantly leached from any of the samples of sludge or ISV rock.

  15. A description of chloride cell and kidney tubule alterations in the flatfish Solea senegalensis exposed to moderately contaminated sediments from the Sado estuary (Portugal)

    NASA Astrophysics Data System (ADS)

    Costa, Pedro M.; Caeiro, Sandra; Diniz, Mário S.; Lobo, Jorge; Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos; DelValls, T. Ángel; Costa, M. Helena

    2010-11-01

    The effects of sediment-bound contaminants on kidney and gill chloride cells were surveyed in juvenile Solea senegalensis exposed to fresh sediments collected from three distinct sites of the Sado Estuary (Portugal) in a 28-day laboratorial assay. Sediments were analyzed for metallic contaminants, polycyclic aromatic hydrocarbons and organochlorines as well as for total organic matter, redox potential and fine fraction. The potential for causing adverse biological effects of each surveyed sediment was assessed by comparison of contaminant levels to available guidelines for coastal sediments, namely the Threshold Effects Level ( TEL) and the Probable Effects Level ( PEL). The Sediment Quality Guideline Quotient indices ( SQGQ) were calculated to compare the overall contamination levels of the three stations. A qualitative approach was employed to analyze the histo/cytopathological traits in gill chloride cells and body kidney of fish exposed to each tested sediment for 0, 14 and 28 days. The results showed that sediment contamination can be considered low to moderate and that the least contaminated sediment (from a reference site, with the lowest SQGQ) caused lesser changes in the surveyed organs. However, the most contaminated sediment (by both metallic and organic xenobiotics, with highest SQGQ) was neither responsible for the highest mortality nor for the most pronounced lesions. Exposure to the sediment presenting an intermediate SQGQ, essentially contaminated by organic compounds, caused the highest mortality (48%) and the most severe damage to kidneys, up to full renal necrosis. Chloride cell alterations were similar in fish exposed to the two most contaminated sediments and consisted of a pronounced cellular hypertrophy, likely involving fluid retention and loss of mitochondria. It can be concluded that sediment contamination considered to be low or moderate may be responsible for severe injury to cells and parenchyma involved in the maintenance of osmotic

  16. Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals.

    PubMed

    Islam, Mohammad Nazrul; Jung, Ho-Young; Park, Jeong-Hun

    2015-11-01

    Co-contamination of explosives and heavy metals (HMs) in soil, particularly army shooting range soil, has received increasing environmental concern due to toxicity and risks to ecological systems. In this study, a subcritical water (SCW) extraction process was used to remediate the explosives-plus-HMs-co-contaminated soil. A quantitative evaluation of explosives in the treated soil, compared with untreated soil, was applied to assess explosive removal. The immobilization of HMs was assessed by toxicity characteristic leaching procedure tests, and by investigating the migration of HMs fractions. The environmental risk of HMs in the soil residue was assessed according to the risk assessment code (RAC) and ecological risk indices (Er and RI). The results indicated that SCW treatment could eliminate the explosives, >99%, during the remediation, while the HM was effectively immobilized. The effect of water temperature on reducing the explosives and the risk of HMs in soil was observed. A marked increase in the non-bioavailable concentration of each HM was observed, and the leaching rate of HMs was decreased by 70-97% after SCW treatment at 250 °C, showing the effective immobilization of HMs. According to the RAC or RI, each tested HM showed no or low risk to the environment after treatment. PMID:26340419

  17. Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane

    NASA Astrophysics Data System (ADS)

    Liu, Chunyi; Li, Xiang; Ma, Bomou; Qin, Aiwen; He, Chunju

    2014-12-01

    The functionalizing nanoporous polyacrylonitrile-based oxidized membrane (PAN-OM) firmly immobilized with highly reactive nanoscale zero-valent iron (NZVI) are successfully prepared via an innovative in situ synthesis method. Due to the formation of ladder structure, the PAN-OM present excellent thermal and chemical stabilities as a new carrier for the in-situ growth of NZVI via firm chelation and reduction action, respectively, which prevent the aggregation and release of NZVI. The developed NZVI-immobilized membrane present effective decolorizing efficiency to both anionic methyl blue and cationic methylene blue with a pseudo-first-order decay and degrading efficiency to trichloroethylene (TCE). The regeneration and stability results show that NZVI-immobilized membrane system can be regenerated without obvious performance reduction, which remain the reactivity after half a year storage period. These results suggest that PAN-based oxidized membrane immobilized with NZVI exhibit significant potential for environmental applications.

  18. Preferential removal and immobilization of stable and radioactive cesium in contaminated fly ash with nanometallic Ca/CaO methanol suspension.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Sakita, Shogo; Simion, Cristian

    2014-08-30

    In this work, the capability of nanometallic Ca/CaO methanol suspension in removing and/or immobilizing stable ((133)Cs) and radioactive cesium species ((134)Cs and (137)Cs) in contaminated fly ash was investigated. After a first methanol and second water washing yielded only 45% of (133)Cs removal. While, after a first methanol washing, the second solvent with nanometallic Ca/CaO methanol suspension yielded simultaneous enhanced removal and immobilization about 99% of (133)Cs. SEM-EDS analysis revealed that the mass percent of detectable (133)Cs on the fly ash surface recorded a 100% decrease. When real radioactive cesium contaminated fly ash (containing an initial 14,040Bqkg(-1)(134)Cs and (137)Cs cumulated concentration) obtained from burning wastes from Fukushima were reduced to 3583Bqkg(-1) after treatment with nanometallic Ca/CaO methanol suspension. Elution test conducted on the treated fly ash gave 100BqL(-1) total (134)Cs and (137)Cs concentrations in eluted solution. Furthermore, both ash content and eluted solution concentrations of (134)Cs and (137)Cs were much lower than the Japanese Ministry of the Environment regulatory limit of 8000Bqkg(-1) and 150BqL(-1) respectively. The results of this study suggest that the nanometallic Ca/CaO methanol suspension is a highly potential amendment for the remediation of radioactive cesium-contaminated fly ash. PMID:25038573

  19. Role of Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 as Bioindicators and Immobilizers of Chromium in a Contaminated Natural Environment

    PubMed Central

    Millach, Laia; Solé, Antoni; Esteve, Isabel

    2015-01-01

    The aim of this work was to study the potential of the two phototrophic microorganisms, both isolated from Ebro Delta microbial mats, to be used as bioindicators and immobilizers of chromium. The results obtained indicated that (i) the Minimum Metal Concentration (MMC) significantly affecting Chlorophyll a intensity in Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 was 0.25 µM and 0.75 µM, respectively, these values being lower than those established by current legislation, and (ii) Scenedesmus sp. DE2009 was able to immobilize chromium externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Additionally, this microorganism maintained high viability, including at 500 µM. Based on these results, we postulate that Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 are good chromium-indicators of cytotoxicity and, further, that Scenedesmus sp. DE2009 plays an important role in immobilizing this metal in a contaminated natural environment. PMID:26167488

  20. Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: a field study focusing on plants, springtails, and bacteria.

    PubMed

    Bert, Valérie; Lors, Christine; Ponge, Jean-François; Caron, Lucie; Biaz, Asmaa; Dazy, Marc; Masfaraud, Jean-François

    2012-10-01

    Metal immobilization may contribute to the environmental management strategy of dredged sediment landfill sites contaminated by metals. In a field experiment, amendment effects and efficiency were investigated, focusing on plants, springtails and bacteria colonisation, metal extractability and sediment ecotoxicity. Conversely to hydroxylapatite (HA, 3% DW), the addition of Thomas Basic Slag (TBS, 5% DW) to a 5-yr deposited sediment contaminated with Zn, Cd, Cu, Pb and As resulted in a decrease in the 0.01 M Ca(NO(3))(2)-extractable concentrations of Cd and Zn. Shoot Cd and Zn concentration in Calamagrostis epigejos, the dominant plant species, also decreased in the presence of TBS. The addition of TBS and HA reduced sediment ecotoxicity and improved the growth of the total bacterial population. Hydroxylapatite improved plant species richness and diversity and decreased antioxidant enzymes in C. Epigejos and Urtica dïoica. Collembolan communities did not differ in abundance and diversity between the different treatments. PMID:22647548

  1. Microbial mineralization of cis-dichloroethene and vinyl chloride as a component of natural attenuation of chloroethene contaminants under conditions identified in the field as anoxic

    USGS Publications Warehouse

    Bradley, Paul M.

    2012-01-01

    Chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products may suggest that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, non-conservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms, and is consistent with contaminant degradation to non-diagnostic mineralization products. An ongoing technical debate over the potential for mineralization of dichloroethene (DCE) and vinyl chloride (VC) to CO2 in the complete absence of diatomic oxygen has largely obscured the importance of microbial DCE/VC mineralization at dissolved oxygen (DO) concentrations below the current field standard (DO < 0.1-0.5 milligrams per liter) for nominally anoxic conditions. This study demonstrates that oxygen-based microbial mineralization of DCE and VC can be substantial under field conditions that are frequently characterized as "anoxic." Because mischaracterization of operant contaminant biodegradation processes can lead to expensive and ineffective remedial actions, a modified framework for assessing the potential importance of oxygen during chloroethene biodegradation was developed.

  2. Immobilization of Pseudomonas sp. DG17 onto sodium alginate–attapulgite–calcium carbonate

    PubMed Central

    Wang, Hong Qi; Hua, Fei; Zhao, Yi Cun; Li, Yi; Wang, Xuan

    2014-01-01

    A strain of Pseudomonas sp. DG17, capable of degrading crude oil, was immobilized in sodium alginate–attapulgite–calcium carbonate for biodegradation of crude oil contaminated soil. In this work, proportion of independent variables, the laboratory immobilization parameters, the micromorphology and internal structure of the immobilized granule, as well as the crude oil biodegradation by sodium alginate–attapulgite–calcium carbonate immobilized cells and sodium alginate–attapulgite immobilized cells were studied to build the optimal immobilization carrier and granule-forming method. The results showed that the optimal concentrations of sodium alginate–attapulgite–calcium carbonate and calcium chloride were 2.5%–3.5%, 0.5%–1%, 3%–7% and 2%–4%, respectively. Meanwhile, the optimal bath temperature, embedding cell amount, reaction time and multiplication time were 50–60 °C, 2%, 18 h and 48 h, respectively. Moreover, biodegradation was enhanced by immobilized cells with a total petroleum hydrocarbon removal ranging from 33.56% ± 3.84% to 56.82% ± 3.26% after 20 days. The SEM results indicated that adding calcium carbonate was helpful to form internal honeycomb-like pores in the immobilized granules. PMID:26019567

  3. THE EFFICACY OF OXIDATIVE COUPLING FOR PROMOTING IN-SITU IMMOBILIZATION OF HYDROXYLATED AROMATICS IN CONTAMINATED SOIL AND SEDIMENT SYSTEMS

    EPA Science Inventory

    Hydroxylated aromatic compounds constitute an important class of commonly found subsurface organic contaminants. They have been classified as priority pollutants because of their multiple toxic health effects at very low concentrations. These compounds can be produced naturally o...

  4. Feasibility studies on electrochemical recovery of uranium from solid wastes contaminated with uranium using 1-butyl-3-methylimidazorium chloride as an electrolyte

    NASA Astrophysics Data System (ADS)

    Ohashi, Yusuke; Harada, Masayuki; Asanuma, Noriko; Ikeda, Yasuhisa

    2015-09-01

    In order to examine feasibility of the electrochemical deposition method for recovering uranium from the solid wastes contaminated with uranium using ionic liquid as electrolyte, we have studied the electrochemical behavior of each solution prepared by soaking the spent NaF adsorbents and the steel waste contaminated with uranium in BMICl (1-butyl-3-methyl- imidazolium chloride). The uranyl(VI) species in BMICl solutions were found to be reduced to U(V) irreversibly around -0.8 to -1.3 V vs. Ag/AgCl. The resulting U(V) species is followed by disproportionation to U(VI) and U(IV). Based on the electrochemical data, we have performed potential controlled electrolysis of each solution prepared by soaking the spent NaF adsorbents and steel wastes in BMICl at -1.5 V vs. Ag/AgCl. Black deposit was obtained, and their composition analyses suggest that the deposit is the mixtures of U(IV) and U(VI) compounds containing O, F, Cl, and N elements. From the present study, it is expected that the solid wastes contaminated with uranium can be decontaminated by treating them in BMICl and the dissolved uranium species are recovered electrolytically.

  5. Immobilization of Pb, Cd, and Zn in a contaminated soil using eggshell and banana stem amendments: metal leachability and a sequential extraction study.

    PubMed

    Ashrafi, Mehrnaz; Mohamad, Sharifah; Yusoff, Ismail; Shahul Hamid, Fauziah

    2015-01-01

    Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil. PMID:25060308

  6. Engineering Escherichia coli BL21(DE3) Derivative Strains To Minimize E. coli Protein Contamination after Purification by Immobilized Metal Affinity Chromatography ▿ † ‡

    PubMed Central

    Robichon, Carine; Luo, Jianying; Causey, Thomas B.; Benner, Jack S.; Samuelson, James C.

    2011-01-01

    Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The “NiCo” strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein. PMID:21602383

  7. A capillary liquid chromatography method for benzalkonium chloride determination as a component or contaminant in mixtures of biocides.

    PubMed

    Prieto-Blanco, M C; Argente-García, A; Campíns-Falcó, P

    2016-01-29

    A method for quantifying benzalkonium chloride (BAK), an alkyl dimethyl benzyl ammonium compound, in several biocides formulations is proposed. A tertiary amine like N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (TA) and a straight-chain alkyl ammonium compound like trimethyl-tetradecyl ammonium chloride (TMTDAC), have been employed as trade surfactants besides BAK. Two capillary analytical columns with different polarities are tested: inertsil CN-3 capillary column (150mm×0.5mm i.d., 3μm particle diameter) and a non endcapped Zorbax C18 capillary column (35mm×0.5mm i.d., 5μm particle diameter). This latter column provided the best separation of the BAK homologues in less than 12min using acetonitrile:acetate buffer (50mM, pH 5) 85:15 at 20μLmin(-1). The proposed method combines on-line in-tube solid-phase microextraction (IT-SPME) coupled to capillary liquid chromatography (CapLC) and UV diode array detection. Matrix effect was present when TA were in excess to BAK. If TMTDAC is the co-biocide, matrix effect is always present. A decreasing of analytical response mainly for C12-BAK homologue was found using both chromatographic columns. The charged amount of mixture in the system was the most important parameter for obtaining reliable results. 1mL was the on line processed sample volume optimum for concentrations lower than 35μgmL(-1) of total surfactants. LODs were 0.03μgmL(-1) and 0.006μgmL(-1) for C12-BAK and C14-BAK, respectively. This method is also of use to evaluate the unwanted presence of BAK in biocide formulations due to industrial processes. PMID:26755418

  8. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres.

    PubMed

    Xie, Yingying; Cheng, Wen; Tsang, Pokeung Eric; Fang, Zhanqiang

    2016-01-15

    Polybrominated diphenyl ethers (PBDEs) are a new class of environmental pollutants which easily accumulated in the soil, especially at e-waste sites. However, knowledge about their phytotoxicity after degradation is not well understood. Nano zero valent iron (nZVI) immobilized in mesoporous silica microspheres covered with FeOOH (SiO2@FeOOH@Fe) synthesized in this study was utilized to remove decabromodiphenyl ether (BDE209) from soil. Results revealed that the removal efficiency of BDE209 can be achieved 78% within 120 h using a dosage of 0.165 g g(-1) and a pH of 5.42. Furthermore, the removal efficiency enhanced with increasing soil moisture content and the decreasing of initial BDE209 concentration. Phytotoxicity assays (biomass and germination rate, shoots and roots elongation of Chinese cabbage) were carried out to provide a preliminary risk assessment of treated soil for the application of SiO2@FeOOH@Fe. PMID:26560640

  9. Treating Wastewater With Immobilized Enzymes

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  10. Use of dissolved chloride concentrations in tributary streams to support geospatial estimates of Cl contamination potential near Skiatook Lake, northeastern Oklahoma

    USGS Publications Warehouse

    Rice, C.A.; Abbott, M.M.; Zielinski, R.A.

    2007-01-01

    Releases of NaCl-rich (>100 000 mg/L) water that is co-produced from petroleum wells can adversely affect the quality of ground and surface waters. To evaluate produced water impacts on lakes, rivers and streams, an assessment of the contamination potential must be attainable using reliable and cost-effective methods. This study examines the feasibility of using geographic information system (GIS) analysis to assess the contamination potential of Cl to Skiatook Lake in the Hominy Creek drainage basin in northeastern Oklahoma. GIS-based predictions of affects of Cl within individual subdrainages are supported by measurements of Cl concentration and discharge in 19 tributaries to Skiatook Lake. Dissolved Cl concentrations measured in October, 2004 provide a snapshot of conditions assumed to be reasonably representative of typical inputs to the lake. Chloride concentrations ranged from 5.8 to 2300 mg/L and compare to a value of 34 mg/L in the lake. At the time of sampling, Hominy Creek provided 63% of the surface water entering the lake and 80% of the Cl load. The Cl load from the other tributaries is relatively small (150 mg/L) were generally in subdrainages with greater well density (>15 wells/km2), relatively large numbers of petroleum wells in close proximity (>2 proximity wells/stream km), and relatively small discharge (<0.005 m3/s). GIS calculations of subdrainage areas can be used to estimate the expected discharge of the tributary for each subdrainage. GIS-based assessment of Cl contamination potential at Skiatook Lake and at other lakes surrounded by oil fields can proceed even when direct measurements of Cl or discharge in tributary streams may be limited or absent.

  11. Subsurface injection of dissolved ferric chloride to form a chemical barrier: Laboratory investigations

    SciTech Connect

    Morrison, S.J.; Spangler, R.R.; Morris, S.A.

    1996-01-01

    A chemical barrier is a permeable zone of reactive materials emplaced in the subsurface to remove ground-water contaminants while allowing clean ground water to pass through. Because dissolved ferric chloride hydrolyzes to amorphous ferric oxyhydroxide when it contacts calcite (CaCO{sub 3}), it may be viable to emplace a zone of amorphous ferric oxyhydroxide (an absorbent for U, Mo, and other inorganic contaminants) into calcite-bearing geologic units by injecting ferric chloride through wells. For a chemical barrier to be successful, it must remain permeable and must be immobile. This investigation monitored chemical compositions, hydraulic conductivity, and iron mobility in laboratory columns and in a two-dimensional tank to determine the viability of injecting ferric chloride to form an amorphous ferric oxyhydroxide chemical barrier. The authors introduced a ferric chloride solution (1,345 mg/1[0.024 m] Fe) to calcite-bearing alluvial gravel to form a chemical barrier of amorphous ferric oxyhydroxide, followed by solutions contaminated with U and Mo. The simulated chemical barriers decreased U and Mo concentrations to less than 0.05 mg/l (2.1 {times} 10{sup {minus}7} m) and 0.01 (1.0 {times} 10{sup {minus}7} m), respectively; however, the breakthrough front is spread out with concentrations increasing to more than regulatory guideline values sooner than predicted. The hydraulic conductivity of calcite-bearing alluvial gravel decreased substantially during ferric chloride introduction because of the formation of carbon dioxide but increased to within factors of 1 to 5 of the original value as synthetic ground water flowed through the system. Amorphous ferric oxyhydroxide that formed in these experiments remained immobile at flow rates exceeding those typical of ground water. These laboratory results, in conjunction with site-specific characterization data, can be used to design chemical barriers emplaced by injection of ferric chloride.

  12. Immobilization and phytotoxicity of Pb in contaminated soil amended with γ-polyglutamic acid, phosphate rock, and γ-polyglutamic acid-activated phosphate rock.

    PubMed

    Zhu, Jun; Cai, Zhijian; Su, Xiaojuan; Fu, Qingling; Liu, Yonghong; Huang, Qiaoyun; Violante, Antonio; Hu, Hongqing

    2015-02-01

    Pot experiments were conducted to investigate the effects of γ-polyglutamic acid (γ-PGA), phosphate rock (PR), and γ-PGA-activated PR (γ-PGA-PR) on the immobilization and phytotoxicity of Pb in a contaminated soil. The proportion of residual Pb (Re-Pb) in soil was reduced by the addition of γ-PGA but was increased by the application of PR and γ-PGA-PR. The addition of γ-PGA in soil improved the accumulation of Pb in pak choi and decreased the growth of pak choi, suggesting the intensification of Pb phytotoxicity to pak choi. However, opposite effects of PR and γ-PGA-PR on the phytotoxicity of Pb to pak choi in soil were observed. Moreover, in the examined range, γ-PGA-PR activated by a higher amount of γ-PGA resulted in a greater proportion of Re-Pb in soil and weaker phytotoxicity of Pb to pak choi. The predominance of γ-PGA-PR in relieving the phytotoxicity of Pb was ascribed mainly to the increase of soil pH and available phosphate after the amendment, which could facilitate the precipitation of Pb in soil and provide pak choi with more phosphorus nutrient. PMID:25196962

  13. The effect of compost treatments and a plant cover with Agrostis tenuis on the immobilization/mobilization of trace elements in a mine-contaminated soil.

    PubMed

    Alvarenga, P; de Varennes, A; Cunha-Queda, A C

    2014-01-01

    A semi-field experiment was conducted to evaluate the use of mixed municipal solid waste compost (MMSWC) and green waste-derived compost (GWC) as immobilizing agents in aided-phytostabilization of a highly acidic soil contaminated with trace elements, with and without a plant cover of Agrostis tenuis. The compost application ratio was 50 Mg ha(-1), and GWC amended soil was additionally limed and supplemented with mineral fertilizers. Both treatments had an equivalent capacity to raise soil organic matter and pH, without a significant increase in soil salinity and in pseudo-total As, Cu, Pb, and Zn concentrations, allowing the establishment of a plant cover. Effective bioavailable Cu and Zn decreased as a consequence of both compost treatments, while effective bioavailable As increased by more than twice but remained as a small fraction of its pseudo-total content. Amended soil had higher soil enzymatic activities, especially in the presence of plants. Accumulation factors for As, Cu, Pb, and Zn by A. tenuis were low, and their concentrations in the plant were lower than the maximum tolerable levels for cattle. As a consequence, the use of A. tenuis can be recommended for assisted phytostabilization of this type of mine soil, in combination with one of the compost treatments evaluated. PMID:24912206

  14. Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar.

    PubMed

    Bian, Rongjun; Li, Lianqing; Bao, Dandan; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Liu, Xiaoyu; Cheng, Kun; Pan, Genxing

    2016-05-01

    A field experiment was conducted in a Cd-contaminated rice paddy field to evaluate the effect of inorganic and organic metal stabilizers on Cd mobility and rice uptake. A dose of inorganic stabilizer of calcium hydroxide (CH), silicon slag (SS), and wheat straw biochar (BC) was amended respectively to topsoil before rice transplanting. Rice production was managed with the same water regime and fertilization practices consistently between treatments including a control without amendment. Samples of topsoil and rice plant were collected at rice harvest to analyze the Cd mobility and uptake by rice. Without affecting rice grain yield, the stabilizers significantly decreased CaCl2-extractable Cd in a range of 44 to 75 % compared to the control, corresponding to soil pH changes under the different treatments. Accordingly, Cd concentrations both in rice tissue and in rice grain were very significantly decreased under these treatments. The decrease in rice Cd uptake was correlated to the decrease in extractable Cd, which was again correlated to soil pH change under the different treatments, indicating a prevalent role of liming effect by the amendments. While applied at a large amount in a single year, organic stabilizer of BC decreased Cd extractability by up to 43 % and Cd rice uptake by up to 61 %, being the most effective on Cd immobilization. However, the long-term effect on soil health and potential tradeoff effects with different stabilizers deserve further field monitoring studies. PMID:26865487

  15. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO4] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Simion, Cristian; Lee, Byeong Kyu

    2015-10-30

    This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ((133)Cs) and radioactive cesium species ((134)Cs and (137)Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO4], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant (133)Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO4], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped (134)Cs and (137)Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that (134)Cs and (137)Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO4] treated soil were characterized using SEM-EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil included Ca/PO4 associated crystalline complexes. These results suggest that simple grinding treatment with nano-Fe/Ca/CaO/[PO4] under dry conditions might be an extremely efficient separation and immobilization method for radioactive cesium contaminated soil. PMID:25942697

  16. Microorganism immobilization

    DOEpatents

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  17. Chloride Test

    MedlinePlus

    ... Addison disease, or increased salt intake. If both chloride and sodium levels are high in a person on a ... anything else I should know? Drugs that affect sodium blood levels will also cause changes in chloride. In addition, swallowing large amounts of baking soda ...

  18. Vinyl chloride

    Integrated Risk Information System (IRIS)

    Vinyl chloride ; CASRN 75 - 01 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  19. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  20. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  1. Benzyl chloride

    Integrated Risk Information System (IRIS)

    Benzyl chloride ; CASRN 100 - 44 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  2. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  3. Mepiquat chloride

    Integrated Risk Information System (IRIS)

    Mepiquat chloride ; CASRN 24307 - 26 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  4. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  5. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  6. Implications of Fe/Pd Bimetallic Nanoparticles Immobilized on Adsorptive Activated Carbon for the Remediation of Groundwater and Sediment Contaminated with PCBs

    EPA Science Inventory

    In order to respond to the current limitations and challenges in remediating groundwater and sediment contaminated with polychlorinated biphenyls (PCBs), we have recently developed a new strategy, integration of the physical adsorption of PCBs with their electrochemical dechlori...

  7. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...) Toxaphene (19) Benzo pyrene (20) Dichloromethane (methylene chloride) (21) Di(2-ethylhexyl)phthalate...

  8. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...) Toxaphene (19) Benzo pyrene (20) Dichloromethane (methylene chloride) (21) Di(2-ethylhexyl)phthalate...

  9. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...) Toxaphene (19) Benzo pyrene (20) Dichloromethane (methylene chloride) (21) Di(2-ethylhexyl)phthalate...

  10. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...) Toxaphene (19) Benzo pyrene (20) Dichloromethane (methylene chloride) (21) Di(2-ethylhexyl)phthalate...

  11. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. he purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. ydroxyapatite [Ca10(PO4)6(OH)2]was reacted with aqueous Pb, resinexchang...

  12. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. The purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. Hydroxyapatite [Ca10(PO4)6(O...

  13. Cerium chloride heptahydrate (CeCl3 · 7H2O) induces muscle paralysis in the generalist herbivore, Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae), fed contaminated plant tissues.

    PubMed

    Allison, Jane E; Boutin, Céline; Carpenter, David; Ellis, Deanna M; Parsons, Jessica L

    2015-02-01

    Of increasing economic importance are the rare earth elements (REEs). Pollution from mining and processing activity is expected to rise with industrial demand. Plants are known to accumulate REEs, although levels vary with species and soil content. However, the effect on wildlife of ingesting REE contaminated vegetation is not well understood. Here we examined the effect of consuming vegetation with elevated levels of cerium on the generalist grasshopper, Melanoplus sanguinipes (Fabricius). Adults excreted a substantial portion of ingested contamination. However, after only four-days of feeding, accumulation in the body occurred at all doses and paralysis of appendages resulted at the highest doses. Short-term toxicity studies may underestimate the impact of ingesting REE contamination. Metals tend to be low in toxicity; however, their persistence in the environment may be better represented by exposure over longer portions of the life cycle. PMID:25462312

  14. A method for synthesizing pollucite from chabazite and cesium chloride

    SciTech Connect

    Pereira, Candido

    1997-08-11

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.

  15. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, Candido

    1999-01-01

    A method for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700.degree. C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.

  16. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, C.

    1999-02-23

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs.

  17. Denitrification using a membrane-immobilized biofilm

    SciTech Connect

    McCleaf, P.R. ); Schroeder, E.D. . Dept. of Civil and Environmental Engineering)

    1995-03-01

    Immobilized bacterial cell technology was applied, on a bench scale, to the selective removal of nitrate from contaminated water, together with the segregation of denitrifying bacteria and the carbon energy source from the treated water. The two-chambered reactor, with a microporous membrane for bacterial cell immobilization, performed at an average denitrification rate of 5,800 mg nitrate-nitrogen (NO[sub 3][sup [minus

  18. Immobilization of amyloglucosidase using two forms of polyurethane polymer.

    PubMed

    Storey, K B; Duncan, J A; Chakrabarti, A C

    1990-03-01

    Amyloglucosidase was covalently immobilized using two hydrophilic prepolymers: Hypol FHP 2002 (creates foams) and Hypol FHP 8190H (creates gels). The foamable prepolymer was superior as a support for enzyme immobilization. The percent activity immobilized in the polyurethane foams was 25 +/- 1.5%. Large substrates (greater than 200,000 daltons in mol wt) were hydrolyzed as effectively as smaller ones by the immobilized enzyme. The Km value of the foam-immobilized enzyme increased from 0.76 mg/mL (free) to 0.86 mg/mL (immobilized), whereas the Vmax dropped from 90.9 (free) to 12.4 nmol glucose/min/mL (immobilized). The long-term (2 mo) storage stability of amyloglucosidase was enhanced by immobilization in foams (70% activity retained; free enzyme only retained 50%). Immobilization also improved the enzyme stability to various denaturing agents (sodium chloride, urea, and ethanol). The immobilized enzyme exhibited increased stability compared to the free enzyme at high temperatures (95 degrees C). Both glycogen and starch could be utilized by the immobilized enzyme, indicating that this technique could prove useful for starch hydrolysis. PMID:2112366

  19. Aerobic vinyl chloride metabolism in Mycobacterium aurum L1

    SciTech Connect

    Hartmans, S.; Bont, J.A.M. de )

    1992-04-01

    Mycobacterium aurum L1, capable of growth on vinyl chloride as a sole carbon and energy source, was previously isolated from soil contaminated with vinyl chloride. The initial step in vinyl chloride metabolism in strain L1 is catalyzed by alkene monooxygenase, transforming vinyl chloride into the reactive epoxide chlorooxirane. The enzyme responsible for chlorooxirane degradation appeared to be very unstable and thus hampered the characterization of the second step in vinyl chloride metabolism. Dichloroethenes are also oxidized by vinyl chloride-grown cells of strain L1, but they are not utilized as growth substrates. Three additional bacterial strains which utilize vinyl chloride as a sole carbon and energy source were isolated from environments with no known vinyl chloride contamination. The three new isolates were similar to strain L1 and were also identified as Mycobacterium aurum.

  20. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study.

    PubMed

    Okkenhaug, Gudny; Grasshorn Gebhardt, Karl-Alexander; Amstaetter, Katja; Bue, Helga Lassen; Herzel, Hannes; Mariussen, Espen; Rossebø Almås, Åsgeir; Cornelissen, Gerard; Breedveld, Gijs D; Rasmussen, Grete; Mulder, Jan

    2016-04-15

    Small-arm shooting ranges often receive a significant input of lead (Pb), copper (Cu) and antimony (Sb) from ammunition. The goal of the present study was to investigate the mobility, distribution and speciation of Pb and Sb pollution under field conditions in both untreated and sorbent-amended shooting range soil. Elevated Sb (19-349μgL(-1)) and Pb (7-1495μgPbL(-1)) concentrations in the porewater of untreated soil over the four-year test period indicated a long-term Sb and Pb source to the adjacent environment in the absence of remedial measures. Mixing ferric oxyhydroxide powder (CFH-12) (2%) together with limestone (1%) into the soil resulted in an average decrease of Sb and Pb porewater concentrations of 66% and 97%, respectively. A similar reduction was achieved by adding 2% zerovalent iron (Fe°) to the soil. The remediation effect was stable over the four-year experimental period indicating no remobilization. Water- and 1M NH4NO3-extractable levels of Sb and Pb in field soil samples indicated significant immobilization by both treatments (89-90% for Sb and 89-99% for Pb). Results from sequential extraction analysis indicate fixation of Sb and Pb in less accessible fractions like amorphous iron oxides or even more crystalline and residual mineral phases, respectively. This work shows that amendment with Fe-based sorbents can be an effective method to reduce the mobility of metals both in cationic and anionic form in polluted shooting range soil. PMID:26799225

  1. Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam

    PubMed Central

    Chen, Yiqing; Fan, Zhidong; Ma, Lixia; Yin, Juan; Luo, Man; Cai, Wangfeng

    2014-01-01

    Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00 g H2S m−3 h−1 with an empty bed retention time (EBRT) of 25 s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis–Menten equation was adopted to describe the characteristics of the BTF, and Ks and Vm values for the BTF with pure bamboo charcoal packing material were 3.68 ppmv and 4.26 g H2S m−3 h−1, respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems. PMID:25313280

  2. Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam.

    PubMed

    Chen, Yiqing; Fan, Zhidong; Ma, Lixia; Yin, Juan; Luo, Man; Cai, Wangfeng

    2014-11-01

    Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00 g H2S m(-3) h(-1) with an empty bed retention time (EBRT) of 25 s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis-Menten equation was adopted to describe the characteristics of the BTF, and K s and V m values for the BTF with pure bamboo charcoal packing material were 3.68 ppmv and 4.26 g H2S m(-3) h(-1), respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems. PMID:25313280

  3. Bio-immobilization of U(VI) and Tc(VII) from nitric acid-contaminated groundwater in intermediate-scale physical models of an in situ bio-barrier.

    SciTech Connect

    Michalsen, M. M.; Peacock, A. D.; Smithgal, A. N.; White, D. C.; Spain, A. M.; Sanchez-Rosario, Y.; Krumholz, L. R.; Kelly, S. D.; Kemner, K. M.; McKinley, J.; Heald, S. M.; Bogle, M. A.; Watson, D. B.; Istok, J. D.; U. S. Army Corps of Engineers; Univ. of Tennessee; Univ. of Oklahoma; PNNL; ORNL; Oregon State Univ.

    2009-01-01

    Metal and hydrogen ion acidity and extreme nitrate concentrations at Department of Energy legacy waste sites pose challenges for successful in situ U and Tc bioimmobilization. In this study, we investigated a potential in situ biobarrier configuration designed to neutralize pH and remove nitrate and radionuclides from nitric acid-, U-, and Tc-contaminated groundwater for over 21 months. Ethanol additions to groundwater flowing through native sediment and crushed limestone effectively increased pH (from 4.7 to 6.9), promoted removal of 116 mM nitrate, increased sediment biomass, and immobilized 94% of total U. Increased groundwater pH and significant U removal was also observed in a control column that received no added ethanol. Sequential extraction and XANES analyses showed U in this sediment to be solid-associated U(VI), and EXAFS analysis results were consistent with uranyl orthophosphate (UO{sub 2}){sub 3}(PO{sub 4}){sub 2} {center_dot} 4H{sub 2}O{sub (s)}, which may control U solubility in this system. Ratios of respiratory ubiquinones to menaquinones and copies of dissimilatory nitrite reductase genes, nirS and nirK, were at least 1 order of magnitude greater in the ethanol-stimulated system compared to the control, indicating that ethanol addition promoted growth of a largely denitrifying microbial community. Sediment 16S rRNA gene clone libraries showed that Betaproteobacteria were dominant (89%) near the source of influent acidic groundwater, whereas members of Gamma- and Alphaproteobacteria and Bacteroidetes increased along the flow path as pH increased and nitrate concentrations decreased, indicating spatial shifts in community composition as a function of pH and nitrate concentrations. Results of this study support the utility of biobarriers for treating acidic radionuclide- and nitrate-contaminated groundwater.

  4. Understanding potential futures of riverine chloride impairment in New England USA due to climate change, groundwater storage, and human activities.

    NASA Astrophysics Data System (ADS)

    Zuidema, S.; Thorn, A.; Wollheim, W. M.; Wake, C. P.; Mineau, M.

    2015-12-01

    Road salt impairment may threaten future potability of urban water resources and stress aquatic life throughout snowy temperate watersheds. We contrast scenarios to project chloride flux, storage, and impairment throughout the Merrimack R. watershed, NH/MA, USA using the river-network scale Non-point Anthropogenic Chloride Loading (NACL) model, built within the Framework for Aquatic Modeling of the Earth System (FrAMES). NACL simulates five chloride sources and represents long-term subsurface storage as mobile-immobile exchange at the catchment (grid-cell) scale. Tested scenarios that contrast major drivers include: road salt application rates (current recommendations versus recent inventories); groundwater storage uncertainty (low versus high storage effect); development (dispersed versus urban infilling) and future climate (low [B1] versus high [A1FI] carbon emission scenarios). Simulations that reduce road salt application rates to recommended levels significantly reduce threshold-dependent impaired river length from 20 to 5% within a few years, driven by flushing from headwater catchments. Concentrations downstream, however, decrease modestly and lag the change in loading because of chloride released slowly from groundwater storage. The scenarios suggest best practices and urban infill can mitigate legacy chloride contamination over a few decades. Conversely, dispersed development increases the near-term extent of threshold impaired river length, but downstream concentrations rise slowly as chloride concentrations increase in previously pristine groundwater pools. A warming climate plays a small role until late in the century when reduced snowfall from high emissions scenarios requires less road salting. Reducing road salt use is necessary to mitigate chloride impairment, but expectations and monitoring programs should acknowledge that achieving reasonable water quality goals will take years.

  5. A high-efficient batch-recirculated photoreactor packed with immobilized TiO2-P25 nanoparticles onto glass beads for photocatalytic degradation of phenazopyridine as a pharmaceutical contaminant: artificial neural network modeling.

    PubMed

    Shargh, Mahdie; Behnajady, Mohammad A

    2016-01-01

    In this study, removal efficiency of phenazopyridine (PhP) as a model pharmaceutical contaminant was investigated in a batch-recirculated photoreactor packed with immobilized TiO2-P25 nanoparticles on glass beads. Influence of various operational parameters such as irradiation time, initial concentration of PhP, volume of solution, volumetric flow rate, pH and power of light source was investigated. Results indicated that removal percentage increases with the rise of irradiation time, volumetric flow rate and power of light source but decreases with the rise of initial concentration of PhP and volume of solution. Highest removal percentage was obtained in the natural pH of PhP solution (pH = 5.9). Results of mineralization studies also showed a decreasing trend of total organic carbon (TOC) and producing mineralization products such as NO3(-), NO2(-) and NH4(+). Modeling of the process using artificial neural network showed that the most effective parameters in the degradation of PhP were volume of solution and power of light source. The packed bed photoreactor with TiO2-P25 nanoparticles coated onto glass beads in consecutive repeats have the proper ability for PhP degradation. Therefore, this system can be a promising alternative for the removal of recalcitrant organic pollutants such as PhP from aqueous solutions. PMID:27232418

  6. Laccase immobilized on magnetic carriers for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Rotková, Jana; Šuláková, Romana; Korecká, Lucie; Zdražilová, Pavla; Jandová, Miroslava; Lenfeld, Jiří; Horák, Daniel; Bílková, Zuzana

    2009-05-01

    Laccase catalyzing the oxidation of p-diphenols has been applied in many industrial and biotechnology areas. Immobilized form of laccase has overcome the problem with contamination of the final product. Nevertheless sensitive enzymes immobilized to the matrix can be inactivated by the environmental conditions. The aim of this research was to prepare carrier with improved activity and responsible stability even under extreme reaction conditions. Laccase immobilized through carbohydrate moieties on magnetic hydrazide bead cellulose with a final activity of 0.63 I.U./1 ml of settled carrier confirmed that carriers with oriented immobilized enzyme might be useful in routine biocatalytic applications.

  7. Fiber-optic chloride sensor development

    SciTech Connect

    Cosentino, P.; Grossman, B.; Shieh, C.; Doi, S.; Xi, H.; Erbland, P.

    1995-08-01

    Chloride in the form of salt water is a major contaminant of ground water, percolating through landfill liners and causing corrosion of steel. Four fiber-optic sensors capable of detecting chloride concentrations were developed. The most promising sensor detects chloride concentrations from 100 {micro}g/mL to greater than 3,000 {micro}g/mL. This sensor works when the chloride changes a reddish-brown silver chromate strip to white silver chloride. The color change causes the intensity of light propagating through the fiber to increase. The increase is monitored, and a calibration curve depicting light intensity versus chloride concentration results. The most promising sensor was multiplexed to determine the diffusion coefficients of chloride in a saturated sand column. The development, operation, and sensitivity of the sensors are described. Upon further development the sensor could be placed in the soil or in reinforced concrete for insitu monitoring of chloride. The sensor`s advantages over electronic sensors include immunity to corrosion and electromagnetic interference, and the ability for multiplexing sensors onto a single fiber.

  8. Chloride in diet

    MedlinePlus

    ... found in table salt or sea salt as sodium chloride. It is also found in many vegetables. Foods ... Nutrition Board. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academy Press, Washington, DC: 2005. ...

  9. Horseradish peroxidase and chitosan: activation, immobilization and comparative results.

    PubMed

    Mohamed, Saleh A; Al-Malki, Abdulrahman L; Kumosani, Taha A; El-Shishtawy, Reda M

    2013-09-01

    Recently, horseradish peroxidase (HRP) was immobilized on activated wool and we envisioned that the use of chitosan would be interesting instead of wool owing to its simple chemical structure, abundant nature and biodegradability. In this work, HRP was immobilized on chitosan crosslinked with cyanuric chloride. FT-IR spectroscopy and scanning electron microscopy were used to characterize immobilized HRP. The number of ten reuses of immobilized HRP has been detected. The pH was shifted from 5.5 for soluble HRP to 5.0 for immobilized enzyme. The soluble HRP had an optimum temperature of 30 °C, which was shifted to 35 °C for immobilized enzyme. The soluble HRP and immobilized HRP were thermal stable up to 35 and 45 °C, respectively. The apparent kinetic constant values (K(m)) of soluble HRP and chitosan-HRP were 35 mM and 40 mM for guaiacol and 2.73 mM and 5.7 mM for H2O2, respectively. Immobilization of HRP partially protected them from metal ions compared to soluble enzyme. The chitosan-HRP was remarkably more stable against urea, Triton X-100 and organic solvents. Chitosan-HRP exhibited large number of reuses and more resistance to harmful compounds compared with wool-HRP. On the basis of results obtained in the present study, chitosan-HRP could be employed in bioremediation application. PMID:23769933

  10. Immobilization of IFR salt wastes in mortar

    SciTech Connect

    Fischer, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered.

  11. Modified clay sorbents for wastewater treatment and immobilization of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Vincevica-Gaile, Zane; Stapkevica, Mara

    2014-05-01

    Soil and groundwater pollution with heavy metals is the result of both, anthropogenic and natural processes in the environment. Anthropogenic influence in great extent appears from industry, mining, treatment of metal ores and waste incineration. Contamination of soil and water can be induced by diffuse sources such as applications of agrochemicals and fertilizers in agriculture, air pollution from industry and transport, and by point sources, e.g., wastewater streams, runoff from dump sites and factories. Treatment processes used for metal removal from polluted soil and water include methodologies based on chemical precipitation, ion exchange, carbon adsorption, membrane filtration, adsorption and co-precipitation. Optimal removal of heavy metal ions from aqueous medium can be achieved by adsorption process which is considered as one of the most effective methods due to its cost-effectiveness and high efficiency. Immobilization of metals in contaminated soil also can be done with different adsorbents as the in situ technology. Use of natural and modified clay can be developed as one of the solutions in immobilization of lead, zinc, copper and other elements in polluted sites. Within the present study clay samples of different geological genesis were modified with sodium and calcium chlorides, iron oxyhydroxides and ammonium dihydrogen phosphate in variable proportions of Ca/P equimolar ratio to test and compare immobilization efficiency of metals by sorption and batch leaching tests. Sorption capacity for raw clay samples was considered as relatively lower referring to the modified species of the same clay type. In addition, clay samples were tested for powder X-ray difractometry, cation exchange, surface area properties, elemental composition, as well as scanning electron microscopy pictures of clay sample surface structures were obtained. Modified clay sorbents were tested for sorption of lead as monocontaminant and for complex contamination of heavy metals. The

  12. DEVELOPMENTAL TOXICITY OF COPPER CHLORIDE, METHYLENE CHLORIDE,AND 6-AMINONICOTINAMIDE TO EMBRYOS OF THE GRASS SHRIMPPALAEMONETES PUGIO

    EPA Science Inventory

    Embryos of estuarine grass shrimp Palaemonetes pugio have demonstrated sensitivity to various solvents and petroleum products, indicating utility for evaluating estuarine contamination. Testing was performed to establish concentration-response curves for methylene chloride, cop...

  13. Metal Immobilization Influence On Bioavailability And Remediation For Urban Environments

    EPA Science Inventory

    Immobilization of soil contaminants, such as lead, via phosphate amendments to alter the chemical environment of metals into highly insoluble forms is a well established process. The literature has documented numerous examples of highly contaminated Pb sites at shooting ranges, b...

  14. Application of ferric sludge to immobilize leachable mercury in soils and concrete.

    PubMed

    Zhuang, J Ming; Walsh, T; Lam, T; Boulter, D

    2003-11-01

    A Hg-contaminated site in B.C. Province, Canada was caused by the previous operation of Hg-cell in chlor-alkali process for over 25 years. The soils and groundwater at the site are highly contaminated with mercury. An analysis of groundwater at the site has shown that most of the mercury is bonded with humic and fulvic acids (HFA) in colloidal form. The Hg-HFA colloids can be completely removed from the groundwater with ferric chloride treatment under optimized process conditions to form ferric sludge (FS), which is rendered non-leachable by standard TCLP (Toxicity Characteristic Leaching Procedure) test. The effluent discharged from a clarifier has achieved mercury levels of < 0.5 microkg l(-1). The studies of mercury adsorption characteristics of FS show it has low mercury leachability by TCLP, and great mercury adsorption capability. This feature is the basis for the application of FS to immobilization of leachable Hg-contaminants in solid wastes. Full-scale stabilization tests of Hg-contaminated soil have been carried out, and the time-based stability of the treated soil has been monitored by TCLP over a period of 60 days. All the results have shown a small variation in TCLP mercury levels within a range of 10-40 microg l(-1). Based on these results and with the approval of the B.C. Ministry of the Environment, 1850 tons of Hg-contaminated soils and 260 tons of Hg-contaminated concrete fines have been treated, stabilized with FS, and disposed in a non-hazardous waste disposal site. PMID:14733397

  15. Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO2 sequestration.

    PubMed

    Cappai, G; Cara, S; Muntoni, A; Piredda, M

    2012-03-15

    The present study focuses on the application of an aqueous phase accelerated carbonation treatment on air pollution control (APC) residues from municipal solid waste combustion, aimed at assessing its influence on the environmental behaviour of the residue under concern, as well as the potential of the process in terms of sequestration of the CO2. APC residues are considered hazardous waste and must be treated before final disposal in order to achieve the immobilization/mobilization of critical contaminants such as heavy metals as well as mobilization of soluble salts. The treatment applied proved to be effective in reducing the mobility of Pb, Zn, Cr, Cu and Mo, the optimum final pH for the carbonated APC residues being in a range of 10-10.5, whilst a mobilization effect was noticed for Sb and no effect was assessed for chlorides. The effect of carbonation treatment on the contaminant release was further evaluated by means of a sequential extraction procedure, indicating that the distribution of contaminants on water soluble, exchangeable and carbonate fraction was modified after treatment. The CO2 sequestration potential assessed for the APC residues showed that the carbonation technology could be a technically viable option in order to reduce emissions from WtE plants. PMID:21601357

  16. Protecting group-free immobilization of glycans for affinity chromatography using glycosylsulfonohydrazide donors.

    PubMed

    Hernandez Armada, Daniel; Santos, Jobette T; Richards, Michele R; Cairo, Christopher W

    2015-11-19

    A variety of applications in glycobiology exploit affinity chromatography through the immobilization of glycans to a solid support. Although several strategies are known, they may provide certain advantages or disadvantages in how the sugar is attached to the affinity matrix. Additionally, the products of some methods may be hard to characterize chemically due to non-specific reactions. The lack of specificity in standard immobilization reactions makes affinity chromatography with expensive oligosaccharides challenging. As a result, methods for specific and efficient immobilization of oligosaccharides remain of interest. Herein, we present a method for the immobilization of saccharides using N'-glycosylsulfonohydrazide (GSH) carbohydrate donors. We have compared GSH immobilization to known strategies, including the use of divinyl sulfone (DVS) and cyanuric chloride (CC), for the generation of affinity matrices. We compared immobilization methods by determining their immobilization efficiency, based on a comparison of the mass of immobilized carbohydrate and the concentration of active binding sites (determined using lectins). Our results indicate that immobilization using GSH donors can provide comparable amounts of carbohydrate epitopes on solid support while consuming almost half of the material required for DVS immobilization. The lectin binding capacity observed for these two methods suggests that GSH immobilization is more efficient. We propose that this method of oligosaccharide immobilization will be an important tool for glycobiologists working with precious glycan samples purified from biological sources. PMID:26454791

  17. Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation.

    PubMed

    Paliwal, Rashmi; Uniyal, Shivani; Rai, J P N

    2015-05-01

    Two indigenous bacterial strains, Bacillus megaterium ETLB-1 (accession no. KC767548) and Pseudomonas plecoglossicida ETLB-3 (accession no. KC767547), isolated from soil contaminated with paper mill effluent, were co-immobilized on corncob cubes to investigate their biodegradation potential against black liquor (BL). Results exhibit conspicuous reduction in color and lignin of BL upto 913.46 Co-Pt and 531.45 mg l(-1), respectively. Reduction in chlorophenols up to 12 mg l(-1) was recorded with highest release of chloride ions, i.e., 1290 mg l(-1). Maximum enzyme activity for lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (LAC) was recorded as 5.06, 8.13, and 8.23 U ml(-1), respectively, during the treatment. Scanning electron microscopy (SEM) revealed successful immobilization of bacterial strains in porous structures of biomaterial. Gas chromatography/mass spectroscopy (GC/MS) showed formation of certain low molecular weight metabolites such as 4-hydroxy-benzoic acid, 3-hydroxy-4-methoxybenzaldehyde, ferulic acid, and t-cinnamic acid and removal of majority of the compounds (such as teratogenic phthalate derivatives) during the period of treatment. Results demonstrated that the indigenous bacterial consortium possesses excellent decolorization and lignin degradation capability which enables its commercial utilization in effluents treatment system. PMID:25433900

  18. Plutonium immobilization -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-02-17

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  19. Melaminium chloride hemihydrate.

    PubMed

    Janczak, J; Perpétuo, G J

    2001-09-01

    The crystals of a new melaminium salt, 2,4,6-triamino-1,3,5-triazin-1-ium chloride hemihydrate, C(3)H(7)N(6)(+).Cl(-).0.5H(2)O, are built up from single-protonated melaminium residues, chloride anions and water molecules. The protonated melaminium cations lie on a twofold axis, while the chloride anions and water molecule lie on the m plane. The melaminium residues are interconnected by N-H...N hydrogen bonds, forming chains parallel to the (001) plane. The chains of melaminium residues form a three-dimensional network through hydrogen-bond interactions with chloride anions and water molecules. PMID:11588391

  20. Vinyl chloride loss during laboratory holding time

    SciTech Connect

    Soule, R.G.; Jones, D.B.A.; Symonik, D.M.; Gerbec, B.A.; Turgeon, D.W.

    1995-12-31

    Because vinyl chloride is a potent human carcinogen, it`s important that analytical results from groundwater samples accurately reflect levels of exposure. This study investigated the current allowable sample holding time of 14 days to determine if vinyl chloride is lost from samples during this time. In addition to lab spiked samples, groundwater was collected from a well known to contain vinyl chloride. A statistically significant (a = 0.05) decrease in vinyl chloride concentrations was observed over the 14-day holding time. The most significant loss was seen for those samples held the maximum length of time (14 days). No differences in degradation pattern were noted between analytical detectors used (PID versus Hall) or sample type (lab versus field). There also was a loss of vinyl chloride observed during the sampling and handling process. Analytical variability at low concentrations and the establishment of health-based guidelines near the analytical detection limit require that multiple samples be collected from a single location when highly accurate results are required. These findings have implications for the accurate generation of public health exposure assessments and the implementation of health-based recommendations at sites with vinyl chloride groundwater contamination.

  1. Technetium Immobilization Forms Literature Survey

    SciTech Connect

    Westsik, Joseph H.; Cantrell, Kirk J.; Serne, R. Jeffrey; Qafoku, Nikolla

    2014-05-01

    Of the many radionuclides and contaminants in the tank wastes stored at the Hanford site, technetium-99 (99Tc) is one of the most challenging to effectively immobilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant (WTP), the Tc will partition between both the high-level waste (HLW) and low-activity waste (LAW) fractions of the tank waste. The HLW fraction will be converted to a glass waste form in the HLW vitrification facility and the LAW fraction will be converted to another glass waste form in the LAW vitrification facility. In both vitrification facilities, the Tc is incorporated into the glass waste form but a significant fraction of the Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment systems at both facilities. The aqueous off-gas condensate solution containing the volatilized Tc is recycled and is added to the LAW glass melter feed. This recycle process is effective in increasing the loading of Tc in the LAW glass but it also disproportionally increases the sulfur and halides in the LAW melter feed which increases both the amount of LAW glass and either the duration of the LAW vitrification mission or the required supplemental LAW treatment capacity.

  2. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.

    PubMed

    Wang, Fang; Su, Rong-Xin; Qi, Wei; Zhang, Ming-Jia; He, Zhi-Min

    2010-01-01

    Cellobiase can hydrolyze cellobiose into glucose; it plays a key role in the process of cellulose hydrolysis by reducing the product inhibition. To reuse the enzyme and improve the economic value of cellulosic ethanol, cellobiase was immobilized using sodium alginate and chitosan as carriers by the bubbling method. The immobilization conditions were optimized as follows: enzyme loading of 100 U cellobiase/g carrier, 30 min immobilization, 3.5 wt% sodium alginate, 0.25 wt% chitosan, and 2 wt% calcium chloride. Compared to free enzyme, the immobilized cellobiase had a decreased apparent K(m) and the maximum activity at a lower pH, indicating its higher acidic and thermal stability. The immobilized cellobiase was further tested in the hydrolysis of cellobiose and various cellulosic substrates (microcrystalline cellulose, filter paper, and ammonia-pretreated corn cobs). Together with cellulases, the immobilized cellobiase converted the cellulosic substrates into glucose with the rate and extent similar to the free enzyme. PMID:20024795

  3. Plutonium Immobilization Puck Handling

    SciTech Connect

    Kriikku, E.

    1999-01-26

    The Plutonium Immobilization Project (PIP) will immobilize excess plutonium and store the plutonium in a high level waste radiation field. To accomplish these goals, the PIP will process various forms of plutonium into plutonium oxide, mix the oxide powder with ceramic precursors, press the mixture into pucks, sinter the pucks into a ceramic puck, load the pucks into metal cans, seal the cans, load the cans into magazines, and load the magazines into a Defense Waste Processing Facility (DPWF) canister. These canisters will be sent to the DWPF, an existing Savannah River Site (SRS) facility, where molten high level waste glass will be poured into the canisters encapsulating the ceramic pucks. Due to the plutonium radiation, remote equipment will perform these operations in a contained environment. The Plutonium Immobilization Project is in the early design stages and the facility will begin operation in 2005. This paper will discuss the Plutonium Immobilization puck handling conceptual design and the puck handling equipment testing.

  4. Immobilization induced hypercalcemia

    PubMed Central

    Cano-Torres, Edgar Alonso; González-Cantú, Arnulfo; Hinojosa-Garza, Gabriela; Castilleja-Leal, Fernando

    2016-01-01

    Summary Immobilization hypercalcemia is an uncommon diagnosis associated with increased bone remodeling disorders and conditions associated with limited movement such as medullar lesions or vascular events. Diagnosis requires an extensive evaluation to rule out other causes of hypercalcemia. This is a report of a woman with prolonged immobilization who presented with severe hypercalcemia. This case contributes to identification of severe hypercalcemia as a result of immobility and the description of bone metabolism during this state. PMID:27252745

  5. Immobilized Cell and Enzyme Technology

    NASA Astrophysics Data System (ADS)

    Dunnill, P.

    1980-08-01

    The development of immobilized enzyme and cell technology is summarized. Industrial processes for sucrose inversion, penicillin deacylation and glucose isomerization using immobilized enzymes are described. An alternative process for glucose isomerization using immobilized cells, and some other industrial applications of immobilized cells are indicated. Recent developments in immobilized enzyme and cell technology are assessed and the relative merits of the different biochemical catalyst forms are considered.

  6. Phosphonium chloride for thermal storage

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Development of systems for storage of thermal energy is discussed. Application of phosphonium chloride for heat storage through reversible dissociation is described. Chemical, physical, and thermodynamic properties of phosphonium chloride are analyzed and dangers in using phosphonium chloride are explained.

  7. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2014-07-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635-670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  8. Chloride flux in phagocytes.

    PubMed

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. PMID:27558337

  9. Catalytic properties of maltogenic α-amylase from Bacillus stearothermophilus immobilized onto poly(urethane urea) microparticles.

    PubMed

    Straksys, Antanas; Kochane, Tatjana; Budriene, Saulute

    2016-11-15

    The immobilization of maltogenic α-amylase from Bacillus stearothermophilus (BsMa) onto novel porous poly(urethane urea) (PUU) microparticles synthesized from poly(vinyl alcohol) and isophorone diisocyanate was performed by covalent attachment to free isocyanate groups from PUU microparticles, or by physical adsorption of enzyme onto the surface of the carrier. The influence of structure, surface area and porosity of microparticles on the catalytic properties of immobilized BsMa was evaluated. The highest efficiency of immobilization of BsMa was found to be 72%. Optimal activity of immobilized BsMa was found to have increased by 10°C compared with the native enzyme. Influence of concentration of sodium chloride on activity of immobilized BsMa was evaluated. High storage and thermal stability and reusability for starch hydrolysis of immobilized enzyme were obtained. Immobilized BsMa has a great potential for biotechnology. PMID:27283635

  10. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    EPA Science Inventory

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  11. Radiation-induced polymerization for the immobilization of penicillin acylase

    SciTech Connect

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.

    1987-06-01

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.

  12. Immobilized tubular fermentor

    SciTech Connect

    Gencer, M.A.; Mutharasan, R.

    1983-09-01

    In this article, a mathematical model describing the kinetics of ethanol fermentation in a whole cell immobilized tubular fermentor is proposed. Experimental results show reasonable agreement with the proposed model. A procedure for treating the fermentation data for determining the ethanol inhibition constants k1 and k2 is described. The ethanol productivity of the immobilized cell fermentor is compared with those of traditional fermentors. Experimental studies indicate that with Saccharomyces cerevisiae (NRRL Y132) culture, ethanol productivity in the range 21.2-83.7 g ethanol/L/h at ethanol concentration of 76-60 g/L can be achieved. This is comparable to or higher than those reported in the literature for yeast. The product yield factor of 0.5 g ethanol/g glucose was obtained. The immobilized cell fermentor does not show washout at dilution rates of 7/h and shows good stability over a 650-h operating period.

  13. Mercuric chloride poisoning

    MedlinePlus

    ... Mercuric chloride is a very poisonous form of mercury. It is a type of mercury salt. There are different types of mercury poisonings . This article discusses poisoning from swallowing mercuric ...

  14. Hydrogen chloride test set

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1976-01-01

    Detector uses tertiary amine, which makes reaction fairly specific for relatively small highly polarized hydrogen chloride molecule. Reaction is monitored by any microbalance capable of measuring extremely small mass differences in real time.

  15. Strontium-89 Chloride

    MedlinePlus

    ... ask your doctor or pharmacist for more information.Strontium-89 chloride is in a class of drugs known as radioisotopes. It delivers radiation to cancer sites and ultimately decreases bone pain. The length of treatment depends on the ...

  16. Adsorption of Sr by immobilized microorganisms

    SciTech Connect

    Watson, J.S.; Scott, C.D.; Faison, B.D.

    1988-01-01

    Wastewaters from numerous industrial and laboratory operations can contain toxic or undesirable components such as metal ions, which must be removed before discharge to surface waters. Adsorption processes that have high removal efficiencies are attractive methods for removing such contaminants. For economic operations, it is desirable to have an adsorbent that is selective for the metal contaminant of interest, has high capacity for the contaminant, has rapid adsorption kinetics, can be economically produced, and can be regenerated to a concentrated waste product or decomposed to a low-volume waste. Selected microorganisms are potentially useful adsorbents for these applications because they can be inexpensive, have high selectivities, and have high capacities for adsorption of many heavy metals, which are often problems in a variety of industries. A laboratory-scale packed column containing microbial cells immobilized within a gelatin matrix has been prepared, and its application to removal of Sr from a simulated wastewater is described. 6 refs., 2 figs., 3 tabs.

  17. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    PubMed Central

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347

  18. Uranium Immobilization in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Jaffe, Peter R.; Koster van Groos, Paul G.; Li, Dien; Chang, Hyun-Shik; Seaman, John C.; Kaplan, Daniel I.; Peacock, Aaron D.; Scheckel, Kirk

    2014-05-01

    stronger for the mesocosms with the higher Fe(II) load. Analysis via XANES showed that a fraction (up to ~1/3) of uranium was reduced to U(IV), for mesocosms operated under low iron loading, indicating that iron cycling in the rhizosphere also results in uranium reduction and immobilization. For mesocosms operating under the higher iron loading, the fraction of uranium immobilized as U(IV) was much lower, indicating that uranium co-precipitation with iron might have been the dominant immobilization process. In parallel to these mesocosm experiments, dialysis samplers have been deployed at the Savannah River National Laboratory near a creek with uranium contamination, to determine dissolved species, including Fe(II) and U(VI) in these wetland soils and their seasonal variability. The results show that there is a strong seasonal variability in dissolved iron and uranium, indicating a strong immobilization during the growing season, which is consistent with the mesocosm experimental results that the rhizosphere iron and uranium cycling are closely linked.

  19. Developmental toxicity of copper chloride, methylene chloride, and 6-aminonicotinamide to embryos of the grass shrimp Palaemonetes pugio

    SciTech Connect

    Rayburn, J.R.; Fisher, W.S.

    1999-05-01

    Embryos of estuarine grass shrimp Palaemonetes pugio have demonstrated sensitivity to various solvents and petroleum products, indicating utility for evaluating estuarine contamination. Testing was performed to establish concentration-response curves for methylene chloride, copper chloride, and 6-aminonicotinamide, three known teratogenic chemicals. Two exposure periods were used, 4 d and 12 d, and both periods extended through hatching. The average 4-d LC50 values for methylene chloride, copper chloride, and 6-aminonicotinamide were 0.071% v/v, 1.82 mg/L, and 0.21 mg/ml, respectively. The average 12-d LC50 values for methylene chloride, copper chloride, and 6-aminonicotinamide were 0.031% v/v, 1.44 mg/L, and 0.057 mg/ml, respectively. Eye malformations were observed with embryos exposed to concentrations greater than 3 mg/L copper chloride or greater than 0.07% v/v methylene chloride. Very few abnormalities were observed in embryos exposed to 6-aminonicotinamide. Abnormal larval development was found with exposure to copper chloride at concentrations greater than 1 mg/L. The sensitivity and low variability found here further supports the development of these relatively simple methods using grass shrimp embryos. Establishment of sublethal developmental endpoints warrants further investigation because of their potential correspondence to mechanisms of toxic action.

  20. Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris.

    PubMed

    Gao, Q T; Wong, Y S; Tam, N F Y

    2011-11-01

    The removal and biodegradation of nonylphenol (NP) by alginate-immobilized cells of Chlorella vulgaris were compared with their respective free cultures. The effects of four cell densities of 10(4) per algal bead were investigated, as were the four algal bead concentrations, with regard to the removal and biodegradation of NP. Although immobilization significantly decreased the growth rate and NP's biodegradation efficiency of C. vulgaris, NP removal over a short period was enhanced. The NP removal mechanism by immobilized cells was similar to that by free cells, including adsorption onto alginate matrix and algal cells, absorption within cells and cellular biodegradation. The optimal cell density and bead concentration for the removal and biodegradation of NP was 50-100×10(4) cells algal bead(-1) and 2-4 beads ml(-1) of wastewater, respectively. These results demonstrated that immobilized C. vulgaris cells under optimal biomass and photoautotrophic conditions are effective in removing NP from contaminated water. PMID:21944284

  1. Degradation of mix hydrocarbons by immobilized cells of mix culture using a trickle fluidized bed reactor

    SciTech Connect

    Chapatwala, K.D.

    1993-01-01

    The microorganisms, capable of degrading mix hydrocarbons were isolated from the soil samples collected from the hydrocarbon contaminated sites. The mix cultures were immobilized in calcium alginate solution in the form of beads. A trickle fluidized bed air-uplift-type reactor designed to study the degradation of mix hydrocarbons was filled with 0.85% normal saline containing the immobilized cells of mix culture. The immobilized beads were aerated with CO[sub 2]-free air at 200 ml/min. The degradation of different concentrations of hydrocarbons in the presence/absence of commercially available fertilizers by the immobilized cells of mix culture is now in progress.

  2. Experiences with combined corrosion effects on stainless steel due to chlorides and H{sub 2}S

    SciTech Connect

    Russell, M.T.; Wortham, G.M.; Lawson, D.M.

    1999-07-01

    Chloride contamination of amines in contact with stainless steel creates a well known potential for stress corrosion cracking (SCC). A far less recognized hazard of chloride contamination, when sulfides are present, is drastically accelerated generalized corrosion. Chloride induced corrosion can be avoided with an inlet gas reverse flow coalescer and an inlet slug catcher to knock out brine bearing produced water. If the amine is already contaminated with chlorides, steps can be taken to minimize this type of corrosion such as better amine filtration, amine reclamation and using stainless steel with higher nickel contents.

  3. Industrial use of immobilized enzymes.

    PubMed

    DiCosimo, Robert; McAuliffe, Joseph; Poulose, Ayrookaran J; Bohlmann, Gregory

    2013-08-01

    Although many methods for enzyme immobilization have been described in patents and publications, relatively few processes employing immobilized enzymes have been successfully commercialized. The cost of most industrial enzymes is often only a minor component in overall process economics, and in these instances, the additional costs associated with enzyme immobilization are often not justified. More commonly the benefit realized from enzyme immobilization relates to the process advantages that an immobilized catalyst offers, for example, enabling continuous production, improved stability and the absence of the biocatalyst in the product stream. The development and attributes of several established and emerging industrial applications for immobilized enzymes, including high-fructose corn syrup production, pectin hydrolysis, debittering of fruit juices, interesterification of food fats and oils, biodiesel production, and carbon dioxide capture are reviewed herein, highlighting factors that define the advantages of enzyme immobilization. PMID:23436023

  4. A new technology for the treatment of mercury contaminated water and soils.

    PubMed

    Zhuang, J M; Walsh, T; Lam, T

    2003-07-01

    A new technology has been developed for the treatment of contaminated water and soils with lignin derivatives. It has been demonstrated that this technology can be used in the process of removal of high levels of mercury from water, and in the immobilization of leachable mercury in contaminated soils. Lignin derivatives contain an abundance of oxygen-containing functional groups such as phenolic, carboxyl, sulfonyl, alcoholic and enolic structures, which will form lignin-metal macromolecular complexes with high stability through ionic and coordinate covalent bonding. This feature is the basis for the application of lignin derivatives in the removal of metal contaminants from water and in the immobilization of leachable metal in soils or sediments. Tests have confirmed that lignin derivatives are capable of combining with a variety of metal ions including chromium, copper, lead, zinc, mercury, nickel and aluminum. In the new water treatment process, lignin derivatives are dissolved in mercury contaminated water to complex mercury in an exceptionally stable form of a lignin-mercury colloid. The lignin-mercury colloid is then coagulated through the addition of a flocculating agent such as ferric chloride. Under optimized conditions, a dean effluent is produced with a residual mercury level of less than 1 microg l(-1), together with a ferric sludge that is not leachable by TCLP, EPA Method 1311. In the new soil stabilization process, a new solid adsorbent of ferric-lignin is blended with mercury contaminated soil. This solid adsorbent can stabilize the soil by complexing with mercury and, thereby, greatly reduce the TCLP mercury of soil. PMID:12916841

  5. Traditionally used medicinal plants against uncomplicated urinary tract infections: Are unusual, flavan-4-ol- and derhamnosylmaysin derivatives responsible for the antiadhesive activity of extracts obtained from stigmata of Zea mays L. against uropathogenic E. coli and Benzethonium chloride as frequent contaminant faking potential antibacterial activities?

    PubMed

    Rafsanjany, Nasli; Sendker, Jandirk; Lechtenberg, Matthias; Petereit, Frank; Scharf, Birte; Hensel, Andreas

    2015-09-01

    The dried stigmata from Zea mays L. are used traditionally for the treatment of uncomplicated urinary tract infections. A recent screening has indicated that hydroalcoholic extract of the herbal material inhibits the adhesion of uropathogenic Escherichia coli (UPEC) to T24 bladder cells. For verification of these data EtOH-water (1:1) extracts from 4 different batches of Maydis stigmata were investigated. Within an in vitro adhesion assay (UPEC strain 2980 and human T24 bladder cells) a dose-dependent antiadhesive activity against UPEC was verified (IC50 1040μg/mL). Bioassay guided fractionation of M. stigmata, batch S1, by EtOH-water extraction, followed by chromatography on Sephadex LH20 revealed two active fractions (I and XI). Further purification of fraction I and structure elucidation of the isolated compound revealed the presence of significant amounts of the biocide benzethonium chloride as contaminant. Benzethonium chloride was also identified in subsequent investigations in 2 different batches of M. stigmata. The presence of such nondeclared and illegal contaminants in the herbal raw material market has to be discussed intensively. From benzethonium-free raw material (batch S2) as well as from batch S1 fraction XI was further fractionated by MPLC and preparative HPLC, leading to a still complex subfraction XIG, which was analyzed by UHPLC/+ESI-QTOF-MS analysis. Advanced data processing and species-metabolite relationship database revealed the tentatively existence of the unusual C-glycosidic flavones derhamnosylmaysin (6), 3'-deoxyrhamnosylmaysin (4), 3'-O-methylderhamnosylmaysin (3), apiferol (2) and alternanthin (8) which might be related to the antiadhesive activity of this subfraction against UPEC. PMID:26210697

  6. Chloride removal from vitrification offgas

    SciTech Connect

    Slaathaug, E.J.

    1995-06-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations.

  7. Electrode-immobilized compounds through. gamma. radiation

    SciTech Connect

    De Castro, E.S.

    1983-01-01

    Chemically Modified Electrodes (CMEs) are used as substrates in heterogeneous catalysis and as sensors. This work demonstrates a new strategy for immobilizing polyelectrolytes and electroactive agents on electrode surfaces. The success of this method lies in cross-linking water soluble polymer chains through the ionizing radiation of ..gamma.. emissions from a /sup 60/Co source. Cross-linking can create a continuous network out of the polymer macromolecules which then makes the network insoluble on the electrode surface. Bonds between the network and the substrate are also possible. Redox species mixed with the polymer network and irradiated become part of the insoluble network, and are permanently attached. The use of ..gamma.. radiation to make electrochemical sensors is demonstrated. The immobilized network poly(diallyl dimethyl ammonium chloride) (DDAC) is placed in a solution of potassium ferricyanide and ionicly exchanges the anion into the network. An electroactive network is created from irradiating a mixture of DDAC and 2,6-dichlorophenolindophenol (DCIP). Using the amount of electroactive DCIP remaining in the film as the optimization parameter, variables such as polymer:DCIP ratio, film thickness, and dosage employed are shown to be relevant.

  8. Immobilized microbe bioreactors for waste water treatment.

    PubMed

    Portier, R J; Miller, G P

    1991-10-01

    The application of adapted microbial populations immobilized on a porous diatomaceous earth carrier to pre-treat and reduce toxic concentration of volatile organics, pesticides, petroleum aliphatics and aromatics has been demonstrated for several industrial sites. In the pre-treatment of industrial effluents and contaminated groundwaters, these bioreactors have been used to optimize and reduce the cost of conventional treatment systems, i.e. steam stripping, carbon adsorption and traditional biotreatment. Additionally, these systems have been employed as seeding devices for larger biotreatment systems. The cost effective utilization of an immobilized microbe reactor system for water supply regeneration in a microgravity environment is presented. The feasibility of using immobilized biomass reactors as an effluent treatment technology for the biotransformation and biodegradation of phenols, chlorinated halocarbons, residual oils and lubricants was evaluated. Primary biotransformation tests of two benchmark toxicants, phenol and ethylene dichloride at concentrations expected in life support effluents were conducted. Biocatalyst supports were evaluated for colonization potential, surface and structural integrity, and performance in continuous flow bioreactors. The implementation of such approaches in space will be outlined and specific areas for interfacing with other non-biological treatment approaches will be considered for advanced life support, tertiary waste water biotreatment. PMID:11537697

  9. Strontium-89 Chloride

    MedlinePlus

    ... doctor if you have or have ever had bone marrow disease, blood disorders, or kidney disease.you should know that strontium-89 chloride may interfere with the normal menstrual cycle (period) in women and may stop sperm production in men. However, ...

  10. Lithium thionyl chloride battery

    SciTech Connect

    Saathoff, D.J.; Venkatasetty, H.V.

    1982-10-19

    The discharge rate and internal conductivity of electrochemical cell including a lithium anode, and a cathode and an electrolyte including LiAlCl4 and SOC2 is improved by the addition of an amount of a mixture containing AlCl3 and butyl pyridinium chloride.

  11. PHOTOOXIDATION OF ALLYL CHLORIDE

    EPA Science Inventory

    The photooxidation of allyl chloride was studied by irradiation either in 100-L Teflon bags or in a 22.7-cu m Teflon smog chamber in the presence of added NOx. In the absence of added hydrocarbons, the reaction involves a Cl atom chain, which leads to a highly reactive system. A ...

  12. [Stabilization Treatment of Pb and Zn in Contaminated Soils and Mechanism Studies].

    PubMed

    Xie, Wei-qiang; Li, Xiao-mingi; Chen, Can; Chen, Xun-feng; Zhong, Yu; Zhong, Zhen-yu; Wan, Yong; Wang, Yan

    2015-12-01

    In the present work, the combined application of potassium dihydrogen phosphate, quick lime and potassium chloride was used to immobilize the Pb and Zn in contaminated soils. The efficiency of the process was evaluated through leaching tests and Tessier sequential extraction procedure. The mechanism of stabilization was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to reveal the mechanism of stabilization. The results showed that the stabilizing efficiency of Pb contaminated soils was above 80% and the leaching concentrations of Pb, Zn were far below the threshold when the ratio of exogenous P and soil (mol · mol⁻¹) was 2:1-4: 1, the dosing ratio of CaO was 0.1%-0.5% ( mass fraction) and the dosage of potassium chloride was 0.02-0. 04 mol. Meanwhile, Pb and Zn in soil were transformed from the exchangeable fraction into residual fraction, which implied that the migration of Pb, Zn in soil could be confined by the stabilization treatment. XRD and SEM analysis revealed that Ca-P-Pb precipitation, lead orthophosphate [PbHP0₄, Pb₃ (PO₄)₂], pyromorphite (Pb-PO₄-Cl/OH) and mixed heavy metal deposits (Fe-PO₄- Ca-Pb-Zn-OH) could be formed after solidification/stabilization in which Pb and Zn could be wrapped up to form a solidified composition and to prevent leaching. PMID:27012000

  13. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  14. Effects of immobilization on spermiogenesis

    NASA Technical Reports Server (NTRS)

    Meitner, E. R.

    1980-01-01

    The influence of immobilization stress on spermiogenesis in rats was investigated. After 96 hour immobilization, histological changes began to manifest themselves in the form of practically complete disappearance of cell population of the wall of seminiferous tubule as well as a markedly increased number of cells with pathologic mitoses. Enzymological investigations showed various changes of activity (of acid and alkaline phosphatase and nonspecific esterase) in the 24, 48, and 96 hour immobilization groups.

  15. Evaluation of localized corrosion of zirconium in acidic chloride solutions

    SciTech Connect

    Fahey, J.; Holmes, D.; Yau, T.L.

    1997-01-01

    Zirconium is prone to localized corrosion in acidic chloride (Cl{sup {minus}}) solutions contaminated by oxidizing ions, such as ferric or cupric ions. This tendency can be reduced by ensuring that the zirconium surface is clean and smooth. The effect of surface condition on localized corrosion of zirconium in acidic chloride solutions was predicted using potentiodynamic polarization scans. Predictions were confirmed by mass-loss tests on various combinations of surface finish and acid concentrations. A real-time indication of localized corrosion was derived by monitoring electrochemical noise produced between two similar electrodes immersed in an acidic chloride solution. Electrochemical noise monitoring correlated well with predictions from the potentiodynamic polarization and mass-loss experiments. Electrochemical noise results showed a more anodic potential caused by ferric ion (Fe{sup 3+}) contamination might be necessary for localized corrosion but that it was not a sufficient condition. A clean zirconium surface reduced localized corrosion of zirconium.

  16. [Degradation of succinylcholine chloride].

    PubMed

    Németh, G; Török, I; Paál, T

    1993-05-01

    Quantitative thin-layer chormatographic method has been developed for the investigation of the degradation of injection formulations containing succinylcholinium chloride. The method is based on the denistometric determination of the main degradation product, choline at 430 nm after visualization with iodine vapour. The stability of the injection was investigated under various storage conditions and it has been stated that considerable decomposition takes place during as short a period as one week. PMID:8362654

  17. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  18. Degradation of disperse dye from textile effluent by free and immobilized Cucurbita pepo peroxidase

    NASA Astrophysics Data System (ADS)

    Boucherit, N.; Abouseoud, M.; Adour, L.

    2012-06-01

    Disperse dyes constitute the largest group of dyes used in local textile industry. This work evaluates the potential of the Cucurbita peroxidase(C-peroxidase) extracted from courgette in the decolourization of disperse dye in free and immobilized form. The optimal conditions for immobilization of C-peroxidase in Ca-alginate were identified. The immobilization was optimized at 2%(w/v) of sodium alginate and 0.2 M of calcium chloride. After optimization of treatment parameters, the results indicate that at pH 2, dye concentration: 80 mg/L(for FCP) and 180 mg/L(for ICP), H2O2 dose: 0,02M (for FCP) and 0,12M(for ICP), the decolourization by free and immobilized C-peroxidase were 72.02% and 69.71 % respectively. The degradation pathway and the metabolic products formed after the degradation were also predicted using UV-vis spectroscopy analysis.

  19. Development of a new antibacterial biomaterial by tetracycline immobilization on calcium-alginate beads.

    PubMed

    Ozseker, Emine Erdogan; Akkaya, Alper

    2016-10-20

    In recent years, increasing risk of infection, caused by resistant microorganism to antibiotics, has become the limelight discovery of new and natural antibacterial materials. Heavy metals, such as silver, copper, mercury and titanium, have antibacterial activity. Products, which improved these metals, do not have stable antibacterial property. Therefore, use of these products is restricted. The aim of this study was to immobilize tetracycline to alginate and improve an antibacterial biomaterial. For this purpose, calcium-alginate beads were formed by dropping to calcium-chloride solution and tetracycline was immobilized to beads using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at optimum conditions. After immobilization, actualization of immobilization was investigated by analyzing ATR-FTIR spectrum and SEM images. Also, antibacterial property of obtained product was tested. Improved product demonstrated antibacterial property. It has potential for open wound, surgical drapes, bed and pillow sheath in hospitals and it may also be used for increasing human comfort in daily life. PMID:27474587

  20. Immobilization of mercuric reductase from a pseudomonas putida strain on different activated carriers

    SciTech Connect

    Anspach, F.B.; Hueckel, M.; Brunke, M.

    1994-02-01

    Mercuric reductase was isolated from Pseudomonas putida KT2442::mer-73 and immobilized on chromatographic carriers activated by various methods. The immobilization methods for covalent coupling were compared with regard to preservation of enzymatic activity and coupling yields. Highest yields were obtained with carriers bearing the most reactive functional groups. Best results were achieved with tresyl chloride-activated carriers. The optimum binding conditions were found at pH 8. Application of the immobilized mercuric reductase for continuous treatment of Hg(II)-containing water was examined in a fixed bed reactor. Space-time yields up to 510 nmol/min{center_dot}mL were attained. The kinetics of immobilized enzyme systems were not diffusion-controlled. 22 refs., 7 figs., 2 tabs.

  1. Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method.

    PubMed

    Lu, Daban; Zhang, Yan; Niu, Shiquan; Wang, Letao; Lin, Shaoxiong; Wang, Chunming; Ye, Weichun; Yan, Chunlei

    2012-04-01

    An aerobic microorganism with an ability to utilize phenol as sole carbon and energy source was isolated from phenol-contaminated wastewater samples. The isolate was identified as Bacillus amyloliquefaciens strain WJDB-1 based on morphological, physiological, and biochemical characteristics, and 16S rDNA sequence analysis. Strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules could degrade 200 mg/l phenol completely within 36 h. The concentration of phenol was determined using differential pulse voltammetry (DPV) at glassy carbon electrode (GCE) with a linear relationship between peak current and phenol concentration ranging from 2.0 to 20.0 mg/l. Cells immobilized in ACA microcapsules were found to be superior to the free suspended ones in terms of improving the tolerance to the environmental loadings. The optimal conditions to prepare microcapsules for achieving higher phenol degradation rate were investigated by changing the concentrations of sodium alginate, calcium chloride, and chitosan. Furthermore, the efficiency of phenol degradation was optimized by adjusting various processing parameters, such as the number of microcapsules, pH value, temperature, and the initial concentration of phenol. This microorganism has the potential for the efficient treatment of organic pollutants in wastewater. PMID:21809019

  2. INNOVATIVE IN-SITU REMEDIATION OF CONTAMINATED SEDIMENTS FOR SIMULTANEOUS CONTROL OF CONTAMINATION AND EROSION

    SciTech Connect

    Knox, A; Michael Paller, M; Danny D. Reible, D; Ioana G. Petrisor, I

    2007-11-28

    New technologies are needed that neutralize contaminant toxicity and control physical transport mechanisms that mobilize sediment contaminants. The last 12 months of this comprehensive project investigated the use of combinations of sequestering agents to develop in situ active sediment caps that stabilize mixtures of contaminants and act as a barrier to mechanical disturbance under a broad range of environmental conditions. Efforts focused on the selection of effective sequestering agents for use in active caps, the composition of active caps, and the effects of active cap components on contaminant bioavailability and retention. Results from this project showed that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective at removing metals from both fresh and salt water. These amendments also exhibited high retention (80% or more) of most metals indicating reduced potential for remobilization to the water column. Experiments on metal speciation and retention in contaminated sediment showed that apatite and organoclay can immobilize a broad range of metals under both reduced and oxidized conditions. These studies were followed by sequential extractions to evaluate the bioavailability and retention of metals in treated sediments. Metal fractions recovered in early extraction steps are more likely to be bioavailable and were termed the Potentially Mobile Fraction (PMF). Less bioavailable fractions collected in later extraction steps were termed the Recalcitrant Factor (RF). Apatite and organoclay reduced the PMF and increased the RF for several elements, especially Pb, Zn, Ni, Cr, and Cd. Empirically determined partitioning coefficients and modeling studies were used to assess the retention of organic contaminants on selected sequestering agents. Organoclays exhibited exceptionally high sorption of polycyclic aromatic hydrocarbons as indicated by a comparison of K{sub d} values among 12 amendments. These results suggested that

  3. Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor.

    PubMed

    Kermanshahi pour, A; Karamanev, D; Margaritis, A

    2005-09-01

    An "immobilized cell airlift bioreactor", was used for the aerobic bioremediation of simulated diesel fuel contaminated groundwater and tested with p-xylene and naphthalene in batch and continuous regimes. The innovative design of the experiments consists of two stages. At the first stage "immobilized soil bioreactor" (ISBR) was used to develop an efficient microbial consortium from the indigenous microorganisms, which exist in diesel fuel contaminated soil. The concept of ISBR relies on the entrapment of the soil particles into the pores of a semi-permeable membrane, which divides the bioreactor into two aerated and non-aerated portions. The second stage involves inoculating the "immobilized cell air lift bioreactor" with the cultivated microbial consortia of the first stage. Immobilized cell airlift bioreactor has the same configuration as ISBR except that in this bioreactor instead of soil, microorganisms were immobilized on the fibers of the membrane. The performance of a 0.83 L immobilized cell airlift bioreactor was investigated at various retention time (0.5-6 h) and concentrations of p-xylene (15, 40 and 77 mg/L) and naphthalene (8, 15 and 22 mg/L) in the continuous operation. In the batch regime, 0.9L bioreactor was operated at various biodegradation times (15-135 min) and concentrations of p-xylene (13.6, 44.9 and 67.5 mg/L) and naphthalene (1.5 and 3.8 mg/L). Under the conditions of the complete biodegradation of p-xylene and naphthalene, the obtained volumetric biodegradation rates at biomass density of 720 mg/L were 15 and 16 mg/L h, respectively. PMID:16095655

  4. Method of preparing sodalite from chloride salt occluded zeolite A

    SciTech Connect

    Lewis, M.A.; Pereira, C.

    1995-12-31

    A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistance sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1,000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  5. Plutonium Immobilization Canister Loading

    SciTech Connect

    Hamilton, E.L.

    1999-01-26

    This disposition of excess plutonium is determined by the Surplus Plutonium Disposition Environmental Impact Statement (SPD-EIS) being prepared by the Department of Energy. The disposition method (Known as ''can in canister'') combines cans of immobilized plutonium-ceramic disks (pucks) with vitrified high-level waste produced at the SRS Defense Waste Processing Facility (DWPF). This is intended to deter proliferation by making the plutonium unattractive for recovery or theft. The envisioned process remotely installs cans containing plutonium-ceramic pucks into storage magazines. Magazines are then remotely loaded into the DWPF canister through the canister neck with a robotic arm and locked into a storage rack inside the canister, which holds seven magazines. Finally, the canister is processed through DWPF and filled with high-level waste glass, thereby surrounding the product cans. This paper covers magazine and rack development and canister loading concepts.

  6. Oxomemazine hydro-chloride.

    PubMed

    Siddegowda, M S; Butcher, Ray J; Akkurt, Mehmet; Yathirajan, H S; Ramesh, A R

    2011-08-01

    IN THE TITLE COMPOUND [SYSTEMATIC NAME: 3-(5,5-dioxo-phen-othia-zin-10-yl)-N,N,2-trimethyl-propanaminium chloride], C(18)H(23)N(2)O(2)S(+)·Cl(-), the dihedral angle between the two outer aromatic rings of the phenothia-zine unit is 30.5 (2)°. In the crystal, the components are linked by N-H⋯Cl and C-H⋯Cl hydrogen bonds and C-H⋯π inter-actions. PMID:22090928

  7. Remote handling in the Plutonium Immobilization Project -- Second stage immobilization

    SciTech Connect

    Kriikku, E.

    1999-12-21

    The Savannah River Site (SRS) will immobilize excess plutonium in ceramic pucks and seal the pucks inside welded cans. Automated equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. Due to the radiation, remote equipment will perform these operations in a contained environment. The Plutonium Immobilization Project is in the conceptual design stage and the facility will begin operation in 2008. This paper discusses the Plutonium Immobilization Project phase 2 automation equipment conceptual design, equipment design, and work completed.

  8. Chronic effects of mercuric chloride ingestion on rat adrenocortical function

    SciTech Connect

    Agrawal, R.; Chansouria, J.P.N. )

    1989-09-01

    Mercurial contamination of environment has increased. Mercury accumulates in various organs and adversely affects their functions. Some of the most prominent toxic effects of inorganic mercury compounds include neurotoxicity, hepatotoxicity and nephrotoxicity. Besides this, mercury has also been reported to affect various endocrine glands like pituitary, thyroid, gonadal and adrenal glands. There have been no reports on the toxic effects of chronic oral administration of varying doses of mercuric chloride on adrenocortical function in albino rats. The present work was undertaken to study the adrenocortical response to chronic oral administration of mercuric chloride of varying dose and duration in albino rats.

  9. Arsenic mobilization and immobilization in paddy soils

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).

  10. Oil immobilization program at Sellafield: an innovative approach

    SciTech Connect

    Cassidy, Helen

    2007-07-01

    Non-standard wastes - those defined as being both hazardous waste under the United Kingdom Hazardous Waste Regulations 2005 and radioactive under the Radioactive Substances Act 1993 - pose particular, unique challenges for radioactive waste management organizations. Treatment and disposal routes for such wastes are limited, in some cases non existent, and generally not cost effective. A non-standard waste of particular concern in the United Kingdom, and indeed on the Sellafield site, is that of radiologically contaminated waste oil. The optioning process for treatment of bulk contaminated waste oil on the Sellafield site has assessed a range of options including incineration, chemical decontamination, physical decontamination and immobilization. Immobilization has proved to be a potentially useful option for oil waste streams that fail to meet waste acceptance criteria for incineration facilities. Experimental development work has been undertaken at Sellafield during 2006 to test the suitability of an innovative technology for the solidification of waste oil with a cross section of waste streams from the site. These trials have demonstrated that this polymer system is able to successfully immobilize a range of aged, chemically and physically diverse contaminated oil waste streams and thus provide a potential solution to the disposal problem posed by this waste stream. (author)

  11. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    NASA Astrophysics Data System (ADS)

    Docters, E. H.; Smolko, E. E.; Suarez, C. E.

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).

  12. REACTIVE BARRIER TREATMENT WALL TECHNOLOGY FOR REMEDIATION OF INORGANIC CONTAMINATED GROUNDWATER

    SciTech Connect

    T. TAYLOR; ET AL

    2001-03-01

    The potential for subsurface reactive barrier wall technology to aid in remediation of contaminated groundwater in situ has prompted testing of novel porous media. Treatability testing of contaminants contacted with various media has been conducted using equilibrium batch techniques, one-dimensional (1-D) columns and 2-D boxes. Continuous mode column and box experiments are useful for assessing critical design parameters under dynamic flow conditions. Experiments have been conducted using a multi-layer barrier treatment approach to immobilize a suite of contaminants. For example, basalt coated with a cationic polymer (poly diallyl dimethyl ammonium chloride [Catfloc{reg_sign}]) was used to agglomerate colloids, Apatite II{reg_sign} sorbed aqueous phase metals and radionuclides including {sup 85,87}Sr and {sup 235}U and facilitated reduction of nitrate and perchlorate, crushed pecan shells sorbed aqueous phase metals and served as a secondary medium for reduction of nitrate and perchlorate concentrations, and finally limestone raised the pH of exiting pore waters close to natural levels.

  13. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride. The...

  14. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride... hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric...

  15. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride... hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric...

  16. Immobilized enzymes affect biofilm formation.

    PubMed

    Cordeiro, Ana L; Hippius, Catharina; Werner, Carsten

    2011-09-01

    The effect of the activity of immobilized enzymes on the initial attachment of pathogenic bacteria commonly associated with nosocomial infections (Pseudomonas aeruginosa and Staphylococcus epidermidis) was investigated. The proteolytic enzymes, subtilisin A and the glycoside hydrolase cellulose, were covalently attached onto poly(ethylene-alt-maleic) anhydride copolymer films. A comparison between active and heat-inactivated surfaces showed that while the activity of immobilized cellulase reduced the attachment of S. epidermidis by 67%, it had no effect on the attachment of P. aeruginosa. Immobilized subtilisin A had opposite effects: the active enzyme had no effect on the attachment of S. epidermidis but reduced the attachment of P. aeruginosa by 44%. The results suggest that different biomolecules are involved in the initial steps of attachment of different bacteria, and that the development of broad-spectrum antifouling enzymatic coatings will need to involve the co-immobilization of enzymes. PMID:21618024

  17. High-level-waste immobilization

    SciTech Connect

    Crandall, J L

    1982-01-01

    Analysis of risks, environmental effects, process feasibility, and costs for disposal of immobilized high-level wastes in geologic repositories indicates that the disposal system safety has a low sensitivity to the choice of the waste disposal form.

  18. Benzalkonium Chloride and Glaucoma

    PubMed Central

    Kaufman, Paul L.; Kiland, Julie A.

    2014-01-01

    Abstract Glaucoma patients routinely take multiple medications, with multiple daily doses, for years or even decades. Benzalkonium chloride (BAK) is the most common preservative in glaucoma medications. BAK has been detected in the trabecular meshwork (TM), corneal endothelium, lens, and retina after topical drop installation and may accumulate in those tissues. There is evidence that BAK causes corneal and conjunctival toxicity, including cell loss, disruption of tight junctions, apoptosis and preapoptosis, cytoskeleton changes, and immunoinflammatory reactions. These same effects have been reported in cultured human TM cells exposed to concentrations of BAK found in common glaucoma drugs and in the TM of primary open-angle glaucoma donor eyes. It is possible that a relationship exists between chronic exposure to BAK and glaucoma. The hypothesis that BAK causes/worsens glaucoma is being tested experimentally in an animal model that closely reflects human physiology. PMID:24205938

  19. Immobilized cells in meat fermentation.

    PubMed

    McLoughlin, A J; Champagne, C P

    1994-01-01

    The immobilization of microbial cells can contribute to fermented meat technology at two basic levels. First, the solid/semisolid nature (low available water) of the substrate restricts the mobility of cells and results in spatial organizations based on "natural immobilization" within the fermentation matrix. The microniches formed influence the fermentation biochemistry through mass transfer limitations and the subsequent development and activity of the microflora. This form of immobilization controls the nature of competition between subpopulations within the microflora and ultimately exerts an effect on the ecological competence (ability to survive and compete) of the various cultures present. Second, immobilized cell technology (ICT) can be used to enhance the ecological competence of starter cultures added to initiate the fermentation. Immobilization matrices such as alginate can provide microniches or microenvironments that protect the culture during freezing or lyophilization, during subsequent rehydration, and when in competition with indigenous microflora. The regulated release of cells from the microenvironments can also contribute to competitive ability. The regulation of both immobilization processes can result in enhanced fermentation activity. PMID:8069934

  20. Reducing Sodium Contamination in MOS Devices

    NASA Technical Reports Server (NTRS)

    Dehaye, R. F.; Feltner, W. R.

    1986-01-01

    Method of removing positive ions from oxides in metal-oxide-semiconductor (MOS) transistors and intergrated circuits ensure freedom from contamination by sodium and other mobile positive ions. Electric field applied during oxide growth to push mobile Na + ions to surface. After cooling from growth temperature, field turned off and Na + contaminated surface layer etched away. New method intended to suplement established methods of minimizing ion contamination, such as scrupulous cleanliness in processing, purging with hydrogen chloride to react with and remove contaminants, and growing extra-thick gate oxide, then etching it to remove large portion of contaminants concentrated near surface.

  1. Use of Bromide: Chloride Ratios to Differentiate Potential Sources of Chloride in a Shallow, Unconfined Aquifer Affected by Brackish-Water Intrusion

    NASA Astrophysics Data System (ADS)

    Andreasen, David C.; Fleck, William B.

    1997-02-01

    Brackish water from Chesapeake Bay and its tributaries has entered the Aquia aquifer in east-central Anne Arundel County, Maryland, USA. This determination was made based on chloride analyses of water samples collected in wells screened in the Aquia aquifer between October 1988 and May 1989. The Aquia aquifer, which is composed of fine- to medium-grained sand, is a shallow, unconfined aquifer in this area. Land use is primarily urban, consisting of a mixture of residential and light commercial areas. Associated with the urban setting is the potential for chloride contamination to enter the Aquia aquifer from anthropogenic sources, such as residential septic-tank effluent, leaky public sewer lines, road-deicing salt, stormwater infiltration basins, and domestic water-conditioning recharge effluent. In order to map the distribution of bay-water intrusion in the Aquia aquifer, chloride derived from Chesapeake Bay was differentiated from chloride derived from anthropogenic sources by comparing the ratio of dissolved bromide to dissolved chloride (bromide:chloride) in groundwater to the distinctive ratio in Chesapeake Bay water. Two additional factors considered in determining the source of the chloride were nitrogen concentrations and well-screen positions of sampled wells in relation to the estimated depth of the fresh-water/brackish-water interface. Of 36 Aquia-aquifer water samples with chloride condentrations greater than 30 mg/L, 22 had bromide:chloride ratios similar to the ratio in Chesapeake Bay water, an indication that bay water is the primary source of the chloride. Of the other 14 samples with bromide:chloride ratios dissimilar to the ratio in Chesapeake Bay water, seven were from wells where screen positions were substantially above the estimated fresh-water/brackish-water interface. Three of these samples had nitrogen concentrations (as nitrite plus nitrate) greater than 3.0 mg/L, an indication that chloride in these groundwater samples comes from

  2. Reactor-chromatographic determination of vinyl chloride in polyvinyl chloride

    SciTech Connect

    Berezkin, V.G.

    1986-08-01

    The authors carry out a chromatographic study of the volatile products that evolve when various grades of domestic polyvinyl chloride are heated, to determine the concentration of residual monomer. To find vinyl chloride in complex mixtures of air pollutants the authors used sorptive reaction concentration of impurities. This new combination of methods is based on preliminary separation at the sampling stage of impurities that interfere in the analysis, followed by concentration of the desired components in a trap with an adsorbent, and chromatographic determination of the concentrated trace materials. The method obtains low vinyl chloride concentrations (down to 10/sup -4/-10/sup -5/ wt. %) with +/-5 relative error.

  3. Status of plutonium ceramic immobilization processes and immobilization forms

    SciTech Connect

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.; Jostsons, A.

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  4. Layer-by-layer self-assembly immobilization of catalases on wool fabrics.

    PubMed

    Liu, J; Wang, Q; Fan, X R; Sun, X J; Huang, P H

    2013-04-01

    A new immobilization strategy of catalases on natural fibers was reported in this paper. Catalase (CAT) from Bacillus subtilis was assembled into multiple layers together with poly(diallyldimethylammonium chloride) (PDDA) on wool fabrics via layer-by-layer (LBL) electrostatic self-assembly deposition. The mechanism and structural evaluation of LBL electrostatic self-assembly were studied in terms of scanning electron microscopy (SEM), surface zeta potential, and apparent color depth (K/S). The SEM pictures showed obvious deposits absorbed on the wool surfaces after LBL self-assembly. The surface zeta potential and dyeing depth of CAT/PDDA-assembled wool fabrics presented a regular layer-by-layer alternating trend along with the change of deposited materials, revealing the multilayer structure of the wool fiber immobilized catalases. The V(max) values were found to be 2,500±238 U/mg protein for the free catalase and 1,000±102 U/mg protein for the immobilized catalase. The K(m) value of free catalase (11.25±2.3 mM) was found to be lower than that of the immobilized catalase (222.2±36.5 mM). The immobilized catalase remained high enzymatic activity and showed a measureable amount of reusability, which proved that LBL electrostatic self-assembly deposition is a promising approach to immobilize catalases. PMID:23420488

  5. CPP-603 Chloride Removal System Decontamination and Decommissioning. Final report

    SciTech Connect

    Moser, C.L.

    1993-02-01

    The CPP-603 (annex) Chloride Removal System (CRS) Decontamination and Decommissioning (D&D) Project is described in this report. The CRS was used for removing Chloride ions and other contaminants that were suspended in the waters of the underwater fuel storage basins in the CPP-603 Fuel Receiving and Storage Facility (FRSF) from 1975 to 1981. The Environmental Checklist and related documents, facility characterization, decision analysis`, and D&D plans` were prepared in 1991. Physical D&D activities were begun in mid summer of 1992 and were completed by the end of November 1992. All process equipment and electrical equipment were removed from the annex following accepted asbestos and radiological contamination removal practices. The D&D activities were performed in a manner such that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) occurred.

  6. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    PubMed Central

    Huang, Po-Jung; Chang, Ken-Lin; Chen, Shui-Tein

    2015-01-01

    Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride) was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase−1 at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h−1 L−1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L−1). Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase. PMID:25874210

  7. Preparation and properties of immobilized amyloglucosidase

    SciTech Connect

    Nithianandam, V.S.; Srinivasan, K.S.V.; Thomas Joseph, K.; Santappa, M.

    1981-10-01

    Amyloglucosidase was immobilized on a copolymer of methyl methacrylate and 2-di-methylaminoethyl methacrylate. The resulting immobilized amyloglucosidase has 19% of the soluble enzyme specific activity. The pH optimum of immobilized amyloglucosidase is shifted towards acidity by 1.9 units. The temperature optimum of immobilized enzyme is shifted upward by 5 degrees C. The immobilized amyloglucosidase has the maximum stability at pH 4.6, whereas the soluble enzyme has maximum stability at pH 5.5. While soluble amyloglucosidase has a maximum thermal stability at 50 degrees C, the stability of the immobilized amyloglucosidase steadily decreases with the increase in temperature. (Refs. 7).

  8. Studies Update Vinyl Chloride Hazards.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1980-01-01

    Extensive study affirms that vinyl chloride is a potent animal carcinogen. Epidemiological studies show elevated rates of human cancers in association with extended contact with the compound. (Author/RE)

  9. Skeletal fluorosis in immobilized extremities.

    PubMed

    Rosenquist, J B

    1975-11-01

    The effect of immobilization on skeletal fluorosis was studied in growing rabbits. One hind leg was immobilized by an external fixation device extending below the wrist joint and above the knee joint, the extremity being in a straight position after severance of the sciatic nerve. The animals, aged 7 weeks at the beginning of the experiment, were given 10 mg of fluoride per kg body weight and day during 12 weeks. In the tibiae, development of the skeletal fluorosis was more irregular than that observed in previous studies of normally active animals, being most excessive in the mobile bone. The immobilization effect was most profound in the femora as the cortical thickness and the femur score were significantly higher than those in the mobile femora. It was suggested that an altered muscular activity was the reason for the observed changes. PMID:1189918

  10. Nanoporous gold for enzyme immobilization.

    PubMed

    Stine, Keith J; Jefferson, Kenise; Shulga, Olga V

    2011-01-01

    Nanoporous gold (NPG) is a material of emerging interest for immobilization of biomolecules and -especially enzymes. NPG materials provide a high gold surface area onto which biomolecules can either be directly physisorbed or covalently linked after first modifying the NPG with a self-assembled monolayer. The material can be used as a high surface area electrode and with immobilized enzymes can be used for amperometric detection schemes. NPG can be prepared in a variety of formats from alloys containing less than 50 atomic% gold by dealloying procedures. Related high surface area gold structures have been prepared using templating approaches. Covalent enzyme immobilization can be achieved by first forming a self-assembled monolayer on NPG bearing a terminal reactive functional group followed by conjugation to the enzyme through amide linkages to lysine residues. PMID:20865389