Science.gov

Sample records for immune cells macrophages

  1. Metabolic reprogramming in macrophages and dendritic cells in innate immunity

    PubMed Central

    Kelly, Beth; O'Neill, Luke AJ

    2015-01-01

    Activation of macrophages and dendritic cells (DCs) by pro-inflammatory stimuli causes them to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS), similar to the Warburg effect in tumors. However, it is only recently that the mechanisms responsible for this metabolic reprogramming have been elucidated in more detail. The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays an important role under conditions of both hypoxia and normoxia. The withdrawal of citrate from the tricarboxylic acid (TCA) cycle has been shown to be critical for lipid biosynthesis in both macrophages and DCs. Interference with this process actually abolishes the ability of DCs to activate T cells. Another TCA cycle intermediate, succinate, activates HIF-1α and promotes inflammatory gene expression. These new insights are providing us with a deeper understanding of the role of metabolic reprogramming in innate immunity. PMID:26045163

  2. Innate immune responses of porcine macrophage cell line (Cdelts2+) to virus-associated virulence determinants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to define the changes in the expression of immune genes in response to virus-associated virulence determinants. We stimulated a monocyte-derived porcine macrophage cell line (Cdelta2+) for 3 and 24h with Imiquimod, Poly IC and Poly IC with Lyovec. Cell lysates were process...

  3. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    PubMed Central

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Thomas, Ginu; Zhou, Shouhao; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  4. Sequestration from Immune CD4^+ T Cells of Mycobacteria Growing in Human Macrophages

    NASA Astrophysics Data System (ADS)

    Pancholi, Preeti; Mirza, Asra; Bhardwaj, Nina; Steinman, Ralph M.

    1993-05-01

    CD4^+ helper T cells mediate resistance to tuberculosis, presumably by enhancing the antimicrobial activity of macrophages within which the Mycobacterium tuberculosis organism grows. A first step in resistance should be the presentation of mycobacterial antigens by macrophages to CD4^+ T cells. However, when the antigenic stimulus is limited to organisms growing in human monocytes, the organisms become sequestered from immune CD4^+ T cells. This block in presentation is selective for growing mycobacteria and not for other stimuli. Sequestration would allow replicating organisms to persist in infected individuals and may contribute to virulence.

  5. Immune responses of macrophages and dendritic cells regulated by mTOR signalling.

    PubMed

    Katholnig, Karl; Linke, Monika; Pham, Ha; Hengstschläger, Markus; Weichhart, Thomas

    2013-08-01

    The innate myeloid immune system is a complex network of cells that protect against disease by identifying and killing pathogens and tumour cells, but it is also implicated in homoeostatic mechanisms such as tissue remodelling and wound healing. Myeloid phagocytes such as monocytes, macrophages or dendritic cells are at the basis of controlling these immune responses in all tissues of the body. In the present review, we summarize recent studies demonstrating that mTOR [mammalian (or mechanistic) target of rapamycin] regulates innate immune reactions in macrophages and dendritic cells. The mTOR pathway serves as a decision maker to control the cellular response to pathogens and tumours by regulating the expression of inflammatory mediators such as cytokines, chemokines or interferons. In addition to various in vivo mouse models, kidney transplant patients under mTOR inhibitor therapy allowed the elucidation of important innate immune functions regulated by mTOR in humans. The role of the mTOR pathway in macrophages and dendritic cells enhances our understanding of the immune system and suggests new therapeutic avenues for the regulation of pro- versus anti-inflammatory mediators with potential relevance to cancer therapy, the design of novel adjuvants and the control of distinct infectious and autoimmune diseases. PMID:23863158

  6. Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn's disease.

    PubMed

    Däbritz, Jan

    2014-03-01

    Current literature consolidates the view of Crohn's disease (CD) as a form of immunodeficiency highlighting dysregulation of intestinal innate immunity in the pathogenesis of CD. Intestinal macrophages derived from blood monocytes play a key role in sustaining the innate immune homeostasis in the intestine, suggesting that the monocyte/macrophage compartment might be an attractive therapeutic target for the management of CD. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that also promotes myeloid cell activation, proliferation, and differentiation. GM-CSF has a protective effect in human CD and mouse models of colitis. However, the role of GM-CSF in immune and inflammatory reactions in the intestine is not well defined. Beneficial effects exerted by GM-CSF during intestinal inflammation could relate to modulation of the mucosal barrier function in the intestine, including epithelial cell proliferation, survival, restitution, and immunomodulatory actions. The aim of this review is to summarize potential mechanistic roles of GM-CSF in intestinal innate immune cell homeostasis and to highlight its central role in maintenance of the intestinal immune barrier in the context of immunodeficiency in CD. PMID:24503766

  7. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis.

    PubMed

    Ouimet, Mireille; Ediriweera, Hasini N; Gundra, U Mahesh; Sheedy, Frederick J; Ramkhelawon, Bhama; Hutchison, Susan B; Rinehold, Kaitlyn; van Solingen, Coen; Fullerton, Morgan D; Cecchini, Katharine; Rayner, Katey J; Steinberg, Gregory R; Zamore, Phillip D; Fisher, Edward A; Loke, P'ng; Moore, Kathryn J

    2015-12-01

    Cellular metabolism is increasingly recognized as a controller of immune cell fate and function. MicroRNA-33 (miR-33) regulates cellular lipid metabolism and represses genes involved in cholesterol efflux, HDL biogenesis, and fatty acid oxidation. Here, we determined that miR-33-mediated disruption of the balance of aerobic glycolysis and mitochondrial oxidative phosphorylation instructs macrophage inflammatory polarization and shapes innate and adaptive immune responses. Macrophage-specific Mir33 deletion increased oxidative respiration, enhanced spare respiratory capacity, and induced an M2 macrophage polarization-associated gene profile. Furthermore, miR-33-mediated M2 polarization required miR-33 targeting of the energy sensor AMP-activated protein kinase (AMPK), but not cholesterol efflux. Notably, miR-33 inhibition increased macrophage expression of the retinoic acid-producing enzyme aldehyde dehydrogenase family 1, subfamily A2 (ALDH1A2) and retinal dehydrogenase activity both in vitro and in a mouse model. Consistent with the ability of retinoic acid to foster inducible Tregs, miR-33-depleted macrophages had an enhanced capacity to induce forkhead box P3 (FOXP3) expression in naive CD4(+) T cells. Finally, treatment of hypercholesterolemic mice with miR-33 inhibitors for 8 weeks resulted in accumulation of inflammation-suppressing M2 macrophages and FOXP3(+) Tregs in plaques and reduced atherosclerosis progression. Collectively, these results reveal that miR-33 regulates macrophage inflammation and demonstrate that miR-33 antagonism is atheroprotective, in part, by reducing plaque inflammation by promoting M2 macrophage polarization and Treg induction. PMID:26517695

  8. Innate immune properties of the immortalized macrophage cell line I-9.5.

    PubMed

    Chang, W; Yeh, S H; Drath, D B

    1995-01-01

    A colony stimulating factor-1-dependent macrophage cell line, I-9.5, originally derived from a BALB/c splenic macrophage colony, was maintained in culture and examined for the expression of certain properties key to its innate immune function. Chemotaxis, phagocytosis, and superoxide release were assessed in this cell line and compared to either freshly isolated elicited murine peritoneal or splenic macrophages from BALB/c mice. Three separate experiments indicated that I-9.5 displayed comparable phagocytosis of 14C-radio-labeled Staphylococcus aureus and similar levels of superoxide release in response to opsonized zymosan. I-9.5, however, demonstrated impaired chemotaxis toward the chemoattractant, N-formyl-methionyl-leucyl-phenylalanine, and displayed impaired random migration in response to a balanced salt solution. This observation suggests that I-9.5 may serve as an important model for elucidating the structural and molecular correlates of chemotaxis. PMID:7704335

  9. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: apoptosis and immune cell dysfunction.

    PubMed

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Zhao, Lixia; Yang, Yu

    2015-02-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants and are often detected in the environment, wildlife, and humans, presenting potential threats to ecosystem and human health. PBDEs can cause neurotoxicity, hepatotoxicity, and endocrine disruption. However, data on PBDE immunotoxicity are limited, and the toxicity mechanisms remain largely unknown. Both immune cell death and dysfunction can modulate the responses of the immune system. This study examined the toxic effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) on the immune system by using peritoneal macrophages as the model. The macrophages were exposed to PBDEs, and cell death was determined through flow cytometry and immunochemical blot. The results showed that after 24h of exposure, BDE-47 (>5 μM) and BDE-209 (>20 μM) induced cell apoptosis, increased intracellular reactive oxygen species (ROS) formation and depleted glutathione. BDE-47 was more potent than BDE-209; the cytotoxic concentrations for BDE-47 and BDE-209 were determined to be 5 μM and 20 μM, respectively, during 24h of exposure. However, pretreatment with n-acetyl-l-cysteine (ROS scavenger) partially reversed the cytotoxic effects. Further gene expression analyses on Caspase-3,-8,-9, TNFR1, and Bax revealed that both intrinsic and extrinsic apoptotic pathways were activated. More importantly, non-cytotoxic concentrations BDE-47 (<2 μM) and BDE-209 (<10 μM) could impair macrophage accessory cell function in a concentration-dependent manner, but no effects were observed on phagocytic responses. These revealed effects of PBDEs on macrophages may shed light on the toxicity mechanisms of PBDEs and suggest the necessity of evaluating cellular functionality during the risk assessment of PBDE immunotoxicity. PMID:25462306

  10. Activation of mesenchymal stem cells by macrophages promotes tumor progression through immune suppressive effects

    PubMed Central

    Jia, Xiao-hua; Feng, Guo-wei; Wang, Zhong-liang; Du, Yang; Shen, Chen; Hui, Hui; Peng, Dong; Li, Zong-jin; Kong, De-ling; Tian, Jie

    2016-01-01

    Cancer development and progression is linked to tumor-associated macrophages (TAMs). Distinct TAMs subsets perform either protective or pathogenic effects in cancer. A protective role in carcinogenesis has been described for M1 macrophages, which activate antitumor mechanisms. By comparison, TAMs isolated from solid and metastatic tumors have a suppressive M2-like phenotype, which could support multiple aspects of tumor progression. Currently, it has not been clearly understood how macrophages in tumor-associated stroma could be hijacked to support tumor growth. Mesenchymal stem cells (MSCs) actively interact with components of the innate immune system and display both anti-inflammatory and pro-inflammatory effects. Here, we tested whether MSCs could favor the tumor to escape from immunologic surveillance in the presence of M1 macrophages. We found that MSCs educated by M1 condition medium (cMSCs) possessed a greatly enhanced ability in promoting tumor growth in vivo. Examination of cytokines/chemokines showed that the cMSCs acquired a regulatory profile, which expressed high levels of iNOS and MCP1. Consistent with an elevated MCP1 expression in cMSCs, the tumor-promoting effect of the cMSCs depended on MCP1 mediated macrophage recruitment to tumor sites. Furthermore, IL-6 secreted by the cMSCs could polarize infiltrated TAMs into M2-like macrophages. Therefore, when macrophages changed into M1 pro-inflammation type in tumor microenvironment, the MSCs would act as poor sensors and switchers to accelerate tumor growth. PMID:26988913

  11. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells

    PubMed Central

    Ohta, Takashi; Ido, Atsushi; Kusano, Kie; Miura, Chiemi; Miura, Takeshi

    2014-01-01

    A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named “dipterose”, with a molecular weight of 1.01×106 and comprising nine monosaccharides. Dipterose was synthesized in the melon fly itself at the pupal stage. The NO-producing activity of dipterose was approximately equal to that of lipopolysaccharide, a potent immunostimulator. Inhibition of Toll-like receptor 4 (TLR4) led to the suppression of NO production by dipterose. Furthermore, dipterose induced the expression of proinflammatory cytokines and interferon β (IFNβ) and promoted the activation of nuclear factor kappa B (NF-κB) in macrophages, indicating that it stimulates the induction of various cytokines in RAW264 cells via the TLR4 signaling pathway. Our results thus suggest that dipterose activates the innate immune response against various pathogenic microorganisms and viral infections. This is the first identification of an innate immune-activating polysaccharide from an animal. PMID:25490773

  12. Macrophages as IL-25/IL-33-Responsive Cells Play an Important Role in the Induction of Type 2 Immunity

    PubMed Central

    Yang, Zhonghan; Grinchuk, Viktoriya; Urban, Joseph F.; Bohl, Jennifer; Sun, Rex; Notari, Luigi; Yan, Shu; Ramalingam, Thirumalai; Keegan, Achsah D.; Wynn, Thomas A.; Shea-Donohue, Terez; Zhao, Aiping

    2013-01-01

    Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies. PMID:23536877

  13. Complement Deposition on Nanoparticles Can Modulate Immune Responses by Macrophage, B and T Cells.

    PubMed

    Pondman, Kirsten M; Tsolaki, Anthony G; Paudyal, Basudev; Shamji, Mohamed H; Switzer, Amy; Pathan, Ansar A; Abozaid, Suhair M; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday

    2016-01-01

    Nanoparticles are attractive drug delivery vehicles for targeted organ-specific as well as systemic therapy. However, their interaction with the immune system offers an intriguing challenge to the success of nanotherapeutics in vivo. Recently, we showed that pristine and derivatised carbon nanotubes (CNT) can activate complement mainly via the classical pathway leading to enhanced uptake by phagocytic cells, and transcriptional down-regulation of pro-inflammatory cytokines. Here, we report the interaction of complement-activating CC-CNT and RNA-CNT, and non-complement-activating gold-nickel (Au-Ni) nanowires with cell lines representing macrophage, B and T cells. Complement deposition considerably enhanced uptake of CNTs by immune cells known to overexpress complement receptors. Real-Time qPCR and multiplex array analyses showed complement-dependent down-regulation of TNF-α and IL-1β and up-regulation of IL-12 by CMC- and RNA-CNTs, in addition to revealing IL-10 as a crucial regulator during nanoparticle-immune cell interaction. It appears that complement system can recognize molecular patterns differentially displayed by nanoparticles and thus, modulate subsequent processing of nanoparticles by antigen capturing and antigen presenting cells, which can shape innate and adaptive immune axes. PMID:27301184

  14. Macrophages and cellular immunity in Drosophila melanogaster.

    PubMed

    Gold, Katrina S; Brückner, Katja

    2015-12-01

    The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life. PMID:27117654

  15. Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis.

    PubMed

    Furukawa, Ryohei; Tamaki, Kana; Kaneko, Hiroyuki

    2016-04-01

    Immune cell recruitment is critical step in the inflammatory response and associated diseases. However, the underlying regulatory mechanisms are poorly understood in invertebrates. Mesenchyme cells of the starfish larvae, which allowed Metchnikoff to complete his landmark experiments, are important model for analysis of immune cell migration. The present study investigated the role of macrophage migration inhibitory factor (MIF)-an evolutionarily conserved cytokine that is functionally similar to chemokines-in the larvae of the starfish Patiria (Asterina) pectinifera, which were found to possess two orthologs, ApMIF1 and ApMIF2. ApMIF1 and ApMIF2 clustered with mammalian MIF and its homolog D-dopachrome tautomerase (DDT), respectively, in the phylogenetic analysis. In contrast to the functional similarity between mammalian MIF and DDT, ApMIF1 knockdown resulted in the excessive recruitment of mesenchyme cells in vivo, whereas ApMIF2 deficiency inhibited the recruitment of these cells to foreign bodies. Mesenchyme cells migrated along a gradient of recombinant ApMIF2 in vitro, whereas recombinant ApMIF1 completely blocked ApMIF2-induced directed migration. Moreover, the expression patterns of ApMIF1 and ApMIF2 messenger RNA in bacteria-challenged mesenchyme cells were consistent with in vivo observations of cell behaviors. These results indicate that ApMIF1 and ApMIF2 act as chemotactic inhibitory and stimulatory factors, respectively, and coordinately regulate mesenchyme cell recruitment during the immune response in starfish larvae. This is the first report describing opposing functions for MIF- and DDT-like molecules. Our findings provide novel insight into the mechanisms underlying immune regulation in invertebrates. PMID:26833025

  16. MANGANESE CHLORIDE ENHANCES NATURAL CELL-MEDIATED IMMUNE EFFECTOR CELL FUNCTION: EFFECTS ON MACROPHAGES

    EPA Science Inventory

    A single intramuscular injection of MnCl2 in mice caused an increase in macrophage functional activity. Spleen cell antibody-dependent cellmediated cytotoxicity (ADCC) against both chicken erythrocytes and P815 tumor cell targets was enhanced 24 hours following a single injection...

  17. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response

    PubMed Central

    Liu, Dong; Uzonna, Jude E.

    2012-01-01

    The complicated interactions between Leishmania and the host antigen-presenting cells (APCs) have fundamental effects on the final outcome of the disease. Two major APCs, macrophages and dendritic cells (DCs), play critical roles in mediating resistance and susceptibility during Leishmania infection. Macrophages are the primary resident cell for Leishmania: they phagocytose and permit parasite proliferation. However, these cells are also the major effector cells to eliminate infection. The effective clearance of parasites by macrophages depends on activation of appropriate immune response, which is usually initiated by DCs. Here, we review the early interaction of APCs with Leishmania parasites and how these interactions profoundly impact on the ensuing adaptive immune response. We also discuss how the current knowledge will allow further refinement of our understanding of the interplay between Leishmania and its hosts that leads to resistance or susceptibility. PMID:22919674

  18. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion.

    PubMed

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E; Alvarado, Alvaro G; Turaga, Soumya M; Sorensen, Mia D; Rayman, Patricia; Flavahan, William A; Hale, James S; Stoltz, Kevin; Sinyuk, Maksim; Wu, Qiulian; Jarrar, Awad; Kim, Sung-Hak; Fox, Paul L; Nakano, Ichiro; Rich, Jeremy N; Ransohoff, Richard M; Finke, James; Kristensen, Bjarne W; Vogelbaum, Michael A; Lathia, Justin D

    2016-08-01

    Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039. PMID:27145382

  19. Macrophage- and Neutrophil-Derived TNF-α Instructs Skin Langerhans Cells to Prime Antiviral Immune Responses

    PubMed Central

    Epaulard, Olivier; Adam, Lucille; Poux, Candice; Zurawski, Gerard; Salabert, Nina; Rosenbaum, Pierre; Dereuddre-Bosquet, Nathalie; Zurawski, Sandra; Flamar, Anne-Laure; Oh, Sangkon; Romain, Gabrielle; Chapon, Catherine; Banchereau, Jacques; Lévy, Yves; Le Grand, Roger; Martinon, Frédéric

    2014-01-01

    Dendritic cells (DCs) are major antigen presenting cells that can efficiently prime immune responses. However, the roles of skin resident Langerhans cells (LCs) in eliciting immune responses have not been fully understood. We here demonstrate for the first time that LCs in cynomolgus macaque skin are capable of inducing antiviral-specific immune responses in vivo. Targeting HIV-Gag or influenza hemagglutinin antigens to skin LCs using recombinant fusion proteins of anti-Langerin antibody and antigens resulted in the induction of the viral antigen-specific responses. We further demonstrated that such antigen-specific immune responses elicited by skin LCs were greatly enhanced by TLR ligands (TLR-Ls), polyriboinosinic polyribocytidylic acid (poly(I:C)) and R848. These enhancements were not due to the direct actions of TLR-Ls on LCs, but mainly dependent on TNF-α secreted from macrophages and neutrophils recruited to local tissues. Skin LC activation and migration out of the epidermis are associated with macrophage and neutrophil infiltration into the tissues. More importantly, blocking TNF-α abrogated the activation and migration of skin LCs. This study highlights that the cross-talk between innate immune cells in local tissues is an important component for the establishment of adaptive immunity. Understanding the importance of local immune networks will help us to design new and effective vaccines against microbial pathogens. PMID:25057007

  20. MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis

    PubMed Central

    Ouimet, Mireille; Ediriweera, Hasini N.; Gundra, U. Mahesh; Sheedy, Frederick J.; Ramkhelawon, Bhama; Hutchison, Susan B.; Rinehold, Kaitlyn; van Solingen, Coen; Fullerton, Morgan D.; Cecchini, Katharine; Rayner, Katey J.; Steinberg, Gregory R.; Zamore, Phillip D.; Fisher, Edward A.; Loke, P’ng; Moore, Kathryn J.

    2015-01-01

    Cellular metabolism is increasingly recognized as a controller of immune cell fate and function. MicroRNA-33 (miR-33) regulates cellular lipid metabolism and represses genes involved in cholesterol efflux, HDL biogenesis, and fatty acid oxidation. Here, we determined that miR-33–mediated disruption of the balance of aerobic glycolysis and mitochondrial oxidative phosphorylation instructs macrophage inflammatory polarization and shapes innate and adaptive immune responses. Macrophage-specific Mir33 deletion increased oxidative respiration, enhanced spare respiratory capacity, and induced an M2 macrophage polarization–associated gene profile. Furthermore, miR-33–mediated M2 polarization required miR-33 targeting of the energy sensor AMP-activated protein kinase (AMPK), but not cholesterol efflux. Notably, miR-33 inhibition increased macrophage expression of the retinoic acid–producing enzyme aldehyde dehydrogenase family 1, subfamily A2 (ALDH1A2) and retinal dehydrogenase activity both in vitro and in a mouse model. Consistent with the ability of retinoic acid to foster inducible Tregs, miR-33–depleted macrophages had an enhanced capacity to induce forkhead box P3 (FOXP3) expression in naive CD4+ T cells. Finally, treatment of hypercholesterolemic mice with miR-33 inhibitors for 8 weeks resulted in accumulation of inflammation-suppressing M2 macrophages and FOXP3+ Tregs in plaques and reduced atherosclerosis progression. Collectively, these results reveal that miR-33 regulates macrophage inflammation and demonstrate that miR-33 antagonism is atheroprotective, in part, by reducing plaque inflammation by promoting M2 macrophage polarization and Treg induction. PMID:26517695

  1. Macrophages in homeostatic immune function.

    PubMed

    Jantsch, Jonathan; Binger, Katrina J; Müller, Dominik N; Titze, Jens

    2014-01-01

    Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism as well as salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders. PMID:24847274

  2. Macrophages in homeostatic immune function

    PubMed Central

    Jantsch, Jonathan; Binger, Katrina J.; Müller, Dominik N.; Titze, Jens

    2014-01-01

    Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism as well as salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders. PMID:24847274

  3. Porcine macrophage Cdelta2+ and Cdelta2- cell lines support influenza virus infection and replication and Cdelta2+ cells mount innate immune responses to influenza virus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Respiratory epithelial cells are the first cells which are infected with influenza virus and these cells play a major role in influenza pathogenesis. However, many studies have shown that alveolar macrophages also play a very important role in the pathogenesis and immunity to influenza infection. Un...

  4. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses.

    PubMed

    Chiossone, Laura; Conte, Romana; Spaggiari, Grazia Maria; Serra, Martina; Romei, Cristina; Bellora, Francesca; Becchetti, Flavio; Andaloro, Antonio; Moretta, Lorenzo; Bottino, Cristina

    2016-07-01

    Mesenchymal stromal cells (MSCs) support hematopoiesis and exert immunoregulatory activities. Here, we analyzed the functional outcome of the interactions between MSCs and monocytes/macrophages. We showed that MSCs supported the survival of monocytes that underwent differentiation into macrophages, in the presence of macrophage colony-stimulating factor. However, MSCs skewed their polarization toward a peculiar M2-like functional phenotype (M(MSC) ), through a prostaglandin E2-dependent mechanism. M(MSC) were characterized by high expression of scavenger receptors, increased phagocytic capacity, and high production of interleukin (IL)-10 and transforming growth factor-β. These cytokines contributed to the immunoregulatory properties of M(MSC) , which differed from those of typical IL-4-induced macrophages (M2). In particular, interacting with activated natural killer (NK) cells, M(MSC) inhibited both the expression of activating molecules such as NKp44, CD69, and CD25 and the production of IFNγ, while M2 affected only IFNγ production. Moreover, M(MSC) inhibited the proliferation of CD8(+) T cells in response to allogeneic stimuli and induced the expansion of regulatory T cells (Tregs). Toll-like receptor engagement reverted the phenotypic and functional features of M(MSC) to those of M1 immunostimulatory/proinflammatory macrophages. Overall our data show that MSCs induce the generation of a novel type of alternatively activated macrophages capable of suppressing both innate and adaptive immune responses. These findings may help to better understand the role of MSCs in healthy tissues and inflammatory diseases including cancer, and provide clues for novel therapeutic approaches. Stem Cells 2016;34:1909-1921. PMID:27015881

  5. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. II: adenomyosis and macrophages.

    PubMed

    Tremellen, Kelton P; Russell, Peter

    2012-01-01

    Adenomyosis, a condition usually associated with multiparity, is not generally seen as a cause of infertility. However, recent studies have reported a reduction in IVF implantation rates and a link with miscarriage, suggesting that adenomyosis may interfere with successful implantation. To investigate this hypothesis, the clinical records and laboratory results, which routinely include immunohistochemical examination of a late luteal phase endometrial biopsy for leukocytes, were retrospectively reviewed for 64 women with implantation failure and who previously had been screened for the presence of adenomyosis by pelvic MRI. The presence of either diffuse or "adenomyoma" type of adenomyosis was associated with a marked increase (p=0.004) in the density of macrophages and natural killer cells in the endometrial stroma, compared to those women with mild focal adenomyosis or no disease. These findings point to an immunological mechanism by which adenomyosis might interfere with successful embryo implantation. PMID:22209314

  6. Lack of strong anti-viral immune gene stimulation in Torque Teno Sus Virus1 infected macrophage cells.

    PubMed

    Singh, P; Ramamoorthy, S

    2016-08-01

    While recent findings suggest that swine TTVs (TTSuVs) can act as primary or co-infecting pathogens, very little is known about viral immunity. To determine whether TTSuVs downregulate key host immune responses to facilitate their own survival, a swine macrophage cell line, 3D4/31, was used to over-express recombinant TTSuV1 viral particles or the ORF3 protein. Immune gene expression profiles were assessed by a quantitative PCR panel consisting of 22 immune genes, in cell samples collected at 6, 12, 24 and 48h post-transfection. Despite the upregulation of IFN-β and TLR9, interferon stimulated innate genes and pro-inflammatory genes were not upregulated in virally infected cells. The adaptive immune genes, IL-4 and IL-13, were significantly downregulated at 6h post-transfection. The ORF3 protein did not appear do not have a major immuno-suppressive effect, nor did it stimulate anti-viral immunity. Data from this study warrants further investigation into the mechanisms of TTV related immuno-pathogenesis. PMID:27179346

  7. The role of indoleamine 2,3-dioxygenase (IDO) in immune tolerance: focus on macrophage polarization of THP-1 cells.

    PubMed

    Wang, Xian-Feng; Wang, Hong-Sheng; Wang, Hao; Zhang, Fan; Wang, Ke-Fang; Guo, Qiang; Zhang, Ge; Cai, Shao-Hui; Du, Jun

    2014-01-01

    Macrophages can be divided into two groups as M1 and M2 phenotype. Our results and other groups revealed that IFN-γ can up-regulate the IDO expression and differentiate THP-1 cells to M1 phenotype. Therefore we hypothesized that IDO may play potential roles in macrophage differentiation. Interesting, our results indicated that the ectopic IDO increases the expression of M2 markers such as IL-10 and CXCR4 while decreases the M1 markers such as CCR7 and IL-12p35. In contrast, the knockdown of IDO expression in THP-1 cells resulted in increased M1 markers and lower M2 markers. Our results suggested that the expression intensity of IDO modulates macrophages differentiation. These finding support the counter-regulatory role for IDO with regarding to the polarization of macrophages to restrain excessive or inappropriate immune activation in inflammatory or tumor microenvironment. It throws new light on the mechanisms about the immunosuppressive effect of IDO in tumor or inflammatory diseases. PMID:24721110

  8. CXCL10-Mediates Macrophage, but not Other Innate Immune Cells-Associated Inflammation in Murine Nonalcoholic Steatohepatitis

    PubMed Central

    Tomita, Kyoko; Freeman, Brittany L.; Bronk, Steven F.; LeBrasseur, Nathan K.; White, Thomas A.; Hirsova, Petra; Ibrahim, Samar H.

    2016-01-01

    Nonalcoholic steatohepatitis (NASH) is an inflammatory lipotoxic disorder, but how inflammatory cells are recruited and activated within the liver is still unclear. We previously reported that lipotoxic hepatocytes release CXCL10-enriched extracellular vesicles, which are potently chemotactic for cells of the innate immune system. In the present study, we sought to determine the innate immune cell involved in the inflammatory response in murine NASH and the extent to which inhibition of the chemotactic ligand CXCL10 and its cognate receptor CXCR3 could attenuate liver inflammation, injury and fibrosis. C57BL/6J CXCL10−/−, CXCR3−/− and wild type (WT) mice were fed chow or high saturated fat, fructose, and cholesterol (FFC) diet. FFC-fed CXCL10−/− and WT mice displayed similar weight gain, metabolic profile, insulin resistance, and hepatic steatosis. In contrast, compared to the WT mice, FFC-fed CXCL10−/− mice had significantly attenuated liver inflammation, injury and fibrosis. Genetic deletion of CXCL10 reduced FFC-induced proinflammatory hepatic macrophage infiltration, while natural killer cells, natural killer T cells, neutrophils and dendritic cells hepatic infiltration were not significantly affected. Our results suggest that CXCL10−/− mice are protected against diet-induced NASH, in an obesity-independent manner. Macrophage-associated inflammation appears to be the key player in the CXCL10-mediated sterile inflammatory response in murine NASH. PMID:27349927

  9. Immune polarization by hookworms: taking cues from T helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages.

    PubMed

    Nair, Meera G; Herbert, De'Broski R

    2016-06-01

    Cellular and molecular investigation of parasitic helminth infections has greatly accelerated the understanding of type 2 immune responses. However, there remains considerable debate regarding the specific leucocytes that kill parasites and whether these mechanisms are distinct from those responsible for tissue repair. Herein, we chronicle discoveries over the past decade highlighting current paradigms in type 2 immunity with a particular emphasis upon how CD4(+) T helper type 2 cells, type 2 innate lymphoid cells and alternatively activated macrophages coordinately control helminth-induced parasitism. Primarily, this review will draw from studies of the murine nematode parasite Nippostrongylus brasiliensis, which bears important similarities to the human hookworms Ancylostoma duodenale and Necator americanus. Given that one or more hookworm species currently infect millions of individuals across the globe, we propose that vaccine and/or pharmaceutical-based cure strategies targeting these affected human populations should incorporate the conceptual advances outlined herein. PMID:26928141

  10. Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages.

    PubMed

    Günther, Juliane; Czabanska, Anna; Bauer, Isabel; Leigh, James A; Holst, Otto; Seyfert, Hans-Martin

    2016-01-01

    Streptococcus uberis is frequently isolated from the mammary gland of dairy cattle. Infection with some strains can induce mild subclinical inflammation whilst others induce severe inflammation and clinical mastitis. We compared here the inflammatory response of primary cultures of bovine mammary epithelial cells (pbMEC) towards S. uberis strains collected from clinical or subclinical cases (seven strains each) of mastitis with the strong response elicited by Escherichia coli. Neither heat inactivated nor live S. uberis induced the expression of 10 key immune genes (including TNF, IL1B, IL6). The widely used virulent strain 0140J and the avirulent strain, EF20 elicited similar responses; as did mutants defective in capsule (hasA) or biofilm formation (sub0538 and sub0539). Streptococcus uberis failed to activate NF-κB in pbMEC or TLR2 in HEK293 cells, indicating that S. uberis particles did not induce any TLR-signaling in MEC. However, preparations of lipoteichoic acid (LTA) from two strains strongly induced immune gene expression and activated NF-κB in pbMEC, without the involvement of TLR2. The immune-stimulatory LTA must be arranged in the intact S. uberis such that it is unrecognizable by the relevant pathogen receptors of the MEC. The absence of immune recognition is specific for MEC, since the same S. uberis preparations strongly induced immune gene expression and NF-κB activity in the murine macrophage model cell RAW264.7. Hence, the sluggish immune response of MEC and not of professional immune cells to this pathogen may aid establishment of the often encountered belated and subclinical phenotype of S. uberis mastitis. PMID:26738804

  11. Lewis Lung Cancer Cells Promote SIGNR1(CD209b)-Mediated Macrophages Polarization Induced by IL-4 to Facilitate Immune Evasion.

    PubMed

    Yan, Xiaolong; Li, Wenhai; Pan, Lei; Fu, Enqing; Xie, Yonghong; Chen, Min; Mu, Deguang

    2016-05-01

    Tumor-associated macrophages are a prominent component of lung cancer and contribute to tumor progression by facilitating the immune evasion of cancer cells. DC-SIGN (CD209) assists in the immune evasion of a broad spectrum of pathogens and neoplasms by inhibiting the maturation of DCs and subsequent cytokines production. However, the expression of DC-SIGN in macrophages and its role in mediating immune evasion in lung cancer and the underlying mechanism remain unclear. Our study aimed to identify the immunosuppressive role of SIGNR1 in murine macrophage differentiation and lung cancer progression. We found that SIGNR1-positive RAW264.7 macrophages were enriched in mixed cultures with Lewis lung cancer cells (LLC) (ratio of RAW 264.7 to LLC being 1:1) after stimulation with IL-4. Moreover, LLC-educated macrophages exhibited significantly higher levels of IL-10 but lower IL-12 in response to IL-4 treatment as determined by RT-PCR and ELISA. However, inhibition of SIGNR1 markedly hampered the production of IL-10, indicating that SIGNR1 was indispensable for IL-4+LLC induced macrophage polarization towards the M2 subtype. Furthermore, polarized M2 cells immersed in a tumor microenvironment promoted the migration of LLCs, as measured by transwell assays, but migration was suppressed after blockade of SIGNR1 using CD209b antibody. In addition, IL-4+LLC-educated macrophages reduced the proliferation of the activated T cells and reduced IFN-γ-mediated Th1 response in T cells, while SIGNR1 inhibition rescued Th1 cell functions. In conclusion, murine SIGNR1 expressed in LLC-educated macrophages appears to mediate IL-4-induced RAW264.7 macrophage polarization and thus facilitate lung cancer evasion. J. Cell. Biochem. 117: 1158-1166, 2016. © 2015 Wiley Periodicals, Inc. PMID:26447454

  12. An attenuated immune response by Schwann cells and macrophages inhibits nerve regeneration in aged rats.

    PubMed

    Scheib, Jami L; Höke, Ahmet

    2016-09-01

    Although peripheral nerves are capable of regeneration, advanced age decreases the potential for functional recovery after injury. The cellular mechanisms for this are not currently understood. Here, we performed sciatic nerve grafting with young (2 months old) and aged (18 months old) Brown-Norway male rats, in which 1 cm nerve grafts from young or aged rats were sutured into nerves of young or aged rats. Axons were allowed to regenerate until the nerve grafts and distal nerves were harvested at 1, 3, and 7 days and 2 and 6 weeks. At 6 weeks, our data suggested that young nerve grafts supported regeneration better than aged nerve grafts. In addition, myelin debris clearance was inhibited in young nerves when grafted into aged rats, but clearance was faster when aged nerves were grafted into young rats. Further analysis revealed that aged macrophages have delayed migration into injured nerve, and macrophages and Schwann cells from aged rats were less phagocytic for myelin debris in vitro. To understand these impairments, expression levels of pro- and anti-inflammatory cytokines were analyzed at 1 day after injury. Based on these levels, there was not a clear polarization to either an M1 or M2 phenotype; however, expression levels of IL-6, IL-10, CCL2 (MCP1), and Arg-1 were decreased in aged nerves. Taken together, both macrophages and Schwann cells had attenuated responses to nerve injury in aged rats, leading to inefficient clearance of debris and impaired axonal regeneration. PMID:27459920

  13. Forward genetics screens using macrophages to identify Toxoplasma gondii genes important for resistance to IFN-γ-dependent cell autonomous immunity.

    PubMed

    Walwyn, Odaelys; Skariah, Sini; Lynch, Brian; Kim, Nathaniel; Ueda, Yukari; Vohora, Neal; Choe, Josh; Mordue, Dana G

    2015-01-01

    Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan pathogen. The parasite invades and replicates within virtually any warm blooded vertebrate cell type. During parasite invasion of a host cell, the parasite creates a parasitophorous vacuole (PV) that originates from the host cell membrane independent of phagocytosis within which the parasite replicates. While IFN-dependent-innate and cell mediated immunity is important for eventual control of infection, innate immune cells, including neutrophils, monocytes and dendritic cells, can also serve as vehicles for systemic dissemination of the parasite early in infection. An approach is described that utilizes the host innate immune response, in this case macrophages, in a forward genetic screen to identify parasite mutants with a fitness defect in infected macrophages following activation but normal invasion and replication in naïve macrophages. Thus, the screen isolates parasite mutants that have a specific defect in their ability to resist the effects of macrophage activation. The paper describes two broad phenotypes of mutant parasites following activation of infected macrophages: parasite stasis versus parasite degradation, often in amorphous vacuoles. The parasite mutants are then analyzed to identify the responsible parasite genes specifically important for resistance to induced mediators of cell autonomous immunity. The paper presents a general approach for the forward genetics screen that, in theory, can be modified to target parasite genes important for resistance to specific antimicrobial mediators. It also describes an approach to evaluate the specific macrophage antimicrobial mediators to which the parasite mutant is susceptible. Activation of infected macrophages can also promote parasite differentiation from the tachyzoite to bradyzoite stage that maintains chronic infection. Therefore, methodology is presented to evaluate the importance of the identified

  14. Forward Genetics Screens Using Macrophages to Identify Toxoplasma gondii Genes Important for Resistance to IFN-γ-Dependent Cell Autonomous Immunity

    PubMed Central

    Lynch, Brian; Kim, Nathaniel; Ueda, Yukari; Vohora, Neal; Choe, Josh; Mordue, Dana G.

    2016-01-01

    Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan pathogen. The parasite invades and replicates within virtually any warm blooded vertebrate cell type. During parasite invasion of a host cell, the parasite creates a parasitophorous vacuole (PV) that originates from the host cell membrane independent of phagocytosis within which the parasite replicates. While IFN-dependentinnate and cell mediated immunity is important for eventual control of infection, innate immune cells, including neutrophils, monocytes and dendritic cells, can also serve as vehicles for systemic dissemination of the parasite early in infection. An approach is described that utilizes the host innate immune response, in this case macrophages, in a forward genetic screen to identify parasite mutants with a fitness defect in infected macrophages following activation but normal invasion and replication in naïve macrophages. Thus, the screen isolates parasite mutants that have a specific defect in their ability to resist the effects of macrophage activation. The paper describes two broad phenotypes of mutant parasites following activation of infected macrophages: parasite stasis versus parasite degradation, often in amorphous vacuoles. The parasite mutants are then analyzed to identify the responsible parasite genes specifically important for resistance to induced mediators of cell autonomous immunity. The paper presents a general approach for the forward genetics screen that, in theory, can be modified to target parasite genes important for resistance to specific antimicrobial mediators. It also describes an approach to evaluate the specific macrophage antimicrobial mediators to which the parasite mutant is susceptible. Activation of infected macrophages can also promote parasite differentiation from the tachyzoite to bradyzoite stage that maintains chronic infection. Therefore, methodology is presented to evaluate the importance of the identified

  15. Cooperativity Between CD8+ T Cells, Non-Neutralizing Antibodies, and Alveolar Macrophages Is Important for Heterosubtypic Influenza Virus Immunity

    PubMed Central

    Laidlaw, Brian J.; Decman, Vilma; Ali, Mohammed-Alkhatim A.; Abt, Michael C.; Wolf, Amaya I.; Monticelli, Laurel A.; Mozdzanowska, Krystyna; Angelosanto, Jill M.; Artis, David; Erikson, Jan; Wherry, E. John

    2013-01-01

    Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential “universal” vaccine. PMID:23516357

  16. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity.

    PubMed

    Laidlaw, Brian J; Decman, Vilma; Ali, Mohammed-Alkhatim A; Abt, Michael C; Wolf, Amaya I; Monticelli, Laurel A; Mozdzanowska, Krystyna; Angelosanto, Jill M; Artis, David; Erikson, Jan; Wherry, E John

    2013-03-01

    Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential "universal" vaccine. PMID:23516357

  17. Macrophage recognition of immune complexes: development and application of novel cell surface labeling procedures.

    PubMed

    Petty, H R; Dereski, W

    1985-07-16

    A fluorescein- and lactoperoxidase-conjugated ferritin-anti-ferritin immune complex has been prepared for cell surface labeling experiments on immune recognition and effector function. Lactoperoxidase (LPO) has been covalently coupled to affinity-purified anti-ferritin antibodies with p-benzoquinone by a modified version of the method of Ternynck and Avrameas [Ternynck, T., & Avrameas, S. (1976) Ann. Immunol. (Paris) 127C, 197]. The conjugate is a heterodimer of Mr230 000 with linkages to either or both of the heavy and light chains of the antibody, as judged by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the absence and presence of 2-mercaptoethanol. The conjugate retains antibody-binding activity as measured by a quantitative precipitin assay. When incorporated into immune complexes, the modified antibody also retains Fc receptor recognition ability as determined by erythrocyte-antibody rosette inhibition assays. Electron microscopy demonstrated that the antigen, ferritin, was monodisperse with complete apoprotein sheaths surrounding the core. Ferritin-anti-ferritin-LPO complexes were formed in 4-fold antigen excess. Complexes were verified by fluorescence and electron microscopy. Immune complexes were masked with "cold" iodine by use of the endogenous LPO activity. The complexes bound to cells at 4 degrees C as shown by electron microscopy and fluorescence video/intensification microscopy. The LPO delivered to the cell surface in this fashion can be utilized to iodinate the surface with 125I. Under saturation conditions, the labeling with local LPO delivery followed by SDS-PAGE and autoradiography is identical with labeling with free LPO. Labeling has also been conducted under conditions of substrate deficit.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4052386

  18. Immunomodulatory effect of mesenchymal stem cells on the immune response of macrophages stimulated by Aspergillus fumigatus conidia.

    PubMed

    Cho, Sung-Yeon; Kwon, Eun-Young; Choi, Su-Mi; Lee, Dong-Gun; Park, Chulmin; Park, Sun Hee; Yoo, Jin-Hong; Choi, Jung-Hyun

    2016-05-01

    Mesenchymal stem cells (MSCs) are known to exert potent immunosuppression and anti-inflammatory effects. There is growing interest in their use for immunotherapy for controlling inflammation as well as acute organ injury. However, there are few reports regarding MSC's immunomodulatory effects in the settings of fungal infection. In this study, we attempted to examine the immunomodulatory effects of MSCs in response toAspergillus fumigatus We measured the cytokine response of murine MSCs on the immune response of murine macrophages (J774A.1 cells) evoked byA. fumigatusconidia. In addition, we evaluated the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the MSC-related cytokine response and fungal growth. As a results, after conidia stimulation, tumor necrosis factor (TNF)-α was down-regulated and interleukin (IL)-10 was up-regulated in MSC-treated J774A.1 cells when compared to J774A.1 cells alone. In addition, fungal growth was reduced in MSC-treated J774A.1 cells when compared to J774A.1 cells, which recovered by GM-CSF. However, the effect of MSCs on the cytokine response was not reversed by GM-CSF. NF-κB translocation decreased in MSC-treated J774A.1 cells compared to J774A.1 cells alone. In conclusion, MSCs demonstrate immunomodulatory properties in both aspects of cytokines and fungal growth. The anti-inflammatory effect of MSCs with regard to cytokine response might be associated with decreased NF-κB translocation, and is not reversed by GM-CSF. PMID:26768375

  19. Variable Processing and Cross-presentation of HIV by Dendritic Cells and Macrophages Shapes CTL Immunodominance and Immune Escape

    PubMed Central

    Dinter, Jens; Duong, Ellen; Lai, Nicole Y.; Berberich, Matthew J.; Kourjian, Georgio; Bracho-Sanchez, Edith; Chu, Duong; Su, Hang; Zhang, Shao Chong; Le Gall, Sylvie

    2015-01-01

    Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation. PMID:25781895

  20. Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses anti-tuberculosis effector mechanisms without compromising T cell immunity1

    PubMed Central

    Schreiber, Tanja; Ehlers, Stefan; Heitmann, Lisa; Rausch, Alexandra; Mages, Jörg; Murray, Peter J.; Lang, Roland; Hölscher, Christoph

    2009-01-01

    Elevated IL-10 has been implicated in reactivation tuberculosis (TB). Since macrophages rather than T cells were reported to be the major source of IL-10 in TB, we analyzed the consequences of a macrophage-specific overexpression of IL-10 in transgenic mice (macIL-10-transgenic) after aerosol infection with Mycobacterium tuberculosis (Mtb). MacIL-10-transgenic mice were more susceptible to chronic Mtb infection than non-transgenic littermates, exhibiting higher bacterial loads in the lung after 12 weeks of infection and dying significantly earlier than controls. The differentiation, recruitment and activation of TH1 cells as well as the induction of IFN-gamma-dependent effector genes against Mtb were not affected by macrophage-derived IL-10. However, microarray analysis of pulmonary gene expression revealed patterns characteristic of alternative macrophage activation that were overrepresented in Mtb-infected macIL-10-transgenic mice. Importantly, arginase-1 gene expression and activity were strikingly enhanced in transgenic mice accompanied by a reduced production of reactive nitrogen intermediates. Moreover, IL-10-dependent arginase-1 induction diminished anti-mycobacterial effector mechanisms in macrophages. Together, macrophage-derived IL-10 triggers aspects of alternative macrophage activation and promotes Mtb recrudescence independent of overt effects on anti-TB T cell immunity. PMID:19561100

  1. bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression.

    PubMed

    Gordan, Sina; Biburger, Markus; Nimmerjahn, Falk

    2015-11-01

    The mononuclear phagocytic system consists of a great variety of cell subsets localized throughout the body in immunological and non-immunological tissues. While one of their prime tasks is to detect, phagocytose, and kill intruding microorganisms, they are also involved in maintaining tissue homeostasis and immune tolerance toward self through removal of dying cells. Furthermore, monocytes and macrophages have been recognized to play a critical role for mediating immunoglobulin G (IgG)-dependent effector functions, including target cell depletion, tissue inflammation, and immunomodulation. For this, monocyte and macrophage populations are equipped with a complex set of Fc-receptors, enabling them to directly interact with pro- or anti-inflammatory IgG preparations. In this review, we will summarize the most recent findings, supporting a central role of monocytes and macrophages for pro- and anti-inflammatory IgG activity. PMID:26497512

  2. Bacillus cereus immune escape: a journey within macrophages.

    PubMed

    Tran, Seav-Ly; Ramarao, Nalini

    2013-10-01

    During bacterial infection, professional phagocytes are attracted to the site of infection, where they constitute a first line of host cell defense. Their function is to engulf and destroy the pathogens. Thus, bacteria must withstand the bactericidal activity of professional phagocytes, including macrophages to counteract the host immune system. Bacillus cereus infections are characterized by bacteremia despite the accumulation of inflammatory cells at the site of infection. This implies that the bacteria have developed means of resisting the host immune system. Bacillus cereus spores survive, germinate, and multiply in contact with macrophages, eventually producing toxins that kill these cells. However, the exact mechanism by which B. cereus evades immune attack remains unclear. This review addresses the interaction between B. cereus and macrophages, highlighting, in particular, the ways in which the bacteria escape the microbicidal activities of professional phagocytes. PMID:23827020

  3. Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a "paraptosis"-induced pathway that promotes systemic immunity against intracranial T9 gliomas.

    PubMed

    Chen, Yijun; Douglass, Thomas; Jeffes, Edward W B; Xu, Qingcheng; Williams, Christopher C; Arpajirakul, Neary; Delgado, Christina; Kleinman, Michael; Sanchez, Ramon; Dan, Qinghong; Kim, Ronald C; Wepsic, H Terry; Jadus, Martin R

    2002-08-15

    Cloned T9-C2 glioma cells transfected with membrane macrophage colony-stimulating factor (mM-CSF) never formed subcutaneous tumors when implanted into Fischer rats, whereas control T9 cells did. The T9-C2 cells were completely killed within 1 day through a mechanism that resembled paraptosis. Vacuolization of the T9-C2 cell's mitochondria and endoplasmic reticulum started within 4 hours after implantation. By 24 hours, the dead tumor cells were swollen and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL)-positive. Bcl2-transduced T9-C2 cells failed to form tumors in rats. Both T9 and T9-C2 cells produced cytokine-induced neutrophil chemoattractant that recruited the granulocytes into the tumor injection sites, where they interacted with the tumor cells. Freshly isolated macrophages killed the T9-C2 cells in vitro by a mechanism independent of phagocytosis. Nude athymic rats treated with antiasialo GM1 antibody formed T9-C2 tumors, whereas rats treated with a natural killer cell (NK)-specific antibody failed to form tumors. When treated with antipolymorphonuclear leukocyte (anti-PMN) and antimacrophage antibodies, 80% of nude rats formed tumors, whereas only 40% of the rats developed a tumor when a single antibody was used. This suggests that both PMNs and macrophages are involved in the killing of T9-C2 tumor cells. Immunocompetent rats that rejected the living T9-C2 cells were immune to the intracranial rechallenge with T9 cells. No vaccinating effect occurred if the T9-C2 cells were freeze-thawed, x-irradiated, or treated with mitomycin-C prior to injection. Optimal tumor immunization using mM-CSF-transduced T9 cells requires viable tumor cells. In this study optimal tumor immunization occurred when a strong inflammatory response at the injection of the tumor cells was induced. PMID:12149220

  4. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model

    PubMed Central

    Maisel, Daniela; Birzele, Fabian; Voss, Edgar; Nopora, Adam; Bader, Sabine; Friess, Thomas; Goller, Bernhard; Laifenfeld, Daphna; Weigand, Stefan; Runza, Valeria

    2016-01-01

    CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages) to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP) of the malignant cells by macrophages. PMID:27463372

  5. Crude extract of Polygonum cuspidatum promotes immune responses in leukemic mice through enhancing phagocytosis of macrophage and natural killer cell activities in vivo.

    PubMed

    Chueh, Fu-Shin; Lin, Jen-Jyh; Lin, Jing-Pin; Yu, Fu-Shun; Lin, Ju-Hwa; Ma, Yi-Shih; Huang, Yi-Ping; Lien, Jin-Cherng; Chung, Jing-Gung

    2015-01-01

    Polygonum cuspidatum is a traditional Chinese herbal medicine used in the treatment of various diseases. In the present study, we investigated whether the crude extract of Polygonum cuspidatum (CEPC) could affect immune responses of murine leukemia cells in vivo. Normal BALB/c mice were i.p. injected with WEHI-3 cells to generate leukemic mice and then were treated orally with CEPC at 0, 50, 100 and 200 mg/kg for three weeks. Animals were weighed and blood, liver, spleen samples were collected for further analyses. Results indicated that CEPC did not significantly affect the body and liver weight of animals, but reduced the weight of spleen when compared to control groups. Flow cytometric assay demonstrated that CEPC increased the percentage of CD3- (T-cell marker) and CD19- (B-cell marker) positive cells, but reduced that of CD11b-positive ones (monocytes). However, it did not significantly affect the proportion of Mac-3-positive cells (macrophages), compared to control groups. Results indicated that CEPC promoted phagocytosis by macrophages from blood samples at all examined doses but did not affect that of macrophages from the peritoneal cavity. CEPC also promoted natural killer cell activity of splenocytes at 200 mg/kg of CEPC. CEPC promoted B-cell proliferation at 200 mg/kg treatment when cells were stimulated with lipopolysaccharides but did not promote T-cell proliferation at three doses of CEPC treatment on concanavalin A stimulation. PMID:25792654

  6. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities.

    PubMed

    Shida, Kan; Nanno, Masanobu; Nagata, Satoru

    2011-01-01

    Probiotics have been reported to be efficacious against cancers, infections, allergies, inflammatory bowel diseases and autoimmune diseases, and it is important to explain how such multifunctional activities are realized. Lactobacillus casei Shirota (LcS) is one of these multifunctional probiotics, and its ability to augment the host immune system has been extensively examined. We have shown that the cell wall structure of this probiotic strain is responsible for potently inducing IL-12 production. In addition, we have recently found that LcS differentially controls the inflammatory cytokine responses of macrophages and T cells in either Peyer's patches or the spleen. Other studies revealed that LcS-induced IL-12 production by macrophages is modified when other bacteria or their cell components are simultaneously present. These findings can provide a theoretical basis for understanding the multifunctional activities of specific probiotics. PMID:21637028

  7. Comparative Analysis of the Effects of Two Probiotic Bacterial Strains on Metabolism and Innate Immunity in the RAW 264.7 Murine Macrophage Cell Line.

    PubMed

    Pradhan, Biswaranjan; Guha, Dipanjan; Ray, Pratikshya; Das, Debashmita; Aich, Palok

    2016-06-01

    Probiotic and potential probiotic bacterial strains are routinely prescribed and used as supplementary therapy for a variety infectious diseases, including enteric disorders among a wide range of individuals. While there are an increasing number of studies defining the possible mechanisms of probiotic activity, a great deal remains unknown regarding the diverse modes of action attributed to these therapeutic agents. More precise information is required to support the appropriate application of probiotics. To address this objective, we selected two probiotics strains, Lactobacillus acidophilus MTCC-10307 (LA) and Bacillus clausii MTCC-8326 (BC) that are frequently prescribed for the treatment of intestinal disorders and investigated their effects on the RAW 264.7 murine macrophage cell line. Our results reveal that LA and BC are potent activators of both metabolic activity and innate immune responses in these cells. We also observed that LA and BC possessed similar activity in preventing infection simulated in vitro in murine macrophages by Salmonella typhimurium serovar enterica. PMID:27038159

  8. Changes in macrophage phenotype as the immune response evolves

    PubMed Central

    Lichtnekert, Julia; Kawakami, Takahisa; Parks, William C.; Duffield, Jeremy S.

    2013-01-01

    Mononuclear phagocytic cells, including macrophages and dendritic cells, are widely distributed throughout our organs where they perform important homeostatic, surveillance and regenerative tasks. In response to infection or injury, the composition and number of mononuclear phagocytic cells changes remarkably, in part due to the recruitment of inflammatory monocytes from bone marrow. In infection or injury, macrophages and dendritic cells perform important innate and adaptive immune roles from the initial insult through repair and regeneration of the tissue and resolution of inflammation. Evidence from mouse models of disease has shown increasing complexity and subtlety to the mononuclear phagocytic system, which will be reviewed here. New studies show that in addition to monocytes, the resident populations of mononuclear phagocytes expand in disease states and play distinct but important roles in the immune response. Finally, new insights into these functionally diverse cells are now translating into therapeutics to treat human disease. PMID:23747023

  9. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Th2 immunity is essential for the host protection against nematode infection, while detrimental in allergic inflammation or asthma. Although many of the details regarding the cellular and molecular events in Th2 immunity have been described, the specific cell types and effector molecules involved i...

  10. Neuro-immune Interactions Drive Tissue Programming in Intestinal Macrophages.

    PubMed

    Gabanyi, Ilana; Muller, Paul A; Feighery, Linda; Oliveira, Thiago Y; Costa-Pinto, Frederico A; Mucida, Daniel

    2016-01-28

    Proper adaptation to environmental perturbations is essential for tissue homeostasis. In the intestine, diverse environmental cues can be sensed by immune cells, which must balance resistance to microorganisms with tolerance, avoiding excess tissue damage. By applying imaging and transcriptional profiling tools, we interrogated how distinct microenvironments in the gut regulate resident macrophages. We discovered that macrophages exhibit a high degree of gene-expression specialization dependent on their proximity to the gut lumen. Lamina propria macrophages (LpMs) preferentially expressed a pro-inflammatory phenotype when compared to muscularis macrophages (MMs), which displayed a tissue-protective phenotype. Upon luminal bacterial infection, MMs further enhanced tissue-protective programs, and this was attributed to swift activation of extrinsic sympathetic neurons innervating the gut muscularis and norepinephrine signaling to β2 adrenergic receptors on MMs. Our results reveal unique intra-tissue macrophage specialization and identify neuro-immune communication between enteric neurons and macrophages that induces rapid tissue-protective responses to distal perturbations. PMID:26777404

  11. Peripheral blood mononuclear cell supernatants from asymptomatic dogs immunized and experimentally challenged with Leishmania chagasi can stimulate canine macrophages to reduce infection in vitro.

    PubMed

    Rodrigues, Cleusa Alves Theodoro; Batista, Luís Fábio da Silva; Teixeira, Márcia Cristina Aquino; Pereira, Andréa Mendes; Santos, Patrícia Oliveira Meira; de Sá Oliveira, Geraldo Gileno; de Freitas, Luiz Antônio Rodrigues; Veras, Patrícia Sampaio Tavares

    2007-02-28

    Leishmania chagasi is the causative agent of visceral leishmaniasis in both humans and dogs in the New World. The dog is the main domestic reservoir and its infection displays different clinical presentations, from asymptomatic to severe disease. Macrophages play an important role in the control of Leishmania infection. Although it is not an area of intense study, some data suggest a role for canine macrophages in parasite killing by a NO-dependent mechanism. It has been proposed that control of human disease could be possible with the development of an effective vaccine against canine visceral leishmaniasis. Development of a rapid in vitro test to predict animal responses to Leishmania infection or vaccination should be helpful. In this study, an in vitro model was established to test whether peripheral blood mononuclear cell (PBMC) supernatants from dogs immunized with promastigote lysates and infected with L. chagasi promastigotes could stimulate macrophages from healthy dogs in order to control parasite infection. PBMC from a majority of the immunized and experimentally infected dogs expressed IFN-gamma mRNA and secreted IFN-gamma when stimulated with soluble L. chagasi antigen (SLA) in vitro. Additionally, the supernatants from stimulated PBMC were able to reduce the percentage of infected donor macrophages. The results also indicate that parasite killing in this system is dependent on NO, since aminoguanidine (AMG) reversed this effect. This in vitro test appears to be useful for screening animal responses to parasite inoculation as well as studying the lymphocyte effector mechanisms involved in pathogen killing by canine macrophages. PMID:17045743

  12. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    NASA Astrophysics Data System (ADS)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  13. Mouse macrophage innate immune response to chikungunya virus infection

    PubMed Central

    2012-01-01

    Background Infection with Chikungunya alphavirus (CHIKV) can cause severe arthralgia and chronic arthritis in humans with persistence of the virus in perivascular macrophages of the synovial membrane by mechanisms largely ill-characterized. Findings We herein analysed the innate immune response (cytokine and programmed cell death) of RAW264.7 mouse macrophages following CHIKV infection. We found that the infection was restrained to a small percentage of cells and was not associated with a robust type I IFN innate immune response (IFN-α4 and ISG56). TNF-α, IL-6 and GM-CSF expression were upregulated while IFN-γ, IL-1α, IL-2, IL-4, IL-5, IL-10 or IL-17 expression could not be evidenced prior to and after CHIKV exposure. Although CHIKV is known to drive apoptosis in many cell types, we found no canonical signs of programmed cell death (cleaved caspase-3, -9) in infected RAW264.7 cells. Conclusion These data argue for the capacity of CHIKV to infect and drive a specific innate immune response in RAW264.7 macrophage cell which seems to be polarized to assist viral persistence through the control of apoptosis and IFN signalling. PMID:23253140

  14. Sulforaphane promotes immune responses in a WEHI‑3‑induced leukemia mouse model through enhanced phagocytosis of macrophages and natural killer cell activities in vivo.

    PubMed

    Shih, Yung-Luen; Wu, Lung-Yuan; Lee, Ching-Hsiao; Chen, Yung-Liang; Hsueh, Shu-Ching; Lu, Hsu-Feng; Liao, Nien-Chieh; Chung, Jing-Gung

    2016-05-01

    Sulforaphane (SFN) is an isothiocyanate, inducing cytotoxic effects in various human cancer cells, including leukemia cells through cell cycle arrest and apoptosis. However, the effect of SFN on the immune responses in a leukemia mouse model remains to be investigated. The present study investigated whether SFN has an effect on the immune responses in a WEHI‑3‑induced leukemia mouse model in vivo. Normal BALB/c mice were injected with WEHI‑3 cells to generate the leukemia mouse model, and were subsequently treated with placebo or SFN (0, 285, 570 and 1,140 mg/kg) for 3 weeks. Following treatment, all mice were weighted and blood samples were collected. In addition, liver and spleen samples were isolated to determine cell markers, phagocytosis and natural killer (NK) cell activities, and cell proliferation was examined using flow cytometry. The results indicated that SFN treatment had no significant effect on the spleen weight, however it decreased liver and body weight. Furthermore, SFN treatment increased the percentage levels of CD3 (T cells) and CD19 (B cell maker), however had no effect on the levels of CD11b (monocytes) or Mac‑3 (macrophages), compared with the WEHI‑3 control groups. The administration of SFN increased the phagocytosis of macrophages from peripheral blood mononuclear cells and peritoneal cavity, and increased the activity of NK cells from splenocytes. Administration of SFN promoted T and B cell proliferation following stimulation with concanavalin A and lipopolysaccharide, respectively. PMID:27035756

  15. Points of control exerted along the macrophage-endothelial cell-polymorphonuclear neutrophil axis by PECAM-1 in the innate immune response of acute colonic inflammation.

    PubMed

    Sugimoto, Naohito; Rui, Tao; Yang, Min; Bharwani, Sulaiman; Handa, Osamu; Yoshida, Norimasa; Yoshikawa, Toshikazu; Kvietys, Peter R

    2008-08-01

    PECAM-1 is expressed on endothelial cells and leukocytes. Its extracellular domain has been implicated in leukocyte diapedesis. In this study, we used PECAM-1(-/-) mice and relevant cells derived from them to assess the role of PECAM-1 in an experimental model of acute colonic inflammation with a predominant innate immune response, i.e., 2,4,6-trinitrobenzine sulfonic acid (TNBS). Using chimeric approaches, we addressed the points of control exerted by PECAM-1 along the macrophage-endothelial cell-polymorphonuclear neutrophil (PMN) axis. In vivo, TNBS-induced colitis was ameliorated in PECAM-1(-/-) mice, an event attributed to PECAM-1 on hematopoietic cells rather than to PECAM-1 on endothelial cells. The in vivo innate immune response was mimicked in vitro by using a construct of the vascular-interstitial interface, i.e., PMN transendothelial migration was induced by colonic lavage fluid (CLF) from TNBS mice or macrophages (MPhi) challenged with CLF. Using the construct, we confirmed that endothelial cell PECAM-1 does not play a role in PMN transendothelial migration. Although MPhi activation (NF-kappaB nuclear binding) and function (keratinocyte-derived chemokine production) induced by CLF was diminished in PECAM-1(-/-) MPhi, this did not affect their ability to promote PMN transendothelial migration. By contrast, PECAM-1(-/-) PMN did not adhere to or migrate across endothelial cell monolayers in response to CLF. Further, as compared with PECAM-1(+/+) PMN, PECAM-1(-/-) PMN were less effective in orientating their CXCR2 receptors (polarization) in the direction of a chemotactic gradient. Collectively, our findings indicate that PECAM-1 modulation of PMN function (at a step before diapedesis) most likely contributes to the inflammation in a colitis model with a strong innate immune component. PMID:18641353

  16. Innate immunity and monocyte-macrophage activation in atherosclerosis

    PubMed Central

    2011-01-01

    Innate inflammation is a hallmark of both experimental and human atherosclerosis. The predominant innate immune cell in the atherosclerotic plaque is the monocyte-macrophage. The behaviour of this cell type within the plaque is heterogeneous and depends on the recruitment of diverse monocyte subsets. Furthermore, the plaque microenvironment offers polarisation and activation signals which impact on phenotype. Microenvironmental signals are sensed through pattern recognition receptors, including toll-like and NOD-like receptors - the latter of which are components of the inflammasome - thus dictating macrophage behaviour and outcome in atherosclerosis. Recently cholesterol crystals and modified lipoproteins have been recognised as able to directly engage these pattern recognition receptors. The convergent role of such pathways in terms of macrophage activation is discussed in this review. PMID:21526997

  17. M1 and M2 Macrophages: The Chicken and the Egg of Immunity

    PubMed Central

    Mills, Charles D.; Ley, Klaus

    2015-01-01

    The purpose of this perspective is to describe a critical advance in understanding how immune responses work. Macrophages are required for all animal life: ‘Inhibit’ type macrophages in all animals (called M1) can rapidly kill pathogens, and are thus the primary host defense, and ‘Heal’ type macrophages (M2) routinely repair and maintain tissue integrity. Macrophages perform these activities in all animals without T cells, and also in T cell-deficient vertebrates. Although adaptive immunity can amplify macrophage polarization, the long-held notion that macrophages need to be ‘activated’ or ‘alternatively activated’ by T cells is incorrect; indeed, immunology has had it backward. M1/M2-type macrophages necessarily direct T cells toward Th1- or Th2-like activities, respectively. That such macrophage-innate activities are the central directing element in immune responses is a dramatic change in understanding how immune systems operate. Most important, this revelation is opening up whole new approaches to immunotherapy. For example, many modern diseases, such as cancer and atherosclerosis, may not display ‘foreign’ antigens. However, there are clear imbalances in M1/M2-type responses. Correcting such innate imbalances can result in better health. Macrophages are the chicken and the egg of immunity. PMID:25138714

  18. Effects of sodium fluoride on immune response in murine macrophages.

    PubMed

    De la Fuente, Beatriz; Vázquez, Marta; Rocha, René Antonio; Devesa, Vicenta; Vélez, Dinoraz

    2016-08-01

    Excessive fluoride intake may be harmful for health, producing dental and skeletal fluorosis, and effects upon neurobehavioral development. Studies in animals have revealed effects upon the gastrointestinal, renal and reproductive systems. Some of the disorders may be a consequence of immune system alterations. In this study, an in vitro evaluation is made of fluoride immunotoxicity using the RAW 264.7 murine macrophage line over a broad range of concentrations (2.5-75mg/L). The results show that the highest fluoride concentrations used (50-75mg/L) reduce the macrophage population in part as a consequence of the generation of reactive oxygen and/or nitrogen species and consequent redox imbalance, which in turn is accompanied by lipid peroxidation. A decrease in the expression of the antiinflammatory cytokine Il10 is observed from the lowest concentrations (5mg/L). High concentrations (50mg/L) in turn produce a significant increase in the proinflammatory cytokines Il6 and Mip2 from 4h of exposure. In addition, cell phagocytic capacity is seen to decrease at concentrations of ≥20mg/L. These data indicate that fluoride, at high concentrations, may affect macrophages and thus immune system function - particularly with regard to the inflammation autoregulatory processes, in which macrophages play a key role. PMID:26965474

  19. The role of macrophages in the cytotoxic killing of tumour cells in vitro

    PubMed Central

    Zembala, M.; Ptak, W.; Hanczakowska, Maria

    1973-01-01

    Lymph node and spleen cells from normal mice were cultured for 3 days with polyoma virus-induced tumour, Ehrlich's ascites tumour or leukaemia L 1210 cells. This resulted in in vitro immunization of the lymphocytes, which were then transferred to irradiated target cells labelled with 51Cr. Normal, i.e. non-immune thioglycollate-stimulated peritoneal macrophages were also added to some tubes. Non-immune macrophages mixed with immunized lymphocytes showed a significantly increased ability to destroy tumour cells as compared with macrophages in the absence of immunized lymphocytes. The immunized lymphocytes were almost entirely inactive alone. When the number of macrophages was kept constant the cytotoxicity was dependent on the number of viable immunized lymphocytes placed on the target cells. Immunized lymphocytes, in the presence of macrophages, only exhibited strong killing of the target cells against which they had been immunized; some lysis of `bystander' cells was, however, seen provided specific target cells were present. Macrophage monolayers exposed to immunized lymphocytes upon contact with specific antigen became `armed' and showed a significant cytotoxicity for specific target cells. When immunized lymphocytes and normal macrophages were treated with actinomycin D and puromycin, cytotoxicity was inhibited in the immunized lymphocytes but not in the macrophages. The possible mechanism of normal macrophage cooperation with immunized lymphocytes in the cytotoxic killing reaction is discussed. Results presented in this paper favour the view that immunologically specific cytophilic factor (presumptive cytophilic antibody) is involved in the macrophage-mediated cytotoxicity in the system studied. PMID:4356674

  20. Innate Immune Memory: Activation of Macrophage Killing Ability by Developmental Duties.

    PubMed

    Schneider, David; Tate, Ann Thomas

    2016-06-20

    Innate immune systems in many taxa exhibit hallmarks of memory in response to previous microbial exposure. A new study demonstrates that innate immune memory in Drosophila embryonic macrophages can also be induced by the successful engulfment of apoptotic cells, highlighting the importance of early exposure events for developing responsive immune systems. PMID:27326712

  1. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  2. Immunometabolism governs dendritic cell and macrophage function

    PubMed Central

    2016-01-01

    Recent studies on intracellular metabolism in dendritic cells (DCs) and macrophages provide new insights on the functioning of these critical controllers of innate and adaptive immunity. Both cell types undergo profound metabolic reprogramming in response to environmental cues, such as hypoxia or nutrient alterations, but importantly also in response to danger signals and cytokines. Metabolites such as succinate and citrate have a direct impact on the functioning of macrophages. Immunogenicity and tolerogenicity of DCs is also determined by anabolic and catabolic processes, respectively. These findings provide new prospects for therapeutic manipulation in inflammatory diseases and cancer. PMID:26694970

  3. Creating a Buzz about Macrophages: The Fly as an In Vivo Model for Studying Immune Cell Behavior.

    PubMed

    Weavers, Helen; Wood, Will

    2016-07-25

    Drosophila macrophages exhibit functional parallels with their vertebrate counterparts in both their early developmental roles and later diverse roles in health and disease. This, together with the fly's genetic tractability and opportunities for live imaging, has recently established Drosophila as a powerful model to study macrophage behavior in vivo. PMID:27459064

  4. Crude extract of Polygonum cuspidatum stimulates immune responses in normal mice by increasing the percentage of Mac-3-positive cells and enhancing macrophage phagocytic activity and natural killer cell cytotoxicity.

    PubMed

    Chueh, Fu-Shin; Lin, Jen-Jyh; Lin, Ju-Hwa; Weng, Shu-Wen; Huang, Yi-Ping; Chung, Jing-Gung

    2015-01-01

    Polygonum cuspidatum is a natural plant that is used in traditional Chinese herbal medicine. The crude extract of Polygonum cuspidatum (CEPC) has numerous biological effects; however, there is a lack of studies on the effects of CEPC on immune responses in normal mice. The aim of the present study was to determine the in vivo effects of CEPC on immune responses in normal mice. CEPC (0, 50, 100, 150 and 200 mg/kg) was orally administered to BALB/c mice for three weeks, following which blood, liver, and spleen samples were collected. CEPC did not significantly affect the total body weight, or tissue weights of the liver or spleen, as compared with the control mice. CEPC increased the percentages of CD3 (T-cell marker), 11b (monocytes) and Mac-3 (macrophages) positive-cells, and reduced the percentage of CD19-positive cells (B-cell marker), as compared with the control mice. CEPC (100 mg/kg) stimulated macrophage phagocytosis of blood samples but did not affect macrophage phagocytosis in the peritoneum. Activity of the splenic natural killer cells was increased in response to CEPC (50 mg/kg) treatment. Furthermore, CEPC inhibited T- and B-cell proliferation when the cells were stimulated with concanavalin A and lipopolysaccharide, respectively. PMID:25338846

  5. Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices

    PubMed Central

    2014-01-01

    Viral respiratory diseases remain of major importance in swine breeding units. Swine influenza virus (SIV) is one of the main known contributors to infectious respiratory diseases. The innate immune response to swine influenza viruses has been assessed in many previous studies. However most of these studies were carried out in a single-cell population or directly in the live animal, in all its complexity. In the current study we report the use of a trachea epithelial cell line (newborn pig trachea cells – NPTr) in comparison with alveolar macrophages and lung slices for the characterization of innate immune response to an infection by a European SIV of the H3N2 subtype. The expression pattern of transcripts involved in the recognition of the virus, interferon type I and III responses, and the host-response regulation were assessed by quantitative PCR in response to infection. Some significant differences were observed between the three systems, notably in the expression of type III interferon mRNA. Then, results show a clear induction of JAK/STAT and MAPK signaling pathways in infected NPTr cells. Conversely, PI3K/Akt signaling pathways was not activated. The inhibition of the JAK/STAT pathway clearly reduced interferon type I and III responses and the induction of SOCS1 at the transcript level in infected NPTr cells. Similarly, the inhibition of MAPK pathway reduced viral replication and interferon response. All together, these results contribute to an increased understanding of the innate immune response to H3N2 SIV and may help identify strategies to effectively control SIV infection. PMID:24712747

  6. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice.

    PubMed

    Jackaman, Connie; Radley-Crabb, Hannah G; Soffe, Zoe; Shavlakadze, Tea; Grounds, Miranda D; Nelson, Delia J

    2013-06-01

    Changes to innate cells, such as macrophages and myeloid-derived suppressor cells (MDSCs), during aging in healthy or tumor-bearing hosts are not well understood. We compared macrophage subpopulations and MDSCs from healthy young (6-8 weeks) C57BL/6J mice to those from healthy geriatric (24-28 months) mice. Spleens, lymph nodes, and bone marrow of geriatric hosts contained significantly more M2 macrophages and MDSCs than their younger counterparts. Peritoneal macrophages from geriatric, but not young, mice co-expressed CD40 and CX3CR1 that are usually mutually exclusively expressed by M1 or M2 macrophages. Nonetheless, macrophages from geriatric mice responded to M1 or M2 stimuli similarly to macrophages from young mice, although they secreted higher levels of TGF-β in response to IL-4. We mimicked conditions that may occur within tumors by exposing macrophages from young vs. geriatric mice to mesothelioma or lung carcinoma tumor cell-derived supernatants. While both supernatants skewed macrophages toward the M2-phenotype regardless of age, only geriatric-derived macrophages produced IL-4, suggesting a more immunosuppressive tumor microenvironment will be established in the elderly. Both geriatric- and young-derived macrophages induced allogeneic T-cell proliferation, regardless of the stimuli used, including tumor supernatant. However, only macrophages from young mice induced T-cell IFN-γ production. We examined the potential of an IL-2/agonist anti-CD40 antibody immunotherapy that eradicates large tumors in young hosts to activate macrophages from geriatric mice. IL-2-/CD40-activated macrophages rescued T-cell production of IFN-γ in geriatric mice. Therefore, targeting macrophages with IL-2/anti-CD40 antibody may improve innate and T-cell immunity in aging hosts. PMID:23442123

  7. Macrophages play an essential role in antigen-specific immune suppression mediated by T CD8⁺ cell-derived exosomes.

    PubMed

    Nazimek, Katarzyna; Ptak, Wlodzimierz; Nowak, Bernadeta; Ptak, Maria; Askenase, Philip W; Bryniarski, Krzysztof

    2015-09-01

    Murine contact sensitivity (CS) reaction could be antigen-specifically regulated by T CD8(+) suppressor (Ts) lymphocytes releasing microRNA-150 in antibody light-chain-coated exosomes that were formerly suggested to suppress CS through action on macrophages (Mφ). The present studies investigated the role of Mφ in Ts cell-exosome-mediated antigen-specific suppression as well as modulation of Mφ antigen-presenting function in humoral and cellular immunity by suppressive exosomes. Mice depleted of Mφ by clodronate liposomes could not be tolerized and did not produce suppressive exosomes. Moreover, isolated T effector lymphocytes transferring CS were suppressed by exosomes only in the presence of Mφ, demonstrating the substantial role of Mφ in the generation and action of Ts cell regulatory exosomes. Further, significant decrease of number of splenic B cells producing trinitrophenyl (TNP) -specific antibodies with the alteration of the ratio of serum titres of IgM to IgG was observed in recipients of exosome-treated, antigen-pulsed Mφ and the significant suppression of CS was demonstrated in recipients of exosome-treated, TNP-conjugated Mφ. Additionally, exosome-pulsed, TNP-conjugated Mφ mediated suppression of CS in mice pre-treated with a low-dose of cyclophosphamide, suggesting de novo induction of T regulatory (Treg) lymphocytes. Treg cell involvement in the effector phase of the studied suppression mechanism was proved by unsuccessful tolerization of DEREG mice depleted of Treg lymphocytes. Furthermore, the inhibition of proliferation of CS effector cells cultured with exosome-treated Mφ in a transmembrane manner was observed. Our results demonstrated the essential role of Mφ in antigen-specific immune suppression mediated by Ts cell-derived exosomes and realized by induction of Treg lymphocytes and inhibition of T effector cell proliferation. PMID:25808106

  8. Immune cell interplay in colorectal cancer prognosis

    PubMed Central

    Norton, Samuel E; Ward-Hartstonge, Kirsten A; Taylor, Edward S; Kemp, Roslyn A

    2015-01-01

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, particularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship between cancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment. PMID:26483876

  9. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response

    PubMed Central

    Ojeda-Fernández, Luisa; Recio-Poveda, Lucía; Aristorena, Mikel; Lastres, Pedro; Blanco, Francisco J.; Sanz-Rodríguez, Francisco; Gallardo-Vara, Eunate; de las Casas-Engel, Mateo; Corbí, Ángel; Arthur, Helen M.; Bernabeu, Carmelo; Botella, Luisa M.

    2016-01-01

    Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients. PMID:27010826

  10. Rewiring macrophages for anti-tumour immunity.

    PubMed

    Lee, Yunqin; Biswas, Subhra K

    2016-06-28

    Tumour-associated macrophages facilitate cancer progression, but whether they can be reprogrammed to elicit an anti-tumour response remains unclear. Deletion of the microRNA-processing enzyme Dicer is now shown to rewire macrophages to an anti-tumour mode, leading to an enhanced response to immunotherapy and inhibition of tumour progression. PMID:27350442

  11. Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection

    PubMed Central

    Cabral-Piccin, M P; Guillermo, L V C; Vellozo, N S; Filardy, A A; Pereira-Marques, S T; Rigoni, T S; Pereira-Manfro, W F; DosReis, G A; Lopes, M F

    2016-01-01

    Chagas disease is caused by infection with the protozoan Trypanosoma cruzi. CD8 T-lymphocytes help to control infection, but apoptosis of CD8 T cells disrupts immunity and efferocytosis can enhance parasite infection within macrophages. Here, we investigate how apoptosis of activated CD8 T cells affects M1 and M2 macrophage phenotypes. First, we found that CD8 T-lymphocytes and inflammatory monocytes/macrophages infiltrate peritoneum during acute T. cruzi infection. We show that treatment with anti-Fas ligand (FasL) prevents lymphocyte apoptosis, upregulates type-1 responses to parasite antigens, and reduces infection in macrophages cocultured with activated CD8 T cells. Anti-FasL skews mixed M1/M2 macrophage profiles into polarized M1 phenotype, both in vitro and following injection in infected mice. Moreover, inhibition of T-cell apoptosis induces a broad reprogramming of cytokine responses and improves macrophage-mediated immunity to T. cruzi. The results indicate that disposal of apoptotic CD8 T cells increases M2-macrophage differentiation and contributes to parasite persistence. PMID:27195678

  12. Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection.

    PubMed

    Cabral-Piccin, M P; Guillermo, L V C; Vellozo, N S; Filardy, A A; Pereira-Marques, S T; Rigoni, T S; Pereira-Manfro, W F; DosReis, G A; Lopes, M F

    2016-01-01

    Chagas disease is caused by infection with the protozoan Trypanosoma cruzi. CD8 T-lymphocytes help to control infection, but apoptosis of CD8 T cells disrupts immunity and efferocytosis can enhance parasite infection within macrophages. Here, we investigate how apoptosis of activated CD8 T cells affects M1 and M2 macrophage phenotypes. First, we found that CD8 T-lymphocytes and inflammatory monocytes/macrophages infiltrate peritoneum during acute T. cruzi infection. We show that treatment with anti-Fas ligand (FasL) prevents lymphocyte apoptosis, upregulates type-1 responses to parasite antigens, and reduces infection in macrophages cocultured with activated CD8 T cells. Anti-FasL skews mixed M1/M2 macrophage profiles into polarized M1 phenotype, both in vitro and following injection in infected mice. Moreover, inhibition of T-cell apoptosis induces a broad reprogramming of cytokine responses and improves macrophage-mediated immunity to T. cruzi. The results indicate that disposal of apoptotic CD8 T cells increases M2-macrophage differentiation and contributes to parasite persistence. PMID:27195678

  13. Repeatedly administered antidepressant drugs modulate humoral and cellular immune response in mice through action on macrophages.

    PubMed

    Nazimek, Katarzyna; Kozlowski, Michael; Bryniarski, Pawel; Strobel, Spencer; Bryk, Agata; Myszka, Michal; Tyszka, Anna; Kuszmiersz, Piotr; Nowakowski, Jaroslaw; Filipczak-Bryniarska, Iwona

    2016-08-01

    Depression is associated with an altered immune response, which could be normalized by antidepressant drugs. However, little is known about the influence of antidepressants on the peripheral immune response and function of macrophages in individuals not suffering from depression. Our studies were aimed at determining the influence of antidepressant drugs on the humoral and cellular immune response in mice. Mice were treated intraperitoneally with imipramine, fluoxetine, venlafaxine, or moclobemide and contact immunized with trinitrophenyl hapten followed by elicitation and measurement of contact sensitivity by ear swelling response. Peritoneal macrophages from drug-treated mice were either pulsed with sheep erythrocytes or conjugated with trinitrophenyl and transferred into naive recipients to induce humoral or contact sensitivity response, respectively. Secretion of reactive oxygen intermediates, nitric oxide, and cytokines by macrophages from drug-treated mice was assessed, respectively, in chemiluminometry, Griess-based colorimetry and enzyme-linked immunosorbent assay, and the expression of macrophage surface markers was analyzed cytometrically. Treatment of mice with fluoxetine, venlafaxine, and moclobemide results in suppression of humoral and cell-mediated immunity with a reduction of the release of macrophage proinflammatory mediators and the expression of antigen-presentation markers. In contrast, treatment with imipramine enhanced the humoral immune response and macrophage secretory activity but slightly suppressed active contact sensitivity. Our studies demonstrated that systemically delivered antidepressant drugs modulate the peripheral humoral and cell-mediated immune responses, mostly through their action on macrophages. Imipramine was rather proinflammatory, whereas other tested drugs expressed immunosuppressive potential. Current observations may be applied to new therapeutic strategies dedicated to various disorders associated with excessive

  14. Effects of microwave exposure on the hamster immune system. II. Peritoneal macrophage function

    SciTech Connect

    Rama Rao, G.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Acute exposure to hamsters to microwave energy (2.45 GHz; 25 mW/cm2 for 60 min) resulted in activation of peritoneal macrophages that were significantly more viricidal to vaccinia virus as compared to sham-exposed or normal (minimum-handling) controls. Macrophages from microwave-exposed hamsters became activated as early as 6 h after exposure and remained activated for up to 12 days. The activation of macrophages by microwave exposure paralleled the macrophage activation after vaccinia virus immunization. Activated macrophages from vaccinia-immunized hamsters did not differ in their viricidal activity when the hamsters were microwave- or sham-exposed. Exposure for 60 min at 15 mW/cm2 did not activate the macrophages while 40 mW/cm2 exposure was harmful to some hamsters. Average maximum core temperatures in the exposed (25 mW/cm2) and sham groups were 40.5 degrees C (+/- 0.35 SD) and 38.4 degrees C (+/- 0.5 SD), respectively. In vitro heating of macrophages to 40.5 degrees C was not as effective as in vivo microwave exposure in activating macrophages to the viricidal state. Macrophages from normal, sham-exposed, and microwave-exposed hamsters were not morphologically different, and they all phagocytosed India ink particles. Moreover, immune macrophage cytotoxicity for virus-infected or noninfected target cells was not suppressed in the microwave-irradiated group (25 mW/cm2, 1 h) as compared to sham-exposed controls, indicating that peritoneal macrophages were not functionally suppressed or injured by microwave hyperthermia.

  15. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence.

    PubMed

    Kasper, Lydia; Seider, Katja; Hube, Bernhard

    2015-08-01

    Candida glabrata is a successful human opportunistic pathogen which causes superficial but also life-threatening systemic infections. During infection, C. glabrata has to cope with cells of the innate immune system such as macrophages, which belong to the first line of defense against invading pathogens. Candida glabrata is able to survive and even replicate inside macrophages while causing surprisingly low damage and cytokine release. Here, we present an overview of recent studies dealing with the interaction of C. glabrata with macrophages, from phagocytosis to intracellular growth and escape. We review the strategies of C. glabrata that permit intracellular survival and replication, including poor host cell activation, modification of phagosome maturation and phagosome pH, adaptation to antimicrobial activities, and mechanisms to overcome the nutrient limitations within the phagosome. In summary, these studies suggest that survival within macrophages may be an immune evasion and persistence strategy of C. glabrata during infection. PMID:26066553

  16. Dengue tropism for macrophages and dendritic cells: the host cell effect.

    PubMed

    Flipse, Jacky; Torres, Silvia; Diosa-Toro, Mayra; van der Ende-Metselaar, Heidi; Herrera-Rodriguez, José; Urcuqui-Inchima, Silvio; Huckriede, Anke; Rodenhuis-Zybert, Izabela A; Smit, Jolanda M

    2016-07-01

    Dengue virus infects immune cells, including monocytes, macrophages and dendritic cells (DC). We compared virus infectivity in macrophages and DC, and found that the virus origin determined the cell tropism of progeny virus. The highest efficiency of re-infection was seen for macrophage-derived dengue virus. Furthermore, in the presence of enhancing antibodies, macrophage-derived virus gave greater enhancement of infection compared with immature DC-derived virus. Taken together, our results highlight the importance of macrophages in dengue infection. PMID:27046075

  17. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway.

    PubMed

    Peng, Hui; Sun, Lijun; Jia, Beibei; Lan, Xiqian; Zhu, Bing; Wu, Yumei; Zheng, Jialin

    2011-01-01

    Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD). In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia) drive central nervous system (CNS) inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS) activated monocyte-derived macrophages (MDM) inhibit human neural progenitor cell (NPC) neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3), a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM) and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM) induced Janus kinase 1 (Jak1) and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP) expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3) decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α) produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In HIVE mice, siRNA control (without target sequence, sicon) pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these

  18. Co-culture of bone marrow stem cells and macrophages indicates intermediate mechanism between local inflammation and innate immune system in diabetic periodontitis

    PubMed Central

    Wang, Jia; Li, Hao; Li, Bo; Gong, Qiulin; Chen, Xinmin; Wang, Qi

    2016-01-01

    Diabetic periodontitis (DP), which has been shown to cause alveolar bone loss, is among the most common complications associated with diabetes. The precise mechanisms underlying alveolar bone loss in patients with DP remain unclear. Therefore, the present study established a co-culture system of bone marrow stem cells (BMSCs) and macrophages, in order to investigate the potential mechanisms underlying DP-associated alveolar bone loss in vitro. In addition, Porphyromonas gingivalis (PG) periodontal infection and high glucose levels were used to induce DP in mice. The present study evaluated the protein expression levels of various chemokines and the migration of BMSCs and macrophages. The protein expression levels of extracellular signal-regulated kinase 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase (MAPK) were significantly increased in the BMSCs exposed to high glucose and PG, which may have been due to the activation of MAPK. In addition, DP induction in mice was associated with the release of chemokine (C-C motif) ligand 2 (CCL2) from BMSCs and the secretion of chemokine (C-C Motif) receptor 2 (CCR2) and tumor necrosis factor-α from macrophages, which was associated in turn with enhanced adhesion and chemotaxis of macrophages. The results of the present study suggested that DP led to the upregulation of CCL2 in the periodontal tissues and enhanced macrophage infiltration via the CCL2/CCR2 axis, which in turn promoted alveolar bone loss.

  19. Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation

    PubMed Central

    2011-01-01

    Introduction Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system (CNS) in which macrophages play a central role. Initially, macrophages where thought to be merely detrimental in MS, however, recent evidence suggests that their functional phenotype is altered following myelin phagocytosis. Macrophages that have phagocytosed myelin may be less inflammatory and may exert beneficial effects. The presence of myelin-containing macrophages in CNS-draining lymph nodes and perivascular spaces of MS patients suggests that these cells are ideally positioned to exert an immune regulatory role. Therefore we evaluated in this study the effect of myelin-phagocytosing macrophages on lymphocyte reactivity. Methods Thioglycolate-elicited rat peritoneal macrophages were loaded with myelin and cocultured with myelin-basic protein (MBP) or ovalbumin (OVA) reactive lymphocytes. Lymphocyte proliferation was determined by CFSE-labeling. The role of nitric oxide in regulating lymphocyte proliferation was assessed by addition of an inhibitor of inducible nitric oxide synthase to the coculture. In vivo immune regulation was investigated by treating MBP- and OVA-immunized animals subcutaneously with myelin. Cognate antigen specific lymphocyte proliferation and nitric oxide production were determined 9d post-immunization. Results In this study we demonstrate that myelin-phagocytosing macrophages inhibit TCR-triggered lymphocyte proliferation in an antigen-independent manner. The observed immune suppression is mediated by an increase in NO production by myelin-phagocytosing macrophages upon contact with lymphocytes. Additionally, myelin delivery to primarily CD169+ macrophages in popliteal lymph nodes of OVA-immunized animals results in a reduced cognate antigen specific proliferation. In contrast to OVA-immunized animals, lymphocytes from MBP-immunized animals displayed an increased proliferation after stimulation with their cognate antigen

  20. Interplay of macrophages and T cells in the lung vasculature.

    PubMed

    Gerasimovskaya, Evgenia; Kratzer, Adelheid; Sidiakova, Asya; Salys, Jonas; Zamora, Martin; Taraseviciene-Stewart, Laimute

    2012-05-15

    In severe pulmonary arterial hypertension (PAH), vascular lesions are composed of phenotypically altered vascular and inflammatory cells that form clusters or tumorlets. Because macrophages are found in increased numbers in intravascular and perivascular space in human PAH, here we address the question whether macrophages play a role in pulmonary vascular remodeling and whether accumulation of macrophages in the lung vasculature could be compromised by the immune system. We used the mouse macrophage cell line RAW 264.7 because these cells are resistant to apoptosis, have high proliferative capacity, and resemble cells in the plexiform lesions that tend to pile up instead of maintaining a monolayer. Cells were characterized by immunocytochemistry with cell surface markers (Lycopersicon Esculentum Lectin, CD117, CD133, FVIII, CD31, VEGFR-2, and S100). Activated, but not quiescent, T cells were able to suppress RAW 264.7 cell proliferative and migration activity in vitro. The carboxyfluorescein diacetate-labeled RAW 264.7 cells were injected into the naïve Sprague Dawley (SD) rat and athymic nude rat. Twelve days later, cells were found in the lung vasculature of athymic nude rats that lack functional T cells, contributing to vascular remodeling. No labeled RAW 264.7 cells were detected in the lungs of immune-competent SD rats. Our data demonstrate that T cells can inhibit in vitro migration and in vivo accumulation of macrophage-like cells. PMID:22387295

  1. Production of leukotrienes by macrophage cells irradiated with ultraviolet light

    SciTech Connect

    Minoui, S.

    1986-01-01

    Mouse peritoneal macrophages were cultured, labelled with /sup 14/C-arachidonic acid, and then were irradiated with UV light (254 nm). Also, some /sup 14/C-arachidonic acid labelled macrophages were treated with Ca-ionophore (A-23187). The UV-treated macrophages produced two to three times as much arachidonic acid metabolites as did the Ca-ionophore treated cells, the UV irradiated cells produced about 20 ng of LTC/sub 4/ and 5 ng of LTB/sub 4/ per million cells, whereas the Ca-ionophore treated cells produced 10 ng LTC/sub 4/ and 1 ng LTB/sub 4/ per million cells. The irradiated cultures also exhibited a high degree of aggregation of viable macrophages around the lysed cells. There was little aggregation in the Ca-ionophore treated cultures. In phagocytosis and cell aggregation leukotrienes are produced by the viable macrophage cells. Leukotrienes are arachidonic acid oxygenation products that are thought to be mediators both in the expression of the immune-based and inflammatory responses. This study shows that macrophage cells under stressful conditions produced by a trauma-causing agent (UV light) respond by producing leukotrienes and chemotactic factors. These responses of the macrophage cells are the result of multiple biochemical events that promote the production of leukotrienes in the cultures.

  2. Dendritic cells and macrophages in the genitourinary tract

    PubMed Central

    Iijima, N; Thompson, JM; Iwasaki, A

    2009-01-01

    Dendritic cells (DCs) and macrophages are antigen-presenting cells (APCs) that are important in innate immune defense as well as in the generation and regulation of adaptive immunity against a wide array of pathogens. The genitourinary (GU) tract, which serves an important reproductive function, is constantly exposed to numerous agents of sexually transmitted infections (STIs). To combat these STIs, several subsets of DCs and macrophages are strategically localized within the GU tract. In the female genital mucosa, recruitment and function of these APCs are uniquely governed by sex hormones. This review summarizes the latest advances in our understanding of DCs and macrophages in the GU tract with respect to their subsets, lineage, and function. In addition, we discuss the divergent roles of these cells in immune defense against STIs as well as in maternal tolerance to the fetus. PMID:19079212

  3. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    SciTech Connect

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  4. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages

    PubMed Central

    Abu Khweek, Arwa; Fernández Dávila, Natalia S.; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A.; Tazi, Mia; Hassan, Hoda; Novotny, Laura A.; Bakaletz, Lauren O.; Amer, Amal O.

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human. PMID:23750338

  5. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages.

    PubMed

    Abu Khweek, Arwa; Fernández Dávila, Natalia S; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A; Tazi, Mia; Hassan, Hoda; Novotny, Laura A; Bakaletz, Lauren O; Amer, Amal O

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human. PMID:23750338

  6. PPE26 induces TLR2-dependent activation of macrophages and drives Th1-type T-cell immunity by triggering the cross-talk of multiple pathways involved in the host response

    PubMed Central

    Su, Haibo; Kong, Cong; Zhu, Lin; Huang, Qi; Luo, Liulin; Wang, Honghai; Xu, Ying

    2015-01-01

    The pathophysiological functions and the underlying molecular basis of PE /PPE proteins of M. tuberculosis remain largely unknown. In this study, we focused on the link between PPE26 and host response. We demonstrated that PPE26 can induce extensive inflammatory responses in macrophages through triggering the cross-talk of multiple pathways involved in the host response, as revealed by iTRAQ-based subcellular quantitative proteomics. We observed that PPE26 is able to specifically bind to TLR2 leading to the subsequent activation of MAPKs and NF-κB signaling. PPE26 functionally stimulates macrophage activation by augmenting pro-inflammatory cytokine production (TNF-α, IL-6 and IL-12 p40) and the expression of cell surface markers (CD80, CD86, MHC class I and II). We observed that PPE26-treated macrophages effectively polarizes naïve CD4+ T cells to up-regulate CXCR3 expression, and to secrete IFN-γ and IL-2, indicating PPE26 contributes to the Th1 polarization during the immune response. Importantly, rBCG::PPE26 induces stronger antigen-specific TNF-α and IFN-γ activity, and higher levels of the Th1 cytokines TNF-α and IFN-γ comparable to BCG. Moreover, PPE26 effectively induces the reciprocal expansion of effector/memory CD4+/CD8+ CD44highCD62Llow T cells in the spleens of mice immunized with this strain. These results suggest that PPE26 may be a TLR2 agonist that stimulates innate immunity and adaptive immunity, indicating that PPE26 is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis. PMID:26439698

  7. Macrophages: sentinels and regulators of the immune system.

    PubMed

    Franken, Lars; Schiwon, Marzena; Kurts, Christian

    2016-04-01

    The important role of macrophages in host defense against a variety of pathogens has long been recognized and has been documented and reviewed in numerous publications. Recently, it has become clear that tissue macrophages are not entirely derived from monocytes, as has been assumed for a long time, but rather show an ontogenetic dichotomy in most tissues: while part of the tissue macrophages are derived from monocytes, a major subset is prenatally seeded from the yolk sac. The latter subset shows a remarkable longevity and is maintained by self-renewal in the adult animal. This paradigm shift poses interesting questions: are these two macrophage subsets functionally equivalent cells that are recruited into the tissue at different development stages, or are both macrophage subsets discrete cell types with distinct functions, which have to exist side by side? Is the functional specialization that can be observed in most macrophages due to their lineage or due to their anatomical niche? This review will give an overview about what we know of macrophage ontogeny and will discuss the influence of the macrophage lineage and location on their functional specialization. PMID:26880038

  8. Ubiquitination by SAG regulates macrophage survival/death and immune response during infection

    PubMed Central

    Chang, S C; Ding, J L

    2014-01-01

    The checkpoint between the life and death of macrophages is crucial for the host's frontline immune defense during acute phase infection. However, the mechanism as to how the immune cell equilibrates between apoptosis and immune response is unclear. Using in vitro and ex vivo approaches, we showed that macrophage survival is synchronized by SAG (sensitive to apoptosis gene), which is a key member of the ubiquitin–proteasome system (UPS). When challenged by pathogen-associated molecular patterns (PAMPs), we observed a reciprocal expression profile of pro- and antiapoptotic factors in macrophages. However, SAG knockdown disrupted this balance. Further analysis revealed that ubiquitination of Bax and SARM (sterile α- and HEAT/armadillo-motif-containing protein) by SAG-UPS confers survival advantage to infected macrophages. SAG knockdown caused the accumulation of proapoptotic Bax and SARM, imbalance of Bcl-2/Bax in the mitochondria, induction of cytosolic cytochrome c and activation of caspase-9 and -3, all of which led to disequilibrium between life and death of macrophages. In contrast, SAG-overexpressing macrophages challenged with PAMPs exhibited upregulation of protumorigenic cytokines (IL-1β, IL-6 and TNF-α), and downregulation of antitumorigenic cytokine (IL-12p40) and anti-inflammatory cytokine (IL-10). This suggests that SAG-dependent UPS is a key switch between immune defense and apoptosis or immune overactivation and tumorigenesis. Altogether, our results indicate that SAG-UPS facilitates a timely and appropriate level of immune response, prompting future development of potential immunomodulators of SAG-UPS. PMID:24786833

  9. Ubiquitination by SAG regulates macrophage survival/death and immune response during infection.

    PubMed

    Chang, S C; Ding, J L

    2014-09-01

    The checkpoint between the life and death of macrophages is crucial for the host's frontline immune defense during acute phase infection. However, the mechanism as to how the immune cell equilibrates between apoptosis and immune response is unclear. Using in vitro and ex vivo approaches, we showed that macrophage survival is synchronized by SAG (sensitive to apoptosis gene), which is a key member of the ubiquitin-proteasome system (UPS). When challenged by pathogen-associated molecular patterns (PAMPs), we observed a reciprocal expression profile of pro- and antiapoptotic factors in macrophages. However, SAG knockdown disrupted this balance. Further analysis revealed that ubiquitination of Bax and SARM (sterile α- and HEAT/armadillo-motif-containing protein) by SAG-UPS confers survival advantage to infected macrophages. SAG knockdown caused the accumulation of proapoptotic Bax and SARM, imbalance of Bcl-2/Bax in the mitochondria, induction of cytosolic cytochrome c and activation of caspase-9 and -3, all of which led to disequilibrium between life and death of macrophages. In contrast, SAG-overexpressing macrophages challenged with PAMPs exhibited upregulation of protumorigenic cytokines (IL-1β, IL-6 and TNF-α), and downregulation of antitumorigenic cytokine (IL-12p40) and anti-inflammatory cytokine (IL-10). This suggests that SAG-dependent UPS is a key switch between immune defense and apoptosis or immune overactivation and tumorigenesis. Altogether, our results indicate that SAG-UPS facilitates a timely and appropriate level of immune response, prompting future development of potential immunomodulators of SAG-UPS. PMID:24786833

  10. Immune reaction and survivability of salmonella typhimurium and salmonella infantis after infection of primary avian macrophages.

    PubMed

    Braukmann, Maria; Methner, Ulrich; Berndt, Angela

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages. PMID:25811871

  11. Immune Reaction and Survivability of Salmonella Typhimurium and Salmonella Infantis after Infection of Primary Avian Macrophages

    PubMed Central

    Braukmann, Maria; Methner, Ulrich; Berndt, Angela

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages. PMID:25811871

  12. Of macrophages and red blood cells; a complex love story.

    PubMed

    de Back, Djuna Z; Kostova, Elena B; van Kraaij, Marian; van den Berg, Timo K; van Bruggen, Robin

    2014-01-01

    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages. PMID:24523696

  13. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses1

    PubMed Central

    Hussain, S. Farzana; Yang, David; Suki, Dima; Aldape, Kenneth; Grimm, Elizabeth; Heimberger, Amy B.

    2006-01-01

    Little is known about the immune performance and interactions of CNS microglia/macrophages in glioma patients. We found that microglia/macrophages were the predominant immune cell infiltrating gliomas (~1% of total cells); others identified were myeloid dendritic cells (DCs), plasmacytoid DCs, and T cells. We isolated and analyzed the immune functions of CD11b/c+CD45+ glioma-infiltrating microglia/macrophages (GIMs) from postoperative tissue specimens of glioma patients. Although GIMs expressed substantial levels of Toll-like receptors (TLRs), they did not appear stimulated to produce pro-inflammatory cytokines (tumor necrosis factor α, interleukin 1, or interleukin 6), and in vitro, lipopolysaccharides could bind TLR-4 but could not induce GIM-mediated T-cell proliferation. Despite surface major histocompatibility complex class II expression, they lacked expression of the costimulatory molecules CD86, CD80, and CD40 critical for T-cell activation. Ex vivo, we demonstrate a corresponding lack of effector/activated T cells, as glioma-infiltrating CD8+ T cells were phenotypically CD8+CD25−. By contrast, there was a prominent population of regulatory CD4 T cells (CD4+CD25+FOXP3+) infiltrating the tumor. We conclude that while GIMs may have a few intact innate immune functions, their capacity to be stimulated via TLRs, secrete cytokines, upregulate costimulatory molecules, and in turn activate antitumor effector T cells is not sufficient to initiate immune responses. Furthermore, the presence of regulatory T cells may also contribute to the lack of effective immune activation against malignant human gliomas. PMID:16775224

  14. Role of macrophages in the immune response to hepatocytes

    SciTech Connect

    Bumgardner, G.L.; Chen, S.; Almond, S.P.; Ascher, N.L.; Payne, W.D.; Matas, A.J. )

    1990-06-01

    The purpose of this study was to determine the role of host macrophages in the development of allospecific cytolytic T cells (allo-CTLs) in response to purified allogeneic MHC Class I+, Class II- hepatocytes in vivo in hepatocyte sponge matrix allografts (HC-SMA). Depletion of antigen-presenting cells (APCs) from responder splenocytes in mixed lymphocyte hepatocyte culture (MLHC) inhibits the development of allo-CTLs in response to purified hepatocytes. First the ability of sponge macrophages to function as accessory cells in indirect presentation of hepatocyte Class I antigen was tested in MLHC. We found that addition of irradiated sponge cells (a source of sponge macrophages) restored the development of allo-CTLs in MLHC depleted of responder APCs. Therefore, radioresistant sponge macrophages can function as accessory cells in MLHC. We next employed silica as an immunotherapy targeted against host macrophages and assessed the effect on development of allo-CTLs in HC-SMA. We found that local (intrasponge) silica treatment completely inhibited the development of allo-CTLs in HC-SMA. Combined local and systemic silica treatment resulted in inhibition of allocytotoxicity comparable to local silica treatment alone in the doses tested. We conclude that host macrophages which infiltrate HC-SMA can function as accessory cells in vitro in MLHC and that both infiltrating host macrophages and lymphocytes participate in the development of an alloimmune response to purified hepatocytes in vivo. This interaction may involve indirect antigen presentation of hepatocyte Class I antigen by macrophages to host lymphocytes which accumulate in HC-SMA.

  15. Photodynamic therapy mediates innate immune responses via fibroblast-macrophage interactions.

    PubMed

    Zulaziz, N; Azhim, A; Himeno, N; Tanaka, M; Satoh, Y; Kinoshita, M; Miyazaki, H; Saitoh, D; Shinomiya, N; Morimoto, Y

    2015-10-01

    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages. PMID:25997703

  16. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages.

    PubMed

    Pastore, Nunzia; Brady, Owen A; Diab, Heba I; Martina, José A; Sun, Lu; Huynh, Tuong; Lim, Jeong-A; Zare, Hossein; Raben, Nina; Ballabio, Andrea; Puertollano, Rosa

    2016-08-01

    The activation of transcription factors is critical to ensure an effective defense against pathogens. In this study we identify a critical and complementary role of the transcription factors TFEB and TFE3 in innate immune response. By using a combination of chromatin immunoprecipitation, CRISPR-Cas9-mediated genome-editing technology, and in vivo models, we determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines. Furthermore, secretion of key mediators of the inflammatory response (CSF2, IL1B, IL2, and IL27), macrophage differentiation (CSF1), and macrophage infiltration and migration to sites of inflammation (CCL2) was significantly reduced in TFEB and TFE3 deficient cells. These new insights provide us with a deeper understanding of the transcriptional regulation of the innate immune response. PMID:27171064

  17. Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system

    PubMed Central

    Barnes, Mark A.; Carson, Monica J.; Nair, Meera G.

    2015-01-01

    Catecholamines and adipokines function as hormones; catecholamines as neurotransmitters in the sympathetic nervous system, and adipokines as mediators of metabolic processes. It has become increasingly clear, however, that both also function as immunomodulators of innate and adaptive immune cells, including macrophages. Macrophages can respond to, as well as produce their own catecholamines. Dopamine, noradrenaline, and adrenaline are the most abundant catecholamines in the body, and can induce both pro-inflammatory and anti-inflammatory immune responses in macrophages, as well as non-immune processes such as thermogenesis. Though they are responsive to adipokines, particularly lipoproteins, leptin, and adiponectin, macrophages generally do synthesize their own adipokines, with the exception being resistin-like molecules. Adipokines contribute to adverse metabolic and immune response by stimulating lipid accumulation, foam cell formation and pro-inflammatory cytokine production in macrophages. Adipokines can also promote balance or resolution during metabolic and immune processes by promoting reverse lipid transport and expression of Th2 cytokines. This review will explore the mechanisms by which catecholamines and adipokines influence macrophage function in neural pathways, immunity and metabolism. PMID:25703786

  18. PDT-treated apoptotic cells induce macrophage synthesis NO

    NASA Astrophysics Data System (ADS)

    Song, S.; Xing, D.; Zhou, F. F.; Chen, W. R.

    2009-11-01

    Nitric oxide (NO) is a biologically active molecule which has multi-functional in different species. As a second messenger and neurotransmitter, NO is not only an important regulatory factor between cells' information transmission, but also an important messenger in cell-mediated immunity and cytotoxicity. On the other side, NO is involving in some diseases' pathological process. In pathological conditions, the macrophages are activated to produce a large quantity of nitric oxide synthase (iNOS), which can use L-arginine to produce an excessive amount of NO, thereby killing bacteria, viruses, parasites, fungi, tumor cells, as well as in other series of the immune process. In this paper, photofrin-based photodynamic therapy (PDT) was used to treat EMT6 mammary tumors in vitro to induce apoptotic cells, and then co-incubation both apoptotic cells and macrophages, which could activate macrophage to induce a series of cytotoxic factors, especially NO. This, in turn, utilizes macrophages to activate a cytotoxic response towards neighboring tumor cells. These results provided a new idea for us to further study the immunological mechanism involved in damaging effects of PDT, also revealed the important function of the immune effect of apoptotic cells in PDT.

  19. Neither classical nor alternative macrophage activation is required for Pneumocystis clearance during immune reconstitution inflammatory syndrome.

    PubMed

    Zhang, Zhuo-Qian; Wang, Jing; Hoy, Zachary; Keegan, Achsah; Bhagwat, Samir; Gigliotti, Francis; Wright, Terry W

    2015-12-01

    Pneumocystis is a respiratory fungal pathogen that causes pneumonia (Pneumocystis pneumonia [PcP]) in immunocompromised patients. Alveolar macrophages are critical effectors for CD4(+) T cell-dependent clearance of Pneumocystis, and previous studies found that alternative macrophage activation accelerates fungal clearance during PcP-related immune reconstitution inflammatory syndrome (IRIS). However, the requirement for either classically or alternatively activated macrophages for Pneumocystis clearance has not been determined. Therefore, RAG2(-/-) mice lacking either the interferon gamma (IFN-γ) receptor (IFN-γR) or interleukin 4 receptor alpha (IL-4Rα) were infected with Pneumocystis. These mice were then immune reconstituted with wild-type lymphocytes to preserve the normal T helper response while preventing downstream effects of Th1 or Th2 effector cytokines on macrophage polarization. As expected, RAG2(-/-) mice developed severe disease but effectively cleared Pneumocystis and resolved IRIS. Neither RAG/IFN-γR(-/-) nor RAG/IL-4Rα(-/-) mice displayed impaired Pneumocystis clearance. However, RAG/IFN-γR(-/-) mice developed a dysregulated immune response, with exacerbated IRIS and greater pulmonary function deficits than those in RAG2 and RAG/IL-4Rα(-/-) mice. RAG/IFN-γR(-/-) mice had elevated numbers of lung CD4(+) T cells, neutrophils, eosinophils, and NK cells but severely depressed numbers of lung CD8(+) T suppressor cells. Impaired lung CD8(+) T cell responses in RAG/IFN-γR(-/-) mice were associated with elevated lung IFN-γ levels, and neutralization of IFN-γ restored the CD8 response. These data demonstrate that restricting the ability of macrophages to polarize in response to Th1 or Th2 cytokines does not impair Pneumocystis clearance. However, a cell type-specific IFN-γ/IFN-γR-dependent mechanism regulates CD8(+) T suppressor cell recruitment, limits immunopathogenesis, preserves lung function, and enhances the resolution of PcP-related IRIS

  20. Immune phagocytosis of Plasmodium yoelii-infected erythrocytes by macrophages and eosinophils.

    PubMed Central

    Tosta, C E; Wedderburn, N

    1980-01-01

    Unstimulated peritoneal cells from C57Bl mice were allowed to phagocytose in vitro different mixtures of Percoll-separated parasitized and non-parasitized erythrocytes (PE and NPE) from the blood of mice infected with Plasmodium yoelii in the presence of immune and normal serum. Immune serum caused a significant enhancement of phagocytosis, and both the number of PE adhering to and/or ingested by 100 macrophages and the number of the latter cells engaged in phagocytosis was increased. The effect of immune serum was more marked when the ratio of PE/macrophages was 5--40/1, but was less at a ratio of 80/1, when considerable phagocytosis of PE occurred in the presence of normal serum. From 83--100% of the phagocytosed cells were parasitized erythrocytes, even when the ratio of PE/NPE was as low as 1/15. In the system used, macrophages were unable to discriminate between non-parasitized erythrocytes from infected mice and normal erythrocytes. Eosinophils were also observed to engage in phagocytosis of parasitized erythrocytes. Their activity was entirely dependent on immune serum and was never directed against non-parasitized red blood cells. PMID:7460387

  1. Immune Monitoring of Trans-endothelial Transport by Kidney-Resident Macrophages.

    PubMed

    Stamatiades, Efstathios G; Tremblay, Marie-Eve; Bohm, Mathieu; Crozet, Lucile; Bisht, Kanchan; Kao, Daniela; Coelho, Carolina; Fan, Xiying; Yewdell, William T; Davidson, Anne; Heeger, Peter S; Diebold, Sandra; Nimmerjahn, Falk; Geissmann, Frederic

    2016-08-11

    Small immune complexes cause type III hypersensitivity reactions that frequently result in tissue injury. The responsible mechanisms, however, remain unclear and differ depending on target organs. Here, we identify a kidney-specific anatomical and functional unit, formed by resident macrophages and peritubular capillary endothelial cells, which monitors the transport of proteins and particles ranging from 20 to 700 kDa or 10 to 200 nm into the kidney interstitium. Kidney-resident macrophages detect and scavenge circulating immune complexes "pumped" into the interstitium via trans-endothelial transport and trigger a FcγRIV-dependent inflammatory response and the recruitment of monocytes and neutrophils. In addition, FcγRIV and TLR pathways synergistically "super-activate" kidney macrophages when immune complexes contain a nucleic acid. These data identify a physiological function of tissue-resident kidney macrophages and a basic mechanism by which they initiate the inflammatory response to small immune complexes in the kidney. PMID:27477514

  2. Ribonucleic acid synthesis in normal and immune macrophages after antigenic stimulus.

    PubMed

    Soderberg, L S; Tewari, R P; Solotorovsky, M

    1976-06-01

    Macrophage ribonucleic acid (RNA) synthesis is an important metabolic process intimately related to the function of these cells. Mouse peritoneal macrophage RNA was extracted with phenol in the presence of bentonite and electrophoresed on composite agarose-polyacrylamide gels. The pulse-chase technique was used to follow the precursor relationships in macrophage ribosomal RNA (rRNA) maturation. The rRNA species at 18S and 28S appeared at 15 and 45 min, respectively, after RNA synthesis was halted. Their appearance corresponded closely to decreases in the rRNA precursors at 45S, 36S, and 34S. Studies of RNA methylation aided in confirming the identity of these ribosomal species. Unmethylated RNA species appeared as messenger RNA between 5S and 15S, and at about 55S probably represented heterodisperse nuclear RNA. When normal macrophages were incubated with heat-killed Salmonella enteritidis, an acceleration in the maturation of RNA was observed. The accelerated maturation was indicated by the earlier appearance of 28S rRNA and the more rapid development of an equilibrium state, where further labeling did not change the RNA profile. In macrophage RNA from mice immunized with S. enteritidis, rRNA species appeared rapidly but did not accumulate to the same extent as observed for normal macrophages. Precursor rRNA and other RNA species developed as usual, suggesting specific degradation of mature rRNA. Such rRNA wastage could indicate a mechanism controlling ribosome assembly in the non-proliferating activated macrophage. The pattern of RNA synthesis in immune macrophages was essentially unchanged by the presence of heat-killed S. enteritidis in vitro. PMID:971940

  3. The journey from stem cell to macrophage

    PubMed Central

    Pittet, Mikael J.; Nahrendorf, Matthias; Swirski, Filip K.

    2014-01-01

    Essential protectors against infection and injury, macrophages can also contribute to many common and fatal diseases. Here we discuss the mechanisms that control different types of macrophage activities in mice. We follow the cells’ maturational pathways over time and space, and elaborate on events that influence the type of macrophage eventually settling a particular destination. The nature of the precursor cells, developmental niches, tissues, environmental cues, and other connecting processes appear to contribute to the identity of macrophage type. Together, the spatial and developmental relationships of macrophages comprise a topo-ontogenic map that can guide our understanding of their biology. PMID:24673186

  4. Epigenetic programming during monocyte to macrophage differentiation and trained innate immunity

    PubMed Central

    Saeed, Sadia; Quintin, Jessica; Kerstens, Hindrik H.D.; Rao, Nagesha A; Aghajanirefah, Ali; Matarese, Filomena; Cheng, Shih-Chin; Ratter, Jacqueline; Berentsen, Kim; van der Ent, Martijn A.; Sharifi, Nilofar; Janssen-Megens, Eva M.; Huurne, Menno Ter; Mandoli, Amit; van Schaik, Tom; Ng, Aylwin; Burden, Frances; Downes, Kate; Frontini, Mattia; Kumar, Vinod; Giamarellos-Bourboulis, Evangelos J; Ouwehand, Willem H; van der Meer, Jos W.M.; Joosten, Leo A.B.; Wijmenga, Cisca; Martens, Joost H.A.; Xavier, Ramnik J.; Logie, Colin; Netea, Mihai G.; Stunnenberg, Hendrik G.

    2014-01-01

    Structured Abstract Introduction Monocytes circulate in the bloodstream for up to 3–5 days. Concomitantly, immunological imprinting of either tolerance (immunosuppression) or trained immunity (innate immune memory) determines the functional fate of monocytes and monocyte-derived macrophages, as observed after infection or vaccination. Methods Purified circulating monocytes from healthy volunteers were differentiated under the homeostatic M-CSF concentrations present in human serum. During the first 24 hours, trained immunity was induced by β-glucan (BG) priming, while post-sepsis immunoparalysis was mimicked by exposure to LPS, generating endotoxin-induced tolerance. Epigenomic profiling of the histone marks H3K4me1, H3K4me3 and H3K27ac, DNase I accessibility and RNA sequencing were performed at both the start of the experiment (ex vivo monocytes) and at the end of the six days of in vitro culture (macrophages). Results Compared to monocytes (Mo), naïve macrophages (Mf) display a remodeled metabolic enzyme repertoire and attenuated innate inflammatory pathways; most likely necessary to generate functional tissue macrophages. Epigenetic profiling uncovered ~8000 dynamic regions associated with ~11000 DNase I hypersensitive sites. Changes in histone acetylation identified most dynamic events. Furthermore, these regions of differential histone marks displayed some degree of DNase I accessibility that was already present in monocytes. H3K4me1 mark increased in parallel with de novo H3K27ac deposition at distal regulatory regions; H3K4me1 mark remained even after the loss of H3K27ac, marking decommissioned regulatory elements. β-glucan priming specifically induced ~3000 distal regulatory elements, whereas LPS-tolerization uniquely induced H3K27ac at ~500 distal regulatory regions. At the transcriptional level, we identified co-regulated gene modules during monocyte to macrophage differentiation, as well as discordant modules between trained and tolerized cells

  5. DNA-Protein Immunization Using Leishmania Peroxidoxin-1 Induces a Strong CD4+ T Cell Response and Partially Protects Mice from Cutaneous Leishmaniasis: Role of Fusion Murine Granulocyte-Macrophage Colony-Stimulating Factor DNA Adjuvant

    PubMed Central

    Bayih, Abebe Genetu; Daifalla, Nada S.; Gedamu, Lashitew

    2014-01-01

    Background To date, no universally effective and safe vaccine has been developed for general human use. Leishmania donovani Peroxidoxin-1 (LdPxn-1) is a member of the antioxidant family of proteins and is predominantly expressed in the amastigote stage of the parasite. The aim of this study was to evaluate the immunogenicity and protective efficacy of LdPxn-1 in BALB/c mice in heterologous DNA-Protein immunization regimen in the presence of fusion murine granulocyte-macrophage colony-stimulating factor (mGMCSF) DNA adjuvant. Methodology and Principal Findings A fusion DNA of LdPxn1 and mGMCSF was cloned into a modified pcDNA vector. To confirm the expression in mammalian system, Chinese hamster ovary cells were transfected with the plasmid vector containing LdPxn1 gene. BALB/c mice were immunized twice with pcDNA-mGMCSF-LdPxn-1 or pcDNA-LdPxn1 DNA and boosted once with recombinant LdPxn-1 protein. Three weeks after the last immunization, mice were infected with Leishmania major promastigotes. The result showed that immunization with pcDNA-mGMCSF-LdPxn1 elicited a mixed Th-1/Th-2 immune response with significantly higher production of IFN-γ than controls. Intracellular cytokine staining of antigen-stimulated spleen cells showed that immunization with this antigen elicited significantly higher proportion of CD4+ T cells that express IFN-γ, TNF-α, or IL-2. The antigen also induced significantly higher proportion of multipotent CD4+ cells that simultaneously express the three Th-1 cytokines. Moreover, a significant reduction in the footpad swelling was seen in mice immunized with pcDNA-mGMCSF-LdPxn1 antigen. Expression study in CHO cells demonstrated that pcDNA-mGMCSF-LdPxn-1 was expressed in mammalian system. Conclusion The result demonstrates that immunization of BALB/c mice with a plasmid expressing LdPxn1 in the presence of mGMCSF adjuvant elicits a strong specific immune response with high level induction of multipotent CD4+ cells that mediate protection of the

  6. Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors

    PubMed Central

    Beury, Daniel W.; Parker, Katherine H.; Nyandjo, Maeva; Sinha, Pratima; Carter, Kayla A.; Ostrand-Rosenberg, Suzanne

    2014-01-01

    MDSC and macrophages are present in most solid tumors and are important drivers of immune suppression and inflammation. It is established that cross-talk between MDSC and macrophages impacts anti-tumor immunity; however, interactions between tumor cells and MDSC or macrophages are less well studied. To examine potential interactions between these cells, we studied the impact of MDSC, macrophages, and four murine tumor cell lines on each other, both in vitro and in vivo. We focused on IL-6, IL-10, IL-12, TNF-α, and NO, as these molecules are produced by macrophages, MDSC, and many tumor cells; are present in most solid tumors; and regulate inflammation. In vitro studies demonstrated that MDSC-produced IL-10 decreased macrophage IL-6 and TNF-α and increased NO. IL-6 indirectly regulated MDSC IL-10. Tumor cells increased MDSC IL-6 and vice versa. Tumor cells also increased macrophage IL-6 and NO and decreased macrophage TNF-α. Tumor cell-driven macrophage IL-6 was reduced by MDSC, and tumor cells and MDSC enhanced macrophage NO. In vivo analysis of solid tumors identified IL-6 and IL-10 as the dominant cytokines and demonstrated that these molecules were produced predominantly by stromal cells. These results suggest that inflammation within solid tumors is regulated by the ratio of tumor cells to MDSC and macrophages and that interactions of these cells have the potential to alter significantly the inflammatory milieu within the tumor microenvironment. PMID:25170116

  7. Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases.

    PubMed

    Calmus, Yvon; Poupon, Raoul

    2014-10-01

    The liver is selectively enriched in innate immune cells, macrophages (Kupffer cells), natural killer, and natural killer T cells. These cells release an array of mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic activity that function to fight infections, limit tissue injury, and promote wound healing. The diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment. Understanding the mechanisms and role of the microenvironment contributing to modulation of macrophage populations is crucial for comprehension of the pathophysiology of liver injury in diverse conditions. Several studies initiated in the 1990s have shown that bile acids modulate innate and adaptive immunity. In the last decade, bile acids turned into hormones and signalling molecules involved in many metabolic and inflammatory processes. Biological properties of bile acids are thought to be mediated mainly through activation of the nuclear receptor FXR, the membrane receptor TGR5, as well as PK, ERK, MAP kinases signalling pathways. FXR and TGR5 agonists are currently under development for clinical purpose. This review analyses the mechanisms involved in the immunomodulatory effects of bile acids on the macrophage and discuss their implications in the pathophysiology of cholestasis, primary biliary cirrhosis and primary sclerosing cholangitis. PMID:25176586

  8. Generation and characterization of bovine bone marrow-derived macrophage cell line.

    PubMed

    Xiao, Jiajia; Xie, Rongxia; Li, Qiaoqiao; Chen, Wuju; Zhang, Yong

    2016-05-01

    Macrophages, as the forefront of innate immune defense, have an important role in the host responses to mycobacterial infection. Therefore, a stable macrophage cell line is needed for future bovine immune system research on the bacterial infection. In this study, we established a bovine macrophage cell line by introducing the human telomerase reverse transcriptase (hTERT) gene into bovine bone marrow-derived macrophages (bBMMs). The TERT-bBMMs cells expressed macrophage surface antigen (CD11b, CD282) and upregulated expression of the cytokines IL-1β, IL-6, IL-10, IL-12, TNF-α in response to bacterial invasion. These results demonstrate that this cell line provide reliable cell model system for future studies on interactions between the bovine macrophages and Mycobacterium tuberculosis. PMID:26936441

  9. Immune cells in the female reproductive tract.

    PubMed

    Lee, Sung Ki; Kim, Chul Jung; Kim, Dong-Jae; Kang, Jee-Hyun

    2015-02-01

    The female reproductive tract has two main functions: protection against microbial challenge and maintenance of pregnancy to term. The upper reproductive tract comprises the fallopian tubes and the uterus, including the endocervix, and the lower tract consists of the ectocervix and the vagina. Immune cells residing in the reproductive tract play contradictory roles: they maintain immunity against vaginal pathogens in the lower tract and establish immune tolerance for sperm and an embryo/fetus in the upper tract. The immune system is significantly influenced by sex steroid hormones, although leukocytes in the reproductive tract lack receptors for estrogen and progesterone. The leukocytes in the reproductive tract are distributed in either an aggregated or a dispersed form in the epithelial layer, lamina propria, and stroma. Even though immune cells are differentially distributed in each organ of the reproductive tract, the predominant immune cells are T cells, macrophages/dendritic cells, natural killer (NK) cells, neutrophils, and mast cells. B cells are rare in the female reproductive tract. NK cells in the endometrium significantly expand in the late secretory phase and further increase their number during early pregnancy. It is evident that NK cells and regulatory T (Treg) cells are extremely important in decidual angiogenesis, trophoblast migration, and immune tolerance during pregnancy. Dysregulation of endometrial/decidual immune cells is strongly related to infertility, miscarriage, and other obstetric complications. Understanding the immune system of the female reproductive tract will significantly contribute to women's health and to success in pregnancy. PMID:25713505

  10. Mycoplasma bovis isolates recovered from cattle and bison (Bison bison) show differential in vitro effects on PBMC proliferation, alveolar macrophage apoptosis and invasion of epithelial and immune cells.

    PubMed

    Suleman, Muhammad; Prysliak, Tracy; Clarke, Kyle; Burrage, Pat; Windeyer, Claire; Perez-Casal, Jose

    2016-04-15

    In the last few years, several outbreaks of pneumonia, systemically disseminated infection, and high mortality associated with Mycoplasma bovis (M. bovis) in North American bison (Bison bison) have been reported in Alberta, Manitoba, Saskatchewan, Nebraska, New Mexico, Montana, North Dakota, and Kansas. M. bovis causes Chronic Pneumonia and Polyarthritis Syndrome (CPPS) in young, stressed calves in intensively-managed feedlots. M. bovis is not classified as a primary pathogen in cattle, but in bison it appears to be a primary causative agent with rapid progression of disease with fatal outcomes and an average 20% mature herd mortality. Thus, there is a possibility that M. bovis isolates from cattle and bison differ in their pathogenicity. Hence, we decided to compare selected cattle isolates to several bison isolates obtained from clinical cases. We show differences in modulation of PBMC proliferation, invasion of trachea and lung epithelial cells, along with modulation of apoptosis and survival in alveolar macrophages. We concluded that some bison isolates showed less inhibition of cattle and bison PBMC proliferation, were not able to suppress alveolar macrophage apoptosis as efficiently as cattle isolates, and were more or less invasive than the cattle isolate in various cells. These findings provide evidence about the differential properties of M. bovis isolated from the two species and has helped in the selection of bison isolates for genomic sequencing. PMID:27016754

  11. Immune cells in term and preterm labor.

    PubMed

    Gomez-Lopez, Nardhy; StLouis, Derek; Lehr, Marcus A; Sanchez-Rodriguez, Elly N; Arenas-Hernandez, Marcia

    2014-11-01

    Labor resembles an inflammatory response that includes secretion of cytokines/chemokines by resident and infiltrating immune cells into reproductive tissues and the maternal/fetal interface. Untimely activation of these inflammatory pathways leads to preterm labor, which can result in preterm birth. Preterm birth is a major determinant of neonatal mortality and morbidity; therefore, the elucidation of the process of labor at a cellular and molecular level is essential for understanding the pathophysiology of preterm labor. Here, we summarize the role of innate and adaptive immune cells in the physiological or pathological activation of labor. We review published literature regarding the role of innate and adaptive immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in late pregnancy and labor at term and preterm. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages and mast cells) mediate the process of labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in the maintenance of fetomaternal tolerance during pregnancy, and an alteration in their function or abundance may lead to labor at term or preterm. Also, immune cells that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor. In conclusion, a balance between innate and adaptive immune cells is required in order to sustain pregnancy; an alteration of this balance will lead to labor at term or preterm. PMID:24954221

  12. Tumoral Immune Suppression by Macrophages Expressing Fibroblast Activation Protein-Alpha and Heme Oxygenase-1

    PubMed Central

    Arnold, James N.; Magiera, Lukasz; Kraman, Matthew; Fearon, Douglas T.

    2013-01-01

    The depletion of tumor stromal cells that are marked by their expression of the membrane protein fibroblast activation protein-α (FAP) overcomes immune suppression and allows an anti-cancer cell immune response to control tumor growth. In subcutaneous tumors established with immunogenic Lewis lung carcinoma cells expressing ovalbumin (LL2/OVA), the FAP+ population comprises CD45+ and CD45− cells. In the present study, we further characterize the tumoral FAP+/CD45+ population as a minor sub-population of F4/80hi/CCR2+/CD206+ M2 macrophages. Using bone marrow chimeric mice in which the primate diphtheria toxin receptor (DTR) is restricted either to the FAP+/CD45+ or to the FAP+/CD45− subset, we demonstrate by conditionally depleting each subset that both independently contribute to the immune suppressive tumor microenvironment. A basis for the function of the FAP+/CD45+ subset is shown to be the immune inhibitory enzyme, heme oxygenase-1 (HO-1). The FAP+/CD45+ cells are the major tumoral source of HO-1, and an inhibitor of HO-1, Sn mesoporphyrin, causes the same extent of immune-dependent arrest of LL2/OVA tumor growth as does the depletion of these cells. Since this observation of immune suppression by HO-1 expressed by the FAP+/CD45+ stromal cell is replicated in a transplanted model of pancreatic ductal adenocarcinoma, we conclude that pharmacologically targeting this enzyme may improve cancer immunotherapy. PMID:24778275

  13. Macrophage polarization in nerve injury: do Schwann cells play a role?

    PubMed Central

    Stratton, Jo Anne; Shah, Prajay T.

    2016-01-01

    In response to peripheral nerve injury, the inflammatory response is almost entirely comprised of infiltrating macrophages. Macrophages are a highly plastic, heterogenic immune cell, playing an indispensable role in peripheral nerve injury, clearing debris and regulating the microenvironment to allow for efficient regeneration. There are several cells within the microenvironment that likely interact with macrophages to support their function – most notably the Schwann cell, the glial cell of the peripheral nervous system. Schwann cells express several ligands that are known to interact with receptors expressed by macrophages, yet the effects of Schwann cells in regulating macrophage phenotype remains largely unexplored. This review discusses macrophages in peripheral nerve injury and how Schwann cells may regulate their behavior. PMID:26981078

  14. Heme Oxygenase-1 Dysregulates Macrophage Polarization and the Immune Response to Helicobacter pylori

    PubMed Central

    Gobert, Alain P.; Verriere, Thomas; Asim, Mohammad; Barry, Daniel P.; Piazuelo, M. Blanca; de Sablet, Thibaut; Delgado, Alberto G.; Bravo, Luis E.; Correa, Pelayo; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2014-01-01

    Helicobacter pylori incites a futile inflammatory response, which is the key feature of its immunopathogenesis. This leads to the ability of this bacterial pathogen to survive in the stomach and cause peptic ulcers and gastric cancer. Myeloid cells recruited to the gastric mucosa during Helicobacter pylori infection have been directly implicated in the modulation of host defense against the bacterium and gastric inflammation. Heme oxygenase-1 (HO-1) is an inducible enzyme that exhibits anti-inflammatory functions. Our aim was to analyze the induction and role of HO-1 in macrophages during H. pylori infection. We now show that phosphorylation of the H. pylori virulence factor cytotoxin associated gene A (CagA) in macrophages results in expression of hmox-1, the gene encoding HO-1, through p38/nuclear factor (erythroid-derived 2)-like 2 signaling. Blocking phagocytosis prevented CagA phosphorylation and HO-1 induction. The expression of HO-1 was also increased in gastric mononuclear cells of human patients and macrophages of mice infected with cagA+ H. pylori strains. Genetic ablation of hmox-1 in H. pylori-infected mice increased histologic gastritis, which was associated with enhanced M1/Th1/Th17 responses, decreased Mreg response, and reduced H. pylori colonization. Gastric macrophages of H. pylori-infected mice and macrophages infected in vitro with this bacterium showed an M1/Mreg mixed polarization type; deletion of hmox-1 or inhibition of HO-1 in macrophages caused an increased M1 and a decreased of Mreg phenotype. These data highlight a mechanism by which H. pylori impairs the immune response and favors its own survival via activation of macrophage HO-1. PMID:25108023

  15. Monocyte Heterogeneity: Consequences for Monocyte-Derived Immune Cells

    PubMed Central

    de Vries, Teun J.; Everts, Vincent

    2016-01-01

    Blood monocytes are precursors of dendritic cells, macrophages, and osteoclasts. They are a heterogeneous cell population with differences in size, phenotype, and function. Although monocytes maintain several tissue-specific populations of immune cells in homeostasis, their contribution to populations of dendritic cells, macrophages, and osteoclasts is significantly increased in inflammation. Identification of a growing number of functionally different subsets of cells within populations of monocyte-derived immune cells has recently put monocyte heterogeneity into sharp focus. Here, we summarize recent findings in monocyte heterogeneity and their differentiation into dendritic cells, macrophages, and osteoclasts. We also discuss these advances in the context of the formation of functionally different monocyte-derived subsets of dendritic cells, macrophages, and osteoclasts. PMID:27478854

  16. p-Cresyl sulfate suppresses lipopolysaccharide-induced anti-bacterial immune responses in murine macrophages in vitro.

    PubMed

    Shiba, Takahiro; Makino, Ikuyo; Kawakami, Koji; Kato, Ikuo; Kobayashi, Toshihide; Kaneko, Kimiyuki

    2016-03-14

    p-Cresyl sulfate (pCS) is a known uremic toxin that is metabolized from p-cresol produced by intestinal bacteria. Abnormal accumulation of pCS in the blood is a characteristic of chronic kidney disease (CKD). pCS is suggested to cause immune dysfunction and increase the risk of infectious diseases in CKD patients. In this study, we focused on the effects of pCS on macrophage functions related to host defense. We evaluated the effects of pCS on cytokine production, nitric oxide (NO) production, arginase activity, expression of cell-surface molecules, and phagocytosis in the macrophage-like cell line, RAW264.7. pCS significantly decreased interleukin (IL)-12 p40 production and increased IL-10 production. pCS also decreased NO production, but did not influence arginase activity. pCS suppressed lipopolysaccharide-induced CD40 expression on the cell surface, but did not influence phagocytosis. We further assessed whether the effects of pCS observed in the macrophage-like cell line were consistent in primary macrophages. Similar to RAW264.7 cells, pCS decreased IL-12 p40 and p70 production and increased IL-10 production in primary peritoneal macrophages. These data indicate that pCS suppresses certain macrophage functions that contribute to host defense, and may play a role in CKD-related immune dysfunction. PMID:26784855

  17. To Study the Effect of Paclitaxel on the Cytoplasmic Viscosity of Murine Macrophage Immune Cell RAW 264.7 Using Self-Developed Optical Tweezers System

    NASA Astrophysics Data System (ADS)

    Chen, Ying-chun; Wu, Chien-ming

    2012-12-01

    In recent years, optical tweezers have become one of the tools to measure the mechanical properties of living cells. In this study, we first constructed an optical tweezers to investigate the cytoplasmic viscosity of immune cells. In addition to measuring viscosity of cells in a normal condition, we also treated cells with anti-cancer drug, Paclitaxel, and in order to study its effect on the cytoplasmic viscosity. The results showed that the viscosity decreased dramatically during the first 3 h. After 3 h, the change started to slow down and it remained nearly flat by the end of the experiment. In addition, we used the confocal laser scanning microscope to observe the cytoskeleton of the cell after drug treatment for 3 and 5 h, respectively, and found that actin filaments were disrupted and that the nucleus had disintegrated in some drug-treated cells, similar to the process of apoptosis. This study presents a new way for measuring the changes in cytoplasmic viscosity, and to determine if a cell is going into apoptosis as a result of a drug treatment.

  18. Macrophage Immune Response Suppression by Recombinant Mycobacterium tuberculosis Antigens, the ESAT-6, CFP-10, and ESAT-6/CFP-10 Fusion Proteins

    PubMed Central

    Seghatoleslam, Atefeh; Hemmati, Mina; Ebadat, Saeedeh; Movahedi, Bahram; Mostafavi-Pour, Zohreh

    2016-01-01

    Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at P<0.05. Results: The results showed that the ESAT-6, CFP-10, and ESAT-6/CFP-10 proteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability. PMID:27365551

  19. Host lung immunity is severely compromised during tropical pulmonary eosinophilia: role of lung eosinophils and macrophages.

    PubMed

    Sharma, Pankaj; Sharma, Aditi; Vishwakarma, Achchhe Lal; Agnihotri, Promod Kumar; Sharma, Sharad; Srivastava, Mrigank

    2016-04-01

    Eosinophils play a central role in the pathogenesis of tropical pulmonary eosinophilia, a rare, but fatal, manifestation of filariasis. However, no exhaustive study has been done to identify the genes and proteins of eosinophils involved in the pathogenesis of tropical pulmonary eosinophilia. In the present study, we established a mouse model of tropical pulmonary eosinophilia that mimicked filarial manifestations of human tropical pulmonary eosinophilia pathogenesis and used flow cytometry-assisted cell sorting and real-time RT-PCR to study the gene expression profile of flow-sorted, lung eosinophils and lung macrophages during tropical pulmonary eosinophilia pathogenesis. Our results show that tropical pulmonary eosinophilia mice exhibited increased levels of IL-4, IL-5, CCL5, and CCL11 in the bronchoalveolar lavage fluid and lung parenchyma along with elevated titers of IgE and IgG subtypes in the serum. Alveolar macrophages from tropical pulmonary eosinophilia mice displayed decreased phagocytosis, attenuated nitric oxide production, and reduced T-cell proliferation capacity, and FACS-sorted lung eosinophils from tropical pulmonary eosinophilia mice upregulated transcript levels of ficolin A and anti-apoptotic gene Bcl2,but proapoptotic genes Bim and Bax were downregulated. Similarly, flow-sorted lung macrophages upregulated transcript levels of TLR-2, TLR-6, arginase-1, Ym-1, and FIZZ-1 but downregulated nitric oxide synthase-2 levels, signifying their alternative activation. Taken together, we show that the pathogenesis of tropical pulmonary eosinophilia is marked by functional impairment of alveolar macrophages, alternative activation of lung macrophages, and upregulation of anti-apoptotic genes by eosinophils. These events combine together to cause severe lung inflammation and compromised lung immunity. Therapeutic interventions that can boost host immune response in the lungs might thus provide relief to patients with tropical pulmonary eosinophilia. PMID

  20. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization

    PubMed Central

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  1. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization.

    PubMed

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  2. Immune cells tracing using quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Kawamura, Yuki I.; Toyama-Sorimachi, Noriko; Yasuhara, Masato; Dohi, Taeko; Yamamoto, Kenji

    2006-02-01

    Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. Here we report an example of labeling immune cells by QDs. We collected splenic CD4 + T-lymphocyte and peritoneal macrophages from mice. Then cells were labeled with QDs. QDs are incorporated into the T-lymphocyte and macrophages immediately after addition and located in the cytoplasm via endocytosis pathway. The fluorescence of QDs held in the endosomes was easily detected for more than a week. In addition, T-lymphocytes labeled with QDs were stable and cell proliferation or cytokine production including IL-2 and IFN-γ was not affected. When QD-labeled T-lymphocytes were adoptively transferred intravenously to mice, they remained in the peripheral blood and spleen up to a week. Using QD-labeled peritoneal macrophages, we studied cell traffic during inflammation on viscera in peritoneum cavity. QD-labeled macrophages were transplanted into the peritoneum of the mouse, and colitis was induced by intracolonic injection of a hapten, trinitrobenzensulfonic acid. With the aid of stong signals of QDs, we found that macrophage accumuled on the inflammation site of the colon. These results suggested that fluorescent probes of QDs might be useful as bioimaging tools for tracing target cells in vivo.

  3. IL-10 producing intestinal macrophages prevent excessive anti-bacterial innate immunity by limiting IL-23 synthesis

    PubMed Central

    Krause, Petra; Morris, Venetia; Greenbaum, Jason A.; Park, Yoon; Bjoerheden, Unni; Mikulski, Zbigniew; Muffley, Tracy; Shui, Jr-Wen; Kim, Gisen; Cheroutre, Hilde; Liu, Yun- Cai; Peters, Bjoern; Kronenberg, Mitchell; Murai, Masako

    2015-01-01

    Innate immune responses are regulated in the intestine to prevent excessive inflammation. Here we show that a subset of mouse colonic macrophages constitutively produce the anti-inflammatory cytokine IL-10. In mice infected with Citrobacter rodentium, a model for enteropathogenic Escherichia coli infection in humans, these macrophages are required to prevent intestinal pathology. IL-23 is significantly increased in infected mice with a myeloid cell-specific deletion of IL-10, and the addition of IL-10 reduces IL-23 production by intestinal macrophages. Furthermore, blockade of IL-23 leads to reduced mortality in the context of macrophage IL-10 deficiency. Transcriptome and other analyses indicate that IL-10-expressing macrophages receive an autocrine IL-10 signal. Interestingly, only transfer of the IL-10 positive macrophages could rescue IL-10 deficient infected mice. Therefore, these data indicate a pivotal role for intestinal macrophages that constitutively produce IL-10, in controlling excessive innate immune activation and preventing tissue damage after an acute bacterial infection. PMID:25959063

  4. Cytolytic activity against tumor cells by macrophage cell lines and augmentation by macrophage stimulants.

    PubMed

    Taniyama, T; Holden, H T

    1980-07-15

    Previous studies have shown that macrophage cell lines retained the ability to phagocytize, to secrete lysosomal enzymes, and to function as effector cells in antibody-dependent cellular cytoxicity. In this paper, the cytolytic activity of murine macrophage cell lines against tumor target cells was assessed using an 18-h 51Cr release assay. Of the macrophage cell lines tested, RAW 264, PU5-1.8 and IC-21 had intermediate to high levels of spontaneous cytolytic activity, P388D, and J774 had low to intermediate levels, while /WEHI-3 showed little or no cytolytic activity against RBL-5, MBL-2 and TU-5 target cells. Tumor-cell killing by macrophage cell lines could be augmented by the addition of macrophage stimulants, such as bacterial lipopolysaccharide and poly I:C, indicating that the activation of macrophages by these stimulants does not require the participation of other cell types. Treatment with interferon also augmented the tumor-cell killing by macrophage cell lines. Although the mechanism by which these cell lines exert their spontaneous or boosted cytotoxic activity is not clear, it does not appear to be due to depletion of nutrients since cell lines with high metabolic and proliferative activities, such as WEHI-3 and RBL-5, showed little or no cytotoxicity and supernatants from the macrophage cell lines did not exert any cytotoxic effects in their essay. Thus, it appears that the different macrophage cell lines represent different levels of activation and/or differentiation and may be useful for studying the development of these processes as well as providing a useful tool for analyzing the mechanisms of macrophage-mediated cytolysis. PMID:6165690

  5. Innate immune cells in the pathogenesis of primary systemic vasculitis.

    PubMed

    Misra, Durga Prasanna; Agarwal, Vikas

    2016-02-01

    Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis. PMID:26403285

  6. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice. PMID:9682967

  7. Inflammatory pseudotumors of lymph node origin show macrophage- derived spindle cells and lymphocyte-derived cytokine transcripts without evidence of T-cell receptor gene rearrangements. Implications for pathogenesis and classification as an idiopathic retroperitoneal fibrosis-like sclerosing immune reaction.

    PubMed

    Menke, D M; Griesser, H; Araujo, I; Foss, H D; Herbst, H; Banks, P M; Stein, H

    1996-04-01

    Sclerosing pseudotumorous immune reactions of the retroperitoneum have been shown to consist of HLA-DR-positive spindle-shaped fibroblasts and macrophages that resemble fibroblasts, and in some instances they contain clonal populations of T lymphocytes not found in granulation tissue, keloids, nodular fasciitis, or fibromatoses. In patients who are iatrogenically immunosuppressed, circulating monocytes may be induced in vitro to transform into spindle-shaped macrophages, and secrete collagen after stimulation by conditioning medium from activated T lymphocytes. The authors investigated a series of five inflammatory pseudotumors (IPT) of lymph node origin for identification of spindle-shaped macrophages, T-cell receptor gene rearrangements, and lymphocyte-derived cytokine mRNA production. All cases of IPT demonstrated spindle-shaped macrophages resembling fibroblasts or myofibroblasts characterized by vimentin, CD45 (LCA), CD68 (KP1) or HAM-56, and HLA-DR(LN3) immunoreactivity and demonstrated production of procollagen-alpha1 (I) mRNA by in situ hybridization. Clonal T-cell receptor chain gene rearrangements were undetectable by polymerase chain reaction. Strong specific lymphocyte-derived interleukin-1beta and interleukin-6 mRNA cytokine transcripts were identified. Although all patients with IPT were managed with steroids and nonsteroidal anti-inflammatory medication, some had treatment-refractory disease. Because all-trans retinoic acid has been demonstrated to inhibit the in vitro transformation of monocytes into collagen-producing spindle-shaped macrophages ("neofibroblasts"), it may be of benefit for patients with IPT. PMID:8604685

  8. Macrophage cell death upon intracellular bacterial infection

    PubMed Central

    Lai, Xin-He; Xu, Yunsheng; Chen, Xiao-Ming; Ren, Yi

    2015-01-01

    Macrophage-pathogen interaction is a complex process and the outcome of this tag-of-war for both sides is to live or die. Without attempting to be comprehensive, this review will discuss the complexity and significance of the interaction outcomes between macrophages and some facultative intracellular bacterial pathogens as exemplified by Francisella, Salmonella, Shigella and Yersinia. Upon bacterial infection, macrophages can die by a variety of ways, such as apoptosis, autophagic cell death, necrosis, necroptosis, oncosis, pyronecrosis, pyroptosis etc, which is the focus of this review. PMID:26690967

  9. Immune signature of tumor infiltrating immune cells in renal cancer

    PubMed Central

    Geissler, Katharina; Fornara, Paolo; Lautenschläger, Christine; Holzhausen, Hans-Jürgen; Seliger, Barbara; Riemann, Dagmar

    2015-01-01

    Tumor-associated immune cells have been discussed as an essential factor for the prediction of the outcome of tumor patients. Lymphocyte-specific genes are associated with a favorable prognosis in colorectal cancer but with poor survival in renal cell carcinoma (RCC). Flow cytometric analyses combined with immunohistochemistry were performed to study the phenotypic profiles of tumor infiltrating lymphocytes (TIL) and the frequency of T cells and macrophages in RCC lesions. Data were correlated with clinicopathological parameters and survival of patients. Comparing oncocytoma and clear cell (cc)RCC, T cell numbers as well as activation-associated T cell markers were higher in ccRCC, whereas the frequency of NK cells was higher in oncocytoma. An intratumoral increase of T cell numbers was found with higher tumor grades (G1:G2:G3/4 = 1:3:4). Tumor-associated macrophages slightly increased with dedifferentiation, although the macrophage-to-T cell ratio was highest in G1 tumor lesions. A high expression of CD57 was found in T cells of early tumor grades, whereas T cells in dedifferentiated RCC lesions expressed higher levels of CD69 and CTLA4. TIL composition did not differ between older (>70 y) and younger (<58 y) patients. Enhanced patients’ survival was associated with a higher percentage of tumor infiltrating NK cells and Th1 markers, e.g. HLA-DR+ and CXCR3+ T cells, whereas a high number of T cells, especially with high CD69 expression correlated with a worse prognosis of patients. Our results suggest that immunomonitoring of RCC patients might represent a useful tool for the prediction of the outcome of RCC patients. PMID:25949868

  10. EFFECTS OF ENVIRONMENTAL CONTAMINANTS ON CELL MEDIATED IMMUNITY

    EPA Science Inventory

    The effect of lead and cadmium on cell-mediated immunity was studied in peritoneal macrophages, B-, and T-lymphocytes of mice. Lead and cadmium were administered in drinking water for 10 weeks in short-term experiments and up to 18 months to deal with immune responses in aged mic...

  11. Macrophages contribute to the cyclic activation of adult hair follicle stem cells.

    PubMed

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-12-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  12. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  13. Cell Motility Is Decreased in Macrophages Activated by Cancer Cell-Conditioned Medium

    PubMed Central

    Go, Ahreum; Ryu, Yun-Kyoung; Lee, Jae-Wook; Moon, Eun-Yi

    2013-01-01

    Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents. PMID:24404340

  14. Identification and immune regulation of 25-hydroxyvitamin D-1-α-hydroxylase in murine macrophages

    PubMed Central

    Overbergh, L; Decallonne, B; Valckx, D; Verstuyf, A; Depovere, J; Laureys, J; Rutgeerts, O; Saint-Arnaud, R; Bouillon, R; Mathieu, C

    2000-01-01

    Receptors for 1,25(OH)2vitaminD3 are found in most immune cells and important immunological effects have been described in vitro, reflected by its capacity to prevent autoimmunity and to prolong graft survival. The aim of this study was to examine the presence and nature of the enzyme responsible for final activation of the molecule, 1-α-hydroxylase, in murine macrophages and to analyse its regulation and possible role in the immune system. Peritoneal macrophages from C57Bl/6 mice were incubated with lipopolysaccharide (LPS; 100 μg/ml), interferon-gamma (IFN-γ; 500 U/ml) or a combination of both. By quantitative reverse transcriptase-polymerase chain reaction, using primers based on the murine renal cDNA sequence, low levels of 1-α-hydroxylase mRNA were detected in freshly isolated cells (18 ± 7 × 10−6 copies/β-actin copies). Analysis of the cDNA sequence of the gene revealed identical coding sequences for the macrophage and renal enzymes. mRNA levels rose three-fold with LPS (NS), but a six-fold increase was seen after IFN-γ stimulation (P < 0·05). Combining LPS and IFN-γ did not result in a major additional increase, but addition of cyclosporin A further increased levels 2·5-fold both in IFN-γ- and combination-stimulated cells (P < 0·05). Time course analysis revealed that up-regulation of 1-α-hydroxylase was a late phenomenon, preceded by the up-regulation of activating macrophage products such as IL-1 and tumour necrosis factor-alpha. Finally, a defect in 1-α-hydroxylase up-regulation by immune stimuli was found in autoimmune non-obese diabetic mice. In conclusion, we propose that the up-regulation of 1-α-hydroxylase in activated macrophages, resulting in the synthesis of 1,25(OH)2D3, might be a negative feedback loop in inflammation. A defect in this system might be an additional element in tipping the balance towards autoimmunity. PMID:10759775

  15. Macrophages and Cell-Cell Spread of HIV-1

    PubMed Central

    Waki, Kayoko; Freed, Eric O.

    2010-01-01

    Macrophages have been postulated to play an important role in the pathogenesis of HIV-1 infection. Their ability to cross the blood-brain barrier and their resistance to virus-induced cytopathic effects allows them to serve as reservoirs for long-term infection. Thus, exploring the mechanisms of virus transmission from macrophages to target cells such as other macrophages or T lymphocytes is central to our understanding of HIV-1 pathogenesis and progression to AIDS, and is vital to the development of vaccines and novel antiretroviral therapies. This review provides an overview of the current understanding of cell-cell transmission in macrophages. PMID:21552427

  16. The interaction between CD8+ cytotoxic T cells and Leishmania-infected macrophages

    PubMed Central

    1991-01-01

    Leishmania is resident within the macrophages of its vertebrate host. In any intramacrophage infection, where the pathogen is present in a form capable of mediating cell to cell transmission, the contribution of a cytotoxic T cell response to protective immunity is questionable. This study presents data from an in vitro model designed to elucidate the outcome of an interaction between CD8+, cytotoxic T cells and infected macrophages. Experiments were conducted with an H-2d- restricted, cytotoxic CD8+ T cell clone and Leishmania parasites present in mixed macrophage cultures, with the parasites confined to either histocompatible BALB/c macrophages, or incompatible CBA macrophages. Initial experiments indicated that the viability of Leishmania was unaffected by the lysis of its host macrophage by cytotoxic T cells. However, extended experiments showed that the parasites were killed between 24 and 72 h. The same results were obtained regardless of whether the parasites were resident in the target, BALB/c, macrophages or the bystander, CBA, macrophages. Addition of neutralizing, anti-IFN-g antibody to the cultures ablated most of the leishmanicidal behavior, indicating that parasite death was attributable to macrophage activation, resulting from cytokine secretion from the T cells following the initial recognition event. PMID:1908507

  17. Cyclooxygenase-2 inhibition attenuates hypoxic cancer cells induced m2-polarization of macrophages.

    PubMed

    Dubey, P; Shrivastava, R; Tripathi, C; Jain, N K; Tewari, B N; Lone, M-U-D; Baghel, K S; Kumar, V; Misra, S; Bhadauria, S; Bhatt, M L B

    2014-01-01

    Tumor-associated macrophages (TAMs), represent a major subpopulation of tumor infiltrating immune cells. These alternatively activated M2-polarized macrophages are well known for their pro-tumor functions. Owing to their established role in potentiating tumor-neovasculogenesis and metastasis, TAMs have emerged as promising target for anti-cancer immunotherapy. One of the key TAMs related phenomenon that is amenable to therapeutic intervention is their phenotype switching into alternatively activated M2-polarized macrophages. Hindering macrophage polarization towards a pro-tumor M2 phenotype, or better still reprogramming the M2 like TAMs towards M1 subtype is being considered a beneficial anti-cancer strategy. Hypoxic tumor milieu has been proposed as one of the most plausible factor governing M2-polarization of macrophages. We recently demonstrated that hypoxic tumor cells imparted a pro—angiogenic M2 skewed phenotype to macrophages. Furthermore, sizeable body of data indicates for participation of cyclooxygenase-2 (COX-2) in macrophage polarization. Concordantly, inhibition of COX-2 is associated with impaired macrophage polarization. Prompted by this in the current study we decided to explore if inhibition of COX-2 activity via chemical inhibitors may prevent hypoxic cancer cell induced M2-polarization of macrophages. We observed that treatment with Flunixin meglumine, an established preferential inhibitor of COX-2 activity markedly inhibited hypoxic cancer cell induced of M2-polarization of macrophages thereby indicating for usage of COX-2 inhibition as possible anti-cancer treatment modality. PMID:25210855

  18. Cortisol regulates the paracrine action of macrophages by inducing vasoactive gene expression in endometrial cells.

    PubMed

    Thiruchelvam, Uma; Maybin, Jacqueline A; Armstrong, Gregory M; Greaves, Erin; Saunders, Philippa T K; Critchley, Hilary O D

    2016-06-01

    The human endometrium undergoes inflammation and tissue repair during menstruation. We hypothesized that the local availability of bioactive glucocorticoids plays an important role in immune cell-vascular cell interactions in endometrium during tissue repair at menstruation, acting either directly or indirectly via tissue resident macrophages. We sought to determine whether endometrial macrophages are direct targets for glucocorticoids; whether cortisol-treated macrophages have a paracrine effect on angiogenic gene expression by endometrial endothelial cells; and whether endometrial macrophages express angiogenic factors. Human endometrium (n = 41) was collected with ethical approval and subject consent. Donor peripheral blood monocyte-derived macrophages were treated with estradiol, progesterone, or cortisol. The effect of peripheral blood monocyte-derived macrophage secretory products on the expression of angiogenic RNAs by endothelial cells was examined. Immunofluorescence was used to examine localization in macrophages and other endometrial cell types across the menstrual cycle. Endometrial macrophages express the glucocorticoid receptor. In vitro culture with supernatants from cortisol-treated peripheral blood monocyte-derived macrophages resulted in altered endometrial endothelial cell expression of the angiogenic genes, CXCL2, CXCL8, CTGF, and VEGFC These data highlight the importance of local cortisol in regulating paracrine actions of macrophages in the endometrium. CXCL2 and CXCL8 were detected in endometrial macrophages in situ. The expression of these factors was highest in the endometrium during the menstrual phase, consistent with these factors having a role in endometrial repair. Our data have indicated that activation of macrophages with glucocorticoids might have paracrine effects by increasing angiogenic factor expression by endometrial endothelial cells. This might reflect possible roles for macrophages in endometrial repair of the vascular bed

  19. Establishment and characterization of DB-1: a leptin receptor-deficient murine macrophage cell line.

    PubMed

    Dib, Lea H; Ortega, M Teresa; Melgarejo, Tonatiuh; Chapes, Stephen K

    2016-08-01

    Metabolic and immune mediators activate many of the same signal transduction pathways. Therefore, molecules that regulate metabolism often affect immune responses. Leptin is an adipokine that exemplifies this interplay. Leptin is the body's major nutritional status sensor, but it also plays a key role in immune system regulation. To provide an in vitro tool to investigate the link between leptin and innate immunity, we immortalized and characterized a leptin receptor-deficient macrophage cell line, DB-1. The cell line was created using bone marrow cells from leptin receptor-deficient mice. Bone marrow cells were differentiated into macrophages by culturing them with recombinant mouse macrophage colony stimulating factor, and passaged when confluent for 6 months. The cells spontaneously immortalized at approximately passage 20. Cells were cloned twice by limiting dilution cloning prior to characterization. The macrophage cell line is diploid and grows at a linear rate for 4-5 days before reaching the growth plateau. The cells are MAC-2 and F4/80 positive and have phagocytic activity similar to primary macrophages from wild-type and leptin receptor-deficient mice. DB-1 cells were responsive to stimulation with interferon-γ as measured by increase in Nos2 transcript levels. In addition, DB-1 macrophages are not responsive to the chemotactic signaling of adipocyte conditioned media nor leptin when compared to primary WT macrophages. We believe that DB-1 cells provide a dependable tool to study the role of leptin or the leptin receptor in obesity-associated inflammation and immune system dysregulation. PMID:25599862

  20. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages.

    PubMed

    Daigneault, Marc; Preston, Julie A; Marriott, Helen M; Whyte, Moira K B; Dockrell, David H

    2010-01-01

    Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD(3)) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD(3) and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells. PMID:20084270

  1. The immune-microenvironment confers resistance to MAP kinase pathway inhibitors through macrophage-derived TNFα

    PubMed Central

    O’Brien, Kate; Brunton, Holly; Ferguson, Jennifer; Young, Helen; Dhomen, Nathalie; Flaherty, Keith T.; Frederick, Dennie T.; Cooper, Zachary A.; Wargo, Jennifer A.; Marais, Richard; Wellbrock, Claudia

    2014-01-01

    Recently the rationale for combining targeted therapy with immunotherapy has come to light, but our understanding of the immune response during MAPK pathway inhibitor treatment is limited. We discovered that the immune-microenvironment can act as source of resistance to MAPK pathway-targeted therapy, and moreover during treatment this source becomes reinforced. In particular, we identified macrophage-derived TNFα as a crucial melanoma-growth factor that provides resistance to MAPK pathway inhibitors through the lineage-transcription factor MITF. Most strikingly, in BRAF mutant melanomas of patients and BRafV600E-melanoma allografts MAPK pathway inhibitors increased the number of tumor-associated macrophages, and TNFα and MITF expression. Inhibiting TNFα-signaling with IκB-kinase inhibitors profoundly enhanced the efficacy of MAPK pathway inhibitors by targeting not only the melanoma cells, but also the microenvironment. In summary, we identify the immune-microenvironment as a novel source of resistance and reveal a new strategy to improve the efficacy of targeted therapy in melanoma. PMID:25256614

  2. Biodegradation of carbon nanohorns in macrophage cells

    NASA Astrophysics Data System (ADS)

    Zhang, Minfang; Yang, Mei; Bussy, Cyrill; Iijima, Sumio; Kostarelos, Kostas; Yudasaka, Masako

    2015-02-01

    With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the nanomaterials rather than in an inflammatory pathway induction.With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the

  3. Receptor-Interacting Protein Kinase-2 Inhibition by CYLD Impairs Antibacterial Immune Responses in Macrophages

    PubMed Central

    Wex, Katharina; Schmid, Ursula; Just, Sissy; Wang, Xu; Wurm, Rebecca; Naumann, Michael; Schlüter, Dirk; Nishanth, Gopala

    2016-01-01

    Upon infection with intracellular bacteria, nucleotide oligomerization domain protein 2 recognizes bacterial muramyl dipeptide and binds, subsequently, to receptor-interacting serine/threonine kinase 2 (RIPK2), which activates immune responses via the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinase (ERK) pathways. Activation of RIPK2 depends on its K63 ubiquitination by E3 ligases, whereas the deubiquitinating enzyme A20 counter regulates RIPK2 activity by cleaving K63-polyubiquitin chains from RIPK2. Here, we newly identify the deubiquitinating enzyme CYLD as a new inhibitor of RIPK2. We show that CYLD binds to and removes K63-polyubiquitin chains from RIPK2 in Listeria monocytogenes (Lm) infected murine bone marrow-derived macrophages. CYLD-mediated K63 deubiquitination of RIPK2 resulted in an impaired activation of both NF-κB and ERK1/2 pathways, reduced production of proinflammatory cytokines interleukin-6 (IL-6), IL-12, anti-listerial reactive oxygen species (ROS) and nitric oxide (NO), and, finally, impaired pathogen control. In turn, RIPK2 inhibition by siRNA prevented activation of NF-κB and ERK1/2 and completely abolished the protective effect of CYLD deficiency with respect to the production of IL-6, NO, ROS, and pathogen control. Noteworthy, CYLD also inhibited autophagy of Listeria in a RIPK2-ERK1/2-dependent manner. The protective function of CYLD deficiency was dependent on interferon gamma (IFN-γ) prestimulation of infected macrophages. Interestingly, the reduced NF-κB activation in CYLD-expressing macrophages limited the protective effect of IFN-γ by reducing NF-κB-dependent signal transducers and activators of transcription-1 (STAT1) activation. Taken together, our study identifies CYLD as an important inhibitor of RIPK2-dependent antibacterial immune responses in macrophages. PMID:26834734

  4. Measles virus persistence in an immortalized murine macrophage cell line.

    PubMed

    Goldman, M B; Buckthal, D J; Picciotto, S; O'Bryan, T A; Goldman, J N

    1995-02-20

    Persistent infection with the Edmonston strain of measles virus (MV) has been established in IC-21 cells, an immortalized murine macrophage cell line. Persistence was established immediately without syncytia formation or cytopathic effects. MV was expressed in the majority of the cells as evidenced by immunofluorescence microscopy, flow cytometry, infectious centers assays, and limiting dilution analysis. Hemagglutinin (H) and phosphoprotein expressed in persistently infected IC-21 cells had retarded migration in SDS-PAGE gels when compared to these proteins expressed in Vero cells. H protein differences were also found between freshly infected IC-21 cells and persistently infected IC-21 cells passaged for over 2 years. Six sublines of IC-21 cells, infected at different times, have maintained these characteristics for 2 years of passage. During this time period the intensity of immunofluorescence and the number of infectious virus particles recoverable fluctuated in five of the six cell lines. In one cell line virus expression remained at a consistent high level. The ability to establish a persistent MV infection in murine macrophages allows studies using a cell important in disseminating the infection. It facilitates experiments on immunological aspects of viral immunity by enabling cell mixing experiments with histocompatible cell populations and by making available the wide array of cellular and humoral reagents in the mouse. PMID:7871720

  5. The Interplay Between Monocytes/Macrophages and CD4+ T Cell Subsets in Rheumatoid Arthritis

    PubMed Central

    Roberts, Ceri A.; Dickinson, Abigail K.; Taams, Leonie S.

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by inflammation of the synovial lining (synovitis). The inflammation in the RA joint is associated with and driven by immune cell infiltration, synovial hyperproliferation, and excessive production of proinflammatory mediators, such as tumor necrosis factor α (TNFα), interferon γ (IFNγ), interleukin (IL)-1β, IL-6, and IL-17, eventually resulting in damage to the cartilage and underlying bone. The RA joint harbors a wide range of immune cell types, including monocytes, macrophages, and CD4+ T cells (both proinflammatory and regulatory). The interplay between CD14+ myeloid cells and CD4+ T cells can significantly influence CD4+ T cell function, and conversely, effector vs. regulatory CD4+ T cell subsets can exert profound effects on monocyte/macrophage function. In this review, we will discuss how the interplay between CD4+ T cells and monocytes/macrophages may contribute to the immunopathology of RA. PMID:26635790

  6. Macrophage infection models for Mycobacterium tuberculosis.

    PubMed

    Johnson, Benjamin K; Abramovitch, Robert B

    2015-01-01

    Mycobacterium tuberculosis colonizes, survives, and grows inside macrophages. In vitro macrophage infection models, using both primary macrophages and cell lines, enable the characterization of the pathogen response to macrophage immune pressure and intracellular environmental cues. We describe methods to propagate and infect primary murine bone marrow-derived macrophages and J774 and THP-1 macrophage-like cell lines. We also present methods on the characterization of M. tuberculosis intracellular survival and the preparation of infected macrophages for imaging. PMID:25779326

  7. Cell-mediated immunity in experimental Nocardia asteroides infection.

    PubMed Central

    Sundararaj, T; Agarwal, S C

    1977-01-01

    Experimental mycetoma-like lesions developed in guinea pigs after subcutaneous injection of Nocardia asteroides. Although delayed hypersensitivity appeared earlier, increased macrophage migration inhibition and microbicidal activity appeared after 7 weeks. When the lesions healed, high cell-mediated immunity was present. Cell-mediated immunity was transferred to normal recipient guinea pigs from healed donor guinea pigs by spleen cell transfer. Recipient guinea pigs showed marked protection against challenge with N. asteroides. PMID:321348

  8. Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages

    NASA Astrophysics Data System (ADS)

    Ousingsawat, Jiraporn; Wanitchakool, Podchanart; Kmit, Arthur; Romao, Ana M.; Jantarajit, Walailak; Schreiber, Rainer; Kunzelmann, Karl

    2015-02-01

    Purinergic P2X7 receptors (P2X7R) are fundamental to innate immune response. In macrophages, transient stimulation of P2X7R activates several transport mechanisms and induces the scrambling of phospholipids with subsequent membrane blebbing and apoptosis. These processes support phagocytosis and subsequent killing of phagocytosed bacteria. Here we demonstrate that the stimulation of P2X7 receptors activates anoctamin 6 (ANO6, TMEM16F), a protein that functions as Ca2+ dependent phospholipid scramblase and Ca2+-activated Cl- channel. Inhibition or knockdown of ANO6 attenuates ATP-induced cell shrinkage, cell migration and phospholipid scrambling. In mouse macrophages, Ano6 produces large ion currents by stimulation of P2X7 receptors and contributes to ATP-induced membrane blebbing and apoptosis, which is largely reduced in macrophages from Ano6-/- mice. ANO6 supports bacterial phagocytosis and killing by mouse and human THP-1 macrophages. Our data demonstrate that anoctamin 6 is an essential component of the immune defense by macrophages.

  9. Further characterization of macrophage adsorption of suppressor cell activity from tumor-allosensitized spleen

    SciTech Connect

    Zografos-Miller, L.E.; Argyris, B.F.

    1983-06-01

    Suppressor cell activity from P815-allosensitized C57BL/6 spleen can be decreased by incubating the tumor-allosensitized spleen cells on monolayers of thioglycollate-stimulated BDF1 peritoneal macrophages for 2 or 4 hr. The adsorption response appears to be specific for macrophages, because adsorption of suppressor cell activity does not occur following incubation of P815-allosensitized spleen cells on confluent monolayers of mouse spleen cells or mouse embryonic fibroblasts. Pretreatment of macrophage monolayers with X irradiation (2,000 rads) or anti-Thy 1.2 serum (and complement) does not affect their ability to bind suppressor cell activity. Adsorption of suppressor cell activity from P815-allosensitized spleen can also be carried out by proteose peptone-stimulated or Corynebacterium parvum-stimulated macrophages. Blockage of macrophage Fc receptors decreases the ability of thioglycollate-stimulated macrophages to adsorb suppressor cell activity. Monolayers of P815 or P388 cells, two cell types positive for Fc receptors, are unable to adsorb suppressor cell activity from the tumor-allosensitized spleen. The significance of our findings is discussed in terms of the relationship between macrophages and suppressor cells in the immune response to normal or tumor allografts.

  10. Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization.

    PubMed

    Yang, M; Shao, J-H; Miao, Y-J; Cui, W; Qi, Y-F; Han, J-H; Lin, X; Du, J

    2014-08-01

    Macrophages are critical immune effector cells of the tumor microenvironment that promote seeding, extravasation and persistent growth of tumor cells in primary tumors and metastatic sites. Tumor progression and metastasis are affected by dynamic changes in the specific phenotypes of macrophage subpopulations; however, the mechanisms by which tumor cells modulate macrophage polarization remain incompletely understood. Caspase recruitment domain-containing protein 9 (CARD9) is a central adaptor protein of innate immune responses to extracellular pathogens. We report that increased CARD9 expression is primarily localized in infiltrated macrophages and significantly associated with advanced histopathologic stage and the presence of metastasis. Using CARD9-deficient (CARD9(-/-)) mice, we show that bone marrow-derived CARD9 promotes liver metastasis of colon carcinoma cells. Mechanistic studies reveal that CARD9 contributes to tumor metastasis by promoting metastasis-associated macrophage polarization through activation of the nuclear factor-kappa B signaling pathway. We further demonstrate that tumor cell-secreted vascular endothelial growth factor facilitates spleen tyrosine kinase activation in macrophages, which is necessary for formation of the CARD9-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 complex. Taken together, our results indicating that CARD9 is a regulator of metastasis-associated macrophages will lead to new insights into evolution of the microenvironments supporting tumor metastasis, thereby providing targets for anticancer therapies. PMID:24722209

  11. HF-LPLI-treated tumor cells induce NO production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Zhou, Feifan; Wu, Shengnan; Xing, Da

    2013-02-01

    High fluence low-power laser irradiation (HF-LPLI) provides a new stimulator to trigger cell apoptosis, and it is well known that apoptotic cells provide antigens to effectively trigger recognition by the immune system. In order to investigate the effect of HF-LPLI on the professional antigen-presenting cell (APC) function, in our primary study, we focused our attention on the effect of HF-LPLI-treated tumor cells on macrophages phagocytosis and NO production. Both confocal microscopy and flowcytometry analysis showed that HF-LPLI (120 J/cm2) induced significantly EMT6 death. Further experiments showed that HF-LPLI-treated EMT6 cells could be phagocyted by the murine macrophage cells RAW264.7, and could induce NO production in macrophages. Taken together, our results indicate that HF-LPLI-treated tumor cells effectively regulated the immune system. The HF-LPLI effect on the APC function needs to be further studied.

  12. Macrophage functions are regulated by the substratum of murine decidual stromal cells.

    PubMed Central

    Redline, R W; McKay, D B; Vazquez, M A; Papaioannou, V E; Lu, C Y

    1990-01-01

    Because of their paternal antigens, the fetus and placenta may be considered an allograft in the maternal host. Local properties of the maternal-fetal interface, the placenta and decidua basalis, are important in preventing maternal immunologic rejection of the fetoplacental allograft. However, the exact nature of these local properties remains a fundamental unsolved problem in immunology. We now report that three macrophage functions were inhibited by the substratum formed by monolayers of decidual stromal cells via a novel pathway. Solid-phase inhibitors blocked macrophage adhesion, spreading, and lysis of tumor necrosis factor-alpha-resistant P815 mastocytoma tumor cells. Inhibition was not solely attributable to an inability of macrophages to adhere to decidual substratum because there were differences in macrophage functions on this surface versus polyhema where no adherence occurred. Because macrophages play a central role in cell-mediated immunity, including allograft rejection, inhibiting their function in the decidua basalis may help prevent maternal antifetal responses. Images PMID:2347918

  13. T cells and macrophages in Trypanosoma brucei-related glomerulopathy.

    PubMed Central

    van Velthuysen, M L; Mayen, A E; van Rooijen, N; Fleuren, G J; de Heer, E; Bruijn, J A

    1994-01-01

    In a previous study, susceptibility for Trypanosoma brucei-related glomerulopathy in mice was shown to be dependent on non-major histocompatibility complex genes. Glomerular disease in this model could not be explained by the production of autoantibodies alone. In order to analyze which part of the defense system, in addition to the B-cell compartment, is involved in the development of this infection-related glomerular disease, groups of athymic (BALB/c rnu/rnu), splenectomized, or macrophage-depleted BALB/c mice were inoculated with T. brucei parasites. Polyclonal B-cell activation, invariably observed in infected BALB/c mice, was absent in BALB/c rnu/rnu mice. Glomerular disease in athymic mice, however, as defined by albuminuria and deposition of immune complexes, was not different from that seen in euthymic infected BALB/c mice. Splenectomy prior to inoculation of parasites led to a decreased incidence of albuminuria in 40% of the animals, whereas splenectomy 21 days after inoculation reduced albuminuria significantly, suggesting a role for spleen cells in the induction of glomerular disease. After macrophage depletion with liposome-encapsulated dichlorodimethylene-diphosphonate, infected BALB/c mice developed significantly higher albuminuria levels for a period up to 2 weeks after depletion. Therefore, it was concluded that the development of T. brucei-related glomerular disease is independent of thymus-matured T cells, while the involvement of macrophages in the development of proteinuria is inhibitory rather than disease inducing. Spleen cells other than thymus-dependent T cells, B cells, and macrophages should be investigated for their role in the pathogenesis of this glomerulopathy. Images PMID:7913696

  14. HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells

    PubMed Central

    Cromer, Deborah; Schlub, Timothy E.; Smyth, Redmond P.; Grimm, Andrew J.; Chopra, Abha; Mallal, Simon; Davenport, Miles P.; Mak, Johnson

    2016-01-01

    High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics. PMID:27110814

  15. HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells.

    PubMed

    Cromer, Deborah; Schlub, Timothy E; Smyth, Redmond P; Grimm, Andrew J; Chopra, Abha; Mallal, Simon; Davenport, Miles P; Mak, Johnson

    2016-01-01

    High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics. PMID:27110814

  16. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice

    PubMed Central

    Wang, T; Wang, Z; Yang, P; Xia, L; Zhou, M; Wang, S; Du, Jie; Zhang, J

    2016-01-01

    The severity of acute liver failure (ALF) induced by bacterial lipopolysaccharide (LPS) is associated with the hepatic innate immune response. The core circadian molecular clock modulates the innate immune response by controlling rhythmic pathogen recognition by the innate immune system and daily variations in cytokine gene expression. However, the molecular link between circadian genes and the innate immune system has remained unclear. Here, we showed that mice lacking the clock gene Per1 (Period1) are more susceptible to LPS/d-galactosamine (LPS/GalN)-induced macrophage-dependent ALF compared with wild-type (WT) mice. Per1 deletion caused a remarkable increase in the number of Kupffer cells (KCs) in the liver, resulting in an elevation of the levels of pro-inflammatory cytokines after LPS treatment. Loss of Per1 had no effect on the proliferation or apoptosis of macrophages; however, it enhanced the recruitment of macrophages, which was associated with an increase in CC chemokine receptor 2 (Ccr2) expression levels in monocytes/macrophages. Deletion of Ccr2 rescued d-GalN/LPS-induced liver injury in Per1−/− mice. We demonstrated that the upregulation of Ccr2 expression by Per1 deletion could be reversed by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist GW9662. Further analysis indicated that PER1 binds to PPAR-γ on the Ccr2 promoter and enhanced the inhibitory effect of PPAR-γ on Ccr2 expression. These results reveal that Per1 reduces hepatic macrophage recruitment through interaction with PPAR-γ and prevents an excessive innate immune response in endotoxin-induced liver injury. PMID:27054331

  17. Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses

    PubMed Central

    Venugopal, Gopinath; Rao, Gopala B.; Lucius, Richard; Srikantam, Aparna; Hartmann, Susanne

    2014-01-01

    Background Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. Aim To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. Methodology and principal findings Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. Conclusions and significance Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic

  18. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    PubMed

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages. PMID:27599426

  19. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence.

    PubMed

    Holowka, Thomas; Castilho, Tiago M; Garcia, Alvaro Baeza; Sun, Tiffany; McMahon-Pratt, Diane; Bucala, Richard

    2016-06-01

    Leishmania major encodes 2 orthologs of the cytokine macrophage migration inhibitory factor (MIF), whose functions in parasite growth or in the host-parasite interaction are unknown. To determine the importance of Leishmania-encoded MIF, both LmMIF genes were removed to produce an mif(-/-) strain of L. major This mutant strain replicated normally in vitro but had a 2-fold increased susceptibility to clearance by macrophages. Mice infected with mif(-/-) L. major, when compared to the wild-type strain, also showed a 3-fold reduction in parasite burden. Microarray and functional analyses revealed a reduced ability of mif(-/-) L. major to activate antigen-presenting cells, resulting in a 2-fold reduction in T-cell priming. In addition, there was a reduction in inflammation and effector CD4 T-cell formation in mif(-/-) L. major-infected mice when compared to mice infected with wild-type L. major Notably, effector CD4 T cells that developed during infection with mif(-/-) L. major demonstrated statistically significant differences in markers of functional exhaustion, including increased expression of IFN-γ and IL-7R, reduced expression of programmed death-1, and decreased apoptosis. These data support a role for LmMIF in promoting parasite persistence by manipulating the host response to increase the exhaustion and depletion of protective CD4 T cells.-Holowka, T., Castilho, T. M., Baeza Garcia, A., Sun, T., McMahon-Pratt, D., Bucala, R. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence. PMID:26956417

  20. Helical Carbon Nanotubes Enhance the Early Immune Response and Inhibit Macrophage-Mediated Phagocytosis of Pseudomonas aeruginosa

    PubMed Central

    Walling, Brent E.; Kuang, Zhizhou; Hao, Yonghua; Estrada, David; Wood, Joshua D.; Lian, Feifei; Miller, Lou Ann; Shah, Amish B.; Jeffries, Jayme L.; Haasch, Richard T.; Lyding, Joseph W.; Pop, Eric; Lau, Gee W.

    2013-01-01

    Aerosolized or aspirated manufactured carbon nanotubes have been shown to be cytotoxic, cause pulmonary lesions, and demonstrate immunomodulatory properties. CD-1 mice were used to assess pulmonary toxicity of helical carbon nanotubes (HCNTs) and alterations of the immune response to subsequent infection by Pseudomonas aeruginosa in mice. HCNTs provoked a mild inflammatory response following either a single exposure or 2X/week for three weeks (multiple exposures) but were not significantly toxic. Administering HCNTs 2X/week for three weeks resulted in pulmonary lesions including granulomas and goblet cell hyperplasia. Mice exposed to HCNTs and subsequently infected by P. aeruginosa demonstrated an enhanced inflammatory response to P. aeruginosa and phagocytosis by alveolar macrophages was inhibited. However, clearance of P. aeruginosa was not affected. HCNT exposed mice depleted of neutrophils were more effective in clearing P. aeruginosa compared to neutrophil-depleted control mice, accompanied by an influx of macrophages. Depletion of systemic macrophages resulted in slightly inhibited bacterial clearance by HCNT treated mice. Our data indicate that pulmonary exposure to HCNTs results in lesions similar to those caused by other nanotubes and pre-exposure to HCNTs inhibit alveolar macrophage phagocytosis of P. aeruginosa. However, clearance was not affected as exposure to HCNTs primed the immune system for an enhanced inflammatory response to pulmonary infection consisting of an influx of neutrophils and macrophages. PMID:24324555

  1. Intestinal immune cells in Strongyloides stercoralis infection.

    PubMed Central

    Trajman, A; MacDonald, T T; Elia, C C

    1997-01-01

    BACKGROUND: Strongyloides stercoralis can cause a wide spectrum of disease in man, ranging from a chronic asymptomatic infection to a hyperinfective, often fatal syndrome. In rodents, spontaneous expulsion of Strongyloides spp occurs after experimental infection. Mast cells, goblet cells, and eosinophils have been identified as possible effectors of this expulsion. AIMS: To investigate intestinal histopathology and mucosal immunity in immunocompetent patients with chronic S stercoralis infection. METHODS: Jejunal biopsies were performed in 19 immunocompetent patients with a positive stool examination for S stercoralis and few or no symptoms, and in seven healthy controls. Specimens were processed for histopathological analysis and stained by the immunoperoxidase technique, using the following monoclonal antibodies: CD2, CD3, CD4, CD8, anti-T cell receptor (TcR) gamma/delta, RFD1 and RFD7 (two different macrophage markers), Ki67+ (proliferating) cells, antihuman leucocyte antigen (HLA)-DR, and anticollagen IV. In addition, CD25+ cells, mast cells, IgE expressing cells, calprotectin containing cells, and neutrophil elastase positive cells were stained by the alkaline phosphatase method. RESULTS: Jejunal morphology and the numbers of different T cell subsets, mast cells, IgE expressing cells, eosinophils, and goblet cells were unaffected by S stercoralis infection. Conversely, the numbers of mature macrophages and dividing enterocytes in the crypts were reduced significantly. Crypt enterocytes did not express HLA-DR in both groups. The expression of HLA-DR by villus enterocytes was also comparable in patients and controls. There were no activated (CD25+) cells in the mucosa of either patients or controls. CONCLUSIONS: Compared with seven healthy uninfected volunteers, a group of 19 Brazilians with clinically mild strongyloides infection showed no abnormality of mucosal structure and no increase in non-specific inflammatory cells. Likewise, there was no increase in

  2. Micro- and Nanopatterned Topographical Cues for Regulating Macrophage Cell Shape and Phenotype.

    PubMed

    Luu, Thuy U; Gott, Shannon C; Woo, Bryan W K; Rao, Masaru P; Liu, Wendy F

    2015-12-30

    Controlling the interactions between macrophages and biomaterials is critical for modulating the response to implants. While it has long been thought that biomaterial surface chemistry regulates the immune response, recent studies have suggested that material geometry may in fact dominate. Our previous work demonstrated that elongation of macrophages regulates their polarization toward a pro-healing phenotype. In this work, we elucidate how surface topology might be leveraged to alter macrophage cell morphology and polarization state. Using a deep etch technique, we fabricated titanium surfaces containing micro- and nanopatterned grooves, which have been previously shown to promote cell elongation. Morphology, phenotypic markers, and cytokine secretion of murine bone marrow derived macrophages on different groove widths were analyzed. The results suggest that micro- and nanopatterned grooves influenced macrophage elongation, which peaked on substrates with 400-500 nm wide grooves. Surface grooves did not affect inflammatory activation but drove macrophages toward an anti-inflammatory, pro-healing phenotype. While secretion of TNF-alpha remained low in macrophages across all conditions, macrophages secreted significantly higher levels of anti-inflammatory cytokine, IL-10, on intermediate groove widths compared to cells on other Ti surfaces. Our findings highlight the potential of using surface topography to regulate macrophage function, and thus control the wound healing and tissue repair response to biomaterials. PMID:26605491

  3. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions.

    PubMed

    Pucci, Ferdinando; Garris, Christopher; Lai, Charles P; Newton, Andita; Pfirschke, Christina; Engblom, Camilla; Alvarez, David; Sprachman, Melissa; Evavold, Charles; Magnuson, Angela; von Andrian, Ulrich H; Glatz, Katharina; Breakefield, Xandra O; Mempel, Thorsten R; Weissleder, Ralph; Pittet, Mikael J

    2016-04-01

    Tumor-derived extracellular vesicles (tEVs) are important signals in tumor-host cell communication, yet it remains unclear how endogenously produced tEVs affect the host in different areas of the body. We combined imaging and genetic analysis to track melanoma-derived vesicles at organismal, cellular, and molecular scales to show that endogenous tEVs efficiently disseminate via lymphatics and preferentially bind subcapsular sinus (SCS) CD169(+) macrophages in tumor-draining lymph nodes (tdLNs) in mice and humans. The CD169(+) macrophage layer physically blocks tEV dissemination but is undermined during tumor progression and by therapeutic agents. A disrupted SCS macrophage barrier enables tEVs to enter the lymph node cortex, interact with B cells, and foster tumor-promoting humoral immunity. Thus, CD169(+) macrophages may act as tumor suppressors by containing tEV spread and ensuing cancer-enhancing immunity. PMID:26989197

  4. Innate immune responses to rotavirus infection in macrophages depend on MAVS but involve neither the NLRP3 inflammasome nor JNK and p38 signaling pathways.

    PubMed

    Di Fiore, Izabel J M; Holloway, Gavan; Coulson, Barbara S

    2015-10-01

    Rotavirus infection is a major cause of life-threatening infantile gastroenteritis. The innate immune system provides an immediate mechanism of suppressing viral replication and is necessary for an effective adaptive immune response. Innate immunity involves host recognition of viral infection and establishment of a powerful antiviral state through the expression of pro-inflammatory cytokines such as type-1 interferon (IFN). Macrophages, the front-line cells of innate immunity, produce IFN and other cytokines in response to viral infection. However, the role of macrophages during rotavirus infection is not well defined. We demonstrate here that RRV rotavirus triggers the production of proinflammatory cytokines from mouse bone marrow-derived macrophages. IFN and antiviral cytokine production was abolished in rotavirus-infected MAVS (-/-) macrophages. This indicates that rotavirus triggers innate immunity in macrophages through RIG-I and/or MDA5 viral recognition, and MAVS signaling is essential for cytokine responses in macrophages. Rotavirus induced IFN expression in both wild type and MDA5 (-/-) macrophages, showing that MDA5 is not essential for IFN secretion following infection, and RIG-I and MDA5 may act redundantly in promoting rotavirus recognition. Interestingly, rotavirus neither stimulated mitogen-activated protein kinases p38 and JNK nor activated the NLRP3 inflammasome, demonstrating that these components might not be involved in innate responses to rotavirus infection in macrophages. Our results indicate that rotavirus elicits intracellular signaling in macrophages, resulting in the induction of IFN and antiviral cytokines, and advance our understanding of the involvement of these cells in innate responses against rotavirus. PMID:26079065

  5. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus

    PubMed Central

    Flannagan, Ronald S.; Heit, Bryan; Heinrichs, David E.

    2015-01-01

    Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing. PMID:26633519

  6. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  7. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells: Implication in Preeclampsia.

    PubMed

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S Joseph

    2016-05-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF-positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370

  8. Two-Dimensional Motility of a Macrophage Cell Line on Microcontact-Printed Fibronectin

    PubMed Central

    Hind, Laurel E.; MacKay, Joanna L.; Cox, Dianne; Hammer, Daniel A.

    2014-01-01

    The ability of macrophages to migrate to sites of infection and inflammation is critical for their role in the innate immune response. Macrophage cell lines have made it possible to study the roles of individual proteins responsible for migration using molecular biology, but it has not been possible to reliably elicit the motility of macrophage cell lines in two-dimensions. In the past, measurements of the motility of macrophage cell lines have been largely limited to transwell assays which provide limited quantitative information on motility and limited ability to visualize cell morphology. We used microcontact printing to create polydimethylsiloxane (PDMS) surfaces functionalized with fibronectin that otherwise support little macrophage adhesion. We used these surfaces to measure macrophage migration in two-dimensions and found that these cells migrate efficiently in a uniform field of colony-stimulating factor-1, CSF-1. Knockdown of Cdc42 led to a non-statistically significant reduction in motility, whereas chemical inhibition of PI3K activity led to a complete loss of motility. Inhibition of the RhoA kinase, ROCK, did not abolish the motility of these cells but caused a quantitative change in motility, reducing motility significantly on high concentrations of fibronectin but not on low concentrations. This study illustrates the importance of studying cell motility on well controlled materials to better understand the exact roles of specific proteins on macrophage migration. PMID:25186818

  9. [Immune cells on the IUD].

    PubMed

    Trebichavský, I; Nyklícek, O; Zahradnícková, M

    1989-06-01

    Cells isolated on the surface of just removed IUD "DANA" were characterized by means of monoclonal antibodies and the avidin-biotin method. Activated macrophages with the membrane sign CD 14 and transferrin receptors (25-72%) and B lymphocytes producing IgA and IgG (14-56%) contained strong transplantation antigens class II. By these glycoproteins macrophages and B cells are able to differentiate alie and thus also paternal antigens. The presence of these cells in the uterus may be the stimulus for triggering an aggressive cytotoxic reaction against the blastocyst and explains the contraceptive action of intrauterine devices. PMID:2791001

  10. T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases.

    PubMed

    Newman, T A; Woolley, S T; Hughes, P M; Sibson, N R; Anthony, D C; Perry, V H

    2001-11-01

    Recent evidence has highlighted the fact that axon injury is an important component of multiple sclerosis pathology. The issue of whether a CNS antigen-specific immune response is required to produce axon injury remains unresolved. We investigated the extent and time course of axon injury in a rodent model of a delayed-type hypersensitivity (DTH) reaction directed against the mycobacterium bacille Calmette-Guérin (BCG). Using MRI, we determined whether the ongoing axon injury is restricted to the period during which the blood-brain barrier is compromised. DTH lesions were initiated in adult rats by intracerebral injection of heat-killed BCG followed by a peripheral challenge with BCG. Our findings demonstrate that a DTH reaction to a non-CNS antigen within a CNS white matter tract leads to axon injury. Ongoing axon injury persisted throughout the 3-month period studied and was not restricted to the period of blood-brain barrier breakdown, as detected by MRI enhancing lesions. We have previously demonstrated that matrix metalloproteinases (MMPs) are upregulated in multiple sclerosis plaques and DTH lesions. In this study we demonstrated that microinjection of activated MMPs into the cortical white matter results in axon injury. Our results show that axon injury, possibly mediated by MMPs, is immunologically non-specific and may continue behind an intact blood-brain barrier. PMID:11673322

  11. CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis

    PubMed Central

    Leemans, Jaklien C.; Florquin, Sandrine; Heikens, Mirjam; Pals, Steven T.; Neut, Ronald van der; van der Poll, Tom

    2003-01-01

    Cell migration and phagocytosis are both important for controlling Mycobacterium tuberculosis infection and are critically dependent on the reorganization of the cytoskeleton. Since CD44 is an adhesion molecule involved in inflammatory responses and is connected to the actin cytoskeleton, we investigated the role of CD44 in both these processes. Macrophage (Mφ) recruitment into M. tuberculosis–infected lungs and delayed-type hypersensitivity sites was impaired in CD44-deficient (CD44–/–) mice. In addition, the number of T lymphocytes and the concentration of the protective key cytokine IFN-γ were reduced in the lungs of infected CD44–/– mice. The production of IFN-γ by splenocytes of CD44–/– mice was profoundly increased upon antigen-specific stimulation. Flow cytometry analysis revealed that soluble CD44 can directly bind to virulent M. tuberculosis. Mycobacteria also interacted with Mφ-associated CD44, as reflected by reduced binding and internalization of bacilli by CD44–/– Mφs. This suggests that CD44 is a receptor on Mφs for binding of M. tuberculosis. CD44–/– mice displayed a decreased survival and an enhanced mycobacterial outgrowth in lungs and liver during pulmonary tuberculosis. In summary, we have identified CD44 as a new Mφ binding site for M. tuberculosis that mediates mycobacterial phagocytosis, Mφ recruitment, and protective immunity against pulmonary tuberculosis. PMID:12618522

  12. Macrophage Recruitment Contributes to Regeneration of Mechanosensory Hair Cells in the Zebrafish Lateral Line.

    PubMed

    Carrillo, Simón A; Anguita-Salinas, Consuelo; Peña, Oscar A; Morales, Rodrigo A; Muñoz-Sánchez, Salomé; Muñoz-Montecinos, Carlos; Paredes-Zúñiga, Susana; Tapia, Karina; Allende, Miguel L

    2016-08-01

    In vertebrates, damage to mechanosensory hair cells elicits an inflammatory response, including rapid recruitment of macrophages and neutrophils. While hair cells in amniotes usually become permanently lost, they readily regenerate in lower vertebrates such as fish. Damage to hair cells of the fish lateral line is followed by inflammation and rapid regeneration; however the role of immune cells in this process remains unknown. Here, we show that recruited macrophages are required for normal regeneration of lateral line hair cells after copper damage. We found that genetic ablation or local ablation using clodronate liposomes of macrophages recruited to the site of injury, significantly delays hair cell regeneration. Neutrophils, on the other hand, are not needed for this process. We anticipate our results to be a starting point for a more detailed description of extrinsic signals important for regeneration of mechanosensory cells in vertebrates. J. Cell. Biochem. 117: 1880-1889, 2016. © 2016 Wiley Periodicals, Inc. PMID:26755079

  13. PE_PGRS30 of Mycobacterium tuberculosis mediates suppression of proinflammatory immune response in macrophages through its PGRS and PE domains.

    PubMed

    Chatrath, Shweta; Gupta, Vineet Kumar; Dixit, Aparna; Garg, Lalit C

    2016-09-01

    The success of Mycobacterium tuberculosis as a pathogen relies on its ability to survive inside macrophages and evade host immune mechanisms. M. tuberculosis employs multiple strategies to confer resistance against immune system including inhibition of phago-lysosomal fusion, modulation of cytokine responses and granuloma formation. PE_PGRS proteins, uniquely present in pathogenic mycobacteria, are cell surface molecules that are suggested to interact with host cells. PE_PGRS proteins have also been implicated in its pathogenesis. In the present study, immuno-regulatory property of Rv1651c-encoded PE_PGRS30 protein was explored. Infection of PMA-differentiated human THP-1 macrophages with Mycobacterium smegmatis harbouring pVV(1651c) resulted in reduced production of IL-12, TNF-α and IL-6, as compared to infection with M. smegmatis harbouring the control plasmid pVV16. No differential effect was observed on bacterial persistence inside macrophages or on macrophage mortality upon infection with the two recombinant strains. Infection of THP-1 macrophages with recombinant M. smegmatis expressing deletion variants of PE_PGRS30 indicated that anti-inflammatory function of the protein is possessed by its PGRS and PE domains while the C-terminal domain, when expressed alone, displayed antagonistic effect in terms of TNF-α secretion. These results suggest that PE_PGRS30 interferes with macrophage immune functions important for activation of adaptive T-cell responses. PMID:27129781

  14. Biomarkers of CD4+ CTL cell Mediated Immunity to Tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The immune responses mediated by interactions between T-lymphocyte subsets and mycobacteria-infected macrophages are critical for control of tuberculosis. In these studies, the bovine model was used to characterize the cytolytic and mycobactericidal CD4+ T cell response induced by BCG vaccination. ...

  15. Macrophages and dendritic cells in the post-testicular environment.

    PubMed

    Da Silva, Nicolas; Barton, Claire R

    2016-01-01

    Macrophages (MΦ) and dendritic cells (DCs) are heterogeneous families of functionally and developmentally related immune cells that play crucial roles in tissue homeostasis and the regulation of immune responses. During the past 5 years, immunologists have generated a considerable amount of data that challenge dogmas about the ontogeny and functions of these highly versatile cells. The male excurrent duct system plays a critical role in the establishment of fertility by allowing sperm maturation, transport and storage. In addition, it is challenged by pathogens and must establish a protective and tolerogenic environment for a continuous flow of autoantigenic spermatozoa. The post-testicular environment and, in particular, the epididymis contain an intricate network of DCs and MΦ; however, the immunophysiology of this intriguing and highly specialized mucosal system is poorly understood. This review summarizes the current trends in mouse MΦ and DC biology and speculates about their roles in the steady-state epididymis. Unraveling immune cell functions in the male reproductive tract is an essential prerequisite for the design of innovative strategies aimed at controlling male fertility and treating infertility. PMID:26337514

  16. Involvement of Immune Cell Network in Aortic Valve Stenosis: Communication between Valvular Interstitial Cells and Immune Cells

    PubMed Central

    Lee, Seung Hyun

    2016-01-01

    Aortic valve stenosis is a heart disease prevalent in the elderly characterized by valvular calcification, fibrosis, and inflammation, but its exact pathogenesis remains unclear. Previously, aortic valve stenosis was thought to be caused by chronic passive and degenerative changes associated with aging. However, recent studies have demonstrated that atherosclerotic processes and inflammation can induce valvular calcification and bone deposition, leading to valvular stenosis. In particular, the most abundant cell type in cardiac valves, valvular interstitial cells, can differentiate into myofibroblasts and osteoblast-like cells, leading to valvular calcification and stenosis. Differentiation of valvular interstitial cells can be trigged by inflammatory stimuli from several immune cell types, including macrophages, dendritic cells, T cells, B cells, and mast cells. This review indicates that crosstalk between immune cells and valvular interstitial cells plays an important role in the development of aortic valve stenosis. PMID:26937229

  17. Platelet Interaction with Innate Immune Cells

    PubMed Central

    Kral, Julia Barbara; Schrottmaier, Waltraud Cornelia; Salzmann, Manuel; Assinger, Alice

    2016-01-01

    Summary Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis. PMID:27226790

  18. Platelet Interaction with Innate Immune Cells.

    PubMed

    Kral, Julia Barbara; Schrottmaier, Waltraud Cornelia; Salzmann, Manuel; Assinger, Alice

    2016-03-01

    Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis. PMID:27226790

  19. Telomere profiles and tumor-associated macrophages with different immune signatures affect prognosis in glioblastoma.

    PubMed

    Hung, Noelyn A; Eiholzer, Ramona A; Kirs, Stenar; Zhou, Jean; Ward-Hartstonge, Kirsten; Wiles, Anna K; Frampton, Chris M; Taha, Ahmad; Royds, Janice A; Slatter, Tania L

    2016-03-01

    Telomere maintenance is a hallmark of cancer and likely to be targeted in future treatments. In glioblastoma established methods of identifying telomerase and alternative lengthening of telomeres leave a significant proportion of tumors with no defined telomere maintenance mechanism. This study investigated the composition of these tumors using RNA-Seq. Glioblastomas with an indeterminate telomere maintenance mechanism had an increased immune signature compared with alternative lengthening of telomeres and telomerase-positive tumors. Immunohistochemistry for CD163 confirmed that the majority (80%) of tumors with an indeterminate telomere maintenance mechanism had a high presence of tumor-associated macrophages. The RNA-Seq and immunostaining data separated tumors with no defined telomere maintenance mechanism into three subgroups: alternative lengthening of telomeres like tumors with a high presence of tumor-associated macrophages and telomerase like tumors with a high presence of tumor-associated macrophages. The third subgroup had no increase in tumor-associated macrophages and may represent a distinct category. The presence of tumor-associated macrophages conferred a worse prognosis with reduced patient survival times (alternative lengthening of telomeres with and without macrophages P=0.0004, and telomerase with and without macrophages P=0.013). The immune signatures obtained from RNA-Seq were significantly different between telomere maintenance mechanisms. Alternative lengthening of telomeres like tumors with macrophages had increased expression of interferon-induced proteins with tetratricopeptide repeats (IFIT1-3). Telomerase-positive tumors with macrophages had increased expression of macrophage receptor with collagenous structure (MARCO), CXCL12 and sushi-repeat containing protein x-linked 2 (SRPX2). Telomerase-positive tumors with macrophages were also associated with a reduced frequency of total/near total resections (44% vs >76% for all other subtypes

  20. Basal-like breast cancer cells induce phenotypic and genomic changes in macrophages.

    PubMed

    Stewart, Delisha A; Yang, Yinmeng; Makowski, Liza; Troester, Melissa A

    2012-06-01

    Basal-like breast cancer (BBC) is an aggressive subtype of breast cancer that has no biologically targeted therapy. The interactions of BBCs with stromal cells are important determinants of tumor biology, with inflammatory cells playing well-recognized roles in cancer progression. Despite the fact that macrophage-BBC communication is bidirectional, important questions remain about how BBCs affect adjacent immune cells. This study investigated monocyte-to-macrophage differentiation and polarization and gene expression in response to coculture with basal-like versus luminal breast cancer cells. Changes induced by coculture were compared with changes observed under classical differentiation and polarization conditions. Monocytes (THP-1 cells) exposed to BBC cells in coculture had altered gene expression with upregulation of both M1 and M2 macrophage markers. Two sets of M1 and M2 markers were selected from the PCR profiles and used for dual immunofluorescent staining of BBC versus luminal cocultured THP-1s, and cancer-adjacent, benign tissue sections from patients diagnosed with BBCs or luminal breast cancer, confirming the differential expression patterns. Relative to luminal breast cancers, BBCs also increased differentiation of monocytes to macrophages and stimulated macrophage migration. Consistent with these changes in cellular phenotype, a distinct pattern of cytokine secretion was evident in macrophage-BBC cocultures, including upregulation of NAP-2, osteoprotegerin, MIG, MCP-1, MCP-3, and interleukin (IL)-1β. Application of IL-1 receptor antagonist (IL-1RA) to cocultures attenuated BBC-induced macrophage migration. These data contribute to an understanding of the BBC-mediated activation of the stromal immune response, implicating specific cytokines that are differentially expressed in basal-like microenvironments and suggesting plausible targets for modulating immune responses to BBCs. PMID:22532586

  1. Macrophage-tumor cell interactions regulate the function of nitric oxide

    PubMed Central

    Rahat, Michal A.; Hemmerlein, Bernhard

    2013-01-01

    Tumor cell-macrophage interactions change as the tumor progresses, and the generation of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS) plays a major role in this interplay. In early stages, macrophages employ their killing mechanisms, particularly the generation of high concentrations of NO and its derivative reactive nitrogen species (RNS) to initiate tumor cell apoptosis and destroy emerging transformed cells. If the tumor escapes the immune system and grows, macrophages that infiltrate it are reprogramed in situ by the tumor microenvironment. Low oxygen tensions (hypoxia) and immunosuppressive cytokines inhibit iNOS activity and lead to production of low amounts of NO/RNS, which are pro-angiogenic and support tumor growth and metastasis by inducing growth factors (e.g., VEGF) and matrix metalloproteinases (MMPs). We review here the different roles of NO/RNS in tumor progression and inhibition, and the mechanisms that regulate iNOS expression and NO production, highlighting the role of different subtypes of macrophages and the microenvironment. We finally claim that some tumor cells may become resistant to macrophage-induced death by increasing their expression of microRNA-146a (miR-146a), which leads to inhibition of iNOS translation. This implies that some cooperation between tumor cells and macrophages is required to induce tumor cell death, and that tumor cells may control their fate. Thus, in order to induce susceptibility of tumors cells to macrophage-induced death, we suggest a new therapeutic approach that couples manipulation of miR-146a levels in tumors with macrophage therapy, which relies on ex vivo stimulation of macrophages and their re-introduction to tumors. PMID:23785333

  2. Macrophage-tumor cell interactions regulate the function of nitric oxide.

    PubMed

    Rahat, Michal A; Hemmerlein, Bernhard

    2013-01-01

    Tumor cell-macrophage interactions change as the tumor progresses, and the generation of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS) plays a major role in this interplay. In early stages, macrophages employ their killing mechanisms, particularly the generation of high concentrations of NO and its derivative reactive nitrogen species (RNS) to initiate tumor cell apoptosis and destroy emerging transformed cells. If the tumor escapes the immune system and grows, macrophages that infiltrate it are reprogramed in situ by the tumor microenvironment. Low oxygen tensions (hypoxia) and immunosuppressive cytokines inhibit iNOS activity and lead to production of low amounts of NO/RNS, which are pro-angiogenic and support tumor growth and metastasis by inducing growth factors (e.g., VEGF) and matrix metalloproteinases (MMPs). We review here the different roles of NO/RNS in tumor progression and inhibition, and the mechanisms that regulate iNOS expression and NO production, highlighting the role of different subtypes of macrophages and the microenvironment. We finally claim that some tumor cells may become resistant to macrophage-induced death by increasing their expression of microRNA-146a (miR-146a), which leads to inhibition of iNOS translation. This implies that some cooperation between tumor cells and macrophages is required to induce tumor cell death, and that tumor cells may control their fate. Thus, in order to induce susceptibility of tumors cells to macrophage-induced death, we suggest a new therapeutic approach that couples manipulation of miR-146a levels in tumors with macrophage therapy, which relies on ex vivo stimulation of macrophages and their re-introduction to tumors. PMID:23785333

  3. Prostaglandin E2 Regulation of Macrophage Innate Immunity.

    PubMed

    Kimmel, Danielle W; Rogers, Lisa M; Aronoff, David M; Cliffel, David E

    2016-01-19

    Globally, maternal and fetal health is greatly impacted by extraplacental inflammation. Group B Streptococcus (GBS), a leading cause of chorioamnionitis, is thought to take advantage of the uterine environment during pregnancy in order to cause inflammation and infection. In this study, we demonstrate the metabolic changes of murine macrophages caused by GBS exposure. GBS alone prompted a delayed increase in lactate production, highlighting its ability to redirect macrophage metabolism from aerobic to anaerobic respiration. This production of lactate is thought to aid in the development and propagation of GBS throughout the surrounding tissue. Additionally, this study shows that PGE2 priming was able to exacerbate lactate production, shown by the rapid and substantial lactate increases seen upon GBS exposure. These data provide a novel model to study the role of GBS exposure to macrophages with and without PGE2 priming. PMID:26656203

  4. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye.

    PubMed

    Ko, Jung Hwa; Lee, Hyun Ju; Jeong, Hyun Jeong; Kim, Mee Kum; Wee, Won Ryang; Yoon, Sun-Ok; Choi, Hosoon; Prockop, Darwin J; Oh, Joo Youn

    2016-01-01

    Intravenously administered mesenchymal stem/stromal cells (MSCs) engraft only transiently in recipients, but confer long-term therapeutic benefits in patients with immune disorders. This suggests that MSCs induce immune tolerance by long-lasting effects on the recipient immune regulatory system. Here, we demonstrate that i.v. infusion of MSCs preconditioned lung monocytes/macrophages toward an immune regulatory phenotype in a TNF-α-stimulated gene/protein (TSG)-6-dependent manner. As a result, mice were protected against subsequent immune challenge in two models of allo- and autoimmune ocular inflammation: corneal allotransplantation and experimental autoimmune uveitis (EAU). The monocytes/macrophages primed by MSCs expressed high levels of MHC class II, B220, CD11b, and IL-10, and exhibited T-cell-suppressive activities independently of FoxP3(+) regulatory T cells. Adoptive transfer of MSC-induced B220(+)CD11b(+) monocytes/macrophages prevented corneal allograft rejection and EAU. Deletion of monocytes/macrophages abrogated the MSC-induced tolerance. However, MSCs with TSG-6 knockdown did not induce MHC II(+)B220(+)CD11b(+) cells, and failed to attenuate EAU. Therefore, the results demonstrate a mechanism of the MSC-mediated immune modulation through induction of innate immune tolerance that involves monocytes/macrophages. PMID:26699483

  5. Differential Trafficking of Oxidized LDL and Oxidized LDL Immune Complexes in Macrophages: Impact on Oxidative Stress

    PubMed Central

    Al Gadban, Mohammed M.; Smith, Kent J.; Soodavar, Farzan; Piansay, Christabelle; Chassereau, Charlyne; Twal, Waleed O.; Klein, Richard L.; Virella, Gabriel; Lopes-Virella, Maria F.; Hammad, Samar M.

    2010-01-01

    Background Oxidized low-density lipoproteins (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute to formation of lipid-laden macrophages (foam cells). It has been shown that oxLDL-IC are considerably more efficient than oxLDL in induction of foam cell formation, inflammatory cytokines secretion, and cell survival promotion. Whereas oxLDL is taken up by several scavenger receptors, oxLDL-IC are predominantly internalized through the FCγ receptor I (FCγ RI). This study examined differences in intracellular trafficking of lipid and apolipoprotein moieties of oxLDL and oxLDL-IC and the impact on oxidative stress. Methodology/Findings Fluorescently labeled lipid and protein moieties of oxLDL co-localized within endosomal and lysosomal compartments in U937 human monocytic cells. In contrast, the lipid moiety of oxLDL-IC was detected in the endosomal compartment, whereas its apolipoprotein moiety advanced to the lysosomal compartment. Cells treated with oxLDL-IC prior to oxLDL demonstrated co-localization of internalized lipid moieties from both oxLDL and oxLDL-IC in the endosomal compartment. This sequential treatment likely inhibited oxLDL lipid moieties from trafficking to the lysosomal compartment. In RAW 264.7 macrophages, oxLDL-IC but not oxLDL induced GFP-tagged heat shock protein 70 (HSP70) and HSP70B', which co-localized with the lipid moiety of oxLDL-IC in the endosomal compartment. This suggests that HSP70 family members might prevent the degradation of the internalized lipid moiety of oxLDL-IC by delaying its advancement to the lysosome. The data also showed that mitochondrial membrane potential was decreased and generation of reactive oxygen and nitrogen species was increased in U937 cell treated with oxLDL compared to oxLDL-IC. Conclusions/Significance Findings suggest that lipid and apolipoprotein moieties of oxLDL-IC traffic to separate cellular compartments, and that HSP70/70B' might sequester the lipid moiety of oxLDL-IC in the

  6. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses

    PubMed Central

    Verma, Saguna; Hoffmann, FuKun W.; Kumar, Mukesh; Huang, Zhi; Roe, Kelsey; Nguyen-Wu, Elizabeth; Hashimoto, Ann S.; Hoffmann, Peter R.

    2011-01-01

    Selenoprotein K (Sel K) is a selenium-containing protein for which no function has been identified. We found that Sel K is an endoplasmic reticulum (ER) transmembrane protein expressed at relatively high levels in immune cells and is regulated by dietary selenium. Sel K−/− mice were generated and found to be similar to WT controls regarding growth and fertility. Immune system development was not affected by Sel K deletion, but specific immune cell defects were found in Sel K−/− mice. Receptor-mediated Ca2+ flux was decreased in T cells, neutrophils, and macrophages from Sel K−/− mice compare to controls. Ca2+-dependent functions including T cell proliferation, T cell and neutrophil migration, and Fcγ-receptor-mediated oxidative burst in macrophages were decreased in cells from Sel K−/− mice compared to controls. West Nile virus (WNV) infections were performed and Sel K−/− mice exhibited decreased viral clearance in the periphery and increased viral titers in brain. Furthermore, WNV-infected Sel K−/− mice demonstrated significantly lower survival (2/23; 8.7%) compared to WT controls (10/26; 38.5%). These results establish Sel K as an ER-membrane protein important for promoting effective Ca2+ flux during immune cell activation and provide insight into molecular mechanisms by which dietary selenium enhances immune responses. PMID:21220695

  7. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye

    PubMed Central

    Ko, Jung Hwa; Lee, Hyun Ju; Jeong, Hyun Jeong; Kim, Mee Kum; Wee, Won Ryang; Yoon, Sun-ok; Choi, Hosoon; Prockop, Darwin J.; Oh, Joo Youn

    2016-01-01

    Intravenously administered mesenchymal stem/stromal cells (MSCs) engraft only transiently in recipients, but confer long-term therapeutic benefits in patients with immune disorders. This suggests that MSCs induce immune tolerance by long-lasting effects on the recipient immune regulatory system. Here, we demonstrate that i.v. infusion of MSCs preconditioned lung monocytes/macrophages toward an immune regulatory phenotype in a TNF-α–stimulated gene/protein (TSG)-6–dependent manner. As a result, mice were protected against subsequent immune challenge in two models of allo- and autoimmune ocular inflammation: corneal allotransplantation and experimental autoimmune uveitis (EAU). The monocytes/macrophages primed by MSCs expressed high levels of MHC class II, B220, CD11b, and IL-10, and exhibited T-cell–suppressive activities independently of FoxP3+ regulatory T cells. Adoptive transfer of MSC-induced B220+CD11b+ monocytes/macrophages prevented corneal allograft rejection and EAU. Deletion of monocytes/macrophages abrogated the MSC-induced tolerance. However, MSCs with TSG-6 knockdown did not induce MHC II+B220+CD11b+ cells, and failed to attenuate EAU. Therefore, the results demonstrate a mechanism of the MSC-mediated immune modulation through induction of innate immune tolerance that involves monocytes/macrophages. PMID:26699483

  8. Improved Method for Culturing Guinea-Pig Macrophage Cells

    NASA Technical Reports Server (NTRS)

    Savage, J.

    1982-01-01

    Proper nutrients and periodic changes in culture medium maintain cell viability for a longer period. New method uses a thioglycolate solution, instead of mineral oil, to induce macrophage cells in guinea pigs and also uses an increased percent of fetal-calf bovine serum in cultivation medium. Macrophage cells play significant roles in the body's healing and defense systems.

  9. Osteogenesis differentiation of human periodontal ligament cells by CO2 laser-treatment stimulating macrophages via BMP2 signalling pathway

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Hui; Chen, Yi-Jyun; Hung, Chi-Jr; Huang, Tsui-Hsien; Kao, Chia-Tze; Shie, Ming-You

    2014-11-01

    Immune reactions play an important role in determining the biostimulation of bone formation, either in new bone formation or inflammatory fibrous tissue encapsulation. Macrophage cell, the important effector cells in the immune reaction, which are indispensable for osteogenesis and their heterogeneity and plasticity, render macrophages a primer target for immune system modulation. However, there are very few studies about the effects of macrophage cells on laser treatment-regulated osteogenesis. In this study, we used CO2 laser as a model biostimulation to investigate the role of macrophage cells on the CO2 laser stimulated osteogenesis. Bone morphogenetic protein 2 (BMP2) was also significantly up regulated by the CO2 laser stimulation, indicating that macrophage may participate in the CO2 laser stimulated osteogenesis. Interestingly, when laser treatment macrophage-conditioned medium were applied to human periodontal ligament cells (hPDLs), the osteogenesis differentiation of hPDLs was significantly enhanced, indicating the important role of macrophages in CO2 laser-induced osteogenesis. These findings provided valuable insights into the mechanism of CO2 laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment.

  10. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins

    PubMed Central

    McCormick, Sarah M.; Heller, Nicola M.

    2015-01-01

    Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte–macrophage phenotype and function are highlighted. PMID:26579124

  11. [Adipose-derived stem cells promote the polarization from M1 macrophages to M2 macrophages].

    PubMed

    Yin, Xuehong; Pang, Chunyan; Bai, Li; Zhang, Ying; Geng, Lixia

    2016-03-01

    Objective To investigate the effects of adipose-derived stem cells (ADSCs) on M1/M2 macrophages and whether ADSCs are able to promote the polarization from M1 macrophages to M2 macrophages. Methods M1 macrophages were induced from J774.1 macrophages by 24-hour stimulation of lipopolysaccharide (LPS) and interferon γ (IFN-γ), and M2 macrophages were induced from J774.1 macrophages by interleukin 4 (IL-4) for another 24 hours. Then M1/M2 macrophages were separately cultured in the presence of ADSCs for 24 hours. The M1/M2 macrophages and their corresponding supernatants were collected for further analysis. The expressions of IL-6, tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS), CC chemokine ligand 2 (CCL2), CD86, arginase 1 (Arg1), mannose receptors/CD206 (MR/CD206), IL-10, found in inflammatory zone 1 (FIZZ1), chitinase 3-like 3 (Ym-1) were detected by real-time PCR and ELISA. Results ADSCs significantly decreased the levels of IL-6, TNF-α, iNOS, CCL2 and CD86, and increased the levels of Arg1, CD206 and IL-10 in M1 macrophages. In the supernatant of M1 macrophages, the expressions of IL-6 and TNF-α were reduced, while those of CD206 were enhanced. In M2 macrophages, ADSCs resulted in down-regulation of IL-6, TNF-α, iNOS, CD86 and up-regulation of Arg1, CD206, FIZZ-1, Ym-1 and IL-10. In the supernatant of M2 macrophages, the expression levels of IL-6 and TNF-α were down-regulated and those of CD206 were up-regulated. Conclusion ADSCs can inhibit the gene expression of M1 macrophages and promote the gene expression of M2 macrophages, as well as mediate the polarization from M1 macrophages to M2 macrophages. PMID:26927552

  12. Nanoengineering of Immune Cell Function

    PubMed Central

    Shen, Keyue; Milone, Michael C.; Dustin, Michael L.; Kam, Lance C.

    2010-01-01

    T lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies. PMID:21562611

  13. Elimination of allogeneic multipotent stromal cells by host macrophages in different models of regeneration

    PubMed Central

    Arutyunyan, Irina; Elchaninov, Andrey; Fatkhudinov, Timur; Makarov, Andrey; Kananykhina, Evgeniya; Usman, Natalia; Bolshakova, Galina; Glinkina, Valeria; Goldshtein, Dmitry; Sukhikh, Gennady

    2015-01-01

    Allogeneic multipotent stromal cells were previously thought to be poorly recognized by host immune system; the prolonged survival in host environments was explained by their immune privileged status. As long as the concept is currently reconsidered, the routes of elimination of allogeneic multipotent stromal cells by host immunity must be taken into account. This is necessary for correct comprehension of their therapeutic action. The study was focused upon survival of umbilical cord-derived allogeneic multipotent stromal cells in different rat models of tissue regeneration induced by partial hepatectomy or by critical limb ischemia. The observations were carried out by means of vital labeling of the cells with PKH26 prior to injection, in combination with differential immunostaining of host macrophages with anti-CD68 antibody. According to the results, allogeneic multipotent stromal cells are specifically eliminated by host immune system; the efficacy can reach 100%. Massive clearance of transplanted cells by host macrophages is accompanied by appropriation of the label by the latter, and this is a pronounced case of misleading presentation of exogenous label by host cells. The study emphasizes the role of macrophages in host response and also the need of additional criteria for correct data interpretation. PMID:26191137

  14. Elimination of allogeneic multipotent stromal cells by host macrophages in different models of regeneration.

    PubMed

    Arutyunyan, Irina; Elchaninov, Andrey; Fatkhudinov, Timur; Makarov, Andrey; Kananykhina, Evgeniya; Usman, Natalia; Bolshakova, Galina; Glinkina, Valeria; Goldshtein, Dmitry; Sukhikh, Gennady

    2015-01-01

    Allogeneic multipotent stromal cells were previously thought to be poorly recognized by host immune system; the prolonged survival in host environments was explained by their immune privileged status. As long as the concept is currently reconsidered, the routes of elimination of allogeneic multipotent stromal cells by host immunity must be taken into account. This is necessary for correct comprehension of their therapeutic action. The study was focused upon survival of umbilical cord-derived allogeneic multipotent stromal cells in different rat models of tissue regeneration induced by partial hepatectomy or by critical limb ischemia. The observations were carried out by means of vital labeling of the cells with PKH26 prior to injection, in combination with differential immunostaining of host macrophages with anti-CD68 antibody. According to the results, allogeneic multipotent stromal cells are specifically eliminated by host immune system; the efficacy can reach 100%. Massive clearance of transplanted cells by host macrophages is accompanied by appropriation of the label by the latter, and this is a pronounced case of misleading presentation of exogenous label by host cells. The study emphasizes the role of macrophages in host response and also the need of additional criteria for correct data interpretation. PMID:26191137

  15. The dynamic lives of macrophage and dendritic cell subsets in atherosclerosis

    PubMed Central

    Taghavie-Moghadam, Paresa L.; Butcher, Matthew J.; Galkina, Elena V.

    2014-01-01

    Atherosclerosis, the major pathological process through which arterial plaques are formed, is a dynamic chronic inflammatory disease of large and medium sized arteries in which the vasculature, lipid metabolism, and the immune system all play integral roles. Both the innate and adaptive immune systems are involved in the development and progression of atherosclerosis but myeloid cells represent the major component of the burgeoning atherosclerotic plaque. Various myeloid cells, including monocytes, macrophages, and dendritic cells can be found within the healthy and atherosclerotic arterial wall, where they can contribute to or regulate inflammation. However, the precise behaviors and functions of these cells in situ are still active areas of investigation that continue to yield exciting and surprising new data. Here, we review recent progress in understanding of the complex biology of macrophages and dendritic cells, focusing particularly on the dynamic regulation of these subsets in the arterial wall and novel, emerging functions of these cells during atherogenesis. PMID:24628328

  16. Immune cell promotion of metastasis

    PubMed Central

    Kitamura, Takanori; Qian, Bin-Zhi; Pollard, Jeffrey W.

    2015-01-01

    Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Data from mouse models suggest that the recruitment of immunosuppressive cells to tumours protects metastatic cancer cells from surveillance by killer cells, which nullifies the effects of immunotherapy and thus establishes metastasis. Furthermore, in most cases, tumour-infiltrating immune cells differentiate into cells that promote each step of the metastatic cascade and thus are novel targets for therapy. In this Review, we describe how tumour-infiltrating immune cells contribute to the metastatic cascade and we discuss potential therapeutic strategies to target these cells. PMID:25614318

  17. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy

    PubMed Central

    Miranda, Jake W.; Gilson, Danny J.; Song, Zhengyu; Chen, Jia; Shi, Chao; Zhu, Jianyu; Yang, Jun; Jing, Zhichun

    2016-01-01

    Background The persistence of Mycobacterium leprae (M. leprae) infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions. Methodology/Principal Findings Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNF-alpha) and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg) cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma) expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings. Conclusions/Significance Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity. PMID:26751388

  18. Murine macrophage inflammatory cytokine production and immune activation in response to Vibrio parahaemolyticus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus is the most common cause of bacterial seafood-related illness in the United States. Currently, there is a dearth of literature regarding immunity to infection with this pathogen. Here we studied V. parahaemolyticus-infected RAW 264.7 murine macrophage detecting both pro- and...

  19. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria

    PubMed Central

    Verreck, Frank A. W.; de Boer, Tjitske; Langenberg, Dennis M. L.; Hoeve, Marieke A.; Kramer, Matthijs; Vaisberg, Elena; Kastelein, Robert; Kolk, Arend; de Waal-Malefyt, René; Ottenhoff, Tom H. M.

    2004-01-01

    Macrophages (Mϕ) play a central role as effector cells in immunity to intracellular pathogens such as Mycobacterium. Paradoxically, they also provide a habitat for intracellular bacterial survival. This paradoxical role of Mϕ remains poorly understood. Here we report that this dual role may emanate from the functional plasticity of Mϕ: Whereas Mϕ-1 polarized in the presence of granulocyte–Mϕ colony-stimulating factor promoted type 1 immunity, Mϕ-2 polarized with Mϕ colony-stimulating factor subverted type 1 immunity and thus may promote immune escape and chronic infection. Importantly, Mϕ-1 secreted high levels of IL-23 (p40/p19) but no IL-12 (p40/p35) after (myco)bacterial activation. In contrast, activated Mϕ-2 produced neither IL-23 nor IL-12 but predominantly secreted IL-10. Mϕ-1 required IFN-γ as a secondary signal to induce IL-12p35 gene transcription and IL-12 secretion. Activated dendritic cells produced both IL-12 and IL-23, but unlike Mϕ-1 they slightly reduced their IL-23 secretion after addition of IFN-γ. Binding, uptake, and outgrowth of a mycobacterial reporter strain was supported by both Mϕ subsets, but more efficiently by Mϕ-2 than Mϕ-1. Whereas Mϕ-1 efficiently stimulated type 1 helper cells, Mϕ-2 only poorly supported type 1 helper function. Accordingly, activated Mϕ-2 but not Mϕ-1 down-modulated their antigen-presenting and costimulatory molecules (HLA-DR, CD86, and CD40). These findings indicate that (i)Mϕ-1 and Mϕ-2 play opposing roles in cellular immunity and (ii) IL-23 rather than IL-12 is the primary type 1 cytokine produced by activated proinflammatory Mϕ-1. Mϕ heterogeneity thus may be an important determinant of immunity and disease outcome in intracellular bacterial infection. PMID:15070757

  20. Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation.

    PubMed

    Pinto, Ana T; Pinto, Marta L; Velho, Sérgia; Pinto, Marta T; Cardoso, Ana P; Figueira, Rita; Monteiro, Armanda; Marques, Margarida; Seruca, Raquel; Barbosa, Mário A; Mareel, Marc; Oliveira, Maria J; Rocha, Sónia

    2016-01-01

    Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients' treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane assay

  1. Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation

    PubMed Central

    Pinto, Ana T.; Pinto, Marta L.; Velho, Sérgia; Pinto, Marta T.; Cardoso, Ana P.; Figueira, Rita; Monteiro, Armanda; Marques, Margarida; Seruca, Raquel; Barbosa, Mário A.; Mareel, Marc; Oliveira, Maria J.; Rocha, Sónia

    2016-01-01

    Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients’ treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane

  2. Interaction of mouse splenocytes and macrophages with bacterial strains in vitro: the effect of age in the immune response.

    PubMed

    Van Beek, A A; Hoogerland, J A; Belzer, C; De Vos, P; De Vos, W M; Savelkoul, H F J; Leenen, P J M

    2016-01-01

    Probiotics influence the immune system, both at the local and systemic level. Recent findings suggest the relation between microbiota and the immune system alters with age. Our objective was to address direct effects of six bacterial strains on immune cells from young and aged mice: Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, Lactococcus lactis MG1363, Bifidobacterium breve ATCC15700, Bifidobacterium infantis ATCC15697, and Akkermansia muciniphila ATCC BAA-835. We used splenocytes and naïve or interferon-γ-stimulated bone marrow-derived macrophages (BMDM) as responder populations. All tested bacterial strains induced phenotypic and cytokine responses in splenocytes and BMDM. Based on magnitude of the cellular inflammatory response and cytokine profiles, two subgroups of bacteria were identified, i.e. L. plantarum and L. casei versus B. breve, B. infantis, and A. muciniphila. The latter group of bacteria induced high levels of cytokines produced under inflammatory conditions, including tumour necrosis factor (TNF), interleukin (IL)-6 and IL-10. Responses to L. lactis showed features of both subgroups. In addition, we compared responses by splenocytes and BMDM derived from young mice to those of aged mice, and found that splenocytes and BMDM derived from aged mice had an increased IL-10 production and dysregulated IL-6 and TNF production compared to young immune cells. Overall, our study shows differential inflammatory responses to distinct bacterial strains, and profound age-dependent effects. These findings, moreover, support the view that immune environment importantly influences bacterial immune effects. PMID:26689225

  3. Macrophages and the Viral Dissemination Super Highway

    PubMed Central

    Klepper, Arielle; Branch, Andrea D

    2016-01-01

    Monocytes and macrophages are key components of the innate immune system yet they are often the victims of attack by infectious agents. This review examines the significance of viral infection of macrophages. The central hypothesis is that macrophage tropism enhances viral dissemination and persistence, but these changes may come at the cost of reduced replication in cells other than macrophages. PMID:26949751

  4. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

    PubMed Central

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M.; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E.; Thiel, Cora S.

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells. PMID:25654110

  5. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity.

    PubMed

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Unverdorben, Felix; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Buttron, Isabell; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells. PMID:25654110

  6. The mycotoxin deoxynivalenol inhibits the cell surface expression of activation markers in human macrophages.

    PubMed

    Waché, Yann J; Hbabi-Haddioui, Laila; Guzylack-Piriou, Laurence; Belkhelfa, Haouaria; Roques, Christine; Oswald, Isabelle P

    2009-08-21

    Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. It exhibits several toxic effects including impaired growth and immune dysregulation. Macrophages play pivotal role in the host defense; upon activation, they express several specific cell surface receptors that are important in adhesion and cell signaling. Several studies have demonstrated that DON can affect macrophages, however, very few data are available concerning the effect of DON on human macrophages, and the effect on macrophage cell surface receptors is unknown. In the present study, human blood monocytes, differentiated in vitro into macrophages, were activated with IFN-gamma, in the presence or absence of low concentrations of DON. The expression of CD11c, CD13, CD14, CD18, CD33, CD35, CD54, CD119 and HLA-DP/DQ/DR was analyzed by flow cytometry. As expected, macrophage activation by IFN-gamma upregulated the expression of CD54, CD14, CD119 and HLA-DP/DQ/DR. Incubation with DON decrease the cell surface expression of these activation markers in a dose-dependent manner. When cells were treated with 5muM DON, the mean fluorescence intensity measured for the expression of these receptors was the same as that observed in non-activated macrophages. This inhibitory effect of DON was only observed when the mycotoxin was applied before the activation signal. Taken together, our results suggest that low concentration of DON alter macrophage activation as measured by the expression of cell surface markers. This may have implications for human health when consuming DON contaminated feed. PMID:19549553

  7. Novel interactions between erythroblast macrophage protein and cell migration.

    PubMed

    Javan, Gulnaz T; Can, Ismail; Yeboah, Fred; Lee, Youngil; Soni, Shivani

    2016-09-01

    Erythroblast macrophage protein is a novel protein known to mediate attachment of erythroid cells to macrophages to form erythroblastic islands in bone marrow during erythropoiesis. Emp-null macrophages are small with round morphologies, and lack cytoplasmic projections which imply immature structure. The role of Emp in macrophage development and function is not fully elucidated. Macrophages perform varied functions (e.g. homeostasis, erythropoiesis), and are implicated in numerous pathophysiological conditions such as cellular malignancy. The objective of the current study is to investigate the interaction of Emp with cytoskeletal- and cell migration-associated proteins involved in macrophage functions. A short hairpin RNA lentiviral system was use to down-regulate the expression of Emp in macrophage cells. A cell migration assay revealed that the relocation of macrophages was significantly inhibited when Emp expression was decreased. To further analyze changes in gene expression related to cell motility, PCR array was performed by down-regulating Emp expression. The results indicated that expression of mitogen-activated protein kinase 1 and thymoma viral proto-oncogene 1 were significantly higher when Emp was down-regulated. The results implicate Emp in abnormal cell motility, thus, warrants to assess its role in cancer where tumor cell motility is required for invasion and metastasis. PMID:27519940

  8. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity.

    PubMed

    Westphalen, Kristin; Gusarova, Galina A; Islam, Mohammad N; Subramanian, Manikandan; Cohen, Taylor S; Prince, Alice S; Bhattacharya, Jahar

    2014-02-27

    The tissue-resident macrophages of barrier organs constitute the first line of defence against pathogens at the systemic interface with the ambient environment. In the lung, resident alveolar macrophages (AMs) provide a sentinel function against inhaled pathogens. Bacterial constituents ligate Toll-like receptors (TLRs) on AMs, causing AMs to secrete proinflammatory cytokines that activate alveolar epithelial receptors, leading to recruitment of neutrophils that engulf pathogens. Because the AM-induced response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, using real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall form connexin 43 (Cx43)-containing gap junction channels with the epithelium. During lipopolysaccharide-induced inflammation, the AMs remained sessile and attached to the alveoli, and they established intercommunication through synchronized Ca(2+) waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca(2+)-dependent activation of Akt, because AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage. A picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation. PMID:24463523

  9. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity

    NASA Astrophysics Data System (ADS)

    Westphalen, Kristin; Gusarova, Galina A.; Islam, Mohammad N.; Subramanian, Manikandan; Cohen, Taylor S.; Prince, Alice S.; Bhattacharya, Jahar

    2014-02-01

    The tissue-resident macrophages of barrier organs constitute the first line of defence against pathogens at the systemic interface with the ambient environment. In the lung, resident alveolar macrophages (AMs) provide a sentinel function against inhaled pathogens. Bacterial constituents ligate Toll-like receptors (TLRs) on AMs, causing AMs to secrete proinflammatory cytokines that activate alveolar epithelial receptors, leading to recruitment of neutrophils that engulf pathogens. Because the AM-induced response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, using real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall form connexin 43 (Cx43)-containing gap junction channels with the epithelium. During lipopolysaccharide-induced inflammation, the AMs remained sessile and attached to the alveoli, and they established intercommunication through synchronized Ca2+ waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca2+-dependent activation of Akt, because AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage. A picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation.

  10. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages.

    PubMed

    Ouedraogo, Richard; Daumas, Aurélie; Ghigo, Eric; Capo, Christian; Mege, Jean-Louis; Textoris, Julien

    2012-10-22

    Whole-cell MALDI-TOF MS is routinely used to identify bacterial species in clinical samples. This technique has also proven to allow identification of intact mammalian cells, including macrophages. Here, we wondered whether this approach enabled the assessment human macrophages plasticity. The whole-cell MALDI-TOF spectra of macrophages stimulated with IFN-γ and IL-4, two inducers of M1 and M2 macrophage polarisation, consisted of peaks ranging from 2 to 12 kDa. The spectra of unstimulated and stimulated macrophages were clearly different. The fingerprints induced by the M1 agonists, IFN-γ, TNF, LPS and LPS+IFN-γ, and the M2 agonists, IL-4, TGF-β1 and IL-10, were specific and readily identifiable. Thus, whole-cell MALDI-TOF MS was able to characterise M1 and M2 macrophage subtypes. In addition, the fingerprints induced by extracellular (group B Streptococcus, Staphylococcus aureus) or intracellular (BCG, Orientia tsutsugamushi, Coxiella burnetii) bacteria were bacterium-specific. The whole-cell MALDI-TOF MS fingerprints therefore revealed the multifaceted activation of human macrophages. This approach opened a new avenue of studies to assess the immune response in the clinical setting, by monitoring the various activation patterns of immune cells in pathological conditions. PMID:22967923

  11. High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates

    PubMed Central

    Schneider, Anina; Weier, Manuela; Sweep, Fred C. G. J.; Le Roy, Didier; Bernhagen, Jürgen; Calandra, Thierry; Giannoni, Eric

    2016-01-01

    The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis. PMID:26858459

  12. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    SciTech Connect

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  13. High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates.

    PubMed

    Roger, Thierry; Schneider, Anina; Weier, Manuela; Sweep, Fred C G J; Le Roy, Didier; Bernhagen, Jürgen; Calandra, Thierry; Giannoni, Eric

    2016-02-23

    The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis. PMID:26858459

  14. Neisseria gonorrhoeae Modulates Immunity by Polarizing Human Macrophages to a M2 Profile.

    PubMed

    Ortiz, María Carolina; Lefimil, Claudia; Rodas, Paula I; Vernal, Rolando; Lopez, Mercedes; Acuña-Castillo, Claudio; Imarai, Mónica; Escobar, Alejandro

    2015-01-01

    Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ) and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ) or alternative-M2 (M2-MФ) activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM) upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1), widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies. PMID:26125939

  15. Neisseria gonorrhoeae Modulates Immunity by Polarizing Human Macrophages to a M2 Profile

    PubMed Central

    Ortiz, María Carolina; Lefimil, Claudia; Rodas, Paula I.; Vernal, Rolando; Lopez, Mercedes; Acuña-Castillo, Claudio; Imarai, Mónica; Escobar, Alejandro

    2015-01-01

    Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ) and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ) or alternative-M2 (M2-MФ) activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM) upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1), widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies. PMID:26125939

  16. Cell mechanics and immune system link up to fight infections

    NASA Astrophysics Data System (ADS)

    Ekpenyong, Andrew; Man, Si Ming; Tourlomousis, Panagiotis; Achouri, Sarra; Cammarota, Eugenia; Hughes, Katherine; Rizzo, Alessandro; Ng, Gilbert; Guck, Jochen; Bryant, Clare

    2015-03-01

    Infectious diseases, in which pathogens invade and colonize host cells, are responsible for one third of all mortality worldwide. Host cells use special proteins (immunoproteins) and other molecules to fight viral and bacterial invaders. The mechanisms by which immunoproteins enable cells to reduce bacterial loads and survive infections remain unclear. Moreover, during infections, some immunoproteins are known to alter the cytoskeleton, the structure that largely determines cellular mechanical properties. We therefore used an optical stretcher to measure the mechanical properties of primary immune cells (bone marrow derived macrophages) during bacterial infection. We found that macrophages become stiffer upon infection. Remarkably, macrophages lacking the immunoprotein, NLR-C4, lost the stiffening response to infection. This in vitro result correlates with our in vivo data whereby mice lacking NLR-C4 have more lesions and hence increased bacterial distribution and spread. Thus, the immune-protein-dependent increase in cell stiffness in response to bacterial infection (in vitro result) seems to have a functional role in the system level fight against pathogens (in vivo result). We will discuss how this functional link between cell mechanical properties and innate immunity, effected by actin polymerization, reduces the spread of infection.

  17. Macrophage migration inhibitory factor (MIF) expression in human malignant gliomas contributes to immune escape and tumour progression.

    PubMed

    Mittelbronn, Michel; Platten, Michael; Zeiner, Pia; Dombrowski, Yvonne; Frank, Brigitte; Zachskorn, Cornelia; Harter, Patrick N; Weller, Michael; Wischhusen, Jörg

    2011-09-01

    Macrophage migration inhibitory factor (MIF), which inhibits apoptosis and promotes angiogenesis, is expressed in cancers suppressing immune surveillance. Its biological role in human glioblastoma is, however, only poorly understood. We examined in-vivo expression of MIF in 166 gliomas and 23 normal control brains by immunohistochemistry. MIF immunoreactivity was enhanced in neoplastic astrocytes in WHO grade II glioma and increased significantly in higher tumour grades (III-IV). MIF expression was further assessed in 12 glioma cell lines in vitro. Quantitative RT-PCR showed that MIF mRNA expression was elevated up to 800-fold in malignant glioma cells compared with normal brain. This translated into high protein levels as assessed by immunoblotting of total cell lysates and by ELISA-based measurement of secreted MIF. Wild-type p53-retaining glioma cell lines expressed higher levels of MIF, which may be connected with the previously described role of MIF as a negative regulator of wild-type p53 signalling in tumour cells. Stable knockdown of MIF by shRNA in glioma cells significantly increased tumour cell susceptibility towards NK cell-mediated cytotoxicity. Furthermore, supernatant from mock-transfected cells, but not from MIF knockdown cells, induced downregulation of the activating immune receptor NKG2D on NK and CD8+ T cells. We thus propose that human glioma cell-derived MIF contributes to the immune escape of malignant gliomas by counteracting NK and cytotoxic T-cell-mediated tumour immune surveillance. Considering its further cell-intrinsic and extrinsic tumour-promoting effects and the availability of small molecule inhibitors, MIF seems to be a promising candidate for future glioma therapy. PMID:21773885

  18. Guardians of the Gut – Murine Intestinal Macrophages and Dendritic Cells

    PubMed Central

    Gross, Mor; Salame, Tomer-Meir; Jung, Steffen

    2015-01-01

    Intestinal mononuclear phagocytes find themselves in a unique environment, most prominently characterized by its constant exposure to commensal microbiota and food antigens. This anatomic setting has resulted in a number of specializations of the intestinal mononuclear phagocyte compartment that collectively contribute the unique steady state immune landscape of the healthy gut, including homeostatic innate lymphoid cells, B, and T cell compartments. As in other organs, macrophages and dendritic cells (DCs) orchestrate in addition the immune defense against pathogens, both in lymph nodes and mucosa-associated lymphoid tissue. Here, we will discuss origins and functions of intestinal DCs and macrophages and their respective subsets, focusing largely on the mouse and cells residing in the lamina propria. PMID:26082775

  19. Interaction of a mouse macrophage cell line with homologous erythrocytes.

    PubMed

    Singer, J A; Walker, W S; Morrison, M

    1982-06-01

    The interaction of the IC-21 murine macrophage cell line and homologous red blood cells (RBC) was assessed in the absence of exogenous opsonins. These results were used to evaluate this system as a potential model for macrophage-mediated clearance of old or damaged RBC. The binding and ingestion of density-separated and unseparated RBC by IC-21 cells were quantitated in assays that involved both 51Cr-labeled RBC and direct microscopy. The number of unseparated RBC that bound to IC-21 macrophages depended on the number of RBC added. Macrophages phagocytized an appreciable proportion of RBC within 3 hours with the ratio of RBC:macrophage of 10, a point at which the RBC-binding was not rate limiting. The mouse RBC were separated into dense- and less-dense fractions which are presumably enriched for old and young cells, respectively. When these RBC fractions were incubated with the IC-21 macrophage, significantly more of these dense cells were phagocytized. These results show that IC-21 macrophage cell line is a useful model for defining the processes whereby aged or damaged RBC are recognized and removed from circulation by macrophages. PMID:7120230

  20. Are mesenchymal stromal cells immune cells?

    PubMed

    Hoogduijn, Martin J

    2015-01-01

    Mesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-clinical models have shown beneficial effects of MSCs in multiple immunological diseases and a number of phase 1/2 clinical trials carried out so far have reported signs of immune modulation after MSC infusion. These data indicate that MSCs play a central role in the immune response. This raises the academic question whether MSCs are immune cells or whether they are tissue precursor cells with immunoregulatory capacity. Correct understanding of the immunological properties and origin of MSCs will aid in the appropriate and safe use of the cells for clinical therapy. In this review the whole spectrum of immunological properties of MSCs is discussed with the aim of determining the position of MSCs in the immune system. PMID:25880839

  1. MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis

    PubMed Central

    Gharib, Sina A.; Johnston, Laura K.; Huizar, Isham; Birkland, Timothy P.; Hanson, Josiah; Wang, Ying; Parks, William C.; Manicone, Anne M.

    2014-01-01

    Members of the MMP family function in various processes of innate immunity, particularly in controlling important steps in leukocyte trafficking and activation. MMP28 (epilysin) is a member of this family of proteinases, and we have found that MMP28 is expressed by macrophages and regulates their recruitment to the lung. We hypothesized that MMP28 regulates other key macrophage responses, such as macrophage polarization. Furthermore, we hypothesized that these MMP28-dependent changes in macrophage polarization would alter fibrotic responses in the lung. We examined the gene expression changes in WT and Mmp28−/− BMDMs, stimulated with LPS or IL-4/IL-13 to promote M1 and M2 cells, respectively. We also collected macrophages from the lungs of Pseudomonas aeruginosa-exposed WT and Mmp28−/− mice to evaluate changes in macrophage polarization. Lastly, we evaluated the macrophage polarization phenotypes during bleomycin-induced pulmonary fibrosis in WT and Mmp28−/− mice and assessed mice for differences in weight loss and total collagen levels. We found that MMP28 dampens proinflammatory macrophage function and promots M2 programming. In both in vivo models, we found deficits in M2 polarization in Mmp28−/− mice. In bleomycin-induced lung injury, these changes were associated with reduced fibrosis. MMP28 is an important regulator of macrophage polarization, promoting M2 function. Loss of MMP28 results in reduced M2 polarization and protection from bleomycin-induced fibrosis. These findings highlight a novel role for MMP28 in macrophage biology and pulmonary disease. PMID:23964118

  2. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    PubMed

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells. PMID:21303980

  3. Development of a cell system for siRNA screening of pathogen responses in human and mouse macrophages

    PubMed Central

    Li, Ning; Sun, Jing; Benet, Zachary L.; Wang, Ze; Al-Khodor, Souhaila; John, Sinu P.; Lin, Bin; Sung, Myong-Hee; Fraser, Iain D. C.

    2015-01-01

    Macrophages play a critical role in the innate immune response to pathogen infection, but few tools exist for systematic dissection of these responses using modern genome-wide perturbation methods. To develop an assay platform for high-throughput analysis of macrophage activation by pathogenic stimuli, we generated reporter systems in human and mouse macrophages with dynamic readouts for NF-κB and/or TNF-α responses. These reporter cells show responsiveness to a broad range of TLR ligands and to gram-negative bacterial infection. There are significant challenges to the use of RNAi in innate immune cells, including efficient small RNA delivery and non-specific immune responses to dsRNA. To permit the interrogation of the macrophage pathogen response pathways with RNAi, we employed the stably expressed reporter genes to develop efficient siRNA delivery protocols for maximal target gene silencing with minimal activation of the innate macrophage response to nucleic acids. We demonstrate the utility of these macrophage cell systems for siRNA screening of pathogen responses by targeting components of the human and mouse TLR pathways, and observe species-specific perturbation of signaling and cytokine responses. Our approach to reporter cell development and siRNA delivery optimization provides an experimental paradigm with significant potential for developing genetic screening platforms in mammalian cells. PMID:25831078

  4. Antigen targeting reveals splenic CD169+ macrophages as promoters of germinal center B-cell responses.

    PubMed

    Veninga, Henrike; Borg, Ellen G F; Vreeman, Kyle; Taylor, Philip R; Kalay, Hakan; van Kooyk, Yvette; Kraal, Georg; Martinez-Pomares, Luisa; den Haan, Joke M M

    2015-03-01

    Ag delivery to specific APCs is an attractive approach in developing strategies for vaccination. CD169(+) macrophages in the marginal zone of the spleen represent a suitable target for delivery of Ag because of their strategic location, which is optimal for the capture of blood-borne Ag and their close proximity to B cells and T cells in the white pulp. Here we show that Ag targeting to CD169(+) macrophages in mice resulted in strong, isotype-switched, high-affinity Ab production and the preferential induction and long-term persistence of Ag-specific GC B cells and follicular Th cells. In agreement with these observations, CD169(+) macrophages retained intact Ag, induced cognate activation of B cells, and increased expression of costimulatory molecules upon activation. In addition, macrophages were required for the production of cytokines that promote B-cell responses. Our results identify CD169(+) macrophages as promoters of high-affinity humoral immune responses and emphasize the value of CD169 as target for Ag delivery to improve vaccine responses. PMID:25487358

  5. Antigen targeting reveals splenic CD169+ macrophages as promoters of germinal center B‐cell responses

    PubMed Central

    Veninga, Henrike; Borg, Ellen G. F.; Vreeman, Kyle; Taylor, Philip R.; Kalay, Hakan; van Kooyk, Yvette; Kraal, Georg; Martinez‐Pomares, Luisa

    2015-01-01

    Ag delivery to specific APCs is an attractive approach in developing strategies for vaccination. CD169+ macrophages in the marginal zone of the spleen represent a suitable target for delivery of Ag because of their strategic location, which is optimal for the capture of blood‐borne Ag and their close proximity to B cells and T cells in the white pulp. Here we show that Ag targeting to CD169+ macrophages in mice resulted in strong, isotype‐switched, high‐affinity Ab production and the preferential induction and long‐term persistence of Ag‐specific GC B cells and follicular Th cells. In agreement with these observations, CD169+ macrophages retained intact Ag, induced cognate activation of B cells, and increased expression of costimulatory molecules upon activation. In addition, macrophages were required for the production of cytokines that promote B‐cell responses. Our results identify CD169+ macrophages as promoters of high‐affinity humoral immune responses and emphasize the value of CD169 as target for Ag delivery to improve vaccine responses. PMID:25487358

  6. Deficiency of the B Cell-Activating Factor Receptor Results in Limited CD169+ Macrophage Function during Viral Infection

    PubMed Central

    Xu, Haifeng C.; Huang, Jun; Khairnar, Vishal; Duhan, Vikas; Pandyra, Aleksandra A.; Grusdat, Melanie; Shinde, Prashant; McIlwain, David R.; Maney, Sathish Kumar; Gommerman, Jennifer; Löhning, Max; Ohashi, Pamela S.; Mak, Tak W.; Pieper, Kathrin; Sic, Heiko; Speletas, Matthaios; Eibel, Hermann; Ware, Carl F.; Tumanov, Alexei V.; Kruglov, Andrey A.; Nedospasov, Sergei A.; Häussinger, Dieter; Recher, Mike; Lang, Karl S.

    2015-01-01

    ABSTRACT The B cell-activating factor (BAFF) is critical for B cell development and humoral immunity in mice and humans. While the role of BAFF in B cells has been widely described, its role in innate immunity remains unknown. Using BAFF receptor (BAFFR)-deficient mice, we characterized BAFFR-related innate and adaptive immune functions following infection with vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV). We identified a critical role for BAFFR signaling in the generation and maintenance of the CD169+ macrophage compartment. Consequently, Baffr−/− mice exhibited limited induction of innate type I interferon production after viral infection. Lack of BAFFR signaling reduced virus amplification and presentation following viral infection, resulting in highly reduced antiviral adaptive immune responses. As a consequence, BAFFR-deficient mice showed exacerbated and fatal disease after viral infection. Mechanistically, transient lack of B cells in Baffr−/− animals resulted in limited lymphotoxin expression, which is critical for maintenance of CD169+ cells. In conclusion, BAFFR signaling affects both innate and adaptive immune activation during viral infections. IMPORTANCE Viruses cause acute and chronic infections in humans resulting in millions of deaths every year. Innate immunity is critical for the outcome of a viral infection. Innate type I interferon production can limit viral replication, while adaptive immune priming by innate immune cells induces pathogen-specific immunity with long-term protection. Here, we show that BAFFR deficiency not only perturbed B cells, but also resulted in limited CD169+ macrophages. These macrophages are critical in amplifying viral particles to trigger type I interferon production and initiate adaptive immune priming. Consequently, BAFFR deficiency resulted in reduced enforced viral replication, limited type I interferon production, and reduced adaptive immunity compared to BAFFR

  7. Macrophages sustain HIV replication in vivo independently of T cells.

    PubMed

    Honeycutt, Jenna B; Wahl, Angela; Baker, Caroline; Spagnuolo, Rae Ann; Foster, John; Zakharova, Oksana; Wietgrefe, Stephen; Caro-Vegas, Carolina; Madden, Victoria; Sharpe, Garrett; Haase, Ashley T; Eron, Joseph J; Garcia, J Victor

    2016-04-01

    Macrophages have long been considered to contribute to HIV infection of the CNS; however, a recent study has contradicted this early work and suggests that myeloid cells are not an in vivo source of virus production. Here, we addressed the role of macrophages in HIV infection by first analyzing monocytes isolated from viremic patients and patients undergoing antiretroviral treatment. We were unable to find viral DNA or viral outgrowth in monocytes isolated from peripheral blood. To determine whether tissue macrophages are productively infected, we used 3 different but complementary humanized mouse models. Two of these models (bone marrow/liver/thymus [BLT] mice and T cell-only mice [ToM]) have been previously described, and the third model was generated by reconstituting immunodeficient mice with human CD34+ hematopoietic stem cells that were devoid of human T cells (myeloid-only mice [MoM]) to specifically evaluate HIV replication in this population. Using MoM, we demonstrated that macrophages can sustain HIV replication in the absence of T cells; HIV-infected macrophages are distributed in various tissues including the brain; replication-competent virus can be rescued ex vivo from infected macrophages; and infected macrophages can establish de novo infection. Together, these results demonstrate that macrophages represent a genuine target for HIV infection in vivo that can sustain and transmit infection. PMID:26950420

  8. Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells.

    PubMed

    Duan, Wei; Croft, Michael

    2014-12-01

    Airway tolerance, a state of immunological surveillance, suppresses the development of lung inflammatory disorders that are driven by various pathological effector cells of the immune system. Tolerance in the lung to inhaled antigens is primarily mediated by regulatory T cells (Treg cells) that can inhibit effector T cells via a myriad of mechanisms. Accumulating evidence suggests that regulatory antigen-presenting cells are critical for generating Treg cells and/or maintaining the suppressive environment in the lung. This review focuses on the control of airway tolerance by Treg cells and the role of regulatory lung tissue and alveolar macrophages, and lung and lymph node dendritic cells, in contributing to airway tolerance that is associated with suppression of allergic asthmatic disease. PMID:25525738

  9. Lung epithelial cells modulate the inflammatory response of alveolar macrophages.

    PubMed

    Rubovitch, Vardit; Gershnabel, Shoham; Kalina, Moshe

    2007-12-01

    The goal of this study was to examine the effect of alveolar epithelial cells on inflammatory responses in macrophages. Lung epithelial cells (either rat RLE-6TN or human A549 cells) reduced LPS-induced NO production in alveolar macrophages (AM) in a contact-independent mechanism. The inhibitory effect of the epithelial cells was present already at the transcriptional level: LPS-induced inducible NO synthase (iNOS) expression was significantly smaller. Surfactant protein A (SP-A)-induced NO production by alveolar macrophages was also reduced in the presence of A549 cells, though, by a different kinetics. LPS-induced interleukin-6 (IL-6) production (another inflammatory pathway) by alveolar macrophages was also reduced in the presence of RLE-6TN cells. These data suggest a role for lung epithelial cells in the complicated modulation of inflammatory processes, and provide an insight into the mechanism underlying. PMID:17851743

  10. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation.

    PubMed

    Oliveira, Marta I; Santos, Susana G; Oliveira, Maria J; Torres, Ana L; Barbosa, Mário A

    2012-01-01

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration. PMID:22828991

  11. Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages

    PubMed Central

    Wu, Zeguang; Frascaroli, Giada; Bayer, Carina; Schmal, Tatjana

    2015-01-01

    ABSTRACT Control of human cytomegalovirus (HCMV) requires a continuous immune surveillance, thus HCMV is the most important viral pathogen in severely immunocompromised individuals. Both innate and adaptive immunity contribute to the control of HCMV. Here, we report that peripheral blood natural killer cells (PBNKs) from HCMV-seropositive donors showed an enhanced activity toward HCMV-infected autologous macrophages. However, this enhanced response was abolished when purified NK cells were applied as effectors. We demonstrate that this enhanced PBNK activity was dependent on the interleukin-2 (IL-2) secretion of CD4+ T cells when reexposed to the virus. Purified T cells enhanced the activity of purified NK cells in response to HCMV-infected macrophages. This effect could be suppressed by IL-2 blocking. Our findings not only extend the knowledge on the immune surveillance in HCMV—namely, that NK cell-mediated innate immunity can be enhanced by a preexisting T cell antiviral immunity—but also indicate a potential clinical implication for patients at risk for severe HCMV manifestations due to immunosuppressive drugs, which mainly suppress IL-2 production and T cell responsiveness. IMPORTANCE Human cytomegalovirus (HCMV) is never cleared by the host after primary infection but instead establishes a lifelong latent infection with possible reactivations when the host′s immunity becomes suppressed. Both innate immunity and adaptive immunity are important for the control of viral infections. Natural killer (NK) cells are main innate effectors providing a rapid response to virus-infected cells. Virus-specific T cells are the main adaptive effectors that are critical for the control of the latent infection and limitation of reinfection. In this study, we found that IL-2 secreted by adaptive CD4+ T cells after reexposure to HCMV enhances the activity of NK cells in response to HCMV-infected target cells. This is the first direct evidence that the adaptive T cells can

  12. Role of cell death in the propagation of PrP(Sc) in immune cells.

    PubMed

    Takahashi, Kenichi; Inoshima, Yasuo; Ishiguro, Naotaka

    2015-03-01

    A number of studies have suggested that macrophages, dendritic cells, and follicular dendritic cells play an important role in the propagation of PrP(Sc). Both accumulation and proteolysis of PrP(Sc) have been demonstrated in peripheral macrophages. Macrophages may act as reservoirs for PrP(Sc) particles if the cells die during transient PrP(Sc) propagation. However, whether cell death plays a role in PrP(Sc) propagation in macrophages remains unclear. In this study, we investigated the possibility of propagation and transmission of PrP(Sc) between dead immune cells and living neural cells. We found that under specific conditions, transient PrP(Sc) propagation occurs in dead cells, indicating that interaction between PrP(C) and PrP(Sc) on plasma membrane lipid rafts might be important for PrP(Sc) propagation. Co-culturing of killed donor PrP(Sc)-infected macrophages with recipient N2a-3 neuroblastoma cells accelerated PrP(Sc) transmission. Our results suggest that cell death may play an important role in PrP(Sc) propagation, whereas transient PrP(Sc) propagation in macrophages has little effect on PrP(Sc) transmission. PMID:25559669

  13. Salmonella Typhimurium Co-Opts the Host Type I IFN System To Restrict Macrophage Innate Immune Transcriptional Responses Selectively.

    PubMed

    Perkins, Darren J; Rajaiah, Rajesh; Tennant, Sharon M; Ramachandran, Girish; Higginson, Ellen E; Dyson, Tristan N; Vogel, Stefanie N

    2015-09-01

    Innate immune inflammatory responses are subject to complex layers of negative regulation at intestinal mucosal surfaces. Although the type I IFN system is critical for amplifying antiviral immunity, it has been shown to play a homeostatic role in some models of autoimmune inflammation. Type I IFN is triggered in the gut by select bacterial pathogens, but whether and how the type I IFN might regulate innate immunity in the intestinal environment have not been investigated in the context of Salmonella enterica serovar Typhimurium (ST). ST infection of human or murine macrophages reveals that IFN-β selectively restricts the transcriptional responses mediated by both the TLRs and the NOD-like receptors. Specifically, IFN-β potently represses ST-dependent innate induction of IL-1 family cytokines and neutrophil chemokines. This IFN-β-mediated transcriptional repression was independent of the effects of IFN-β on ST-induced macrophage cell death, but significantly dependent on IL-10 regulation. We further evaluated ST pathogenesis in vivo following oral inoculation of mice lacking IFN-β. We show that IFN-β(-/-) mice exhibit greater resistance to oral ST infection and a slower spread of ST to distal sterile sites. This work provides mechanistic insight into the relationship between ST and type I IFN, and demonstrates an additional mechanism by which IFN-β may promote spread of enteric pathogens. PMID:26202980

  14. Macrophages sustain HIV replication in vivo independently of T cells

    PubMed Central

    Wahl, Angela; Baker, Caroline; Spagnuolo, Rae Ann; Foster, John; Zakharova, Oksana; Wietgrefe, Stephen; Caro-Vegas, Carolina; Sharpe, Garrett; Haase, Ashley T.; Eron, Joseph J.; Garcia, J. Victor

    2016-01-01

    Macrophages have long been considered to contribute to HIV infection of the CNS; however, a recent study has contradicted this early work and suggests that myeloid cells are not an in vivo source of virus production. Here, we addressed the role of macrophages in HIV infection by first analyzing monocytes isolated from viremic patients and patients undergoing antiretroviral treatment. We were unable to find viral DNA or viral outgrowth in monocytes isolated from peripheral blood. To determine whether tissue macrophages are productively infected, we used 3 different but complementary humanized mouse models. Two of these models (bone marrow/liver/thymus [BLT] mice and T cell–only mice [ToM]) have been previously described, and the third model was generated by reconstituting immunodeficient mice with human CD34+ hematopoietic stem cells that were devoid of human T cells (myeloid-only mice [MoM]) to specifically evaluate HIV replication in this population. Using MoM, we demonstrated that macrophages can sustain HIV replication in the absence of T cells; HIV-infected macrophages are distributed in various tissues including the brain; replication-competent virus can be rescued ex vivo from infected macrophages; and infected macrophages can establish de novo infection. Together, these results demonstrate that macrophages represent a genuine target for HIV infection in vivo that can sustain and transmit infection. PMID:26950420

  15. Tumor infiltrating immune cells in gliomas and meningiomas.

    PubMed

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2016-03-01

    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control. PMID:26216710

  16. Endoplasmic reticulum chaperone gp96 in macrophages is essential for protective immunity during Gram-negative pneumonia.

    PubMed

    Anas, Adam A; de Vos, Alex F; Hoogendijk, Arie J; van Lieshout, Miriam H P; van Heijst, Jeroen W J; Florquin, Sandrine; Li, Zihai; van 't Veer, Cornelis; van der Poll, Tom

    2016-01-01

    Klebsiella pneumoniae is among the most common Gram-negative bacteria that cause pneumonia. Gp96 is an endoplasmic reticulum chaperone that is essential for the trafficking and function of Toll-like receptors (TLRs) and integrins. To determine the role of gp96 in myeloid cells in host defence during Klebsiella pneumonia, mice homozygous for the conditional Hsp90b1 allele encoding gp96 were crossed with mice expressing Cre-recombinase under control of the LysM promoter to generate LysMcre-Hsp90b1-flox mice. LysMcre-Hsp90b1-flox mice showed absence of gp96 protein in macrophages and partial depletion in monocytes and granulocytes. This was accompanied by almost complete absence of TLR2 and TLR4 on macrophages. Likewise, integrin subunits CD11b and CD18 were not detectable on macrophages, while being only slightly reduced on monocytes and granulocytes. Gp96-deficient macrophages did not release pro-inflammatory cytokines in response to Klebsiella and displayed reduced phagocytic capacity independent of CD18. LysMcre-Hsp90b1-flox mice were highly vulnerable to lower airway infection induced by K. pneumoniae, as reflected by enhanced bacterial growth and a higher mortality rate. The early inflammatory response in Hsp90b1-flox mice was characterized by strongly impaired recruitment of granulocytes into the lungs, accompanied by attenuated production of pro-inflammatory cytokines, while the inflammatory response during late-stage pneumonia was not dependent on the presence of gp96. Blocking CD18 did not reproduce the impaired host defence of LysMcre-Hsp90b1-flox mice during Klebsiella pneumonia. These data indicate that macrophage gp96 is essential for protective immunity during Gram-negative pneumonia by regulating TLR expression. PMID:26365983

  17. Distinct Modes of Macrophage Recognition for Apoptotic and Necrotic Cells Are Not Specified Exclusively by Phosphatidylserine Exposure

    PubMed Central

    Cocco, Regina E.; Ucker, David S.

    2001-01-01

    The distinction between physiological (apoptotic) and pathological (necrotic) cell deaths reflects mechanistic differences in cellular disintegration and is of functional significance with respect to the outcomes that are triggered by the cell corpses. Mechanistically, apoptotic cells die via an active and ordered pathway; necrotic deaths, conversely, are chaotic and passive. Macrophages and other phagocytic cells recognize and engulf these dead cells. This clearance is believed to reveal an innate immunity, associated with inflammation in cases of pathological but not physiological cell deaths. Using objective and quantitative measures to assess these processes, we find that macrophages bind and engulf native apoptotic and necrotic cells to similar extents and with similar kinetics. However, recognition of these two classes of dying cells occurs via distinct and noncompeting mechanisms. Phosphatidylserine, which is externalized on both apoptotic and necrotic cells, is not a specific ligand for the recognition of either one. The distinct modes of recognition for these different corpses are linked to opposing responses from engulfing macrophages. Necrotic cells, when recognized, enhance proinflammatory responses of activated macrophages, although they are not sufficient to trigger macrophage activation. In marked contrast, apoptotic cells profoundly inhibit phlogistic macrophage responses; this represents a cell-associated, dominant-acting anti-inflammatory signaling activity acquired posttranslationally during the process of physiological cell death. PMID:11294896

  18. Dendritic cells and macrophages in the kidney: a spectrum of good and evil.

    PubMed

    Rogers, Natasha M; Ferenbach, David A; Isenberg, Jeffrey S; Thomson, Angus W; Hughes, Jeremy

    2014-11-01

    Renal dendritic cells (DCs) and macrophages represent a constitutive, extensive and contiguous network of innate immune cells that provide sentinel and immune-intelligence activity; they induce and regulate inflammatory responses to freely filtered antigenic material and protect the kidney from infection. Tissue-resident or infiltrating DCs and macrophages are key factors in the initiation and propagation of renal disease, as well as essential contributors to subsequent tissue regeneration, regardless of the aetiological and pathogenetic mechanisms. The identification, and functional and phenotypic distinction of these cell types is complex and incompletely understood, and the same is true of their interplay and relationships with effector and regulatory cells of the adaptive immune system. In this Review, we discuss the common and distinct characteristics of DCs and macrophages, as well as key advances that have identified the renal-specific functions of these important phagocytic, antigen-presenting cells, and their roles in potentiating or mitigating intrinsic kidney disease. We also identify remaining issues that are of priority for further investigation, and highlight the prospects for translational and therapeutic application of the knowledge acquired. PMID:25266210

  19. Integrative model of the immune response to a pulmonary macrophage infection: what determines the infection duration?

    PubMed

    Go, Natacha; Bidot, Caroline; Belloc, Catherine; Touzeau, Suzanne

    2014-01-01

    The immune mechanisms which determine the infection duration induced by pathogens targeting pulmonary macrophages are poorly known. To explore the impact of such pathogens, it is indispensable to integrate the various immune mechanisms and to take into account the variability in pathogen virulence and host susceptibility. In this context, mathematical models complement experimentation and are powerful tools to represent and explore the complex mechanisms involved in the infection and immune dynamics. We developed an original mathematical model in which we detailed the interactions between the macrophages and the pathogen, the orientation of the adaptive response and the cytokine regulations. We applied our model to the Porcine Respiratory and Reproductive Syndrome virus (PRRSv), a major concern for the swine industry. We extracted value ranges for the model parameters from modelling and experimental studies on respiratory pathogens. We identified the most influential parameters through a sensitivity analysis. We defined a parameter set, the reference scenario, resulting in a realistic and representative immune response to PRRSv infection. We then defined scenarios corresponding to graduated levels of strain virulence and host susceptibility around the reference scenario. We observed that high levels of antiviral cytokines and a dominant cellular response were associated with either short, the usual assumption, or long infection durations, depending on the immune mechanisms involved. To identify these mechanisms, we need to combine the levels of antiviral cytokines, including IFNγ, and IL10. The latter is a good indicator of the infected macrophage level, both combined provide the adaptive response orientation. Available PRRSv vaccines lack efficiency. By integrating the main interactions between the complex immune mechanisms, this modelling framework could be used to help designing more efficient vaccination strategies. PMID:25233096

  20. Integrative Model of the Immune Response to a Pulmonary Macrophage Infection: What Determines the Infection Duration?

    PubMed Central

    Go, Natacha; Bidot, Caroline; Belloc, Catherine; Touzeau, Suzanne

    2014-01-01

    The immune mechanisms which determine the infection duration induced by pathogens targeting pulmonary macrophages are poorly known. To explore the impact of such pathogens, it is indispensable to integrate the various immune mechanisms and to take into account the variability in pathogen virulence and host susceptibility. In this context, mathematical models complement experimentation and are powerful tools to represent and explore the complex mechanisms involved in the infection and immune dynamics. We developed an original mathematical model in which we detailed the interactions between the macrophages and the pathogen, the orientation of the adaptive response and the cytokine regulations. We applied our model to the Porcine Respiratory and Reproductive Syndrome virus (PRRSv), a major concern for the swine industry. We extracted value ranges for the model parameters from modelling and experimental studies on respiratory pathogens. We identified the most influential parameters through a sensitivity analysis. We defined a parameter set, the reference scenario, resulting in a realistic and representative immune response to PRRSv infection. We then defined scenarios corresponding to graduated levels of strain virulence and host susceptibility around the reference scenario. We observed that high levels of antiviral cytokines and a dominant cellular response were associated with either short, the usual assumption, or long infection durations, depending on the immune mechanisms involved. To identify these mechanisms, we need to combine the levels of antiviral cytokines, including , and . The latter is a good indicator of the infected macrophage level, both combined provide the adaptive response orientation. Available PRRSv vaccines lack efficiency. By integrating the main interactions between the complex immune mechanisms, this modelling framework could be used to help designing more efficient vaccination strategies. PMID:25233096

  1. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells

    PubMed Central

    Ma, Xiaojing; Yan, Wenjun; Zheng, Hua; Du, Qinglin; Zhang, Lixing; Ban, Yi; Li, Na; Wei, Fang

    2015-01-01

    Interleukin-10 and Interleukin-12 are produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells. IL-10 and IL-12 play very important immunoregulatory roles in host defense and immune homeostasis. Being anti- and pro-inflammatory in nature, respectively, their functions are antagonistically opposing. A comprehensive and in-depth understanding of their immunological properties and signaling mechanisms will help develop better clinical intervention strategies in therapy for a wide range of human disorders. Here, we provide an update on some emerging concepts, controversies, unanswered questions, and opinions regarding the immune signaling of IL-10 and IL-12. PMID:26918147

  2. Indomethacin sensitizes resistant transformed cells to macrophage cytotoxicity.

    PubMed

    Totary-Jain, Hana; Sionov, Ronit Vogt; Gallily, Ruth

    2016-08-01

    Activated macrophages are well known to exhibit anti-tumor properties. However, certain cell types show intrinsic resistance. Searching for a mechanism that could explain this phenomenon, we observed that the supernatant of resistant cells could confer resistance to otherwise sensitive tumor cells, suggesting the presence of a secreted suppressor factor. The effect was abolished upon dialysis, indicating that the suppressor factor has a low molecular weight. Further studies showed that prostaglandin E2 (PGE2) is secreted by the resistant tumor cells and that inhibition of PGE2 production by indomethacin, a cyclooxygenase (COX) inhibitor, eliminated the macrophage suppression factor from the supernatant, and sensitized the resistant tumor cells to macrophage cytotoxicity. This study emphasizes the important role of tumor-secreted PGE2 in escaping macrophage surveillance and justifies the use of COX inhibitors as an adjuvant for improving tumor immunotherapy. PMID:27210423

  3. Signaling Circuits and Regulation of Immune Suppression by Ovarian Tumor-Associated Macrophages

    PubMed Central

    Cannon, Martin J.; Ghosh, Debopam; Gujja, Swetha

    2015-01-01

    The barriers presented by immune suppression in the ovarian tumor microenvironment present one of the biggest challenges to development of successful tumor vaccine strategies for prevention of disease recurrence and progression following primary surgery and chemotherapy. New insights gained over the last decade have revealed multiple mechanisms of immune regulation, with ovarian tumor-associated macrophages/DC likely to fulfill a central role in creating a highly immunosuppressive milieu that supports disease progression and blocks anti-tumor immunity. This review provides an appraisal of some of the key signaling pathways that may contribute to immune suppression in ovarian cancer, with a particular focus on the potential involvement of the c-KIT/PI3K/AKT, wnt/β-catenin, IL-6/STAT3 and AhR signaling pathways in regulation of indoleamine 2,3-dioxygenase expression in tumor-associated macrophages. Knowledge of intercellular and intracellular circuits that shape immune suppression may afford insights for development of adjuvant treatments that alleviate immunosuppression in the tumor microenvironment and enhance the clinical efficacy of ovarian tumor vaccines. PMID:26343197

  4. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation.

    PubMed Central

    Bacher, M; Metz, C N; Calandra, T; Mayer, K; Chesney, J; Lohoff, M; Gemsa, D; Donnelly, T; Bucala, R

    1996-01-01

    The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to "override" or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8755565

  5. Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS.

    PubMed

    Ziltener, Pascal; Reinheckel, Thomas; Oxenius, Annette

    2016-04-01

    Legionella pneumophila is a facultative intracellular bacterium that lives in aquatic environments where it parasitizes amoeba. However, upon inhalation of contaminated aerosols it can infect and replicate in human alveolar macrophages, which can result in Legionnaires' disease, a severe form of pneumonia. Upon experimental airway infection of mice, L. pneumophila is rapidly controlled by innate immune mechanisms. Here we identified, on a cell-type specific level, the key innate effector functions responsible for rapid control of infection. In addition to the well-characterized NLRC4-NAIP5 flagellin recognition pathway, tumor necrosis factor (TNF) and reactive oxygen species (ROS) are also essential for effective innate immune control of L. pneumophila. While ROS are essential for the bactericidal activity of neutrophils, alveolar macrophages (AM) rely on neutrophil and monocyte-derived TNF signaling via TNFR1 to restrict bacterial replication. This TNF-mediated antibacterial mechanism depends on the acidification of lysosomes and their fusion with L. pneumophila containing vacuoles (LCVs), as well as caspases with a minor contribution from cysteine-type cathepsins or calpains, and is independent of NLRC4, caspase-1, caspase-11 and NOX2. This study highlights the differential utilization of innate effector pathways to curtail intracellular bacterial replication in specific host cells upon L. pneumophila airway infection. PMID:27105352

  6. Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS

    PubMed Central

    Ziltener, Pascal; Reinheckel, Thomas; Oxenius, Annette

    2016-01-01

    Legionella pneumophila is a facultative intracellular bacterium that lives in aquatic environments where it parasitizes amoeba. However, upon inhalation of contaminated aerosols it can infect and replicate in human alveolar macrophages, which can result in Legionnaires’ disease, a severe form of pneumonia. Upon experimental airway infection of mice, L. pneumophila is rapidly controlled by innate immune mechanisms. Here we identified, on a cell-type specific level, the key innate effector functions responsible for rapid control of infection. In addition to the well-characterized NLRC4-NAIP5 flagellin recognition pathway, tumor necrosis factor (TNF) and reactive oxygen species (ROS) are also essential for effective innate immune control of L. pneumophila. While ROS are essential for the bactericidal activity of neutrophils, alveolar macrophages (AM) rely on neutrophil and monocyte-derived TNF signaling via TNFR1 to restrict bacterial replication. This TNF-mediated antibacterial mechanism depends on the acidification of lysosomes and their fusion with L. pneumophila containing vacuoles (LCVs), as well as caspases with a minor contribution from cysteine-type cathepsins or calpains, and is independent of NLRC4, caspase-1, caspase-11 and NOX2. This study highlights the differential utilization of innate effector pathways to curtail intracellular bacterial replication in specific host cells upon L. pneumophila airway infection. PMID:27105352

  7. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow.

    PubMed

    Dong, Yifei; Arif, Arif A; Poon, Grace F T; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  8. Regulation of innate immune cell function by mTOR.

    PubMed

    Weichhart, Thomas; Hengstschläger, Markus; Linke, Monika

    2015-10-01

    The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease. PMID:26403194

  9. [Comparison of macrophages and dendritic cells infected by Brucella S(2)].

    PubMed

    Rong, Ruixue; Wang, Bei; Zhang, Leifang; Yan, Weijiao; Zheng, Congyi; Wang, Jiaxin; Ding, Jiabo; Mao, Kairong; Cao, Zhiran

    2013-01-01

    Objective To make a comparison of the characteristics between macrophages and dendritic cells (DC) infected by Brucella suis (B. suis) S(2);. Methods Wrights-Giemsa's stainning was used to observe the cell morphology and calculate the phagocytic rate. ELISA was employed to detect the expressions of IL-12 and TNF-α in cell culture supernatants as well as the contents of IFN-γ and IL-4 in the co-culture with T cells. With annexin-V-FITC/PI double staining, the cell apoptosis rate was determined by flow cytometry. Results 1 h after infected by B. suis S(2);, the phagocytic rate of macrophages was (43.6±4.8)%, which was significantly higher than that of the DC (16.3±2.7)% (P<0.05). The apoptosis rates of normal macrophages and macrophages 6, 12 and 24 h after infected by B. suis S(2); were (3.09±1.21)%, (19.89±1.36)%, (22.73±2.21)% and (42.44±3.12)%, respectively, which were dramatically higher than those of the DC at the corresponding time points, being (1.82±0.01)%, (3.76±0.13)%, (7.87±0.56)% and (9.08±0.23)%, respectively (P<0.05). The levels of IL-12 secreted by macrophages 24 and 48 h after infected by B. suis S(2); were significantly lower than those by the DC (P<0.01). At 24, 48 and 72 h, the levels of TNF-α secreted by macrophages were dramatically lower than those by the DC (P<0.01), and the levels of IFN-γ in the co-culture supernatants of macrophages and T cells were significantly lower than those in DC and T cell co-culture (P<0.01). Conclusion Macrophages have a better ability in phagocytosing B. suis S(2); than DC and the apoptosis rate of macrophages is higher than that of DC after infected by B. suis S(2);, but in activating and inducing the cellular immune response and presenting antigen, DC are stronger than macrophages. PMID:23294709

  10. Innate immune collectin surfactant protein D enhances the clearance of DNA by macrophages and minimizes anti-DNA antibody generation.

    PubMed

    Palaniyar, Nades; Clark, Howard; Nadesalingam, Jeya; Shih, Michael J; Hawgood, Samuel; Reid, Kenneth B M

    2005-06-01

    Dying microbes and necrotic cells release highly viscous DNA that induces inflammation and septic shock, and apoptotic cells display DNA, a potential autoantigen, on their surfaces. However, innate immune proteins that mediate the clearance of free DNA and surface DNA-containing cells are not clearly established. Pulmonary surfactant proteins (SP-) A and D are innate immune pattern recognition collectins that contain fibrillar collagen-like regions and globular carbohydrate recognition domains (CRDs). We have recently shown that collectins SP-A, SP-D, and mannose binding lectin recognize DNA and RNA via their collagen-like regions and CRDs. Here we show that SP-D enhances the uptake of Cy3-labeled fragments of DNA and DNA-coated beads by U937 human monocytic cells, in vitro. Analysis of DNA uptake by freshly isolated mouse alveolar macrophages shows that SP-D, but not SP-A, deficiency results in reduced clearance of DNA, ex vivo. Analysis of bronchoalveolar lavage fluid shows that SP-D- but not SP-A-deficient mice are defective in clearing free DNA from the lung. Additionally, both SP-A- and SP-D-deficient mice accumulate anti-DNA Abs in sera in an age-dependent manner. Thus, we conclude that collectins such as SP-A and SP-D reduce the generation of anti-DNA autoantibody, which may be explained in part by the defective clearance of DNA from the lungs in the absence of these proteins. Our findings establish two new roles for these innate immune proteins and that SP-D enhances efficient pinocytosis and phagocytosis of DNA by macrophages and minimizes anti-DNA Ab generation. PMID:15905582

  11. Activation of macrophages and lymphocytes by methylglyoxal against tumor cells in the host.

    PubMed

    Bhattacharyya, Nivedita; Pal, Aparajita; Patra, Subrata; Haldar, Arun Kumar; Roy, Syamal; Ray, Manju

    2008-11-01

    Methylglyoxal is a normal metabolite and has the potential to affect a wide variety of cellular processes. In particular, it can act selectively against malignant cells. The study described herein was to investigate whether methylglyoxal can enhance the non-specific immunity of the host against tumor cells. Methylglyoxal increased the number of macrophages in the peritoneal cavity of both normal and tumor-bearing mice. It also elevated the phagocytic capacity of macrophages in both these groups of animals. This activation of macrophages was brought about by increased production of Reactive Oxygen Intermediates (ROIs) and Reactive Nitrogen Intermediates (RNIs). The possible mechanism for the production of ROIs and RNIs can be attributed to stimulation of the respiratory burst enzyme NADPH oxidase and iNOS, respectively. IFN-gamma, which is a regulatory molecule of iNOS pathway also showed an elevated level by methylglyoxal. TNF-alpha, which is an important cytokine for oxygen independent killing by macrophage also increased by methylglyoxal in both tumor-bearing and non tumor-bearing animals. Methylglyoxal also played a role in the proliferation and cytotoxicity of splenic lymphocytes. In short, it can be concluded that methylglyoxal profoundly stimulates the immune system against tumor cells. PMID:18617020

  12. In vitro activation of rat neutrophils and alveolar macrophages with IgA and IgG immune complexes. Implications for immune complex-induced lung injury.

    PubMed Central

    Warren, J. S.; Kunkel, S. L.; Johnson, K. J.; Ward, P. A.

    1987-01-01

    In the rat, both IgG and IgA immune complexes induce oxygen radical mediated lung injury that is partially complement-dependent. In vivo studies have suggested that the chief sources of oxygen radicals in IgG and IgA immune complex-induced lung injury are neutrophils and tissue macrophages, respectively. The current studies have been designed to provide additional insights into these two models of tissue injury. Preformed monoclonal IgG and IgA immune complexes stimulated dose-dependent O2-. and H2O2 production by alveolar macrophages. In contrast, neutrophils exhibited O2-. production and lysosomal enzyme secretion in response to IgG immune complexes, but not in response to IgA complexes. There is evidence that C5a significantly amplifies these responses. Purified human C5a enhanced the O2-. responses of neutrophils activated with IgG immune complexes and alveolar macrophages activated with either IgG or IgA immune complexes. Addition of C5a alone to neutrophils or alveolar macrophages had no direct stimulatory effect as measured by O2-. production. The observation that O2-. responses of immune complex-activated alveolar macrophages can be significantly enhanced by the presence of C5a and that C5a can also enhance O-2. responses of IgG immune complex-stimulated neutrophils suggests a potential amplification mechanism through which complement may participate in both IgG and IgA immune complex-induced lung injury. The present data corroborate in vivo studies which suggest that IgG immune complex lung injury is primarily neutrophil-mediated, whereas IgA complex lung injury is predominantly macrophage-mediated. PMID:2827492

  13. Development and optimization of near-IR contrast agents for immune cell tracking

    PubMed Central

    Joshi, Pratixa P.; Yoon, Soon Joon; Chen, Yun-Sheng; Emelianov, Stanislav; Sokolov, Konstantin V.

    2013-01-01

    Gold nanorods (NRs) are attractive for in vivo imaging due to their high optical cross-sections and tunable absorbance. However, the feasibility of using NRs for cell tracking has not been fully explored. Here, we synthesized dye doped silica-coated NRs as multimodal contrast agents for imaging of macrophagesimmune cells which play an important role in cancer and cardiovascular diseases. We showed the importance of silica coating in imaging of NR-labeled cells. Photoacoustic (PA) imaging of NRs labeled macrophages showed high sensitivity. Therefore, these results provide foundation for applications of silica-coated NRs and PA imaging in tracking of immune cells. PMID:24298419

  14. Immunogenic potential of irradiated lymphoma cells is enhanced by adjuvant immunotherapy and modulation of local macrophage populations.

    PubMed

    Honeychurch, Jamie; Melis, Monique H M; Dovedi, Simon J; Mu, Lijun; Illidge, Timothy M

    2013-09-01

    The aim of this study was to assess the immunogenic potential of irradiated lymphoma cells in vivo and determine whether immunogenicity can be enhanced by modulation of the host immune system. Syngeneic murine lymphoma models irradiated ex vivo were used as an orthotopic cellular vaccination prior to challenge with viable tumor cells. We demonstrate that irradiated lymphoma cells are poorly immunogenic and that protective anti-tumor CD8 T-cell responses require the addition of immunostimulatory monoclonal antibody as an immune adjuvant, and increased frequency of antigen exposure by multiple vaccinations. Furthermore, we show the potential importance of macrophages in regulating immunogenicity of irradiated lymphoma cells and demonstrate that depletion of macrophages using clodronate-encapsulated liposomes considerably enhances primary vaccination efficacy in the presence of adjuvant anti-CD40 antibody. Our results demonstrate that the immunogenic potential of poorly immunogenic lymphoma cells dying after radiation therapy can be improved by modulation of the host immune system. PMID:23339450

  15. Tim-3 blocking rescue macrophage and T cell function against Mycobacterium tuberculosis infection in HIV+ patients

    PubMed Central

    Sada-Ovalle, Isabel; Ocaña-Guzman, Ranferi; Pérez-Patrigeón, Santiago; Chávez-Galán, Leslie; Sierra-Madero, Juan; Torre-Bouscoulet, Luis; Addo, Marylyn M.

    2015-01-01

    Introduction T cell immunoglobulin and mucin domain (Tim) 3 and programmed death 1 (PD-1) are co-inhibitory receptors involved in the so-called T cell exhaustion, and in vivo blockade of these molecules restores T cell dysfunction. High expression of Tim-3 and PD-1 is induced after chronic antigen-specific stimulation of T cells during HIV infection. We have previously demonstrated that the interaction of Tim-3 with its ligand galectin-9 induces macrophage activation and killing of Mycobacterium tuberculosis. Our aim in this study was to analyze the Tim-3 expression profile before and after six months of antiretroviral therapy and the impact of Tim-3 and PD-1 blocking on immunity against M. tuberculosis. Materials and methods HIV+ patients naïve to anti-retroviral therapy (ART) were followed up for six months. Peripheral immune-cell phenotype (CD38/HLA-DR/galectin-9/Tim-3 and PD-1) was assessed by flow cytometry. Supernatants were analyzed with a multiplex cytokine detection system (human Th1/Th2 cytokine Cytometric Bead Array) by flow cytometry. Control of bacterial growth was evaluated by using an in vitro experimental model in which virulent M. tuberculosis-infected macrophages were cultured with T cells in the presence or absence of Tim-3 and PD-1 blocking antibodies. Interleukin-1 beta treatment of infected macrophages was evaluated by enumerating colony-forming units. Results We showed that HIV+ patients had an increased expression of Tim-3 in T cells and were able to control bacterial growth before ART administration. By blocking Tim-3 and PD-1, macrophages and T cells recovered their functionality and had a higher ability to control bacterial growth; this result was partially dependent on the restitution of cytokine production. Conclusions In this study, we demonstrated that increased Tim-3 expression can limit the ability of the immune system to control the infection of intracellular bacteria such as M. tuberculosis. The use of ART and the in vitro

  16. Evolution of B Cell Immunity

    PubMed Central

    Sunyer, J. Oriol

    2013-01-01

    Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out the critical role of nonclassical species and comparative immunology studies in the understanding of B cell immunity. Because nonclassical models include species relevant to veterinary medicine, basic science research performed in these animals contributes to the knowledge required for the development of more efficacious vaccines against emerging pathogens. PMID:25340015

  17. Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection.

    PubMed Central

    Müller, A; Hacker, J; Brand, B C

    1996-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease and Pontiac fever, replicates within and eventually kills human macrophages. In this study, we show that L. pneumophila is cytotoxic to HL-60 cells, a macrophage-like cell line. We demonstrate that cell death mediated by L. pneumophila occurred at least in part through apoptosis, as shown by changes in nuclear morphology, an increase in the proportion of fragmented host cell DNA, and the typical ladder pattern of DNA fragmentation indicative of apoptosis. We further sought to determine whether potential virulence factors like the metalloprotease and the macrophage infectivity potentiator of L. pneumophila are involved in the induction of apoptosis. None of these factors are essential for the induction of apoptosis in HL-60 cells but may be involved in other cytotoxic mechanisms that lead to accidental cell death (necrosis). The ability of L. pneumophila to promote cell death may be important for the initiation of infection, bacterial survival, and escape from the host immune response. Alternatively, the triggering of apoptosis in response to bacterial infection may have evolved as a means of the host immune system to reduce or inhibit bacterial replication. PMID:8945524

  18. Macrophages – Key Cells in the Response to Wear Debris from Joint Replacements

    PubMed Central

    Nich, Christophe; Takakubo, Yuya; Pajarinen, Jukka; Ainola, Mari; Salem, Abdelhakim; Sillat, Tarvo; Rao, Allison J.; Raska, Milan; Tamaki, Yasunobu; Takagi, Michiaki; Konttinen, Yrjö T.; Goodman, Stuart B.; Gallo, Jiri

    2013-01-01

    The generation of wear debris is an inevitable result of normal usage of joint replacements. Wear debris particles stimulate local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone destruction, and eventually, implant loosening and revision surgery. The latter may be indicated in up to 15% patients in the decade following the arthroplasty using conventional polyethylene. Macrophages play multiple roles in both inflammation and in maintaining tissue homeostasis. As sentinels of the innate immune system, they are central to the initiation of this inflammatory cascade, characterized by the release of pro-inflammatory and pro-osteoclastic factors. Similar to the response to pathogens, wear particles elicit a macrophage response, based on the unique properties of the cells belonging to this lineage, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. The biological processes involved are complex, redundant, both local and systemic, and highly adaptive. Cells of the monocyte/macrophage lineage are implicated in this phenomenon, ultimately resulting in differentiation and activation of bone resorbing osteoclasts. Simultaneously, other distinct macrophage populations inhibit inflammation and protect the bone-implant interface from osteolysis. Here, the current knowledge about the physiology of monocyte/macrophage lineage cells is reviewed. In addition, the pattern and consequences of their interaction with wear debris and the recent developments in this field are presented. PMID:23568608

  19. Stimulatory Effects of Polysaccharide Fraction from Solanum nigrum on RAW 264.7 Murine Macrophage Cells

    PubMed Central

    Razali, Faizan Naeem; Ismail, Amirah; Abidin, Nurhayati Zainal; Shuib, Adawiyah Suriza

    2014-01-01

    The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth. PMID:25299340

  20. The uptake of apoptotic cells drives Coxiella burnetii replication and macrophage polarization: a model for Q fever endocarditis.

    PubMed

    Benoit, Marie; Ghigo, Eric; Capo, Christian; Raoult, Didier; Mege, Jean-Louis

    2008-05-01

    Patients with valvulopathy have the highest risk to develop infective endocarditis (IE), although the relationship between valvulopathy and IE is not clearly understood. Q fever endocarditis, an IE due to Coxiella burnetii, is accompanied by immune impairment. Patients with valvulopathy exhibited increased levels of circulating apoptotic leukocytes, as determined by the measurement of active caspases and nucleosome determination. The binding of apoptotic cells to monocytes and macrophages, the hosts of C. burnetii, may be responsible for the immune impairment observed in Q fever endocarditis. Apoptotic lymphocytes (AL) increased C. burnetii replication in monocytes and monocyte-derived macrophages in a cell-contact dependent manner, as determined by quantitative PCR and immunofluorescence. AL binding induced a M2 program in monocytes and macrophages stimulated with C. burnetii as determined by a cDNA chip containing 440 arrayed sequences and functional tests, but this program was in part different in monocytes and macrophages. While monocytes that had bound AL released high levels of IL-10 and IL-6, low levels of TNF and increased CD14 expression, macrophages that had bound AL released high levels of TGF-beta1 and expressed mannose receptor. The neutralization of IL-10 and TGF-beta1 prevented the replication of C. burnetii due to the binding of AL, suggesting that they were critically involved in bacterial replication. In contrast, the binding of necrotic cells to monocytes and macrophages led to C. burnetii killing and typical M1 polarization. Finally, interferon-gamma corrected the immune deactivation induced by apoptotic cells: it prevented the replication of C. burnetii and re-directed monocytes and macrophages toward a M1 program, which was deleterious for C. burnetii. We suggest that leukocyte apoptosis associated with valvulopathy may be critical for the pathogenesis of Q fever endocarditis by deactivating immune cells and creating a favorable environment

  1. Characterization of PrP(Sc) transmission from immune cells to neuronal cells.

    PubMed

    Tanaka, Yufuko; Sadaike, Tetsuji; Inoshima, Yasuo; Ishiguro, Naotaka

    2012-10-01

    We investigated PrP(Sc) transmission in neuronal cells, spleen cells and several immune cells using an in vitro cell-to-cell transmission system. The transmission of PrP(Sc) in the supernatant of PrP(Sc)-infected neuronal cells was also investigated. We found that PrP(Sc) transmission was more efficient in the cell-to-cell transmission system than in the supernatant-mediated system. PrP(Sc) was more efficiently transmitted from adherent spleen cells to neuronal cells than from floating spleen cells. The adherent spleen cells were composed of macrophages (80%), dendritic cells (8%) and follicular dendritic cells (3%), indicating that macrophages play an important role in PrP(Sc) transmission from immune cells to neuronal cells. Although PrP(Sc) in the immune cells used as donor cells was gradually degraded, the PrP(Sc) transmitted to neuronal cells was observed by Western blot analysis. Investigation of the mechanism of PrP(Sc) transmission between cells represents an important step towards understanding the pathogenesis of prion diseases. PMID:23246505

  2. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages

    PubMed Central

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto

    2016-01-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5. Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. PMID:27183578

  3. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    PubMed

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. PMID:27183578

  4. Immune targeting of cancer stem cells in gastrointestinal oncology.

    PubMed

    Canter, Robert J; Grossenbacher, Steven K; Ames, Erik; Murphy, William J

    2016-04-01

    The cancer stem cell (CSC) hypothesis postulates that a sub-population of quiescent cells exist within tumors which are resistant to conventional cytotoxic/anti-proliferative therapies. It is these CSCs which then seed tumor relapse, even in cases of apparent complete response to systemic therapy. Therefore, therapies, such as immunotherapy, which add a specific anti-CSC strategy to standard cytoreductive treatments may provide a promising new direction for future cancer therapies. CSCs are an attractive target for immune therapies since, unlike chemotherapy or radiotherapy, immune effector cells do not specifically require target cells to be proliferating in order to effectively kill them. Although recent advances have been made in the development of novel systemic and targeted therapies for advanced gastro-intestinal (GI) malignancies, there remains an unmet need for durable new therapies for these refractory malignancies. Novel immunotherapeutic strategies targeting CSCs are in pre-clinical and clinical development across the spectrum of the immune system, including strategies utilizing adaptive immune cell-based effectors, innate immune effectors, as well as vaccine approaches. Lastly, since important CSC functions are affected by the tumor microenvironment, targeting of both cellular (myeloid derived suppressor cells and tumor-associated macrophages) and sub-cellular (cytokines, chemokines, and PD1/PDL1) components of the tumor microenvironment is under investigation in the immune targeting of CSCs. These efforts are adding to the significant optimism about the potential utility of immunotherapy to overcome cancer resistance mechanisms and cure greater numbers of patients with advanced malignancy. PMID:27034806

  5. Immune targeting of cancer stem cells in gastrointestinal oncology

    PubMed Central

    Grossenbacher, Steven K.; Ames, Erik; Murphy, William J.

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that a sub-population of quiescent cells exist within tumors which are resistant to conventional cytotoxic/anti-proliferative therapies. It is these CSCs which then seed tumor relapse, even in cases of apparent complete response to systemic therapy. Therefore, therapies, such as immunotherapy, which add a specific anti-CSC strategy to standard cytoreductive treatments may provide a promising new direction for future cancer therapies. CSCs are an attractive target for immune therapies since, unlike chemotherapy or radiotherapy, immune effector cells do not specifically require target cells to be proliferating in order to effectively kill them. Although recent advances have been made in the development of novel systemic and targeted therapies for advanced gastro-intestinal (GI) malignancies, there remains an unmet need for durable new therapies for these refractory malignancies. Novel immunotherapeutic strategies targeting CSCs are in pre-clinical and clinical development across the spectrum of the immune system, including strategies utilizing adaptive immune cell-based effectors, innate immune effectors, as well as vaccine approaches. Lastly, since important CSC functions are affected by the tumor microenvironment, targeting of both cellular (myeloid derived suppressor cells and tumor-associated macrophages) and sub-cellular (cytokines, chemokines, and PD1/PDL1) components of the tumor microenvironment is under investigation in the immune targeting of CSCs. These efforts are adding to the significant optimism about the potential utility of immunotherapy to overcome cancer resistance mechanisms and cure greater numbers of patients with advanced malignancy. PMID:27034806

  6. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells.

    PubMed

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines. PMID:26258152

  7. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells

    PubMed Central

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines. PMID:26258152

  8. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity.

    PubMed

    Zhu, Lv-yun; Shao, Tong; Nie, Li; Zhu, Ling-yun; Xiang, Li-xin; Shao, Jian-zhong

    2016-01-01

    The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole. PMID:26573260

  9. Aminopeptidase N (CD13) Is Involved in Phagocytic Processes in Human Dendritic Cells and Macrophages

    PubMed Central

    Villaseñor-Cardoso, Mónica I.; Frausto-Del-Río, Dulce A.

    2013-01-01

    Aminopeptidase N (APN or CD13) is a membrane ectopeptidase expressed by many cell types, including myelomonocytic lineage cells: monocytes, macrophages, and dendritic cells. CD13 is known to regulate the biological activity of various peptides by proteolysis, and it has been proposed that CD13 also participates in several functions such as angiogenesis, cell adhesion, metastasis, and tumor invasion. We had previously reported that, in human monocytes and macrophages, CD13 modulates the phagocytosis mediated by receptors for the Fc portion of IgG antibodies (FcγRs). In this work, we analyzed the possible interaction of CD13 with other phagocytic receptors. We found out that the cross-linking of CD13 positively modulates the phagocytosis mediated by receptors of the innate immune system, since a significant increase in the phagocytosis of zymosan particles or heat-killed E. coli was observed when CD13 was cross-linked using anti-CD13 antibodies, in both macrophages and dendritic cells. Also, we observed that, during the phagocytosis of zymosan, CD13 redistributes and is internalized into the phagosome. These findings suggest that, besides its known functions, CD13 participates in phagocytic processes in dendritic cells and macrophages. PMID:24063007

  10. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  11. Macrophage characteristics of stem cells revealed by transcriptome profiling

    SciTech Connect

    Charriere, Guillaume M.; Cousin, Beatrice; Arnaud, Emmanuelle; Saillan-Barreau, Corinne; Andre, Mireille; Massoudi, Ali; Dani, Christian; Penicaud, Luc; Casteilla, Louis . E-mail: casteil@toulouse.inserm.fr

    2006-10-15

    We previously showed that the phenotypes of adipocyte progenitors and macrophages were close. Using functional analyses and microarray technology, we first tested whether this intriguing relationship was specific to adipocyte progenitors or could be shared with other progenitors. Measurements of phagocytic activity and gene profiling analysis of different progenitor cells revealed that the latter hypothesis should be retained. These results encouraged us to pursue and to confirm our analysis with a gold-standard stem cell population, embryonic stem cells or ESC. The transcriptomic profiles of ESC and macrophages were clustered together, unlike differentiated ESC. In addition, undifferentiated ESC displayed higher phagocytic activity than other progenitors, and they could phagocytoze apoptotic bodies. These data suggest that progenitors and stem cells share some characteristics of macrophages. This opens new perspectives on understanding stem cell phenotype and functionalities such as a putative role of stem cells in tissue remodeling by discarding dead cells but also their immunomodulation or fusion properties.

  12. Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells

    PubMed Central

    Baek, Young-Sook; Haas, Stefan; Hackstein, Holger; Bein, Gregor; Hernandez-Santana, Maria; Lehrach, Hans; Sauer, Sascha; Seitz, Harald

    2009-01-01

    Background Monocytes and macrophages play essential role in innate immunity. Understanding the underlying mechanism of macrophage differentiation and the identification of regulatory mechanisms will help to find new strategies to prevent their harmful effects in chronic inflammatory diseases and sepsis. Results Maturation of blood monocytes into tissue macrophages and subsequent inflammatory response was mimicked in U937 cells of human histocytic lymphoma origin. Whole genome array analysis was employed to evaluate gene expression profile to identify underlying transcriptional networks implicated during the processes of differentiation and inflammation. In addition to already known transcription factors (i.e. MAFB, EGR, IRF, BCL6, NFkB, AP1, Nur77), gene expression analysis further revealed novel genes (i.e. MEF2, BRI, HLX, HDAC5, H2AV, TCF7L2, NFIL3) previously uncharacterized to be involved in the differentiation process. A total of 58 selected genes representing cytokines, chemokines, surface antigens, signaling molecules and transcription factors were validated by real time PCR and compared to primary monocyte-derived macrophages. Beside the verification of several new genes, the comparison reveals individual heterogeneity of blood donors. Conclusion Up regulation of MEF2 family, HDACs, and H2AV during cell differentiation and inflammation sheds new lights onto regulation events on transcriptional and epigenetic level controlling these processes. Data generated will serve as a source for further investigation of macrophages differentiation pathways and related biological responses. PMID:19341462

  13. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease. PMID:27402344

  14. Macrophage-epithelial interactions in pulmonary alveoli.

    PubMed

    Bhattacharya, Jahar; Westphalen, Kristin

    2016-07-01

    Alveolar macrophages have been investigated for years by approaches involving macrophage extraction from the lung by bronchoalveolar lavage, or by cell removal from lung tissue. Since extracted macrophages are studied outside their natural milieu, there is little understanding of the extent to which alveolar macrophages interact with the epithelium, or with one another to generate the lung's innate immune response to pathogen challenge. Here, we review new evidence of macrophage-epithelial interactions in the lung, and we address the emerging understanding that the alveolar epithelium plays an important role in orchestrating the macrophage-driven immune response. PMID:27170185

  15. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    PubMed

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. PMID:27353566

  16. Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.

    PubMed

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-08-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. PMID:27196773

  17. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    PubMed

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. PMID:26868867

  18. Immune Cells in Blood Recognize Tumors

    Cancer.gov

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  19. Characterization of PAMP/PRR interactions in European eel (Anguilla anguilla) macrophage-like primary cell cultures.

    PubMed

    Callol, A; Roher, N; Amaro, C; MacKenzie, S

    2013-10-01

    The eel (Anguilla anguilla) has been identified as a vulnerable species with stocks dramatically declining over the past decade. In an effort to support the species from overfishing of wild stocks increased interest in eel aquaculture has been notable. In order to expand the scarce knowledge concerning the biology of this species significant research efforts are required in several fields of biology. The development of cell culture systems to study the immune response is a key step towards an increased understanding of the immune response and to develop resources to support further study in this threatened species. Macrophages are one of the most important effector cells of the innate immune system. The capacity to engulf pathogens and orchestrate the immune response relies on the existence of different surface receptors, such as scavenger receptors and toll-like receptors. We have developed and described an eel macrophage-like in vitro model and studied its functional and transcriptomic responses. Macrophage-like cells from both head kidney and purified peripheral blood leukocytes were obtained and phagocytic activity measured for different whole bacteria and yeast. Moreover, based on PAMP-PRR association the innate immune response of both head kidney and PBL derived macrophage-like cells was evaluated against different pathogen-associated molecular patterns (PAMPs). Results highlight that peptidoglycan stimulation strongly induces inflammatory mRNA expression reflected in the up-regulation of pro-inflammatory genes IL1β and IL18 in PBL derived cells whereas IL8 is upregulated in head kidney derived cells. Furthermore TLR2 mRNA abundance is regulated by all stimuli supporting a multifunctional role for this pathogen recognition receptor (PRR) in eel macrophage-like cells. PMID:23911651

  20. Susceptibility of rhabdomyosarcoma cells to macrophage-mediated cytotoxicity.

    PubMed

    Herrmann, Delia; Seitz, Guido; Fuchs, Jörg; Armeanu-Ebinger, Sorin

    2012-05-01

    The prognosis of advanced stage rhabdomyosarcoma (RMS) is still sobering. In recent years, outcome has not been further improved by conventional therapy. Therefore, novel treatment options such as macrophage-directed immunotherapy have to be investigated. The aim of this study was to analyze the phagocytosis of RMS cells by macrophages and to modulate the susceptibility using monoclonal antibodies and cytotoxic drugs.   Expression of the macrophage activating ligand calreticulin and CD47, the counterpart of the inhibitory receptor SIRPα, was analyzed with Affymetrix mRNA expression arrays and immunohistochemistry on 11 primary RMS samples. Results were verified in two RMS cell lines using flow cytometry and immunocytochemistry. Macrophage cytotoxic activity was quantified by a MTT colorimetric assay in co-culture experiments of RMS cells with monocyte-derived, GM-CSF stimulated macrophages. Gene expression analysis and immunohistochemistry revealed a high expression of CD47 and calreticulin in alveolar and embryonal RMS tissue specimens. Extracellular expression of CD47 on RMS cell lines was confirmed by flow cytometry, whereas calreticulin was exclusively detected in the endoplasmatic reticulum. After co-culturing of RMS cells with macrophages, viability dropped to 50-60%. Macrophage-mediated cytotoxicity was not influenced by a blocking antibody against CD47. However, susceptibility was significantly enhanced after pre-treatment of RMS cells with the anthracycline drug doxorubicin. Furthermore, translocation of calreticulin onto the cell surface was detected by flow cytometry. The immunologic effect of doxorubicin may improve the efficacy of adoptive cellular immunotherapy and chemotherapy of childhood RMS. PMID:22737603

  1. Essential Role of Lysophosphatidylcholine Acyltransferase 3 in the Induction of Macrophage Polarization in PMA-Treated U937 Cells.

    PubMed

    Taniguchi, Kosuke; Hikiji, Hisako; Okinaga, Toshinori; Hashidate-Yoshida, Tomomi; Shindou, Hideo; Ariyoshi, Wataru; Shimizu, Takao; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2015-12-01

    Lysophospholipid acyltransferases (LPLATs) regulate the diversification of fatty acid composition in biological membranes. Lysophosphatidylcholine acyltransferases (LPCATs) are members of the LPLATs that play a role in inflammatory responses. M1 macrophages differentiate in response to lipopolysaccharide (LPS) and are pro-inflammatory, whereas M2 macrophages, which differentiate in response to interleukin-4 (IL-4), are anti-inflammatory and involved in homeostasis and wound healing. In the present study, we showed that LPCATs play an important role in M1/M2-macrophage polarization. LPS changed the shape of PMA-treated U937 cells from rounded to spindle shaped and upregulated the mRNA and protein expression of the M1 macrophage markers CXCL10, TNF-α, and IL-1β. IL-4 had no effect on the shape of PMA-treated U937 cells and upregulated the M2 macrophage markers CD206, IL-1ra, and TGF-β in PMA-treated U937 cells. These results suggest that LPS and IL-4 promote the differentiation of PMA-treated U937 cells into M1- and M2-polarized macrophages, respectively. LPS significantly downregulated the mRNA expression of LPCAT3, one of four LPCAT isoforms, and suppressed its enzymatic activity toward linoleoyl-CoA and arachidonoyl-CoA in PMA-treated U937 cells. LPCAT3 knockdown induced a spindle-shaped morphology typical of M1-polarized macrophages, and increased the secretion of CXCL10 and decreased the levels of CD206 in IL-4-activated U937 cells. This indicates that knockdown of LPCAT3 shifts the differentiation of PMA-treated U937 cells to M1-polarized macrophages. Our findings suggest that LPCAT3 plays an important role in M1/M2-macrophage polarization, providing novel potential therapeutic targets for the regulation of immune and inflammatory disorders. PMID:25994902

  2. Isoform-specific targeting of ROCK proteins in immune cells

    PubMed Central

    Zanin-Zhorov, Alexandra; Flynn, Ryan; Waksal, Samuel D.; Blazar, Bruce R.

    2016-01-01

    ABSTRACT Rho-associated kinase 1 (ROCK1) and ROCK2 are activated by Rho GTPase and control cytoskeleton rearrangement through modulating the phosphorylation of their down-stream effector molecules. Although these 2 isoforms share more than 90% homology within their kinase domain the question of whether ROCK proteins function identically in different cell types is not clear. By using both pharmacological inhibition and genetic knockdown approaches recent studies suggest that the ROCK2 isoform plays an exclusive role in controlling of T-cell plasticity and macrophage polarization. Specifically, selective ROCK2 inhibition shifts the balance between pro-inflammatory and regulatory T-cell subsets via concurrent regulation of STAT3 and STAT5 phosphorylation, respectively. Furthermore, the administration of an orally available selective ROCK2 inhibitor effectively ameliorates clinical manifestations in experimental models of autoimmunity and chronic graft-vs.-host disease (cGVHD). Because ROCK2 inhibition results in the suppression of M2-type macrophages while favoring polarization of M1-type macrophages, ROCK2 inhibition can correct the macrophage imbalance seen during age-related macular degeneration (AMD). In summary, the exclusive role of ROCK2 in immune system modulation argues for the development and testing of isoform-specific ROCK2 inhibitors for the treatment of inflammatory disorders. PMID:27254302

  3. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    SciTech Connect

    Chen, Ruochan; Fu, Sha; Fan, Xue-Gong; Lotze, Michael T.; Zeh, Herbert J.; Tang, Daolin; Kang, Rui

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  4. Raman microscopy of phagocytosis: shedding light on macrophage foam cell formation

    NASA Astrophysics Data System (ADS)

    van Manen, Henk-Jan; van Apeldoorn, Aart A.; Roos, Dirk; Otto, Cees

    2006-02-01

    The phagocyte NADPH oxidase is a crucial enzyme in the innate immune response of leukocytes against invading microorganisms. The superoxide (O II -) that is generated by this enzyme upon infection is directly and indirectly used in bacterial killing. The catalytic subunit of NADPH oxidase, the membrane-bound protein heterodimer flavocytochrome b 558, contains two heme moieties. Here, we first briefly discuss our recent confocal resonant Raman (RR) spectroscopy and microscopy experiments on flavocytochrome b 558 in both resting and phagocytosing neutrophilic granulocytes. Such experiments allow the determination of the redox state of flavocytochrome b 558 inside the cell, which directly reflects the electron transporting activity of NADPH oxidase. Subsequently, we report that incubation of murine RAW 264.7 macrophages with PolyActive microspheres for 1 week in culture medium leads to morphological and biochemical changes in the macrophages that are characteristic for the generation of macrophage-derived foam cells. Lipid-laden foam cells are the hallmark of early atherosclerotic lesions. Using nonresonant Raman spectroscopy and microscopy, we demonstrate that the numerous intracellular droplets in macrophages exposed to microspheres are rich in cholesteryl esters. The finding that phagocytic processes may trigger foam cell formation reinforces the current belief that (chronic) infection and inflammation are linked to the initiation and progression of atherosclerotic lesions. The study of such a connection may reveal new therapeutic targets for atherosclerosis treatment or prevention.

  5. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity

    PubMed Central

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W.; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis. PMID:26317499

  6. Activation Outcomes Induced in Naïve CD8 T-Cells by Macrophages Primed via “Phagocytic” and Nonphagocytic Pathways

    PubMed Central

    Olazabal, Isabel María; Martín-Cofreces, Noa Beatriz; Mittelbrunn, María; Martínez del Hoyo, Gloria; Alarcón, Balbino

    2008-01-01

    The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKCθ. At the same doses of loaded antigen (1 μM), “phagocytic” macrophages were more efficient than peptide-antigen–loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3–30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy. PMID:18077558

  7. Tick saliva regulates migration, phagocytosis, and gene expression in the macrophage-like cell line, IC-21.

    PubMed

    Kramer, Carolyn D; Poole, Nina M; Coons, Lewis B; Cole, Judith A

    2011-03-01

    We studied the effects of tick saliva on cell migration, cell signaling, phagocytosis, and gene expression in the murine macrophage cell line, IC-21. Saliva increased both basal- and platelet-derived growth factor (PDGF)-stimulated migration in IC-21 cells. However, saliva did not affect PDGF-stimulated extracellular signal-regulated kinase (ERK) activity. Zymosan-mediated interleukin-1 receptor associated kinase (IRAK) activity increased when cells were pretreated with saliva. Saliva suppressed phagocytosis of zymosan particles by IC-21 cells. An RT(2) Profiler™ PCR Array revealed that saliva regulates gene expression in a manner consistent with an immune response skewed toward a Th2 reaction, which is characterized by production of anti-inflammatory cytokines IL-4 and IL-10. Our results using IC-21 cells suggest that Dermacentor variabilis has evolved a mechanism for regulating macrophage function, which may contribute to the tick's ability to modulate immune function. PMID:21145320

  8. CD4(+) T-Cell-Independent Secondary Immune Responses to Pneumocystis Pneumonia.

    PubMed

    de la Rua, Nicholas M; Samuelson, Derrick R; Charles, Tysheena P; Welsh, David A; Shellito, Judd E

    2016-01-01

    Pneumocystis pneumonia is a major cause of morbidity and mortality among immunocompromised patients, especially in the context of HIV/AIDS. In the murine model of Pneumocystis pneumonia, CD4(+) T-cells are required for clearance of a primary infection of Pneumocystis, but not the memory recall response. We hypothesized that the memory recall response in the absence of CD4(+) T-cells is mediated by a robust memory humoral response, CD8(+) T-cells, and IgG-mediated phagocytosis by alveolar macrophages. To investigate the role of CD8(+) T-cells and alveolar macrophages in the immune memory response to Pneumocystis, mice previously challenged with Pneumocystis were depleted of CD8(+) T-cells or alveolar macrophages prior to re-infection. Mice depleted of CD4(+) T-cells prior to secondary challenge cleared Pneumocystis infection within 48 h identical to immunocompetent mice during a secondary memory recall response. However, loss of CD8(+) T-cells or macrophages prior to the memory recall response significantly impaired Pneumocystis clearance. Specifically, mice depleted of CD8(+) T-cells or alveolar macrophages had significantly higher fungal burden in the lungs. Furthermore, loss of alveolar macrophages significantly skewed the lung CD8(+) T-cell response toward a terminally differentiated effector memory population and increased the percentage of IFN-γ(+) CD8(+) T-cells. Finally, Pneumocystis-infected animals produced significantly more bone marrow plasma cells and Pneumocystis-specific IgG significantly increased macrophage-mediated killing of Pneumocystis in vitro. These data suggest that secondary immune memory responses to Pneumocystis are mediated, in part, by CD8(+) T-cells, alveolar macrophages, and the production of Pneumocystis-specific IgG. PMID:27242785

  9. CD4+ T-Cell-Independent Secondary Immune Responses to Pneumocystis Pneumonia

    PubMed Central

    de la Rua, Nicholas M.; Samuelson, Derrick R.; Charles, Tysheena P.; Welsh, David A.; Shellito, Judd E.

    2016-01-01

    Pneumocystis pneumonia is a major cause of morbidity and mortality among immunocompromised patients, especially in the context of HIV/AIDS. In the murine model of Pneumocystis pneumonia, CD4+ T-cells are required for clearance of a primary infection of Pneumocystis, but not the memory recall response. We hypothesized that the memory recall response in the absence of CD4+ T-cells is mediated by a robust memory humoral response, CD8+ T-cells, and IgG-mediated phagocytosis by alveolar macrophages. To investigate the role of CD8+ T-cells and alveolar macrophages in the immune memory response to Pneumocystis, mice previously challenged with Pneumocystis were depleted of CD8+ T-cells or alveolar macrophages prior to re-infection. Mice depleted of CD4+ T-cells prior to secondary challenge cleared Pneumocystis infection within 48 h identical to immunocompetent mice during a secondary memory recall response. However, loss of CD8+ T-cells or macrophages prior to the memory recall response significantly impaired Pneumocystis clearance. Specifically, mice depleted of CD8+ T-cells or alveolar macrophages had significantly higher fungal burden in the lungs. Furthermore, loss of alveolar macrophages significantly skewed the lung CD8+ T-cell response toward a terminally differentiated effector memory population and increased the percentage of IFN-γ+ CD8+ T-cells. Finally, Pneumocystis-infected animals produced significantly more bone marrow plasma cells and Pneumocystis-specific IgG significantly increased macrophage-mediated killing of Pneumocystis in vitro. These data suggest that secondary immune memory responses to Pneumocystis are mediated, in part, by CD8+ T-cells, alveolar macrophages, and the production of Pneumocystis-specific IgG. PMID:27242785

  10. Prostaglandin E2 in tick saliva regulates macrophage cell migration and cytokine profile

    PubMed Central

    2013-01-01

    Background Ticks are obligate hematophagous ectoparasites that suppress the host’s immune and inflammatory responses by secreting immuno-modulatory and anti-inflammatory molecules in their saliva. In previous studies we have shown that tick salivary gland extract (SGE) and saliva from Dermacentor variabilis have distinct effects on platelet-derived growth factor (PDGF)-stimulated IC-21 macrophage and NIH3T3-L1 fibroblast migration. Since tick saliva contains a high concentration of prostaglandin E2 (PGE2), a potent modulator of inflammation, we used a PGE2 receptor antagonist to evaluate the role of PGE2 in the different migratory responses induced by saliva and its impact on macrophage cytokine profile. Methods Adult ticks were fed on female New Zealand white rabbits for 5-8 days. Female ticks were stimulated with dopamine/theophylline to induce salivation and saliva was pooled. Competitive enzyme immunoassays (EIA) were used to measure saliva PGE2 content and the changes in macrophage intracellular cyclic adenosine monophosphate (cAMP) levels. The effects of tick saliva on macrophage and fibroblast migration were assessed in the absence and presence of the PGE2 receptor antagonist, AH 6809, using blind well chamber assays. A cytokine antibody array was used to examine the effects of tick saliva on macrophage cytokine secretion. Statistical significance was determined by one-way ANOVA; Student Newman-Kuels post-test was used for multiple comparisons. Results The saliva-induced increase in PDGF-stimulated macrophage migration was reversed by AH 6809. The inhibition of PDGF-stimulated fibroblast migration by saliva was also antagonist-sensitive. Tick saliva induced macrophages to secrete copious amounts of PGE2, and conditioned medium from these cells caused an AH 6809-sensitive inhibition of stimulated fibroblast migration, showing that macrophages can regulate fibroblast activity. We show that tick saliva decreased the secretion of the pro

  11. Cellular senescence impact on immune cell fate and function.

    PubMed

    Vicente, Rita; Mausset-Bonnefont, Anne-Laure; Jorgensen, Christian; Louis-Plence, Pascale; Brondello, Jean-Marc

    2016-06-01

    Cellular senescence occurs not only in cultured fibroblasts, but also in undifferentiated and specialized cells from various tissues of all ages, in vitro and in vivo. Here, we review recent findings on the role of cellular senescence in immune cell fate decisions in macrophage polarization, natural killer cell phenotype, and following T-lymphocyte activation. We also introduce the involvement of the onset of cellular senescence in some immune responses including T-helper lymphocyte-dependent tissue homeostatic functions and T-regulatory cell-dependent suppressive mechanisms. Altogether, these data propose that cellular senescence plays a wide-reaching role as a homeostatic orchestrator. PMID:26910559

  12. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation.

    PubMed

    Aucher, Anne; Rudnicka, Dominika; Davis, Daniel M

    2013-12-15

    Recent research has indicated a new mode of intercellular communication facilitated by the movement of RNA between cells. There is evidence that RNA can transfer between cells in a multitude of ways, including in complex with proteins or lipids or in vesicles, including apoptotic bodies and exosomes. However, there remains little understanding of the function of nucleic acid transfer between human cells. In this article, we report that human macrophages transfer microRNAs (miRNAs) to hepato-carcinoma cells (HCCs) in a manner that required intercellular contact and involved gap junctions. Two specific miRNAs transferred efficiently between these cells--miR-142 and miR-223--and both were endogenously expressed in macrophages and not in HCCs. Transfer of these miRNAs influenced posttranscriptional regulation of proteins in HCCs, including decreased expression of reporter proteins and endogenously expressed stathmin-1 and insulin-like growth factor-1 receptor. Importantly, transfer of miRNAs from macrophages functionally inhibited proliferation of these cancerous cells. Thus, these data led us to propose that intercellular transfer of miRNA from immune cells could serve as a new defense against unwanted cell proliferation or tumor growth. PMID:24227773

  13. Hydrogen Peroxide Produced by Oral Streptococci Induces Macrophage Cell Death

    PubMed Central

    Okahashi, Nobuo; Nakata, Masanobu; Sumitomo, Tomoko; Terao, Yutaka; Kawabata, Shigetada

    2013-01-01

    Hydrogen peroxide (H2O2) produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages. PMID:23658745

  14. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells.

    PubMed

    Choudhary, Geetika S; Yao, Xiangyu; Wang, Jing; Peng, Bo; Bader, Rebecca A; Ren, Dacheng

    2015-01-01

    Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics. PMID:26616387

  15. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells

    PubMed Central

    Choudhary, Geetika S.; Yao, Xiangyu; Wang, Jing; Peng, Bo; Bader, Rebecca A.; Ren, Dacheng

    2015-01-01

    Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics. PMID:26616387

  16. Regenerative function of immune system: Modulation of muscle stem cells.

    PubMed

    Saini, Jasdeep; McPhee, Jamie S; Al-Dabbagh, Sarah; Stewart, Claire E; Al-Shanti, Nasser

    2016-05-01

    Ageing is characterised by progressive deterioration of physiological systems and the loss of skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility impairments. This review highlights interactions between the immune system and skeletal muscle stem cells (widely termed satellite cells or myoblasts) to influence satellite cell behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres are damaged via stimuli (e.g. contusions, strains, avulsions, hyperextensions, ruptures) and release high concentrations of cytokines, chemokines and growth factors into the microenvironment. These localised responses serve to attract additional immune cells which can reach in excess of 1×10(5) immune cell/mm(3) of skeletal muscle in order to orchestrate the repair process. T-cells have a delayed response, reaching peak activation roughly 4 days after the initial damage. The cytokines and growth factors released by activated T-cells play a key role in muscle satellite cell proliferation and migration, although the precise mechanisms of these interactions remain unclear. T-cells in older people display limited ability to activate satellite cell proliferation and migration which is likely to contribute to insufficient muscle repair and, consequently, muscle wasting and weakness. If the factors released by T-cells to activate satellite cells can be identified, it may be possible to develop therapeutic agents to enhance muscle regeneration and reduce the impact of muscle wasting during ageing and disease. PMID:27039885

  17. Sensitivity of locally recurrent rat mammary tumour cell lines to syngeneic polymorphonuclear cell, macrophage and natural killer cell cytolysis.

    PubMed

    Aeed, P A; Welch, D R

    1988-12-01

    Using a recently developed model for studying the biology of locally recurrent (LR) mammary tumours in the 13762NF rat mammary adenocarcinoma system, we examined the sensitivity to polymorphonuclear cell, macrophage and natural killer cell cytolysis. The parental MTF7(T20) cell line; the 'primary' tumours which arose following subcutaneous inoculation into the mammary fat pad, sc1 and sc3; and the local recurrences (following surgical excision) LR1 and LR1a from sc1, and LR3 from sc3 were all cells generally resistant to specific PMN cytolysis. LPS-activated macrophages caused 25.1%, 38.7% and 58.8% specific cytolysis in MTF7, sc1 and LR1 cells, respectively at E:T of 20:1 and 72 h co-incubation. LR1a, sc3 and LR3 lysis ranged from 0-4.4% under the same conditions. Non-activated macrophages did not lyse any of the cell lines. Locally recurrent and 'primary' tumour cell lines were also not lysed by naive NK cells (range 0.5-4.0% cytolysis). NK cells activated with bropirimine, a potent immunomodulator currently being studied in clinical trials, and/or interleukin-2 were mildly more effective at killing LR cells. Our results show that locally recurrent tumours exhibit heterogeneous sensitivities and are different from 'primary' tumour cells in sensitivities to immune cell killing, but they are not necessarily more or less sensitive. Results with bropirimine-activated or IL-2-activated NK cells emphasize that nonspecific activation is insufficient to eliminate all tumour subpopulations. PMID:3224080

  18. Immune cells in primary and metastatic gastrointestinal stromal tumors (GIST)

    PubMed Central

    Cameron, Silke; Gieselmann, Marieke; Blaschke, Martina; Ramadori, Giuliano; Füzesi, Laszlo

    2014-01-01

    We have previously described immune cells in untreated primary gastrointestinal stromal tumors (GIST). Here we compare immune cells in metastatic and primary GIST, and describe their chemoattractants. For this purpose, tissue microarrays from 196 patients, 188 primary and 51 metastasized GIST were constructed for paraffin staining. Quantitative analysis was performed for cells of macrophage lineage (Ki-M1P, CD68), T-cells (CD3, CD56) and B-cells (CD20). Chemokine gene-expression was evaluated by real-time RT-PCR. Immuno-localisation was verified by immunofluorescence. Ki-M1P+ cells were the predominant immune cells in both primary and metastatic GIST (2 8.8% ± 7.1, vs. 26.7% ± 6.3). CD68+ macrophages were significantly fewer, with no significant difference between primary GIST (3.6% ± 2.1) and metastases (4.6% ± 1.5). CD3+ T-cells were the most dominant lymphocytes with a significant increase in metastases (7.3% ± 2.3 vs. 2.2% ± 1.8 in primary GIST, P < 0.01). The percentage of CD56+ NK-cells was 1.1% ± 0.9 in the primary, and 2.4 ± 0.7 (P < 0.05) in the metastases. The number of CD20+ B-cells was generally low with 0.6% ± 0.7 in the primary and 1.8% ± 0.3 (P < 0.05) in the metastases. Analysis of the metastases showed significantly more Ki-M1P+ cells in peritoneal metastases (31.8% ± 7.4 vs. 18.2% ± 3.7, P < 0.01), whilst CD3+ T-cells were more common in liver metastases (11.7% ± 1.8 vs. 4.4% ± 2.6, P < 0.01). The highest transcript expression was seen for monocyte chemotactic protein 1 (MCP1/CCL2), macrophage inflammatory protein 1α (MIP-1α/CCL3) and the pro-angiogenic growth-related oncoprotein 1 (Gro-α/CXCL-1). Whilst the ligands were predominantly expressed in tumor cells, their receptors were mostly present in immune cells. This locally specific microenvironment might influence neoplastic progression of GIST at the different metastatic sites. PMID:25120735

  19. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice

    PubMed Central

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B.; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip

    2015-01-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4+ T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4+ T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  20. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice.

    PubMed

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L

    2015-10-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4(+) T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4(+) T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  1. Effects of PVA coated nanoparticles on human immune cells

    PubMed Central

    Strehl, Cindy; Gaber, Timo; Maurizi, Lionel; Hahne, Martin; Rauch, Roman; Hoff, Paula; Häupl, Thomas; Hofmann-Amtenbrink, Margarethe; Poole, A Robin; Hofmann, Heinrich; Buttgereit, Frank

    2015-01-01

    Nanotechnology provides new opportunities in human medicine, mainly for diagnostic and therapeutic purposes. The autoimmune disease rheumatoid arthritis (RA) is often diagnosed after irreversible joint structural damage has occurred. There is an urgent need for a very early diagnosis of RA, which can be achieved by more sensitive imaging methods. Superparamagnetic iron oxide nanoparticles (SPION) are already used in medicine and therefore represent a promising tool for early diagnosis of RA. The focus of our work was to investigate any potentially negative effects resulting from the interactions of newly developed amino-functionalized amino-polyvinyl alcohol coated (a-PVA) SPION (a-PVA-SPION), that are used for imaging, with human immune cells. We analyzed the influence of a-PVA-SPION with regard to cell survival and cell activation in human whole blood in general, and in human monocytes and macrophages representative of professional phagocytes, using flow cytometry, multiplex suspension array, and transmission electron microscopy. We found no effect of a-PVA-SPION on the viability of human immune cells, but cytokine secretion was affected. We further demonstrated that the percentage of viable macrophages increased on exposure to a-PVA-SPION. This effect was even stronger when a-PVA-SPION were added very early in the differentiation process. Additionally, transmission electron microscopy analysis revealed that both monocytes and macrophages are able to endocytose a-PVA-SPION. Our findings demonstrate an interaction between human immune cells and a-PVA-SPION which needs to be taken into account when considering the use of a-PVA-SPION in human medicine. PMID:26056442

  2. Effects of PVA coated nanoparticles on human immune cells.

    PubMed

    Strehl, Cindy; Gaber, Timo; Maurizi, Lionel; Hahne, Martin; Rauch, Roman; Hoff, Paula; Häupl, Thomas; Hofmann-Amtenbrink, Margarethe; Poole, A Robin; Hofmann, Heinrich; Buttgereit, Frank

    2015-01-01

    Nanotechnology provides new opportunities in human medicine, mainly for diagnostic and therapeutic purposes. The autoimmune disease rheumatoid arthritis (RA) is often diagnosed after irreversible joint structural damage has occurred. There is an urgent need for a very early diagnosis of RA, which can be achieved by more sensitive imaging methods. Superparamagnetic iron oxide nanoparticles (SPION) are already used in medicine and therefore represent a promising tool for early diagnosis of RA. The focus of our work was to investigate any potentially negative effects resulting from the interactions of newly developed amino-functionalized amino-polyvinyl alcohol coated (a-PVA) SPION (a-PVA-SPION), that are used for imaging, with human immune cells. We analyzed the influence of a-PVA-SPION with regard to cell survival and cell activation in human whole blood in general, and in human monocytes and macrophages representative of professional phagocytes, using flow cytometry, multiplex suspension array, and transmission electron microscopy. We found no effect of a-PVA-SPION on the viability of human immune cells, but cytokine secretion was affected. We further demonstrated that the percentage of viable macrophages increased on exposure to a-PVA-SPION. This effect was even stronger when a-PVA-SPION were added very early in the differentiation process. Additionally, transmission electron microscopy analysis revealed that both monocytes and macrophages are able to endocytose a-PVA-SPION. Our findings demonstrate an interaction between human immune cells and a-PVA-SPION which needs to be taken into account when considering the use of a-PVA-SPION in human medicine. PMID:26056442

  3. Neisseria gonorrhoeae Modulates Iron-Limiting Innate Immune Defenses in Macrophages

    PubMed Central

    Zughaier, Susu M.; Kandler, Justin L.; Shafer, William M.

    2014-01-01

    Neisseria gonorrhoeae is a strict human pathogen that causes the sexually transmitted infection termed gonorrhea. The gonococcus can survive extracellularly and intracellularly, but in both environments the bacteria must acquire iron from host proteins for survival. However, upon infection the host uses a defensive response by limiting the bioavailability of iron by a number of mechanisms including the enhanced expression of hepcidin, the master iron-regulating hormone, which reduces iron uptake from the gut and retains iron in macrophages. The host also secretes the antibacterial protein NGAL, which sequesters bacterial siderophores and therefore inhibits bacterial growth. To learn whether intracellular gonococci can subvert this defensive response, we examined expression of host genes that encode proteins involved in modulating levels of intracellular iron. We found that N. gonorrhoeae can survive in association (tightly adherent and intracellular) with monocytes and macrophages and upregulates a panel of its iron-responsive genes in this environment. We also found that gonococcal infection of human monocytes or murine macrophages resulted in the upregulation of hepcidin, NGAL, and NRAMP1 as well as downregulation of the expression of the gene encoding the short chain 3-hydroxybutyrate dehydrogenase (BDH2); BDH2 catalyzes the production of the mammalian siderophore 2,5-DHBA involved in chelating and detoxifying iron. Based on these findings, we propose that N. gonorrhoeae can subvert the iron-limiting innate immune defenses to facilitate iron acquisition and intracellular survival. PMID:24489950

  4. The Secretome of Hydrogel-Coembedded Endothelial Progenitor Cells and Mesenchymal Stem Cells Instructs Macrophage Polarization in Endotoxemia

    PubMed Central

    Zullo, Joseph A.; Nadel, Ellen P.; Rabadi, May M.; Baskind, Matthew J.; Rajdev, Maharshi A.; Demaree, Cameron M.; Vasko, Radovan; Chugh, Savneek S.; Lamba, Rajat; Goligorsky, Michael S.

    2015-01-01

    We previously reported the delivery of endothelial progenitor cells (EPCs) embedded in hyaluronic acid-based (HA)-hydrogels protects renal function during acute kidney injury (AKI) and promotes angiogenesis. We attempted to further ameliorate renal dysfunction by coembedding EPCs with renal mesenchymal stem cells (MSCs), while examining their paracrine influence on cytokine/chemokine release and proinflammatory macrophages. A live/dead assay determined whether EPC-MSC coculturing improved viability during lipopolysaccharide (LPS) treatment, and HA-hydrogel-embedded delivery of cells to LPS-induced AKI mice was assessed for effects on mean arterial pressure (MAP), renal blood flow (RBF), circulating cytokines/chemokines, serum creatinine, proteinuria, and angiogenesis (femoral ligation). Cytokine/chemokine release from embedded stem cells was examined, including effects on macrophage polarization and release of proinflammatory molecules. EPC-MSC coculturing improved stem cell viability during LPS exposure, an effect augmented by MSC hypoxic preconditioning. The delivery of coembedded EPCs with hypoxic preconditioned MSCs to AKI mice demonstrated additive improvement (compared with EPC delivery alone) in medullary RBF and proteinuria, with comparable effects on serum creatinine, MAP, and angiogenesis. Exposure of proinflammatory M1 macrophages to EPC-MSC conditioned medium changed their polarization to anti-inflammatory M2. Incubation of coembedded EPCs-MSCs with macrophages altered their release of cytokines/chemokines, including enhanced release of anti-inflammatory interleukin (IL)-4 and IL-10. EPC-MSC delivery to endotoxemic mice elevated the levels of circulating M2 macrophages and reduced the circulating cytokines/chemokines. In conclusion, coembedding EPCs-MSCs improved their resistance to stress, impelled macrophage polarization from M1 to M2 while altering their cytokine/chemokines release, reduced circulating cytokines/chemokines, and improved renal and

  5. Secreted Factors from Colorectal and Prostate Cancer Cells Skew the Immune Response in Opposite Directions

    PubMed Central

    Lundholm, Marie; Hägglöf, Christina; Wikberg, Maria L.; Stattin, Pär; Egevad, Lars; Bergh, Anders; Wikström, Pernilla; Palmqvist, Richard; Edin, Sofia

    2015-01-01

    Macrophage infiltration has been associated with an improved prognosis in patients with colorectal cancer (CRC), but a poor prognosis in prostate cancer (PC) patients. In this study, the distribution and prognostic value of proinflammatory M1 macrophages (NOS2+) and immunosuppressive M2 macrophages (CD163+) was evaluated in a cohort of 234 PC patients. We found that macrophages infiltrating PC were mainly of an M2 type and correlated with a more aggressive tumor and poor patient prognosis. Furthermore, the M1/M2 ratio was significantly decreased in PC compared to CRC. Using in vitro cell culture experiments, we could show that factors secreted from CRC and PC cells induced macrophages of a proinflammatory or immunosuppressive phenotype, respectively. These macrophages differentially affected autologous T lymphocyte proliferation and activation. Consistent with this, CRC specimens were found to have higher degrees of infiltrating T-helper 1 cells and active cytotoxic T lymphocytes, while PC specimens displayed functionally inactive T cells. In conclusion, our results imply that tumour-secreted factors from cancers of different origin can drive macrophage differentiation in opposite directions and thereby regulate the organization of the anti-tumour immune response. Our findings suggest that reprogramming of macrophages could be an important tool in the development of new immunotherapeutic strategies. PMID:26503803

  6. Polydatin Inhibits Formation of Macrophage-Derived Foam Cells

    PubMed Central

    Wu, Min; Liu, Meixia; Guo, Gang; Zhang, Wengao; Liu, Longtao

    2015-01-01

    Rhizoma Polygoni Cuspidati, a Chinese herbal medicine, has been widely used in traditional Chinese medicine for a long time. Polydatin, one of the major active ingredients in Rhizoma Polygoni Cuspidati, has been recently shown to possess extensive cardiovascular pharmacological activities. In present study, we examined the effects of Polydatin on the formation of peritoneal macrophage-derived foam cells in Apolipoprotein E gene knockout mice (ApoE−/−) and explored the potential underlying mechanisms. Peritoneal macrophages were collected from ApoE−/− mice and cultured in vitro. These cells sequentially were divided into four groups: Control group, Model group, Lovastatin group, and Polydatin group. Our results demonstrated that Polydatin significantly inhibits the formation of foam cells derived from peritoneal macrophages. Further studies indicated that Polydatin regulates the metabolism of intracellular lipid and possesses anti-inflammatory effects, which may be regulated through the PPAR-γ signaling pathways. PMID:26557864

  7. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    PubMed

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. PMID:26706477

  8. Cisplatin stimulates protein tyrosine phosphorylation in macrophages.

    PubMed

    Kumar, R; Shrivastava, A; Sodhi, A

    1995-03-01

    Cisplatin [cis-dichlorodiamine platinum (II)], a potent anti-tumor compound, stimulates immune responses by activating monocyte-macrophages and other cells of the immune system. The mechanism by which cisplatin activates these cells is poorly characterized. Since protein tyrosine phosphorylation appears to be a major intracellular signalling event that mediates cellular responses, we examined whether cisplatin alters tyrosine phosphorylation in macrophages. We found that cisplatin increased tyrosine phosphorylation of several proteins in peritoneal macrophages and in P388D1 and IC-21 macrophage cell lines. Treatment of macrophages with tyrosine kinase inhibitors, genestein and lavendustin A, inhibited cisplatin-stimulated protein tyrosine phosphorylation in macrophages. Macrophages treated with cisplatin also exhibit increased fluorescence with anti-phosphotyrosine-FITC antibody. These data indicate that protein tyrosine phosphorylation plays a role in cisplatin-induced activation of macrophages. PMID:7539662

  9. Genetically engineered immune privileged Sertoli cells

    PubMed Central

    Kaur, Gurvinder; Long, Charles R.; Dufour, Jannette M.

    2012-01-01

    Sertoli cells are immune privileged cells, important for controlling the immune response to male germ cells as well as maintaining the tolerogenic environment in the testis. Additionally, ectopic Sertoli cells have been shown to survive and protect co-grafted cells when transplanted across immunological barriers. The survival of ectopic Sertoli cells has led to the idea that they could be used in cell based gene therapy. In this review, we provide a brief overview of testis immune privilege and Sertoli cell transplantation, factors contributing to Sertoli cell immune privilege, the challenges faced by viral vector gene therapy, the use of immune privileged cells in cell based gene therapy and describe several recent studies on the use of genetically engineered Sertoli cells to provide continuous delivery of therapeutic proteins. PMID:22553487

  10. Induction of protein tyrosine phosphorylation in macrophages incubated with tumor cells.

    PubMed

    Sodhi, A; Shrivastava, A; Kumar, R

    1995-03-01

    The cellular and molecular interaction between monocyte/macrophage and tumor cells leading to macrophage activation is not clearly understood. Since protein tyrosine phosphorylation appears to be a major intracellular signalling event, we checked whether the tumor cells alter tyrosine phosphorylation of proteins in macrophages. We found that both L929 and Yac-1 tumor cells induced increased tyrosine phosphorylation of several polypeptides in peritoneal as well as P388D-1 and IC-21 macrophages. Macrophages co-cultured with tumor cells also showed increased fluorescence with anti-phosphotyrosine-FITC antibody. These observations suggest that increased tyrosine phosphorylation plays a role in tumor cell-induced activation of macrophages. PMID:7539664

  11. Human Macrophage SCN5A Activates an Innate Immune Signaling Pathway for Antiviral Host Defense*

    PubMed Central

    Jones, Alexis; Kainz, Danielle; Khan, Faatima; Lee, Cara; Carrithers, Michael D.

    2014-01-01

    Pattern recognition receptors contain a binding domain for pathogen-associated molecular patterns coupled to a signaling domain that regulates transcription of host immune response genes. Here, a novel mechanism that links pathogen recognition to channel activation and downstream signaling is proposed. We demonstrate that an intracellular sodium channel variant, human macrophage SCN5A, initiates signaling and transcription through a calcium-dependent isoform of adenylate cyclase, ADCY8, and the transcription factor, ATF2. Pharmacological stimulation with a channel agonist or treatment with cytoplasmic poly(I:C), a mimic of viral dsRNA, activates this pathway to regulate expression of SP100-related genes and interferon β. Electrophysiological analysis reveals that the SCN5A variant mediates nonselective outward currents and a small, but detectable, inward current. Intracellular poly(I:C) markedly augments an inward voltage-sensitive sodium current and inhibits the outward nonselective current. These results suggest human macrophage SCN5A initiates signaling in an innate immune pathway relevant to antiviral host defense. It is postulated that SCN5A is a novel pathogen sensor and that this pathway represents a channel activation-dependent mechanism of transcriptional regulation. PMID:25368329

  12. Secretion of interferon-gamma by human macrophages demonstrated at the single-cell level after costimulation with interleukin (IL)-12 plus IL-18.

    PubMed

    Darwich, Laila; Coma, Gemma; Peña, Ruth; Bellido, Rocio; Blanco, Ester J J; Este, José A; Borras, Francesc E; Clotet, Bonaventura; Ruiz, Lidia; Rosell, Antoni; Andreo, Felipe; Parkhouse, R Michael E; Bofill, Margarita

    2009-03-01

    The interferon (IFN)-gamma component of the immune response plays an essential role in combating infectious and non-infectious diseases. Induction of IFN-gamma secretion by human T and natural killer (NK) cells through synergistic costimulation with interleukin (IL)-12 and IL-18 in the adaptive immune responses against pathogens is well established, but induction of similar activity in macrophages is still controversial, with doubts largely focusing on contamination of macrophages with NK or T cells in the relevant experiments. The possible contribution of macrophages to the IFN response is, however, an important factor relevant to the pathogenesis of many diseases. To resolve this issue, we analysed the production of IFN-gamma at the single-cell level by immunohistochemistry and by enzyme-linked immunosorbent spot (ELISPOT) analysis and unequivocally demonstrated that human macrophages derived from monocytes in vitro through stimulation with a combination of IL-12 and IL-18 or with macrophage colony-stimulating factor (M-CSF) were able to produce IFN-gamma when further stimulated with a combination of IL-12 and IL-18. In addition, naturally activated alveolar macrophages immediately secreted IFN-gamma upon treatment with IL-12 and IL-18. Therefore, human macrophages in addition to lymphoid cells contribute to the IFN-gamma response, providing another link between the innate and acquired immune responses. PMID:18759749

  13. Secretion of interferon-γ by human macrophages demonstrated at the single-cell level after costimulation with interleukin (IL)-12 plus IL-18

    PubMed Central

    Darwich, Laila; Coma, Gemma; Peña, Ruth; Bellido, Rocio; Blanco, Ester J J; Este, José A; Borras, Francesc E; Clotet, Bonaventura; Ruiz, Lidia; Rosell, Antoni; Andreo, Felipe; Parkhouse, R Michael E; Bofill, Margarita

    2009-01-01

    The interferon (IFN)-γ component of the immune response plays an essential role in combating infectious and non-infectious diseases. Induction of IFN-γ secretion by human T and natural killer (NK) cells through synergistic costimulation with interleukin (IL)-12 and IL-18 in the adaptive immune responses against pathogens is well established, but induction of similar activity in macrophages is still controversial, with doubts largely focusing on contamination of macrophages with NK or T cells in the relevant experiments. The possible contribution of macrophages to the IFN response is, however, an important factor relevant to the pathogenesis of many diseases. To resolve this issue, we analysed the production of IFN-γ at the single-cell level by immunohistochemistry and by enzyme-linked immunosorbent spot (ELISPOT) analysis and unequivocally demonstrated that human macrophages derived from monocytes in vitro through stimulation with a combination of IL-12 and IL-18 or with macrophage colony-stimulating factor (M-CSF) were able to produce IFN-γ when further stimulated with a combination of IL-12 and IL-18. In addition, naturally activated alveolar macrophages immediately secreted IFN-γ upon treatment with IL-12 and IL-18. Therefore, human macrophages in addition to lymphoid cells contribute to the IFN-γ response, providing another link between the innate and acquired immune responses. PMID:18759749

  14. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease.

    PubMed

    Thomas, Karen E; Sapone, Anna; Fasano, Alessio; Vogel, Stefanie N

    2006-02-15

    Recent studies have demonstrated the importance of TLR signaling in intestinal homeostasis. Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. In this study, we sought to test the hypothesis that gliadin initiates this response by stimulating the innate immune response to increase intestinal permeability and by up-regulating macrophage proinflammatory gene expression and cytokine production. To this end, intestinal permeability and the release of zonulin (an endogenous mediator of gut permeability) in vitro, as well as proinflammatory gene expression and cytokine release by primary murine macrophage cultures, were measured. Gliadin and its peptide derivatives, 33-mer and p31-43, were found to be potent inducers of both a zonulin-dependent increase in intestinal permeability and macrophage proinflammatory gene expression and cytokine secretion. Gliadin-induced zonulin release, increased intestinal permeability, and cytokine production were dependent on myeloid differentiation factor 88 (MyD88), a key adapter molecule in the TLR/IL-1R signaling pathways, but were neither TLR2- nor TLR4-dependent. Our data support the following model for the innate immune response to gliadin in the initiation of CD. Gliadin interaction with the intestinal epithelium increases intestinal permeability through the MyD88-dependent release of zonulin that, in turn, enables paracellular translocation of gliadin and its subsequent interaction with macrophages within the intestinal submucosa. There, the interaction of gliadin with macrophages elicits a MyD88-dependent proinflammatory cytokine milieu that facilitates the interaction of T cells with APCs, leading ultimately to the Ag-specific adaptive immune response seen in patients with CD. PMID:16456012

  15. Effects of immunomodulatory drugs on TNF-α and IL-12 production by purified epidermal langerhans cells and peritoneal macrophages

    PubMed Central

    2011-01-01

    Background Langerhans cells constitute a special subset of immature dendritic cells localized in the epidermis that play a key role in the skin's immune response. The production of cytokines is a key event in both the initiation and the regulation of immune responses, and different drugs can be used to remove or modify their production by DC and, therefore, alter immune responses in a broad spectrum of diseases, mainly in human inflammatory and autoimmune diseases. In the present study, we examined the effects of prednisone, thalidomide, cyclosporine A, and amitriptyline, drugs used in a variety of clinical conditions, on the production of TNF-α, IL-10, and IL-12 by purified epidermal Langerhans cells and peritoneal macrophages in BALB/c mice. Findings All drugs inhibited TNF-α production by Langerhans cells after 36 hours of treatment at two different concentrations, while prednisone and thalidomide decreased IL-12 secretion significantly, amitriptyline caused a less pronounced reduction and cyclosporine A had no effect. Additionally, TNF-α and IL-12 production by macrophages decreased, but IL-10 levels were unchanged after all treatments. Conclusions Our results demonstrate that these drugs modulate the immune response by regulating pro-inflammatory cytokine production by purified epidermal Langerhans cells and peritoneal macrophages, indicating that these cells are important targets for immunosuppression in various clinical settings. PMID:21276247

  16. Gliotoxin Suppresses Macrophage Immune Function by Subverting Phosphatidylinositol 3,4,5-Trisphosphate Homeostasis

    PubMed Central

    Schlam, Daniel; Canton, Johnathan; Carreño, Marvin; Kopinski, Hannah; Freeman, Spencer A.; Grinstein, Sergio

    2016-01-01

    ABSTRACT Aspergillus fumigatus, an opportunistic fungal pathogen, spreads in the environment by releasing numerous conidia that are capable of reaching the small alveolar airways of mammalian hosts. In otherwise healthy individuals, macrophages are responsible for rapidly phagocytosing and eliminating these conidia, effectively curbing their germination and consequent invasion of pulmonary tissue. However, under some circumstances, the fungus evades phagocyte-mediated immunity and persists in the respiratory tree. Here, we report that A. fumigatus escapes macrophage recognition by strategically targeting phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] metabolism through gliotoxin, a potent immunosuppressive mycotoxin. Time-lapse microscopy revealed that, in response to the toxin, macrophages cease to ruffle, undergo abrupt membrane retraction, and fail to phagocytose large targets effectively. Gliotoxin was found to prevent integrin activation and interfere with actin dynamics, both of which are instrumental for phagocytosis; similar effects were noted in immortalized and primary phagocytes. Detailed studies of the underlying molecular mechanisms of toxicity revealed that inhibition of phagocytosis is attributable to impaired accumulation of PtdIns(3,4,5)P3 and the associated dysregulation of downstream effectors, including Rac and/or Cdc42. Strikingly, in response to the diacylglycerol mimetic phorbol 12-myristate 13-acetate, gliotoxin-treated macrophages reactivate beta integrins, reestablish actin dynamics, and regain phagocytic capacity, despite the overt absence of plasmalemmal PtdIns(3,4,5)P3. Together, our findings identify phosphoinositide metabolism as a critical upstream target of gliotoxin and also indicate that increased diacylglycerol levels can bypass the requirement for PtdIns(3,4,5)P3 signaling during membrane ruffling and phagocytosis. PMID:27048806

  17. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus

    PubMed Central

    Behar, Samuel M.; Carpenter, Stephen M.; Booty, Matthew G.; Barber, Daniel L.; Jayaraman, Pushpa

    2014-01-01

    Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease – the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage. PMID:25311810

  18. Transcriptional profiling of macrophage and tumor cell interactions in vitro.

    PubMed

    Roudnicky, Filip; Hollmén, Maija

    2016-06-01

    Macrophages are important mediators of tumor progression and their function is broadly influenced by different microenvironmental stimuli. To understand the molecular basis of the tumor-supporting role of macrophages in aggressive breast cancer we co-cultured human peripheral monocytes with two breast cancer cell lines representing distinct aggressive cellular phenotype and transcriptionally profiled the changes occurring in both cells during in vitro activated crosstalk. Here we provide a detailed description of the experimental design, sample identity and analysis of the Illumina RNA-Seq data, which have been deposited into Gene Expression Omnibus (GEO): GSE75130. PMID:27081631

  19. Long-Term Persistence of Donor Alveolar Macrophages in Human Lung Transplant Recipients That Influences Donor-Specific Immune Responses.

    PubMed

    Nayak, D K; Zhou, F; Xu, M; Huang, J; Tsuji, M; Hachem, R; Mohanakumar, T

    2016-08-01

    Steady-state alveolar macrophages (AMs) are long-lived lung-resident macrophages with sentinel function. Evidence suggests that AM precursors originate during embryogenesis and populate lungs without replenishment by circulating leukocytes. However, their presence and persistence are unclear following human lung transplantation (LTx). Our goal was to examine donor AM longevity and evaluate whether AMs of recipient origin seed the transplanted lungs. Origin of AMs was accessed using donor-recipient HLA mismatches. We demonstrate that 94-100% of AMs present in bronchoalveolar lavage (BAL) were donor derived and, importantly, AMs of recipient origin were not detected. Further, analysis of BAL cells up to 3.5 years post-LTx revealed that the majority of AMs (>87%) was donor derived. Elicitation of de novo donor-specific antibody (DSA) is a major post-LTx complication and a risk factor for development of chronic rejection. The donor AMs responded to anti-HLA framework antibody (Ab) with secretion of inflammatory cytokines. Further, in an experimental murine model, we demonstrate that adoptive transfer of allogeneic AMs stimulated humoral and cellular immune responses to alloantigen and lung-associated self-antigens and led to bronchiolar obstruction. Therefore, donor-derived AMs play an essential role in the DSA-induced inflammatory cascade leading to obliterative airway disease of the transplanted lungs. PMID:27062199

  20. Alveolar macrophages are critical for the inhibition of allergic asthma by mesenchymal stromal cells.

    PubMed

    Mathias, Louisa J; Khong, Sacha M L; Spyroglou, Lisa; Payne, Natalie L; Siatskas, Christopher; Thorburn, Alison N; Boyd, Richard L; Heng, Tracy S P

    2013-12-15

    Multipotent mesenchymal stromal cells (MSCs) possess reparative and immunoregulatory properties, making them attractive candidates for cellular therapy. However, the majority of MSCs administered i.v. encounter a pulmonary impasse and soon disappear from the lungs, raising the question of how they induce such durable immunosuppressive effects. Using a mouse model of allergic asthma, we show that administration of MSCs isolated from human bone marrow, umbilical cord, or adipose tissue provoked a pronounced increase in alveolar macrophages and inhibited hallmark features of asthma, including airway hyperresponsiveness, eosinophilic accumulation, and Th2 cytokine production. Importantly, selective depletion of this macrophage compartment reversed the therapeutic benefit of MSC treatment on airway hyperresponsiveness. Our data demonstrate that human MSCs exert cross-species immunosuppressive activity, which is mediated by alveolar macrophages in allergic asthma. As alveolar macrophages are the predominant immune effector cells at the air-tissue interface in the lungs, this study provides a compelling mechanism for durable MSC effects in the absence of sustained engraftment. PMID:24249728

  1. Cell death, clearance and immunity in the skeletal muscle.

    PubMed

    Sciorati, C; Rigamonti, E; Manfredi, A A; Rovere-Querini, P

    2016-06-01

    The skeletal muscle is an immunologically unique tissue. Leukocytes, virtually absent in physiological conditions, are quickly recruited into the tissue upon injury and persist during regeneration. Apoptosis, necrosis and autophagy coexist in the injured/regenerating muscles, including those of patients with neuromuscular disorders, such as inflammatory myopathies, dystrophies, metabolic and mitochondrial myopathies and drug-induced myopathies. Macrophages are able to alter their function in response to microenvironment conditions and as a consequence coordinate changes within the tissue from the early injury throughout regeneration and eventual healing, and regulate the activation and the function of stem cells. Early after injury, classically activated macrophages ('M1') dominate the picture. Alternatively activated M2 macrophages predominate during resolution phases and regulate the termination of the inflammatory responses. The dynamic M1/M2 transition is increasingly felt to be the key to the homeostasis of the muscle. Recognition and clearance of debris originating from damaged myofibers and from dying stem/progenitor cells, stromal cells and leukocytes are fundamental actions of macrophages. Clearance of apoptotic cells and M1/M2 transition are causally connected and represent limiting steps for muscle healing. The accumulation of apoptotic cells, which reflects their defective clearance, has been demonstrated in various tissues to prompt autoimmunity against intracellular autoantigens. In the muscle, in the presence of type I interferon, apoptotic myoblasts indeed cause the production of autoantibodies, lymphocyte infiltration and continuous cycles of muscle injury and regeneration, mimicking human inflammatory myopathies. The clearance of apoptotic cells thus modulates the homeostatic response of the skeletal muscle to injury. Conversely, defects in the process may have deleterious local effects, guiding maladaptive tissue remodeling with collagen and fat

  2. Emerging Role of Mast Cells and Macrophages in Cardiovascular and Metabolic Diseases

    PubMed Central

    Xu, Jia-Ming

    2012-01-01

    Mast cells are essential in allergic immune responses. Recent discoveries have revealed their direct participation in cardiovascular diseases and metabolic disorders. Although more sophisticated mechanisms are still unknown, data from animal studies suggest that mast cells act similarly to macrophages and other inflammatory cells and contribute to human diseases through cell–cell interactions and the release of proinflammatory cytokines, chemokines, and proteases to induce inflammatory cell recruitment, cell apoptosis, angiogenesis, and matrix protein remodeling. Reduced cardiovascular complications and improved metabolic symptoms in animals receiving over-the-counter antiallergy medications that stabilize mast cells open another era of mast cell biology and bring new hope to human patients suffering from these conditions. PMID:22240242

  3. Intracellular replication of Leishmania tropica in mouse peritoneal macrophages: amastigote infection of resident cells and inflammatory exudate macrophages.

    PubMed Central

    Fortier, A H; Hoover, D L; Nacy, C A

    1982-01-01

    C3HeB/FeJ peritoneal exudate cells elicited by a variety of sterile inflammatory agents were exposed to Leishmania tropica amastigotes in vitro. Cytochemical characterization of cells that contained intracellular parasites suggested that young, peroxidase-positive macrophages were more susceptible to infection by amastigotes than more mature cells. Replication of the parasite in these younger cells, however, was similar to that observed in resident peritoneal macrophages. PMID:7152674

  4. Induction of Rapid Cell Death by an Environmental Isolate of Legionella pneumophila in Mouse Macrophages

    PubMed Central

    Tao, Lili; Zhu, Wenhan; Hu, Bi-Jie

    2013-01-01

    Legionella pneumophila, the etiological agent for Legionnaires' disease, is ubiquitous in the aqueous environment, where it replicates as an intracellular parasite of free-living protozoa. Our understanding of L. pneumophila pathogenicity is obtained mostly from study of derivatives of several clinical isolates, which employ almost identical virulent determinants to exploit host functions. To determine whether environmental L. pneumophila isolates interact similarly with the model host systems, we analyzed intracellular replication of several recently isolated such strains and found that these strains cannot productively grow in bone marrow-derived macrophages of A/J mice, which are permissive for all examined laboratory strains. By focusing on one strain called LPE509, we found that its deficiency in intracellular replication in primary A/J macrophages is not caused by the lack of important pathogenic determinants because this strain replicates proficiently in two protozoan hosts and the human macrophage U937 cell. We also found that in the early phase of infection, the trafficking of this strain in A/J macrophages is similar to that of JR32, a derivative of strain Philadelphia 1. Furthermore, infection of these cells by LPE509 caused extensive cell death in a process that requires the Dot/Icm type IV secretion system. Finally, we showed that the cell death is caused neither by the activation of the NAIP5/NLRC4 inflammasome nor by the recently described caspase 11-dependent pathway. Our results revealed that some environmental L. pneumophila strains are unable to overcome the defense conferred by primary macrophages from mice known to be permissive for laboratory L. pneumophila strains. These results also suggest the existence of a host immune surveillance mechanism differing from those currently known in responding to L. pneumophila infection. PMID:23753633

  5. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.

    PubMed

    Sobotta, Katharina; Hillarius, Kirstin; Mager, Marvin; Kerner, Katharina; Heydel, Carsten; Menge, Christian

    2016-06-01

    Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains. PMID:27021246

  6. Memory T Cell-Derived interferon-γ Instructs Potent Innate Cell Activation For Protective Immunity

    PubMed Central

    Soudja, Saidi M’Homa; Chandrabos, Ceena; Yakob, Ernest; Veenstra, Mike; Palliser, Deborah; Lauvau, Grégoire

    2014-01-01

    SUMMARY Cells of the innate immune system are essential for host defenses against primary microbial pathogen infections, yet their involvement in effective memory responses of vaccinated individuals has been poorly investigated. Here we show that memory T cells instruct innate cells to become potent effector cells in a systemic and a mucosal model of infection. Memory T cells controlled phagocyte, dendritic cell and NK or NK T cell mobilization and induction of a strong program of differentiation, which included their expression of effector cytokines and microbicidal pathways, all of which were delayed in non-vaccinated hosts. Disruption of IFN-γ-signaling in Ly6C+ monocytes, dendritic cells and macrophages impaired these processes and the control of pathogen growth. These results reveal how memory T cells, through rapid secretion of IFN-γ, orchestrate extensive modifications of host innate immune responses that are essential for effective protection of vaccinated hosts. PMID:24931122

  7. TH2-Polarized CD4(+) T Cells and Macrophages Limit Efficacy of Radiotherapy.

    PubMed

    Shiao, Stephen L; Ruffell, Brian; DeNardo, David G; Faddegon, Bruce A; Park, Catherine C; Coussens, Lisa M

    2015-05-01

    Radiotherapy and chemotherapy following surgery are mainstays of treatment for breast cancer. Although multiple studies have recently revealed the significance of immune cells as mediators of chemotherapy response in breast cancer, less is known regarding roles for leukocytes as mediating outcomes following radiotherapy. To address this question, we utilized a syngeneic orthotopic murine model of mammary carcinogenesis to investigate if response to radiotherapy could be improved when select immune cells or immune-based pathways in the mammary microenvironment were inhibited. Treatment of mammary tumor-bearing mice with either a neutralizing mAb to colony-stimulating factor-1 (CSF-1) or a small-molecule inhibitor of the CSF-1 receptor kinase (i.e., PLX3397), resulting in efficient macrophage depletion, significantly delayed tumor regrowth following radiotherapy. Delayed tumor growth in this setting was associated with increased presence of CD8(+) T cells and reduced presence of CD4(+) T cells, the main source of the TH2 cytokine IL4 in mammary tumors. Selective depletion of CD4(+) T cells or neutralization of IL4 in combination with radiotherapy phenocopied results following macrophage depletion, whereas depletion of CD8(+) T cells abrogated improved response to radiotherapy following these therapies. Analogously, therapeutic neutralization of IL4 or IL13, or IL4 receptor alpha deficiency, in combination with the chemotherapy paclitaxel, resulted in slowed primary mammary tumor growth by CD8(+) T-cell-dependent mechanisms. These findings indicate that clinical responses to cytotoxic therapy in general can be improved by neutralizing dominant TH2-based programs driving protumorigenic and immune-suppressive pathways in mammary (breast) tumors to improve outcomes. PMID:25716473

  8. Safrole suppresses murine myelomonocytic leukemia WEHI-3 cells in vivo, and stimulates macrophage phagocytosis and natural killer cell cytotoxicity in leukemic mice.

    PubMed

    Yu, Fu-Shun; Yang, Jai-Sing; Yu, Chun-Shu; Chiang, Jo-Hua; Lu, Chi-Cheng; Chung, Hsiung-Kwang; Yu, Chien-Chih; Wu, Chih-Chung; Ho, Heng-Chien; Chung, Jing-Gung

    2013-11-01

    Many anticancer drugs are obtained from phytochemicals and natural products. However, some phytochemicals have mutagenic effects. Safrole, a component of Piper betle inflorescence, has been reported to be a carcinogen. We have previously reported that safrole induced apoptosis in human oral cancer cells in vitro and inhibited the human oral tumor xenograft growth in vivo. Until now, there is no information addressing if safrole promotes immune responses in vivo. To evaluate whether safrole modulated immune function, BALB/c mice were intraperitoneally injected with murine myelomonocytic WEHI-3 leukemia cells to establish leukemia and then were treated with or without safrole at 4 and 16 mg/kg. Animals were sacrificed after 2 weeks post-treatment with safrole for examining the immune cell populations, phagocytosis of macrophages and the natural killer (NK) cells' cytotoxicity. Results indicated that safrole increased the body weight, and decreased the weights of spleen and liver in leukemic mice. Furthermore, safrole promoted the activities of macrophages phagocytosis and NK cells' cytotoxicity in leukemic mice when compared with untreated leukemic mice. After determining the cell marker population, we found that safrole promoted the levels of CD3 (T cells), CD19 (B cells) and Mac-3 (macrophages), but it did not affect CD11b (monocytes) in leukemic mice. In conclusion, safrole altered the immune modulation and inhibited the leukemia WEHI-3 cells in vivo. PMID:24150866

  9. Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells.

    PubMed

    Jager, J; Aparicio-Vergara, M; Aouadi, M

    2016-08-01

    Obesity, which affects 600 million adults worldwide, is a major risk factor for type 2 diabetes (T2D) and insulin resistance. Current therapies for these metabolic disorders include weight management by lifestyle intervention or bariatric surgery and pharmacological treatment with the aim of regulating blood glucose. Probably because of their short-term effectiveness, these therapies have not been able to stop the rapidly rising prevalence of T2D over the past decades, highlighting an urgent need to develop new therapeutic strategies. The role of immune cells, such as macrophages, in insulin resistance has been extensively studied. Major advances have been made to elucidate the role of adipose tissue macrophages in these pathogeneses. Recently, anti-inflammatory drugs have been suggested as an alternative treatment for T2D, and clinical trials of these agents are currently ongoing. In addition, results of previous clinical trials using antibodies against inflammatory cytokines, which showed modest effects, are now being rigorously re-evaluated. However, it is still unclear how liver macrophages [termed Kupffer cells (KCs)], which constitute the major source of macrophages in the body, contribute to the development of insulin resistance. In this review, we will discuss the present understanding of the role of liver immune cells in the development of insulin resistance. We will particularly focus on KCs, which could represent an attractive target for the treatment of metabolic diseases. PMID:26864622

  10. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  11. The Metastasis-Promoting Roles of Tumor-Associated Immune Cells

    PubMed Central

    Smith, Heath A.; Kang, Yibin

    2013-01-01

    Tumor metastasis is driven not only by the accumulation of intrinsic alterations in malignant cells, but also by the interactions of cancer cells with various stromal cell components of the tumor microenvironment. In particular, inflammation and infiltration of the tumor tissue by host immune cells, such as tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells have been shown to support tumor growth in addition to invasion and metastasis. Each step of tumor development, from initiation through metastatic spread, is promoted by communication between tumor and immune cells via the secretion of cytokines, growth factors and proteases that remodel the tumor microenvironment. Invasion and metastasis requires neovascularization, breakdown of the basement membrane, and remodeling of the extracellular matrix for tumor cell invasion and extravasation into the blood and lymphatic vessels. The subsequent dissemination of tumor cells to distant organ sites necessitates a treacherous journey through the vasculature, which is fostered by close association with platelets and macrophages. Additionally, the establishment of the pre-metastatic niche and specific metastasis organ tropism is fostered by neutrophils and bone marrow-derived hematopoietic immune progenitor cells and other inflammatory cytokines derived from tumor and immune cells, which alter the local environment of the tissue to promote adhesion of circulating tumor cells. This review focuses on the interactions between tumor cells and immune cells recruited to the tumor microenvironment, and examines the factors allowing these cells to promote each stage of metastasis. PMID:23515621

  12. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses

    PubMed Central

    Chiba, Shiho; Ikushima, Hiroaki; Ueki, Hiroshi; Yanai, Hideyuki; Kimura, Yoshitaka; Hangai, Sho; Nishio, Junko; Negishi, Hideo; Tamura, Tomohiko; Saijo, Shinobu; Iwakura, Yoichiro; Taniguchi, Tadatsugu

    2014-01-01

    The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications. DOI: http://dx.doi.org/10.7554/eLife.04177.001 PMID:25149452

  13. Transcriptome profiling of the antiviral immune response in Atlantic cod macrophages.

    PubMed

    Eslamloo, Khalil; Xue, Xi; Booman, Marije; Smith, Nicole C; Rise, Matthew L

    2016-10-01

    A study was conducted to determine the transcriptome response of Atlantic cod (Gadus morhua) macrophages to the viral mimic, polyriboinosinic polyribocytidylic acid (pIC), using a 20K Atlantic cod microarray platform and qPCR. We identified 285 significantly up-regulated and 161 significantly down-regulated probes in cod macrophages 24 h after pIC stimulation. A subset of 26 microarray-identified transcripts was subjected to qPCR validation using samples treated with pIC or phosphate-buffered saline (control) over time (3, 6, 12, 24, 48 h), and 77% of them showed a significant response to pIC. The microarray and qPCR analyses in this study showed that pIC induced the expression of cod macrophage transcripts involved in RLR- and TLR-dependent pathogen recognition (e.g. tlr3, tlr7, mda5 and lgp2), as well as signal transducers (e.g. stat1 and nfkbia) and transcription activators (e.g. irf7 and irf10) in the MyD88-independent and dependent signalling pathways. Several immune effectors (e.g. isg15s, viperin, herc4, mip2 and ccl13) were significantly up-regulated in pIC-stimulated cod macrophages. The expression of some transcripts (e.g. irf7, irf10, viperin) was significantly up-regulated by pIC as early as 12 h. All pIC-induced transcripts had peak expression at either 24 h (e.g. tlr7, irf7, mip2) or 48 h (e.g. tlr3, lgp2, stat1). This study suggests possible roles of both vertebrate-conserved (e.g. tlr3 as an up-regulated gene) and fish-specific (tlr22g as a down-regulated gene) receptors in dsRNA recognition, and the importance of conserved and potentially fish-specific interferon stimulated genes in cod macrophages. PMID:27255218

  14. p47phox Directs Murine Macrophage Cell Fate Decisions

    PubMed Central

    Yi, Liang; Liu, Qi; Orandle, Marlene S.; Sadiq-Ali, Sara; Koontz, Sherry M.; Choi, Uimook; Torres-Velez, Fernando J.; Jackson, Sharon H.

    2012-01-01

    Macrophage differentiation and function are pivotal for cell survival from infection and involve the processing of microenvironmental signals that determine macrophage cell fate decisions to establish appropriate inflammatory balance. NADPH oxidase 2 (Nox2)–deficient chronic granulomatous disease (CGD) mice that lack the gp91phox (gp91phox−/−) catalytic subunit show high mortality rates compared with wild-type mice when challenged by infection with Listeria monocytogenes (Lm), whereas p47phox-deficient (p47phox−/−) CGD mice show survival rates that are similar to those of wild-type mice. We demonstrate that such survival results from a skewed macrophage differentiation program in p47phox−/− mice that favors the production of higher levels of alternatively activated macrophages (AAMacs) compared with levels of either wild-type or gp91phox−/− mice. Furthermore, the adoptive transfer of AAMacs from p47phox−/− mice can rescue gp91phox−/− mice during primary Lm infection. Key features of the protective function provided by p47phox−/− AAMacs against Lm infection are enhanced production of IL-1α and killing of Lm. Molecular analysis of this process indicates that p47phox−/− macrophages are hyperresponsive to IL-4 and show higher Stat6 phosphorylation levels and signaling coupled to downstream activation of AAMac transcripts in response to IL-4 stimulation. Notably, restoring p47phox protein expression levels reverts the p47phox-dependent AAMac phenotype. Our results indicate that p47phox is a previously unrecognized regulator for IL-4 signaling pathways that are important for macrophage cell fate choice. PMID:22222227

  15. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells.

    PubMed

    Filion, M C; Phillips, N C

    1997-10-23

    Liposomal vectors formulated with cationic lipids (cationic liposomes) and fusogenic dioleoylphosphatidylethanolamine (DOPE) have potential for modulating the immune system by delivering gene or antisense oligonucleotide inside immune cells. The toxicity and the immunoadjuvant activity of cationic liposomes containing nucleic acids toward immune effector cells has not been investigated in detail. In this report, we have evaluated the toxicity of liposomes formulated with various cationic lipids towards murine macrophages and T lymphocytes and the human monocyte-like U937 cell line. The effect of these cationic liposomes on the synthesis of two immunomodulators produced by activated macrophages, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha), has also been determined. We have found that liposomes formulated from DOPE and cationic lipids based on diacyltrimethylammonium propane (dioleoyl-, dimyristoyl-, dipalmitoyl-, disteroyl-: DOTAP, DMTAP, DPTAP, DSTAP) or dimethyldioctadecylammonium bromide (DDAB) are highly toxic in vitro toward phagocytic cells (macrophages and U937 cells), but not towards non-phagocytic T lymphocytes. The rank order of toxicity was DOPE/DDAB > DOPE/DOTAP > DOPE/DMTAP > DOPE/DPTAP > DOPE/DSTAP. The ED50's for macrophage toxicity were < 10 nmol/ml for DOPE/DDAB, 12 nmol/ml for DOPE/DOTAP, 50 nmol/ml for DOPE/DMTAP, 400 nmol/ml for DOPE/DPTAP and > 1000 nmol/ml for DOPE/DSTAP. The incorporation of DNA (antisense oligonucleotide or plasmid vector) into the cationic liposomes marginally reduced their toxicity towards macrophages. Although toxicity was observed with cationic lipids alone, it was clearly enhanced by the presence of DOPE. The replacement of DOPE by dipalmitoylphosphatidylcholine (DPPC) significantly reduced liposome toxicity towards macrophages, and the presence of dipalmitoylphosphatidylethanolamine-PEG2000 (DPPE-PEG2000: 10 mol%) in the liposomes completely abolished this toxicity. Cationic liposomes, irrespective of

  16. High-Content Quantification of Single-Cell Immune Dynamics

    PubMed Central

    Junkin, Michael; Kaestli, Alicia J.; Cheng, Zhang; Jordi, Christian; Albayrak, Cem; Hoffmann, Alexander; Tay, Savaş

    2016-01-01

    Summary Cells receive time-varying signals from the environment and generate functional responses by secreting their own signaling molecules. Characterizing dynamic input-output relationships in single cells is crucial for understanding and modeling cellular systems. We developed an automated microfluidic system that delivers precisely defined dynamical inputs to individual living cells and simultaneously measures key immune parameters dynamically. Our system combines nanoliter immunoassays, microfluidic input generation, and time-lapse microscopy, enabling study of previously untestable aspects of immunity by measuring time-dependent cytokine secretion and transcription factor activity from single cells stimulated with dynamic inflammatory inputs. Employing this system to analyze macrophage signal processing under pathogen inputs, we found that the dynamics of TNF secretion are highly heterogeneous and surprisingly uncorrelated with the dynamics of NF-κB, the transcription factor controlling TNF production. Computational modeling of the LPS/TLR4 pathway shows that post-transcriptional regulation by TRIF is a key determinant of noisy and uncorrelated TNF secretion dynamics in single macrophages. PMID:27050527

  17. Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination.

    PubMed

    Flannagan, Ronald S; Heit, Bryan; Heinrichs, David E

    2016-04-01

    The success of Staphylococcus aureus as a pathogen is partly attributable to its ability to thwart host innate immune responses, which includes resisting the antimicrobial functions of phagocytes. Here, we have studied the interaction of methicillin-resistant S. aureus (MRSA) strain USA300 with murine RAW 264.7 and primary human macrophages using molecular imaging and single cell analysis to obtain an unprecedented understanding of the interaction between the macrophage and MRSA. Herein we demonstrate that macrophages fail to control intracellular infection by MRSA USA300 despite trafficking the bacteria into mature phagolysosomes. Using fluorescence-based proliferation assays we also show that intracellular staphylococci proliferate and that replication commences while the bacteria are residing in mature phagolysosomes hours after initial phagocytosis. Finally, live-cell fluorescence video microscopy allowed for unprecedented visual insight into the escape of MRSA from macrophages, demonstrating that the macrophages die through a pathway characterized by membrane blebbing and activation of caspase-3 followed by acquisition of the vital dye propidium iodide. Moreover, cell death precedes the emergence of MRSA from infected macrophages, and these events can be ablated by prolonged exposure of infected phagocytes to gentamicin. PMID:26408990

  18. Macrophage-Associated Osteoactivin/GPNMB Mediates Mesenchymal Stem Cell Survival, Proliferation, and Migration Via a CD44-Dependent Mechanism.

    PubMed

    Yu, Bing; Sondag, Gregory R; Malcuit, Christopher; Kim, Min-Ho; Safadi, Fayez F

    2016-07-01

    Although MSCs have been widely recognized to have therapeutic potential in the repair of injured or diseased tissues, it remains unclear how functional activities of mesenchymal stem cells (MSCs) are influenced by the surrounding inflammatory milieu at the site of tissue injury. Macrophages constitute an essential component of innate immunity and have been shown to exhibit a phenotypic plasticity in response to various stimuli, which play a central role in both acute inflammation and wound repair. Osteoactivin (OA)/Glycoprotein non-metastatic melanoma protein B (GPNMB), a transmembrane glycoprotein that plays a role in cell differentiation, survival, and angiogenesis. The objective of this study was to investigate the potential role of OA/GPNMB in macrophage-induced MSC function. We found that reparative M2 macrophages express significantly greater levels of OA/GPNMB than pro-inflammatory M1 macrophages. Furthermore, using loss of function and rescue studies, we demonstrated that M2 macrophages-secreted OA/GPNMB positively regulates the viability, proliferation, and migration of MSCs. More importantly, we demonstrated that OA/GPNMB acts through ERK and AKT signaling pathways in MSCs via CD44, to induce these effects. Taken together, our results provide pivotal insight into the mechanism by which OA/GPNMB contributes to the tissue reparative phenotype of M2 macrophages and positively regulates functional activities of MSCs. J. Cell. Biochem. 117: 1511-1521, 2016. © 2015 Wiley Periodicals, Inc. PMID:26442636

  19. γδ T Cell and Other Immune Cells Crosstalk in Cellular Immunity

    PubMed Central

    He, Ying; Wu, Kangni; Hu, Yongxian; Sheng, Lixia; Tie, Ruxiu; Wang, Binsheng; Huang, He

    2014-01-01

    γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell. PMID:24741636

  20. Glycosylation in immune cell trafficking

    PubMed Central

    Sperandio, Markus; Gleissner, Christian A.; Ley, Klaus

    2009-01-01

    Summary Leukocyte recruitment encompasses cell adhesion and activation steps that enable circulating leukocytes to roll, arrest, and firmly adhere on the endothelial surface before they extravasate into distinct tissue locations. This complex sequence of events relies on adhesive interactions between surface structures on leukocytes and endothelial cells and also on signals generated during the cell-cell contacts. Cell surface glycans play a crucial role in leukocyte recruitment. Several glycosyltransferases such as α1,3 fucosyltransferases, α2,3 sialyltransferases, core 2 N-acetylglucosaminlytransferases, β1,4 galactosyltransferases and polypeptide N-acetylgalactosaminyltransferases have been implicated in the generation of functional selectin ligands that mediate leukocyte rolling via binding to selectins. Recent evidence also suggests a role of α2,3 sialylated carbohydrate determinants in triggering chemokine-mediated leukocyte arrest and influencing β1 integrin function. Additional mechanisms by galectin- and siglec-dependent processes contribute to the growing number of reports emphasizing the significant role of glycans for the successful recruitment of leukocytes into tissues. Advancing the knowledge on glycan function into appropriate pathology models is likely to suggest interesting new therapeutic strategies in the treatment of immune- and inflammation-mediated diseases. PMID:19594631

  1. Progesterone-induced activation of membrane-bound progesterone receptors in murine macrophage cells.

    PubMed

    Lu, Jing; Reese, Joshua; Zhou, Ying; Hirsch, Emmet

    2015-02-01

    Parturition is an inflammatory process mediated to a significant extent by macrophages. Progesterone (P4) maintains uterine quiescence in pregnancy, and a proposed functional withdrawal of P4 classically regulated by nuclear progesterone receptors (nPRs) leads to labor. P4 can affect the functions of macrophages despite the reported lack of expression of nPRs in these immune cells. Therefore, in this study we investigated the effects of the activation of the putative membrane-associated PR on the function of macrophages (a key cell for parturition) and discuss the implications of these findings for pregnancy and parturition. In murine macrophage cells (RAW 264.7), activation of mPRs by P4 modified to be active only extracellularly by conjugation to BSA (P4BSA, 1.0×10(-7) mol/l) caused a pro-inflammatory shift in the mRNA expression profile, with significant upregulation of the expression of cyclooxygenase 2 (COX2 (Ptgs2)), Il1B, and Tnf and downregulation of membrane progesterone receptor alpha (Paqr7) and oxytocin receptor (Oxtr). Pretreatment with PD98059, a MEK1/2 inhibitor, significantly reduced P4BSA-induced expression of mRNA of Il1B, Tnf, and Ptgs2. Inhibition of protein kinase A (PKA) by H89 blocked P4BSA-induced expression of Il1B and Tnf mRNA. P4BSA induced rapid phosphorylation of MEK1/2 and CREB (a downstream target of PKA). This phosphorylation was inhibited by pretreatment with PD98059 and H89, respectively, revealing that MEK1/2 and PKA are two of the components involved in mPR signaling. Taken together, these results indicate that changes in membrane progesterone receptor alpha expression and signaling in macrophages are associated with the inflammatory responses; and that these changes might contribute to the functional withdrawal of P4 related to labor. PMID:25472814

  2. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    NASA Astrophysics Data System (ADS)

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe-/-Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages "dancing on the spot" and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells.

  3. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    PubMed Central

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-01-01

    Abstract. Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe−/−Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages “dancing on the spot” and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells. PMID:25710308

  4. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries.

    PubMed

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe−/−Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP + macrophages “dancing on the spot” and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells. PMID:25710308

  5. Recent developments in the assessment of the immune response to malaria, especially as related to vaccination: Lethal Plasmodium yoelii malaria: the role of macrophages in normal and immunized mice

    PubMed Central

    Playfair, J. H. L.

    1979-01-01

    Mice were injected with silica or Corynebacterium parvum, which, respectively, inhibit and stimulate macrophages in vivo, in an attempt to study the role of macrophages in lethal Plasmodium yoelii infection and in mice protected by immunization. In the normal infection, macrophages were able to control parasitaemia for up to 1 week, whereas in immunized mice they appeared to inhibit the sterilizing immune response. A model is proposed in which this dual role of activated macrophages may account for the chronic non-sterilizing course of natural malaria infections. PMID:317443

  6. Mast cells: new therapeutic target in helminth immune modulation.

    PubMed

    Vukman, K V; Lalor, R; Aldridge, A; O'Neill, S M

    2016-01-01

    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders. PMID:26577605

  7. Role of Immune Cells in the Course of Central Nervous System Injury: Modulation with Natural Products.

    PubMed

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2016-01-01

    Immune cells actively participate to the central nervous system (CNS) injury either damaging or protecting neural tissue with release of various mediators. Residential microglia and monocyte-derived macrophages play a fundamental role within the injured CNS and, here, special emphasis will be placed on M1 and M2 macrophages for their different functional activities. On the other hand, peripheral T regulatory (Treg) cells exert antiinflammatory activities in the diseased host. In this respect, activation of Treg cells by nutraceuticals may represent a novel approach to treat neuroinflammation. Omega-3 fatty acids and polyphenols will be described as substances endowed with antioxidant and anti-inflammatory activities. However, taking into account that Treg cells act in the later phase of CNS injury, favoring immune suppression, manipulation of host immune system with both substances requires caution to avoid undesired side effects. PMID:26635268

  8. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage.

    PubMed

    Ushach, Irina; Zlotnik, Albert

    2016-09-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  9. The impact of macrophage-cancer cell interaction on the efficacy of photodynamic therapy

    PubMed Central

    Hamblin, Michael R.

    2015-01-01

    Macrophages are one of the principal host cell populations in solid tumors. They are capable, due to their plasticity, of acquiring phenotypes that either combat (M1 type) or promote (M2 type) neoplastic growth. These cells, known as tumor-associated macrophages (TAMs), play complex but pivotal roles in the outcome of photodynamic therapy (PDT) of malignant lesions. Among the various parenchymal and stromal cell populations found in tumors, TAMs have been shown to have the greatest capacity for the uptake of systemically administered photosensitizers. Both the tumor-localizing property of photosensitizers and their tumor-localized fluorescence could be partly attributed to the activity of TAMs. Since resident TAMs with accumulated high photosensitizer content will sustain high degrees of PDT damage, this population (predominantly M2 in most tumors) is selectively destroyed, and during the ensuing inflammatory reaction is replaced with newly invading macrophages of M1 phenotype. These macrophages are sentinels responding to DAMP signals from PDT-treated tumor cells and in turn are mobilized to generate a variety of inflammatory/immune mediators and opsonins. They have a critical role in contributing to the therapeutic effect of PDT by mediating disposal of killed cancer cells and by processing/presenting tumor antigens to T lymphocytes. However, TAMs accumulating in the later post-PDT phase can acquire the M2 (healing) phenotype, and could have a role in tumor recurrence by releasing factors that promote angiogenesis and the survival/proliferation of remaining cancer cells. Various therapeutic strategies modulating TAM activity in the PDT response have potential for clinical use for improving PDT-mediated tumor control. PMID:25620672

  10. The impact of macrophage-cancer cell interaction on the efficacy of photodynamic therapy.

    PubMed

    Korbelik, Mladen; Hamblin, Michael R

    2015-08-01

    Macrophages are one of the principal host cell populations in solid tumors. They are capable, due to their plasticity, of acquiring phenotypes that either combat (M1 type) or promote (M2 type) neoplastic growth. These cells, known as tumor-associated macrophages (TAMs), play complex but pivotal roles in the outcome of photodynamic therapy (PDT) of malignant lesions. Among the various parenchymal and stromal cell populations found in tumors, TAMs have been shown to have the greatest capacity for the uptake of systemically administered photosensitizers. Both the tumor-localizing property of photosensitizers and their tumor-localized fluorescence could be partly attributed to the activity of TAMs. Since resident TAMs with accumulated high photosensitizer content will sustain high degrees of PDT damage, this population (predominantly M2 in most tumors) is selectively destroyed, and during the ensuing inflammatory reaction is replaced with newly invading macrophages of M1 phenotype. These macrophages are sentinels responding to DAMP signals from PDT-treated tumor cells and in turn are mobilized to generate a variety of inflammatory/immune mediators and opsonins. They have a critical role in contributing to the therapeutic effect of PDT by mediating disposal of killed cancer cells and by processing/presenting tumor antigens to T lymphocytes. However, TAMs accumulating in the later post-PDT phase can acquire the M2 (healing) phenotype, and could have a role in tumor recurrence by releasing factors that promote angiogenesis and the survival/proliferation of remaining cancer cells. Various therapeutic strategies modulating TAM activity in the PDT response have potential for clinical use for improving PDT-mediated tumor control. PMID:25620672

  11. The role of IL-33/ST2L signals in the immune cells.

    PubMed

    Lu, Jingli; Kang, Jian; Zhang, Chengliang; Zhang, Xiaojian

    2015-03-01

    Interleukin (IL)-33 signals influence various immune cells during differentiation, immune responses and homeostasis. As discussed in this Review, IL-33 via TI/ST2L regulates the functions of immune cells including T cells, B cells, DCs, macrophages, mast cells, and innate lymphoid cells (ILCs). Stimulation with IL-33 is crucial for CD4+ T cell polarized into Th2 immunity and for the induction of Treg. CD8+ T cells can also express ST2L and IL-33 promotes features of effector CD8+ T cells. For macrophages and ILCs, ST2L presents on these cells and IL-33 induces Th2 cytokine production. IL-33 modulates adhesion, activation, maturation, and cytokine production by mast cells. ST2 is expressed in B1 and is important for differentiation of IL-10-producing B cells. Understanding the specific role of IL-33/ST2L in different immune cells will help to answer the remaining questions that are important for diseases pathologies and intervention strategies by targeting the IL-33/ST2L signals. PMID:25662624

  12. Estrogen promotes Leydig cell engulfment by macrophages in male infertility

    PubMed Central

    Yu, Wanpeng; Zheng, Han; Lin, Wei; Tajima, Astushi; Zhang, Yong; Zhang, Xiaoyan; Zhang, Hongwen; Wu, Jihua; Han, Daishu; Rahman, Nafis A.; Korach, Kenneth S.; Gao, George Fu; Inoue, Ituro; Li, Xiangdong

    2014-01-01

    Male infertility accounts for almost half of infertility cases worldwide. A subset of infertile men exhibit reduced testosterone and enhanced levels of estradiol (E2), though it is unclear how increased E2 promotes deterioration of male fertility. Here, we utilized a transgenic mouse strain that overexpresses human CYP19, which encodes aromatase (AROM+ mice), and mice with knockout of Esr1, encoding estrogen receptor α (ERαKO mice), to analyze interactions between viable Leydig cells (LCs) and testicular macrophages that may lead to male infertility. In AROM+ males, enhanced E2 promoted LC hyperplasia and macrophage activation via ERα signaling. E2 stimulated LCs to produce growth arrest–specific 6 (GAS6), which mediates phagocytosis of apoptotic cells by bridging cells with surface exposed phosphatidylserine (PS) to macrophage receptors, including the tyrosine kinases TYRO3, AXL, and MER. Overproduction of E2 increased apoptosis-independent extrusion of PS on LCs, which in turn promoted engulfment by E2/ERα-activated macrophages that was mediated by AXL-GAS6-PS interaction. We further confirmed E2-dependant engulfment of LCs by real-time 3D imaging. Furthermore, evaluation of molecular markers in the testes of patients with nonobstructive azoospermia (NOA) revealed enhanced expression of CYP19, GAS6, and AXL, which suggests that the AROM+ mouse model reflects human infertility. Together, these results suggest that GAS6 has a potential as a clinical biomarker and therapeutic target for male infertility. PMID:24762434

  13. Nanosized silver (II) pyridoxine complex to cause greater inflammatory response and less cytotoxicity to RAW264.7 macrophage cells

    NASA Astrophysics Data System (ADS)

    Paul, Avijit; Ju, Hee; Rangasamy, Sabarinathan; Shim, Yumi; Song, Joon Myong

    2015-03-01

    With advancements in nanotechnology, silver has been engineered into a nanometre size and has attracted great research interest for use in the treatment of wounds. Silver nanoparticles (AgNPs) have emerged as a potential alternative to conventional antibiotics because of their potential antimicrobial property. However, AgNPs also induce cytotoxicity, generate reactive oxygen species (ROS), and cause mitochondrial damage to human cells. Pyridoxine possesses antioxidant and cell proliferation activity. Therefore, in the present investigation, a nanosilver-pyridoxine complex (AgPyNP) was synthesized, and its cytotoxicity and immune response was compared with AgNPs in macrophage RAW264.7 cells. Results revealed that AgPyNPs showed less cytotoxicity compared with AgNPs by producing a smaller amount of ROS in RAW264.7 cells. Surprisingly, however, AgPyNPs caused macrophage RAW264.7 cells to secrete a larger amount of interleukin-8 (IL-8) and generate a more active inflammatory response compared to AgNPs. It activated TNF-α, NF-κB p65, and NF-κB p50 to generate a more vigorous immune protection that produces a greater amount of IL-8 compared to AgNPs. Overall findings indicate that AgPyNPs exhibited less cytotoxicity and evoked a greater immune response in macrophage RAW264.7 cells. Thus, it can be used as a better wound-healing agent than AgNPs.

  14. THP-1 cell line: an in vitro cell model for immune modulation approach.

    PubMed

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. PMID:25130606

  15. Innate immunity, decidual cells, and preeclampsia.

    PubMed

    Yeh, Chang-Ching; Chao, Kuan-Chong; Huang, S Joseph

    2013-04-01

    Preeclampsia (PE) manifested by hypertension and proteinuria complicates 3% to 8% of pregnancies and is a leading cause of fetal-maternal morbidity and mortality worldwide. It may lead to intrauterine growth restriction, preterm delivery, and long-term sequelae in women and fetuses, and consequently cause socioeconomic burden to the affected families and society as a whole. Balanced immune responses are required for the maintenance of successful pregnancy. Although not a focus of most studies, decidual cells, the major resident cell type at the fetal-maternal interface, have been shown to modulate the local immune balance by interacting with other cell types, such as bone marrow derived-immune cells, endothelial cells, and invading extravillous trophoblasts. Accumulating evidence suggests that an imbalanced innate immunity, facilitated by decidual cells, plays an important role in the pathogenesis of PE. Thus, this review will discuss the role of innate immunity and the potential contribution of decidual cells in the pathogenesis of PE. PMID:22814099

  16. Deletion of macrophage migration inhibitory factor inhibits murine oral carcinogenesis: Potential role for chronic pro-inflammatory immune mediators.

    PubMed

    Oghumu, Steve; Knobloch, Thomas J; Terrazas, Cesar; Varikuti, Sanjay; Ahn-Jarvis, Jennifer; Bollinger, Claire E; Iwenofu, Hans; Weghorst, Christopher M; Satoskar, Abhay R

    2016-09-15

    Oral cancer kills about 1 person every hour each day in the United States and is the sixth most prevalent cancer worldwide. The pro-inflammatory cytokine 'macrophage migration inhibitory factor' (MIF) has been shown to be expressed in oral cancer patients, yet its precise role in oral carcinogenesis is not clear. In this study, we examined the impact of global Mif deletion on the cellular and molecular process occurring during oral carcinogenesis using a well-established mouse model of oral cancer with the carcinogen 4-nitroquinoline-1-oxide (4NQO). C57BL/6 Wild-type (WT) and Mif knock-out mice were administered with 4NQO in drinking water for 16 weeks, then regular drinking water for 8 weeks. Mif knock-out mice displayed fewer oral tumor incidence and multiplicity, accompanied by a significant reduction in the expression of pro-inflammatory cytokines Il-1β, Tnf-α, chemokines Cxcl1, Cxcl6 and Ccl3 and other molecular biomarkers of oral carcinogenesis Mmp1 and Ptgs2. Further, systemic accumulation of myeloid-derived tumor promoting immune cells was inhibited in Mif knock-out mice. Our results demonstrate that genetic Mif deletion reduces the incidence and severity of oral carcinogenesis, by inhibiting the expression of chronic pro-inflammatory immune mediators. Thus, targeting MIF is a promising strategy for the prevention or therapy of oral cancer. PMID:27164411

  17. Radiation exposure induces inflammasome pathway activation in immune cells.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Ishikawa, Shizu; Lederer, Madeline R; Wanke-Jellinek, Lorenz; Lederer, James A

    2015-02-01

    Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation. PMID:25539818

  18. Macrophage Infection via Selective Capture of HIV-1-Infected CD4+ T Cells

    PubMed Central

    Baxter, Amy E.; Russell, Rebecca A.; Duncan, Christopher J.A.; Moore, Michael D.; Willberg, Christian B.; Pablos, Jose L.; Finzi, Andrés; Kaufmann, Daniel E.; Ochsenbauer, Christina; Kappes, John C.; Groot, Fedde; Sattentau, Quentin J.

    2014-01-01

    Summary Macrophages contribute to HIV-1 pathogenesis by forming a viral reservoir and mediating neurological disorders. Cell-free HIV-1 infection of macrophages is inefficient, in part due to low plasma membrane expression of viral entry receptors. We find that macrophages selectively capture and engulf HIV-1-infected CD4+ T cells leading to efficient macrophage infection. Infected T cells, both healthy and dead or dying, were taken up through viral envelope glycoprotein-receptor-independent interactions, implying a mechanism distinct from conventional virological synapse formation. Macrophages infected by this cell-to-cell route were highly permissive for both CCR5-using macrophage-tropic and otherwise weakly macrophage-tropic transmitted/founder viruses but restrictive for nonmacrophage-tropic CXCR4-using virus. These results have implications for establishment of the macrophage reservoir and HIV-1 dissemination in vivo. PMID:25467409

  19. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    PubMed Central

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages. PMID:25309919

  20. Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages ▿ §

    PubMed Central

    Lefterova, Martina I.; Steger, David J.; Zhuo, David; Qatanani, Mohammed; Mullican, Shannon E.; Tuteja, Geetu; Manduchi, Elisabetta; Grant, Gregory R.; Lazar, Mitchell A.

    2010-01-01

    The nuclear receptor peroxisome proliferator activator receptor γ (PPARγ) is the target of antidiabetic thiazolidinedione drugs, which improve insulin resistance but have side effects that limit widespread use. PPARγ is required for adipocyte differentiation, but it is also expressed in other cell types, notably macrophages, where it influences atherosclerosis, insulin resistance, and inflammation. A central question is whether PPARγ binding in macrophages occurs at genomic locations the same as or different from those in adipocytes. Here, utilizing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we demonstrate that PPARγ cistromes in mouse adipocytes and macrophages are predominantly cell type specific. In thioglycolate-elicited macrophages, PPARγ colocalizes with the hematopoietic transcription factor PU.1 in areas of open chromatin and histone acetylation, near a distinct set of immune genes in addition to a number of metabolic genes shared with adipocytes. In adipocytes, the macrophage-unique binding regions are marked with repressive histone modifications, typically associated with local chromatin compaction and gene silencing. PPARγ, when introduced into preadipocytes, bound only to regions depleted of repressive histone modifications, where it increased DNA accessibility, enhanced histone acetylation, and induced gene expression. Thus, the cell specificity of PPARγ function is regulated by cell-specific transcription factors, chromatin accessibility, and histone marks. Our data support the existence of an epigenomic hierarchy in which PPARγ binding to cell-specific sites not marked by repressive marks opens chromatin and leads to local activation marks, including histone acetylation. PMID:20176806

  1. Differentiation of human monocytes and derived subsets of macrophages and dendritic cells by the HLDA10 monoclonal antibody panel

    PubMed Central

    Ohradanova-Repic, Anna; Machacek, Christian; Fischer, Michael B; Stockinger, Hannes

    2016-01-01

    The mononuclear phagocyte system, consisting of monocytes, macrophages and dendritic cells (DCs), has an important role in tissue homeostasis as well as in eliciting immune responses against invading pathogens. Blood monocytes have been viewed for decades as precursors of tissue macrophages. Although the newest data show that in the steady state resident macrophages of many organs are monocyte independent, blood monocytes critically contribute to tissue macrophage and DC pools upon inflammation. To better understand the relationship between these populations and their phenotype, we isolated and differentiated human blood CD14+ monocytes in vitro into immature and mature monocyte-derived dendritic cells (MoDCs) as well as into seven different monocyte-derived macrophage subsets. We used the panel of 70 monoclonal antibodies (mAbs) submitted to the 10th Human Leukocyte Differentiation Antigen Workshop to determine the expression profiles of these 10 populations by flow cytometry. We now can compile subpanels of mAbs to differentiate the 10 monocyte/macrophage/MoDC subsets, providing the basis for novel diagnostic and therapeutic tools. PMID:26900469

  2. Characterization of tumor binding by the IC-21 macrophage cell line.

    PubMed

    Crawford, E K; Latham, P S; Shah, E M; Hasday, J D

    1990-08-01

    The purpose of this study was to determine if the SV40-transformed murine macrophage cell line IC-21 is a suitable model to study the selective high avidity binding of tumor cells by subpopulations of activated macrophages. IC-21 macrophages bound P815, RBL5, and EL-4 murine tumor cells with high avidity, as measured by the inverted centrifugation method. Tumor binding by IC-21 macrophages was competitively inhibited by crude membrane vesicles prepared from tumor cells but not by cell membranes prepared from nontransformed splenic leukocytes, suggesting that this process was mediated by tumor-specific binding sites. IC-21 macrophages and primary cultures of pyran copolymer-elicited peritoneal macrophages demonstrated similar tumor binding avidity, kinetics, saturability, and metabolic requirements for optimal high avidity tumor binding. However, compared with primary cultures of pyran copolymer-elicited peritoneal macrophages, IC-21 macrophages bound 4-fold more tumor cells and were more homogeneous for tumor binding capability. Finally, one third of maximal tumor cell binding by IC-21 macrophages was completed within 5 min of contact with tumor, suggesting that IC-21 macrophages constitutively expressed some high avidity tumor binding sites. Their stable and homogeneous capability for binding tumor cells and their ease of growth make the IC-21 macrophage cell line a potentially valuable model for elucidating the molecular mechanisms responsible for selective high avidity tumor binding by subpopulations of activated macrophages. PMID:2164442

  3. Tomato Aqueous Extract Modulates the Inflammatory Profile of Immune Cells and Endothelial Cells.

    PubMed

    Schwager, Joseph; Richard, Nathalie; Mussler, Bernd; Raederstorff, Daniel

    2016-01-01

    Nutrients transiently or chronically modulate functional and biochemical characteristics of cells and tissues both in vivo and in vitro. The influence of tomato aqueous extract (TAE) on the in vitro inflammatory response of activated human peripheral blood leukocytes (PBLs) and macrophages was investigated. Its effect on endothelial dysfunction (ED) was analyzed in human umbilical vein endothelial cells (HUVECs). Murine macrophages (RAW264.7 cells), PBLs and HUVECs were incubated with TAE. They were activated with LPS or TNF-α in order to induce inflammatory processes and ED, respectively. Inflammatory mediators and adhesion molecules were measured by immune assay-based multiplex analysis. Gene expression was quantified by RT-PCR. TAE altered the production of interleukins (IL-1β, IL-6, IL-10, IL-12) and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CXCL8/IL-8, CXCL10/IP-10) in PBLs. TAE reduced ED-associated expression of adhesion molecules (ICAM-1, VCAM-1) in endothelial cell. In macrophages, the production of nitric oxide, PGE2, cytokines and ILs (TNF-α, IL-1β, IL-6, IL-12), which reflects chronic inflammatory processes, was reduced. Adenosine was identified as the main bioactive of TAE. Thus, TAE had cell-specific and context-dependent effects. We infer from these in vitro data, that during acute inflammation TAE enhances cellular alertness and therefore the sensing of disturbed immune homeostasis in the vascular-endothelial compartment. Conversely, it blunts inflammatory mediators in macrophages during chronic inflammation. A novel concept of immune regulation by this extract is proposed. PMID:26840280

  4. Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy.

    PubMed

    Stiebing, Clara; Matthäus, Christian; Krafft, Christoph; Keller, Andrea-Anneliese; Weber, Karina; Lorkowski, Stefan; Popp, Jürgen

    2014-11-01

    Macrophages are phagocytic cells which are involved in the non-specific immune defense. Lipid uptake and storage behavior of macrophages also play a key role in the development of atherosclerotic lesions within walls of blood vessels. The allocation of exogenous lipids such as fatty acids in the blood stream dictates the accumulation and quantity of lipids within macrophages. In case of an overexposure, macrophages transform into foam cells because of the large amount of lipid droplets in the cytoplasm. Raman micro-spectroscopy is a powerful tool for studying single cells due to the combination of microscopic imaging with spectral information. With a spatial resolution restricted by the diffraction limit, it is possible to visualize lipid droplets within macrophages. With stable isotopic labeling of fatty acids with deuterium, the uptake and storage of exogenously provided fatty acids can be investigated. In this study, we present the results of time-dependent Raman spectroscopic imaging of single THP-1 macrophages incubated with deuterated arachidonic acid. The polyunsaturated fatty acid plays an important role in the cellular signaling pathway as being the precursor of icosanoids. We show that arachidonic acid is stored in lipid droplets but foam cell formation is less pronounced as with other fatty acids. The storage efficiency in lipid droplets is lower than in cells incubated with deuterated palmitic acid. We validate our results with gas chromatography and gain information on the relative content of arachidonic acid and its metabolites in treated macrophages. These analyses also provide evidence that significant amounts of the intracellular arachidonic acid is elongated to adrenic acid but is not metabolized any further. The co-supplementation of deuterated arachidonic acid and deuterated palmitic acid leads to a non-homogenous storage pattern in lipid droplets within single cells. PMID:24939132

  5. Macrophage Diversity Enhances Tumor Progression and Metastasis

    PubMed Central

    Qian, Binzhi; Pollard, Jeffrey W.

    2016-01-01

    There is persuasive clinical and experimental evidence that macrophages promote cancer initiation and malignant progression. During tumor initiation they create an inflammatory environment that is mutagenic and which promotes growth. As tumors progress to malignancy, macrophages stimulate angiogenesis, enhance tumor cell migration, invasion, and suppress anti-tumor immunity. At metastatic sites macrophages prepare the target tissue for arrival of tumor cells and then a different subpopulation of macrophages promotes tumor cell extravasation, survival, and subsequent growth. Specialized subpopulations of macrophages may represent important new therapeutic targets. PMID:20371344

  6. Suppression of NK cell-mediated cytotoxicity against PRRSV-infected porcine alveolar macrophages in vitro.

    PubMed

    Cao, Jun; Grauwet, Korneel; Vermeulen, Ben; Devriendt, Bert; Jiang, Ping; Favoreel, Herman; Nauwynck, Hans

    2013-06-28

    The adaptive immunity against PRRSV has already been studied in depth, but only limited data are available on the innate immune responses against this pathogen. In the present study, we analyzed the interaction between porcine natural killer (NK) cells and PRRSV-infected primary porcine alveolar macrophages (PAMs), since NK cells are one of the most important components of innate immunity and PAMs are primary target cells of PRRSV infection. NK cytotoxicity assays were performed using enriched NK cells as effector cells and virus-infected or mock-inoculated PAMs as target cells. The NK cytotoxicity against PRRSV-infected PAMs was decreased starting from 6h post inoculation (hpi) till the end of the experiment (12 hpi) and was significantly lower than that against pseudorabies virus (PrV)-infected PAMs. UV-inactivated PRRSV also suppressed NK activity, but much less than infectious PRRSV. Furthermore, co-incubation with PRRSV-infected PAMs inhibited degranulation of NK cells. Finally, using the supernatant of PRRSV-infected PAMs collected at 12 hpi showed that the suppressive effect of PRRSV on NK cytotoxicity was not mediated by soluble factors. In conclusion, PRRSV-infected PAMs showed a reduced susceptibility toward NK cytotoxicity, which may represent one of the multiple evasion strategies of PRRSV. PMID:23522639

  7. Distribution of Photofrin between tumour cells and tumour associated macrophages.

    PubMed Central

    Korbelik, M.; Krosl, G.; Olive, P. L.; Chaplin, D. J.

    1991-01-01

    Photofrin levels in cells derived from SCCVII tumours, excised from mice that previously received the drug, were measured using a fluorescence activated cell sorter (FACS). Concomitantly, in the same cells the FACS was used to measure fluorescein isothiocyanate (FITC) fluorescence that originated from FITC-conjugated antimouse IgG added to the cell suspension before sorting. This later measurement enabled discrimination between IgG negative tumour malignant cells and IgG positive host cells (primarily macrophages). In addition, cellular Photofrin content in 'tumour' and 'host' cells sorted by FACS was determined by chemical extraction. The measurements were performed for the time intervals 1-96 h post Photofrin administration. The data showed consistently higher Photofrin levels in the 'host cells', i.e., tumour associated macrophages (TAM), than in 'tumour' cells. On a per cell basis, at any time point studied there was a minimum of 1.7 times more Photofrin in 'host' than in 'tumour cells', while at 4-12 h postadministration, ratios of up to 3.0 times were observed. This corresponds to ratio values greater than 9, when based on Photofrin content per micrograms cell protein. PMID:1832927

  8. Mesenchymal stem cells: immune evasive, not immune privileged

    PubMed Central

    Ankrum, James A.; Ong, Joon Faii; Karp, Jeffrey M.

    2014-01-01

    The diverse immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) may be exploited for treatment of a multitude of inflammatory conditions. MSCs have long been reported to be hypoimmunogenic or ‘immune privileged’; this property is thought to enable MSC transplantation across major histocompatibility barriers and the creation of off-the-shelf therapies consisting of MSCs grown in culture. However, recent studies describing generation of antibodies against and immune rejection of allogeneic donor MSCs suggest that MSCs may not actually be immune privileged. Nevertheless, whether rejection of donor MSCs influences the efficacy of allogeneic MSC therapies is not known, and no definitive clinical advantage of autologous MSCs over allogeneic MSCs has been demonstrated to date. Although MSCs may exert therapeutic function through a brief ‘hit and run’ mechanism, protecting MSCs from immune detection and prolonging their persistence in vivo may improve clinical outcomes and prevent patient sensitization toward donor antigens. PMID:24561556

  9. Inhibition of mast cell-dependent conversion of cultured macrophages into foam cells with antiallergic drugs.

    PubMed

    Ma, H; Kovanen, P T

    2000-12-01

    Degranulation of isolated, rat peritoneal mast cells in the presence of low density lipoprotein (LDL) induces cholesteryl ester accumulation in cocultured macrophages with ensuing foam cell formation. This event occurs when the macrophages phagocytose LDL particles that have been bound to the heparin proteoglycans of exocytosed granules. In an attempt to inhibit such foam cell formation pharmacologically, rat peritoneal mast cells that had been passively sensitized with anti-ovalbumin-IgE were treated with 2 mast cell-stabilizing antianaphylactic drugs, MY-1250 or disodium cromoglycate (DSCG). Both drugs were found to inhibit antigen (ovalbumin)-triggered release of histamine from the mast cells, revealing mast cell stabilization. In cocultures of rat peritoneal macrophages and passively sensitized mast cells, addition of MY-1250 before addition of the antigen resulted in parallel reductions in histamine release from mast cells, uptake of [(14)C]sucrose-LDL, and accumulation of LDL-derived cholesteryl esters in the cocultured macrophages. Similarly, when passively sensitized mast cells were stimulated with antigen in the presence of DSCG and the preconditioned media containing all substances released from the drug-treated mast cells were collected and added to macrophages cultured in LDL-containing medium, uptake and esterification of LDL cholesterol by the macrophages were inhibited. The inhibitory effects of both drugs were mast cell-specific because neither drug inhibited the ability of macrophages to take up and esterify LDL cholesterol. Analysis of heparin proteoglycan contents of the incubation media revealed that both drugs had inhibited mast cells from expelling their granule remnants. Thus, both MY-1250 and DSCG prevent mast cells from releasing the heparin proteoglycan-containing vehicles that bind LDL and carry it into macrophages. This study suggests that antiallergic pharmacological agents could be used in animal models to prevent mast cell

  10. Phenotypic characterisation of immune cell infiltrates in testicular germ cell neoplasia.

    PubMed

    Hvarness, Tine; Nielsen, John E; Almstrup, Kristian; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Claesson, Mogens H

    2013-12-01

    Immune cells often infiltrate testicular germ cell neoplasms, including pre-invasive carcinoma in situ (CIS), but the significance of this phenomenon remains unknown. The composition and distribution of infiltrating immune cells were examined by immunohistochemistry in testis samples with CIS and overt seminoma, in comparison to biopsies from infertile men without neoplasia. The composition of immune cells was similar across all the groups studied. Macrophages, CD8⁺ and CD45R0⁺ T lymphocytes constituted the majority of infiltrates, B lymphocytes were present in an intermediate proportion and very few CD4⁺ and FoxP3⁺ T cells were detected. HLA-I antigen was more abundant in Sertoli cells in tubules containing CIS than in those with normal spermatogenesis. This study showed a phenotypically comparable composition of infiltrating immune cells independently of the presence of neoplasia, suggesting the absence of active immune surveillance in testicular germ cell cancer. PMID:24290033

  11. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages

    NASA Astrophysics Data System (ADS)

    Ling, Guang Sheng; Bennett, Jason; Woollard, Kevin J.; Szajna, Marta; Fossati-Jimack, Liliane; Taylor, Philip R.; Scott, Diane; Franzoso, Guido; Cook, H. Terence; Botto, Marina

    2014-01-01

    Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin αM (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS.

  12. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages.

    PubMed

    Ling, Guang Sheng; Bennett, Jason; Woollard, Kevin J; Szajna, Marta; Fossati-Jimack, Liliane; Taylor, Philip R; Scott, Diane; Franzoso, Guido; Cook, H Terence; Botto, Marina

    2014-01-01

    Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin α(M) (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS. PMID:24423728

  13. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer.

    PubMed

    Weiskopf, Kipp; Jahchan, Nadine S; Schnorr, Peter J; Cristea, Sandra; Ring, Aaron M; Maute, Roy L; Volkmer, Anne K; Volkmer, Jens-Peter; Liu, Jie; Lim, Jing Shan; Yang, Dian; Seitz, Garrett; Nguyen, Thuyen; Wu, Di; Jude, Kevin; Guerston, Heather; Barkal, Amira; Trapani, Francesca; George, Julie; Poirier, John T; Gardner, Eric E; Miles, Linde A; de Stanchina, Elisa; Lofgren, Shane M; Vogel, Hannes; Winslow, Monte M; Dive, Caroline; Thomas, Roman K; Rudin, Charles M; van de Rijn, Matt; Majeti, Ravindra; Garcia, K Christopher; Weissman, Irving L; Sage, Julien

    2016-07-01

    Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers. PMID:27294525

  14. In the Absence of Endogenous Gamma Interferon, Mice Acutely Infected with Neospora caninum Succumb to a Lethal Immune Response Characterized by Inactivation of Peritoneal Macrophages

    PubMed Central

    Nishikawa, Yoshifumi; Tragoolpua, Khajornsak; Inoue, Noboru; Makala, Levi; Nagasawa, Hideyuki; Otsuka, Haruki; Mikami, Takeshi

    2001-01-01

    Following infection with Neospora caninum, BALB/c mice were shown to be resistant to an acute infection but developed a latent chronic infection. However, BALB/c background gamma interferon (IFN-γ)-deficient mice were sensitive to the acute infection. Since the immune response in IFN-γ-deficient mice is scantly known, we examined the function of macrophages, major histocompatibility complex (MHC) class II expression, T-cell responses, and serum cytokine levels in the mice. All IFN-γ-deficient mice died within 9 days of infection with N. caninum, whereas those treated with exogenous IFN-γ lived longer. Although N. caninum invaded various organs in both types of mice at the early stage of infection, the parasite was not detected in the brains of resistant hosts until 21 days postinfection (dpi). Peritoneal macrophages from IFN-γ-deficient mice were activated by exogenous IFN-γ associated with inhibition of parasite growth and nitric oxide production as were those from BALB/c mice. IFN-γ-deficient mice failed to increase MHC class II expression on macrophages. Moreover, BALB/c mice induced T-cell proliferation while IFN-γ-deficient mice did not. However, in vivo treatment with exogenous IFN-γ induced up-regulated MHC class II expression in IFN-γ-deficient mice. BALB/c mice treated with an antibody to CD4 showed an increase in morbidity and mortality after parasite infection. In serum, significant levels of IFN-γ and interleukin-4 (IL-4) were detected in resistant hosts, whereas IL-10 was detected in IFN-γ-deficient mice. The levels of IL-12 in IFN-γ-deficient mice were higher than those in BALB/c mice at 7 dpi. The present study indicates that early IFN-γ production has a crucial role in the activation of peritoneal macrophages for the induction of protective immune responses against N. caninum. PMID:11427432

  15. Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment.

    PubMed

    Marcil, A; Harcus, D; Thomas, D Y; Whiteway, M

    2002-11-01

    Phagocytic cells such as neutrophils and macrophages are potential components of the immune defense that protects mammals against Candida albicans infection. We have tested the interaction between the mouse macrophage cell line RAW 264.7 and a variety of mutant strains of C. albicans. We used an end point dilution assay to monitor the killing of C. albicans at low multiplicities of infection (MOIs). Several mutants that show reduced virulence in mouse systemic-infection models show reduced colony formation in the presence of macrophage cells. To permit analysis of the macrophage-Candida interaction at higher MOIs, we introduced a luciferase reporter gene into wild-type and mutant Candida cells and used loss of the luminescence signal to quantify proliferation. This assay gave results similar to those for the end point dilution assay. Activation of the macrophages with mouse gamma interferon did not enhance anti-Candida activity. Continued coculture of the Candida and macrophage cells eventually led to death of the macrophages, but for the RAW 264.7 cell line this was not due to apoptotic pathways involving caspase-8 or -9 activation. In general Candida cells defective in the formation of hyphae were both less virulent in animal models and more sensitive to macrophage engulfment and growth inhibition. However the nonvirulent, hypha-defective cla4 mutant line was considerably more resistant to macrophage-mediated inhibition than the wild-type strain. Thus although mutants sensitive to engulfment are typically less virulent in systemic-infection models, sensitivity to phagocytic macrophage cells is not the unique determinant of C. albicans virulence. PMID:12379711

  16. Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical impact

    PubMed Central

    Komura, Takuya; Sakai, Yoshio; Harada, Kenichi; Kawaguchi, Kazunori; Takabatake, Hisashi; Kitagawa, Hirohisa; Wada, Takashi; Honda, Masao; Ohta, Tetsuo; Nakanuma, Yasuni; Kaneko, Shuichi

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is among the most fatal of malignancies with an extremely poor prognosis. The objectives of this study were to provide a detailed understanding of PDAC pathophysiology in view of the host immune response. We examined the PDAC tissues, sera, and peripheral blood cells of PDAC patients using immunohistochemical staining, the measurement of cytokine/chemokine concentrations, gene expression analysis, and flow cytometry. The PDAC tissues were infiltrated by macrophages, especially CD33+CD163+ M2 macrophages and CD4+ T cells that concomitantly express programmed cell death-1 (PD-1). Concentrations of interleukin (IL)-6, IL-7, IL-15, monocyte chemotactic protein-1, and interferon-γ-inducible protein-1 in the sera of PDAC patients were significantly elevated. The gene expression profile of CD14+ monocytes and CD4+ T cells was discernible between PDAC patients and healthy volunteers, and the differentially expressed genes were related to activated inflammation. Intriguingly, PD-1 was significantly upregulated in the peripheral blood CD4+ T cells of PDAC patients. Correspondingly, the frequency of CD4+PD-1+ T cells was increased in the peripheral blood cells of PDAC patients, and this increase correlated to chemotherapy resistance. In conclusion, inflammatory conditions in both PDAC tissue and peripheral blood cells in PDAC patients were prominent, highlighting monocytes/macrophages as well as CD4+ T cells with influence of the clinical prognosis. We examined the inflammatory features of PDAC patients using the PDAC tissues, sera, and peripheral blood by immunohistochemical staining, measurement of cytokines/chemokines, gene expression analysis, and flow cytometry. We foundg that monocyte/macrophage cells and CD4+ T cells were highlighted immune-mediating cells in local cancer tissue as well as in peripheral blood of PDAC patients, among which the important subfraction with clinical impact influencing PDAC prognosis by chemotherapy

  17. Immune surveillance of mammary tissue by phagocytic cells.

    PubMed

    Paape, M J; Shafer-Weaver, K; Capuco, A V; Van Oostveldt, K; Burvenich, C

    2000-01-01

    The leukocytes in milk consist of lymphocytes, neutrophil polymorphonuclear leukocytes (PMN) and macrophages. Lymphocytes together with antigen-presenting cells function in the generation of an effective immune response. Lymphocytes can be divided into two distinct subsets, T- and B-lymphocytes, that differ in function and protein products. The professional phagocytic cells of the bovine mammary gland are PMN and macrophages. In the normal mammary gland macrophages are the predominate cells which act as sentinels to invading mastitis causing pathogens. Once the invaders are detected, macrophages release chemical messengers called chemoattractants that cause the directed migration of PMN into the infection. Migration of neutrophils into mammary tissue provides the first immunological line of defense against bacteria that penetrate the physical barrier of the teat canal. However, their presence is like a double-edged sword. While the PMN are phagocytosing and destroying the invading pathogens, they inadvertently release chemicals which induces swelling of secretory epithelium cytoplasm, sloughing of secretory cells, and decreased secretory activity. Permanent scarring will result in a loss of milk production. Resident and newly migrated macrophages help reduce the damage to the epithelium by phagocytosing PMN that undergo programmed cell death through a process called apoptosis. Specific ligands on the neutrophil surface are required for directed migration and phagocytosis. In response to infection, freshly migrated leukocytes express greater numbers of cell surface receptors for immunoglobulins and complement and are more phagocytic than their counterparts in blood. However, phagocytic activity rapidly decreases with continued exposure to inhibitory factors such as milk fat globules and casein in mammary secretions. Compensatory hypertrophy in non-mastitic quarters partially compensates for lost milk production in diseased quarters. Advances in molecular biology are

  18. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance.

    PubMed Central

    Le Poole, I. C.; van den Wijngaard, R. M.; Westerhof, W.; Das, P. K.

    1996-01-01

    Evidence for the involvement of cellular immunity in the etiopathogenesis of the hypopigmentary disorder vitiligo is provided by rare cases of inflammatory vitiligo. Nonlesional, perilesional, and lesional skin biopsies from three inflammatory vitiligo patients were immunohistochemically analyzed. The composition of inflammatory infiltrates present in perilesional skin was analyzed by antibodies to T cells (CD2, CD3, CD4, and CD8), Langerhans cells (CD1a), and macrophages (CD36 and CD68). The presence of activation markers on inflammatory cells was evaluated by analysis of HLA-DR, interleukin-2 receptor, and HECA452 expression. The presence or absence of melanocytes was determined by the antibody NKI-beteb. Moreover, the abundance of matrix molecule tenascin was semi-quantified using T2H5. Results indicate that within perilesional skin, epidermis-infiltrating T cells exhibit an increased CD8/CD4 ratio and increased cutaneous lymphocyte antigen and interleukin-2 receptor expression. These cells are frequently juxtapositionally apposed to remaining melanocytes. In perilesional dermis, CD68+OKM5- macrophages were more numerous than in lesional or nonlesional skin. Keratinocytes as well as melanocytes consistently express major histocompatibility complex class II antigens along stretches of basal and suprabasal layers in perilesional epidermis. Moreover, inflammation is accompanied by increased tenascin content. Although these observations do not permit differentiation between the immune infiltrates being a result as opposed to the cause of the disease process, results presented in this study are very suggestive of involvement of local immune reactivity in melanocyte destruction. Images Figure 1 Figure 4 Figure 8 Figure 9 PMID:8644862

  19. Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines.

    PubMed

    Dietrich, Damien; Martin, Praxedis; Flacher, Vincent; Sun, Yu; Jarrossay, David; Brembilla, Nicolo; Mueller, Christopher; Arnett, Heather A; Palmer, Gaby; Towne, Jennifer; Gabay, Cem

    2016-08-01

    Interleukin (IL)-36 cytokines belong to the IL-1 family and include three agonists, IL-36 α, β and γ and one inhibitor, IL-36 receptor antagonist (IL-36Ra). IL-36 and IL-1 (α and β) activate similar intracellular pathways via their related heterodimeric receptors, IL-36R/IL-1RAcP and IL-1R1/IL-1RAcP, respectively. However, excessive IL-36 versus IL-1 signaling induces different phenotypes in humans, which may be related to differential expression of their respective receptors. We examined the expression of IL-36R, IL-1R1 and IL-1RAcP mRNA in human peripheral blood, tonsil and skin immune cells by RT-qPCR. Monocyte-derived dendritic cells (MDDC), M0, M1 or M2-polarized macrophages, primary keratinocytes, dermal macrophages and Langerhans cells (LC) were stimulated with IL-1β or IL-36β. Cytokine production was assessed by RT-qPCR and immunoassays. The highest levels of IL-36R mRNA were found in skin-derived keratinocytes, LC, dermal macrophages and dermal CD1a(+) DC. In the blood and in tonsils, IL-36R mRNA was predominantly found in myeloid cells. By contrast, IL-1R1 mRNA was detected in almost all cell types with higher levels in tonsil and skin compared to peripheral blood immune cells. IL-36β was as potent as IL-1β in stimulating M2 macrophages, keratinocytes and LC, less potent than IL-1β in stimulating M0 macrophages and MDDC, and exerted no effects in M1 and dermal macrophages. Levels of IL-1Ra diminished the ability of M2 macrophages to respond to IL-1. Taken together, these data are consistent with the association of excessive IL-36 signaling with an inflammatory skin phenotype and identify human LC and M2 macrophages as new IL-36 target cells. PMID:27259168

  20. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  1. Dendritic cells and macrophages in the kidney: a spectrum of good and evil

    PubMed Central

    Rogers, NM; Ferenbach, DA; Isenberg, JS; Thomson, AW; Hughes, J

    2015-01-01

    Renal dendritic cells (DC) and macrophages (Mac) represent a constitutive, extensive and contiguous network of innate immune cells that provide sentinel and immune intelligence function. They induce and regulate inflammatory responses to freely-filtered antigenic material and protect the kidney from infection. Tissue–resident or infiltrating DC and Mac are key to the initiation and propagation of renal disease, as well as essential contributors to subsequent tissue regeneration regardless of its etiology and pathogenesis. Their identification, functional and phenotypic distinction, interplay and relationship with effector and regulatory adaptive immune cells is complex and incompletely understood. This review discusses both the common and distinct characteristics of these cells, as well as recent key advances in the field that have identified renal-specific functions of DC and Mac that enable these important, phagocytic, antigen-presenting, cells to mediate or mitigate intrinsic kidney disease. We also identify priority areas for further investigation and prospects for translational and therapeutic application of acquired knowledge. PMID:25266210

  2. Immune gene expression in swine macrophages expressing the Torque Teno Sus Virus1 (TTSuV1) ORF-1 and 2 proteins.

    PubMed

    Singh, Pankaj; Ramamoorthy, Sheela

    2016-07-15

    Torque Teno viruses (TTVs) are small DNA viruses which are ubiquitous in nature. Recent reports indicate that swine torque teno viruses (TTSuVs) can act as primary pathogens or play a role in exacerbating co-infections. However, very little is known about the TTSuV host-viral interaction or how they so successfully establish chronic infections in the host. To determine whether the major viral proteins can modulate host immunity, recombinant TTSuV1 ORF1 and 2 proteins were expressed in a swine macrophage cell line (3D4/31). The differential expression of a panel of innate, adaptive, regulatory and inflammatory immune genes was studied by quantitative PCR; using cDNA samples collected at 6, 12, 24 and 48h post-transfection. The ORF1 protein induced an early anti-viral response. However, at 6h post-transfection it also upregulated IL-10, PD-1 and SOCS-1, the suppressors of T cell mediated immunity. An ensuing diminishment of the early protective response was noted. The TTSuV1 ORF2 protein suppressed IFN-β and IL-13 responses but did not significantly influence anti-viral immunity otherwise. These findings indicate that the TTSuV1 ORF1 protein plays a significant but dual role in viral immunity. PMID:27059616

  3. Immune Homeostatic Macrophages Programmed by the Bacterial Surface Protein NhhA Potentiate Nasopharyngeal Carriage of Neisseria meningitidis

    PubMed Central

    Wang, Xiao; Sjölinder, Mikael; Gao, Yumin; Wan, Yi

    2016-01-01

    ABSTRACT Neisseria meningitidis colonizes the nasopharyngeal mucosa of healthy populations asymptomatically, although the bacterial surface is rich in motifs that activate the host innate immunity. What determines the tolerant host response to this bacterium in asymptomatic carriers is poorly understood. We demonstrated that the conserved meningococcal surface protein NhhA orchestrates monocyte (Mo) differentiation specifically into macrophage-like cells with a CD200Rhi phenotype (NhhA-Mφ). In response to meningococcal stimulation, NhhA-Mφ failed to produce proinflammatory mediators. Instead, they upregulated interleukin-10 (IL-10) and Th2/regulatory T cell (Treg)-attracting chemokines, such as CCL17, CCL18, and CCL22. Moreover, NhhA-Mφ were highly efficient in eliminating bacteria. The in vivo validity of these findings was corroborated using a murine model challenged with N. meningitidis systematically or intranasally. The NhhA-modulated immune response protected mice from septic shock; Mo/Mφ depletion abolished this protective effect. Intranasal administration of NhhA induced an anti-inflammatory response, which was associated with N. meningitidis persistence at the nasopharynx. In vitro studies demonstrated that NhhA-triggered Mo differentiation occurred upon engaged Toll-like receptor 1 (TLR1)/TLR2 signaling and extracellular signal-regulated kinase (ERK) and Jun N-terminal protein kinase (JNK) activation and required endogenously produced IL-10 and tumor necrosis factor alpha (TNF-α). Our findings reveal a strategy that might be adopted by N. meningitidis to maintain asymptomatic nasopharyngeal colonization. PMID:26884432

  4. Induction of Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK Signaling and Activation of MAP3K7 (TAK1) Protein Kinase

    PubMed Central

    Richter, Erik; Ventz, Katharina; Harms, Manuela; Mostertz, Jörg; Hochgräfe, Falko

    2016-01-01

    Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cyclin-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1) acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease. PMID:27066479

  5. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation.

    PubMed

    Grabiec, Aleksander M; Hussell, Tracy

    2016-07-01

    Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called 'efferocytosis'. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released 'damage associated molecular patterns' (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections. PMID:26957481

  6. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues

    PubMed Central

    Yu, Yen-Rei A.; O’Koren, Emily G.; Hotten, Danielle F.; Kan, Matthew J.; Kopin, David; Nelson, Erik R.; Que, Loretta; Gunn, Michael D.

    2016-01-01

    Flow cytometry is used extensively to examine immune cells in non-lymphoid tissues. However, a method of flow cytometric analysis that is both comprehensive and widely applicable has not been described. We developed a protocol for the flow cytometric analysis of non-lymphoid tissues, including methods of tissue preparation, a 10-fluorochrome panel for cell staining, and a standardized gating strategy, that allows the simultaneous identification and quantification of all major immune cell types in a variety of normal and inflamed non-lymphoid tissues. We demonstrate that our basic protocol minimizes cell loss, reliably distinguishes macrophages from dendritic cells (DC), and identifies all major granulocytic and mononuclear phagocytic cell types. This protocol is able to accurately quantify 11 distinct immune cell types, including T cells, B cells, NK cells, neutrophils, eosinophils, inflammatory monocytes, resident monocytes, alveolar macrophages, resident/interstitial macrophages, CD11b- DC, and CD11b+ DC, in normal lung, heart, liver, kidney, intestine, skin, eyes, and mammary gland. We also characterized the expression patterns of several commonly used myeloid and macrophage markers. This basic protocol can be expanded to identify additional cell types such as mast cells, basophils, and plasmacytoid DC, or perform detailed phenotyping of specific cell types. In examining models of primary and metastatic mammary tumors, this protocol allowed the identification of several distinct tumor associated macrophage phenotypes, the appearance of which was highly specific to individual tumor cell lines. This protocol provides a valuable tool to examine immune cell repertoires and follow immune responses in a wide variety of tissues and experimental conditions. PMID:26938654

  7. Ongoing cell death and immune influences on regeneration in the vestibular sensory organs

    NASA Technical Reports Server (NTRS)

    Warchol, M. E.; Matsui, J. I.; Simkus, E. L.; Ogilive, J. M.

    2001-01-01

    Hair cells in the vestibular organs of birds have a relatively short life span. Mature hair cells appear to die spontaneously and are then quickly replaced by new hair cells that arise from the division of epithelial supporting cells. A similar regenerative mechanism also results in hair cell replacement after ototoxic damage. The cellular basis of hair cell turnover in the avian ear is not understood. We are investigating the signaling pathways that lead to hair cell death and the relationship between ongoing cell death and cell production. In addition, work from our lab and others has demonstrated that the avian inner ear contains a resident population of macrophages and that enhanced numbers of macrophages are recruited to sites of hair cells lesions. Those observations suggest that macrophages and their secretory products (cytokines) may be involved in hair cell regeneration. Consistent with that suggestion, we have found that treatment with the anti-inflammatory drug dexamethasone reduces regenerative cell proliferation in the avian ear, and that certain macrophage-secreted cytokines can influence the proliferation of vestibular supporting cells and the survival of statoacoustic neurons. Those results suggest a role for the immune system in the process of sensory regeneration in the inner ear.

  8. uPAR Induces Expression of Transforming Growth Factor β and Interleukin-4 in Cancer Cells to Promote Tumor-Permissive Conditioning of Macrophages

    PubMed Central

    Hu, Jingjing; Jo, Minji; Eastman, Boryana M.; Gilder, Andrew S.; Bui, Jack D.; Gonias, Steven L.

    2015-01-01

    Cancer cells condition macrophages and other inflammatory cells in the tumor microenvironment so that these cells are more permissive for cancer growth and metastasis. Conditioning of inflammatory cells reflects, at least in part, soluble mediators (such as transforming growth factor β and IL-4) that are released by cancer cells and alter the phenotype of cells of the innate immune system. Signaling pathways in cancer cells that potentiate this activity are incompletely understood. The urokinase receptor (uPAR) is a cell-signaling receptor known to promote cancer cell survival, proliferation, metastasis, and cancer stem cell–like properties. The present findings show that uPAR expression in diverse cancer cells, including breast cancer, pancreatic cancer, and glioblastoma cells, promotes the ability of these cells to condition co-cultured bone marrow–derived macrophages so that the macrophages express significantly increased levels of arginase 1, a biomarker of the alternatively activated M2 macrophage phenotype. Expression of transforming growth factor β was substantially increased in uPAR-expressing cancer cells via a mechanism that requires uPA-initiated cell signaling. uPAR also controlled expression of IL-4 in cancer cells via a mechanism that involves activation of ERK1/2. The ability of uPAR to induce expression of factors that condition macrophages in the tumor microenvironment may constitute an important mechanism by which uPAR promotes cancer progression. PMID:25310970

  9. Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment.

    PubMed

    Ward, Rebecca; Sims, Andrew H; Lee, Alexander; Lo, Christina; Wynne, Luke; Yusuf, Humza; Gregson, Hannah; Lisanti, Michael P; Sotgia, Federica; Landberg, Göran; Lamb, Rebecca

    2015-06-10

    Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocyte-macrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the "pro-tumourigenic" effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation.Macrophages promote "pro-tumourigenic" cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the "pro-tumourigenic" characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer. PMID:26008983

  10. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii secreted kinase promotes macrophage survival and virulence

    PubMed Central

    Fentress, Sarah J.; Behnke, Michael S.; Dunay, Ildiko R.; Mashayekhi, Mona; Rommereim, Leah M.; Fox, Barbara A.; Bzik, David J.; Taylor, Gregory A.; Turk, Benjamin E.; Lichti, Cheryl F.; Townsend, R. Reid; Qiu, Wei; Hui, Raymond; Beatty, Wandy L.; Sibley, L. David

    2010-01-01

    SUMMARY Macrophages are specialized to detect and destroy intracellular microbes and yet a number of pathogens have evolved to exploit this hostile niche. Here we demonstrate that the obligate intracellular parasite Toxoplasma gondii disarms macrophage innate clearance mechanisms by secreting a serine threonine kinase called ROP18, which binds to and phosphorylates immunity-related GTPases (IRGs). Substrate profiling of ROP18 revealed a preference for a conserved motif within switch region I of the GTPase domain, a modification predicted to disrupt IRG function. Consistent with this, expression of ROP18 was both necessary and sufficient to block recruitment of Irgb6, which was in turn required for parasite destruction. ROP18 phosphorylation of IRGs prevented clearance within inflammatory monocytes and IFN-γ-activated macrophages, conferring parasite survival in vivo and promoting virulence. IRGs are implicated in clearance of a variety of intracellular pathogens, suggesting that other virulence factors may similarly thwart this innate cellular defense mechanism. PMID:21147463

  11. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence.

    PubMed

    Fentress, Sarah J; Behnke, Michael S; Dunay, Ildiko R; Mashayekhi, Mona; Rommereim, Leah M; Fox, Barbara A; Bzik, David J; Taylor, Gregory A; Turk, Benjamin E; Lichti, Cheryl F; Townsend, R Reid; Qiu, Wei; Hui, Raymond; Beatty, Wandy L; Sibley, L David

    2010-12-16

    Macrophages are specialized to detect and destroy intracellular microbes and yet a number of pathogens have evolved to exploit this hostile niche. Here we demonstrate that the obligate intracellular parasite Toxoplasma gondii disarms macrophage innate clearance mechanisms by secreting a serine threonine kinase called ROP18, which binds to and phosphorylates immunity-related GTPases (IRGs). Substrate profiling of ROP18 revealed a preference for a conserved motif within switch region I of the GTPase domain, a modification predicted to disrupt IRG function. Consistent with this, expression of ROP18 was both necessary and sufficient to block recruitment of Irgb6, which was in turn required for parasite destruction. ROP18 phosphorylation of IRGs prevented clearance within inflammatory monocytes and IFN-γ-activated macrophages, conferring parasite survival in vivo and promoting virulence. IRGs are implicated in clearance of a variety of intracellular pathogens, suggesting that other virulence factors may similarly thwart this innate cellular defense mechanism. PMID:21147463

  12. Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase

    PubMed Central

    Amit, Moran; Gil, Ziv

    2013-01-01

    Tumor-associated macrophages play a central role in tumor progression and metastasis. Macrophages can also promote the resistance of malignant cells to chemotherapy by stimulating the upregulation of cytidine deaminase, an intracellular enzyme that catabolizes the active form of gemcitabine. Targeting macrophage-dependent chemoresistance may reduce tumor-associated morbidity and mortality. PMID:24498570

  13. Evidence of tricellulin expression by immune cells, particularly microglia.

    PubMed

    Mariano, Cibelle; Silva, Sandra Leitão; Pereira, Pedro; Fernandes, Adelaide; Brites, Dora; Brito, Maria A

    2011-06-17

    Tight junctions (TJs) are elaborate structures located on the apical region of epithelial cells that limit paracellular permeability. Tricellulin is a recently discovered TJ protein, which is concentrated at the structurally specialized tricellular TJs but also present at bicellular contacts between epithelial cells, namely in the stomach. Interestingly, several TJ proteins have been found in other than epithelial cells, as astrocytes, and tricellulin mRNA expression was reported in mature dendritic cells. These findings prompted us to look for tricellulin expression in both epithelial and immune cells in the stomach, as well as in microglia, the brain resident immunocompetent cells. Immunohistochemical analysis of human stomach tissue sections revealed peroxidase staining at three-corner contact sites, as well as at the contact between two adjacent epithelial cells, thus evidencing the expression of tricellulin not only at tricellullar but at bicellular junctions as well. Such analysis, further revealed tricellulin immunostaining in cells of the monocyte/macrophage lineage, scattered throughout the lamina propria. Cultured rat microglia exhibited a notorious tricellulin staining, consistent with an extensive expression of the protein along the cell, which was not absolutely coincident with the lysosomal marker CD68. Detection of mRNA expression by real-time PCR provided supportive evidence for the expression of the TJ protein in microglia. These data demonstrate for the first time that microglia express a TJ protein. Moreover, the expression of tricellulin both in microglia and in the stomach immune cells point to a possible role of this new TJ protein in the immune system. PMID:21624353

  14. Macrophage Autophagy in Atherosclerosis

    PubMed Central

    Maiuri, Maria Chiara; Grassia, Gianluca; Platt, Andrew M.; Carnuccio, Rosa; Ialenti, Armando; Maffia, Pasquale

    2013-01-01

    Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP) in atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular inflammation. AP is a cellular catabolic process involving the delivery of cytoplasmic contents to the lysosomal machinery for ultimate degradation and recycling. Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes dysfunctional in the more advanced stages of the pathology and its deficiency promotes vascular inflammation, oxidative stress, and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for therapeutic utility. PMID:23401644

  15. Phosphatase regulation of macrophage activation.

    PubMed

    Kozicky, Lisa K; Sly, Laura M

    2015-08-01

    Macrophages are innate immune cells that play critical roles in tissue homeostasis and the immune response to invading pathogens or tumor cells. A hallmark of macrophages is their "plasticity," that is, their ability to respond to cues in their local microenvironment and adapt their activation state or phenotype to mount an appropriate response. During the inflammatory response, macrophages may be required to mount a profound anti-bacterial or anti-tumor response, an anti-inflammatory response, an anti-parasitic response, or a wound healing response. To do so, macrophages express cell surface receptors for growth factors, chemokines and cytokines, as well pathogen and danger associated molecular patterns. Downstream of these cell surface receptors, cell signalling cascades are activated and deactivated by reversible and competing activities of lipid and protein kinases and phosphatases. While kinases drive the activation of cell signalling pathways critical for macrophage activation, the strength and duration of the signalling is regulated by phosphatases. Hence, gene knockout mouse models have revealed critical roles for lipid and protein phosphatases in macrophage activation. Herein, we describe our current understanding and the key roles of specific cellular phosphatases in the regulation of the quality of macrophage polarization as well as the quantity of cytokines produced by activated macrophages. PMID:26216598

  16. Immune Enhancing Activity of β-(1,3)-Glucan Isolated from Genus Agrobacterium in Bone-Marrow Derived Macrophages and Mice Splenocytes.

    PubMed

    Byun, Eui-Baek; Jang, Beom-Su; Byun, Eui-Hong; Sung, Nak-Yun

    2016-01-01

    An effective method for activating macrophages and deriving a Th1 immune response could be used to improve the defenses of hosts. In this study, we investigated the immunomodulation effect and the related signaling mechanism of [Formula: see text]-(1,3)-glucan, isolated from the Agrobacterium species. Here, we found that [Formula: see text]-(1,3)-glucan predominantly induced the tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], IL-6, IL-12p70, and nitric oxide, which was dependent on mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-[Formula: see text]B signaling. Additionally, [Formula: see text]-(1,3)-glucan treatment significantly up-regulated the expression of the co-stimulatory molecules CD80 and CD86, and also significantly increased the expression of iNOS and Dectin-1, which is a transmembrane protein that binds [Formula: see text]-glucan and associates with macrophage activation. Importantly, the splenic T cells co-cultured with [Formula: see text]-(1,3)-glucan-treated macrophages produced the a Th1 cytokine profile that includes high levels of IFN-[Formula: see text], but not IL-4 (Th2 cytokine), indicating that [Formula: see text]-(1,3)-glucan contributes to Th1 polarization of the immune response. Taken together, our results suggest that [Formula: see text]-(1,3)-glucan isolated from Agrobacterium species can induce macrophage activation through the MAPK and NF-[Formula: see text]B signaling pathway, as well as Th1 polarization. PMID:27430908

  17. Mucosal dendritic cells shape mucosal immunity

    PubMed Central

    Chang, Sun-Young; Ko, Hyun-Jeong; Kweon, Mi-Na

    2014-01-01

    Dendritic cells (DCs) are key modulators that shape the immune system. In mucosal tissues, DCs act as surveillance systems to sense infection and also function as professional antigen-presenting cells that stimulate the differentiation of naive T and B cells. On the basis of their molecular expression, DCs can be divided into several subsets with unique functions. In this review, we focus on intestinal DC subsets and their function in bridging the innate signaling and adaptive immune systems to maintain the homeostasis of the intestinal immune environment. We also review the current strategies for manipulating mucosal DCs for the development of efficient mucosal vaccines to protect against infectious diseases. PMID:24626170

  18. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas.

    PubMed

    Egen, Jackson G; Rothfuchs, Antonio Gigliotti; Feng, Carl G; Winter, Nathalie; Sher, Alan; Germain, Ronald N

    2008-02-01

    Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape. PMID:18261937

  19. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    PubMed Central

    Anand, Namrata; Kanwar, Rupinder K; Dubey, Mohan Lal; Vahishta, R K; Sehgal, Rakesh; Verma, Anita K; Kanwar, Jagat R

    2015-01-01

    Background Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs) and macrophages (human monocytic cell line-derived macrophages THP1 cells). Methods Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections. Results The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene expression and cellular activity depending on the degree of iron saturation of lactoferrin. A significant increase (P<0.05) in production of reactive oxygen species, phagocytic activity, and Toll-like receptor expression was observed in host cells incubated with iron-saturated lactoferrin when compared with an untreated control group. However, there was no significant (P>0.05) change in percentage viability in the different groups of host cells treated, and no downregulation of survivin gene expression was found at 48 hours post-incubation. Upregulation of the Toll-like receptor and downregulation of the P-gp gene confirmed the immunomodulatory potential of lactoferrin protein. Conclusion The present study

  20. A New Triggering Receptor Expressed on Myeloid Cells (TREM) Family Member, TLT-6, is Involved in Activation and Proliferation of Macrophages

    PubMed Central

    Won, Kyung-Jong; Park, Sung-Won; Lee, Seunghoon; Kong, Il-Keun; Chae, Jung-Il; Kim, Bokyung; Lee, Eun-Jong

    2015-01-01

    The triggering receptor expressed on myeloid cells (TREM) family, which is abundantly expressed in myeloid lineage cells, plays a pivotal role in innate and adaptive immune response. In this study, we aimed to identify a novel receptor expressed on hematopoietic stem cells (HSCs) by using in silico bioinformatics and to characterize the identified receptor. We thus found the TREM-like transcript (TLT)-6, a new member of TREM family. TLT-6 has a single immunoglobulin domain in the extracellular region and a long cytoplasmic region containing 2 immunoreceptor tyrosine-based inhibitory motif-like domains. TLT-6 transcript was expressed in HSCs, monocytes and macrophages. TLT-6 protein was up-regulated on the surface of bone marrow-derived and peritoneal macrophages by lipopolysaccharide stimulation. TLT-6 exerted anti-proliferative effects in macrophages. Our results demonstrate that TLT-6 may regulate the activation and proliferation of macrophages. PMID:26557807

  1. Cellular immunity of mice to Leishmania donovani in vitro: lymphokine-mediated killing of intracellular parasites in macrophages.

    PubMed Central

    Chang, K P; Chiao, J W

    1981-01-01

    Leishmania donovani, an intracellular protozoan, causes kala-azar by parasitizing the macrophages of its mammalian host. Outbred NCS and CD-1 mice develop immunity to this parasite. This immunity was demonstrable when supernatant fluids from cultured splenic lymphocytes were added to infected macrophages. Only the lymphokine preparations from infected mice showed significant leishmanicidal activity. Mice receiving multiple inocula were more potent producers of leishmanicidal lymphokines than were those receiving single inocula. The expression of leishmanicidal activity in our system required continuous presence of the lymphokine preparation and was independent of trypsin- or neuraminidase-sensitive receptors of the macrophages. Light and electron microscopy revealed that, in the presence of lymphokines, macrophages appeared to be "activated," and intracellular leishmanias developed specific subcellular lesions in the kinetoplast-mitochondria. A time-course study showed that cultivation of the lymphocytes for 1 1/2 days completed the release of their leishmanicidal lymphokines which were heat-labile molecules larger than 50,000 daltons. Images PMID:6947274

  2. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro

    PubMed Central

    Li, Jia-Yun; Liu, Yuan; Gao, Xiao-Xue; Gao, Xiang; Cai, Hong

    2014-01-01

    Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4+ T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2−/− and TLR4−/− mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2−/− and TLR4−/− mice. In addition, CD4+ T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4+ T cells from TLR2−/− and TLR4−/− mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2−/− and TLR4−/− mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2−/− and TLR4−/− mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response. PMID:24769793

  3. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    SciTech Connect

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  4. The Majority of In Vitro Macrophage Activation Exhibited by Extracts of Some Immune Enhancing Botanicals is Due to Bacterial Lipoproteins and Lipopolysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have identified potent monocyte/macrophage activating bacterial lipoproteins within commonly used immune enhancing botanicals such as Echinacea, American ginseng and alfalfa sprouts. These bacterial lipoproteins, along with lipopolysaccharides, were substantially more potent than other bacteriall...

  5. T cell immunity using transgenic B lymphocytes

    NASA Astrophysics Data System (ADS)

    Gerloni, Mara; Rizzi, Marta; Castiglioni, Paola; Zanetti, Maurizio

    2004-03-01

    Adaptive immunity exists in all vertebrates and plays a defense role against microbial pathogens and tumors. T cell responses begin when precursor T cells recognize antigen on specialized antigen-presenting cells and differentiate into effector cells. Currently, dendritic cells are considered the only cells capable of stimulating T lymphocytes. Here, we show that mature naïve B lymphocytes can be genetically programmed by using nonviral DNA and turned into powerful antigen-presenting cells with a dual capacity of synthesis and presentation of antigen to T cells in vivo. A single i.v. injection of transgenic lymphocytes activates T cell responses reproducibly and specifically even at very low cell doses (102). We also demonstrate that T cell priming can occur in the absence of dendritic cells and results in immunological memory with protective effector functions. These findings disclose aspects in the regulation of adaptive immunity and indicate possibilities for vaccination against viruses and cancer in humans.

  6. Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus.

    PubMed

    Giovannini, D; Gismondi, A; Basso, A; Canuti, L; Braglia, R; Canini, A; Mariani, F; Cappelli, G

    2016-01-01

    Different studies described the antibacterial properties of Lavandula angustifolia (Mill.) essential oil and its anti-inflammatory effects. Besides, no data exist on its ability to activate human macrophages during the innate response against Staphylococcus aureus. The discovery of promising regulators of macrophage-mediated inflammatory response, without side effects, could be useful for the prevention of, or as therapeutic remedy for, various inflammation-mediated diseases. This study investigated, by transcriptional analysis, how a L. angustifolia essential oil treatment influences the macrophage response to Staphylococcus aureus infection. The results showed that the treatment increases the phagocytic rate and stimulates the containment of intracellular bacterial replication by macrophages. Our data showed that this stimulation is coupled with expression of genes involved in reactive oxygen species production (i.e., CYBB and NCF4). Moreover, the essential oil treatment balanced the inflammatory signaling induced by S. aureus by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. These data showed that the L. angustifolia essential oil can stimulate the human innate macrophage response to a bacterium which is responsible for one of the most important nosocomial infection and might suggest the potential development of this plant extract as an anti-inflammatory and immune regulatory coadjutant drug. PMID:26730790

  7. Activation of T cell death-associated gene 8 regulates the cytokine production of T cells and macrophages in vitro.

    PubMed

    Onozawa, Yoshiko; Fujita, Yoshifumi; Kuwabara, Harumi; Nagasaki, Miyuki; Komai, Tomoaki; Oda, Tomiichiro

    2012-05-15

    An orphan G-protein-coupled receptor, T cell death-associated gene 8 (TDAG8) which has been reported to be a proton sensor, inhibits the production of pro-inflammatory cytokines induced by extracellular acidification. Recently, we have found that TDAG8 knockout mice showed significant exacerbation in various immune-mediated inflammation disease models. To elucidate the role of TDAG8, we screened an in-house library to find compounds which have a profile as a TDAG8 agonist using a cyclic adenosine 5'-monophosphate assay. Among the screening hits, we focused on (3-[(2,4-dichlorobenzyl)thio]-1,6-dimethyl-5,6-dihydro-1H-pyridazino[4,5-e][1,3,4]thiadiazin-5-one) (named BTB09089). BTB09089 did not act on other proton sensing G-protein-coupled receptors such as G-protein-coupled receptor 4 (GPR4) nor ovarian cancer G-protein-coupled receptor 1 (OGR1). Moreover, BTB09089 increased cAMP level in the splenocytes from wild-type littermates but not from TDAG8-deficient mice. Thus, BTB09089 was found to be a TDAG8 specific agonist. We then investigated the effects of BTB09089 on T cells and macrophages in vitro. In splenocytes, BTB09089 suppressed the production of IL-2 stimulated with anti-CD3 and anti-CD28 antibodies. In peritoneal exuded macrophages induced by thioglycollate, BTB09089 suppressed the production of TNF-α and IL-6 while it increased that of IL-10 when stimulated with lipopolysaccharide. These effects were observed in cells from wild type mice, but not those from TDAG8 knockout mice. These results indicate that activation of TDAG8 attenuates immune-mediated inflammation by regulating the cytokine production of T cells and macrophages. PMID:22445881

  8. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis.

    PubMed

    Fang, Sijie; Meng, Xiangda; Zhang, Zhuhong; Wang, Yang; Liu, Yuanyuan; You, Caiyun; Yan, Hua

    2016-03-01

    The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases. PMID:26798022

  9. Macrophage immunoregulatory pathways in tuberculosis

    PubMed Central

    Rajaram, Murugesan V.S.; Ni, Bin; Dodd, Claire E.; Schlesinger, Larry S.

    2014-01-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). PMID:25453226

  10. Role of complement component C1q in phagocytosis of Listeria monocytogenes by murine macrophage-like cell lines.

    PubMed Central

    Alvarez-Dominguez, C; Carrasco-Marin, E; Leyva-Cobian, F

    1993-01-01

    Listeria monocytogenes is a facultative intracellular pathogen of a great variety of cells. Among them, macrophages constitute the major effector cells of listerial immunity during the course of an infection. Although the molecular bases of L. monocytogenes attachment and entry to phagocytes are not completely understood, it has been demonstrated that C3b significantly increases L. monocytogenes uptake by macrophages via complement receptor type 3. The first component of complement, C1q, is present in organic fluids at a relatively high concentration, and C1q receptor sites in macrophages are also abundant. In the present report, results of studies on the role of C1q in the internalization and infectivity of L. monocytogenes by macrophages are presented. L. monocytogenes uptake is enhanced by prior treatment of bacteria with normal sera. Heated serum or C1q-deficient serum abrogates this enhancement. Purified C1q specifically restored uptake. This effect was blocked by the addition of F(ab')2 anti-C1q antibody but not by an irrelevant matched antibody. Direct binding of C1q to L. monocytogenes was specific, saturable, and dose dependent with both fluorescent and radiolabeled C1q. N-Acetyl-D-alanyl-L-isoglutamine, diaminopimelic acid, and L-rhamnose caused a significant dose-dependent inhibition of C1q binding to bacteria, suggesting that these molecules, at least, are involved in the attachment of C1q to L. monocytogenes cell wall. When C1q binding structures on macrophage-like cells were blocked with saturating concentrations of C1q, the uptake of C1q-opsonized bacteria was less than in untreated cells. These experiments demonstrate that, in addition to other reported mechanisms, L. monocytogenes binds C1q, which mediates enhanced uptake by macrophages through C1q binding structures. Images PMID:8359889

  11. In vitro-differentiated embryonic stem cell macrophages: a model system for studying atherosclerosis-associated macrophage functions.

    PubMed

    Moore, K J; Fabunmi, R P; Andersson, L P; Freeman, M W

    1998-10-01

    Monocytes/macrophages (Mo) appear to play a critical role in the initiation and progression of atherosclerotic lesions. In this study, we characterized in vitro-differentiated embryonic stem (ES) cell macrophages as a model system for studying atherosclerosis-associated Mo functions. Using immunofluorescence staining and Western analysis, we demonstrate that ES Mo express typical macrophage cell surface markers, as well as the known receptors for modified forms of low density lipoprotein (LDL), including the Mo scavenger receptors (SR-A type I and type II), CD36, and CD68. Differentiated ES Mo specifically bind and degrade 125I-labeled acetylated LDL with high affinity, and their incubation with acetylated LDL (15 microg/mL) for 48 hours produces characteristic "foamy" Mo, as visualized by oil red O staining. ES Mo also express matrix-degrading metalloproteinases (MMP-3, MMP-9), which have been implicated in collagen breakdown in the fibrous cap of atherosclerotic plaques, and secrete cytokines (tumor necrosis factor-alpha, interleukin-6) in response to inflammatory stimuli. Transfection experiments, using a green fluorescent protein reporter gene, driven by the myeloid-specific promoter, CD11b, demonstrated that ES Mo can also be used to study macrophage-restricted gene expression in vitro. Taken together, these data demonstrate that ES Mo exhibit many properties typical of arterial lesion macrophages. Its ease of genetic manipulation makes it an attractive system for investigations of macrophage functions in vitro. PMID:9763539

  12. Orchestration of Angiogenesis by Immune Cells

    PubMed Central

    Bruno, Antonino; Pagani, Arianna; Pulze, Laura; Albini, Adriana; Dallaglio, Katiuscia; Noonan, Douglas M.; Mortara, Lorenzo

    2014-01-01

    It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in cancer and is indispensable for tumor progression. The TUMIC involves many “players” going well beyond the malignant-transformed cells, including stromal, immune, and endothelial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can “orchestrate” the “symphony” of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy. Considerable attention within the context of tumor angiogenesis should focus not only on the ECs, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here, we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation, and angiogenesis to tumor progression. Here, we review the data in the literature and seek to identify the “conductors” of this “orchestra.” We also suggest that interrupting the immune → inflammation → angiogenesis → tumor progression process can delay or prevent tumor insurgence and malignant disease. PMID:25072019

  13. Neutrophil Elastase-Generated Fragment of Vascular Endothelial Growth Factor-A Stimulates Macrophage and Endothelial Progenitor Cell Migration

    PubMed Central

    Kurtagic, Elma; Rich, Celeste B.; Buczek-Thomas, Jo Ann; Nugent, Matthew A.

    2015-01-01

    Elastase released from neutrophils as part of the innate immune system has been implicated in chronic diseases such as emphysema and cardiovascular disease. We have previously shown that neutrophil elastase targets vascular endothelial growth factor-A (VEGF) for partial degradation to generate a fragment of VEGF (VEGFf) that has distinct activities. Namely, VEGFf binds to VEGF receptor 1 but not to VEGF receptor 2 and shows altered signaling compared to intact VEGF. In the present study we investigated the chemotactic function of VEGF and VEGFf released from cells by neutrophil elastase. We found that endothelial cells migrated in response to intact VEGF but not VEGFf whereas RAW 264.7 macrophages/monocytes and embryonic endothelial progenitor cells were stimulated to migrate by either VEGF or VEGFf. To investigate the role of elastase-mediated release of VEGF from cells/extracellular matrices, a co-culture system was established. High or low VEGF producing cells were co-cultured with macrophages, endothelial or endothelial progenitor cells and treated with neutrophil elastase. Elastase treatment stimulated macrophage and endothelial progenitor cell migration with the response being greater with the high VEGF expressing cells. However, elastase treatment led to decreased endothelial cell migration due to VEGF cleavage to VEGF fragment. These findings suggest that the tissue response to NE-mediated injury might involve the generation of diffusible VEGF fragments that stimulate inflammatory cell recruitment. PMID:26672607

  14. From mouth to macrophage: mechanisms of innate immune subversion by Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    2014-01-01

    Johne’s disease (JD) is a chronic enteric infection of cattle caused by Mycobacterium avium subsp. paratuberculosis (MAP). The high economic cost and potential zoonotic threat of JD have driven efforts to develop tools and approaches to effectively manage this disease within livestock herds. Efforts to control JD through traditional animal management practices are complicated by MAP’s ability to cause long-term environmental contamination as well as difficulties associated with diagnosis of JD in the pre-clinical stages. As such, there is particular emphasis on the development of an effective vaccine. This is a daunting challenge, in large part due to MAP’s ability to subvert protective host immune responses. Accordingly, there is a priority to understand MAP’s interaction with the bovine host: this may inform rational targets and approaches for therapeutic intervention. Here we review the early host defenses encountered by MAP and the strategies employed by the pathogen to avert or subvert these responses, during the critical period between ingestion and the establishment of persistent infection in macrophages. PMID:24885748

  15. Cell-mediated Transfer of Catalase Nanoparticles from Macrophages to Brain Endothelial and Neural Cells

    PubMed Central

    Haney, Matthew J.; Zhao, Yuling; Li, Shu; Higginbotham, Sheila M.; Booth, Stephanie L.; Han, Huai-Yun; Vetro, Joseph A.; Mosley, R. Lee; Kabanov, Alexander V.; Gendelman, Howard E.; Batrakova, Elena V.

    2011-01-01

    Background Our laboratories forged the concept of macrophage delivery of protein antioxidants to attenuate neuroinflammation and nigrostriatal degeneration in Parkinson’s disease (PD). Notably, the delivery of the redox enzyme, catalase, incorporated into a polyion complex micelle (“nanozyme”) by bone marrow-derived macrophages protected the nigrostriatal against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. Nonetheless, how macrophage delivery of nanozyme increases the efficacy of catalase remains unknown. Methods Herein, we examined the transfer of nanozyme from macrophages to brain microvessel endothelial cells, neurons and astrocytes. Results Facilitated transport of the nanozyme from macrophages to endothelial and neural target cells occurred through endocytosis-independent mechanisms that involved fusion of cellular membranes; macrophage bridging conduits; and nanozyme lipid coatings. Nanozyme transfer was operative across an artificial blood brain barrier and showed efficient reactive oxygen species decomposition. Conclusion This is the first demonstration that drug-loaded macrophages discharge particles to contiguous target cells for potential therapeutic brain enzyme delivery. The pathways for drug delivery shown may be used for the treatment of degenerative disorders of the nervous system. PMID:21449849

  16. Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward?

    PubMed Central

    Li, Yu-Ling; Zhao, Hua; Ren, Xiu-Bao

    2016-01-01

    Vascular endothelial growth factor (VEGF) is primarily known as a proangiogenic factor and is one of the most important growth and survival factors affecting the vascular endothelium. However, recent studies have shown that VEGF also plays a vital role in the immune environment. In addition to the traditional growth factor role of VEGF and VEGF receptors (VEGFRs), they have a complicated relationship with various immune cells. VEGF also reportedly inhibits the differentiation and function of immune cells during hematopoiesis. Dendritic cells (DCs), macrophages, and lymphocytes further express certain types of VEGF receptors. VEGF can be secreted as well by tumor cells through the autocrine pathway and can stimulate the function of cancer stemness. This review will provide a paradigm shift in our understanding of the role of VEGF/VEGFR signaling in the immune and cancer environment. PMID:27458528

  17. Thyroid signaling in immune organs and cells of the teleost fish rainbow trout (Oncorhynchus mykiss).

    PubMed

    Quesada-García, A; Valdehita, A; Kropf, C; Casanova-Nakayama, A; Segner, H; Navas, J M

    2014-05-01

    Thyroid hormones are involved in modulating the immune system in mammals. In contrast, there is no information on the role played by these hormones in the immune system of teleost fish. Here we provide initial evidence for the presence of active thyroid signaling in immune organs and cells of teleosts. We demonstrate that immune organs (head kidney and spleen) and isolated leukocytes (from head kidney and peripheral blood) of the rainbow trout (Oncorhynchus mykiss) express both thyroid receptor α (THRA) and β (THRB). Absolute mRNA levels of THRA were significantly higher than those of THRB. THRA showed higher expression in immune organs and isolated immune cells compared to the reference organ, liver, while THRB showed the opposite. In vivo exposure of trout to triiodothryronine (T3) or the anti-thyroid agent propylthiouracil (PTU) altered THR expression in immune organs and cells. Effect of T3 and PTU over the relative expression of selected marker genes of immune cell subpopulations was also studied. Treatments changed the relative expression of markers of cytotoxic, helper and total T cells (cd4, cd8a, trb), B lymphocytes (mIgM) and macrophages (csf1r). These findings suggest that the immune system of rainbow trout is responsive to thyroid hormones. PMID:24657316

  18. Subversion of Cell-Autonomous Immunity and Cell Migration by Legionella pneumophila Effectors

    PubMed Central

    Simon, Sylvia; Hilbi, Hubert

    2015-01-01

    Bacteria trigger host defense and inflammatory processes, such as cytokine production, pyroptosis, and the chemotactic migration of immune cells toward the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called “effector” proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires’ disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and as many as 300 different effector proteins to govern host–cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell-autonomous immunity or cell migration, i.e., they interfere with (i) endocytic, secretory, or retrograde vesicle trafficking pathways, (ii) organelle or cell motility, (iii) the inflammasome and programed cell death, or (iv) the transcription factor NF-κB. Here, we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila. PMID:26441958

  19. Dickkopf-3 Contributes to the Regulation of Anti-Tumor Immune Responses by Mesenchymal Stem Cells

    PubMed Central

    Lu, Kun-Hui; Tounsi, Amel; Shridhar, Naveen; Küblbeck, Günter; Klevenz, Alexandra; Prokosch, Sandra; Bald, Tobias; Tüting, Thomas; Arnold, Bernd

    2015-01-01

    Mesenchymal stem cells (MSCs) are known to limit immune responses in vivo by multiple soluble factors. Dickkopf-3 (DKK3), a secreted glycoprotein, has recently been identified as a novel immune modulator. Since DKK3 has been reported to be produced by MSCs, we investigated whether DKK3 contributes to the immune suppression of anti-tumor responses by MSCs. Whereas wild-type MSCs inhibited immune responses against two different transplantation tumors, DKK3-deficient MSCs did not affect the rejection process. Increased CD8+ T cell and reduced M2-type macrophages infiltration was observed in tumors inoculated together with DKK3-deficient MSCs. Thus, DKK3 could alter the composition of the tumor stroma, thereby supporting the MSCs-mediated suppression of immune responses against these tumor transplants. PMID:26734010

  20. Protection Of Alveolar Macrophages And MARC 145 Cells From Porcine Reproductive And Respiratory Syndrome Virus Challenge By Swine Interferon-Beta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interferon beta, a type I IFN, is crucial in initiating the innate immune response and in the generation of the adaptive response. This study demonstrated the capacity of swine interferon beta (swIFN beta) to protect porcine alveolar macrophages (PAM) and MARC145 cells from infection with porcine re...

  1. Conditional-ready mouse embryonic stem cell derived macrophages enable the study of essential genes in macrophage function

    PubMed Central

    Yeung, A. T. Y.; Hale, C.; Xia, J.; Tate, P. H.; Goulding, D.; Keane, J. A.; Mukhopadhyay, S.; Forrester, L.; Billker, O.; Skarnes, W. C.; Hancock, R. E. W.; Dougan, G.

    2015-01-01

    The ability to differentiate genetically modified mouse embryonic stem (ES) cells into functional macrophages provides a potentially attractive resource to study host-pathogen interactions without the need for animal experimentation. This is particularly useful in instances where the gene of interest is essential and a knockout mouse is not available. Here we differentiated mouse ES cells into macrophages in vitro and showed, through a combination of flow cytometry, microscopic imaging, and RNA-Seq, that ES cell-derived macrophages responded to S. Typhimurium, in a comparable manner to mouse bone marrow derived macrophages. We constructed a homozygous mutant mouse ES cell line in the Traf2 gene that is known to play a role in tumour necrosis factor-α signalling but has not been studied for its role in infections or response to Toll-like receptor agonists. Interestingly, traf2-deficient macrophages produced reduced levels of inflammatory cytokines in response to lipopolysaccharide (LPS) or flagellin stimulation and exhibited increased susceptibility to S. Typhimurium infection. PMID:25752829

  2. Interleukin-1-induced promotion of T-cell differentiation in mice immunized with killed Listeria monocytogenes.

    PubMed Central

    Igarashi, K; Mitsuyama, M; Muramori, K; Tsukada, H; Nomoto, K

    1990-01-01

    We studied the effects of administration of recombinant interleukin-1 alpha (rIL-1 alpha) to mice after immunization with killed Listeria monocytogenes cells on the promotion of the functional differentiation of T cells in vivo. Mice immunized with killed L. monocytogenes were unable to express cell-mediated immunity to specific antigen in vivo, as determined by delayed-type hypersensitivity (DTH) and acquired cellular resistance (ACR), and splenic T cells obtained from such mice were unable to respond to rIL-2 and specific antigen and to produce IL-2 after antigenic restimulation in vitro. When rIL-1 alpha was given to mice after immunization with killed bacteria. T cells became capable of responding to rIL-2 and specific antigen in vitro. These functions of T cells were similar to those from mice immunized with viable listeriae. Moreover, using a local passive transfer system, it was found that effector T cells mediating DTH but not ACR to L. monocytogenes were generated in mice treated with rIL-1 alpha after immunization with killed bacteria. These T cells were able to produce macrophage chemotactic factor but not macrophage-activating factor or gamma interferon in vitro in response to stimulation with specific antigen. These results suggest that in vivo administration of rIL-1 alpha facilitates the maturation of antigen-specific T cells mediating DTH and that different effector T cells mediating DTH or ACR are involved in cell-mediated immunity to L. monocytogenes. PMID:2123829