Science.gov

Sample records for immune defense strategies

  1. Lymphoma: Immune Evasion Strategies

    PubMed Central

    Upadhyay, Ranjan; Hammerich, Linda; Peng, Paul; Brown, Brian; Merad, Miriam; Brody, Joshua D.

    2015-01-01

    While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care. PMID:25941795

  2. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies

    PubMed Central

    Dühring, Sybille; Germerodt, Sebastian; Skerka, Christine; Zipfel, Peter F.; Dandekar, Thomas; Schuster, Stefan

    2015-01-01

    The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given. PMID:26175718

  3. Improving immunization strategies

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Liljeros, Fredrik; Argyrakis, Panos; Bunde, Armin; Havlin, Shlomo

    2007-04-01

    We introduce an immunization method where the percentage of required vaccinations for immunity are close to the optimal value of a targeted immunization scheme of highest degree nodes. Our strategy retains the advantage of being purely local, without the need for knowledge on the global network structure or identification of the highest degree nodes. The method consists of selecting a random node and asking for a neighbor that has more links than himself or more than a given threshold and immunizing him. We compare this method to other efficient strategies on three real social networks and on a scale-free network model and find it to be significantly more effective.

  4. Defense Strategies Against Modern Botnets

    E-print Network

    Stankovic, Srdjan

    2009-01-01

    Botnets are networks of compromised computers with malicious code which are remotely controlled and which are used for starting distributed denial of service (DDoS) attacks, sending enormous number of e-mails (SPAM) and other sorts of attacks. Defense against modern Botnets is a real challenge. This paper offers several strategies for defense against Botnets with a list and description of measures and activities which should be carried out in order to establish successful defense. The paper also offers parallel preview of the strategies with their advantages and disadvantages considered in accordance with various criteria.

  5. Innate immune signaling in defense against intestinal microbes

    PubMed Central

    Kinnebrew, Melissa A.; Pamer, Eric G.

    2015-01-01

    Summary The gastrointestinal system is a common entry point for pathogenic microbes to access the inner environment of the body. Antimicrobial factors produced by the intestinal mucosa limit the translocation of both commensal and pathogenic microbes across the intestinal epithelial cell barrier. The regulation of these host defense mechanisms largely depends on the activation of innate immune receptors by microbial molecules. Under steady-state conditions, the microbiota provides constitutive signals to the innate immune system, which helps to maintain a healthy inflammatory tone within the intestinal mucosa and, thus, enhances resistance to infection with enteric pathogens. During an acute infection, the intestinal epithelial cell barrier is breached, and the detection of microbial molecules in the intestinal lamina propria rapidly stimulates innate immune signaling pathways that coordinate early defense mechanisms. Herein, we review how microbial molecules shed by both commensal and pathogenic microbes direct host defenses at the intestinal mucosa. We highlight the signaling pathways, effector molecules, and cell populations that are activated by microbial molecule recognition and, thereby, are involved in the maintenance of homeostatic levels of host defense and in the early response to acute enteric infection. Finally, we discuss how manipulation of these host defense pathways by stimulating innate immune receptors is a potential therapeutic strategy to prevent or alleviate intestinal disease. PMID:22168416

  6. Immunization Strategies Against Henipaviruses

    PubMed Central

    Geisbert, Thomas W.; Xu, Kai; Nikolov, Dimitar B.; Wang, Lin-Fa; Middleton, Deborah; Pallister, Jackie; Bossart, Katharine N.

    2015-01-01

    Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the subfamily Paramyxoviridae and are distinguished by their broad species tropism and ability to cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins. PMID:22481140

  7. Defense strategies used by two sympatric vineyard moth pests.

    PubMed

    Vogelweith, Fanny; Thiéry, Denis; Moret, Yannick; Colin, Eloïse; Motreuil, Sébastien; Moreau, Jérôme

    2014-05-01

    Natural enemies including parasitoids are the major biological cause of mortality among phytophagous insects. In response to parasitism, these insects have evolved a set of defenses to protect themselves, including behavioral, morphological, physiological and immunological barriers. According to life history theory, resources are partitioned to various functions including defense, implying trade-offs among defense mechanisms. In this study we characterized the relative investment in behavioral, physical and immunological defense systems in two sympatric species of Tortricidae (Eupoecilia ambiguella, Lobesia botrana) which are important grapevine moth pests. We also estimated the parasitism by parasitoids in natural populations of both species, to infer the relative success of the investment strategies used by each moth. We demonstrated that larvae invest differently in defense systems according to the species. Relative to L. botrana, E. ambiguella larvae invested more into morphological defenses and less into behavioral defenses, and exhibited lower basal levels of immune defense but strongly responded to immune challenge. L. botrana larvae in a natural population were more heavily parasitized by various parasitoid species than E. ambiguella, suggesting that the efficacy of defense strategies against parasitoids is not equal among species. These results have implications for understanding of regulation in communities, and in the development of biological control strategies for these two grapevine pests. PMID:24662468

  8. Secretory immunity in defense against cariogenic mutans streptococci.

    PubMed

    Russell, M W; Hajishengallis, G; Childers, N K; Michalek, S M

    1999-01-01

    Specific immune defense against cariogenic mutans streptococci is provided largely by salivary secretory IgA antibodies, which are generated by the common mucosal immune system. This system is functional in newborn infants, who develop salivary IgA antibodies as they become colonized by oral microorganisms. The mechanisms of action of salivary IgA antibodies include interference with sucrose-independent and sucrose- dependent attachment of mutans streptococci to tooth surfaces, as well as possible inhibition of metabolic activities. The goal of protecting infants against colonization by mutans streptococci might be accomplished by applying new strategies of mucosal immunization that would induce salivary IgA antibodies without the complications of parenteral immunization. Strategies of mucosal immunization against mutans streptococci currently under development include the use of surface adhesins and glucosyltransferase as key antigens, which are being incorporated into novel mucosal vaccine delivery systems and adjuvants. The oral application of preformed, genetically engineered antibodies to mutans streptococcal antigens also offers new prospects for passive immunization against dental caries. PMID:9831775

  9. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  10. The equal effectiveness of different defensive strategies

    PubMed Central

    Zhang, Shuang; Zhang, Yuxin; Ma, Keming

    2015-01-01

    Plants have evolved a variety of defensive strategies to resist herbivory, but at the interspecific level, the relative effectiveness of these strategies has been poorly evaluated. In this study, we compared the level of herbivory between species that depend on ants as indirect defenders and species that rely primarily on their own direct defenses. Using a dataset of 871 species and 1,405 data points, we found that in general, ant-associated species had levels of herbivory equal to those of species that are unattractive to ants; the pattern was unaffected by plant life form, climate and phylogenetic relationships between species. Interestingly, species that offer both food and nesting spaces for ants suffered significantly lower herbivory compared to species that offer either food or nesting spaces only or no reward for ants. A negative relationship between herbivory and latitude was detected, but the pattern can be changed by ants. These findings suggest that, at the interspecific level, the effectiveness of different defensive strategies may be equal. Considering the effects of herbivory on plant performance and fitness, the equal effectiveness of different defensive strategies may play an important role in the coexistence of various species at the community scale. PMID:26267426

  11. A Chromosome-based Evaluation Model for Computer Defense Immune Systems

    E-print Network

    McKay, Robert Ian

    - 1 - A Chromosome-based Evaluation Model for Computer Defense Immune Systems Zejun Wu, Hongbin,hbdong}@whu.edu.cn rim@cs.adfa.edu.au Abstract- The Computer Defense Immune System (CDIS) is an artificial immune system on systems in which they were incorporated. 1 Introduction The Computer Defense Immune System (CDIS

  12. Systemic Bacterial Infection and Immune Defense Phenotypes in Drosophila Melanogaster

    PubMed Central

    Khalil, Sarah; Jacobson, Eliana; Chambers, Moria C.; Lazzaro, Brian P.

    2015-01-01

    The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology. PMID:25992475

  13. Immunity and defense in pea aphids, Acyrthosiphon pisum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites, and stresses. At the center of pathogen-induced immune response are signaling pathways triggered by the recognition of fungal, bacterial, and viral signatures. T...

  14. Immunity and other defenses in pea aphids, Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Background Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously characterized insects models. Results Strikingly, pea aphids appear to be missing genes present in insect genomes characterized to date and thought critical for recognition, signaling and killing of microbes. In line with results of gene annotation, experimental analyses designed to characterize immune response through the isolation of RNA transcripts and proteins from immune-challenged pea aphids uncovered few immune-related products. Gene expression studies, however, indicated some expression of immune and stress-related genes. Conclusions The absence of genes suspected to be essential for the insect immune response suggests that the traditional view of insect immunity may not be as broadly applicable as once thought. The limitations of the aphid immune system may be representative of a broad range of insects, or may be aphid specific. We suggest that several aspects of the aphid life style, such as their association with microbial symbionts, could facilitate survival without strong immune protection. PMID:20178569

  15. Efficient immunization strategies to prevent financial contagion

    NASA Astrophysics Data System (ADS)

    Kobayashi, Teruyoshi; Hasui, Kohei

    2014-01-01

    Many immunization strategies have been proposed to prevent infectious viruses from spreading through a network. In this work, we study efficient immunization strategies to prevent a default contagion that might occur in a financial network. An essential difference from the previous studies on immunization strategy is that we take into account the possibility of serious side effects. Uniform immunization refers to a situation in which banks are ``vaccinated'' with a common low-risk asset. The riskiness of immunized banks will decrease significantly, but the level of systemic risk may increase due to the de-diversification effect. To overcome this side effect, we propose another immunization strategy, called counteractive immunization, which prevents pairs of banks from failing simultaneously. We find that counteractive immunization can efficiently reduce systemic risk without altering the riskiness of individual banks.

  16. Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

    PubMed Central

    Ng, Wy Ching; Tate, Michelle D.; Brooks, Andrew G.; Reading, Patrick C.

    2012-01-01

    Host defenses against viral infections depend on a complex interplay of innate (nonspecific) and adaptive (specific) components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV). Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease. PMID:22665991

  17. Regulation of lung immunity and host defense by the intestinal microbiota

    PubMed Central

    Samuelson, Derrick R.; Welsh, David A.; Shellito, Judd E.

    2015-01-01

    Every year in the United States approximately 200,000 people die from pulmonary infections, such as influenza and pneumonia, or from lung disease that is exacerbated by pulmonary infection. In addition, respiratory diseases such as, asthma, affect 300 million people worldwide. Therefore, understanding the mechanistic basis for host defense against infection and regulation of immune processes involved in asthma are crucial for the development of novel therapeutic strategies. The identification, characterization, and manipulation of immune regulatory networks in the lung represents one of the biggest challenges in treatment of lung associated disease. Recent evidence suggests that the gastrointestinal (GI) microbiota plays a key role in immune adaptation and initiation in the GI tract as well as at other distal mucosal sites, such as the lung. This review explores the current research describing the role of the GI microbiota in the regulation of pulmonary immune responses. Specific focus is given to understanding how intestinal “dysbiosis” affects lung health. PMID:26500629

  18. Mast cell peptidases: chameleons of innate immunity and host defense.

    PubMed

    Trivedi, Neil N; Caughey, George H

    2010-03-01

    Mast cells make and secrete an abundance of peptidases, which are stored in such large amounts in granules that they comprise a high fraction of all cellular protein. Perhaps no other immune cell is so generously endowed with peptidases. For many years after the main peptidases were first described, they were best known as markers of degranulation, for they are released locally in response to mast cell stimulation and can be distributed systemically and detected in blood. The principal peptidases are tryptases, chymases, carboxypeptidase A3, and dipeptidylpeptidase I (cathepsin C). Numerous studies suggest that these enzymes are important and even critical for host defense and homeostasis. Endogenous and allergen or pathogen-associated targets have been identified. Belying the narrow notion of peptidases as proinflammatory, several of the peptidases limit inflammation and toxicity of endogenous peptides and venoms. The peptidases are interdependent, so that absence or inactivity of one enzyme can alter levels and activity of others. Mammalian mast cell peptidases--chymases and tryptases especially--vary remarkably in number, expression, biophysical properties, and specificity, perhaps because they hyper-evolved under pressure from the very pathogens they help to repel. Tryptase and chymase involvement in some pathologies stimulated development of therapeutic inhibitors for use in asthma, lung fibrosis, pulmonary hypertension, ulcerative colitis, and cardiovascular diseases. While animal studies support the potential for mast cell peptidase inhibitors to mitigate certain diseases, other studies, as in mice lacking selected peptidases, predict roles in defense against bacteria and parasites and that systemic inactivation may impair host defense. PMID:19933375

  19. Degree-based attacks and defense strategies in complex networks

    NASA Astrophysics Data System (ADS)

    Yehezkel, Aviv; Cohen, Reuven

    2012-12-01

    We study the stability of random scale-free networks to degree-dependent attacks. We present analytical and numerical results to compute the critical fraction pc of nodes that need to be removed for destroying the network under this attack for different attack parameters. We study the effect of different defense strategies, based on the addition of a constant number of links on network robustness. We test defense strategies based on adding links to either low degree, middegree or high degree nodes. We find using analytical results and simulations that the middegree nodes defense strategy leads to the largest improvement to the network robustness against degree-based attacks. We also test these defense strategies on an internet autonomous systems map and obtain similar results.

  20. Trade-offs between acquired and innate immune defenses in humans.

    PubMed

    McDade, Thomas W; Georgiev, Alexander V; Kuzawa, Christopher W

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  1. Trade-offs between acquired and innate immune defenses in humans

    PubMed Central

    McDade, Thomas W.; Georgiev, Alexander V.; Kuzawa, Christopher W.

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  2. Divide and conquer: The remarkable story of our immune defense system

    E-print Network

    Duffy, Ken

    Divide and conquer: The remarkable story of our immune defense system An E.T.S. Walton Lecture Dr operation of the immune system that continues to this day and has had a major impact on human health facing us if we are to further unlock the power of our immune systems for medical benefit. While

  3. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity.

    PubMed

    Buonocore, Francesco; Gerdol, Marco

    2016-01-01

    The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life. PMID:26423359

  4. Immune evasion strategies used by Helicobacter pylori

    PubMed Central

    Lina, Taslima T; Alzahrani, Shatha; Gonzalez, Jazmin; Pinchuk, Irina V; Beswick, Ellen J; Reyes, Victor E

    2014-01-01

    Helicobacter pylori (H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during childhood. Once infected, people carry the bacteria for decades or even for life, if not treated. Persistent infection with this pathogen causes gastritis, peptic ulcer disease and is also strongly associated with the development of gastric cancer. Despite induction of innate and adaptive immune responses in the infected individual, the host is unable to clear the bacteria. One widely accepted hallmark of H. pylori is that it successfully and stealthily evades host defense mechanisms. Though the gastric mucosa is well protected against infection, H. pylori is able to reside under the mucus, attach to gastric epithelial cells and cause persistent infection by evading immune responses mediated by host. In this review, we discuss how H. pylori avoids innate and acquired immune response elements, uses gastric epithelial cells as mediators to manipulate host T cell responses and uses virulence factors to avoid adaptive immune responses by T cells to establish a persistent infection. We also discuss in this review how the genetic diversity of this pathogen helps for its survival. PMID:25278676

  5. Immune defense in leaf-cutting ants: a cross-fostering approach.

    PubMed

    Armitage, Sophie A O; Broch, Jens F; Marín, Hermogenes Fernández; Nash, David R; Boomsma, Jacobus J

    2011-06-01

    To ameliorate the impact of disease, social insects combine individual innate immune defenses with collective social defenses. This implies that there are different levels of selection acting on investment in immunity, each with their own trade-offs. We present the results of a cross-fostering experiment designed to address the influences of genotype and social rearing environment upon individual and social immune defenses. We used a multiply mating leaf-cutting ant, enabling us to test for patriline effects within a colony, as well as cross-colony matriline effects. The worker's father influenced both individual innate immunity (constitutive antibacterial activity) and the size of the metapleural gland, which secretes antimicrobial compounds and functions in individual and social defense, indicating multiple mating could have important consequences for both defense types. However, the primarily social defense, a Pseudonocardia bacteria that helps to control pathogens in the ants' fungus garden, showed a significant colony of origin by rearing environment interaction, whereby ants that acquired the bacteria of a foster colony obtained a less abundant cover of bacteria: one explanation for this pattern would be co-adaptation between host colonies and their vertically transmitted mutualist. These results illustrate the complexity of the selection pressures that affect the expression of multilevel immune defenses. PMID:21644963

  6. Pore-forming toxins and cellular non-immune defenses (CNIDs) Raffi Aroian1

    E-print Network

    Aroian, Raffi V.

    Pore-forming toxins and cellular non-immune defenses (CNIDs) Raffi Aroian1 and F G van der Goot2 Pore-forming toxins (PFTs) are the most common class of bacterial protein toxin and are important in response to these toxins and have no defenses against these pores is oversimplified. Rather, it appears

  7. An improved acquaintance immunization strategy for complex network.

    PubMed

    Chen, Li; Wang, Dongyi

    2015-11-21

    The acquaintance immunization strategy is a common strategy to suppress epidemic on complex network which achieves a seemingly perfect balance between cost and effectiveness compared with other canonical immunization strategies. However, the acquaintance immunization strategy fails to take the time-varying factor and local information of nodes into consideration, which limits its effectiveness in some specific network topology. Our improved immunization strategy is based on a new mathematical model Network Structure Index (NSI), which digs deep to measure the connection property and surrounding influence of a node?s neighbor nodes to better determine the importance of nodes during immunization. Both mathematical derivation and the simulation program tested on various network topology support our idea that this improved acquaintance immunization strategy protects more nodes from infection and immunizes important nodes more efficiently than the original strategies. As to say, our strategy has more adaptability and achieves a more reasonable balanced point between cost and effectiveness. PMID:26300068

  8. An Active Immune Defense with a Minimal CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) RNA and

    E-print Network

    Will, Sebastian

    An Active Immune Defense with a Minimal CRISPR (Clustered Regularly Interspaced Short Palindromic¨nzlestrasse 18, 79104 Freiburg, Germany Background: CRISPR RNAs (crRNAs) are generated by Cas6b in type I interference without Cas6b. The prokaryotic immune system CRISPR-Cas (clustered reg- ularly interspaced short

  9. What lies beneath: belowground defense strategies in plants.

    PubMed

    De Coninck, Barbara; Timmermans, Pieter; Vos, Christine; Cammue, Bruno P A; Kazan, Kemal

    2015-02-01

    Diseases caused by soil-borne pathogens result worldwide in significant yield losses in economically important crops. In contrast to foliar diseases, relatively little is known about the nature of root defenses against these pathogens. This review summarizes the current knowledge on root infection strategies, root-specific preformed barriers, pathogen recognition, and defense signaling. Studies reviewed here suggest that many commonalities as well as differences exist in defense strategies employed by roots and foliar tissues during pathogen attack. Importantly, in addition to pathogens, plant roots interact with a plethora of non-pathogenic and symbiotic microorganisms. Therefore, a good understanding of how plant roots interact with the microbiome would be particularly important to engineer resistance to root pathogens without negatively altering root-beneficial microbe interactions. PMID:25307784

  10. An engineered innate immune defense protects grapevines from Pierce disease.

    PubMed

    Dandekar, Abhaya M; Gouran, Hossein; Ibáñez, Ana María; Uratsu, Sandra L; Agüero, Cecilia B; McFarland, Sarah; Borhani, Yasmin; Feldstein, Paul A; Bruening, George; Nascimento, Rafael; Goulart, Luiz R; Pardington, Paige E; Chaudhary, Anu; Norvell, Meghan; Civerolo, Edwin; Gupta, Goutam

    2012-03-01

    We postulated that a synergistic combination of two innate immune functions, pathogen surface recognition and lysis, in a protein chimera would lead to a robust class of engineered antimicrobial therapeutics for protection against pathogens. In support of our hypothesis, we have engineered such a chimera to protect against the gram-negative Xylella fastidiosa (Xf), which causes diseases in multiple plants of economic importance. Here we report the design and delivery of this chimera to target the Xf subspecies fastidiosa (Xff), which causes Pierce disease in grapevines and poses a great threat to the wine-growing regions of California. One domain of this chimera is an elastase that recognizes and cleaves MopB, a conserved outer membrane protein of Xff. The second domain is a lytic peptide, cecropin B, which targets conserved lipid moieties and creates pores in the Xff outer membrane. A flexible linker joins the recognition and lysis domains, thereby ensuring correct folding of the individual domains and synergistic combination of their functions. The chimera transgene is fused with an amino-terminal signal sequence to facilitate delivery of the chimera to the plant xylem, the site of Xff colonization. We demonstrate that the protein chimera expressed in the xylem is able to directly target Xff, suppress its growth, and significantly decrease the leaf scorching and xylem clogging commonly associated with Pierce disease in grapevines. We believe that similar strategies involving protein chimeras can be developed to protect against many diseases caused by human and plant pathogens. PMID:22355130

  11. Incompatibility between plant-derived defensive chemistry and immune response of two sphingid herbivores.

    PubMed

    Lampert, Evan C; Bowers, M Deane

    2015-01-01

    Herbivorous insects use several different defenses against predators and parasites, and tradeoffs among defensive traits may occur if these traits are energetically demanding. Chemical defense and immune response potentially can interact, and both can be influenced by host plant chemistry. Two closely related caterpillars in the lepidopteran family Sphingidae are both attacked by the same specialist endoparasitoid species but have mostly non-overlapping host plant ranges that differ in secondary chemistry. Ceratomia catalpae is a specialist on Catalpa and also will feed on Chilopsis, which both produce iridoid glycosides. Ceratomia undulosa consumes members of the Oleaceae, which produce seco-iridoid glycosides. Immune response of the two species on a typical host plant species (Catalpa bignonioides for C. catalpa; Fraxinus americana for C. undulosa) was compared using a melanization assay, and did not differ. In a second experiment, the iridoid glycoside catalpol was added to the diets of both insects, and growth rate, mass, chemical defense, and immune response were evaluated. Increased dietary catalpol weakened the immune response of C. undulosa and altered the development rate of C. catalpae by prolonging the third instar and accelerating the fourth instar. Catalpol sequestration was negatively correlated with immune response of C. catalpae, while C. undulosa was unable to sequester catalpol. These results show that immune response can be negatively influenced by increasing concentrations of sequestered defensive compounds. PMID:25516226

  12. Plagiarizing Smartphone Applications: Attack Strategies and Defense Techniques

    E-print Network

    Nita-Rotaru, Cristina

    Plagiarizing Smartphone Applications: Attack Strategies and Defense Techniques Rahul Potharaju can launch malware onto a large number of smartphone users by plagiarizing Android appli- cations to be plagiarized. We propose three detection schemes that rely on syntac- tic fingerprinting to detect plagiarized

  13. Optimal Jamming Attack Strategies and Network Defense Policies

    E-print Network

    Koutsopoulos, Iordanis

    Optimal Jamming Attack Strategies and Network Defense Policies in Wireless Sensor Networks Mingyan Abstract--We consider a scenario where a sophisticated jammer jams an area in which a single-channel random-access-based wireless sensor network operates. The jammer controls the probability of jamming and the transmission range

  14. Complex Interplay of Body Condition, Life History, and Prevailing Environment Shapes Immune Defenses of Garter Snakes in the Wild

    E-print Network

    Bronikowski, Anne

    of immune defenses (both innate and adaptive) given the harsher envi- ronment they live in. Proliferation-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes

  15. Unmasking host and microbial strategies in the Agrobacterium-plant defense tango

    PubMed Central

    Hwang, Elizabeth E.; Wang, Melinda B.; Bravo, Janis E.; Banta, Lois M.

    2015-01-01

    Coevolutionary forces drive adaptation of both plant-associated microbes and their hosts. Eloquently captured in the Red Queen Hypothesis, the complexity of each plant–pathogen relationship reflects escalating adversarial strategies, but also external biotic and abiotic pressures on both partners. Innate immune responses are triggered by highly conserved pathogen-associated molecular patterns, or PAMPs, that are harbingers of microbial presence. Upon cell surface receptor-mediated recognition of these pathogen-derived molecules, host plants mount a variety of physiological responses to limit pathogen survival and/or invasion. Successful pathogens often rely on secretion systems to translocate host-modulating effectors that subvert plant defenses, thereby increasing virulence. Host plants, in turn, have evolved to recognize these effectors, activating what has typically been characterized as a pathogen-specific form of immunity. Recent data support the notion that PAMP-triggered and effector-triggered defenses are complementary facets of a convergent, albeit differentially regulated, set of immune responses. This review highlights the key players in the plant’s recognition and signal transduction pathways, with a focus on the aspects that may limit Agrobacterium tumefaciens infection and the ways it might overcome those defenses. Recent advances in the field include a growing appreciation for the contributions of cytoskeletal dynamics and membrane trafficking to the regulation of these exquisitely tuned defenses. Pathogen counter-defenses frequently manipulate the interwoven hormonal pathways that mediate host responses. Emerging systems-level analyses include host physiological factors such as circadian cycling. The existing literature indicates that varying or even conflicting results from different labs may well be attributable to environmental factors including time of day of infection, temperature, and/or developmental stage of the host plant. PMID:25873923

  16. Insights how monocytes and dendritic cells contribute and regulate immune defense against microbial pathogens.

    PubMed

    Bieber, Kristin; Autenrieth, Stella E

    2015-02-01

    The immune system protects from infections primarily by detecting and eliminating invading pathogens. Beside neutrophils, monocytes and dendritic cells (DCs) have been recently identified as important sentinels and effectors in combating microbial pathogens. In the steady state mononuclear phagocytes like monocytes and DCs patrol the blood and the tissues. Mammalian monocytes contribute to antimicrobial defense by supplying tissues with macrophage and DC precursors. DCs recognize pathogens and are essential in presenting antigens to initiate antigen-specific adaptive immune responses, thereby bridging the innate and adaptive immune systems. Both, monocytes and DCs play distinct roles in the shaping of immune response. In this review we will focus on the contributions of monocytes and lymphoid organ DCs to immune defense against microbial pathogens in the mouse and their dynamic regulation from steady state to infection. PMID:25468558

  17. 75 FR 8272 - Defense Federal Acquisition Regulation Supplement; Acquisition Strategies To Ensure Competition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ...Supplement; Acquisition Strategies To Ensure Competition Throughout the Life Cycle of Major Defense...202, Acquisition Strategies to Ensure Competition throughout the Lifecycle of Major Defense...includes: (1) Measures to ensure competition at both the prime contract and...

  18. Inducible Defenses Stay Up Late: Temporal Patterns of Immune Gene Expression in Tenebrio molitor

    PubMed Central

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2014-01-01

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. PMID:24318927

  19. Immunization strategy based on the critical node in percolation transition

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wei, Bo; Wang, Zhen; Deng, Yong

    2015-11-01

    The problem of finding a better immunization strategy for controlling the spreading of the epidemic with limited resources has attracted much attention since its great theoretical significance and wide application. In this letter, we propose a novel and successful targeted immunization strategy based on percolation transition. Our strategy repeatedly looks for the critical nodes for immunizing. The critical node, which leads to the emergence of the giant connected component as the degree threshold increases, is determined when the maximal second-largest connected component disappears. To test the effectiveness of the proposed method, we conduct the experiments on several artificial networks and real-world networks. The results show that the proposed method outperforms the degree centrality strategy, the betweenness centrality strategy and the adaptive degree centrality strategy with 18% to 50% fewer immunized nodes for same amount of immunization.

  20. ECOLOGICAL IMMUNOLOGY Fitness consequences of immune responses

    E-print Network

    Obbard, Darren

    ECOLOGICAL IMMUNOLOGY Fitness consequences of immune responses: strengthening the empirical fitness consequences of different strategies for immune defense. 2. Measuring the fitness consequences of immune responses is difficult, partly because of com- plex relationships between host fitness

  1. Control Systems Cyber Security: Defense-in-Depth Strategies

    SciTech Connect

    Mark Fabro

    2007-10-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecture that requires: • Maintenance of various field devices, telemetry collection, and/or industrial-level process systems • Access to facilities via remote data link or modem • Public facing services for customer or corporate operations • A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.

  2. Control Systems Cyber Security:Defense in Depth Strategies

    SciTech Connect

    David Kuipers; Mark Fabro

    2006-05-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecture that requires: Maintenance of various field devices, telemetry collection, and/or industrial-level process systems Access to facilities via remote data link or modem Public facing services for customer or corporate operations A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.

  3. Community-based Immunization Strategies for Epidemic Control

    E-print Network

    Gupta, Naveen; Cherifi, Hocine

    2014-01-01

    Understanding the epidemic dynamics, and finding out efficient techniques to control it, is a challenging issue. A lot of research has been done on targeted immunization strategies, exploiting various global network topological properties. However, in practice, information about the global structure of the contact network may not be available. Therefore, immunization strategies that can deal with a limited knowledge of the network structure are required. In this paper, we propose targeted immunization strategies that require information only at the community level. Results of our investigations on the SIR epidemiological model, using a realistic synthetic benchmark with controlled community structure, show that the community structure plays an important role in the epidemic dynamics. An extensive comparative evaluation demonstrates that the proposed strategies are as efficient as the most influential global centrality based immunization strategies, despite the fact that they use a limited amount of informatio...

  4. An experimental heat wave changes immune defense and life history traits in a freshwater snail

    PubMed Central

    Leicht, Katja; Jokela, Jukka; Seppälä, Otto

    2013-01-01

    The predicted increase in frequency and severity of heat waves due to climate change is expected to alter disease dynamics by reducing hosts' ability to resist infections. This could take place via two different mechanisms: (1) through general reduction in hosts' performance under harsh environmental conditions and/or (2) through altered resource allocation that reduces expression of defense traits in order to maintain other traits. We tested these alternative hypotheses by measuring the effect of an experimental heat wave (25 vs. 15°C) on the constitutive level of immune defense (hemocyte concentration, phenoloxidase [PO]-like activity, antibacterial activity of hemolymph), and life history traits (growth and number of oviposited eggs) of the great pond snail Lymnaea stagnalis. We also manipulated the exposure time to high temperature (1, 3, 5, 7, 9, or 11 days). We found that if the exposure to high temperature lasted <1 week, immune function was not affected. However, when the exposure lasted longer than that, the level of snails' immune function (hemocyte concentration and PO-like activity) was reduced. Snails' growth and reproduction increased within the first week of exposure to high temperature. However, longer exposures did not lead to a further increase in cumulative reproductive output. Our results show that short experimental heat waves do not alter immune function but lead to plastic responses that increase snails' growth and reproduction. Thus, although the relative expression of traits changes, short experimental heat waves do not impair snails' defenses. Negative effects on performance get pronounced when the heat waves are prolonged suggesting that high performance cannot be maintained over long time periods. This ultimately reduces the levels of defense traits. PMID:24455121

  5. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations

    PubMed Central

    2015-01-01

    Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to variability in the larval environment and calls for research into the relative influence of potentially less benign anthropogenic environmental changes on innate immune defense traits. PMID:26107644

  6. Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer.

    PubMed

    Sasagawa, Toshiyuki; Takagi, Hiroaki; Makinoda, Satoru

    2012-12-01

    Human papillomavirus (HPV) is the most important etiological factor for cervical cancer. A recent study demonstrated that more than 20 HPV types were thought to be oncogenic for uterine cervical cancer. Notably, more than one-half of women show cervical HPV infections soon after their sexual debut, and about 90 % of such infections are cleared within 3 years. Immunity against HPV might be important for elimination of the virus. The innate immune responses involving macrophages, natural killer cells, and natural killer T cells may play a role in the first line of defense against HPV infection. In the second line of defense, adaptive immunity via cytotoxic T lymphocytes (CTLs) targeting HPV16 E2 and E6 proteins appears to eliminate cells infected with HPV16. However, HPV can evade host immune responses. First, HPV does not kill host cells during viral replication and therefore neither presents viral antigen nor induces inflammation. HPV16 E6 and E7 proteins downregulate the expression of type-1 interferons (IFNs) in host cells. The lack of co-stimulatory signals by inflammatory cytokines including IFNs during antigen recognition may induce immune tolerance rather than the appropriate responses. Moreover, HPV16 E5 protein downregulates the expression of HLA-class 1, and it facilitates evasion of CTL attack. These mechanisms of immune evasion may eventually support the establishment of persistent HPV infection, leading to the induction of cervical cancer. Considering such immunological events, prophylactic HPV16 and 18 vaccine appears to be the best way to prevent cervical cancer in women who are immunized in adolescence. PMID:23117294

  7. Kelps feature systemic defense responses: insights into the evolution of innate immunity in multicellular eukaryotes.

    PubMed

    Thomas, François; Cosse, Audrey; Le Panse, Sophie; Kloareg, Bernard; Potin, Philippe; Leblanc, Catherine

    2014-11-01

    Brown algae are one of the few eukaryotic lineages that have evolved complex multicellularity, together with Opisthokonts (animals, fungi) and Plantae (land plants, green and red algae). In these three lineages, biotic stresses induce similar local defense reactions. Animals and land plants also feature a systemic immune response, protecting the whole organism after an attack on one of its parts. However, the occurrence of systemic defenses has never been investigated in brown algae. We elicited selected parts of the kelp Laminaria digitata and monitored distant, nonchallenged areas of the same individual for subsequent defense reactions. A systemic reaction was detected following elicitation on a distant area, including an oxidative response, an increase in haloperoxidase activities and a stronger resistance against herbivory. Based on experiments with pharmacological inhibitors, the liberation of free fatty acids is proposed to play a key role in systemic signaling, reminiscent of what is known in land plants. This study is the first report, outside the phyla of Opisthokonts and Plantae, of an intraorganism communication leading to defense reactions. These findings indicate that systemic immunity emerged independently at least three times, as a consequence of convergent evolution in multicellular eukaryotic lineages. PMID:25041157

  8. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  9. Roles of small RNAs in the immune defense mechanisms of crustaceans.

    PubMed

    He, Yaodong; Ju, Chenyu; Zhang, Xiaobo

    2015-12-01

    Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans. PMID:26210184

  10. Immune response

    MedlinePLUS

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense system ...

  11. Isonitrosoacetophenone Drives Transcriptional Reprogramming in Nicotiana tabacum Cells in Support of Innate Immunity and Defense

    PubMed Central

    Djami-Tchatchou, Arnaud T.; Maake, Mmapula P.; Piater, Lizelle A.; Dubery, Ian A.

    2015-01-01

    Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP) were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta. PMID:25658943

  12. An Efficient Immunization Strategy for Community Networks

    PubMed Central

    Gong, Kai; Tang, Ming; Hui, Pak Ming; Zhang, Hai Feng; Younghae, Do; Lai, Ying-Cheng

    2013-01-01

    An efficient algorithm that can properly identify the targets to immunize or quarantine for preventing an epidemic in a population without knowing the global structural information is of obvious importance. Typically, a population is characterized by its community structure and the heterogeneity in the weak ties among nodes bridging over communities. We propose and study an effective algorithm that searches for bridge hubs, which are bridge nodes with a larger number of weak ties, as immunizing targets based on the idea of referencing to an expanding friendship circle as a self-avoiding walk proceeds. Applying the algorithm to simulated networks and empirical networks constructed from social network data of five US universities, we show that the algorithm is more effective than other existing local algorithms for a given immunization coverage, with a reduced final epidemic ratio, lower peak prevalence and fewer nodes that need to be visited before identifying the target nodes. The effectiveness stems from the breaking up of community networks by successful searches on target nodes with more weak ties. The effectiveness remains robust even when errors exist in the structure of the networks. PMID:24376708

  13. Immunization strategy for epidemic spreading on multilayer networks

    E-print Network

    Buono, C

    2014-01-01

    In many real-world complex systems, individuals have many kind of interactions among them, suggesting that it is necessary to consider a layered structure framework to model systems such as social interactions. This structure can be captured by multilayer networks and can have major effects on the spreading of process that occurs over them, such as epidemics. In this Letter we study a targeted immunization strategy for epidemic spreading over a multilayer network. We apply the strategy in one of the layers and study its effect in all layers of the network disregarding degree-degree correlation among layers. We found that the targeted strategy is not as efficient as in isolated networks, due to the fact that in order to stop the spreading of the disease it is necessary to immunize more than the 80 % of the individuals. However, the size of the epidemic is drastically reduced in the layer where the immunization strategy is applied compared to the case with no mitigation strategy. Thus, the immunization strategy...

  14. Role of transglutaminase in immune defense against bacterial pathogens via regulation of antimicrobial peptides.

    PubMed

    Zhu, You-Ting; Li, Dan; Zhang, Xing; Li, Xue-Jie; Li, Wei-Wei; Wang, Qun

    2016-02-01

    Transglutaminase (TGase) is critical for blood coagulation, a conserved immunological defense mechanism among invertebrates. Here, a 3248-bp (full-length) TGase cDNA in Eriocheir sinensis (EsTGase) was cloned, with a 2274-bp open reading frame (ORF) encoding a 757 amino acid protein containing two transglut domains, one TGase/protease-like homolog domain and a KGD (Lys-Gly-Asp) motif. Phylogenetic analysis demonstrated that EsTGase appeared earlier in evolution compared with TGases of other crustaceans and mammals. EsTGase mRNA was mainly detected in hemocytes and up-regulated post-challenge with bacteria (Vibrio parahaemolyticus and Staphylococcus aureus), suggesting an immune function for this gene. Moreover, the EsTGase activity in hemocytes challenged with V. parahaemolyticus and S. aureus was decreased significantly. RNA interference of EsTGase down-regulated expression of immune-related genes CrusEs2, EsLecG and Es-DWD1 with or without bacteria stimulation in vitro. Furthermore, absence of EsTGase led to higher bacterial counts in the hemocyte culture medium. Thus, EsTGase is an important component of the crab immune response and is involved in the regulation of certain immune-related genes, particularly those encoding anti-microbial peptides. PMID:26464201

  15. Design Space and Analysis of Worm Defense Strategies David Brumley Li-Hao Liu Pongsin Poosankam Dawn Song

    E-print Network

    Brumley, David

    Design Space and Analysis of Worm Defense Strategies David Brumley Li-Hao Liu Pongsin Poosankam,lhliu,ppoosank,dawnsong}@cmu.edu ABSTRACT We give the first systematic investigation of the design space of worm defense system strategies- based analysis of how these strategies compare as worm defense systems. Finally, we offer

  16. Economics and Homeland Security Strategies: Issues regarding Carcass Disposal in Design of Animal Disease Defense Systems

    E-print Network

    McCarl, Bruce A.

    Economics and Homeland Security Strategies: Issues regarding Carcass Disposal in Design of Animal for Foreign Animal and Zoonotic Disease Defense (FAZDD) that was established by the Department of Homeland, and with the food supply component of the economy animal disease defense is one of the major concerns. When

  17. Adolescent Humor and Its Relationship to Coping, Defense Strategies, Psychological Distress, and Well-Being

    ERIC Educational Resources Information Center

    Erickson, Sarah J.; Feldstein, Sarah W.

    2007-01-01

    Objective: This study investigated the psychometric properties of the Humor Styles Questionnaire (HSQ) in measuring adolescent humor, including the relationship between humor and coping style, defense style, depressive symptoms, and adjustment in a non-clinical sample of adolescents. Method: Humor, coping, defense strategies, depressive symptoms,…

  18. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.

    PubMed

    Vinay, Dass S; Ryan, Elizabeth P; Pawelec, Graham; Talib, Wamidh H; Stagg, John; Elkord, Eyad; Lichtor, Terry; Decker, William K; Whelan, Richard L; Kumara, H M C Shantha; Signori, Emanuela; Honoki, Kanya; Georgakilas, Alexandros G; Amin, Amr; Helferich, William G; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Keith, W Nicol; Bilsland, Alan; Bhakta, Dipita; Halicka, Dorota; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan; Choi, Beom K; Kwon, Byoung S

    2015-12-01

    Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, ?? T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection. PMID:25818339

  19. Quantitative proteomics of the human skin secretome reveal a reduction in immune defense mediators in ectodermal dysplasia patients.

    PubMed

    Burian, Marc; Velic, Ana; Matic, Katarina; Günther, Stephanie; Kraft, Beatrice; Gonser, Lena; Forchhammer, Stephan; Tiffert, Yvonne; Naumer, Christian; Krohn, Michael; Berneburg, Mark; Yazdi, Amir S; Ma?ek, Boris; Schittek, Birgit

    2015-03-01

    In healthy human skin host defense molecules such as antimicrobial peptides (AMPs) contribute to skin immune homeostasis. In patients with the congenital disease ectodermal dysplasia (ED) skin integrity is disturbed and as a result patients have recurrent skin infections. The disease is characterized by developmental abnormalities of ectodermal derivatives and absent or reduced sweating. We hypothesized that ED patients have a reduced skin immune defense because of the reduced ability to sweat. Therefore, we performed a label-free quantitative proteome analysis of wash solution of human skin from ED patients or healthy individuals. A clear-cut difference between both cohorts could be observed in cellular processes related to immunity and host defense. In line with the extensive underrepresentation of proteins of the immune system, dermcidin, a sweat-derived AMP, was reduced in its abundance in the skin secretome of ED patients. In contrast, proteins involved in metabolic/catabolic and biosynthetic processes were enriched in the skin secretome of ED patients. In summary, our proteome profiling provides insights into the actual situation of healthy versus diseased skin. The systematic reduction in immune system and defense-related proteins may contribute to the high susceptibility of ED patients to skin infections and altered skin colonization. PMID:25347115

  20. Common security as a strategy for the defense of the West

    SciTech Connect

    Windass, S.

    1985-01-01

    This book is a search for a possible way forward for a valid non-nuclear strategy for NATO by a team of eminent writers on defence matters in consultation with the Defense Research Trust. Contents (partial): Foreward, General Sir Hugh Beach, GBE, KCB, MC. Problems of NATO defence, S. Windass. Trends in military technology, P. Walker. Essentials of defensive deterrence, S. Windass. Economic implications, D. Greenwood. Defensive deterrents and Soviet strategy, S. Shenfield. The role of Germany, P. Windsor. Nuclear guidelines, S. Windass.

  1. Optimal Control Strategy for Abnormal Innate Immune Response

    PubMed Central

    Tan, Jinying; Zou, Xiufen

    2015-01-01

    Innate immune response plays an important role in control and clearance of pathogens following viral infection. However, in the majority of virus-infected individuals, the response is insufficient because viruses are known to use different evasion strategies to escape immune response. In this study, we use optimal control theory to investigate how to control the innate immune response. We present an optimal control model based on an ordinary-differential-equation system from a previous study, which investigated the dynamics and regulation of virus-triggered innate immune signaling pathways, and we prove the existence of a solution to the optimal control problem involving antiviral treatment or/and interferon therapy. We conduct numerical experiments to investigate the treatment effects of different control strategies through varying the cost function and control efficiency. The results show that a separate treatment, that is, only inhibiting viral replication (u1(t)) or enhancing interferon activity (u2(t)), has more advantages for controlling viral infection than a mixed treatment, that is, controlling both (u1(t)) and (u2(t)) simultaneously, including the smallest cost and operability. These findings would provide new insight for developing effective strategies for treatment of viral infectious diseases. PMID:25949271

  2. Immune-Related Transcriptome of Coptotermes formosanus Shiraki Workers: The Defense Mechanism

    PubMed Central

    Hussain, Abid; Li, Yi-Feng; Cheng, Yu; Liu, Yang; Chen, Chuan-Cheng; Wen, Shuo-Yang

    2013-01-01

    Formosan subterranean termites, Coptotermes formosanus Shiraki, live socially in microbial-rich habitats. To understand the molecular mechanism by which termites combat pathogenic microbes, a full-length normalized cDNA library and four Suppression Subtractive Hybridization (SSH) libraries were constructed from termite workers infected with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana), Gram-positive Bacillus thuringiensis and Gram-negative Escherichia coli, and the libraries were analyzed. From the high quality normalized cDNA library, 439 immune-related sequences were identified. These sequences were categorized as pattern recognition receptors (47 sequences), signal modulators (52 sequences), signal transducers (137 sequences), effectors (39 sequences) and others (164 sequences). From the SSH libraries, 27, 17, 22 and 15 immune-related genes were identified from each SSH library treated with M. anisopliae, B. bassiana, B. thuringiensis and E. coli, respectively. When the normalized cDNA library was compared with the SSH libraries, 37 immune-related clusters were found in common; 56 clusters were identified in the SSH libraries, and 259 were identified in the normalized cDNA library. The immune-related gene expression pattern was further investigated using quantitative real time PCR (qPCR). Important immune-related genes were characterized, and their potential functions were discussed based on the integrated analysis of the results. We suggest that normalized cDNA and SSH libraries enable us to discover functional genes transcriptome. The results remarkably expand our knowledge about immune-inducible genes in C. formosanus Shiraki and enable the future development of novel control strategies for the management of Formosan subterranean termites. PMID:23874972

  3. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    PubMed

    Liu, Heng; Patil, Harshad P; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  4. Plant Lectins: Wheat Defense Strategy Against Hessian Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants produce a variety of defense proteins, including lectins in response to attack by phytophagous insects. Ultrastructural studies reveal that binding to insect gut structures and resistance to proteolytic degradation by insect digestive enzymes are the two main prerequisites for the lectins to...

  5. Phylogenetic escalation and decline of plant defense strategies

    E-print Network

    Agrawal, Anurag

    rate. We constructed a molecular phylogeny of 38 species of milkweed and tested four major predictions trends milkweed Asclepias plant defense theory Milkweeds (Asclepias spp., Apocynaceae) are prime candi, and trichomes--have been strongly implicated in providing milkweed resistance against herbivores. Each

  6. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification

    PubMed Central

    Locato, Vittoria; Cimini, Sara; Gara, Laura De

    2013-01-01

    Vitamin C participates in several physiological processes, among others, immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption. Severe deficiency leads to scurvy, whereas a limited vitamin C intake causes general symptoms, such as increased susceptibility to infections, fatigue, insomnia, and weight loss. Surprisingly vitamin C deficiencies are spread in both developing and developed countries, with the latter actually trying to overcome this lack through dietary supplements and food fortification. Therefore new strategies aimed to increase vitamin C in food plants would be of interest to improve human health. Interestingly, plants are not only living bioreactors for vitamin C production in optimal growing conditions, but also they can increase their vitamin C content as consequence of stress conditions. An overview of the different approaches aimed at increasing vitamin C level in plant food is given. They include genotype selection by “classical” breeding, bio-engineering and changes of the agronomic conditions, on the basis of the emerging concepts that plant can enhance vitamin C synthesis as part of defense responses. PMID:23734160

  7. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis

    PubMed Central

    Mondy, Samuel; Tranchimand, Sylvain; Rumeau, Dominique; Boudsocq, Marie; Garcia, Ana Victoria; Douki, Thierry; Bigeard, Jean; Laurière, Christiane; Chevalier, Anne; Castresana, Carmen; Hirt, Heribert

    2013-01-01

    Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity. PMID:23526882

  8. Epidemic spreading and immunization strategy in multiplex networks

    E-print Network

    Zuzek, Lucila G Alvarez; Braunstein, Lidia A

    2015-01-01

    A more connected world has brought major consequences such as facilitate the spread of diseases all over the world to quickly become epidemics, reason why researchers are concentrated in modeling the propagation of epidemics and outbreaks in Multilayer Networks. In this networks all nodes interact in different layers with different type of links. However, in many scenarios such as in the society, a Multiplex Network framework is not completely suitable since not all individuals participate in all layers. In this paper, we use a partially overlapped Multiplex Network where only a fraction of the individuals are shared by the layers. We develop a mitigation strategy for stopping a disease propagation, considering the Susceptible-Infected-Recover model, in a system consisted by two layers. We consider a random immunization in one of the layers and study the effect of the overlapping fraction in both, the propagation of the disease and the immunization strategy. Using branching theory, we study this scenario theo...

  9. WHY INDUCED DEFENSES MAY BE FAVORED OVER CONSTITUTIVE STRATEGIES IN PLANTS

    E-print Network

    Agrawal, Anurag

    Chapter 3 WHY INDUCED DEFENSES MAY BE FAVORED OVER CONSTITUTIVE STRATEGIES IN PLANTS Anurag A be favored over constitutive strategies in plants, p. 45-61. In: The ecology and evolution of inducible induced resistance has been documented in over 100 species of plants, why plants employ facultative

  10. Classification of inflammatory skin diseases: a proposal based on the disorders of the three-layered defense systems, barrier, innate immunity and acquired immunity.

    PubMed

    Dainichi, Teruki; Hanakawa, Sho; Kabashima, Kenji

    2014-11-01

    The host defense system of the skin is composed of (1) a barrier, (2) innate immunity, and (3) acquired immunity. Inflammatory skin diseases can be classified into one of the disorders of these layers of the defense system, unless there is an ordinary response to specific infectious agents or internal/external injury. Any inflammatory skin disease partly simulates the response to real infections or dangers. Disorders of acquired immunity can be classified into (1) immunodeficiency, (2) immunohyperactivity (allergy), and (3) qualitative disorder (autoimmunity). Disorders of innate immunity can be classified into (1) innate immunodeficiency, (2) innate immunohyperactivity (general or local autoinflammation), and (3) qualitative disorder (general or local innate autoimmunity). The barrier of the skin is composed of (1) the physical barrier and (2) the chemical barrier. Several diseases, such as atopic dermatitis, are attributed to the disorder of these components of the barrier. Here, we propose an algorithm to classify the pathology of inflammatory skin diseases by means of what disorder in the specific layer of the host defense system is truly responsible. PMID:25242498

  11. Optimization strategies with resource scarcity: From immunization of networks to the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Agliari, Elena; Cassi, Davide

    2015-10-01

    The best strategy to immunize a complex network is usually evaluated in terms of the percolation threshold, i.e. the number of vaccine doses which make the largest connected cluster (LCC) vanish. The strategy inducing the minimum percolation threshold represents the optimal way to immunize the network. Here we show that the efficacy of the immunization strategies can change during the immunization process. This means that, if the number of doses is limited, the best strategy is not necessarily the one leading to the smallest percolation threshold. This outcome should warn about the adoption of global measures in order to evaluate the best immunization strategy.

  12. The full-of-bacteria gene is required for phagosome maturation during immune defense in Drosophila

    PubMed Central

    Akbar, Mohammed Ali; Tracy, Charles; Kahr, Walter H.A.

    2011-01-01

    Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is a fatal recessive disorder caused by mutations in the VPS33B or VPS16B genes. Both encode homologues of the Vps33p and Vps16p subunits of the HOPS complex necessary for fusions of vacuoles in yeast. Here, we describe a mutation in the full-of-bacteria (fob) gene, which encodes Drosophila Vps16B. Flies null for fob are homozygous viable and fertile. They exhibit, however, a defect in their immune defense that renders them hypersensitive to infections with nonpathogenic bacteria. fob hemocytes (fly macrophages) engulf bacteria but fail to digest them. Phagosomes undergo early steps of maturation and transition to a Rab7-positive stage, but do not mature to fully acidified phagolysosomes. This reflects a specific requirement of fob in the fusion of phagosomes with late endosomes/lysosomes. In contrast, cargo of autophagosomes as well as endosomes exhibit normal lysosomal delivery in fob cells. These findings suggest that defects in phagosome maturation may contribute to symptoms of ARC patients including recurring infections. PMID:21282466

  13. Immune checkpoint modulation: rational design of combination strategies.

    PubMed

    Zamarin, Dmitriy; Postow, Michael A

    2015-06-01

    Immune recognition and elimination of malignant cells require a series of steps orchestrated by the innate and the adaptive arms of the immune system. The majority of tumors have evolved mechanisms that allow for successful evasion of these immune responses. Recognition of these evasive processes led to the development of immunotherapeutic antibodies targeting the co-stimulatory and co-inhibitory receptors on T cells, with the goal of enhancement of T cell activation or reversal of tumor-induced T cell inhibition. Several of these agents, such as antibodies targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death receptor 1 (PD-1) have already demonstrated significant promise in clinical trials. Clinical benefit of these antibodies as single agents, however, has been limited to a subset of patients and has not been observed in all tumor types. These limitations call for the development of rational combination strategies aiming to extend therapeutic benefit to a broader range of patients. These include: 1) modalities that enhance antigen presentation, such as radiation, cryotherapy, chemotherapy, targeted agents, vaccines, toll-like receptor (TLR) agonists, type I interferon, and oncolytic viruses; 2) additional agents aiming to reverse T cell dysfunction, such as other immune checkpoint inhibitors; and 3) agents targeting other immune inhibitory mechanisms, such as inhibitors of indoleamine dioxygenase (IDO), regulatory T cells, and myeloid-derived suppressor cells (MDSCs). It is becoming increasingly evident that the efficacy of specific combinations will likely not be universal and that the choice of a treatment modality may need to be tailored to fit the needs of each individual patient. PMID:25583297

  14. Epidemic spreading and immunization strategy in multiplex networks

    NASA Astrophysics Data System (ADS)

    Alvarez Zuzek, Lucila G.; Buono, Camila; Braunstein, Lidia A.

    2015-09-01

    A more connected world has brought major consequences such as facilitate the spread of diseases all over the world to quickly become epidemics, reason why researchers are concentrated in modeling the propagation of epidemics and outbreaks in multilayer networks. In this networks all nodes interact in different layers with different type of links. However, in many scenarios such as in the society, a multiplex network framework is not completely suitable since not all individuals participate in all layers. In this paper, we use a partially overlapped, multiplex network where only a fraction of the individuals are shared by the layers. We develop a mitigation strategy for stopping a disease propagation, considering the Susceptible-Infected- Recover model, in a system consisted by two layers. We consider a random immunization in one of the layers and study the effect of the overlapping fraction in both, the propagation of the disease and the immunization strategy. Using branching theory, we study this scenario theoretically and via simulations and find a lower epidemic threshold than in the case without strategy.

  15. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells

    PubMed Central

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines. PMID:26258152

  16. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells.

    PubMed

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines. PMID:26258152

  17. Leading Edge Antiviral Strategies: Building a Better Defense

    E-print Network

    Ferguson, Andrew

    - roquine. Vaccination against hepatitis A is a very successful strategy for limiting infection, and given or vaccines are often still lacking. To combat the rapid pace of viral evolution and the continual emergence of new strains, broadly neutralizing therapies or vaccines that can target multiple strains are in high

  18. Toxin Production as a Wheat Defense Strategy against Hessian fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hessian fly (Mayetiola destructor) is one of the major insect pests of wheat (Triticum spp.), with severe infestations leading to complete loss of seed set. Currently, the most effective control of this pest is deployment of host-plant resistance (R) genes in wheat. However, this strategy is challen...

  19. Unique defense strategy by the endoplasmic reticulum body in plants.

    PubMed

    Yamada, Kenji; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2011-12-01

    The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the ?-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other ?-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi. PMID:22102697

  20. Molecular properties and immune defense of two ferritin subunits from freshwater pearl mussel, Hyriopsis schlegelii.

    PubMed

    He, Shuhao; Peng, Kou; Hong, Yijiang; Wang, Junhua; Sheng, Junqing; Gu, Qing

    2013-03-01

    Ferritin is a conserved iron-binding protein involved in cellular iron metabolism and host defense. In the present study, two distinct cDNAs for ferritins in the freshwater pearl mussel Hyriopsis schlegelii were identified (designated as HsFer-1 and HsFer-2) by SMART RACE approach and expressed sequence tag (EST) analysis. The full-length cDNAs of HsFer-1 and HsFer-2 were of 760 and 877 bp, respectively. Both of the two cDNAs contained an open reading frame (ORF) of 522 bp encoding for 174 amino acid residues. Sequence characterization and homology alignment indicated that HsFer-1 and HsFer-2 had higher similarity to H-type subunit of vertebrate ferritins than L-type subunit. Analysis of the HsFer-1 and HsFer-2 untranslated regions (UTR) showed that both of them had an iron response element (IRE) in the 5'-UTR, which was considered to be the binding site for iron regulatory protein (IRP). Quantitative real-time PCR (qPCR) assays were employed to examine the mRNA expression profiles. Under normal physiological conditions, the expression level of both HsFer-1 and HsFer-2 mRNA were the highest in hepatopancreas, moderate in gonad, axe foot, intestine, kidney, heart, gill, adductor muscle and mantle, the lowest in hemocytes. After stimulation with bacteria Aeromonas hydrophila, HsFer-1 mRNA experienced a different degree of increase in the tissues of hepatopancreas, gonad and hemocytes, the peak level was 2.47-fold, 9.59-fold and 1.37-fold, respectively. Comparatively, HsFer-2 showed up-regulation in gonad but down-regulation in hepatopancreas and hemocytes. Varying expression patterns indicate that two types of ferritins in H. schlegelii might play different roles in response to bacterial challenge. Further bacteriostatic analysis showed that both the purified recombinant ferritins inhibited the growth of A. hydrophila to a certain degree. Collectively, our results suggest that HsFer-1 and HsFer-2 are likely to be functional proteins involved in immune defense against bacterial infection. PMID:23339972

  1. 75 FR 8272 - Defense Federal Acquisition Regulation Supplement; Acquisition Strategies To Ensure Competition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ...; Acquisition Strategies To Ensure Competition Throughout the Life Cycle of Major Defense Acquisition Programs... life cycle as a means to improve contractor performance; and (2) adequate documentation of the... level and subcontract level (at such tier or tiers as are appropriate) throughout the program life...

  2. 75 FR 54524 - Defense Federal Acquisition Regulation Supplement; Acquisition Strategies To Ensure Competition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ...; Acquisition Strategies To Ensure Competition Throughout the Life Cycle of Major Defense Acquisition Programs... level of the MDAP throughout its life cycle as a means to improve contractor performance; and (2... basis with full consideration of all sources. An interim rule was published at 75 FR 8272 on February...

  3. Strategies to use immune modulators in therapeutic vaccines against cancer.

    PubMed

    Berzofsky, Jay A; Terabe, Masaki; Wood, Lauren V

    2012-06-01

    Cancers so much resemble self that they prove difficult for the immune system to eliminate, and those that have already escaped natural immunosurveillance have gotten past the natural immune barriers to malignancy. A successful therapeutic cancer vaccine must overcome these escape mechanisms. Our laboratory has focused on a multistep "push-pull" approach in which we combine strategies to overcome each of the mechanisms of escape. If tumor epitopes are insufficiently immunogenic, we increase their immunogenicity by epitope enhancement, improving their binding affinity to major histocompatibility complex (MHC) molecules. If the anti-tumor response is too weak or of the wrong phenotype, we use cytokines, costimulatory molecules, Toll-like receptor ligands, and other molecular adjuvants to increase not only the quantity of the response but also its quality, to push the response in the right direction. Finally, the tumor invokes multiple immunosuppressive mechanisms to defend itself, so we need to overcome those as well, including blocking or depleting regulatory cells or inhibiting regulatory molecules, to pull the response by removing the brakes. Some of these strategies individually have now been translated into human clinical trials in cancer patients. Combinations of these in a push-pull approach are promising for the successful immunotherapy of cancer. PMID:22595057

  4. Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems

    PubMed Central

    Rosenzweig, Jason A.; Chopra, Ashok K.

    2013-01-01

    Like other pathogenic bacteria, Yersinia and Aeromonas species have been continuously co-evolving with their respective hosts. Although the former is a bonafide human pathogen, the latter has gained notararity as an emerging disease-causing agent. In response to immune cell challenges, bacterial pathogens have developed diverse mechanism(s) enabling their survival, and, at times, dominance over various host immune defense systems. The bacterial type three secretion system (T3SS) is evolutionarily derived from flagellar subunits and serves as a vehicle by which microbes can directly inject/translocate anti-host factors/effector proteins into targeted host immune cells. A large number of Gram-negative bacterial pathogens possess a T3SS empowering them to disrupt host cell signaling, actin cytoskeleton re-arrangements, and even to induce host-cell apoptotic and pyroptotic pathways. All pathogenic yersiniae and most Aeromonas species possess a T3SS, but they also possess T2- and T6-secreted toxins/effector proteins. This review will focus on the mechanisms by which the T3SS effectors Yersinia outer membrane protein J (YopJ) and an Aeromonas hydrophila AexU protein, isolated from the diarrheal isolate SSU, mollify host immune system defenses. Additionally, the mechanisms that are associated with host cell apoptosis/pyroptosis by Aeromonas T2SS secreted Act, a cytotoxic enterotoxin, and Hemolysin co-regulated protein (Hcp), an A. hydrophila T6SS effector, will also be discussed. PMID:24199174

  5. Innate immune defense defines susceptibility of sarcoma cells to measles vaccine virus-based oncolysis.

    PubMed

    Berchtold, Susanne; Lampe, Johanna; Weiland, Timo; Smirnow, Irina; Schleicher, Sabine; Handgretinger, Rupert; Kopp, Hans-Georg; Reiser, Jeanette; Stubenrauch, Frank; Mayer, Nora; Malek, Nisar P; Bitzer, Michael; Lauer, Ulrich M

    2013-03-01

    The oncolytic potential of measles vaccine virus (MeV) has been demonstrated in several tumor entities. Here, we investigated the susceptibility of eight sarcoma cell lines to MeV-mediated oncolysis and found five to be susceptible, whereas three proved to be resistant. In the MeV-resistant cell lines, we often observed an inhibition of viral replication along with a strong upregulation of the intracellular virus-sensing molecule RIG-I and of the interferon (IFN)-stimulated gene IFIT1. Not only expression of IFIT1 but also phosphorylation of IFN-stimulated Stat1 took place rapidly and were found to be persistent over time. In contrast, susceptible cell lines showed a much weaker, delayed, or completely missing expression of IFIT1 as well as a delayed or only transient phosphorylation of Stat1, whereas exogenic stimulation with beta interferon (IFN-?) resulted in a comparable profound activation of Stat1 and expression of IFIT1 in all cell lines. Pretreatment with IFN-? rendered three of the susceptible cell lines more resistant to MeV-mediated oncolysis. These data suggest that differences in the innate immune defense often account for different degrees of susceptibility of sarcoma cell lines to MeV-mediated oncolysis. From a therapeutic perspective, we were able to overcome resistance to MeV by increasing the multiplicity of infection (MOI) and by addition of the prodrug 5-fluorocytosine (FC), thereby exploiting the suicide gene function of virotherapeutic vector MeV-SCD armed with the SCD fusion protein, which consists of yeast cytosine deaminase and yeast uracil phosphoribosyltransferase. PMID:23302892

  6. Innate Immune Defense Defines Susceptibility of Sarcoma Cells to Measles Vaccine Virus-Based Oncolysis

    PubMed Central

    Berchtold, Susanne; Lampe, Johanna; Weiland, Timo; Smirnow, Irina; Schleicher, Sabine; Handgretinger, Rupert; Kopp, Hans-Georg; Reiser, Jeanette; Stubenrauch, Frank; Mayer, Nora; Malek, Nisar P.; Bitzer, Michael

    2013-01-01

    The oncolytic potential of measles vaccine virus (MeV) has been demonstrated in several tumor entities. Here, we investigated the susceptibility of eight sarcoma cell lines to MeV-mediated oncolysis and found five to be susceptible, whereas three proved to be resistant. In the MeV-resistant cell lines, we often observed an inhibition of viral replication along with a strong upregulation of the intracellular virus-sensing molecule RIG-I and of the interferon (IFN)-stimulated gene IFIT1. Not only expression of IFIT1 but also phosphorylation of IFN-stimulated Stat1 took place rapidly and were found to be persistent over time. In contrast, susceptible cell lines showed a much weaker, delayed, or completely missing expression of IFIT1 as well as a delayed or only transient phosphorylation of Stat1, whereas exogenic stimulation with beta interferon (IFN-?) resulted in a comparable profound activation of Stat1 and expression of IFIT1 in all cell lines. Pretreatment with IFN-? rendered three of the susceptible cell lines more resistant to MeV-mediated oncolysis. These data suggest that differences in the innate immune defense often account for different degrees of susceptibility of sarcoma cell lines to MeV-mediated oncolysis. From a therapeutic perspective, we were able to overcome resistance to MeV by increasing the multiplicity of infection (MOI) and by addition of the prodrug 5-fluorocytosine (FC), thereby exploiting the suicide gene function of virotherapeutic vector MeV-SCD armed with the SCD fusion protein, which consists of yeast cytosine deaminase and yeast uracil phosphoribosyltransferase. PMID:23302892

  7. Targeting an antimicrobial effector function in insect immunity as a pest control strategy

    PubMed Central

    Bulmer, Mark S.; Bachelet, Ido; Raman, Rahul; Rosengaus, Rebeca B.; Sasisekharan, Ram

    2009-01-01

    Insect pests such as termites cause damages to crops and man-made structures estimated at over $30 billion per year, imposing a global challenge for the human economy. Here, we report a strategy for compromising insect immunity that might lead to the development of nontoxic, sustainable pest control methods. Gram-negative bacteria binding proteins (GNBPs) are critical for sensing pathogenic infection and triggering effector responses. We report that termite GNBP-2 (tGNBP-2) shows ?(1,3)-glucanase effector activity previously unknown in animal immunity and is a pleiotropic pattern recognition receptor and an antimicrobial effector protein. Termites incorporate this protein into the nest building material, where it functions as a nest-embedded sensor that cleaves and releases pathogenic components, priming termites for improved antimicrobial defense. By means of rational design, we present an inexpensive, nontoxic small molecule glycomimetic that blocks tGNBP-2, thus exposing termites in vivo to accelerated infection and death from specific and opportunistic pathogens. Such a molecule, introduced into building materials and agricultural methods, could protect valuable assets from insect pests. PMID:19506247

  8. The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis thaliana

    PubMed Central

    Sarris, Panagiotis F.; Woo, Joo Yong; Williams, Simon J.; Newman, Toby E.; Paek, Kyung Hee; Kobe, Bostjan; Jones, Jonathan D. G.

    2014-01-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific “avirulent” pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector. PMID:25340333

  9. Production and Release of Antimicrobial and Immune Defense Proteins by Mammary Epithelial Cells following Streptococcus uberis Infection of Sheep

    PubMed Central

    Pisanu, Salvatore; Marogna, Gavino; Cubeddu, Tiziana; Pagnozzi, Daniela; Cacciotto, Carla; Campesi, Franca; Schianchi, Giuseppe; Rocca, Stefano

    2013-01-01

    Investigating the innate immune response mediators released in milk has manifold implications, spanning from elucidation of the role played by mammary epithelial cells (MECs) in fighting microbial infections to the discovery of novel diagnostic markers for monitoring udder health in dairy animals. Here, we investigated the mammary gland response following a two-step experimental infection of lactating sheep with the mastitis-associated bacterium Streptococcus uberis. The establishment of infection was confirmed both clinically and by molecular methods, including PCR and fluorescent in situ hybridization of mammary tissues. Proteomic investigation of the milk fat globule (MFG), a complex vesicle released by lactating MECs, enabled detection of enrichment of several proteins involved in inflammation, chemotaxis of immune cells, and antimicrobial defense, including cathelicidins and calprotectin (S100A8/S100A9), in infected animals, suggesting the consistent involvement of MECs in the innate immune response to pathogens. The ability of MECs to produce and release antimicrobial and immune defense proteins was then demonstrated by immunohistochemistry and confocal immunomicroscopy of cathelicidin and the calprotectin subunit S100A9 on mammary tissues. The time course of their release in milk was also assessed by Western immunoblotting along the course of the experimental infection, revealing the rapid increase of these proteins in the MFG fraction in response to the presence of bacteria. Our results support an active role of MECs in the innate immune response of the mammary gland and provide new potential for the development of novel and more sensitive tools for monitoring mastitis in dairy animals. PMID:23774600

  10. Transcriptomic insight into the immune defenses in the ghost moth, Hepialus xiaojinensis, during an Ophiocordyceps sinensis fungal infection.

    PubMed

    Meng, Qian; Yu, Hai-Ying; Zhang, Huan; Zhu, Wei; Wang, Meng-Long; Zhang, Ji-Hong; Zhou, Gui-Ling; Li, Xuan; Qin, Qi-Lian; Hu, Song-Nian; Zou, Zhen

    2015-09-01

    Hepialus xiaojinensis is an economically important species of Lepidopteran insect. The fungus Ophiocordyceps sinensis can infect its larvae, which leads to mummification after 5-12 months, providing a valuable system with which to study interactions between the insect hosts and pathogenic fungi. However, little sequence information is available for this insect. A time-course analysis of the fat body transcriptome was performed to explore the host immune response to O. sinensis infection. In total, 50,164 unigenes were obtained by assembling the reads from two high-throughput approaches: 454 pyrosequencing and Illumina Hiseq2000. Hierarchical clustering and functional examination revealed four major gene clusters. Clusters 1-3 included transcripts markedly induced by the fungal infection within 72 h. Cluster 4, with a lower number of transcripts, was suppressed during the early phase of infection but returned to normal expression levels sometime before 1 year. Based on sequence similarity to orthologs known to participate in immune defenses, 258 candidate immunity-related transcripts were identified, and their functions were hypothesized. The genes were more primitive than those in other Lepidopteran insects. In addition, lineage-specific family expansion of the clip-domain serine proteases and C-type lectins were apparent and likely caused by selection pressures. Global expression profiles of immunity-related genes indicated that H. xiaojinensis was capable of a rapid response to an O. sinensis challenge; however, the larvae developed tolerance to the fungus after prolonged infection, probably due to immune suppression. Specifically, antimicrobial peptide mRNAs could not be detected after chronic infection, because key components of the Toll pathway (MyD88, Pelle and Cactus) were downregulated. Taken together, this study provides insights into the defense system of H. xiaojinensis, and a basis for understanding the molecular aspects of the interaction between the host and the entomopathogen. PMID:26165779

  11. An Efficient Immunization Strategy for Community Kai Gong1,2

    E-print Network

    Lai, Ying-Cheng

    An Efficient Immunization Strategy for Community Networks Kai Gong1,2 , Ming Tang1,2,3 *, Pak Ming properly identify the targets to immunize or quarantine for preventing an epidemic in a population without with a larger number of weak ties, as immunizing targets based on the idea of referencing to an expanding

  12. Phage Anti-Immune Complex Assay: General Strategy for Noncompetitive Immunodetection of

    E-print Network

    Hammock, Bruce D.

    Phage Anti-Immune Complex Assay: General Strategy for Noncompetitive Immunodetection of Small. This has prompted the development of anti-immune complex antibodies, but these are difficult to produce that anti-immune complex antibodies can be substituted by phage particles isolated from phage display

  13. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    PubMed

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy. PMID:25480481

  14. Central immune alterations in passive strategy following chronic defeat stress.

    PubMed

    Joana, Perez-Tejada; Amaia, Arregi; Arantza, Azpiroz; Garikoitz, Beitia; Eneritz, Gomez-Lazaro; Larraitz, Garmendia

    2016-02-01

    The relationship between stress, mood disorders and immune disorders is known, but what remains to be resolved is why certain individuals are more susceptible than others to suffer different disorders, along with the biological mechanisms that underlie these differences. The objective of this study was to analyze the changes in the expression patterns of proinflammatory cytokines in the hypothalamus, hippocampus, amygdala and prefrontal cortex after chronic defeat, depending on the coping strategy used. The expression levels of ?1b and ?2a adrenergic receptors and cytokine-inducible nitric oxide synthase (iNOS) in the prefrontal cortex were also measured. The results indicated that subjects with a passive coping strategy showed high levels of interleukin-6 (IL-6) and interleukin-1? (IL-1?) expression in several cerebral structures in resting conditions after 21 days of chronic stress and increases in these cytokine levels in the hippocampus following an additional stress. Low expression levels of tumour necrosis factor-alpha (TNF-?) in the prefrontal cortex in active subjects at rest and in passive subjects after an additional defeat were detected. The iNOS expression levels were lower in the prefrontal cortex of the active group at rest. With respect to adrenergic receptor expression, there were no changes as a function of stress, but there were changes as a function of coping strategy. These results indicate differences in the variables studied in terms of the coping strategy adopted, with passive subjects having a biological profile that could be considered more vulnerable to the development of stress-related disorders. PMID:26602284

  15. Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2015-11-01

    Plants have elaborate defensive machinery to protect against numerous pathogens and insects. Plant hormones function as modulators of defensive mechanisms to maintain plant resistance to natural enemies. Our recent study suggests that salicylic acid (SA) is the primary phytohormone regulating plant responses to Agrobacterium tumefaciens infection. Tobacco (Nicotiana benthamiana Domin.) immune responses against Agrobacterium-mediated crown gall disease were activated by exposure to the sucking insect whitefly, which stimulated SA biosynthesis in aerial tissues; in turn, SA synthesized in aboveground tissues systemically modulated SA secretion in root tissues. Further investigation revealed that endogenous SA biosynthesis negatively modulated Agrobacterium-mediated plant genetic transformation. Our study provides novel evidence that activation of the SA-signaling pathway mediated by a sucking insect infestation has a pivotal role in subsequently attenuating Agrobacterium infection. These results demonstrate new insights into interspecies cross-talking among insects, plants, and soil bacteria. PMID:26357873

  16. Mucosal immunity and protection against HIV/SIV infection: strategies and challenges for vaccine design.

    PubMed

    Demberg, Thorsten; Robert-Guroff, Marjorie

    2009-01-01

    To date, most HIV vaccine strategies have focused on parenteral immunization and systemic immunity. These approaches have not yielded the efficacious HIV vaccine urgently needed to control the AIDS pandemic. As HIV is primarily mucosally transmitted, efforts are being re-focused on mucosal vaccine strategies, in spite of complexities of immune response induction and evaluation. Here, we outline issues in mucosal vaccine design and illustrate strategies with examples from the recent literature. Development of a successful HIV vaccine will require in-depth understanding of the mucosal immune system, knowledge that ultimately will benefit vaccine design for all mucosally transmitted infectious agents. PMID:19241252

  17. Electronic Warfare: Comprehensive Strategy Still Needed for Suppressing Enemy Air Defenses

    NASA Astrophysics Data System (ADS)

    2002-11-01

    U.S. military aircraft are often at great risk from enemy air defenses, and the services use specialized aircraft to neutralize or destroy them. In January 2001, GAO reported that a gap existed between the services' suppression capabilities and their needs and recommended that a comprehensive strategy was needed to fix the situation. In response to GAO's report, DOD emphasized that a major study underway at the time would provide the basis for a Department-wide strategy and lead to a balanced set of acquisition programs between the services. This report updates our previous work and assesses actions that DOD has taken to improve its suppression capabilities.

  18. A new role for PGRP-S (Tag7) in immune defense: lymphocyte migration is induced by a chemoattractant complex of Tag7 with Mts1.

    PubMed

    Dukhanina, E A; Lukyanova, T I; Romanova, E A; Guerriero, V; Gnuchev, N V; Georgiev, G P; Yashin, D V; Sashchenko, L P

    2015-11-17

    PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7-Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4(+) and CD8(+) lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response. PMID:26654597

  19. A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm

    PubMed Central

    Shi, Jiao; Gong, Maoguo; Ma, Wenping; Jiao, Licheng

    2014-01-01

    How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems. PMID:24672330

  20. Epithelial cells, the “switchboard” of respiratory immune defense responses: effects of air pollutants

    PubMed Central

    Müller, Loretta; Jaspers, Ilona

    2015-01-01

    Summary “Epimmunome”, a term introduced recently by Swamy and colleagues, describes all molecules and pathways used by epithelial cells (ECs) to instruct immune cells. Today, we know that ECs are among the first sites within the human body to be exposed to pathogens (such as influenza viruses) and that the release of chemokine and cytokines by ECs is influenced by inhaled agents. The role of the ECs as a switchboard to initiate and regulate immune responses is altered through air pollutant exposure, such as ozone, tobacco smoke and diesel exhaust emissions. The details of the interplay between ECs and immune cells are not yet fully understood and need to be investigated further. Co-culture models, cell specific genetically-modified mice and the analysis of human biopsies provide great tools to gain knowledge about potential mechanisms. Increasing our understanding about the role of ECs in respiratory immunity may yield novel therapeutic targets to modulate downstream diseases. PMID:22851042

  1. Ecient Immunization Strategies for Computer Networks and Populations Reuven Cohen , 1 Shlomo Havlin, 1 and Daniel ben-Avraham 2

    E-print Network

    Cohen, Reuven

    EÆcient Immunization Strategies for Computer Networks and Populations Reuven Cohen #3; , 1 Shlomo;ective immunization strategy for computer networks and populations with broad and, in particular, scale-free degree distributions. The proposed strategy, acquaintance immuniza- tion, calls for the immunization

  2. Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor.

    PubMed

    Prokkola, J; Roff, D; Kärkkäinen, T; Krams, I; Rantala, M J

    2013-08-01

    Insect cuticle melanism is linked to a number of life-history traits, and a positive relationship is hypothesized between melanism and the strength of immune defense. In this study, the phenotypic and genetic relationships between cuticular melanization, innate immune defense, individual development time and body size were studied in the mealworm beetle (Tenebrio molitor) using three different temperatures with a half-sib breeding design. Both innate immune defense and cuticle darkness were higher in females than males, and a positive correlation between the traits was found at the lowest temperature. The effect of temperature on all the measured traits was strong, with encapsulation ability and development time decreasing and cuticle darkness increasing with a rise in temperature, and body size showing a curved response. The analysis showed a highly integrated system sensitive to environmental change involving physiological, morphological and life-history traits. PMID:23572120

  3. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    SciTech Connect

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  4. Are there Economic Advantages for the Use of Immune Enhancer Strategies in Aquaculture?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper focuses on the perception that immune enhancer strategies provide reduced disease incidence, drug residues and increased growth performance. Disease control and growth performance results are inconsistent on the use of immune enhancers in both experimental and field trials. The uncertain...

  5. An effective immunization strategy for airborne epidemics in modular and hierarchical social contact network

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang

    2015-12-01

    Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.

  6. Comparative analysis of the effectiveness of three immunization strategies in controlling disease outbreaks in realistic social networks.

    PubMed

    Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie

    2014-01-01

    The high incidence of emerging infectious diseases has highlighted the importance of effective immunization strategies, especially the stochastic algorithms based on local available network information. Present stochastic strategies are mainly evaluated based on classical network models, such as scale-free networks and small-world networks, and thus are insufficient. Three frequently referred stochastic immunization strategies-acquaintance immunization, community-bridge immunization, and ring vaccination-were analyzed in this work. The optimal immunization ratios for acquaintance immunization and community-bridge immunization strategies were investigated, and the effectiveness of these three strategies in controlling the spreading of epidemics were analyzed based on realistic social contact networks. The results show all the strategies have decreased the coverage of the epidemics compared to baseline scenario (no control measures). However the effectiveness of acquaintance immunization and community-bridge immunization are very limited, with acquaintance immunization slightly outperforming community-bridge immunization. Ring vaccination significantly outperforms acquaintance immunization and community-bridge immunization, and the sensitivity analysis shows it could be applied to controlling the epidemics with a wide infectivity spectrum. The effectiveness of several classical stochastic immunization strategies was evaluated based on realistic contact networks for the first time in this study. These results could have important significance for epidemic control research and practice. PMID:24787718

  7. Success of a suicidal defense strategy against infection in a structured habitat

    PubMed Central

    Fukuyo, Masaki; Sasaki, Akira; Kobayashi, Ichizo

    2012-01-01

    Pathogen infection often leads to the expression of virulence and host death when the host-pathogen symbiosis seems more beneficial for the pathogen. Previously proposed explanations have focused on the pathogen's side. In this work, we tested a hypothesis focused on the host strategy. If a member of a host population dies immediately upon infection aborting pathogen reproduction, it can protect the host population from secondary infections. We tested this "Suicidal Defense Against Infection" (SDAI) hypothesis by developing an experimental infection system that involves a huge number of bacteria as hosts and their virus as pathogen, which is linked to modeling and simulation. Our experiments and simulations demonstrate that a population with SDAI strategy is successful in the presence of spatial structure but fails in its absence. The infection results in emergence of pathogen mutants not inducing the host suicide in addition to host mutants resistant to the pathogen. PMID:22355751

  8. EBAG9 modulates host immune defense against tumor formation and metastasis by regulating cytotoxic activity of T lymphocytes.

    PubMed

    Miyazaki, T; Ikeda, K; Horie-Inoue, K; Kondo, T; Takahashi, S; Inoue, S

    2014-01-01

    Estrogen receptor-binding fragment-associated antigen 9 (EBAG9) is a primary estrogen-responsive gene that we previously identified in MCF-7 breast cancer cells using the CpG genomic binding-site cloning technique. The expression of EBAG9 protein is often upregulated in malignant tumors, suggesting that this protein is involved in cancer pathophysiology. In the present study, we investigated the role of EBAG9 in host defense against implanted tumors in Ebag9-knockout (Ebag9KO) mice. MB-49 mouse bladder cancer cells were subcutaneously implanted into Ebag9KO and control mice. We found that tumor formation and metastasis to the lung by MB-49 cells were substantially reduced in Ebag9KO mice compared with control mice. The infiltration of CD8(+), CD3(+) and CD4(+) T cells into the generated tumors was enhanced in Ebag9KO mice compared with controls. Notably, CD8(+) T cells isolated from tumors in Ebag9KO mice exhibited substantial upregulation of immunity- and chemoattraction-related genes, including interleukin-10 receptor, interferon gamma, granzyme A, granzyme B and chemokine (C-X-C motif) receptor 3 compared with CD8(+) T cells from tumors in control mice. The CD8(+) T cells isolated from tumors in Ebag9KO mice also exhibited enhanced degranulation and increased cytolytic activity. Furthermore, the adoptive transfer of CD8(+) T cells isolated from tumors in Ebag9KO host could repress tumor growth by MB-49 cells implanted in wild-type host. These results suggest that EBAG9 modulates tumor growth and metastasis by negatively regulating the adaptive immune response in host defense. EBAG9 could be a potential target for tumor immunotherapy. PMID:25365482

  9. Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation

    PubMed Central

    Cai, Xin; Chen, Jueqi; Xu, Hui; Liu, Siqi; Jiang, Qiu-Xing; Halfmann, Randal; Chen, Zhijian J.

    2014-01-01

    SUMMARY Pathogens and cellular danger signals activate sensors such as RIG-I and NLRP3 to produce robust immune and inflammatory responses through respective adaptor proteins MAVS and ASC, which harbor essential N-terminal CARD and PYRIN domains, respectively. Here, we show that CARD and PYRIN function as bona fide prions in yeast and their prion forms are inducible by their respective upstream activators. Likewise, a yeast prion domain can functionally replace CARD and PYRIN in mammalian cell signaling. Mutations in MAVS and ASC that disrupt their prion activities in yeast also abrogate their ability to signal in mammalian cells. Furthermore, fibers of recombinant PYRIN can convert ASC into functional polymers capable of activating caspase-1. Remarkably, a conserved fungal NOD-like receptor and prion pair can functionally reconstitute signaling of NLRP3 and ASC PYRINs in mammalian cells. These results indicate that prion-like polymerization is a conserved signal transduction mechanism in innate immunity and inflammation. PMID:24630723

  10. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense

    PubMed Central

    McAleer, Jeremy P.; Kolls, Jay K.

    2014-01-01

    Summary Respiratory infections and diseases are among the leading causes of death worldwide, and effective treatments likely require manipulating the inflammatory response to pathogenic microbes or allergens. Here we review mechanisms controlling the production and functions of interleukin-17 (IL-17) and IL-22, cytokines that direct several aspects of lung immunity. Innate lymphocytes (??T cells, natural killer cells, innate lymphoid cells) are the major source of IL-17 and IL-22 during acute infections, while CD4+ T-helper 17 (Th17) cells contribute to vaccine-induced immunity. The characterization of dendritic cell (DC) subsets has revealed their central roles in T-cell activation. CD11b+ DCs stimulated with bacteria or fungi secrete IL-1? and IL-23, potent inducers of IL-17 and IL-22. On the other hand, recognition of viruses by plasmacytoid DCs inhibits IL-1? and IL-23 release, increasing susceptibility to bacterial superinfections. IL-17 and IL-22 primarily act on the lung epithelium, inducing antimicrobial proteins and neutrophil chemoattractants. Recent studies found that stimulation of macrophages and DCs with IL-17 also contributes to anti-bacterial immunity, while IL-22 promotes epithelial proliferation and repair following injury. Chronic diseases such as asthma and chronic obstructive pulmonary disease have been associated with IL-17 and IL-22 responses directed against innocuous antigens. Future studies will evaluate the therapeutic efficacy of targeting the IL-17/IL-22 pathway in pulmonary inflammation. PMID:24942687

  11. TLR7 is required for optimal immune defense against bacterial infection in tongue sole (Cynoglossus semilaevis).

    PubMed

    Li, Xue-Peng; Sun, Li

    2015-11-01

    In mammals as well as in teleost, toll-like receptor 7 (TLR7) is known to be involved in antiviral immunity by recognizing viral RNA. However, the antibacterial potential of fish TLR7 is unclear. In this study, we analyzed the TLR7 of tongue sole (Cynoglossus semilaevis), CsTLR7, and examined its potential involvement in antibacterial immunity. CsTLR7 is composed of 1052 amino acid residues and shares 64.0%-75.9% overall sequence identities with known teleost TLR7. CsTLR7 possesses a toll/interleukin-1 receptor domain and six leucine-rich repeats. Constitutive expression of CsTLR7 occurred in relatively high levels in kidney, spleen and liver. Bacterial infection upregulated CsTLR7 expression, whereas viral infection downregulated CsTLR7 expression. Knockdown of CsTLR7 significantly enhanced bacterial dissemination in the tissues of tongue sole. Treatment of tongue sole with the imidazoquinoline compound R848 (TLR7 activator) and the endosomal acidification inhibitor chloroquine (TLR7 inhibitor) caused enhanced and reduced resistance against bacterial infection respectively. These results indicate that CsTLR7 plays an essential role in the antibacterial immunity of tongue sole. PMID:26327112

  12. Characterization of an inhibitor of apoptosis protein in Crassostrea gigas clarifies its role in apoptosis and immune defense.

    PubMed

    Qu, Tao; Zhang, Linlin; Wang, Wei; Huang, Baoyu; Li, Yingxiang; Zhu, Qihui; Li, Li; Zhang, Guofan

    2015-07-01

    The inhibitor of apoptosis (IAP) proteins maintain a balance between cell proliferation and cell death by inhibiting caspase activity and facilitating immune responses. In this study, phylogenetic analysis revealed lineage-specific expansion and tandem duplication of IAPs in the Pacific oyster Crassostrea gigas. We then investigated a representative oyster-specific XIAP-like gene (CgIAP2) to understand how it regulates initiator caspase. Cloning of full-length CgIAP2 from oyster cDNA uncovered a deduced protein containing two BIR domains and a RING domain. Homolog comparison demonstrated that CgIAP2 clustered into the invertebrate branch. We found that CgIAP2 was likely involved in apoptosis inhibition and immune defense, based on high mRNA expression in the gills and labial palps, as well as increased mRNA expression after bacterial challenge. A yeast two-hybrid assay revealed that the BIR2 domain was necessary and sufficient to mediate interaction between CgIAP2 and Cgcaspase-2, providing direct evidence that CgIAP2 participates in apoptosis inhibition. PMID:25720977

  13. Immune defence strategies of generalist and specialist insect herbivores

    PubMed Central

    Barthel, Andrea; Kopka, Isabell; Vogel, Heiko; Zipfel, Peter; Heckel, David G.; Groot, Astrid T.

    2014-01-01

    Ecological immunology examines the adaptive responses of animals to pathogens in relation to other environmental factors and explores the consequences of trade-offs between investment in immune function and other life-history traits. Among species of herbivorous insects, diet breadth may vary greatly, with generalists consuming a wide variety of plant families and specialists restricted to a few species. Generalists may thus be exposed to a wider range of pathogens exerting stronger selection on the innate immune system. To examine whether this produces an increase in the robustness of the immune response, we compared larvae of the generalist herbivore Heliothis virescens and the specialist Heliothis subflexa challenged by entomopathogenic and non-pathogenic bacteria. Heliothis virescens larvae showed lower mortality, a lower number of recoverable bacteria, lower proliferation of haemocytes and higher phagocytic activity. These results indicate a higher tolerance to entomopathogenic bacteria by the generalist, which is associated with a more efficient cell-mediated immune response by mechanisms that differ between these closely related species. Our findings provide novel insights into the consequences of diet breadth and related environmental factors, which may be significant in further studies to understand the ecological forces and investment trade-offs that shape the evolution of innate immunity. PMID:24943370

  14. Actions for damages against medical examiners and the defense of sovereign immunity.

    PubMed

    Bierig, J R

    1998-03-01

    The doctrine of sovereign or official immunity has protected medical examiners in cases alleging negligent performance of the autopsy and in cases involving negligent harvesting of organs. It has not protected examiners in cases alleging performance of autopsy without authorization. The medical examiner, therefore, is well advised to determine whether there may be any objection by the next-of-kin to an autopsy and particularly any religious objection-and if there is such an objection, to proceed only after making contemporaneous and documented decision that there is a compelling need for the autopsy. PMID:9523069

  15. Quorum Sensing Determines the Choice of Antiphage Defense Strategy in Vibrio anguillarum

    PubMed Central

    Tan, Demeng; Svenningsen, Sine Lo

    2015-01-01

    ABSTRACT Selection for phage resistance is a key driver of bacterial diversity and evolution, and phage-host interactions may therefore have strong influence on the genetic and functional dynamics of bacterial communities. In this study, we found that an important, but so far largely overlooked, determinant of the outcome of phage-bacterial encounters in the fish pathogen Vibrio anguillarum is bacterial cell-cell communication, known as quorum sensing. Specifically, V. anguillarum PF430-3 cells locked in the low-cell-density state (?vanT mutant) express high levels of the phage receptor OmpK, resulting in a high susceptibility to phage KVP40, but achieve protection from infection by enhanced biofilm formation. By contrast, cells locked in the high-cell-density state (?van? mutant) are almost completely unsusceptible due to quorum-sensing-mediated downregulation of OmpK expression. The phenotypes of the two quorum-sensing mutant strains are accurately reflected in the behavior of wild-type V. anguillarum, which (i) displays increased OmpK expression in aggregated cells compared to free-living variants in the same culture, (ii) displays a clear inverse correlation between ompK mRNA levels and the concentration of N-acylhomoserine lactone quorum-sensing signals in the culture medium, and (iii) survives mainly by one of these two defense mechanisms, rather than by genetic mutation to phage resistance. Taken together, our results demonstrate that V. anguillarum employs quorum-sensing information to choose between two complementary antiphage defense strategies. Further, the prevalence of nonmutational defense mechanisms in strain PF430-3 suggests highly flexible adaptations to KVP40 phage infection pressure, possibly allowing the long-term coexistence of phage and host. PMID:26081633

  16. Biomphalysin, a New ? Pore-forming Toxin Involved in Biomphalaria glabrata Immune Defense against Schistosoma mansoni

    PubMed Central

    Moné, Yves; Allienne, Jean François; Henri, Hélène; Delbecq, Stéphane; Mitta, Guillaume; Gourbal, Benjamin; Duval, David

    2013-01-01

    Aerolysins are virulence factors belonging to the ? pore-forming toxin (?-PFT) superfamily that are abundantly distributed in bacteria. More rarely, ?-PFTs have been described in eukaryotic organisms. Recently, we identified a putative cytolytic protein in the snail, Biomphalaria glabrata, whose primary structural features suggest that it could belong to this ?-PFT superfamily. In the present paper, we report the molecular cloning and functional characterization of this protein, which we call Biomphalysin, and demonstrate that it is indeed a new eukaryotic ?-PFT. We show that, despite weak sequence similarities with aerolysins, Biomphalysin shares a common architecture with proteins belonging to this superfamily. A phylogenetic approach revealed that the gene encoding Biomphalysin could have resulted from horizontal transfer. Its expression is restricted to immune-competent cells and is not induced by parasite challenge. Recombinant Biomphalysin showed hemolytic activity that was greatly enhanced by the plasma compartment of B. glabrata. We further demonstrated that Biomphalysin with plasma is highly toxic toward Schistosoma mansoni sporocysts. Using in vitro binding assays in conjunction with Western blot and immunocytochemistry analyses, we also showed that Biomphalysin binds to parasite membranes. Finally, we showed that, in contrast to what has been reported for most other members of the family, lytic activity of Biomphalysin is not dependent on proteolytic processing. These results provide the first functional description of a mollusk immune effector protein involved in killing S. mansoni. PMID:23555242

  17. Short Toxin-like Proteins Attack the Defense Line of Innate Immunity

    PubMed Central

    Tirosh, Yitshak; Ofer, Dan; Eliyahu, Tsiona; Linial, Michal

    2013-01-01

    ClanTox (classifier of animal toxins) was developed for identifying toxin-like candidates from complete proteomes. Searching mammalian proteomes for short toxin-like proteins (coined TOLIPs) revealed a number of overlooked secreted short proteins with an abundance of cysteines throughout their sequences. We applied bioinformatics and data-mining methods to infer the function of several top predicted candidates. We focused on cysteine-rich peptides that adopt the fold of the three-finger proteins (TFPs). We identified a cluster of duplicated genes that share a structural similarity with elapid neurotoxins, such as ?-bungarotoxin. In the murine proteome, there are about 60 such proteins that belong to the Ly6/uPAR family. These proteins are secreted or anchored to the cell membrane. Ly6/uPAR proteins are associated with a rich repertoire of functions, including binding to receptors and adhesion. Ly6/uPAR proteins modulate cell signaling in the context of brain functions and cells of the innate immune system. We postulate that TOLIPs, as modulators of cell signaling, may be associated with pathologies and cellular imbalance. We show that proteins of the Ly6/uPAR family are associated with cancer diagnosis and malfunction of the immune system. PMID:23881252

  18. Poplar Extrafloral Nectaries: Two Types, Two Strategies of Indirect Defenses against Herbivores1[C][W

    PubMed Central

    Escalante-Pérez, María; Jaborsky, Mario; Lautner, Silke; Fromm, Jörg; Müller, Tobias; Dittrich, Marcus; Kunert, Maritta; Boland, Wilhelm; Hedrich, Rainer; Ache, Peter

    2012-01-01

    Many plant species grow extrafloral nectaries and produce nectar to attract carnivore arthropods as defenders against herbivores. Two nectary types that evolved with Populus trichocarpa (Ptr) and Populus tremula × Populus tremuloides (Ptt) were studied from their ecology down to the genes and molecules. Both nectary types strongly differ in morphology, nectar composition and mode of secretion, and defense strategy. In Ptt, nectaries represent constitutive organs with continuous merocrine nectar flow, nectary appearance, nectar production, and flow. In contrast, Ptr nectaries were found to be holocrine and inducible. Neither mechanical wounding nor the application of jasmonic acid, but infestation by sucking insects, induced Ptr nectar secretion. Thus, nectaries of Ptr and Ptt seem to answer the same threat by the use of different mechanisms. PMID:22573802

  19. Strategies to potentiate immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.

    2015-03-01

    Photodynamic therapy (PDT) has been used as a cancer therapy for forty years but has not yet advanced to a mainstream cancer treatment. Although PDT has been shown to be an efficient photochemical way to destroy local tumors by a combination of non-toxic dyes and harmless visible light, it is its additional effects in mediating the stimulation of the host immune system that gives PDT a great potential to become more widely used. Although the stimulation of tumorspecific cytotoxic T-cells that can destroy distant tumor deposits after PDT has been reported in some animal models, it remains the exception rather than the rule. This realization has prompted several investigators to test various combination approaches that could potentiate the immune recognition of tumor antigens that have been released after PDT. Some of these combination approaches use immunostimulants including various microbial preparations that activate Toll-like receptors and other receptors for pathogen associated molecular patterns. Other approaches use cytokines and growth factors whether directly administered or genetically encoded. Other promising approaches involve depleting regulatory T-cells and epigenetic reversal agents. We believe that by understanding the methods employed by tumors to evade immune response and neutralizing them, more precise ways of potentiating PDT-induced immunity can be devised.

  20. Beyond TLR Signaling—The Role of SARM in Antiviral Immune Defense, Apoptosis & Development.

    PubMed

    Panneerselvam, Porkodi; Ding, Jeak Ling

    2015-01-01

    SARM (Sterile alpha and armadillo motif-containing protein) is the recently identified TIR domain-containing cytosolic protein. Classified as a member of the TLR adaptor family, the multiple locations and functions of SARM (sometimes playing opposing roles), provoke an enigma on its biology. Although originally assumed to be a member of the TLR adaptor family (functioning as a negative regulator of TLR signaling pathway), latest findings indicate that SARM regulates signaling differently from other TLR adaptor proteins. Recent studies have highlighted the significant functional role of SARM in mediating apoptosis and antiviral innate immune response. In this review, we provide an update on the evolutionary conservation, spatial distribution, and regulated expression of SARM to highlight its diverse functional roles. The review will summarize findings on the known interacting partners of SARM and provide analogy on how they add new dimensions to the current understanding on the multifaceted roles of SARM in antiviral activities and apoptotic functions. In addition, we provide a future perspective on the roles of SARM in differentiation and development, with substantial emphasis on the molecular insights to its mechanisms of action. PMID:26268046

  1. HDAC2 deregulation in tumorigenesis is causally connected to repression of immune modulation and defense escape.

    PubMed

    Conte, Mariarosaria; Dell'Aversana, Carmela; Benedetti, Rosaria; Petraglia, Francesca; Carissimo, Annamaria; Petrizzi, Valeria Belsito; D'Arco, Alfonso Maria; Abbondanza, Ciro; Nebbioso, Angela; Altucci, Lucia

    2015-01-20

    Histone deacetylase 2 (HDAC2) is overexpressed or mutated in several disorders such as hematological cancers, and plays a critical role in transcriptional regulation, cell cycle progression and developmental processes. Here, we performed comparative transcriptome analyses in acute myeloid leukemia to investigate the biological implications of HDAC2 silencing versus its enzymatic inhibition using epigenetic-based drug(s). By gene expression analysis of HDAC2-silenced vs wild-type cells, we found that HDAC2 has a specific role in leukemogenesis. Gene expression profiling of U937 cell line with or without treatment of the well-known HDAC inhibitor vorinostat (SAHA) identifies and characterizes several gene clusters where inhibition of HDAC2 'mimics' its silencing, as well as those where HDAC2 is selectively and exclusively regulated by HDAC2 protein expression levels. These findings may represent an important tool for better understanding the mechanisms underpinning immune regulation, particularly in the study of major histocompatibility complex class II genes. PMID:25473896

  2. Strategies to improve immunization services in urban Africa.

    PubMed Central

    Cutts, F. T.

    1991-01-01

    The urban poor constitute a rapidly increasing proportion of the population in developing countries. Focusing attention on underserved urban slums and squatter settlements will contribute greatly to immunization programme goals, because these areas account for 30-50% of urban populations, usually provide low access to health services, carry a large burden of disease mortality, and act as sources of infection for the city and surrounding rural areas. Improvement of urban immunization programmes requires intersectorial collaboration, use of all opportunities to vaccinate eligible children and mothers, identification of low-coverage neighbourhoods and execution of extra activities in these neighbourhoods, and community mobilization to identify and refer persons for vaccination. Improved disease surveillance helps to identify high-risk populations and document programme impact. New developments in vaccines, such as the high-dose Edmonston-Zagreb vaccine, will allow changes in the immunization schedule that facilitate the control of specific diseases. Finally, operational research can assist managers to conduct urban situation assessments, evaluate programme performance at the "micro" level, and design and monitor interventions. PMID:1934234

  3. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    PubMed Central

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome. PMID:23087900

  4. A novel ortholog of serum response factor (SRF) with immune defense function identified in Crassostrea hongkongensis.

    PubMed

    Xiang, Zhiming; Qu, Fufa; Qi, Lin; Zhang, Yang; Xiao, Shu; Yu, Ziniu

    2014-01-01

    Serum response factor (SRF) function is essential for transcriptional regulation of numerous growth-factor-inducible genes and triggers proliferation, differentiation and apoptosis of the cells. In this report, the first mollusk serum response factor like homolog gene (designated ChSRF) was identified and characterized from the Hong Kong oyster, Crassostrea hongkongensis. The full-length cDNA of ChSRF was 1716 bp in length and encodes a putative protein of 434 amino acids respectively, and shares the MADS domain at the N-terminal. ChSRF is ubiquitously expressed in various tissues, with the highest expression level observed in muscle. Temporal expression of ChSRF following microbe infection shows that the expression of ChSRF in hemocytes increases from 3 to 24 h post-challenge. As a target gene of SRF, ?-actin demonstrates a similar gene expression mode in constitutive tissue and pathogen infection. Furthermore, some protein profiles of ChSRF was revealed, fluorescence microscopy results show that ChSRF located in the nuclei of HeLa cells and over-expression of ChSRF activated the transcriptional activities of MAPK signal pathway in HEK293T cells. These results indicate that ChSRF maybe play an important role in signal transduction in the immunity and development response of oysters. Furthermore, we found that ChSRF could regulate the expression of ?-actin gene, which indicate that ChSRF is a muscle differentiation regulator in the oyster and it will help us to improve aquaculture production. PMID:24161761

  5. Shell colour polymorphism, injuries and immune defense in three helicid snail species, Cepaea hortensis, Theba pisana and Cornu aspersum maximum?

    PubMed Central

    Scheil, Alexandra E.; Hilsmann, Stefanie; Triebskorn, Rita; Köhler, Heinz-R.

    2013-01-01

    Shell colour polymorphism is a widespread feature of various land snail species. In our study we aimed at elucidating the question whether there is a correlation between shell colouration and immune defense in three land snail species by comparing phenoloxidase (PO) activity levels of different morphs after immunostimulation via Zymosan A-injection. Since phenoloxidase is involved both in immune defense as well as in melanin production, the PO activity level is particularly interesting when trying to resolve this question. Even though Zymosan A failed to induce PO activity rendering a comparison of inducible PO activity impossible, an interesting difference between pale and dark morphs of all tested species could be observed: dark snails were less affected by hemolymph withdrawal and were able to maintain or regenerate a significantly higher PO activity level after hemolymph withdrawal than pale snails. Possible implications of this observation are discussed. PMID:24600561

  6. Immunization

    MedlinePLUS

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, diphtheria, tetanus, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  7. Controlled release strategies for modulating immune responses to promote tissue regeneration.

    PubMed

    Dumont, Courtney M; Park, Jonghyuck; Shea, Lonnie D

    2015-12-10

    Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects. This review describes targeted strategies to modulate the immune response in order to limit tissue damage following injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen (Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local delivery techniques to sites of inflammation as well as systemic approaches that preferentially target subsets of immune populations. PMID:26264833

  8. Mucosal and systemic immune responses induced by a single time vaccination strategy in mice.

    PubMed

    González Aznar, Elizabeth; Romeu, Belkis; Lastre, Miriam; Zayas, Caridad; Cuello, Maribel; Cabrera, Osmir; Valdez, Yolanda; Fariñas, Mildrey; Pérez, Oliver

    2015-08-01

    Vaccination is considered by the World Health Organization as the most cost-effective strategy for controlling infectious diseases. In spite of great successes with vaccines, many infectious diseases are still leading killers, because of the inadequate coverage of many vaccines. Several factors have been responsible: number of doses, high vaccine reactogenicity, vaccine costs, vaccination policy, among others. Contradictorily, few vaccines are of single dose and even less of mucosal administration. However, more common infections occur via mucosa, where secretory immunoglobulin A plays an essential role. As an alternative, we proposed a novel protocol of vaccination called Single Time Vaccination Strategy (SinTimVaS) by immunizing 2 priming doses at the same time: one by mucosal route and the other by parenteral route. Here, the mucosal and systemic responses induced by Finlay adjuvants (AF Proteoliposome 1 and AF Cochleate 1) implementing SinTimVaS in BALB/c mice were evaluated. One intranasal dose of AF Cochleate 1 and an intramuscular dose of AF Proteoliposome 1 adsorbed onto aluminum hydroxide, with bovine serum albumin or tetanus toxoid as model antigens, administrated at the same time, induced potent specific mucosal and systemic immune responses. Also, we demonstrated that SinTimVaS using other mucosal routes like oral and sublingual, in combination with the subcutaneous route elicits immune responses. SinTimVaS, as a new immunization strategy, could increase vaccination coverage and reduce time-cost vaccines campaigns, adding the benefits of immune response in mucosa. PMID:26140382

  9. Dissemination strategy for immunizing scale-free networks

    NASA Astrophysics Data System (ADS)

    Stauffer, Alexandre O.; Barbosa, Valmir C.

    2006-11-01

    We consider the problem of distributing a vaccine for immunizing a scale-free network against a given virus or worm. We introduce a method, based on vaccine dissemination, that seems to reflect more accurately what is expected to occur in real-world networks. Also, since the dissemination is performed using only local information, the method can be easily employed in practice. Using a random-graph framework, we analyze our method both mathematically and by means of simulations. We demonstrate its efficacy regarding the trade-off between the expected number of nodes that receive the vaccine and the network’s resulting vulnerability to develop an epidemic as the virus or worm attempts to infect one of its nodes. For some scenarios, the method is seen to render the network practically invulnerable to attacks while requiring only a small fraction of the nodes to receive the vaccine.

  10. The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies

    PubMed Central

    Belcher, Christopher E.; Drenkow, Jörg; Kehoe, Bettina; Gingeras, Thomas R.; McNamara, Nancy; Lemjabbar, Hassan; Basbaum, Carol; Relman, David A.

    2000-01-01

    Bordetella pertussis, the causative agent of whooping cough, has many well-studied virulence factors and a characteristic clinical presentation. Despite this information, it is not clear how B. pertussis interaction with host cells leads to disease. In this study, we examined the interaction of B. pertussis with a human bronchial epithelial cell line (BEAS-2B) and measured host transcriptional profiles by using high-density DNA microarrays. The early transcriptional response to this pathogen is dominated by altered expression of cytokines, DNA-binding proteins, and NF?B-regulated genes. This previously unrecognized response to B. pertussis was modified in similar but nonidentical fashions by the antiinflammatory agents dexamethasone and sodium salicylate. Cytokine protein expression was confirmed, as was neutrophil chemoattraction. We show that B. pertussis induces mucin gene transcription by BEAS-2B cells then counters this defense by using mucin as a binding substrate. A set of genes is described for which the catalytic activity of pertussis toxin is both necessary and sufficient to regulate transcription. Host genomic transcriptional profiling, in combination with functional assays to evaluate subsequent biological events, provides insight into the complex interaction of host and pathogen. PMID:11087813

  11. Multi-granularity immunization strategy based on SIRS model in scale-free network

    NASA Astrophysics Data System (ADS)

    Nian, Fuzhong; Wang, Ke

    2015-04-01

    In this paper, a new immunization strategy was established to prevent the epidemic spreading based on the principle of "Multi-granularity" and "Pre-warning Mechanism", which send different pre-warning signal with the risk rank of the susceptible node to be infected. The pre-warning means there is a higher risk that the susceptible node is more likely to be infected. The multi-granularity means the susceptible node is linked with multi-infected nodes. In our model, the effect of the different situation of the multi-granularity immunizations is compared and different spreading rates are adopted to describe the epidemic behavior of nodes. In addition the threshold value of epidemic outbreak is investigated, which makes the result more convincing. The theoretical analysis and the simulations indicate that the proposed immunization strategy is effective and it is also economic and feasible.

  12. Strategies for Improving Influenza Immunization Rates among Hard-to-Reach Populations

    PubMed Central

    Coady, Micaela H.; Ompad, Danielle C.; Galea, Sandro

    2007-01-01

    Whereas considerable attention has been devoted to achieving high levels of influenza immunization, the importance of this issue is magnified by concern over pandemic influenza. Most recommendations for vaccine administration address high risk groups such as the elderly and those with chronic diseases, but coverage for hard-to-reach (HTR) populations has had less attention. HTR populations include minorities but also include other primarily urban groups such as undocumented immigrants, substance users, the homeless, and homebound elderly. Obstacles to the provision of immunization to HTR populations are present at the patient, provider, and structural levels. Strategies at the individual level for increasing immunization coverage include community-based educational campaigns to improve attitudes and increase motivation for receiving vaccine; at the provider level, education of providers to encourage immunizations, improving patient–provider interactions, broadening the provider base to include additional nurses and pharmacists, and adoption of standing orders for immunization administration; and at the structural level, promoting wider availability of and access to vaccine. The planning process for an influenza pandemic should include community engagement and extension of strategies beyond traditional providers to involve community-based organizations addressing HTR populations. PMID:17562184

  13. A tale of two tumours: comparison of the immune escape strategies of contagious cancers.

    PubMed

    Siddle, Hannah V; Kaufman, Jim

    2013-09-01

    The adaptive immune system should prevent cancer cells passing from one individual to another, in much the same way that it protects against pathogens. However, in rare cases cancer cells do not die within a single individual, but successfully pass between individuals, escaping the adaptive immune response and becoming a contagious cancer. There are two naturally occurring contagious cancers, Devil Facial Tumour Disease (DFTD), found in Tasmanian devils, and Canine Transmissible Venereal Tumour (CTVT), found in dogs. Despite sharing an ability to pass as allografts, these cancers have a very different impact on their hosts. While DFTD causes 100% mortality among infected devils and has had a devastating impact on the devil population, CTVT co-exists with its host in a manner that does not usually cause death of the dog. Although immune evasion strategies for CTVT have been defined, why DFTD is not rejected as an allograft is not understood. We have made progress in revealing mechanisms of immune evasion for DFTD both in vitro and in vivo, and here we compare how DFTD and CTVT interact with their respective hosts and avoid rejection. Our findings highlight factors that may be important for the evolution of contagious cancers and cancer more generally. Perhaps most importantly, this work has opened up important areas for future research, including the effect of epigenetic factors on immune escape mechanisms and the basis of a vaccine strategy that may protect Tasmanian devils against DFTD. PMID:23200636

  14. Global Immunization Vision and Strategy (GIVS): a mid-term analysis of progress in 50 countries.

    PubMed

    Kamara, Lidija; Lydon, Patrick; Bilous, Julian; Vandelaer, Jos; Eggers, Rudi; Gacic-Dobo, Marta; Meaney, William; Okwo-Bele, Jean-Marie

    2013-01-01

    Within the overall framework set out in the Global Immunization Vision and Strategy (GIVS) for the period 2006-2015, over 70 countries had developed comprehensive Multi-Year Plans (cMYPs) by 2008, outlining their plans for implementing the GIVS strategies and for attaining the GIVS Goals at the midpoint in 2010 or earlier. These goals are to: (1) reach ?90% and ?80% vaccination coverage at national and district level, respectively; and (2) reduce measles-related mortality by 90% compared with the 2000 level. Fifty cMYPs were analysed along the four strategic areas of the GIVS: (1) protecting more people in a changing world; (2) introducing new vaccines and technologies; (3) integrating immunization, other health interventions and surveillance in the health system context; and (4) immunizing in the context of global interdependence. By 2010, all 50 countries planned to have introduced hepatitis B (HepB) vaccine, 48 the Haemophilus influenzae type B (Hib) vaccine and only a few countries had firm plans to introduce pneumococcal or rotavirus vaccines. Countries seem to be inadequately prepared in terms of cold-chain requirements to deal with the expected increases in storage that will be required for vaccines, and in making provisions to establish a corresponding surveillance system for planned new vaccine introductions. Immunization contacts are used to deliver other health interventions, especially in the countries in the World Health Organization (WHO) Africa Region. The cost for the planned immunization activities will double to U$27 per infant, of which U$5 per infant is the expected shortfall. Global Alliance for Vaccines and Immunization (GAVI) funding is becoming the largest contributor to immunization programmes. PMID:22411879

  15. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus

    PubMed Central

    Flannagan, Ronald S.; Heit, Bryan; Heinrichs, David E.

    2015-01-01

    Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing. PMID:26633519

  16. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus.

    PubMed

    Flannagan, Ronald S; Heit, Bryan; Heinrichs, David E

    2015-01-01

    Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing. PMID:26633519

  17. Using immunization delivery strategies to accelerate progress in Africa towards achieving the Millennium Development Goals.

    PubMed

    Clements, C John; Nshimirimanda, Deo; Gasasira, Alex

    2008-04-01

    Integration of health services brings together common functions within and between organizations to solve common problems, developing a commitment to a shared vision and goals, and using common technologies and resources to achieve these goals. Integration has been the frustrated rally call of Primary Health Care for 30 years. This paper discusses the process of integrating child survival strategies and other heath services with immunization in Africa. Immunization is arguably the most successful health programme throughout the continent, making it the logical vehicle for add-on services. Strong health systems are the best way of delivering cost-effective child survival interventions in a most sustainable manner. But the reality in many African countries is that health systems have been weak for a number of reasons. Joining additional cost-effective child survival interventions on to immunization services may provide the needed boost. The unacceptably high childhood mortality in parts of Africa makes it the ideal location to undertake this exercise. The urgency to scale-up child survival interventions that have proven cost-effective is especially important if the Millennium Development Goals (MDGs) are to be met by 2015. Africa has more to loose than most in failing to scale up to meet these goals, bearing as it does the highest burden of childhood mortality in the world. But so far, prospects do not look good for achieving MDG-4 for the countries with the highest mortality rates. The timeliness of this initiative towards integration could not be better. In the last five years, countries in Africa have received massive injections of financial resources for polio eradication and measles control as well as additional funding for a range of immunization-strengthening activities and the introduction of new and under-utilized vaccines. While the data to support integration are limited, the information to hand suggests the effectiveness of the strategy. Where immunization performance is strong, immunization contacts may be excellent vehicles for additional interventions such as de-worming or Integrated Management of Childhood Illness (IMCI). But where an immunization service is struggling, adding another child survival intervention on to immunization might be the straw that breaks its back. Health managers have a wide range of options for adding on to immunization services, but the best choice will depend very much on local situations. PMID:18343540

  18. Innate Immune Defenses Induced by CpG do not Promote Vaccine-Induced Protection Against Foot-and-Mouth Disease in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emergency vaccination as part of the control strategies against Foot-and-Mouth Disease (FMD) epidemics has the potential not only to limit the spread of the virus but also to reduce large-scale culling of affected herds. With the aim to reduce the time between vaccination and the onset of immunity, ...

  19. The immune system is limited by oxidative stress: Dietary selenium promotes optimal antioxidative status and greatest immune defense in pacu Piaractus mesopotamicus.

    PubMed

    Biller-Takahashi, Jaqueline D; Takahashi, Leonardo S; Mingatto, Fábio E; Urbinati, Elisabeth C

    2015-11-01

    Reactive oxygen species (ROS) are reactive molecules containing oxygen, that form as byproducts of aerobic metabolism, including immune system processes. Too much ROS may cause oxidative stress. In this study, we examined whether it can also limit the production of immune system compounds. To assess the relationship between antioxidant status and immunity we evaluated the effect of dietary supplementation with organic selenium, given at various levels for 10 days, on the antioxidant and immune system of the pacu fish (Piaractus mesopotamicus). Fish fed a diet containing 0.6 mg Se-yeast kg(-1) showed significant improvement in antioxidant status, as well as in hematological and immunological profiles. Specifically, they had the highest counts for catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), red blood cells, and thrombocytes; the highest leukocyte count (particularly for monocytes); and the highest serum lysozyme activity. There was also a positive correlation between GPx and lysozyme in this group of fish. These findings indicate that short-term supplementation with 0.6 mg Se-yeast kg(-1) reestablished the antioxidative status, allowing the production of innate components which can boost immunity without the risk of oxidative stress. This study shows a relationship between oxidative stress and immunity, and, from a practical perspective, shows that improving immunity and health in pacu through the administration of selenium could improve their growth performance. PMID:26370542

  20. Construction of a full-length cDNA library of Solen grandis dunker and identification of defense- and immune-related genes

    NASA Astrophysics Data System (ADS)

    Sun, Guohua; Liu, Xiangquan; Ren, Lihua; Yang, Jianmin; Wei, Xiumei; Yang, Jialong

    2013-11-01

    The basic genetic characteristics, important functional genes, and entire transcriptome of Solen grandis Dunker were investigated by constructing a full-length cDNA library with the `switching mechanism at the 5'-end of the RNA transcript' (SMART) technique. Total RNA was isolated from the immune-relevant tissues, gills and hemocytes, using the Trizol reagent, and cDNA fragments were digested with Sfi I before being ligated to the pBluescript II SK* vector. The cDNA library had a titer of 1048 cfu ?L-1 and a storage capacity of 1.05×106 cfu. Approximately 98% of the clones in the library were recombinants, and the fragment lengths of insert cDNA ranged from 0.8 kb to 3.0 kb. A total of 2038 expressed sequence tags were successfully sequenced and clustered into 965 unigenes. BLASTN analysis showed that 240 sequences were highly similar to the known genes (E-value < 1e -5; percent identity >80%), accounting for 25% of the total unigenes. According to the Gene Ontology, these unigenes were related to several biological processes, including cell structure, signal transport, protein synthesis, transcription, energy metabolism, and immunity. Fifteen of the identified sequences were related to defense and immunity. The full-length cDNA sequence of HSC70 was obtained. The cDNA library of S. grandis provided a useful resource for future researches of functional genomics related to stress tolerance, immunity, and other physiological activities.

  1. CpG oligodeoxynucleotide synergizes innate defense regulator peptide for enhancing the systemic and mucosal immune responses to pseudorabies attenuated virus vaccine in piglets in vivo.

    PubMed

    Cao, Ding; Li, Huazhou; Jiang, Zhenggu; Cheng, Qing; Yang, Zhaihan; Xu, Chenchao; Cao, Guangjun; Zhang, Linghua

    2011-06-01

    Oligonucleotides containing CpG motifs (CpG ODN) are strong adjuvants for humoral and cellular immune responses in mice, and innate defense-regulator peptides (IDRs) are known to facilitate the uptake of antigens into antigen presenting cells (APCs), but data on synergistic effects of CpG and IDRs in piglets are scarce. In this report, the combination of porcine-specific CpG ODN and HH2 (a kind of IDR which was selected for its better synergy with CpG ODN) was used as immunoadjuvant to enhance the immune responses of the newborn piglets to Pseudorabies attenuated virus (PRV) vaccine. The titers of specific antibodies and serum IgG1/IgG2 subtypes to PRV vaccine, interferon-? (IFN-?), tumor necrosis factor-? (TNF-?), IL-12 and IL-4 were examined to identify the immune responses of the newborn piglets. The results showed that piglets immunized intranasally (IN) and subcutaneously (SC) with PRV vaccine and CpG-HH2 complex both presented high titers of PRV-specific antibodies and IgG2 isotype, a Th1-dominated (IFN-? and IL-12) cytokine profiles, high levels of IgA in saliva, broncheoalveolar lavage (BAL) and intestinal washings. The results suggested that, CpG-HH2 complex augmented systemic (IgG in serum) and mucosal (IgA in saliva, BAL and intestinal washings) immune responses against antigen. CpG-HH2 complex stimulated both T-helper type1 (Th1) (IgG2) and Th2 (IgA) responses when delivered IN, and IN route could induce stronger mucosal immune responses than SC route. All these data indicate that CpG-HH2 complex is a potential effective adjuvant for the PRV vaccine in newborn piglets. PMID:21310256

  2. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  3. Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection in a Model of Prokaryote-Phage Coevolution.

    PubMed

    Kumar, M Senthil; Plotkin, Joshua B; Hannenhalli, Sridhar

    2015-11-01

    CRISPRs offer adaptive immunity in prokaryotes by acquiring genomic fragments from infecting phage and subsequently exploiting them for phage restriction via an RNAi-like mechanism. Here, we develop and analyze a dynamical model of CRISPR-mediated prokaryote-phage coevolution that incorporates classical CRISPR kinetics along with the recently discovered infection-induced activation and autoimmunity side effects. Our analyses reveal two striking characteristics of the CRISPR defense strategy: that both restriction and abortive infections operate during coevolution with phages, driving phages to much lower densities than possible with restriction alone, and that CRISPR maintenance is determined by a key dimensionless combination of parameters, which upper bounds the activation level of CRISPRs in uninfected populations. We contrast these qualitative observations with experimental data on CRISPR kinetics, which offer insight into the spacer deletion mechanism and the observed low CRISPR prevalence in clinical isolates. More generally, we exploit numerical simulations to delineate four regimes of CRISPR dynamics in terms of its host, kinetic, and regulatory parameters. PMID:26544847

  4. Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection in a Model of Prokaryote-Phage Coevolution

    PubMed Central

    Kumar, M. Senthil; Plotkin, Joshua B.; Hannenhalli, Sridhar

    2015-01-01

    CRISPRs offer adaptive immunity in prokaryotes by acquiring genomic fragments from infecting phage and subsequently exploiting them for phage restriction via an RNAi-like mechanism. Here, we develop and analyze a dynamical model of CRISPR-mediated prokaryote-phage coevolution that incorporates classical CRISPR kinetics along with the recently discovered infection-induced activation and autoimmunity side effects. Our analyses reveal two striking characteristics of the CRISPR defense strategy: that both restriction and abortive infections operate during coevolution with phages, driving phages to much lower densities than possible with restriction alone, and that CRISPR maintenance is determined by a key dimensionless combination of parameters, which upper bounds the activation level of CRISPRs in uninfected populations. We contrast these qualitative observations with experimental data on CRISPR kinetics, which offer insight into the spacer deletion mechanism and the observed low CRISPR prevalence in clinical isolates. More generally, we exploit numerical simulations to delineate four regimes of CRISPR dynamics in terms of its host, kinetic, and regulatory parameters. PMID:26544847

  5. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    PubMed

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race. PMID:25377514

  6. Strategies to circumvent humoral immunity to adeno-associated viral vectors

    PubMed Central

    Tse, Longping V; Moller-Tank, Sven; Asokan, Aravind

    2015-01-01

    Introduction Recent success in gene therapy of certain monogenic diseases in the clinic has infused enthusiasm into the continued development of recombinant adeno-associated viral (AAV) vectors as next-generation biologics. However, progress in clinical trials has also highlighted the challenges posed by the host humoral immune response to AAV vectors. Specifically, while pre-existing neutralizing antibodies (NAbs) limit the cohort of eligible patients, NAb generation following treatment prevents vector re-dosing. Areas covered In this review, we discuss a spectrum of complementary strategies that can help circumvent the host humoral immune response to AAV. Expert opinion Specifically, we present a dual perspective, that is, vector versus host, and highlight the clinical attributes, potential caveats and limitations as well as complementarity associated with the various approaches. PMID:25985812

  7. Nutritional strategies to boost immunity and prevent infection in elderly individuals.

    PubMed

    High, K P

    2001-12-01

    Older adults are at risk for malnutrition, which may contribute to their increased risk of infection. Nutritional supplementation strategies can reduce this risk and reverse some of the immune dysfunction associated with advanced age. This review discusses nutritional interventions that have been examined in clinical trials of older adults. The data support use of a daily multivitamin or trace-mineral supplement that includes zinc (elemental zinc, >20 mg/day) and selenium (100 microg/day), with additional vitamin E, to achieve a daily dosage of 200 mg/day. Specific syndromes may also be addressed by nutritional interventions (for example, cranberry juice consumption to reduce urinary tract infections) and may reduce antibiotic use in older adults, particularly those living in long-term care facilities. Drug-nutrient interactions are common in elderly individuals, and care providers should be aware of these interactions. Future research should evaluate important clinical end points rather than merely surrogate markers of immunity. PMID:11692301

  8. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    PubMed

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival. PMID:19748975

  9. Maternal uptake of pertussis cocooning strategy and other pregnancy related recommended immunizations.

    PubMed

    Wong, C Y; Thomas, N J; Clarke, M; Boros, C; Tuckerman, J; Marshall, H S

    2015-01-01

    Maternal immunization is an important strategy to prevent severe morbidity and mortality in mothers and their offspring. This study aimed to identify whether new parents were following immunization recommendations prior to pregnancy, during pregnancy, and postnatally. A cross-sectional survey was conducted by a questionnaire administered antenatally to pregnant women attending a maternity hospital with a follow-up telephone interview at 8-10 weeks post-delivery. Factors associated with uptake of pertussis vaccination within the previous 5 y or postnatally and influenza vaccination during pregnancy were explored using log binomial regression models. A total of 297 pregnant women completed the questionnaire. For influenza vaccine, 20.3% were immunized during pregnancy and 3.0% postnatally. For pertussis vaccine, 13.1% were vaccinated within 5 y prior to pregnancy and 31 women received the vaccine postnatally, 16 (51.6%) received the vaccine >4 weeks after delivery. Receiving a recommendation from a healthcare provider (HCP) was an independent predictor for receipt of both pertussis (RR 2.07, p < 0.001) and influenza vaccine (RR 2.26, p = 0.001). Non-English speaking mothers were significantly less likely to have received pertussis vaccination prior to pregnancy or postnatally (RR 0.24, p = 0.011). Multiparous pregnant women were less likely to have received an influenza vaccine during their current pregnancy (p = 0.015). Uptake of pregnancy related immunization is low and likely due to poor knowledge of availability, language barriers and lack of recommendations from HCPs. Strategies to improve maternal vaccine uptake should include education about recommended vaccines for both HCPs and parents and written information in a variety of languages. PMID:25874807

  10. Maternal Antibodies: Clinical Significance, Mechanism of Interference with Immune Responses, and Possible Vaccination Strategies

    PubMed Central

    Niewiesk, Stefan

    2014-01-01

    Neonates have an immature immune system, which cannot adequately protect against infectious diseases. Early in life, immune protection is accomplished by maternal antibodies transferred from mother to offspring. However, decaying maternal antibodies inhibit vaccination as is exemplified by the inhibition of seroconversion after measles vaccination. This phenomenon has been described in both human and veterinary medicine and is independent of the type of vaccine being used. This review will discuss the use of animal models for vaccine research. I will review clinical solutions for inhibition of vaccination by maternal antibodies, and the testing and development of potentially effective vaccines. These are based on new mechanistic insight about the inhibitory mechanism of maternal antibodies. Maternal antibodies inhibit the generation of antibodies whereas the T cell response is usually unaffected. B cell inhibition is mediated through a cross-link between B cell receptor (BCR) with the Fc?-receptor IIB by a vaccine–antibody complex. In animal experiments, this inhibition can be partially overcome by injection of a vaccine-specific monoclonal IgM antibody. IgM stimulates the B cell directly through cross-linking the BCR via complement protein C3d and antigen to the complement receptor 2 (CR2) signaling complex. In addition, it was shown that interferon alpha binds to the CD21 chain of CR2 as well as the interferon receptor and that this dual receptor usage drives B cell responses in the presence of maternal antibodies. In lieu of immunizing the infant, the concept of maternal immunization as a strategy to protect neonates has been proposed. This approach would still not solve the question of how to immunize in the presence of maternal antibodies but would defer the time of infection to an age where infection might not have such a detrimental outcome as in neonates. I will review successful examples and potential challenges of implementing this concept. PMID:25278941

  11. Defensive reaper - Induction of mx and Apoptosis in mosquito midgut cells as an innate immune response to baculovirus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many vertebrate and insect viruses posses anti-apoptotic genes that are required for their infectivity. This has led to the hypothesis that apoptosis is an innate immunoresponse important for limiting virus infections. The role of apoptosis may be especially important in insect anti-viral defense ...

  12. Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses.

    PubMed

    Bidgood, Susanna R; Mercer, Jason

    2015-01-01

    As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, "cloaked" form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs. PMID:26308043

  13. Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses

    PubMed Central

    Bidgood, Susanna R.; Mercer, Jason

    2015-01-01

    As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, “cloaked” form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs. PMID:26308043

  14. Lipid Body–Phagosome Interaction in Macrophages during Infectious Diseases: Host Defense or Pathogen Survival Strategy?

    PubMed Central

    Melo, Rossana C. N.; Dvorak, Ann M.

    2012-01-01

    Phagocytosis of invading microorganisms by specialized cells such as macrophages and neutrophils is a key component of the innate immune response. These cells capture and engulf pathogens and subsequently destroy them in intracellular vacuoles—the phagosomes. Pathogen phagocytosis and progression and maturation of pathogen-containing phagosomes, a crucial event to acquire microbicidal features, occurs in parallel with accentuated formation of lipid-rich organelles, termed lipid bodies (LBs), or lipid droplets. Experimental and clinical infections with different pathogens such as bacteria, parasites, and viruses induce LB accumulation in cells from the immune system. Within these cells, LBs synthesize and store inflammatory mediators and are considered structural markers of inflammation. In addition to LB accumulation, interaction of these organelles with pathogen-containing phagosomes has increasingly been recognized in response to infections and may have implications in the outcome or survival of the microorganism within host cells. In this review, we summarize our current knowledge on the LB-phagosome interaction within cells from the immune system, with emphasis on macrophages, and discuss the functional meaning of this event during infectious diseases. PMID:22792061

  15. Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense.

    PubMed

    Jeffery Daim, Leona Daniela; Ooi, Tony Eng Keong; Ithnin, Nalisha; Mohd Yusof, Hirzun; Kulaveerasingam, Harikrishna; Abdul Majid, Nazia; Karsani, Saiful Anuar

    2015-08-01

    The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense. PMID:25930948

  16. Autophagy as a defense strategy against stress: focus on Paracentrotus lividus sea urchin embryos exposed to cadmium.

    PubMed

    Chiarelli, Roberto; Martino, Chiara; Agnello, Maria; Bosco, Liana; Roccheri, Maria Carmela

    2016-01-01

    Autophagy is used by organisms as a defense strategy to face environmental stress. This mechanism has been described as one of the most important intracellular pathways responsible for the degradation and recycling of proteins and organelles. It can act as a cell survival mechanism if the cellular damage is not too extensive or as a cell death mechanism if the damage/stress is irreversible; in the latter case, it can operate as an independent pathway or together with the apoptotic one. In this review, we discuss the autophagic process activated in several aquatic organisms exposed to different types of environmental stressors, focusing on the sea urchin embryo, a suitable system recently included into the guidelines for the use and interpretation of assays to monitor autophagy. After cadmium (Cd) exposure, a heavy metal recognized as an environmental toxicant, the sea urchin embryo is able to adopt different defense mechanisms, in a hierarchical way. Among these, autophagy is one of the main responses activated to preserve the developmental program. Finally, we discuss the interplay between autophagy and apoptosis in the sea urchin embryo, a temporal and functional choice that depends on the intensity of stress conditions. PMID:26362931

  17. A cognitive and economic decision theory for examining cyber defense strategies.

    SciTech Connect

    Bier, Asmeret Brooke

    2014-01-01

    Cyber attacks pose a major threat to modern organizations. Little is known about the social aspects of decision making among organizations that face cyber threats, nor do we have empirically-grounded models of the dynamics of cooperative behavior among vulnerable organizations. The effectiveness of cyber defense can likely be enhanced if information and resources are shared among organizations that face similar threats. Three models were created to begin to understand the cognitive and social aspects of cyber cooperation. The first simulated a cooperative cyber security program between two organizations. The second focused on a cyber security training program in which participants interact (and potentially cooperate) to solve problems. The third built upon the first two models and simulates cooperation between organizations in an information-sharing program.

  18. Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity.

    PubMed

    Contreras, Estefanía; Benito-Jardón, María; López-Galiano, M José; Real, M Dolores; Rausell, Carolina

    2015-06-01

    In Tribolium castaneum larvae we have demonstrated by RNA interference knockdown that the Bacillus thuringiensis Cry3Ba toxin receptors Cadherin-like and Sodium solute symporter proteins are also functional receptors of the less active Cry3Aa toxin. Differences in susceptibility to B. thuringiensis infection might not only rely on toxin-receptor interaction but also on host defense mechanisms. We compared the expression of the immune related genes encoding Apolipophorin-III and two antimicrobial peptides, Defensin3 and Defensin2 after B. thuringiensis challenge. All three genes were up-regulated following Cry3Ba spore-crystal intoxication whereas only Defensins gene expression was induced upon Cry3Aa spore-crystal treatment, evidencing a possible association between host immune response and larval susceptibility to B. thuringiensis. We assessed the antimicrobial activity spectra of T. castaneum defensins peptide fragments and found that a peptide fragment of Defensin3 was effective against the human microbial pathogens, Escherichia coli, Staphylococcus aureus and Candida albicans, being S. aureus the most susceptible one. PMID:25684675

  19. 76 FR 14413 - Risk Mitigation Strategies To Address Potential Procoagulant Activity in Immune Globulin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... in Immune Globulin Intravenous Products; Public Workshop AGENCY: Food and Drug Administration, HHS... present in some Immune Globulin Intravenous (IGIV) products. The purposes of the public workshop are...

  20. The Pelargonium sidoides Extract EPs 7630 Drives the Innate Immune Defense by Activating Selected MAP Kinase Pathways in Human Monocytes

    PubMed Central

    Witte, Katrin; Koch, Egon; Volk, Hans-Dieter; Wolk, Kerstin; Sabat, Robert

    2015-01-01

    Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630) on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-?, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-?, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-?, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-? staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-? production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-? and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells. PMID:26406906

  1. A novel strategy for the rapid preparation and isolation of intact immune complexes from peptide mixtures.

    PubMed

    Al-Majdoub, Mahmoud; Opuni, Kwabena F M; Yefremova, Yelena; Koy, Cornelia; Lorenz, Peter; El-Kased, Reham F; Thiesen, Hans-Jürgen; Glocker, Michael O

    2014-09-01

    The development and application of a miniaturized affinity system for the preparation and release of intact immune complexes are demonstrated. Antibodies were reversibly affinity-adsorbed on pipette tips containing protein G´ and protein A, respectively. Antigen proteins were digested with proteases and peptide mixtures were exposed to attached antibodies; forming antibody-epitope complexes, that is, immune complexes. Elution with millimolar indole propionic acid (IPA)-containing buffers under neutral pH conditions allowed to effectively isolate the intact immune complexes in purified form. Size exclusion chromatography was performed to determine the integrity of the antibody-epitope complexes. Mass spectrometric analysis identified the epitope peptides in the respective SEC fractions. His-tag-containing recombinant human glucose-6-phosphate isomerase in combination with an anti-His-tag monoclonal antibody was instrumental to develop the method. Application was extended to the isolation of the intact antibody-epitope complex of a recombinant human tripartite motif 21 (rhTRIM21) auto-antigen in combination with a rabbit polyclonal anti-TRIM21 antibody. Peptide chip analysis showed that antibody-epitope binding of rhTRIM21 peptide antibody complexes was not affected by the presence of IPA in the elution buffer. By contrast, protein G´ showed an ion charge structure by electrospray mass spectrometry that resembled a denatured conformation when exposed to IPA-containing buffers. The advantages of this novel isolation strategy are low sample consumption and short experimental duration in addition to the direct and robust methodology that provides easy access to intact antibody-antigen complexes under neutral pH and low salt conditions for subsequent investigations. PMID:25042711

  2. Modeling the Impact of Alternative Immunization Strategies: Using Matrices as Memory Lanes

    PubMed Central

    Alonso, Wladimir J.; Rabaa, Maia A.; Giglio, Ricardo; Miller, Mark A.; Schuck-Paim, Cynthia

    2015-01-01

    Existing modeling approaches are divided between a focus on the constitutive (micro) elements of systems or on higher (macro) organization levels. Micro-level models enable consideration of individual histories and interactions, but can be unstable and subject to cumulative errors. Macro-level models focus on average population properties, but may hide relevant heterogeneity at the micro-scale. We present a framework that integrates both approaches through the use of temporally structured matrices that can take large numbers of variables into account. Matrices are composed of several bidimensional (time×age) grids, each representing a state (e.g. physiological, immunological, socio-demographic). Time and age are primary indices linking grids. These matrices preserve the entire history of all population strata and enable the use of historical events, parameters and states dynamically in the modeling process. This framework is applicable across fields, but particularly suitable to simulate the impact of alternative immunization policies. We demonstrate the framework by examining alternative strategies to accelerate measles elimination in 15 developing countries. The model recaptured long-endorsed policies in measles control, showing that where a single routine measles-containing vaccine is employed with low coverage, any improvement in coverage is more effective than a second dose. It also identified an opportunity to save thousands of lives in India at attractively low costs through the implementation of supplementary immunization campaigns. The flexibility of the approach presented enables estimating the effectiveness of different immunization policies in highly complex contexts involving multiple and historical influences from different hierarchical levels. PMID:26509976

  3. Spectroelectrochemistry as a strategy for improving selectivity of sensors for security and defense applications

    NASA Astrophysics Data System (ADS)

    Heineman, William R.; Seliskar, Carl J.; Morris, Laura K.; Bryan, Samuel A.

    2012-09-01

    Spectroelectrochemistry provides improved selectivity for sensors by electrochemically modulating the optical signal associated with the analyte. The sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Alternatively, the OTE can serve as the excitation light for fluorescence detection, which is generally more sensitive than absorption. The analyte partitions into the film, undergoes an electrochemical redox reaction at the OTE surface, and absorbs or emits light in its oxidized or reduced state. The change in the optical response associated with electrochemical oxidation or reduction at the OTE is used to quantify the analyte. Absorption sensors for metal ion complexes such as [Fe(CN)6]4- and [Ru(bpy)3]2+ and fluorescence sensors for [Ru(bpy)3]2+ and the polycyclic aromatic hydrocarbon 1-hydroxypyrene have been developed. The sensor concept has been extended to binding assays for a protein using avidin-biotin and 17?-estradiol-anti-estradiol antibodies. The sensor has been demonstrated to measure metal complexes in complex samples such as nuclear waste and natural water. This sensor has qualities needed for security and defense applications that require a high level of selectivity and good detection limits for target analytes in complex samples. Quickly monitoring and designating intent of a nuclear program by measuring the Ru/Tc fission product ratio is such an application.

  4. Spectroelectrochemistry as a Strategy for Improving Selectivity of Sensors for Security and Defense Applications

    SciTech Connect

    Heineman, William R.; Seliskar, Carl J.; Morris, Laura K.; Bryan, Samuel A.

    2012-12-19

    Spectroelectrochemistry provides improved selectivity for sensors by electrochemically modulating the optical signal associated with the analyte. The sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Alternatively, the OTE can serve as the excitation light for fluorescence detection, which is generally more sensitive than absorption. The analyte partitions into the film, undergoes an electrochemical redox reaction at the OTE surface, and absorbs or emits light in its oxidized or reduced state. The change in the optical response associated with electrochemical oxidation or reduction at the OTE is used to quantify the analyte. Absorption sensors for metal ion complexes such as [Fe(CN)6]4- and [Ru(bpy)3]2+ and fluorescence sensors for [Ru(bpy)3]2+ and the polycyclic aromatic hydrocarbon 1-hydroxypyrene have been developed. The sensor concept has been extended to binding assays for a protein using avidin–biotin and 17?-estradiol–anti-estradiol antibodies. The sensor has been demonstrated to measure metal complexes in complex samples such as nuclear waste and natural water. This sensor has qualities needed for security and defense applications that require a high level of selectivity and good detection limits for target analytes in complex samples. Quickly monitoring and designating intent of a nuclear program by measuring the Ru/Tc fission product ratio is such an application.

  5. A novel molluscan Fos gene with immune defense function identified in the Hong Kong oyster, Crassostrea hongkongensis.

    PubMed

    Qu, Fufa; Xiang, Zhiming; Wang, Fuxuan; Zhang, Yang; Tong, Ying; Li, Jun; Zhang, Yuehuan; Yu, Ziniu

    2015-07-01

    The transcription factor Fos is a member of one of the best-studied AP-1 sub-families and has been implicated in a wide variety of biological processes, including the regulation of apoptosis, immune responses and cytokine production. In this report, a novel mollusk Fos (referred to as ChFos) gene was cloned and characterized from the Hong Kong oyster, Crassostrea hongkongensis. The deduced ChFos protein sequence comprised 333 amino acids and shared significant homology with invertebrate homologs. Phylogenetic analysis revealed that ChFos clusters with Fos from Crassostrea gigas and Crassostrea ariakensis. Quantitative real-time PCR analysis revealed that ChFos mRNA was broadly expressed in all tested tissues and during different stages of the oyster's embryonic and larval development. In addition, the expression of ChFos mRNA was significantly up-regulated under challenge with microorganisms (Vibrio alginolyticus, Staphylococcus haemolyticus and Saccharomyces cerevisiae) and pathogen-associated molecular patterns (PAMPs: LPS, PGN and polyI:C). Moreover, fluorescence microscopy showed that ChFos protein is localized in the nucleus in HEK293T cells. Reporter assays suggested that ChFos may act as an efficient transcription activator in the regulation of AP-1-responsive gene expression through interaction with ChJun. Overall, this study presents the first experimental evidence of the presence and functional characteristics of Fos in mollusks, which reveals its involvement in host protection against immune challenge in the oyster. PMID:25841657

  6. Sexual self-defense versus the liaison dangereuse: a strategy for AIDS prevention in the '90s.

    PubMed

    Nelson, E W

    1991-01-01

    The present public health strategy to encourage the adoption of "safe sex" practices to contain the AIDS epidemic in America is incomplete. Current policy is responsive to and appropriate for control of homosexual, but not heterosexual transmission. Powerful societal forces restrict a woman's perception of risk. Consequently, the adoption of safe sex (condom use/insistence on use) by women at risk has not matched safe sex practice by homosexual men. Predictably, pattern two (heterosexual, maternal-fetal) HIV transmission is now rapidly increasing in the United States, particularly among minority women. In anticipation of an intensified pattern two subepidemic, AIDS containment policy should be reoriented to develop the role of women in AIDS prevention. An initiative, termed "sexual self-defense" (SSD), combines the technology of double-barrier (female irrespective of male) protection with a "universal precautions" approach to long-term sexual risk management. The initiative addresses both per-contact infectiousness and new partner acquisition, the principal determinants of HIV spread. As a female-targeted strategy, SSD is a timely supplement to existing programs, consistent with the direction of contemporary women's movements in the United States. A "street smart" approach, SSD bridges ethnic and socioeconomic individual differences. As a unifying philosophy of risk management in health promotion, SSD may avert the threatened fragmentation of AIDS control from existing programs of sexually transmitted disease control and teenage pregnancy prevention. PMID:1931142

  7. Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarnece

    2010-01-01

    This slide presentation reviews the program to replace several recent studies about astronaut immune systems with one comprehensive study that will include in-flight sampling. The study will address lack of in-flight data to determine the inflight status of immune systems, physiological stress, viral immunity, to determine the clinical risk related to immune dysregulation for exploration class spaceflight, and to determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  8. Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defense strategies against powdery mildew.

    PubMed

    Amrine, Katherine C H; Blanco-Ulate, Barbara; Riaz, Summaira; Pap, Dániel; Jones, Laura; Figueroa-Balderas, Rosa; Walker, M Andrew; Cantu, Dario

    2015-01-01

    Grape powdery mildew (PM), caused by the biotrophic ascomycete Erysiphe necator, is a devastating fungal disease that affects most Vitis vinifera cultivars. We have previously identified a panel of V. vinifera accessions from Central Asia with partial resistance to PM that possess a Ren1-like local haplotype. In this study, we show that in addition to the typical Ren1-associated late post-penetration resistance, these accessions display a range of different levels of disease development suggesting that alternative alleles or additional genes contribute to determining the outcome of the interaction with the pathogen. To identify potential Ren1-dependent transcriptional responses and functions associated with the different levels of resistance, we sequenced and analyzed the transcriptomes of these Central Asian accessions at two time points of PM infection. Transcriptomes were compared to identify constitutive differences and PM-inducible responses that may underlie their disease resistant phenotype. Responses to E. necator in all resistant accessions were characterized by an early up-regulation of 13 genes, most encoding putative defense functions, and a late down-regulation of 32 genes, enriched in transcriptional regulators and protein kinases. Potential Ren1-dependent responses included a hotspot of co-regulated genes on chromosome 18. We also identified 81 genes whose expression levels and dynamics correlated with the phenotypic differences between the most resistant accessions 'Karadzhandahal', DVIT3351.27, and O34-16 and the other genotypes. This study provides a first exploration of the functions associated with varying levels of partial resistance to PM in V. vinifera accessions that can be exploited as sources of genetic resistance in grape breeding programs. PMID:26504579

  9. Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defense strategies against powdery mildew

    PubMed Central

    Amrine, Katherine C H; Blanco-Ulate, Barbara; Riaz, Summaira; Pap, Dániel; Jones, Laura; Figueroa-Balderas, Rosa; Walker, M Andrew; Cantu, Dario

    2015-01-01

    Grape powdery mildew (PM), caused by the biotrophic ascomycete Erysiphe necator, is a devastating fungal disease that affects most Vitis vinifera cultivars. We have previously identified a panel of V. vinifera accessions from Central Asia with partial resistance to PM that possess a Ren1-like local haplotype. In this study, we show that in addition to the typical Ren1-associated late post-penetration resistance, these accessions display a range of different levels of disease development suggesting that alternative alleles or additional genes contribute to determining the outcome of the interaction with the pathogen. To identify potential Ren1-dependent transcriptional responses and functions associated with the different levels of resistance, we sequenced and analyzed the transcriptomes of these Central Asian accessions at two time points of PM infection. Transcriptomes were compared to identify constitutive differences and PM-inducible responses that may underlie their disease resistant phenotype. Responses to E. necator in all resistant accessions were characterized by an early up-regulation of 13 genes, most encoding putative defense functions, and a late down-regulation of 32 genes, enriched in transcriptional regulators and protein kinases. Potential Ren1-dependent responses included a hotspot of co-regulated genes on chromosome 18. We also identified 81 genes whose expression levels and dynamics correlated with the phenotypic differences between the most resistant accessions ‘Karadzhandahal’, DVIT3351.27, and O34-16 and the other genotypes. This study provides a first exploration of the functions associated with varying levels of partial resistance to PM in V. vinifera accessions that can be exploited as sources of genetic resistance in grape breeding programs. PMID:26504579

  10. RabGAP22 Is Required for Defense to the Vascular Pathogen Verticillium longisporum and Contributes to Stomata Immunity

    PubMed Central

    Roos, Jonas; Bejai, Sarosh; Oide, Shinichi; Dixelius, Christina

    2014-01-01

    Verticillium longisporum is a soil-borne pathogen with a preference for plants within the family Brassicaceae. Following invasion of the roots, the fungus proliferates in the plant vascular system leading to stunted plant growth, chlorosis and premature senescence. RabGTPases have been demonstrated to play a crucial role in regulating multiple responses in plants. Here, we report on the identification and characterization of the Rab GTPase-activating protein RabGAP22 gene from Arabidopsis, as an activator of multiple components in the immune responses to V. longisporum. RabGAP22Pro:GUS transgenic lines showed GUS expression predominantly in root meristems, vascular tissues and stomata, whereas the RabGAP22 protein localized in the nucleus. Reduced RabGAP22 transcript levels in mutants of the brassinolide (BL) signaling gene BRI1-ASSOCIATED RECEPTOR KINASE 1, together with a reduction of fungal proliferation following BL pretreatment, suggested RabGAP22 to be involved in BL-mediated responses. Pull-down assays revealed SERINE:GLYOXYLATE AMINOTRANSFERASE (AGT1) as an interacting partner during V. longisporum infection and bimolecular fluorescence complementation (BiFC) showed the RabGAP22-AGT1 protein complex to be localized in the peroxisomes. Further, fungal-induced RabGAP22 expression was found to be associated with elevated endogenous levels of the plant hormones jasmonic acid (JA) and abscisic acid (ABA). An inadequate ABA response in rabgap22-1 mutants, coupled with a stomata-localized expression of RabGAP22 and impairment of guard cell closure in response to V. longisporum and Pseudomonas syringae, suggest that RabGAP22 has multiple roles in innate immunity. PMID:24505423

  11. RabGAP22 is required for defense to the vascular pathogen Verticillium longisporum and contributes to stomata immunity.

    PubMed

    Roos, Jonas; Bejai, Sarosh; Oide, Shinichi; Dixelius, Christina

    2014-01-01

    Verticillium longisporum is a soil-borne pathogen with a preference for plants within the family Brassicaceae. Following invasion of the roots, the fungus proliferates in the plant vascular system leading to stunted plant growth, chlorosis and premature senescence. RabGTPases have been demonstrated to play a crucial role in regulating multiple responses in plants. Here, we report on the identification and characterization of the Rab GTPase-activating protein RabGAP22 gene from Arabidopsis, as an activator of multiple components in the immune responses to V. longisporum. RabGAP22Pro :GUS transgenic lines showed GUS expression predominantly in root meristems, vascular tissues and stomata, whereas the RabGAP22 protein localized in the nucleus. Reduced RabGAP22 transcript levels in mutants of the brassinolide (BL) signaling gene BRI1-associated receptor kinase 1, together with a reduction of fungal proliferation following BL pretreatment, suggested RabGAP22 to be involved in BL-mediated responses. Pull-down assays revealed serine:glyoxylate aminotransferase (AGT1) as an interacting partner during V. longisporum infection and bimolecular fluorescence complementation (BiFC) showed the RabGAP22-AGT1 protein complex to be localized in the peroxisomes. Further, fungal-induced RabGAP22 expression was found to be associated with elevated endogenous levels of the plant hormones jasmonic acid (JA) and abscisic acid (ABA). An inadequate ABA response in rabgap22-1 mutants, coupled with a stomata-localized expression of RabGAP22 and impairment of guard cell closure in response to V. longisporum and Pseudomonas syringae, suggest that RabGAP22 has multiple roles in innate immunity. PMID:24505423

  12. Coping Strategies of Patients with Haemophilia as a Risk Group for AIDS (Acquired Immune Deficiency Syndrome). Brief Research Report.

    ERIC Educational Resources Information Center

    Naji, Simon; And Others

    1986-01-01

    Plans are described for a 2-year project whose major focus is the identification of ways in which patients with hemophilia and their families assimilate, interpret, and act on information about Acquired Immune Deficiency Syndrome (AIDS). Findings will be related to perceived risk, anxiety levels, and the development of coping strategies.…

  13. CsTNF1, a teleost tumor necrosis factor that promotes antibacterial and antiviral immune defense in a manner that depends on the conserved receptor binding site.

    PubMed

    Li, Mo-Fei; Zhang, Jian

    2016-02-01

    Tumor necrosis factor (TNF) is one of the most important cytokines involved in inflammation, apoptosis, cell proliferation, and stimulation of the immune system. The TNF gene has been cloned in teleost fish; however, the in vivo function of fish TNF is essentially unknown. In this study, we report the identification of a TNF homologue, CsTNF1, from tongue sole (Cynoglossus semilaevis) and analysis of its expression and biological effect. CsTNF1 is composed of 242 amino acid residues and possesses a TNF domain and conserved receptor binding sites. Expression of CsTNF1 was detected in a wide range of tissues and up-regulated in a time-dependent manner by experimental challenge with bacterial and viral pathogens. Bacterial infection of peripheral blood leukocytes (PBL) caused extracellular secretion of CsTNF1. Purified recombinant CsTNF1 (rCsTNF1) was able to bind to PBL and stimulate the respiratory burst activity of PBL. In contrast, rCsTNF1M1 and rCsTNF1M2, the mutant CsTNF1 bearing substitutions at the receptor binding site, failed to activate PBL. Fish administered with rCsTNF1, but not with rCsTNF1M1 and rCsTNF1M2, exhibited enhanced expression of IL-1, IL-6, IL-8, IL-27, TLR9 and G3BP in a time-dependent manner and augmented resistance against bacterial and viral infection. These results provide the first evidence that the receptor binding sites are essential to a fish TNF, and that CsTNF1 is involved in the innate immune defense of fish against microbial pathogens. PMID:26478190

  14. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection

    PubMed Central

    Fujimura, Kei E.; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A.; Jang, Sihyug; Johnson, Christine C.; Boushey, Homer A.; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W.; Lynch, Susan V.

    2014-01-01

    Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. PMID:24344318

  15. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  16. Quiescent innate response to infective filariae by human Langerhans cells suggests a strategy of immune evasion.

    PubMed

    Boyd, Alexis; Bennuru, Sasisekhar; Wang, Yuanyuan; Sanprasert, Vivornpun; Law, Melissa; Chaussabel, Damien; Nutman, Thomas B; Semnani, Roshanak Tolouei

    2013-05-01

    Filarial infection is initiated by mosquito-derived third-stage larvae (L3) deposited on the skin that transit through the epidermis, which contains Langerhans cells (LC) and keratinocytes (KC), among other cells. This earliest interaction between L3 and the LC likely conditions the priming of the immune system to the parasite. To determine the nature of this interaction, human LC (langerin(+) E-cadherin(+) CD1a(+)) were generated in vitro and exposed to live L3. LC exposed to live L3 for 48 h showed no alterations in the cell surface markers CD14, CD86, CD83, CD207, E-cadherin, CD80, CD40, and HLA-DR or in mRNA expression of inflammation-associated genes, such as those for interleukin 18 (IL-18), IL-18BP, and caspase 1. In contrast to L3, live tachyzoites of Toxoplasma gondii, an intracellular parasite, induced production of CXCL9, IP-10, and IL-6 in LC. Furthermore, preexposure of LC to L3 did not alter Toll-like receptor 3 (TLR3)- or TLR4-mediated expression of the proinflammatory cytokines IL-1?, gamma interferon (IFN-?), IL-6, or IL-10. Interestingly, cocultures of KC and LC produced significantly more IL-18, IL-1?, and IL-8 than did cultures of LC alone, although exposure of the cocultures to live L3 did not result in altered cytokine production. Microarray examination of ex vivo LC from skin blisters that were exposed to live L3 also showed few significant changes in gene expression compared with unexposed blisters, further underscoring the relatively muted response of LC to L3. Our data suggest that failure by LC to initiate an inflammatory response to the invasive stage of filarial parasites may be a strategy for immune evasion by the filarial parasite. PMID:23429540

  17. Simulations of defense strategies for Bennu: Material characterization and impulse delivery

    DOE PAGESBeta

    Herbold, E. B.; Owen, J. M.; Swift, D. C.; Miller, P. L.

    2015-05-19

    Assessments of asteroid deflection strategies depend on material characterization to reduce the uncertainty in predictions of the deflection velocity resulting from impulsive loading. In addition to strength, equation of state, the initial state of the material including its competency (i.e. fractured or monolithic) and the amount of micro- or macroscopic porosity are important considerations to predict the thermomechanical response. There is recent interest in observing near-Earth asteroid (101955) Bennu due to its classification of being potentially hazardous with close approaches occurring every 6 years. Bennu is relatively large with a nominal diameter of 492 m, density estimates ranging from 0.9-1.26more »g/cm³ and is composed mainly of carbonaceous chondrite. There is a lack of data for highly porous carbonaceous chondrite at very large pressures and temperatures. In the absence of the specific material composition and state (e.g. layering, porosity as a function of depth) on Bennu we introduce a continuum constitutive model based on the response of granular materials and provide impact and standoff explosion simulations to investigate the response of highly porous materials to these types of impulsive loading scenarios. Simulations with impact speeds of 5 km/s show that the shock wave emanating from the impact site is highly dispersive and that a 10% porous material has a larger compacted volume compared with a 40% porous material with the same bulk density due to differences in compaction response.« less

  18. Simulations of defense strategies for Bennu: Material characterization and impulse delivery

    SciTech Connect

    Herbold, E. B.; Owen, J. M.; Swift, D. C.; Miller, P. L.

    2015-05-19

    Assessments of asteroid deflection strategies depend on material characterization to reduce the uncertainty in predictions of the deflection velocity resulting from impulsive loading. In addition to strength, equation of state, the initial state of the material including its competency (i.e. fractured or monolithic) and the amount of micro- or macroscopic porosity are important considerations to predict the thermomechanical response. There is recent interest in observing near-Earth asteroid (101955) Bennu due to its classification of being potentially hazardous with close approaches occurring every 6 years. Bennu is relatively large with a nominal diameter of 492 m, density estimates ranging from 0.9-1.26 g/cm³ and is composed mainly of carbonaceous chondrite. There is a lack of data for highly porous carbonaceous chondrite at very large pressures and temperatures. In the absence of the specific material composition and state (e.g. layering, porosity as a function of depth) on Bennu we introduce a continuum constitutive model based on the response of granular materials and provide impact and standoff explosion simulations to investigate the response of highly porous materials to these types of impulsive loading scenarios. Simulations with impact speeds of 5 km/s show that the shock wave emanating from the impact site is highly dispersive and that a 10% porous material has a larger compacted volume compared with a 40% porous material with the same bulk density due to differences in compaction response.

  19. 78 FR 79469 - Strategies To Address Hemolytic Complications of Immune Globulin Infusions; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ...Hemolytic Complications of Immune Globulin Infusions; Public Workshop AGENCY: Food and Drug...Hemolytic Complications of Immune Globulin Infusions.'' The purpose of the public workshop...Globulin Intravenous (IGIV) (Human) infusion. Complications of hemolysis...

  20. Immunity in Fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fish immune system has evolved with both non-specific (innate immunity) and acquired immune functions (humoral and cell mediated immunity) to eliminate invading foreign living and non-living agents. Fish possess a unique physical barrier (mucus and skin) that acts as the first line of defense a...

  1. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic Hemocytes in the Circulation and the Kidney

    PubMed Central

    Vega, Israel A.; Castro-Vazquez, Alfredo

    2015-01-01

    Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail. PMID:25893243

  2. Pakistan's expanded programme on immunization: an overview in the context of polio eradication and strategies for improving coverage.

    PubMed

    Owais, Aatekah; Khowaja, Asif Raza; Ali, Syed Asad; Zaidi, Anita K M

    2013-07-18

    Since its inception in 1978, Pakistan's Expanded Programme on Immunization (EPI) has contributed significantly towards child health and survival in Pakistan. However, the WHO-estimated immunization coverage of 88% for 3 doses of Diptheria-Tetanus-Pertussis vaccine in Pakistan is likely an over-estimate. Many goals, such as polio, measles and neonatal tetanus elimination have not been met. Pakistan reported more cases of poliomyelits in 2011 than any other country globally, threatening the Global Polio Eradication Initiative. Although the number of polio cases decreased to 58 in 2012 through better organized supplementary immunization campaigns, country-wide measles outbreaks with over 15,000 cases and several hundred deaths in 2012-13 underscore sub-optimal EPI performance in delivering routine immunizations. There are striking inequities in immunization coverage between different parts of the country. Barriers to universal immunization coverage include programmatic dysfunction at lower tiers of the program, socioeconomic inequities in access to services, low population demand, poor security, and social resistance to vaccines among population sub-groups. Recent conflicts and large-scale natural disasters have severely stressed the already constrained resources of the national EPI. Immunization programs remain low priority for provincial and many district governments in the country. The recent decision to devolve the national health ministry to the provinces has had immediate adverse consequences. Mitigation strategies aimed at rapidly improving routine immunization coverage should include improving the infrastructure and management capacity for vaccine delivery at district levels and increasing the demand for vaccines at the population level. Accurate vaccine coverage estimates at district/sub-district level and local accountability of district government officials are critical to improving performance and eradicating polio in Pakistan. PMID:23707167

  3. The Immune System in Hepatocellular Carcinoma and Potential New Immunotherapeutic Strategies

    PubMed Central

    Bertino, Gaetano; Demma, Shirin; Ardiri, Annalisa; Proiti, Maria; Mangia, Alessandra; Gruttadauria, Salvatore; Toro, Adriana; Di Carlo, Isidoro; Malaguarnera, Giulia; Bertino, Nicoletta; Malaguarnera, Mariano; Malaguarnera, Michele

    2015-01-01

    Background. Hepatocellular carcinoma is a major health problem worldwide and the third most common cause of cancer-related death. HCC treatment decisions are complex and dependent upon tumor staging. Several molecular targeted agents have been evaluated in clinical trials in advanced HCC. Despite of only modest objective response rates according to the Response Evaluation Criteria in Solid Tumors, several studies showed encouraging results in terms of prolongation of the time to progression, disease stabilization, and survival. Cellular immunotherapy would improve the immune state and has potential in enhancing the therapeutic outcome for HCC patients. Materials and Methods. A search of the literature was made using cancer literature, the PubMed, Scopus, and Web of Science (WOS) database for the following keywords: “hepatocellular carcinoma,” “molecular hepatocarcinogenesis,” “targeted therapy,” “molecular immunological targets,” “tumour-associated antigens,” “Tregs,” “MDSCs,” “immunotherapy.” Discussion and Conclusion. Treatment strategies combining blockade of immunoregulatory cell types such as Tregs and MDSCs and of inhibitory receptors, with vaccine-induced activation of TAA-specific T cells, may be necessary to achieve the most effective therapeutic antitumour activity in HCC. In the future, new therapeutic options will be represented by a blend of immunotherapy-like vaccines and T-cell modulators, supplemented by molecularly targeted inhibitors of tumor signaling pathways. PMID:25893197

  4. Toll-like receptor-deficient mice reveal how innate immune signaling influences Salmonella virulence strategies.

    PubMed

    Sivick, Kelsey E; Arpaia, Nicholas; Reiner, Gabrielle L; Lee, Bettina L; Russell, Bethany R; Barton, Gregory M

    2014-02-12

    Pathogens utilize features of the host response as cues to regulate virulence gene expression. Salmonella enterica serovar Typhimurium (ST) sense Toll-like receptor (TLR)-dependent signals to induce Salmonella Pathogenicity Island 2 (SPI2), a locus required for intracellular replication. To examine pathogenicity in the absence of such cues, we evaluated ST virulence in mice lacking all TLR function (Tlr2(-/-)xTlr4(-/-)xUnc93b1(3d/3d)). When delivered systemically to TLR-deficient mice, ST do not require SPI2 and maintain virulence by replicating extracellularly. In contrast, SPI2 mutant ST are highly attenuated after oral infection of the same mice, revealing a role for SPI2 in the earliest stages of infection, even when intracellular replication is not required. This early requirement for SPI2 is abolished in MyD88(-/-)xTRIF(-/-) mice lacking both TLR- and other MyD88-dependent signaling pathways, a potential consequence of compromised intestinal permeability. These results demonstrate how pathogens use plasticity in virulence strategies to respond to different host immune environments. PMID:24528866

  5. Strategies and Advancements in Harnessing the Immune System for Gastric Cancer Immunotherapy

    PubMed Central

    Subhash, Vinod Vijay; Yeo, Mei Shi; Tan, Woei Loon; Yong, Wei Peng

    2015-01-01

    In cancer biology, cells and molecules that form the fundamental components of the tumor microenvironment play a major role in tumor initiation, and progression as well as responses to therapy. Therapeutic approaches that would enable and harness the immune system to target tumor cells mark the future of anticancer therapy as it could induce an immunological memory specific to the tumor type and further enhance tumor regression and relapse-free survival in cancer patients. Gastric cancer is one of the leading causes of cancer-related mortalities that has a modest survival benefit from existing treatment options. The advent of immunotherapy presents us with new approaches in gastric cancer treatment where adaptive cell therapies, cancer vaccines, and antibody therapies have all been used with promising outcomes. In this paper, we review the current advances and prospects in the gastric cancer immunotherapy. Special focus is laid on new strategies and clinical trials that attempt to enhance the efficacy of various immunotherapeutic modalities in gastric cancer. PMID:26579545

  6. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.

    PubMed

    Ohshio, Yasuhiko; Teramoto, Koji; Hanaoka, Jun; Tezuka, Noriaki; Itoh, Yasushi; Asai, Tohru; Daigo, Yataro; Ogasawara, Kazumasa

    2015-02-01

    Given the close interaction between tumor cells and stromal cells in the tumor microenvironment (TME), TME-targeted strategies would be promising for developing integrated cancer immunotherapy. Cancer-associated fibroblasts (CAFs) are the dominant stromal component, playing critical roles in generation of the pro-tumorigenic TME. We focused on the immunosuppressive trait of CAFs, and systematically explored the alteration of tumor-associated immune responses by CAF-targeted therapy. C57BL/6 mice s.c. bearing syngeneic E.G7 lymphoma, LLC1 Lewis lung cancer, or B16F1 melanoma were treated with an anti-fibrotic agent, tranilast, to inhibit CAF function. The infiltration of immune suppressor cell types, including regulatory T cells and myeloid-derived suppressor cells, in the TME was effectively decreased through reduction of stromal cell-derived factor-1, prostaglandin E2 , and transforming growth factor-?. In tumor-draining lymph nodes, these immune suppressor cell types were significantly decreased, leading to activation of tumor-associated antigen-specific CD8(+) T cells. In addition, CAF-targeted therapy synergistically enhanced multiple types of systemic antitumor immune responses such as the cytotoxic CD8(+) T cell response, natural killer activity, and antitumor humoral immunity in combination with dendritic cell-based vaccines; however, the suppressive effect on tumor growth was not observed in tumor-bearing SCID mice. These data indicate that systemic antitumor immune responses by various immunologic cell types are required to bring out the efficacy of CAF-targeted therapy, and these effects are enhanced when combined with effector-stimulatory immunotherapy such as dendritic cell-based vaccines. Our mouse model provides a novel rationale with TME-targeted strategy for the development of cell-based cancer immunotherapy. PMID:25483888

  7. Mosquito Immunity against Arboviruses

    PubMed Central

    Sim, Shuzhen; Jupatanakul, Natapong; Dimopoulos, George

    2014-01-01

    Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector. PMID:25415198

  8. Natural killer cells in host defense against veterinary pathogens.

    PubMed

    Shekhar, Sudhanshu; Yang, Xi

    2015-11-15

    Natural Killer (NK) cells constitute a major subset of innate lymphoid cells that do not express the T- and B-cell receptors and play an important role in antimicrobial defense. NK cells not only induce early and rapid innate immune responses, but also communicate with dendritic cells to shape the adaptive immunity, thus bridging innate and adaptive immunity. Although the functional biology of NK cells is well-documented in a variety of infections in humans and mice, their role in protecting domestic animals from infectious agents is only beginning to be understood. In this article, we summarize the current state of knowledge about the contribution of NK cells in pathogen defense in domestic animals, especially cattle and pigs. Understanding the immunobiology of NK cells will translate into strategies to manipulate these cells for preventive and therapeutic purposes. PMID:26553564

  9. 78 FR 79469 - Strategies To Address Hemolytic Complications of Immune Globulin Infusions; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Globulin Infusions; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public... Address Hemolytic Complications of Immune Globulin Infusions.'' The purpose of the public workshop is to... complication of Immune Globulin Intravenous (IGIV) (Human) infusion. Complications of hemolysis include...

  10. Child Immunization Status among a Sample of Adolescent Mothers: Comparing the Validity of Measurement Strategies

    ERIC Educational Resources Information Center

    Phillips, Clarissa; Cota-Robles, Sonia; Knight, Margaret; Francis, Judith; Phillips, Elizabeth; Mazerbo, Laurie

    2011-01-01

    This study of adolescent mothers sought to identify whether a single general question asked by phone or a detailed, vaccine-specific question asked in a self-report questionnaire best captured infant immunization status at 6 months postpartum, by comparing them with immunization record books. Responses to a global question about whether infants…

  11. ???T Lymphocytes as a First Line of Immune Defense: Old and New Ways of Antigen Recognition and Implications for Cancer Immunotherapy

    PubMed Central

    Poggi, Alessandro; Zocchi, Maria Raffaella

    2014-01-01

    Among ??T cells, the V?1 subset, resident in epithelial tissues, is implied in the defense against viruses, fungi, and certain hematological malignancies, while the circulating V?2 subpopulation mainly respond to mycobacteria and solid tumors. Both subsets can be activated by stress-induced molecules (MIC-A, MIC-B, ULBPs) to produce pro-inflammatory cytokines and lytic enzymes and destroy bacteria or damaged cells. ??T lymphocytes can also recognize lipids, as those associated to M. tuberculosis, presented by the CD1 molecule, or phosphoantigens (P-Ag), either autologous, which accumulates in virus-infected cells, or microbial produced by prokaryotes and parasites. In cancer cells, P-Ag accumulate due to alterations in the mevalonate pathway; recently, butyrophilin 3A1 has been shown to be the presenting molecule for P-Ag. Of interest, aminobisphosphonates indirectly activate V?2 T cells inducing the accumulation of P-Ag. Based on these data, ??T lymphocytes are attractive effectors for cancer immunotherapy. However, the results obtained in clinical trials so far have been disappointing: this review will focus on the possible reasons of this failure as well as on suggestions for implementation of the therapeutic strategies. PMID:25426121

  12. Biomimetic strategies based on viruses and bacteria for the development of immune evasive biomaterials

    PubMed Central

    Novak, Matthew T.; Bryers, James D.; Reichert, William M.

    2009-01-01

    The field of biomaterial design has begun to focus upon methods by which materials can modulate immune response. While certain approaches appear promising, they are limited to isolated facets of inflammation. It is well documented that both bacteria and viruses have highly developed methods for evading the immune system, providing impetus for a more biomimetic approach to material design. This review presents the immune evasive tactics employed by viruses and bacteria and offers suggestions for future directions in applying these principles to biomaterial design. PMID:19185345

  13. Strategies for Coordination of a Serosurvey in Parallel with an Immunization Coverage Survey

    PubMed Central

    Travassos, Mark A.; Beyene, Berhane; Adam, Zenaw; Campbell, James D.; Mulholland, Nigisti; Diarra, Seydou S.; Kassa, Tassew; Oot, Lisa; Sequeira, Jenny; Reymann, Mardi; Blackwelder, William C.; Pasetti, Marcela F.; Sow, Samba O.; Steinglass, Robert; Kebede, Amha; Levine, Myron M.

    2015-01-01

    A community-based immunization coverage survey is the standard way to estimate effective vaccination delivery to a target population in a region. Accompanying serosurveys can provide objective measures of protective immunity against vaccine-preventable diseases but pose considerable challenges with respect to specimen collection and preservation and community compliance. We performed serosurveys coupled to immunization coverage surveys in three administrative districts (woredas) in rural Ethiopia. Critical to the success of this effort were serosurvey equipment and supplies, team composition, and tight coordination with the coverage survey. Application of these techniques to future studies may foster more widespread use of serosurveys to derive more objective assessments of vaccine-derived seroprotection and monitor and compare the performance of immunization services in different districts of a country. PMID:26055737

  14. Salmonella enterica induces and subverts the plant immune system

    PubMed Central

    García, Ana V.; Hirt, Heribert

    2014-01-01

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. PMID:24772109

  15. Allergic Host Defenses

    PubMed Central

    Palm, Noah W.; Rosenstein, Rachel K.

    2012-01-01

    Allergies are generally thought to be a detrimental outcome of a mistargeted immune response that evolved to provide immunity to macro-parasites. Here we present arguments to suggest that allergic immunity plays an important role in host defense against noxious environmental substances, including venoms, hematophagous fluids, environmental xenobiotics and irritants. We argue that appropriately targeted allergic reactions are beneficial, although they can become detrimental when excessive. Furthermore, we suggest that allergic hypersensitivity evolved to elicit anticipatory responses and to promote avoidance of suboptimal environments. PMID:22538607

  16. Variation in Immune Parameters and Disease Prevalence among Lesser Black-Backed Gulls (Larus fuscus sp.) with Different Migratory Strategies

    PubMed Central

    Arriero, Elena; Müller, Inge; Juvaste, Risto; Martínez, Francisco Javier; Bertolero, Albert

    2015-01-01

    The ability to control infections is a key trait for migrants that must be balanced against other costly features of the migratory life. In this study we explored the links between migration and disease ecology by examining natural variation in parasite exposure and immunity in several populations of Lesser Black-backed Gulls (Larus fuscus) with different migratory strategies. We found higher activity of natural antibodies in long distance migrants from the nominate subspecies L.f.fuscus. Circulating levels of IgY showed large variation at the population level, while immune parameters associated with antimicrobial activity showed extensive variation at the individual level irrespective of population or migratory strategy. Pathogen prevalence showed large geographical variation. However, the seroprevalence of one of the gull-specific subtypes of avian influenza (H16) was associated to the migratory strategy, with lower prevalence among the long-distance migrants, suggesting that migration may play a role in disease dynamics of certain pathogens at the population level. PMID:25679797

  17. Effects of ozone on the defense to a respiratory Listeria monocytogenes infection in the rat. Suppression of macrophage function and cellular immunity and aggravation of histopathology in lung and liver during infection

    SciTech Connect

    Van Loveren, H.; Rombout, P.J.; Wagenaar, S.S.; Walvoort, H.C.; Vos, J.G.

    1988-07-01

    We have investigated the effect of exposure to ozone on defense mechanisms to a respiratory infection with Listeria monocytogenes in the rat. For this purpose rats were continuously exposed to O/sub 3/ concentrations ranging from 0.25 to 2.0 mg/m3 for a period of 1 week. In this model defense to a respiratory infection with Listeria depends on acquired specific cellular immune responses, as well as on natural nonspecific defense mechanisms. The results confirm earlier findings that show that ozone exposure can suppress the capacity of macrophages to ingest and kill Listeria. Moreover, the results show that ozone can also have a suppressive effect on the development of cellular immune responses to a respiratory Listeria infection, i.e., on T/B ratios in lung draining lymph nodes, delayed-type hypersensitivity responses to Listeria antigen, and lymphoproliferative responses in spleen and lung draining lymph nodes to Listeria antigen. The effects on the specific immune responses are especially overt if exposure to the oxidant gas occurs during an ongoing primary infection. The pathological lesions induced by a pulmonary Listeria monocytogenes infection were characterized by multifocal infiltrates of histiocytic and lymphoid cells. The foci sometimes had a granulomatous appearance. Moreover, the cellularity of the interstitial tissues was increased. In the lung many diffuse alveolar macrophages could be seen in the alveoli. Ozone exposure greatly increased the severity of the lung lesions and also of liver lesions resulting from the pulmonary infection. A prominent finding was the formation of granulomas in ozone-exposed and Listeria-infected rats.

  18. Does the devil facial tumour produce immunosuppressive cytokines as an immune evasion strategy?

    PubMed

    Morris, Katrina; Belov, Katherine

    2013-05-15

    A unique transmissible cancer known as the Devil Facial Tumour Disease (DFTD) is threatening the Tasmanian devil (Sarcophilus harrisii) with extinction. This disease is highly unusual as it is one of only two naturally occurring contagious cancers. The tumour is transmitted by biting and is able to spread between genetically diverse hosts. Why the tumours are not recognised as foreign and rejected by the host immune system in unknown. One mechanism that allows human cancers to avoid immune suppression is by producing cytokines which down-regulate the hosts immune system. Four key cytokines involved in this process are TGF?1, VEGF-A, IL-10 and IL-6. In this study we investigated whether these cytokines could be involved in immune avoidance in DFTD. To do this we compared expression of these cytokines in tumour and control tissues using qPCR. We found no significant upregulation of any of these cytokines in tumour tissue. We therefore conclude that these cytokines do not play a role in the spread of DFTD. Further work will be needed to elucidate how DFTD cells avoid immune rejection. PMID:23465357

  19. The programming of individual differences in defensive responses and reproductive strategies in the rat through variations in maternal care

    E-print Network

    Champagne, Frances A.

    behaviors; Stress; Environmental programming; Epigenetics Contents 1. Phenotypic plasticity. Fish, Kumi Ozaki-Kuroda, Michael J. Meaney* McGill Program for the Study of Behavior, Genes comparable forms of maternal effects on both defensive responses to threat and reproductive behavior

  20. Building immunity to cancer with radiation therapy.

    PubMed

    Haikerwal, Suresh J; Hagekyriakou, Jim; MacManus, Michael; Martin, Olga A; Haynes, Nicole M

    2015-11-28

    Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy. PMID:25592036

  1. MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration.

    PubMed

    Ong, Siew-Min; Biswas, Subhra K; Wong, Siew-Cheng

    2015-07-01

    The concept of implanting an artificial device into the human body was once the preserve of science fiction, yet this approach is now often used to replace lost or damaged biological structures in human patients. However, assimilation of medical devices into host tissues is a complex process, and successful implant integration into patients is far from certain. The body's immediate response to a foreign object is immune-mediated reaction, hence there has been extensive research into biomaterials that can reduce or even ablate anti-implant immune responses. There have also been attempts to embed or coat anti-inflammatory drugs and pro-regulatory molecules onto medical devices with the aim of preventing implant rejection by the host. In this review, we summarize the key immune mediators of medical implant reaction, and we evaluate the potential of microRNAs to regulate these processes to promote wound healing, and prolong host-implant integration. PMID:26024977

  2. Survival strategies of Entamoeba histolytica: Modulation of cell-mediated immune responses.

    PubMed

    Campbell, D; Chadee, K

    1997-05-01

    Tissue invasion and disease associated with the protozoan Entamoeba histolytica has long been connected with suppression of host cellular immunity. Dampening of the host's defences may facilitate survival of amoebae in extraintestinal sites and development of the characteristic amoebic abscesses. In recent years, several studies have begun to clarify, at the cellular level, the specific effects E. histolytica has on immune cell accessory and effector cell functions. Here, Darren Campbell and Kris Chadee discuss the parasite's multiple modulatory effects on macrophages and T cells and how this manipulation of immune defences may enable the parasite to remain viable in the host. They suggest the putative amoebic molecules involved and potential modulation by the cytokines: interleukins IL-4 and IL-10 and transforming growth factor-beta. PMID:15275089

  3. JASMONATE-TRIGGERED PLANT IMMUNITY

    PubMed Central

    Campos, Marcelo L.; Kang, Jin-Ho; Howe, Gregg A.

    2014-01-01

    The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom. PMID:24973116

  4. Vaccination of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer membrane protein adjuvanted with poly I:C, a host defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral immune responses.

    PubMed

    Khan, Shahneaz Ali; Waugh, Courtney; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2014-10-01

    Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime. PMID:25196393

  5. The Complex Contributions of Genetics and Nutrition to Immunity in Drosophila melanogaster

    PubMed Central

    Unckless, Robert L.; Rottschaefer, Susan M.; Lazzaro, Brian P.

    2015-01-01

    Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and “nutritional immunology” has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional “immune system” that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to pathogen pressure in the context of nutritional environment. PMID:25764027

  6. Assessment of Different Strategies to Determine MAP-specific Cellular Immune Responses in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of cellular immunity in cattle against Mycobacterium avium ssp. paratuberculosis (MAP) by established methods remains unsatisfactory for diagnostic purposes. Recent studies conclude that analysis of T-cell subset responsiveness may improve diagnostic outcome. Aim of this study was to iden...

  7. A size amplified immune magnetic microbeads strategy in the rapid detection of circulating tumor cells.

    PubMed

    Zhang, Hongyan; Wang, Yanhong; Li, Qingling; Zhang, Fumiao; Tang, Bo

    2014-07-01

    Using anti-EpCAM antibody modified magnetic microbeads allowed us to simultaneously apply size-amplification and magnetic labelling of CTCs to the capture and purification of CTCs by membrane filtration and immune-magnetic separation. High purity capture (>98%), rapid (<2 hours) and simple detection of CTCs were realized. PMID:24849539

  8. Multi-step regulation of innate immune signaling by Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Lee, Hye-Ra; Amatya, Rina; Jung, Jae U

    2015-11-01

    The innate immune system provides an immediate and relatively non-specific response to infection with the aim of eliminating the pathogen before an infection can be fully established. Activation of innate immune response is achieved by production of pro-inflammatory cytokines and type I interferon (IFN). The IFN response in particular is one of the primary defenses utilized by the host innate immune system to control pathogen infection, like virus infection. Hence, viruses have learned to manipulate host immune control mechanisms to facilitate their propagation. Due to this, much work has been dedicated to the elucidation of the Kaposi's sarcoma-associated herpesvirus (KSHV)-mediated immune evasion tactics that antagonize a host's immune system. This review presents our current knowledge of the immune evasion strategies employed by KSHV at distinct stages of its life cycle to control a host's immune system with a focus on interferon signaling. PMID:25796211

  9. Immunization strategies to control a community-wide hepatitis A epidemic.

    PubMed

    Thorburn, K M; Bohorques, R; Stepak, P; Smith, L L; Jobb, C; Smith, J P

    2001-12-01

    One fifth of 527 cases of hepatitis A occurred in self-identified injection drug users during a community-wide epidemic in Spokane County (Washington) in 1997-8. We hypothesized that an immunization campaign targeted at illicit drug users could control the epidemic. Starting in May 1998, hepatitis A vaccine was provided to individuals in jails and other sites frequented by illicit drug users. Volunteers at vaccination sites were surveyed about risk. Serial convenience samples of jail inmates who denied previous vaccination were anonymously tested for hepatitis A virus (HAV) immunoglobulin G (IgG). From May to December 1998, 2765 high-risk individuals were vaccinated against hepatitis A. The proportion of HAV IgG seropositive inmates increased from 30% to more than 50%. Our findings suggest that vaccination along with naturally occurring infection increased the rate of hepatitis A immunity among illicit drug users during the final months of the epidemic. This supports the hypothesis that targeted immunization of high risk groups may shorten the natural history of a community-wide epidemic. PMID:11811879

  10. A Starter Culture Rotation Strategy Incorporating Paired Restriction/ Modification and Abortive Infection Bacteriophage Defenses in a Single Lactococcus lactis Strain

    PubMed Central

    Durmaz, E.; Klaenhammer, T. R.

    1995-01-01

    Three derivatives of Lactococcus lactis subsp. lactis NCK203, each with a different pair of restriction/ modification (R/M) and abortive infection (Abi) phage defense systems, were constructed and then rotated in repeated cycles of a milk starter culture activity test (SAT). The rotation proceeded successfully through nine successive SATs in the presence of phage and whey containing phage from previous cycles. Lactococcus cultures were challenged with 2 small isometric-headed phages, (phi)31 and ul36, in one rotation series and with a composite of 10 industrial phages in another series. Two native lactococcal R(sup+)/M(sup+) plasmids, pTRK68 and pTRK11, and one recombinant plasmid, pTRK308, harboring a third distinct R/M system were incorporated into three NCK203 derivatives constructed separately for the rotation. The R(sup+)/M(sup+) NCK203 derivatives were transformed with high-copy-number plasmids encoding four Abi genes, abiA, abiC, per31, and per50. Various Abi and R/M combinations constructed in NCK203 were evaluated for their effects on cell growth, level of phage resistance, and retardation of phage development during repeated cycles of the SAT. The three NCK203 derivatives chosen for use in the SAT exhibited additive effects of the R/M and Abi phenotypes against sensitive phages. In such combinations, phage escaping restriction are prevented from completing their infective cycle by an abortive response that kills the host cell. The rotation series successfully controlled modified, recombinant, and mutant phages which were resistant to any one of the individual defense systems by presenting a different set of R/M and Abi defenses in the next test of the rotation. PMID:16534987

  11. Targeting an antimicrobial effector function in insect immunity as a pest control strategy

    E-print Network

    Raman, Rahul

    Insect pests such as termites cause damages to crops and man-made structures estimated at over $30 billion per year, imposing a global challenge for the human economy. Here, we report a strategy for compromising insect ...

  12. Retrieving Infinite Numbers of Patterns in a Spin-Glass Model of Immune Networks

    E-print Network

    Agliari, Elena; Barra, Adriano; Coolen, A C C; Tantari, Daniele

    2013-01-01

    The similarity between neural and immune networks has been known for decades, but so far we did not understand the mechanism that allows the immune system, unlike associative neural networks, to recall and execute a large number of memorized defense strategies {\\em in parallel}. The explanation turns out to lie in the network topology. Neurons interact typically with a large number of other neurons, whereas interactions among lymphocytes in immune networks are very specific, and described by graphs with finite connectivity. In this paper we use replica techniques to solve a statistical mechanical immune network model with `coordinator branches' (T-cells) and `effector branches' (B-cells), and show how the finite connectivity enables the system to manage an extensive number of immune clones simultaneously, even above the percolation threshold. The system exhibits only weak ergodicity breaking, so that both multiple antigen defense and homeostasis can be accomplished.

  13. HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate Mla-triggered immunity and basal defense to barley powdery mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WRKY proteins represent a large family of transcription factors (TFs), involved in plant development and defense responses. So far, fifty-five unique barley TFs have been annotated that contain the WRKY domain; twenty-six of these are present on the Barley1 GeneChip. We analyzed time-course expres...

  14. Fighting a Losing Battle: Vigorous Immune Response Countered by Pathogen Suppression of Host Defenses in the Chytridiomycosis-Susceptible Frog Atelopus zeteki

    PubMed Central

    Ellison, Amy R.; Savage, Anna E.; DiRenzo, Grace V.; Langhammer, Penny; Lips, Karen R.; Zamudio, Kelly R.

    2014-01-01

    The emergence of the disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in dramatic global amphibian declines. Although many species have undergone catastrophic declines and/or extinctions, others appear to be unaffected or persist at reduced frequencies after Bd outbreaks. The reasons behind this variance in disease outcomes are poorly understood: differences in host immune responses have been proposed, yet previous studies suggest a lack of robust immune responses to Bd in susceptible species. Here, we sequenced transcriptomes from clutch-mates of a highly susceptible amphibian, Atelopus zeteki, with different infection histories. We found significant changes in expression of numerous genes involved in innate and inflammatory responses in infected frogs despite high susceptibility to chytridiomycosis. We show evidence of acquired immune responses generated against Bd, including increased expression of immunoglobulins and major histocompatibility complex genes. In addition, fungal-killing genes had significantly greater expression in frogs previously exposed to Bd compared with Bd-naïve frogs, including chitinase and serine-type proteases. However, our results appear to confirm recent in vitro evidence of immune suppression by Bd, demonstrated by decreased expression of lymphocyte genes in the spleen of infected compared with control frogs. We propose susceptibility to chytridiomycosis is not due to lack of Bd-specific immune responses but instead is caused by failure of those responses to be effective. Ineffective immune pathway activation and timing of antibody production are discussed as potential mechanisms. However, in light of our findings, suppression of key immune responses by Bd is likely an important factor in the lethality of this fungus. PMID:24841130

  15. Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease

    PubMed Central

    Küng, Denise; Bigler, Laurent; Davis, Leyla R.; Gratwicke, Brian; Griffith, Edgardo; Woodhams, Douglas C.

    2014-01-01

    Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant – skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control – sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7–12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities. PMID:24489847

  16. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  17. An improved ant colony algorithm with diversified solutions based on the immune strategy

    PubMed Central

    Qin, Ling; Pan, Yi; Chen, Ling; Chen, Yixin

    2006-01-01

    Background Ant colony algorithm has emerged recently as a new meta-heuristic method, which is inspired from the behaviours of real ants for solving NP-hard problems. However, the classical ant colony algorithm also has its defects of stagnation and premature. This paper aims at remedying these problems. Results In this paper, we propose an adaptive ant colony algorithm that simulates the behaviour of biological immune system. The solutions of the problem are much more diversified than traditional ant colony algorithms. Conclusion The proposed method for improving the performance of traditional ant colony algorithm takes into account the polarization of the colonies, and adaptively adjusts the distribution of the solutions obtained by the ants. This makes the solutions more diverse so as to avoid the stagnation and premature phenomena. PMID:17217521

  18. Immunity and Nutrition.

    ERIC Educational Resources Information Center

    Dupin, Henri; Guerin, Nicole

    1990-01-01

    The three articles in this issue of a periodical focussed on various aspects of the life and health of children in the tropics concern: (1) immune defenses; (2) interactions between nutrition disorders and infection; and (3) immunity and vaccination. The science of immunology has progressed rapidly in recent years. A brief review of present…

  19. Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral immunization.

    PubMed

    Gamazo, Carlos; Martín-Arbella, Nekane; Brotons, Ana; Camacho, Ana I; Irache, J M

    2015-10-01

    Dealing with mucosal delivery systems means dealing with mucus. The name mucosa comes from mucus, a dense fluid enriched in glycoproteins, such as mucin, which main function is to protect the delicate mucosal epithelium. Mucus provides a barrier against physiological chemical and physical aggressors (i.e., host secreted digestive products such as bile acids and enzymes, food particles) but also against the potentially noxious microbiota and their products. Intestinal mucosa covers 400m(2) in the human host, and, as a consequence, is the major portal of entry of the majority of known pathogens. But, in turn, some microorganisms have evolved many different approaches to circumvent this barrier, a direct consequence of natural co-evolution. The understanding of these mechanisms (known as virulence factors) used to interact and/or disrupt mucosal barriers should instruct us to a rational design of nanoparticulate delivery systems intended for oral vaccination and immunotherapy. This review deals with this mimetic approach to obtain nanocarriers capable to reach the epithelial cells after oral delivery and, in parallel, induce strong and long-lasting immune and protective responses. PMID:25615880

  20. The genome of obligately intracellular Ehrlichia canis revealsthemes of complex membrane structure and immune evasion strategies

    SciTech Connect

    Mavromatis, K.; Kuyler Doyle, C.; Lykidis, A.; Ivanova, N.; Francino, P.; Chain, P.; Shin, M.; Malfatti, S.; Larimer, F.; Copeland,A.; Detter, J.C.; Land, M.; Richardson, P.M.; Yu, X.J.; Walker, D.H.; McBride, J.W.; Kyrpides, N.C.

    2005-09-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, a-proteobacterium is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, and 17 putative pseudogenes, and a substantial proportion of non-coding sequence (27 percent). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences, and a unique serine-threonine bias associated with the potential for O-glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associated with immune evasion were identified, one of which contains poly G:C tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Proteins associated with pathogen-host interactions were identified including a small group of proteins (12) with tandem repeats and another with eukaryotic-like ankyrin domains (7).

  1. Quantal and graded stimulation of B lymphocytes as alternative strategies for regulating adaptive immune responses

    PubMed Central

    Hawkins, E.D.; Turner, M.L.; Wellard, C.J.; Zhou, J.H.S.; Dowling, M.R.; Hodgkin, P.D.

    2013-01-01

    Lymphocytes undergo a typical response pattern following stimulation in vivo: they proliferate, differentiate to effector cells, cease dividing and predominantly die, leaving a small proportion of long-lived memory and effector cells. This pattern results from cell-intrinsic processes following activation and the influence of external regulation. Here we apply quantitative methods to study B-cell responses in vitro. Our results reveal that B cells stimulated through two Toll-like receptors (TLRs) require minimal external direction to undergo the basic pattern typical of immunity. Altering the stimulus strength regulates the outcome in a quantal manner by varying the number of cells that participate in the response. In contrast, the T-cell-dependent CD40 activation signal induces a response where division times and differentiation rates vary in relation to stimulus strength. These studies offer insight into how the adaptive antibody response may have evolved from simple autonomous response patterns to the highly regulable state that is now observed in mammals. PMID:24009041

  2. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression

    SciTech Connect

    Kimberlin, Christopher R.; Bornholdt, Zachary A.; Li, Sheng; Woods, Jr., Virgil L.; MacRae, Ian J.; Saphire, Erica Ollmann

    2010-03-12

    Ebolavirus causes a severe hemorrhagic fever and is divided into five distinct species, of which Reston ebolavirus is uniquely nonpathogenic to humans. Disease caused by ebolavirus is marked by early immunosuppression of innate immune signaling events, involving silencing and sequestration of double-stranded RNA (dsRNA) by the viral protein VP35. Here we present unbound and dsRNA-bound crystal structures of the dsRNA-binding domain of Reston ebolavirus VP35. The structures show that VP35 forms an unusual, asymmetric dimer on dsRNA binding, with each of the monomers binding dsRNA in a different way: one binds the backbone whereas the other caps the terminus. Additional SAXS, DXMS, and dsRNA-binding experiments presented here support a model of cooperative dsRNA recognition in which binding of the first monomer assists binding of the next monomer of the oligomeric VP35 protein. This work illustrates how ebolavirus VP35 could mask key recognition sites of molecules such as RIG-I, MDA-5, and Dicer to silence viral dsRNA in infection.

  3. Kinetics of rabies antibodies as a strategy for canine active immunization

    PubMed Central

    2014-01-01

    Background Rabies, a zoonosis found throughout the globe, is caused by a virus of the Lyssavirus genus. The disease is transmitted to humans through the inoculation of the virus present in the saliva of infected mammals. Since its prognosis is usually fatal for humans, nationwide public campaigns to vaccinate dogs and cats against rabies aim to break the epidemiological link between the virus and its reservoirs in Brazil. Findings During 12 months we evaluated the active immunity of dogs first vaccinated (booster shot at 30 days after first vaccination) against rabies using the Fuenzalida-Palácios modified vaccine in the urban area of Botucatu city, São Pauto state, Brazil. Of the analyzed dogs, 54.7% maintained protective titers (?0.5 IU/mL) for 360 days after the first vaccination whereas 51.5% during all the study period. Conclusions The present results suggest a new vaccination schedule for dogs that have never been vaccinated. In addition to the first dose of vaccine, two others are recommended: the second at 30 days after the first and the third dose at 180 days after the first for the maintenance of protective titers during 12 months. PMID:26413082

  4. New Strategies for Overcoming Limitations of Mesenchymal Stem Cell-Based Immune Modulation

    PubMed Central

    Kim, Nayoun; Cho, Seok-Goo

    2015-01-01

    Mesenchymal stem cells (MSCs) have rapidly been applied in a broad field of immune-mediated disorders since the first successful clinical use of MSCs for treatment of graft-versus-host disease. Despite the lack of supporting data, expectations that MSCs could potentially treat most inflammatory conditions led to rushed application and development of commercialized products. Today, both pre-clinical and clinical studies present mixed results for MSC therapy and the discrepancy between expected and actual efficacy of MSCs in various diseases has evoked a sense of discouragement. Therefore, we believe that MSC therapy may now be at a critical milestone for re-evaluation and re-consideration. In this review, we summarize the current status of MSC-based clinical trials and focus on the discrepancy between expected and actual outcome of MSC therapy from bench to bedside. Importantly, we discuss the underlying limitations of MSCs and suggest a new guideline for MSC therapy in hopes of improving their therapeutic efficacy. PMID:26019755

  5. Immunity to Fungi

    PubMed Central

    LeibundGut-Landmann, Salomé; Wüthrich, Marcel; Hohl, Tobias M.

    2012-01-01

    The global increase in fungal disease burden, the emergence of novel pathogenic fungi, and the lack of fungal vaccines have focused intense interest in elucidating immune defense mechanisms against fungi. Recent studies in animal models and in humans identify an integrated role for C-type lectin and Toll-like receptor signaling in activating innate and adaptive responses that control medically relevant fungi. Beyond the critical role of phagocytes in host defense, the generation and balance of specific T helper subsets contributes to sterilizing immunity. These advances form a basis for the development of fungal vaccines and immune-based therapeutic adjuncts. PMID:22613091

  6. Effects of Lipoic Acid on Immune Function, the Antioxidant Defense System, and Inflammation-Related Genes Expression of Broiler Chickens Fed Aflatoxin Contaminated Diets

    PubMed Central

    Li, Yan; Ma, Qiu-Gang; Zhao, Li-Hong; Wei, Hua; Duan, Guo-Xiang; Zhang, Jian-Yun; Ji, Cheng

    2014-01-01

    This study was designed to evaluate the effect of low level of Aflatoxin B1 (AFB1) on oxidative stress, immune reaction and inflammation response and the possible ameliorating effects of dietary alpha-lipoic acid (?-LA) in broilers. Birds were randomly allocated into three groups and assigned to receive different diets: basal diet, diet containing 74 ?g/kg AFB1, and 300 mg/kg ?-LA supplementation in diet containing 74 ?g/kg AFB1 for three weeks. The results showed that the serum levels of malondialdehyde, tumor necrosis factor alpha (TNF?) and interferon gamma (IFN?) in the AFB1-treated group were significantly increased than the control group. In addition, the increased expressions of interleukin 6 (IL6), TNF? and IFN? were observed in birds exposed to the AFB1-contaminated diet. These degenerative changes were inhibited by ?-LA-supplement. The activities of total superoxide dismutase and glutathione peroxidase, the levels of humoral immunity, and the expressions of nuclear factor-?B p65 and heme oxygenase-1, however, were not affected by AFB1. The results suggest that ?-LA alleviates AFB1 induced oxidative stress and immune changes and modulates the inflammatory response at least partly through changes in the expression of proinflammatory cytokines of spleen such as IL6 and TNF? in broiler chickens. PMID:24699046

  7. Novel Antitumor Strategy Utilizing a Plasmid Expressing a Mycobacterium tuberculosis Antigen as a “Danger Signal” to Block Immune Escape of Tumor Cells

    PubMed Central

    Koyama, Yoshiyuki; Yoshihara, Chieko; Ito, Tomoko

    2015-01-01

    Immune escape of tumor cells is one of the main obstacles hindering the effectiveness of cancer immunotherapy. We developed a novel strategy to block immune escape by transfecting tumor cells in vivo with genes of pathogenic antigens from Mycobacterium tuberculosis (TB). This induces presentation of the TB antigen on tumor cell surfaces, which can be recognized by antigen presenting cells (APCs) as a “danger signal” to stimulate antitumor immune response. This strategy is also expected to amplify the immune response against tumor-associated antigens, and block immune escape of the tumor. DNA/PEI/chondroitin sulfate ternary complex is a highly effective non-viral gene vector system for in vivo transfection. A therapeutic complex was prepared using a plasmid encoding the TB antigen, early secretory antigenic target-6 (ESAT-6). This was injected intratumorally into syngeneic tumor-bearing mice, and induced significant tumor growth suppression comparable to or higher than similar complexes expressing cytokines such as interleukin-2 (IL-2) and interleukin-12 (IL-12). Co-transfection of the cytokine-genes and the ESAT-6-gene enhanced the antitumor efficacy of either treatment alone. In addition, complete tumor regression was achieved with the combination of ESAT-6 and IL-2 genes. PMID:26213962

  8. Homologous prime-boost strategy with TgPI-1 improves the immune response and protects highly susceptible mice against chronic Toxoplasma gondii infection.

    PubMed

    Sánchez, Vanesa R; Fenoy, Ignacio M; Picchio, Mariano S; Soto, Ariadna S; Arcon, Nadia; Goldman, Alejandra; Martin, Valentina

    2015-10-01

    Subunit-based vaccines are safer than live or attenuated pathogen vaccines, although they are generally weak immunogens. Thus, proper combination of immunization strategies and adjuvants are needed to increase their efficacy. We have previously protected C3H/HeN mice from Toxoplasma gondii infection by immunization with the serine protease inhibitor-1 (TgPI-1) in combination with alum. In this work, we explore an original vaccination protocol that combines administration of recombinant TgPI-1 by intradermal and intranasal routes in order to enhance protection in the highly susceptible C57BL/6 strain. Mice primed intradermally with rTgPI-1 plus alum and boosted intranasally with rTgPI-1 plus CpG-ODN elicited a strong specific Th1/Th2 humoral response, along with a mucosal immune response characterized by specific-IgA in intestinal lavages. A positive cellular response of mesentheric lymph node cells and Th1/Th2 cytokine secretion in the ileon were also detected. When immunized mice were challenged with the cystogenic Me49 T. gondii strain, they displayed up to 62% reduction in brain parasite burden. Moreover, adoptive transfer of mesenteric lymph node cells from vaccinated to naïve mice induced significant protection against infection. These results demonstrate that this strategy that combines the administration of TgPI-1 by two different routes, intradermal priming and intranasal boost, improves protective immunity against T. gondii chronic infection in highly susceptible mice. PMID:26200784

  9. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  10. Insect Innate Immunity Database (IIID): An Annotation Tool for Identifying Immune Genes in Insect Genomes

    E-print Network

    Bordenstein, Seth

    Insect Innate Immunity Database (IIID): An Annotation Tool for Identifying Immune Genes in Insect The innate immune system is an ancient component of host defense. Since innate immunity pathways are well conserved throughout many eukaryotes, immune genes in model animals can be used to putatively identify

  11. The personal touch: strategies toward personalized vaccines and predicting immune responses to them

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Lambert, Nathaniel D.; Haralambieva, Iana H.; Poland, Gregory A.

    2014-01-01

    The impact of vaccines on public health and well-being has been profound. Smallpox has been eradicated, polio is nearing eradication, and multiple diseases have been eliminated from certain areas of the world. Unfortunately, we now face diseases such as: hepatitis C, malaria, or tuberculosis, as well as new and re-emerging pathogens for which lack effective vaccines. Empirical approaches to vaccine development have been successful in the past, but may not be up to the current infectious disease challenges facing us. New, directed approaches to vaccine design, development, and testing need to be developed. Ideally these approaches will capitalize on cutting-edge technologies, advanced analytical and modeling strategies, and up-to-date knowledge of both pathogen and host. These approaches will pay particular attention to the causes of inter-individual variation in vaccine response in order to develop new vaccines tailored to the unique needs of individuals and communities within the population. PMID:24702429

  12. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system

    PubMed Central

    Pelaseyed, Thaher; Bergström, Joakim H.; Gustafsson, Jenny K.; Ermund, Anna; Birchenough, George M. H.; Schütte, André; van der Post, Sjoerd; Svensson, Frida; Rodríguez-Piñeiro, Ana M.; Nyström, Elisabeth E.L.; Wising, Catharina; Johansson, Malin E.V.; Hansson, Gunnar C.

    2014-01-01

    Summary The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine mucus limits the number of bacteria that can reach the epithelium and the Peyer’s patches. In the large intestine the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells not only secrete the MUC2 mucin, but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103+-type. In addition to the gel forming mucins, the transmembrane mucins MUC3, MUC12 and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization suggesting that enterocytes might control and report epithelial microbial challenge. There is not only communication from the epithelial cells to the immune system, but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy. PMID:24942678

  13. Plant Innate Immunity Multicomponent Model

    PubMed Central

    Andolfo, Giuseppe; Ercolano, Maria R.

    2015-01-01

    Our understanding of plant–pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defense mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defense response activation. To better describe the sophisticated defense system of plants, we propose a new model of plant immunity. This model considers the plant’s ability to distinguish the feeding behavior of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defense against the different behaviors of pathogens with the intention to stimulate further interest in this research area. PMID:26617626

  14. Integrated Immune Experiment

    NASA Technical Reports Server (NTRS)

    Crucian, Brian

    2009-01-01

    This viewgraph presentation reviews NASA's Integrated Immune Experiment. The objectives include: 1) Address significant lack of data regarding immune status during flight; 2) Replace several recent immune studies with one comprehensive study that will include in-flight sampling; 3) Determine the in-flight status of immunity, physiological stress, viral immunity/reactivation; 4) Determine the clinical risk related to immune dysregulation for exploration class spaceflight; and 5) Determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  15. Humoral immune responses are maintained with age in a long-lived ectotherm, the red-eared slider turtle.

    PubMed

    Zimmerman, Laura M; Clairardin, Sandrine G; Paitz, Ryan T; Hicke, Justin W; LaMagdeleine, Katie A; Vogel, Laura A; Bowden, Rachel M

    2013-02-15

    Aging is typically associated with a decrease in immune function. However, aging does not affect each branch of the immune system equally. Because of these varying effects of age on immune responses, aging could affect taxa differently based on how the particular taxon employs its resources towards different components of immune defense. An example of this is found in the humoral immune system. Specific responses tend to decrease with age while non-specific, natural antibody responses increase with age. Compared with mammals, reptiles of all ages have a slower and less robust humoral immune system. Therefore, they may invest more in non-specific responses and thus avoid the negative consequences of age on the immune system. We examined how the humoral immune system of reptiles is affected by aging and investigated the roles of non-specific, natural antibody responses and specific responses by examining several characteristics of antibodies against lipopolysaccharide (LPS) in the red-eared slider turtle. We found very little evidence of immunosenescence in the humoral immune system of the red-eared slider turtle, Trachemys scripta, which supports the idea that non-specific, natural antibody responses are an important line of defense in reptiles. Overall, this demonstrates that a taxon's immune strategy can influence how the immune system is affected by age. PMID:23077164

  16. Transcriptional networks in plant immunity.

    PubMed

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity. PMID:25623163

  17. Innate immunity activation on biomaterial surfaces: A mechanistic model and coping strategies

    PubMed Central

    Ekdahl, Kristina N; Lambris, John D.; Elwing, Hans; Ricklin, Daniel; Nilsson, Per H.; Teramura, Yuji; Nicholls, Ian A.; Nilsson, Bo

    2011-01-01

    When an artificial biomaterial (e.g., a stent or implantable pump) is exposed to blood, plasma proteins immediately adhere to the surface, creating a new interface between the biomaterial and the blood. The recognition proteins within the complement and contact activation/coagulation cascade systems of the blood will be bound to, or inserted into, this protein film and generate different mediators that will activate polymorphonuclear leukocytes and monocytes, as well as platelets. Under clinical conditions, the ultimate outcome of these processes may be thrombotic and inflammatory reactions, and consequently the composition and conformation of the proteins in the initial layer formed on the surface will to a large extent determine the outcome of a treatment involving the biomaterial, affecting both the functionality of the material and the patient’s life quality. This review presents models of biomaterial-induced activation processes and describes various strategies to attenuate potential adverse reactions by conjugating bioactive molecules to surfaces or by introducing nanostructures. PMID:21771620

  18. Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the availability of vaccines, influenza is a significant public health problem, emphasizing the need for development of additional strategies to enhance host defense against influenza. Wolfberry or Goji berry, long used as a medicinal food in China, has recently been shown to improve immune ...

  19. Evaluability Assessment of an immunization improvement strategy in rural Burkina Faso: intervention theory versus reality, information need and evaluations.

    PubMed

    Sanou, Aboubakary; Kouyaté, Bocar; Bibeau, Gilles; Nguyen, Vinh-Kim

    2011-08-01

    An innovative immunization improvement strategy was proposed by the CRSN (Centre de Recherche en Santé de Nouna) to improve the low coverage rate for children aged 0-11 months in the health district of Nouna in Burkina Faso. This article reports on the Evaluability Assessment (EA) study that aimed to orient decisions for its evaluation in close relationship with the information needs of the stakeholders. Various methods were used, including document reviews, individual interviews, focus group discussions, meetings, literature reviews and site visits. A description of the intervention theory and philosophy is provided with its logic models and its reality documented. Lessons on the procedure include the importance of the position of the evaluability assessor, the value of replicating some steps of the assessment and the relationships between EA and process evaluation. The evaluability study concludes that the intervention had some evaluable components. To satisfy the stakeholders' needs, the initially planned community randomized controlled trial can be maintained and complemented with a process evaluation. There is a need to provide sufficient information on the cost of the intervention. This will inform decision makers on the possibility of replicating the intervention in other contexts. PMID:21168211

  20. Sequestration of host-CD59 as potential immune evasion strategy of Trichomonas vaginalis.

    PubMed

    Ibáñez-Escribano, Alexandra; Nogal-Ruiz, Juan José; Pérez-Serrano, Jorge; Gómez-Barrio, Alicia; Escario, J Antonio; Alderete, J F

    2015-09-01

    Trichomonas vaginalis is known to evade complement-mediated lysis. Because the genome of T. vaginalis does not possess DNA sequence with homology to human protectin (CD59), a complement lysis restricting factor, we tested the hypothesis that host CD59 acquisition by T. vaginalis organisms mediates resistance to complement killing. This hypothesis was based on the fact that trichomonads are known to associate with host proteins. No CD59 was detected on the surface of T. vaginalis grown in serum-based medium using as probe anti-CD59 monoclonal antibody (MAb). We, therefore, infected mice intraperitoneally with live T. vaginalis, and trichomonads harvested from ascites were tested for binding of CD59. Immunofluorescence showed that parasites had surface CD59. Furthermore, as mouse erythrocytes (RBCs) possess membrane-associated CD59, and trichomonads use RBCs as a nutrient source, organisms were co-cultured with murine RBCs for one week. Parasites were shown to have detectable surface CD59. Importantly, live T. vaginalis with bound CD59 were compared with batch-grown parasites without surface-associated CD59 for sensitivity to complement in human serum. Trichomonads without surface-bound CD59 had a higher level of killing by complement than did parasites with surface CD59. These data show that host CD59 acquired onto the surface by live T. vaginalis may be an alternative mechanism for complement evasion. We describe a novel strategy by T. vaginalis consistent with host protein procurement by this parasite to evade the lytic action of complement. PMID:25976413

  1. Innate Immunity to Adenovirus

    PubMed Central

    Hendrickx, Rodinde; Stichling, Nicole; Koelen, Jorien; Kuryk, Lukasz; Lipiec, Agnieszka

    2014-01-01

    Abstract Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate–adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features. PMID:24512150

  2. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via "Antigen Capsid-Incorporation" strategy.

    PubMed

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L

    2016-01-01

    Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors? abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  3. Immune response from a resource allocation perspective

    PubMed Central

    Rauw, Wendy M.

    2012-01-01

    The immune system is a life history trait that can be expected to trade off against other life history traits. Whether or not a trait is considered to be a life history trait has consequences for the expectation on how it responds to natural selection and evolution; in addition, it may have consequences for the outcome of artificial selection when it is included in the breeding objective. The immune system involved in pathogen resistance comprises multiple mechanisms that define a host's defensive capacity. Immune resistance involves employing mechanisms that either prevent pathogens from invading or eliminate the pathogens when they do invade. On the other hand, tolerance involves limiting the damage that is caused by the infection. Both tolerance and resistance traits require (re)allocation of resources and carry physiological costs. Examples of trade-offs between immune function and growth, reproduction and stress response are provided in this review, in addition to consequences of selection for increased production on immune function and vice versa. Reaction norms are used to deal with questions of immune resistance vs. tolerance to pathogens that relate host health to infection intensity. In essence, selection for immune tolerance in livestock is a particular case of selection for animal robustness. Since breeding goals that include robustness traits are required in the implementation of more sustainable agricultural production systems, it is of interest to investigate whether immune tolerance is a robustness trait that is positively correlated with overall animal robustness. Considerably more research is needed to estimate the shapes of the cost functions of different immune strategies, and investigate trade-offs and cross-over benefits of selection for disease resistance and/or disease tolerance in livestock production. PMID:23413205

  4. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  5. Community Immunity (Herd Immunity)

    MedlinePLUS

    ... Content Marketing Share this: Main Content Area ?Community Immunity ("Herd" Immunity) Vaccines can prevent outbreaks of disease and save ... disease is contained. This is known as "community immunity." In the illustration below, the top box depicts ...

  6. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus

    PubMed Central

    Yeaman, Michael R.; Filler, Scott G.; Schmidt, Clint S.; Ibrahim, Ashraf S.; Edwards, John E.; Hennessey, John P.

    2014-01-01

    Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S. aureus. PMID:25309545

  7. Responses of innate immune cells to group A Streptococcus.

    PubMed

    Fieber, Christina; Kovarik, Pavel

    2014-01-01

    Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies. PMID:25325020

  8. Adenosine Signaling and the Energetic Costs of Induced Immunity

    PubMed Central

    Lazzaro, Brian P.

    2015-01-01

    Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected. PMID:25915419

  9. Immune System

    MedlinePLUS

    ... Skip Content Marketing Share this: Main Content Area Immune System The immune system is a network of cells, ... and treatment of infectious and immune-mediated diseases. Immune System Overview Features of an Immune Response Immune Cells ...

  10. Signature Patterns of MHC Diversity in Three Gombe Communities of Wild Chimpanzees Reflect Fitness in Reproduction and Immune Defense against SIVcpz

    PubMed Central

    Wroblewski, Emily E.; Norman, Paul J.; Guethlein, Lisbeth A.; Rudicell, Rebecca S.; Ramirez, Miguel A.; Li, Yingying; Hahn, Beatrice H.; Pusey, Anne E.; Parham, Peter

    2015-01-01

    Major histocompatibility complex (MHC) class I molecules determine immune responses to viral infections. These polymorphic cell-surface glycoproteins bind peptide antigens, forming ligands for cytotoxic T and natural killer cell receptors. Under pressure from rapidly evolving viruses, hominoid MHC class I molecules also evolve rapidly, becoming diverse and species-specific. Little is known of the impact of infectious disease epidemics on MHC class I variant distributions in human populations, a context in which the chimpanzee is the superior animal model. Population dynamics of the chimpanzees inhabiting Gombe National Park, Tanzania have been studied for over 50 years. This population is infected with SIVcpz, the precursor of human HIV-1. Because HLA-B is the most polymorphic human MHC class I molecule and correlates strongly with HIV-1 progression, we determined sequences for its ortholog, Patr-B, in 125 Gombe chimpanzees. Eleven Patr-B variants were defined, as were their frequencies in Gombe’s three communities, changes in frequency with time, and effect of SIVcpz infection. The growing populations of the northern and central communities, where SIVcpz is less prevalent, have stable distributions comprising a majority of low-frequency Patr-B variants and a few high-frequency variants. Driving the latter to high frequency has been the fecundity of immigrants to the northern community, whereas in the central community, it has been the fecundity of socially dominant individuals. In the declining population of the southern community, where greater SIVcpz prevalence is associated with mortality and emigration, Patr-B variant distributions have been changing. Enriched in this community are Patr-B variants that engage with natural killer cell receptors. Elevated among SIVcpz-infected chimpanzees, the Patr-B*06:03 variant has striking structural and functional similarities to HLA-B*57, the human allotype most strongly associated with delayed HIV-1 progression. Like HLA-B*57, Patr-B*06:03 correlates with reduced viral load, as assessed by detection of SIVcpz RNA in feces. PMID:26020813

  11. The distribution of the phenolic metabolites barbaloin, aloeresin and aloenin as a peripheral defense strategy in the succulent leaf parts of Aloe arborescens.

    PubMed

    Gutterman; Chauser-Volfson

    2000-11-01

    Aloe arborescens is a large, multi-stemmed shrub. It is used as hedge plants to protect agricultural fields or stock and as horticultural plants in gardens. In natural habitats it is one of the very common Aloe species along the Indian Ocean coast of southern Africa, from the Cape, in the south, to Zimbabwe and Malawi in the north. Secondary phenolic metabolites such as barbaloin (Rf 0.31-0.35), aloeresin (Rf 0.25-0.3) and aloenin (Rf 0.51-0.55) have been found to be distributed in the succulent leaves of Aloe arborescens in a peripheral defense strategy. The youngest leaves have the highest content. The terminal third of each leaf has the highest content and the basal third, the lowest. Along the leaf margins, on the top third and adaxial side, the content is the highest and in the base third, the lowest along the leaf center on the abaxial side. Similar relative amounts of these three secondary phenolic metabolites were found in the different leaf locations. The leaf orientation may affect the total content of these three phenols but not their relative amounts in the different parts of the leaves. It is possible that the more often the plant parts are damaged by consumption by animals such as elephants, kudu or insects, the greater the increase of their phenolic metabolites. This increase may reduce or prevent further consumption when the content of the metabolites reaches a certain level. The plants then have a chance to renew themselves. PMID:10913844

  12. Immunity to plant pathogens and iron homeostasis.

    PubMed

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. PMID:26475190

  13. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine.

    PubMed

    Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong

    2014-07-31

    Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 ?g pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development. PMID:24958702

  14. Bacteria Fighting Back – How Pathogens Target and Subvert the Host Innate Immune System

    PubMed Central

    Reddick, L. Evan; Alto, Neal M.

    2014-01-01

    The innate immune system has evolved under selective pressure since the radiation of multicellular life approximately six hundred million years ago. Because of this long history, innate immune mechanisms found in modern eukaryotic organisms today are highly complex, yet are built from common molecular strategies. It is now clear that evolution has selected a conserved set of anti-microbial peptides as well as Pattern Recognition Receptors (PRRs) that initiate cellular-based signals as a first line of defense against invading pathogens. Conversely, microbial pathogens employ their own strategies to evade, inhibit, or otherwise manipulate the innate immune response. Here, we discuss recent discoveries that have changed our view of immune modulatory mechanisms employed by bacterial pathogens, focusing specifically on the initial sites of microbial recognition and extending to host cellular signal transduction, pro-inflammatory cytokine production, and alteration of protein trafficking and secretion. PMID:24766896

  15. Innate Immune Sensing and Response to Influenza

    PubMed Central

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  16. Hepatitis C virus and antiviral innate immunity: Who wins at tug-of-war?

    PubMed Central

    Yang, Da-Rong; Zhu, Hai-Zhen

    2015-01-01

    Hepatitis C virus (HCV) is a major human pathogen of chronic hepatitis and related liver diseases. Innate immunity is the first line of defense against invading foreign pathogens, and its activation is dependent on the recognition of these pathogens by several key sensors. The interferon (IFN) system plays an essential role in the restriction of HCV infection via the induction of hundreds of IFN-stimulated genes (ISGs) that inhibit viral replication and spread. However, numerous factors that trigger immune dysregulation, including viral factors and host genetic factors, can help HCV to escape host immune response, facilitating viral persistence. In this review, we aim to summarize recent advances in understanding the innate immune response to HCV infection and the mechanisms of ISGs to suppress viral survival, as well as the immune evasion strategies for chronic HCV infection. PMID:25852264

  17. Cancer vaccine development: on the way to break immune tolerance to malignant cells.

    PubMed

    Mocellin, Simone; Rossi, Carlo Riccardo; Nitti, Donato

    2004-10-01

    Exploiting a naturally occurring defense system, the immunotherapeutic approach embodies an ideal nontoxic treatment for cancer. Despite the evidence that immune effectors can play a significant role in controlling tumor growth either in natural conditions or in response to therapeutic manipulation, the cascade of molecular events leading to tumor rejection by the immune system remains to be fully elucidated. Nevertheless, some recent tumor immunology advancements might drastically change the way to design the next generation of cancer vaccines, hopefully improving the effectiveness of this therapeutic approach. In the present work, we will focus on three main areas of particular interest for the development of novel vaccination strategies: (a) cellular or molecular mechanisms of immune tolerance to malignant cells; (b) synergism between innate and adaptive immune response; (c) tumor-immune system interactions within the tumor microenvironment. PMID:15350526

  18. Antipredator defenses predict diversification rates.

    PubMed

    Arbuckle, Kevin; Speed, Michael P

    2015-11-01

    The "escape-and-radiate" hypothesis predicts that antipredator defenses facilitate adaptive radiations by enabling escape from constraints of predation, diversified habitat use, and subsequently speciation. Animals have evolved diverse strategies to reduce the direct costs of predation, including cryptic coloration and behavior, chemical defenses, mimicry, and advertisement of unprofitability (conspicuous warning coloration). Whereas the survival consequences of these alternative defenses for individuals are well-studied, little attention has been given to the macroevolutionary consequences of alternative forms of defense. Here we show, using amphibians as the first, to our knowledge, large-scale empirical test in animals, that there are important macroevolutionary consequences of alternative defenses. However, the escape-and-radiate hypothesis does not adequately describe them, due to its exclusive focus on speciation. We examined how rates of speciation and extinction vary across defensive traits throughout amphibians. Lineages that use chemical defenses show higher rates of speciation as predicted by escape-and-radiate but also show higher rates of extinction compared with those without chemical defense. The effect of chemical defense is a net reduction in diversification compared with lineages without chemical defense. In contrast, acquisition of conspicuous coloration (often used as warning signals or in mimicry) is associated with heightened speciation rates but unchanged extinction rates. We conclude that predictions based on the escape-and-radiate hypothesis must incorporate the effect of traits on both speciation and extinction, which is rarely considered in such studies. Our results also suggest that knowledge of defensive traits could have a bearing on the predictability of extinction, perhaps especially important in globally threatened taxa such as amphibians. PMID:26483488

  19. Secretary of Defense Department of Defense

    E-print Network

    Geospatial-Intelligence Agency * National Reconnaissance Office * National Security Agency/Central Security Security Service Defense Threat Reduction Agency * Missile Defense Agency National Geospatial-Intelligence

  20. Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis

    USGS Publications Warehouse

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

  1. Sublingual Immunization with a Live Attenuated Influenza A Virus Lacking the Nonstructural Protein 1 Induces Broad Protective Immunity in Mice

    PubMed Central

    Park, Hae-Jung; Ferko, Boris; Byun, Young-Ho; Song, Joo-Hye; Han, Gye-Yeong; Roethl, Elisabeth; Egorov, Andrej; Muster, Thomas; Seong, Baiklin; Kweon, Mi-Na; Song, Manki; Czerkinsky, Cecil; Nguyen, Huan H.

    2012-01-01

    The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1) induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN) immunization and was associated with high levels of virus-specific antibodies (Abs). SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics. PMID:22761928

  2. Evolutionary genetics of insect innate immunity

    PubMed Central

    2015-01-01

    Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immune defense. The focus is on the conserved and divergent components of immunity with an emphasis on gene family evolution and evolution at the sequence level; both population genetics and molecular evolution frameworks are considered. PMID:25750410

  3. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence.

    PubMed

    Strnadova, Pavla; Ren, Hongwei; Valentine, Robert; Mazzon, Michela; Sweeney, Trevor R; Brierley, Ian; Smith, Geoffrey L

    2015-09-01

    Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (v?169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by v?169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity. PMID:26334635

  4. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence

    PubMed Central

    Strnadova, Pavla; Ren, Hongwei; Valentine, Robert; Mazzon, Michela; Sweeney, Trevor R.; Brierley, Ian; Smith, Geoffrey L.

    2015-01-01

    Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (v?169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by v?169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity. PMID:26334635

  5. Behavioral Immunity in Insects

    PubMed Central

    de Roode, Jacobus C.; Lefèvre, Thierry

    2012-01-01

    Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629

  6. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response

    PubMed Central

    Smith, Trevor RF; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  7. ORIGINAL PAPER Temporal dynamics and plasticity in the cellular immune response

    E-print Network

    Harvell, Catherine Drew

    in lacking adaptive immunity and relying solely on a diverse repertoire of innate immune defenses to rec of invertebrate innate immunity provides the foundation for studies on the evo- lution of immunological responses on a similar innate immune response as their first line of defense (Aderem and Ulevitch 2000; Salzet 2001

  8. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences

    PubMed Central

    Peláez, Pablo; Sanchez, Federico

    2013-01-01

    Small non-coding RNAs constitute an important class of gene expression regulators that control different biological processes in most eukaryotes. In plants, several small RNA (sRNA) silencing pathways have evolved to produce a wide range of small RNAs with specialized functions. Evidence for the diverse mode of action of the small RNA pathways has been highlighted during plant–microbe interactions. Host sRNAs and small RNA silencing pathways have been recognized as essential components of plant immunity. One way plants respond and defend against pathogen infections is through the small RNA silencing immune system. To deal with plant defense responses, pathogens have evolved sophisticated mechanisms to avoid and counterattack this defense strategy. The relevance of the small RNA-mediated plant defense responses during viral infections has been well-established. Recent evidence points out its importance also during plant–bacteria interactions. Herein, this review discusses recent findings, similarities and differences about the small RNA-mediated arms race between plants and these two groups of microbes, including the small RNA silencing pathway components that contribute to plant immune responses, the pathogen-responsive endogenous sRNAs and the pathogen-delivered effector proteins. PMID:24046772

  9. Making sense of hormone-mediated defense networking: from rice to Arabidopsis

    PubMed Central

    De Vleesschauwer, David; Xu, Jing; Höfte, Monica

    2014-01-01

    Phytohormones are not only essential for plant growth and development but also play central roles in triggering the plant immune signaling network. Historically, research aimed at elucidating the defense-associated role of hormones has tended to focus on the use of experimentally tractable dicot plants such as Arabidopsis thaliana. Emerging from these studies is a picture whereby complex crosstalk and induced hormonal changes mold plant health and disease, with outcomes largely dependent on the lifestyle and infection strategy of invading pathogens. However, recent studies in monocot plants are starting to provide additional important insights into the immune-regulatory roles of hormones, often revealing unique complexities. In this review, we address the latest discoveries dealing with hormone-mediated immunity in rice, one of the most important food crops and an excellent model for molecular genetic studies in monocots. Moreover, we highlight interactions between hormone signaling, rice defense and pathogen virulence, and discuss the differences and similarities with findings in Arabidopsis. Finally, we present a model for hormone defense networking in rice and describe how detailed knowledge of hormone crosstalk mechanisms can be used for engineering durable rice disease resistance. PMID:25426127

  10. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi

    PubMed Central

    Gupta, Shivali; Garg, Nisha J.

    2015-01-01

    In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFN?+ and TFN?+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease. PMID:25951312

  11. A Prime Time for Trained Immunity: Innate Immune Memory in Newborns & Infants

    PubMed Central

    Levy, Ofer; Wynn, James L.

    2014-01-01

    The newborn and infant periods of early life are associated with heightened vulnerability to infection. Limited antigen exposure and distinct adaptive immune function compared to the adult places a greater burden on innate immunity for host defense to microbial challenge during this time. Trained immunity describes the phenomenon of augmented innate immune function following a stimulus that is not specific to the original stimulus. We review the concept of trained immunity in the context of the newborn’s unique innate immune system function, the preclinical and clinical evidence that support the tenet of innate immune memory in early life, and potential consequences of altered innate immune host responses. PMID:24356292

  12. Single-cell technologies for monitoring interactions between immune cells

    E-print Network

    Yamanaka, Yvonne J. (Yvonne Joy)

    2014-01-01

    Immune cells participate in dynamic cellular interactions that play a critical role in the defense against pathogens and the destruction of malignant cells. The vast heterogeneity of immune cells motivates the study of ...

  13. Regulation of the Intestinal Barrier Function by Host Defense Peptides

    PubMed Central

    Robinson, Kelsy; Deng, Zhuo; Hou, Yongqing; Zhang, Guolong

    2015-01-01

    Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of TJ proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and TJ proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity. PMID:26664984

  14. MAIT cells and pathogen defense.

    PubMed

    Cowley, Siobhán C

    2014-12-01

    Mucosa-associated invariant T (MAIT) cells are a unique population of innate T cells that are abundant in humans. These cells possess an evolutionarily conserved invariant T cell receptor ? chain restricted by the nonpolymorphic class Ib major histocompatibility (MHC) molecule, MHC class I-related protein (MR1). The recent discovery that MAIT cells are activated by MR1-bound riboflavin metabolite derivatives distinguishes MAIT cells from all other ?? T cells in the immune system. Since mammals lack the capacity to synthesize riboflavin, intermediates from the riboflavin biosynthetic pathway are distinct microbial molecular patterns that provide a unique signal to the immune system. Multiple lines of evidence suggest that MAIT cells, which produce important cytokines such as IFN-?, TNF, and IL-17A, have the potential to influence immune responses to a broad range of pathogens. Here we will discuss our current understanding of MAIT cell biology and their role in pathogen defense. PMID:25164578

  15. Toward understanding of rice innate immunity against Magnaporthe oryzae.

    PubMed

    Azizi, P; Rafii, M Y; Abdullah, S N A; Nejat, N; Maziah, M; Hanafi, M M; Latif, M A; Sahebi, M

    2016-02-01

    The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice. PMID:25198435

  16. Immune checkpoint blockade as a novel immunotherapeutic strategy for renal cell carcinoma: a review of clinical trials.

    PubMed

    Godwin, J Luke; Zibelman, Matthew; Plimack, Elizabeth R; Geynisman, Daniel M

    2014-12-01

    Renal cell carcinoma (RCC) is a common genitourinary malignancy; when metastatic, it is almost uniformly fatal. For many years non-specific immunotherapy was the mainstay of treatment for metastatic RCC, but led to only modest success and significant side-effects. More recently, seven targeted therapy drugs have been approved to treat metastatic RCC; these drugs impede RCC cell growth, proliferation, and angiogenesis and have had a significant impact on patient outcomes, but with infrequent long term responders. Thus, a renewed emphasis on immunotherapy has emerged over the last several years with the development and testing of a novel class of immunotherapeutic agents called checkpoint inhibitors. These drugs have targeted the programmed cell death 1 (PD-1) and cytotoxic leukocyte antigen 4 (CTLA-4) pathways on regulatory T cells, leading to immune response enhancement and immune-mediated anti-tumor effects in multiple malignancies, including RCC. A number of studies recently reported utilizing checkpoint inhibitors, either alone or in combination with other checkpoint inhibitors or vascular endothelial growth factor targeting agents, and these studies have shown significant and at times durable responses in RCC patients. This has led to the development of further phase I, II, and III trials and this review will discuss the history and currently available data for immune checkpoint blockade in RCC. PMID:25549705

  17. Doctoral Defense "Sustainable Wastewater Management

    E-print Network

    Kamat, Vineet R.

    Doctoral Defense "Sustainable Wastewater Management: Modeling and Decision Strategies for Unused Medications and Wastewater Solids" Sherri Cook Date: May 22, 2014 Time: 11:00 AM Location: 2355 GGB Chair to help decision-makers evaluate new practices for sustainable wastewater management. To this end

  18. CgI?B3, the third novel inhibitor of NF-kappa B (I?B) protein, is involved in the immune defense of the Pacific oyster, Crassostrea gigas.

    PubMed

    Xu, Fengjiao; Li, Jun; Zhang, Yuehuan; Li, Xiaomei; Zhang, Yang; Xiang, Zhiming; Yu, Ziniu

    2015-10-01

    Inhibitor of NF-?B (I?B), the important regulator of NF-?B/Rel signaling pathway, plays the crucial role in immune response of both vertebrates and invertebrates. Here, a novel homologue of I?B was cloned from Crassostrea gigas, and designated as CgI?B3. The complete CgI?B3 cDNA was 1282 bp in length, including a 942 bp open reading frame (ORF), a 51 bp 5' UTR and a 289 bp 3' UTR. The ORF encodes a putative protein of 313 amino acids with a predicted molecular weight of approximately 34.7 kDa. Sequence analysis reveals that CgI?B3 contains a conserved degradation motif but with only five ankyrin repeats. Neither a PEST domain nor a C-terminal casein kinase II phosphorylation site was identified through either alignment or bioinformatic prediction. Phylogenetic analysis suggested that CgI?B3 shares common ancestor with CgI?B1 rather CgI?B2, and theoretically it may originate from one duplication event prior to divergence of CgI?B1 and CgI?B2. Tissue expression analyses demonstrated that CgI?B3 mRNA is the most abundant in gills and heart. The expression following PAMP infection showed that CgI?B3 was significantly up-regulated in a similar pattern when challenged with LPS, HKLM or HKVA, respectively. Moreover, similar to CgI?B1 and CgI?B2, CgI?B3 can also inhibit Rel dependent NF-?B activation in HEK293 cells in a dose-dependent manner. In summary, these findings suggest that CgI?B3 can be as the functional inhibitor of NF-?B/Rel and involved in the host defense of C. gigas. The discovery of the third I?B emphasizes the complexity and importance of the regulation on NF-?B activation. PMID:26260316

  19. Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system

    PubMed Central

    2011-01-01

    The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways. This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal immune response, with a special focus on pathogenic E. coli. PMID:21539730

  20. Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network

    PubMed Central

    Mukhtar, M. Shahid; Carvunis, Anne-Ruxandra; Dreze, Matija; Epple, Petra; Steinbrenner, Jens; Moore, Jonathan; Tasan, Murat; Galli, Mary; Hao, Tong; Nishimura, Marc T.; Pevzner, Samuel J.; Donovan, Susan E.; Ghamsari, Lila; Santhanam, Balaji; Romero, Viviana; Poulin, Matthew M.; Gebreab, Fana; Gutierrez, Bryan J.; Tam, Stanley; Monachello, Dario; Boxem, Mike; Harbort, Christopher J.; McDonald, Nathan; Gai, Lantian; Chen, Huaming; He, Yijian; Vandenhaute, Jean; Roth, Frederick P.; Hill, David E.; Ecker, Joseph R.; Vidal, Marc; Beynon, Jim; Braun, Pascal; Dangl, Jeffery L.

    2011-01-01

    Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated a plant-pathogen immune system protein interaction network using effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins and ~8,000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins, and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life cycle strategies. PMID:21798943

  1. Shigella Manipulates Host Immune Responses by Delivering Effector Proteins with Specific Roles

    PubMed Central

    Ashida, Hiroshi; Mimuro, Hitomi; Sasakawa, Chihiro

    2015-01-01

    The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and the adaptive immune systems, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors) via the type III secretion system (T3SS) that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present and select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host-cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses. PMID:25999954

  2. Immune Therapy.

    PubMed

    Lievense, Lysanne; Aerts, Joachim; Hegmans, Joost

    2016-01-01

    Lung cancer has long been considered an unsuitable target for immunotherapy due to its proposed immunoresistant properties. However, recent evidence has shown that anti-tumor immune responses can occur in lung cancer patients, paving the way for lung cancer as a novel target for immunotherapy. In order to take full advantage of the potential of immunotherapy, research is focusing on the presence and function of various immunological cell types in the tumor microenvironment. Immune cells which facilitate or inhibit antitumor responses have been identified and their prognostic value in lung cancer has been established. Knowledge regarding these pro- and anti-tumor immune cells and their mechanisms of action has facilitated the identification of numerous potential immunotherapeutic strategies and opportunities for intervention. A plethora of immunotherapeutic approaches is currently being developed and studied in lung cancer patients and phase 3 clinical trials are ongoing. Many different immunotherapies have shown promising clinical effects in patients with limited and advanced stage lung cancer, however, future years will have to tell whether immunotherapy will earn its place in the standard treatment of lung cancer. PMID:26667339

  3. Comparative genomics of defense systems in archaea and bacteria

    PubMed Central

    Makarova, Kira S.; Wolf, Yuri I.; Koonin, Eugene V.

    2013-01-01

    Our knowledge of prokaryotic defense systems has vastly expanded as the result of comparative genomic analysis, followed by experimental validation. This expansion is both quantitative, including the discovery of diverse new examples of known types of defense systems, such as restriction-modification or toxin-antitoxin systems, and qualitative, including the discovery of fundamentally new defense mechanisms, such as the CRISPR-Cas immunity system. Large-scale statistical analysis reveals that the distribution of different defense systems in bacterial and archaeal taxa is non-uniform, with four groups of organisms distinguishable with respect to the overall abundance and the balance between specific types of defense systems. The genes encoding defense system components in bacterial and archaea typically cluster in defense islands. In addition to genes encoding known defense systems, these islands contain numerous uncharacterized genes, which are candidates for new types of defense systems. The tight association of the genes encoding immunity systems and dormancy- or cell death-inducing defense systems in prokaryotic genomes suggests that these two major types of defense are functionally coupled, providing for effective protection at the population level. PMID:23470997

  4. Immune Reactions Among Marine and Other Invertebrates

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1973-01-01

    Discusses the defense mechanisms and immune reaction found in invertebrates, and examines the wealth of related biological problems that need study and many of the leads that have recently been developed. (JR)

  5. Phosphorylation of Mouse Immunity-Related GTPase (IRG) Resistance Proteins Is an Evasion Strategy for Virulent Toxoplasma gondii

    PubMed Central

    Steinfeldt, Tobias; Könen-Waisman, Stephanie; Tong, Lan; Pawlowski, Nikolaus; Lamkemeyer, Tobias; Sibley, L. David; Hunn, Julia P.; Howard, Jonathan C.

    2010-01-01

    Virulence of complex pathogens in mammals is generally determined by multiple components of the pathogen interacting with the functional complexity and multiple layering of the mammalian immune system. It is most unusual for the resistance of a mammalian host to be overcome by the defeat of a single defence mechanism. In this study we uncover and analyse just such a case at the molecular level, involving the widespread intracellular protozoan pathogen Toxoplasma gondii and one of its most important natural hosts, the house mouse (Mus musculus). Natural polymorphism in virulence of Eurasian T. gondii strains for mice has been correlated in genetic screens with the expression of polymorphic rhoptry kinases (ROP kinases) secreted into the host cell during infection. We show that the molecular targets of the virulent allelic form of ROP18 kinase are members of a family of cellular GTPases, the interferon-inducible IRG (immunity-related GTPase) proteins, known from earlier work to be essential resistance factors in mice against avirulent strains of T. gondii. Virulent T. gondii strain ROP18 kinase phosphorylates several mouse IRG proteins. We show that the parasite kinase phosphorylates host Irga6 at two threonines in the nucleotide-binding domain, biochemically inactivating the GTPase and inhibiting its accumulation and action at the T. gondii parasitophorous vacuole membrane. Our analysis identifies the conformationally active switch I region of the GTP-binding site as an Achilles' heel of the IRG protein pathogen-resistance mechanism. The polymorphism of ROP18 in natural T. gondii populations indicates the existence of a dynamic, rapidly evolving ecological relationship between parasite virulence factors and host resistance factors. This system should be unusually fruitful for analysis at both ecological and molecular levels since both T. gondii and the mouse are widespread and abundant in the wild and are well-established model species with excellent analytical tools available. PMID:21203588

  6. Control of adaptive immunity by the innate immune system

    PubMed Central

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-01-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity. PMID:25789684

  7. A fungal monooxygenase-derived jasmonate attenuates host innate immunity.

    PubMed

    Patkar, Rajesh N; Benke, Peter I; Qu, Ziwei; Chen, Yuan Yi Constance; Yang, Fan; Swarup, Sanjay; Naqvi, Naweed I

    2015-09-01

    Distinct modifications fine-tune the activity of jasmonic acid (JA) in regulating plant growth and immunity. Hydroxylated JA (12OH-JA) promotes flower and tuber development but prevents induction of JA signaling, plant defense or both. However, biosynthesis of 12OH-JA has remained elusive. We report here an antibiotic biosynthesis monooxygenase (Abm) that converts endogenous free JA into 12OH-JA in the model rice blast fungus Magnaporthe oryzae. Such fungal 12OH-JA is secreted during host penetration and helps evade the defense response. Loss of Abm in M. oryzae led to accumulation of methyl JA (MeJA), which induces host defense and blocks invasive growth. Exogenously added 12OH-JA markedly attenuated abm?-induced immunity in rice. Notably, Abm itself is secreted after invasion and most likely converts plant JA into 12OH-JA to facilitate host colonization. This study sheds light on the chemical arms race during plant-pathogen interaction, reveals Abm as an antifungal target and outlines a synthetic strategy for transformation of a versatile small-molecule phytohormone. PMID:26258762

  8. A Single Bacterial Immune Evasion Strategy Dismantles Both MyD88 and TRIF Signaling Pathways Downstream of TLR4.

    PubMed

    Rosadini, Charles V; Zanoni, Ivan; Odendall, Charlotte; Green, Erin R; Paczosa, Michelle K; Philip, Naomi H; Brodsky, Igor E; Mecsas, Joan; Kagan, Jonathan C

    2015-12-01

    During bacterial infections, Toll-like receptor 4 (TLR4) signals through the MyD88- and TRIF-dependent pathways to promote pro-inflammatory and interferon (IFN) responses, respectively. Bacteria can inhibit the MyD88 pathway, but if the TRIF pathway is also targeted is unclear. We demonstrate that, in addition to MyD88, Yersinia pseudotuberculosis inhibits TRIF signaling through the type III secretion system effector YopJ. Suppression of TRIF signaling occurs during dendritic cell (DC) and macrophage infection and prevents expression of type I IFN and pro-inflammatory cytokines. YopJ-mediated inhibition of TRIF prevents DCs from inducing natural killer (NK) cell production of antibacterial IFN?. During infection of DCs, YopJ potently inhibits MAPK pathways but does not prevent activation of IKK- or TBK1-dependent pathways. This singular YopJ activity efficiently inhibits TLR4 transcription-inducing activities, thus illustrating a simple means by which pathogens impede innate immunity. PMID:26651944

  9. EBV, the human host, and the 7TM receptors: defense or offense?

    PubMed

    Arfelt, Kristine Niss; Fares, Suzan; Rosenkilde, Mette M

    2015-01-01

    Being present in around 90% of the worldwide population, Epstein-Barr virus (EBV) is an exceptionally prevalent virus. This highly successful virus establishes a latent infection in resting memory B cells and is maintained in a balance between viral homeostasis on one side and antiviral defense of the immune system on the other side. The life cycle of EBV is dependent on many viral proteins, but EBV also regulates a number of endogenous proteins. 7TM receptors and ligands of viral and host origin are examples of such proteins. 7TM receptors are highly druggable and they are among the most popular class of investigational drug targets. The 7TM receptor encoded by EBV-BILF1, is known to downregulate cell surface MHC class I expression as part of the immune evasion strategy of EBV. However, the functional impact of the relationship between EBV and the regulated endogenous 7TM receptors and ligands is still unclear. This is for instance the case for the most upregulated 7TM receptor EBI2 (EBV-induced gene 2 or GPR183). Whereas some regulated genes have been suggested to be involved in the EBV life cycle, others could also be important for the antiviral immune defense. As many of these 7TM receptors and ligands have been shown to be modulated in EBV-associated diseases, targeting these could provide an efficient and specific way to inhibit EBV-associated disease progression. Here, we will review current knowledge on EBV infection, the immune defense against EBV and 7TM receptors and ligands being either encoded or manipulated by EBV. PMID:25595811

  10. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens.

    PubMed

    Arnaud, Dominique; Hwang, Ildoo

    2015-04-01

    Guard cells are specialized cells forming stomatal pores at the leaf surface for gas exchanges between the plant and the atmosphere. Stomata have been shown to play an important role in plant defense as a part of the innate immune response. Plants actively close their stomata upon contact with microbes, thereby preventing pathogen entry into the leaves and the subsequent colonization of host tissues. In this review, we present current knowledge of molecular mechanisms and signaling pathways implicated in stomatal defenses, with particular emphasis on plant-bacteria interactions. Stomatal defense responses begin from the perception of pathogen-associated molecular patterns (PAMPs) and activate a signaling cascade involving the production of secondary messengers such as reactive oxygen species, nitric oxide, and calcium for the regulation of plasma membrane ion channels. The analyses on downstream molecular mechanisms implicated in PAMP-triggered stomatal closure have revealed extensive interplays among the components regulating hormonal signaling pathways. We also discuss the strategies deployed by pathogenic bacteria to counteract stomatal immunity through the example of the phytotoxin coronatine. PMID:25661059

  11. Innate Immune Memory: The Latest Frontier of Adjuvanticity

    PubMed Central

    Töpfer, Elfi; Boraschi, Diana; Italiani, Paola

    2015-01-01

    Recent findings in the field of immune memory have demonstrated that B and T cell mediated immunity following infections are enhanced by the so-called trained immunity. This effect has been most extensively investigated for the tuberculosis vaccine strain Bacillus Calmette-Guérin (BCG). Epidemiological studies suggest that this vaccine is associated with a substantial reduction in overall child mortality that cannot be solely explained by prevention of the target disease but that it seems to rely on inducing resistance to other infections. Upon infection or vaccination, monocytes/macrophages can be functionally reprogrammed so as to display an enhanced defensive response against unrelated infections. Epigenetic modifications seem to play a key role in the induction of this “innate memory.” These findings are revolutionising our knowledge of the immune system, introducing the concept of memory also for mammalian innate immunity. Thus, vaccines are likely to nonspecifically affect the overall immunological status of individuals in a clinically relevant manner. As a consequence, future vaccine strategies ought to take into account the contribution of innate memory through appropriate design of formulations and administration scheduling. PMID:26380322

  12. Immune Thrombocytopenia

    MedlinePLUS

    ... page from the NHLBI on Twitter. What Is Immune Thrombocytopenia? Immune thrombocytopenia (THROM-bo-si-toe-PE- ... passed from one person to another. Types of Immune Thrombocytopenia The two types of ITP are acute ( ...

  13. Immune response

    MedlinePLUS Videos and Cool Tools

    ... cells. T cells are responsible for cell-mediated immunity. This type of immunity becomes deficient in persons with HIV, the virus ... blood. B lymphocytes provide the body with humoral immunity as they circulate in the fluids in search ...

  14. Hepcidin and Host Defense against Infectious Diseases

    PubMed Central

    Michels, Kathryn; Nemeth, Elizabeta; Ganz, Tomas; Mehrad, Borna

    2015-01-01

    Hepcidin is the master regulator of iron homeostasis in vertebrates. The synthesis of hepcidin is induced by systemic iron levels and by inflammatory stimuli. While the role of hepcidin in iron regulation is well established, its contribution to host defense is emerging as complex and multifaceted. In this review, we summarize the literature on the role of hepcidin as a mediator of antimicrobial immunity. Hepcidin induction during infection causes depletion of extracellular iron, which is thought to be a general defense mechanism against many infections by withholding iron from invading pathogens. Conversely, by promoting iron sequestration in macrophages, hepcidin may be detrimental to cellular defense against certain intracellular infections, although critical in vivo studies are needed to confirm this concept. It is not yet clear whether hepcidin exerts any iron-independent effects on host defenses. PMID:26291319

  15. Common loon nest defense against an American mink

    USGS Publications Warehouse

    McCarthy, K.P.; DeStefano, S.

    2011-01-01

    We describe a successful nest defense strategy of an adult Gavia immer (Common Loon) during an attempted predation event by a Nevison vison (American Mink) at Umbagog National Wildlife Refuge, NH. It is suspected that mink occasionally depredate loon nests, but defense strategies have not been described previously.

  16. Defense traits of larval Drosophila melanogaster exhibit genetically based tradeoffs against different species of parasitoids

    PubMed Central

    Hodges, Theresa K.; Laskowsk, Kate L.; Squadrito, Giuseppe L.; Luca, Maria De; Leips, Jeff

    2012-01-01

    Populations of Drosophila melanogaster face significant mortality risks from parasitoid wasps that use species-specific strategies to locate and survive in hosts. We tested the hypothesis that parasitoids with different strategies select for alternative host defense characteristics and in doing so contribute to the maintenance of fitness variation and produce trade-offs among traits. We characterized defense traits of Drosophila when exposed to parasitoids with different host searching behaviors (Aphaereta sp. and Leptopilina boulardi). We used host larvae with different natural alleles of the gene Dopa decarboxylase (Ddc), a gene controlling the production of dopamine and known to influence the immune response against parasitoids. Previous population genetic analyses indicate that our focal alleles are maintained by balancing selection. Genotypes exhibited a trade-off between the immune response against Aphaereta sp. and the ability to avoid parasitism by L. boulardi. We also identified a trade off between the ability to avoid parasitism by L. boulardi and larval competitive ability as indicated by differences in foraging and feeding behavior. Genotypes differed in dopamine levels potentially explaining variation in these traits. Our results highlight the potential role of parasitoid biodiversity on host fitness variation and implicate Ddc as an antagonistic pleiotropic locus influencing larval fitness traits. PMID:23461325

  17. Butyrate Enhances Disease Resistance of Chickens by Inducing Antimicrobial Host Defense Peptide Gene Expression

    PubMed Central

    Sunkara, Lakshmi T.; Achanta, Mallika; Schreiber, Nicole B.; Bommineni, Yugendar R.; Dai, Gan; Jiang, Weiyu; Lamont, Susan; Lillehoj, Hyun S.; Beker, Ali; Teeter, Robert G.; Zhang, Guolong

    2011-01-01

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance. PMID:22073293

  18. Immunization of epidemics in multiplex networks.

    PubMed

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755

  19. Emerging importance of omega-3 fatty acids in the innate immune response: molecular mechanisms and lipidomic strategies for their analysis.

    PubMed

    Maskrey, Benjamin H; Megson, Ian L; Rossi, Adriano G; Whitfield, Phillip D

    2013-08-01

    The beneficial health properties of dietary omega-3 polyunsaturated fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have long been known and their metabolic dysfunction has been linked to a range of diseases including various inflammatory disorders, cardiovascular diseases, and cancer. However, the molecular mechanisms underlying their health benefits have remained unclear. Recent technological advances in lipidomic analytical strategies have resulted in the discovery of a range of bioactive mediators derived from EPA and DHA that possess potent anti-inflammatory and pro-resolving properties and that may be responsible, at least in part, for the beneficial effects observed. These mediators include resolvins, protectins and maresins, as well as EPA derivatives of classical arachidonic acid derived eicosanoids, such as prostaglandin E3 . The aim of this review is to provide an overview of the biosynthetic pathways and biological properties of these omega-3 mediators, with a particular focus on the emerging importance of the counter-regulatory role of omega-3 and -6 fatty acids in the spatial and temporal regulation of the inflammatory response. It will also provide an insight into a range of lipidomic approaches, which are currently available to analyse these fatty acids and their metabolites in biological matrices. PMID:23417926

  20. Earthworm immune responses.

    PubMed

    Jarosz, J; Gli?ski, Z

    1997-01-01

    The knowledge of the immunity in annelids started with the use of earthworms as biomarkers indicating changes caused by environmental pollution. Defence strategies effectively protect earthworms against bacterial infections and parasitic invasion. A natural immunity formed by anatomical and chemical protective barriers prevents damage of the underlying tissues, body fluid losses, and microbial infections of the body cavity. The internal defence mechanisms of annelids involve phagocytosis, nodule formation and encapsulation, blood coagulation and wound repair, and antibacterial immune proteins. The antibacterial activity of coelomic fluid associated with lysozyme-like substances and inducible humoral molecules support haemocytic reactions in the annelid defence system. PMID:9557138

  1. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  2. Priming in Systemic Plant Immunity

    SciTech Connect

    Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin; Glazebrook, Jane; Greenberg, Jean T.

    2009-01-01

    Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.

  3. Intracellular immunity: finding the enemy within—how cells recognize and respond to intracellular pathogens

    PubMed Central

    Tam, Jerry C. H.; Jacques, David A.

    2014-01-01

    Historically, once a cell became infected, it was considered to be beyond all help. By this stage, the invading pathogen had breached the innate defenses and was beyond the reach of the humoral arm of the adaptive immune response. The pathogen could still be removed by cell-mediated immunity (e.g., by NK cells or cytotoxic T lymphocytes), but these mechanisms necessitated the destruction of the infected cell. However, in recent years, it has become increasingly clear that many cells possess sensor and effector mechanisms for dealing with intracellular pathogens. Most of these mechanisms are not restricted to professional immune cells nor do they all necessitate the destruction of the host. In this review, we examine the strategies that cells use to detect and destroy pathogens once the cell membrane has been penetrated. PMID:24899588

  4. Strategic defense initiative: Folly or future

    SciTech Connect

    Haley, P.E.; Merritt, J.

    1986-01-01

    This collection of analyses is a guide through the maze of claims and criticisms about ''Star Wars,'' the controversial effort of the Reagan administration to reorient United States nuclear strategy to strategic defense. The text starts with an introduction by the editors followed by individual chapters outlining the strategic defense initiative as originally conceived and subsequently modified by the Reagan administration; the arguments for and against the plan's strategic and technical feasibility; and assessments of the harmful and constructive effects of strategic defense on U.S.-Soviet and U.S.-allied relations.

  5. Radiological Defense. Textbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This textbook has been prepared under the direction of the Defense Civil Preparedness Agency (DCPA) Staff College for use as a student reference manual in radiological defense (RADEF) courses. It provides much of the basic technical information necessary for a proper understanding of radiological defense and summarizes RADEF planning and expected…

  6. A reasonable defense

    SciTech Connect

    Kaufmann, W.W.

    1986-01-01

    The author traces the growth of defense spending from 1929 to the present and discusses changes in spending and emphasis on programs brought about by President Reagan. He constructs three possible defense postures and budgets and compares their costs and effectiveness, discussing the conditions necessary to adopt a reasonable defense capability and budget.

  7. Dilemmas of Japanese Defense.

    ERIC Educational Resources Information Center

    Kiyoshi, Nasu

    1978-01-01

    Traces Japan's attitude toward and preparation for national defense from the 1930s to 1978. Topics discussed include Japan's indifference to defense since World War II, America's responsibility to defend Japan in case of military attack, the possibility of a Soviet attack on Japan, and public opinion about defense in Japan. Journal availability:…

  8. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity...

  9. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action...

  10. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in...

  11. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action...

  12. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity...

  13. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action...

  14. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in...

  15. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action...

  16. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in...

  17. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it,...

  18. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action...

  19. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it,...

  20. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity...

  1. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it,...

  2. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in...

  3. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in...

  4. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity...

  5. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity...

  6. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it,...

  7. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it,...

  8. Xanthomonas campestris lipooligosaccharides trigger innate immunity and oxidative burst in Arabidopsis.

    PubMed

    Proietti, S; Giangrande, C; Amoresano, A; Pucci, P; Molinaro, A; Bertini, L; Caporale, C; Caruso, C

    2014-12-01

    Plants lack the adaptive immunity mechanisms of jawed vertebrates, so they rely on innate immune responses to defense themselves from pathogens. The plant immune system perceives the presence of pathogens by recognition of molecules known as pathogen-associated molecular patterns (PAMPs). PAMPs have several common characteristics, including highly conserved structures, essential for the microorganism but absent in host organisms. Plants can specifically recognize PAMPs using a large set of receptors and can respond with appropriate defenses by activating a multicomponent and multilayered response. Lipopolysaccharides (LPSs) and lipooligosaccharides (LOSs) are major components of the cell surface of Gram-negative bacteria with diverse roles in bacterial pathogenesis of animals and plants that include elicitation of host defenses. Little is known on the mechanisms of perception of these molecules by plants and the associated signal transduction pathways that trigger plant immunity.Here we addressed the question whether the defense signaling pathway in Arabidopsis thaliana was triggered by LOS from Xanthomonas campestris pv. campestris (Xcc), using proteomic and transcriptomic approaches. By using affinity capture strategies with immobilized LOS and LC-MS/MS analyses, we identified 8 putative LOS protein ligands. Further investigation of these interactors led to the definition that LOS challenge is able to activate a signal transduction pathway that uses nodal regulators in common with salicylic acid-mediated pathway. Moreover, we proved evidence that Xcc LOS are responsible for oxidative burst in Arabidopsis either in infiltrated or systemic leaves. In addition, gene expression studies highlighted the presence of gene network involved in reactive oxygen species transduction pathway. PMID:25394800

  9. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence.

    PubMed

    Kasper, Lydia; Seider, Katja; Hube, Bernhard

    2015-08-01

    Candida glabrata is a successful human opportunistic pathogen which causes superficial but also life-threatening systemic infections. During infection, C. glabrata has to cope with cells of the innate immune system such as macrophages, which belong to the first line of defense against invading pathogens. Candida glabrata is able to survive and even replicate inside macrophages while causing surprisingly low damage and cytokine release. Here, we present an overview of recent studies dealing with the interaction of C. glabrata with macrophages, from phagocytosis to intracellular growth and escape. We review the strategies of C. glabrata that permit intracellular survival and replication, including poor host cell activation, modification of phagosome maturation and phagosome pH, adaptation to antimicrobial activities, and mechanisms to overcome the nutrient limitations within the phagosome. In summary, these studies suggest that survival within macrophages may be an immune evasion and persistence strategy of C. glabrata during infection. PMID:26066553

  10. Host Defense Peptides in Wound Healing

    PubMed Central

    Steinstraesser, Lars; Koehler, Till; Jacobsen, Frank; Daigeler, Adrien; Goertz, Ole; Langer, Stefan; Kesting, Marco; Steinau, Hans; Eriksson, Elof; Hirsch, Tobias

    2008-01-01

    Host defense peptides are effector molecules of the innate immune system. They show broad antimicrobial action against gram-positive and -negative bacteria, and they likely play a key role in activating and mediating the innate as well as adaptive immune response in infection and inflammation. These features make them of high interest for wound healing research. Non-healing and infected wounds are a major problem in patient care and health care spending. Increasing infection rates, growing bacterial resistance to common antibiotics, and the lack of effective therapeutic options for the treatment of problematic wounds emphasize the need for new approaches in therapy and pathophysiologic understanding. This review focuses on the current knowledge of host defense peptides affecting wound healing and infection. We discuss the current data and highlight the potential future developments in this field of research. PMID:18385817

  11. Synergy of local, regional, and systemic non-specific stressors for host defense against pathogens.

    PubMed

    Day, J D; LeGrand, E K

    2015-02-21

    The immune brinksmanship conceptual model postulates that many of the non-specific stressful components of the acute-phase response (e.g. fever, loss of appetite, iron and zinc sequestration) are host-derived systemic stressors used with the "hope" that pathogens will be harmed relatively more than the host. The concept proposes that pathogens, needing to grow and replicate in order to invade their host, should be relatively more vulnerable to non-specific systemic stress than the host and its cells. However, the conceptual model acknowledges the risk to the host in that the gamble to induce systemic self-harming stress to harm pathogens may not pay off in the end. We developed an agent-based model of a simplified host having a local infection to evaluate the utility of non-specific stress, harming host and pathogen alike, for host defense. With our model, we explore the benefits and risks of self-harming strategies and confirm the immune brinksmanship concept of the potential of systemic stressors to be an effective but costly host defense. Further, we extend the concept by including in our model the effects of local and regional non-specific stressors at sites of infection as additional defenses. These include the locally hostile inflammatory environment and the stress of reduced perfusion in the infected region due to coagulation and vascular leakage. In our model, we found that completely non-specific stressors at the local, regional, and systemic levels can act synergistically in host defense. PMID:25457230

  12. Tweaking Innate Immunity: the Promise of Innate Immunologicals As Anti-infectives.

    PubMed

    Rosenthal, Kenneth L

    2006-09-01

    New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs) to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs) are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as 'innate immunologicals') can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines. PMID:18382644

  13. 76 FR 6637 - Assumption Buster Workshop: Defense-in-Depth Is a Smart Investment for Cyber Security

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ...of the Defense-in-Depth strategy for cyber security. The workshop...Initially developed by the military for perimeter protection...The Defense-in-Depth strategy was designed to provide multiple...Defense-in-Depth: A practical strategy for achieving Information...

  14. 76 FR 2151 - Assumption Buster Workshop: Defense-in-Depth is a Smart Investment for Cyber Security

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ...of the defense-in-depth strategy for cyber security. The workshop...Initially developed by the military for perimeter protection...The Defense-in-Depth strategy was designed to provide multiple...Defense-in-depth: A practical strategy for achieving Information...

  15. Chicken scavenger receptors and their ligand-induced cellular immune responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The (SRs) comprise structurally and functionally divergent groups of cell surface and secreted proteins that play an important role in innate immune defenses. Searching translated chicken genomic databases revealed many proteins homologous to mammalian SRs. SR mediated immune functions (oxidative ...

  16. Dynamic Imaging of the Effector Immune Response to Listeria Infection In Vivo

    E-print Network

    Waite, Janelle C.

    Host defense against the intracellular pathogen Listeria monocytogenes (Lm) requires innate and adaptive immunity. Here, we directly imaged immune cell dynamics at Lm foci established by dendritic cells in the subcapsular ...

  17. Landscape Variation in Plant Defense Syndromes across a Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    McManus, K. M.; Asner, G. P.; Martin, R.; Field, C. B.

    2014-12-01

    Plant defenses against herbivores shape tropical rainforest biodiversity, yet community- and landscape-scale patterns of plant defense and the phylogenetic and environmental factors that may shape them are poorly known. We measured foliar defense, growth, and longevity traits for 345 canopy trees across 84 species in a tropical rainforest and examined whether patterns of trait co-variation indicated the existence of plant defense syndromes. Using a DNA-barcode phylogeny and remote sensing and land-use data, we investigated how phylogeny and topo-edaphic properties influenced the distribution of syndromes. We found evidence for three distinct defense syndromes, characterized by rapid growth, growth compensated by defense, or limited palatability/low nutrition. Phylogenetic signal was generally lower for defense traits than traits related to growth or longevity. Individual defense syndromes were organized at different taxonomic levels and responded to different spatial-environmental gradients. The results suggest that a diverse set of tropical canopy trees converge on a limited number of strategies to secure resources and mitigate fitness losses due to herbivory, with patterns of distribution mediated by evolutionary histories and local habitat associations. Plant defense syndromes are multidimensional plant strategies, and thus are a useful means of discerning ecologically-relevant variation in highly diverse tropical rainforest communities. Scaling this approach to the landscape level, if plant defense syndromes can be distinguished in remotely-sensed data, they may yield new insights into the role of plant defense in structuring diverse tropical rainforest communities.

  18. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination

    NASA Astrophysics Data System (ADS)

    de Santo, Carmela; Serafini, Paolo; Marigo, Ilaria; Dolcetti, Luigi; Bolla, Manlio; del Soldato, Piero; Melani, Cecilia; Guiducci, Cristiana; Colombo, Mario P.; Iezzi, Manuela; Musiani, Piero; Zanovello, Paola; Bronte, Vincenzo

    2005-03-01

    Active suppression of tumor-specific T lymphocytes can limit the immune-mediated destruction of cancer cells. Of the various strategies used by tumors to counteract immune attacks, myeloid suppressors recruited by growing cancers are particularly efficient, often resulting in the induction of systemic T lymphocyte dysfunction. We have previously shown that the mechanism by which myeloid cells from tumor-bearing hosts block immune defense strategies involves two enzymes that metabolize L-arginine: arginase and nitric oxide (NO) synthase. NO-releasing aspirin is a classic aspirin molecule covalently linked to a NO donor group. NO aspirin does not possess direct antitumor activity. However, by interfering with the inhibitory enzymatic activities of myeloid cells, orally administered NO aspirin normalized the immune status of tumor-bearing hosts, increased the number and function of tumor-antigen-specific T lymphocytes, and enhanced the preventive and therapeutic effectiveness of the antitumor immunity elicited by cancer vaccination. Because cancer vaccines and NO aspirin are currently being investigated in independent phase I/II clinical trials, these findings offer a rationale to combine these treatments in subjects with advanced neoplastic diseases. arginase | immunosuppression | myeloid cells | nitric oxide | immunotherapy

  19. 77 FR 52700 - Reestablishment of Department of Defense Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ...Defense. The members are eminent authorities in the fields of defense, management, leadership, academia, national military strategy or joint planning at all levels of war, joint doctrine, joint command and control, or joint requirements and...

  20. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  1. Immunization Coverage

    MedlinePLUS

    ... access vaccines and afford to pay for them. World Immunization Week The last week of April each year is marked by WHO and partners as World Immunization Week. It aims to raise public awareness ...

  2. Parentage of Overlapping Offspring of an Arboreal-Breeding Frog with No Nest Defense: Implications for Nest Site Selection and Reproductive Strategy

    PubMed Central

    Tung, Wan-Ping; Chen, Yi-Huey; Cheng, Wei-Chun; Chuang, Ming-Feng; Hsu, Wan-Tso; Kam, Yeong-Choy; Lehtinen, Richard M.

    2015-01-01

    Overlapping offspring occurs when eggs are laid in a nest containing offspring from earlier reproduction. Earlier studies showed that the parentage is not always obvious due to difficulties in field observation and/or alternative breeding tactics. To unveil the parentage between overlapping offspring and parents is critical in understanding oviposition site selection and the reproductive strategies of parents. Amplectant pairs of an arboreal-breeding frog, Kurixalus eiffingeri, lay eggs in tadpole-occupied nests where offspring of different life stages (embryos and tadpoles) coexist. We used five microsatellite DNA markers to assess the parentage between parents and overlapping offspring. We also tested the hypothesis that the male or female frog would breed in the same breeding site because of the scarcity of nest sites. Results showed varied parentage patterns, which may differ from the phenomenon of overlapping egg clutches reported earlier. Parentage analyses showed that only 58 and 25% of the tadpole-occupied stumps were reused by the same male and female respectively, partially confirming our prediction. Re-nesting by the same individual was more common in males than females, which is most likely related to the cost of tadpole feeding and/or feeding schemes of females. On the other hand, results of parentage analyses showed that about 42 and 75% of male and female respectively bred in tadpole-occupied stumps where tadpoles were genetically unrelated. Results of a nest-choice experiment revealed that 40% of frogs chose tadpole-occupied bamboo cups when we presented identical stumps, without or with tadpoles, suggesting that the habitat saturation hypothesis does not fully explain why frogs used the tadpole-occupied stumps. Several possible benefits of overlapping offspring with different life stages were proposed. Our study highlights the importance of integrating molecular data with field observations to better understand the reproductive biology and nest site selection of anuran amphibians. PMID:25835716

  3. Dynamics of Defense Responses and Cell Fate Change during Arabidopsis-Pseudomonas syringae Interactions

    PubMed Central

    Hamdoun, Safae; Liu, Zhe; Gill, Manroop; Yao, Nan; Lu, Hua

    2013-01-01

    Plant-pathogen interactions involve sophisticated action and counteraction strategies from both parties. Plants can recognize pathogen derived molecules, such as conserved pathogen associated molecular patterns (PAMPs) and effector proteins, and subsequently activate PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, pathogens can evade such recognitions and suppress host immunity with effectors, causing effector-triggered susceptibility (ETS). The differences among PTI, ETS, and ETI have not been completely understood. Toward a better understanding of PTI, ETS, and ETI, we systematically examined various defense-related phenotypes of Arabidopsis infected with different Pseudomonas syringae pv. maculicola ES4326 strains, using the virulence strain DG3 to induce ETS, the avirulence strain DG34 that expresses avrRpm1 (recognized by the resistance protein RPM1) to induce ETI, and HrcC- that lacks the type three secretion system to activate PTI. We found that plants infected with different strains displayed dynamic differences in the accumulation of the defense signaling molecule salicylic acid, expression of the defense marker gene PR1, cell death formation, and accumulation/localization of the reactive oxygen species, H2O2. The differences between PTI, ETS, and ETI are dependent on the doses of the strains used. These data support the quantitative nature of PTI, ETS, and ETI and they also reveal qualitative differences between PTI, ETS, and ETI. Interestingly, we observed the induction of large cells in the infected leaves, most obviously with HrcC- at later infection stages. The enlarged cells have increased DNA content, suggesting a possible activation of endoreplication. Consistent with strong induction of abnormal cell growth by HrcC-, we found that the PTI elicitor flg22 also activates abnormal cell growth, depending on a functional flg22-receptor FLS2. Thus, our study has revealed a comprehensive picture of dynamic changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms. PMID:24349466

  4. 22 CFR 130.4 - Defense articles and defense services.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Defense articles and defense services. 130.4 Section 130.4 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.4 Defense articles and defense services. Defense articles and...

  5. 22 CFR 130.4 - Defense articles and defense services.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Defense articles and defense services. 130.4 Section 130.4 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.4 Defense articles and defense services. Defense articles and...

  6. 22 CFR 130.4 - Defense articles and defense services.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Defense articles and defense services. 130.4 Section 130.4 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.4 Defense articles and defense services. Defense articles and...

  7. 22 CFR 130.4 - Defense articles and defense services.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Defense articles and defense services. 130.4 Section 130.4 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.4 Defense articles and defense services. Defense articles and...

  8. HPV: immune response to infection and vaccination

    E-print Network

    Stanley, Margaret A

    2010-10-20

    coat protein L1 is protective suggesting that this would be an effective prophylactic vaccine strategy. The current prophylactic HPV VLP vaccines are delivered i.m. circumventing the intra-epithelial immune evasion strategies. These vaccines generate...

  9. 76 FR 2246 - Defense Support of Civil Authorities (DSCA)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ...civilian authority or use the military as an internal police force...forces of the United States military when each state already has...big supporter of a strong US military for the protection of our country...the Department of Defense's Strategy for Homeland Defense and...

  10. Immune checkpoint receptors in regulating immune reactivity in rheumatic disease.

    PubMed

    Ceeraz, Sabrina; Nowak, Elizabeth C; Burns, Christopher M; Noelle, Randolph J

    2014-01-01

    Immune checkpoint regulators are critical modulators of the immune system, allowing the initiation of a productive immune response and preventing the onset of autoimmunity. Co-inhibitory and co-stimulatory immune checkpoint receptors are required for full T-cell activation and effector functions such as the production of cytokines. In autoimmune rheumatic diseases, impaired tolerance leads to the development of diseases such as rheumatoid arthritis, systemic lupus erythematosus, and Sjogren's syndrome. Targeting the pathways of the inhibitory immune checkpoint molecules CD152 (cytotoxic T lymphocyte antigen-4) and CD279 (programmed death-1) in cancer shows robust anti-tumor responses and tumor regression. This observation suggests that, in autoimmune diseases, the converse strategy of engaging these molecules may alleviate inflammation owing to the success of abatacept (CD152-Ig) in rheumatoid arthritis patients. We review the preclinical and clinical developments in targeting immune checkpoint regulators in rheumatic disease. PMID:25606596

  11. Defense Mechanisms: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…

  12. Forgiveness and Defense Style

    ERIC Educational Resources Information Center

    Maltby, John; Day, Liz

    2004-01-01

    Within the literature on the psychology of forgiveness, researchers have hypothesized that the 1st stage in the process of being able to forgive is the role of psychological defense. To examine such a hypothesis, the authors explored the relationship between forgiveness and defense style. The 304 respondents (151 men, 153 women) completed measures…

  13. Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape

    PubMed Central

    Ramond, Elodie; Gesbert, Gael; Rigard, Mélanie; Dairou, Julien; Dupuis, Marion; Dubail, Iharilalao; Meibom, Karin; Henry, Thomas; Barel, Monique; Charbit, Alain

    2014-01-01

    Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle. PMID:24453979

  14. The Role of Nutrition in Enhancing Immunity in Aging

    PubMed Central

    Pae, Munkyong; Meydani, Simin Nikbin; Wu, Dayong

    2011-01-01

    Aging is associated with declined immune function, particularly T cell-mediated activity, which contributes to increased morbidity and mortality from infectious disease and cancer in the elderly. Studies have shown that nutritional intervention may be a promising approach to reversing impaired immune function and diminished resistance to infection with aging. However, controversy exists concerning every nutritional regimen tested to date. In this article, we will review the progress of research in this field with a focus on nutrition factor information that is relatively abundant in the literature. While vitamin E deficiency is rare, intake above recommended levels can enhance T cell function in aged animals and humans. This effect is believed to contribute toward increased resistance to influenza infection in animals and reduced incidence of upper respiratory infection in the elderly. Zinc deficiency, common in the elderly, is linked to impaired immune function and increased risk for acquiring infection, which can be rectified by zinc supplementation. However, higher than recommended upper limits of zinc may adversely affect immune function. Probiotics are increasingly being recognized as an effective, immune-modulating nutritional factor. However, to be effective, they require an adequate supplementation period; additionally, their effects are strain-specific and among certain strains, a synergistic effect is observed. Increased intake of fish or n-3 PUFA may be beneficial to inflammatory and autoimmune disorders as well as to several age-related diseases. Conversely, the immunosuppressive effect of fish oils on T cell-mediated function has raised concerns regarding their impact on resistance to infection. Caloric restriction (CR) is shown to delay immunosenescence in animals, but this effect needs to be verified in humans. Timing for CR initiation may be important to determine whether CR is effective or even beneficial at all. Recent studies have suggested that CR, which is effective at improving the immune response of unchallenged animals, might compromise the host’s defense against pathogenic infection and result in higher morbidity and mortality. The studies published thus far describe a critical role for nutrition in maintaining the immune response of the aged, but they also indicate the need for a more in-depth, wholestic approach to determining the optimal nutritional strategies that would maintain a healthy immune system in the elderly and promote their resistance to infection and other immune-related diseases PMID:22500273

  15. DNA Immunization

    PubMed Central

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed. PMID:24510291

  16. Mechanisms of plant defense against insect herbivores

    PubMed Central

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ahmad, Tariq; Buhroo, Abdul Ahad; Hussain, Barkat; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2012-01-01

    Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production. PMID:22895106

  17. Plant immunity in plant–aphid interactions

    PubMed Central

    Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.

    2014-01-01

    Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727

  18. Immune System

    MedlinePLUS

    ... do: B lymphocytes are like the body's military intelligence system, seeking out their targets and sending defenses ... like the soldiers, destroying the invaders that the intelligence system has identified. Here's how it works. A ...

  19. Immune camouflage: Relevance to vaccines and human immunology

    PubMed Central

    De Groot, Anne S; Moise, Lenny; Liu, Rui; Gutierrez, Andres H; Tassone, Ryan; Bailey-Kellogg, Chris; Martin, William

    2014-01-01

    High strain sequence variability, interference with innate immune mechanisms, and epitope deletion are all examples of strategies that pathogens have evolved to subvert host defenses. To this list we would add another strategy: immune camouflage. Pathogens whose epitope sequences are cross-conserved with multiple human proteins at the TCR-facing residues may be exploiting “ignorance and tolerance," which are mechanisms by which mature T cells avoid immune responses to self-antigens. By adopting amino acid configurations that may be recognized by autologous regulatory T cells, pathogens may be actively suppressing protective immunity. Using the new JanusMatrix TCR-homology-mapping tool, we have identified several such ‘camouflaged’ tolerizing epitopes that are present in the viral genomes of pathogens such as emerging H7N9 influenza. Thus in addition to the overall low number of T helper epitopes that is present in H7 hemaglutinin (as described previously, see http://dx.doi.org/10.4161/hv.24939), the presence of such tolerizing epitopes in H7N9 could explain why, in recent vaccine trials, whole H7N9-HA was poorly immunogenic and associated with low seroconversion rates (see http://dx.doi.org/10.4161/hv.28135). In this commentary, we provide an overview of the immunoinformatics process leading to the discovery of tolerizing epitopes in pathogen genomic sequences, provide a brief summary of laboratory data that validates the discovery, and point the way forward. Removal of viral, bacterial and parasite tolerizing epitopes may permit researchers to develop more effective vaccines and immunotherapeutics in the future. PMID:25483703

  20. Identification and analysis of immune-related transcriptome in Asian seabass Lates calcarifer

    PubMed Central

    2010-01-01

    Background Fish diseases caused by pathogens are limiting their production and trade, affecting the economy generated by aquaculture. Innate immunity system is the first line of host defense in opposing pathogenic organisms or any other foreign material. For identification of immune-related genes in Asian seabass Lates calcarifer, an important marine foodfish species, we injected bacterial lipopolysaccharide (LPS), a commonly used elicitor of innate immune responses to eight individuals at the age of 35 days post-hatch and applied the suppression subtractive hybridization (SSH) technique to selectively amplify spleen cDNA of differentially expressed genes. Results Sequencing and bioinformatic analysis of 3351 ESTs from two SSH libraries yielded 1692 unique transcripts. Of which, 618 transcripts were unknown/novel genes and the remaining 1074 were similar to 743 known genes and 105 unannotated mRNA sequences available in public databases. A total of 161 transcripts were classified to the category "response to stimulus" and 115 to "immune system process". We identified 25 significantly up-regulated genes (including 2 unknown transcripts) and 4 down-regulated genes associated with immune-related processes upon challenge with LPS. Quantitative real-time PCR confirmed the differential expression of these genes after LPS challenge. Conclusions The present study identified 1692 unique transcripts upon LPS challenge for the first time in Asian seabass by using SSH, sequencing and bioinformatic analysis. Some of the identified transcripts are vertebrate homologues and others are hitherto unreported putative defence proteins. The obtained immune-related genes may allow for a better understanding of immunity in Asian seabass, carrying out detailed functional analysis of these genes and developing strategies for efficient immune protection against infections in Asian seabass. PMID:20525308

  1. The 1988 defense budget

    SciTech Connect

    Epstein, J.M.

    1987-01-01

    The Brookings annual analysis of the defense budget is designed to identify critical national security issues facing the country, to clarify choices that must be made in allocating resources, and to encourage informed public debate. Like its predecessors, this volume critically examines the Reagan administration's 1988 budget and associated multi-year plan for defense. It is part of a long-range effort at Brookings to use dynamic campaign analysis to address more explicitly and in greater detail the full scope of force planning and defense budgeting issues.

  2. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  3. Immune surveillance of the central nervous system in multiple sclerosis– Relevance for therapy and experimental models

    PubMed Central

    Hussain, Rehana Z.; Hayardeny, Liat; Cravens, Petra C.; Yarovinsky, Felix; Eagar, Todd N.; Arellano, Benjamine; Deason, Krystin; Castro-Rojas, Cyd; Stüve, Olaf

    2015-01-01

    Treatment of central nervous system (CNS) autoimmune disorders frequently involves the reduction, or depletion of immune-competent cells. Alternatively, immune cells are being sequestered away from the target organ by interfering with their movement from secondary lymphoid organs, or their migration into tissues. These therapeutic strategies have been successful in multiple sclerosis (MS), the most prevalent autoimmune inflammatory disorder of the CNS. However, many of the agents that are currently approved or in clinical development also have severe potential adverse effects that stem from the very mechanisms that mediate their beneficial effects by interfering with CNS immune surveillance. This review will outline the main cellular components of the innate and adaptive immune system that participate in host defense and maintain immune surveillance of the CNS. Their pathogenic role in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also discussed. Furthermore, an experimental model is introduced that may assist in evaluating the effect of therapeutic interventions on leukocyte homeostasis and function within the CNS. This model or similar models may become a useful tool in the repertoire of pre-clinical tests of pharmacological agents to better explore their potential for adverse events. PMID:25282087

  4. Exploring the Pharmacological Potential of Promiscuous Host-Defense Peptides: From Natural Screenings to Biotechnological Applications

    PubMed Central

    Silva, Osmar N.; Mulder, Kelly C. L.; Barbosa, Aulus E. A. D.; Otero-Gonzalez, Anselmo J.; Lopez-Abarrategui, Carlos; Rezende, Taia M. B.; Dias, Simoni C.; Franco, Octávio L.

    2011-01-01

    In the last few years, the number of bacteria with enhanced resistance to conventional antibiotics has dramatically increased. Most of such bacteria belong to regular microbial flora, becoming a real challenge, especially for immune-depressed patients. Since the treatment is sometimes extremely expensive, and in some circumstances completely inefficient for the most severe cases, researchers are still determined to discover novel compounds. Among them, host-defense peptides (HDPs) have been found as the first natural barrier against microorganisms in nearly all living groups. This molecular class has been gaining attention every day for multiple reasons. For decades, it was believed that these defense peptides had been involved only with the permeation of the lipid bilayer in pathogen membranes, their main target. Currently, it is known that these peptides can bind to numerous targets, as well as lipids including proteins and carbohydrates, from the surface to deep within the cell. Moreover, by using in vivo models, it was shown that HDPs could act both in pathogens and cognate hosts, improving immunological functions as well as acting through multiple pathways to control infections. This review focuses on structural and functional properties of HDP peptides and the additional strategies used to select them. Furthermore, strategies to avoid problems in large-scale manufacture by using molecular and biochemical techniques will also be explored. In summary, this review intends to construct a bridge between academic research and pharmaceutical industry, providing novel insights into the utilization of HDPs against resistant bacterial strains that cause infections in humans. PMID:22125552

  5. Trametes versicolor mushroom immune therapy in breast cancer.

    PubMed

    Standish, Leanna J; Wenner, Cynthia A; Sweet, Erin S; Bridge, Carly; Nelson, Ana; Martzen, Mark; Novack, Jeffrey; Torkelson, Carolyn

    2008-01-01

    Data from multiple epidemiologic and clinical studies on immune effects of conventional cancer treatment and the clinical benefits of polysaccharide immune therapy suggest that immune function has a role in breast cancer prevention. Immune therapy utilizing the polysaccharide constituents of Trametes versicolor (Tv) as concurrent adjuvant cancer therapy may be warranted as part of a comprehensive cancer treatment and secondary prevention strategy. PMID:19087769

  6. Trametes versicolor Mushroom Immune Therapy in Breast Cancer

    PubMed Central

    Standish, Leanna J.; Wenner, Cynthia A.; Sweet, Erin S.; Bridge, Carly; Nelson, Ana; Martzen, Mark; Novack, Jeffrey; Torkelson, Carolyn

    2009-01-01

    Data from multiple epidemiologic and clinical studies on immune effects of conventional cancer treatment and the clinical benefits of polysaccharide immune therapy suggest that immune function has a role in breast cancer prevention. Immune therapy utilizing the polysaccharide constituents of Trametes versicolor (Tv) as concurrent adjuvant cancer therapy may be warranted as part of a comprehensive cancer treatment and secondary prevention strategy. PMID:19087769

  7. Immunization glossary.

    PubMed

    Ofosu-amaah, S; Shah, K P

    1985-01-01

    This immunization glossary defines the following terms: antibody; maternal antibodies; antigen; antitoxin; booster dose; control of a disease; droplet infection; endemic; epidemic; eradication of a disease; gamma globulin; immunity; active immunity; passive immunity; herd immunity; incidence; jet injector; prevalence; seroconversion; toxoid; live attenuated vaccines; whole inactivated vaccines; inactivated bacterial toxins/toxoid vaccines; and vaccine efficacy. Antibodies are special proteins in the blood which inhibit the organisms or toxins causing the disease. Those antibodies which inhibit the action of toxins are called antitoxins. The sites of maximum antibody formation are the lymph nodes and spleen. Immunity is the state of resistance of the body to agents foreign to it. Active immunity is acquired by contracting an infection or by administration of vaccines either singly or in suitable combination. The person who contracts the infection or is immunized makes his/her own antibodies which remain in the body for a long time. This is the most desirable form of immunity. In the case of passive immunity, ready-made antibodies are acquired by infection or injection. Live vaccines contain live bacteria or viruses. These organisms are treated in the laboratory to minimize their harmful effects while retaining their ability to stimulate the production of protective antibodies. Vaccine stability can be improved by freeze-drying, a process in which the vaccine is reduced to a powder by freezing and removing water vapor under vacuum. Dead or killed vaccines are made from killed bacteria or viruses. Examples of inactivated bacterial toxins/toxoid vaccines are the diptheria and tetanus toxoids. Vaccine efficacy is a measure of the degree to which a vaccine protects the members of the community in which it is used. PMID:12340732

  8. Plant defense activators: applications and prospects in cereal crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review addresses the current understanding of the plant immune response and the molecular mechanisms responsible for systemic acquired resistance as well as the phenomenon of "priming" in plant defense. A detailed discussion of the role of salicylic acid in activating the plant transcription c...

  9. Gastroduodenal Mucosal Defense

    PubMed Central

    Kemmerly, Thomas; Kaunitz, Jonathan D.

    2014-01-01

    Purpose of review To review recent developments in the field of gastroduodenal mucosal defense. Recent findings Research in the field of gastroduodenal mucosal defense has focused on continued elucidation of molecular mechanisms that protect the mucosa and influence healing at the cellular level. Review of literature over the past year reveals that familiar proteins and mediators such as nitric oxide, Toll-like receptors, nucleotide-binding oligomerization domain-containing proteins, ?-defensins, macrophages, dendritic cells, mucins, autophagy, and the influence of aging and diet are still subjects of study, but also brings into light new processes and mediators such as dual oxidases, defense against radiation injuries, and novel proteins such as ZBP-89. Summary These new published findings contribute to our overall understanding of gastroduodenal defense and suggest innovative avenues of future research and possible novel therapeutic targets. PMID:25229259

  10. Brain Innate Immunity in the Regulation of Neuroinflammation: Therapeutic Strategies by Modulating CD200-CD200R Interaction Involve the Cannabinoid System

    PubMed Central

    Hernangómez, Miriam; Carrillo-Salinas, Francisco J; Mecha, Miriam; Correa, Fernando; Mestre, Leyre; Loría, Frida; Feliú, Ana; Docagne, Fabian; Guaza, Carmen

    2014-01-01

    The central nervous system (CNS) innate immune response includes an arsenal of molecules and receptors expressed by professional phagocytes, glial cells and neurons that is involved in host defence and clearance of toxic and dangerous cell debris. However, any uncontrolled innate immune responses within the CNS are widely recognized as playing a major role in the development of autoimmune disorders and neurodegeneration, with multiple sclerosis (MS) Alzheimer's disease (AD) being primary examples. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. Neuroimmune regulatory proteins (NIReg) such as CD95L, CD200, CD47, sialic acid, complement regulatory proteins (CD55, CD46, fH, C3a), HMGB1, may control the adverse immune responses in health and diseases. In the absence of these regulators, when neurons die by apoptosis, become infected or damaged, microglia and infiltrating immune cells are free to cause injury as well as an adverse inflammatory response in acute and chronic settings. We will herein provide new emphasis on the role of the pair CD200-CD200R in MS and its experimental models: experimental autoimmune encephalomyelitis (EAE) and Theiler’s virus induced demyelinating disease (TMEV-IDD). The interest of the cannabinoid system as inhibitor of inflammation prompt us to introduce our findings about the role of endocannabinoids (eCBs) in promoting CD200-CD200 receptor (CD200R) interaction and the benefits caused in TMEV-IDD. Finally, we also review the current data on CD200-CD200R interaction in AD, as well as, in the aging brain. PMID:24588829

  11. Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system.

    PubMed

    Hernangómez, Miriam; Carrillo-Salinas, Francisco J; Mecha, Miriam; Correa, Fernando; Mestre, Leyre; Loría, Frida; Feliú, Ana; Docagne, Fabian; Guaza, Carmen

    2014-01-01

    The central nervous system (CNS) innate immune response includes an arsenal of molecules and receptors expressed by professional phagocytes, glial cells and neurons that is involved in host defence and clearance of toxic and dangerous cell debris. However, any uncontrolled innate immune responses within the CNS are widely recognized as playing a major role in the development of autoimmune disorders and neurodegeneration, with multiple sclerosis (MS) Alzheimer's disease (AD) being primary examples. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. Neuroimmune regulatory proteins (NIReg) such as CD95L, CD200, CD47, sialic acid, complement regulatory proteins (CD55, CD46, fH, C3a), HMGB1, may control the adverse immune responses in health and diseases. In the absence of these regulators, when neurons die by apoptosis, become infected or damaged, microglia and infiltrating immune cells are free to cause injury as well as an adverse inflammatory response in acute and chronic settings. We will herein provide new emphasis on the role of the pair CD200-CD200R in MS and its experimental models: experimental autoimmune encephalomyelitis (EAE) and Theiler's virus induced demyelinating disease (TMEV-IDD). The interest of the cannabinoid system as inhibitor of inflammation prompt us to introduce our findings about the role of endocannabinoids (eCBs) in promoting CD200-CD200 receptor (CD200R) interaction and the benefits caused in TMEV-IDD. Finally, we also review the current data on CD200-CD200R interaction in AD, as well as, in the aging brain. PMID:24588829

  12. Chemerin regulation and role in host defense

    PubMed Central

    Zabel, Brian A; Kwitniewski, Mateusz; Banas, Magdalena; Zabieglo, Katarzyna; Murzyn, Krzysztof; Cichy, Joanna

    2014-01-01

    Chemerin is a widely distributed multifunctional secreted protein implicated in immune cell migration, adipogenesis, osteoblastogenesis, angiogenesis, myogenesis, and glucose homeostasis. Chemerin message is regulated by nuclear receptor agonists, metabolic signaling proteins and intermediates, and proinflammatory cytokines. Following translation chemerin is secreted as an inactive pro-protein, and its secretion can be regulated depending on cell type. Chemerin bioactivity is largely dependent on carboxyl-terminal proteolytic processing and removal of inhibitory residues. Chemerin is abundant in human epidermis where it is well-placed to provide barrier protection. In host defense, chemerin plays dual roles as a broad spectrum antimicrobial protein and as a leukocyte attractant for macrophages, dendritic cells, and NK cells. Here we review the mechanisms underlying chemerin regulation and its function in host defense. PMID:24660117

  13. Microbial priming of plant and animal immunity: symbionts as

    E-print Network

    ´matique et Evolution, Institut de Syste´matique, Evolution, Biodiversite´ (ISYEB, UMR 7205), CP 50, 45 rue for efficient protection against pathogens is defense prim- ing, the preconditioning of immunity induced in evolution as devel- opmental signals for immunity maturation. Because there is no evidence that microbial

  14. A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements

    PubMed Central

    2016-01-01

    Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs) silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1) the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2) a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations. PMID:26681955

  15. A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements.

    PubMed

    Haase, Astrid D

    2016-01-01

    Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs) silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1) the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2) a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations. PMID:26681955

  16. Immunization Equity.

    PubMed

    Hinman, Alan R; McKinlay, Mark A

    2015-12-01

    Health inequities are the unjust differences in health among different social groups. Unfortunately, inequities are the norm, both in terms of health status and access to, and use of, health services. Childhood immunizations reduce the incidence of vaccine-preventable diseases and represent a cost-effective way to foster health equity. This paper reflects a 2015 review of data from surveys conducted in developing countries from 2005 to 2011 that show significant inequities in immunization coverage and discusses several initiatives currently underway (including Gavi, the Vaccine Alliance) that are directed at increasing childhood immunizations or reducing or abolishing overall health inequities. These initiatives have already had a significant impact on disease burden and childhood mortality and give rise to optimism that health disparities may further be reduced and health equity achieved as a result of investments made in immunization. PMID:26282089

  17. Immune Restoration

    MedlinePLUS

    ... more information on IL-2. Another approach is gene therapy. This involves changing the bone marrow cells that ... travel to the thymus and become CD4 cells. Gene therapy tries to make the bone marrow cells immune ...

  18. Childhood Immunization

    MedlinePLUS

    Today, children in the United States routinely get vaccines that protect them from more than a dozen ... lowest levels in history, thanks to years of immunization. Children must get at least some vaccines before ...

  19. 76 FR 28757 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... of the Secretary Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Notice of Availability (NOA) of Revised Defense Logistics Agency Regulation. SUMMARY: The Defense...

  20. 75 FR 76423 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of... a closed meeting of the Defense Intelligence Agency National Defense Intelligence College Board...

  1. 76 FR 28960 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of... a closed meeting of the Defense Intelligence Agency National Defense Intelligence College Board...

  2. Moscow's defense intellectuals

    SciTech Connect

    Lambeth, B.S.

    1990-01-01

    This essay was originally written two decades ago as a seminar paper. A substantial portion of it addresses what were then only the first steps toward the establishment of a community of professional civilian defense analysts in the Soviet Union. Throughout most of the intervening period, that community found itself mired in immobilism as jurisdiction over such key Soviet national security inputs as military doctrine, force requirements, resource needs, and to a considerable degree, arms negotiating positions remained an exclusive prerogative of the Defense Ministry and the General Staff. Today, this former military monopoly has come to be challenged with increasing success by a host of newcomers to the Soviet defense scene, including the Foreign Ministry, the Supreme Soviet, and an ambitious cadre of civilian analysts attached to the social science research institutes of the Academy of Sciences. These individuals are making a determined bid for greater influence over Soviet defense policy, with the express encouragement of President Gorbachev and his supporters. The result has been an unprecedented infusion of pluralism into Soviet defense politics and a significant change in the content and goals of Soviet military policy.

  3. The role of G-proteins in plant immunity

    PubMed Central

    Zhang, Huajian; Gao, Zhimou; Zheng, Xiaobo; Zhang, Zhengguang

    2012-01-01

    Heterotrimeric G-proteins play an important regulatory role in multiple physiological processes, including the plant immune response, and substantial progress has been made in elucidating the G-protein-mediated defense-signaling network. This mini-review discusses the importance of G-proteins in plant immunity. We also provide an overview of how G-proteins affect plant cell death and stomatal movement. Our recent studies demonstrated that G-proteins are involved in signal transduction and induction of stomatal closure and defense responses. We also discuss future directions for G-protein signaling studies involving plant immunity. PMID:22895102

  4. Leishmania donovani: impairment of the cellular immune response against recombinant ornithine decarboxylase protein as a possible evasion strategy of Leishmania in visceral leishmaniasis.

    PubMed

    Yadav, Anupam; Amit, Ajay; Chaudhary, Rajesh; Chandel, Arvind Singh; Mahantesh, Vijay; Suman, Shashi Shekhar; Singh, Subhankar Kumar; Dikhit, Manas Ranjan; Ali, Vahab; Rabidas, Vidyanand; Pandey, Krishna; Kumar, Anil; Das, Pradeep; Bimal, Sanjiva

    2015-01-01

    Ornithine decarboxylase, the rate limiting enzyme of the polyamine biosynthesis pathway, is significant in the synthesis of trypanothione, T(SH)2, the major reduced thiol which is responsible for the modulation of the immune response and pathogenesis in visceral leishmaniasis. Data on the relationship between ornithine decarboxylase and the cellular immune response in VL patients are limited. Therefore, we purified a recombinant ornithine decarboxylase from Leishmania donovani (r-LdODC) of approximately 77kDa and examined its effects on the immunological responses in peripheral blood mononuclear cells of human visceral leishmaniasis cases. For these studies, ?-difluoromethylornithine was tested as an inhibitor and was used in parallel in all experiments. The r-LdODC was identified as having a direct correlation with parasite growth and significantly increased the number of promastigotes as well as axenic amastigotes after 96h of culture. The stimulation of peripheral blood mononuclear cells with r-LdODC up-regulated IL-10 production but not IFN-? production from CD4(+) T cells in active as well as cured visceral leishmaniasis cases, indicating a pivotal role for r-LdODC in causing strong immune suppression in a susceptible host. In addition, severe hindrance of the immune response and anti-leishmanial macrophage function due to r-LdODC, as revealed by decreased IL-12 and nitric oxide production, and down-regulation in mean fluorescence intensities of reactive oxygen species, occurred in visceral leishmaniasis patients. There was little impact of r-LdODC in the killing of L. donovani amastigotes in macrophages of visceral leishmaniasis patients. In contrast, when cultures of promastigotes and amastigotes, and patients' blood samples, were directed against ?-difluoromethylornithine, parasite numbers significantly reduced in culture, whereas the levels of IFN-? and IL-12, and the production of reactive oxygen species and nitric oxide, were significantly elevated. Therefore, we demonstrated cross-talk with the use of ?-difluoromethylornithine which can reduce the activity of ornithine decarboxylase of L. donovani, eliminating the parasite-induced immune suppression and inducing collateral host protective responses in visceral leishmaniasis. PMID:25449949

  5. Strategic Defense Initiative - strategic implications. Study project

    SciTech Connect

    Russell, T.L.

    1988-03-31

    In March 1983, during this address to the nation, President Reagan initiated a major shift in U.S. strategic policy, as he indicated his desire to move away from the condition of mutual vulnerability as the primary deterrent to nuclear war. The Strategic Defense Initiative (SDI), as the vehicle for this shift, has become the focus of debate over implications of a new strategic policy. This study seeks to examine the strategic relationship, and the role of arms control during a transition from an offensive-dominant strategy to a defensive-dominant strategy. The methodology for the study is to present arguments for and against SDI, as they relate to the issues of stability and arms control, evaluate their validity, draw conclusions, and provide recommendations that may enhance international security during a transition period of SDI.

  6. Cellular defense against latent colonization foiled by human cytomegalovirus UL138 protein

    PubMed Central

    Lee, Song Hee; Albright, Emily R.; Lee, Jeong-Hee; Jacobs, Derek; Kalejta, Robert F.

    2015-01-01

    Intrinsic immune defenses mediated by restriction factors inhibit productive viral infections. Select viruses rapidly establish latent infections and, with gene expression profiles that imply cell-autonomous intrinsic defenses, may be the most effective immune control measure against latent reservoirs. We illustrate that lysine-specific demethylases (KDMs) are restriction factors that prevent human cytomegalovirus from establishing latency by removing repressive epigenetic modifications from histones associated with the viral major immediate early promoter (MIEP), stimulating the expression of a viral lytic phase target of cell-mediated adaptive immunity. The viral UL138 protein negates this defense by preventing KDM association with the MIEP. The presence of an intrinsic defense against latency and the emergence of a cognate neutralizing viral factor indicate that “arms races” between hosts and viruses over lifelong colonization exist at the cellular level. PMID:26702450

  7. Effect of dietary selenium on T cell immunity and cancer xenograft in nude mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium is known to regulate carcinogenesis and immunity at nutritional and supranutritional levels. Because the immune system provides one of the main body defenses against cancer, we asked whether T cell immunity can modulate selenium chemoprevention. Twenty-four homozygous NU/J nude mice were fe...

  8. Regulation of Heliothis virescens Innate Immune Responses to the Endoparasitoid Campoletis sonorensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect immune responses play important roles in host defense against pathogens and parasitoids. In this study, we propose that the regulation of host immune responses may determine the successful parasitization of Campoletis sonorensis in the host. To investigate the regulation of innate immune resp...

  9. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  10. The First Line of Defense

    PubMed Central

    Hammer, Adam M.; Morris, Niya L.; Earley, Zachary M.; Choudhry, Mashkoor A.

    2015-01-01

    Alcohol (ethanol) is one of the most globally abused substances, and is one of the leading causes of premature death in the world. As a result of its complexity and direct contact with ingested alcohol, the intestine represents the primary source from which alcohol-associated pathologies stem. The gut is the largest reservoir of bacteria in the body, and under healthy conditions, it maintains a barrier preventing bacteria from translocating out of the intestinal lumen. The intestinal barrier is compromised following alcohol exposure, which can lead to life-threatening systemic complications including sepsis and multiple organ failure. Furthermore, alcohol is a major confounding factor in pathology associated with trauma. Experimental data from both human and animal studies suggest that alcohol perturbs the intestinal barrier and its function, which is exacerbated by a “second hit” from traumatic injury. This article highlights the role of alcohol-mediated alterations of the intestinal epithelia and its defense against bacteria within the gut, and the impact of alcohol on intestinal immunity, specifically on T cells and neutrophils. Finally, it discusses how the gut microbiome both contributes to and protects the intestines from dysbiosis after alcohol exposure and trauma.

  11. Defense styles of pedophilic offenders.

    PubMed

    Drapeau, Martin; Beretta, Véronique; de Roten, Yves; Koerner, Annett; Despland, Jean-Nicolas

    2008-04-01

    This pilot study investigated the defense styles of pedophile sexual offenders. Interviews with 20 pedophiles and 20 controls were scored using the Defense Mechanisms Rating Scales. Results showed that pedophiles had a significantly lower overall defensive functioning score than the controls. Pedophiles used significantly fewer obsessional-level defenses but more major image-distorting and action-level defenses. Results also suggested differences in the prevalence of individual defenses where pedophiles used more dissociation, displacement, denial, autistic fantasy, splitting of object, projective identification, acting out, and passive aggressive behavior but less intellectualization and rationalization. PMID:17875603

  12. Radiological Defense Manual.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    Originally prepared for use as a student textbook in Radiological Defense (RADEF) courses, this manual provides the basic technical information necessary for an understanding of RADEF. It also briefly discusses the need for RADEF planning and expected postattack emergency operations. There are 14 chapters covering these major topics: introduction…

  13. Rationality Validation of a Layered Decision Model for Network Defense

    SciTech Connect

    Wei, Huaqiang; Alves-Foss, James; Zhang, Du; Frincke, Deb

    2007-08-31

    We propose a cost-effective network defense strategy built on three key: three decision layers: security policies, defense strategies, and real-time defense tactics for countering immediate threats. A layered decision model (LDM) can be used to capture this decision process. The LDM helps decision-makers gain insight into the hierarchical relationships among inter-connected entities and decision types, and supports the selection of cost-effective defense mechanisms to safeguard computer networks. To be effective as a business tool, it is first necessary to validate the rationality of model before applying it to real-world business cases. This paper describes our efforts in validating the LDM rationality through simulation.

  14. Targeting the PD-1/PD-L1 Immune Evasion Axis With DNA Aptamers as a Novel Therapeutic Strategy for the Treatment of Disseminated Cancers

    PubMed Central

    Prodeus, Aaron; Abdul-Wahid, Aws; Fischer, Nicholas W.; Huang, Eric H-B; Cydzik, Marzena; Gariépy, Jean

    2015-01-01

    Blocking the immunoinhibitory PD-1:PD-L1 pathway using monoclonal antibodies has led to dramatic clinical responses by reversing tumor immune evasion and provoking robust and durable antitumor responses. Anti-PD-1 antibodies have now been approved for the treatment of melanoma, and are being clinically tested in a number of other tumor types as both a monotherapy and as part of combination regimens. Here, we report the development of DNA aptamers as synthetic, nonimmunogenic antibody mimics, which bind specifically to the murine extracellular domain of PD-1 and block the PD-1:PD-L1 interaction. One such aptamer, MP7, functionally inhibits the PD-L1-mediated suppression of IL-2 secretion in primary T-cells. A PEGylated form of MP7 retains the ability to block the PD-1:PD-L1 interaction, and significantly suppresses the growth of PD-L1+ colon carcinoma cells in vivo with a potency equivalent to an antagonistic anti-PD-1 antibody. Importantly, the anti-PD-1 DNA aptamer treatment was not associated with off-target TLR-9-related immune responses. Due to the inherent advantages of aptamers including their lack of immunogenicity, low cost, long shelf life, and ease of synthesis, PD-1 antagonistic aptamers may represent an attractive alternative over antibody-based anti PD-1 therapeutics. PMID:25919090

  15. Prediction of an Epitope-based Computational Vaccine Strategy for Gaining Concurrent Immunization Against the Venom Proteins of Australian Box Jellyfish

    PubMed Central

    Alam, Md. Jibran; Ashraf, Kutub Uddin Muhammad

    2013-01-01

    Background: Australian Box Jellyfish (C. fleckeri) has the most rapid acting venom known to in the arena of toxicological research and is capable enough of killing a person in less than 5 minutes inflicting painful, debilitating and potentially life-threatening stings in humans. It has been understood that C. fleckeri venom proteins CfTX-1, 2 and HSP70-1 contain cardiotoxic, neurotoxic and highly dermatonecrotic components that can cause itchy bumpy rash and cardiac arrest. Subjects and Methods: As there is no effective drug available, novel approaches regarding epitope prediction for vaccine development were performed in this study. Peptide fragments as nonamers of these antigenic venom proteins were analyzed by using computational tools that would elicit humoral and cell mediated immunity, were focused for attempting vaccine design. By ranking the peptides according to their proteasomal cleavage sites, TAP scores and IC50<250 nM, the predictions were scrutinized. Furthermore, the epitope sequences were examined by in silico docking simulation with different specific HLA receptors. Results: Interestingly, to our knowledge, this is the maiden hypothetical immunization that predicts the promiscuous epitopes with potential contributions to the tailored design of improved safe and effective vaccines against antigenic venom proteins of C. fleckeri which would be effective especially for the Australian population. Conclusion: Although the computational approaches executed here are based on concrete confidence which demands more validation and in vivo experiments to validate such in silico approach. PMID:24403734

  16. Targeting the PD-1/PD-L1 Immune Evasion Axis With DNA Aptamers as a Novel Therapeutic Strategy for the Treatment of Disseminated Cancers.

    PubMed

    Prodeus, Aaron; Abdul-Wahid, Aws; Fischer, Nicholas W; Huang, Eric H-B; Cydzik, Marzena; Gariépy, Jean

    2015-01-01

    Blocking the immunoinhibitory PD-1:PD-L1 pathway using monoclonal antibodies has led to dramatic clinical responses by reversing tumor immune evasion and provoking robust and durable antitumor responses. Anti-PD-1 antibodies have now been approved for the treatment of melanoma, and are being clinically tested in a number of other tumor types as both a monotherapy and as part of combination regimens. Here, we report the development of DNA aptamers as synthetic, nonimmunogenic antibody mimics, which bind specifically to the murine extracellular domain of PD-1 and block the PD-1:PD-L1 interaction. One such aptamer, MP7, functionally inhibits the PD-L1-mediated suppression of IL-2 secretion in primary T-cells. A PEGylated form of MP7 retains the ability to block the PD-1:PD-L1 interaction, and significantly suppresses the growth of PD-L1+ colon carcinoma cells in vivo with a potency equivalent to an antagonistic anti-PD-1 antibody. Importantly, the anti-PD-1 DNA aptamer treatment was not associated with off-target TLR-9-related immune responses. Due to the inherent advantages of aptamers including their lack of immunogenicity, low cost, long shelf life, and ease of synthesis, PD-1 antagonistic aptamers may represent an attractive alternative over antibody-based anti PD-1 therapeutics. PMID:25919090

  17. A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses.

    PubMed

    Naessens, Elodie; Dubreuil, Géraldine; Giordanengo, Philippe; Baron, Olga Lucia; Minet-Kebdani, Naïma; Keller, Harald; Coustau, Christine

    2015-07-20

    Aphids attack virtually all plant species and cause serious crop damages in agriculture. Despite their dramatic impact on food production, little is known about the molecular processes that allow aphids to exploit their host plants. To date, few aphid salivary proteins have been identified that are essential for aphid feeding, and their nature and function remain largely unknown. Here, we show that a macrophage migration inhibitory factor (MIF) is secreted in aphid saliva. In vertebrates, MIFs are important pro-inflammatory cytokines regulating immune responses. MIF proteins are also secreted by parasites of vertebrates, including nematodes, ticks, and protozoa, and participate in the modulation of host immune responses. The finding that a plant parasite secretes a MIF protein prompted us to question the role of the cytokine in the plant-aphid interaction. We show here that expression of MIF genes is crucial for aphid survival, fecundity, and feeding on a host plant. The ectopic expression of aphid MIFs in leaf tissues inhibits major plant immune responses, such as the expression of defense-related genes, callose deposition, and hypersensitive cell death. Functional complementation analyses in vivo allowed demonstrating that MIF1 is the member of the MIF protein family that allows aphids to exploit their host plants. To our knowledge, this is the first report of a cytokine that is secreted by a parasite to modulate plant immune responses. Our findings suggest a so-far unsuspected conservation of infection strategies among parasites of animal and plant species. PMID:26119751

  18. Biomaterial Strategies for Immunomodulation.

    PubMed

    Hotaling, Nathan A; Tang, Li; Irvine, Darrell J; Babensee, Julia E

    2015-12-01

    Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system. PMID:26421896

  19. Transcriptome Immune Analysis of the Invasive Beetle Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae) Parasitized by Tetrastichus brontispae Ferrière (Hymenoptera: Eulophidae)

    PubMed Central

    Tang, Baozhen; Chen, Jun; Hou, Youming; Meng, E.

    2014-01-01

    The beetle Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae) is a serious invasive insect pest of palm plants in southern China, and the endoparasitoid Tetrastichus brontispae Ferrière (Hymenoptera: Eulophidae) is a natural enemy of this pest that exhibits great ability in the biocontrol of O. nipae. For successful parasitism, endoparasitoids often introduce or secrete various virulence factors to suppress host immunity. To investigate the effects of parasitization by T. brontispae on the O. nipae immune system, the transcriptome of O. nipae pupae was analyzed with a focus on immune-related genes through Illumina sequencing. De novo assembly generated 49,919 unigenes with a mean length of 598 bp. Of these genes, 27,490 unigenes (55.1% of all unigenes) exhibited clear homology to known genes in the NCBI nr database. Parasitization had significant effects on the transcriptome profile of O. nipae pupae, and most of these differentially expressed genes were down-regulated. Importantly, the expression profiles of immune-related genes were significantly regulated after parasitization. Taken together, these transcriptome sequencing efforts shed valuable light on the host (O. nipae) manipulation mechanisms induced by T. brontispae, which will pave the way for the development of novel immune defense-based management strategies of O. nipae, and provide a springboard for further molecular analyses, particularly of O. nipae invasion. PMID:24614330

  20. Two Strategies for Response to 14°C Cold-Water Immersion: Is there a Difference in the Response of Motor, Cognitive, Immune and Stress Markers?

    PubMed Central

    Brazaitis, Marius; Eimantas, Nerijus; Daniuseviciute, Laura; Mickeviciene, Dalia; Steponaviciute, Rasa; Skurvydas, Albertas

    2014-01-01

    Here, we address the question of why some people have a greater chance of surviving and/or better resistance to cold-related-injuries in prolonged exposure to acute cold environments than do others, despite similar physical characteristics. The main aim of this study was to compare physiological and psychological reactions between people who exhibited fast cooling (FC; n?=?20) or slow cooling (SC; n?=?20) responses to cold water immersion. Individuals in whom the Tre decreased to a set point of 35.5°C before the end of the 170-min cooling time were indicated as the FC group; individuals in whom the Tre did not decrease to the set point of 35.5°C before the end of the 170-min cooling time were classified as the SC group. Cold stress was induced using intermittent immersion in bath water at 14°C. Motor (spinal and supraspinal reflexes, voluntary and electrically induced skeletal muscle contraction force) and cognitive (executive function, short term memory, short term spatial recognition) performance, immune variables (neutrophils, leucocytes, lymphocytes, monocytes, IL-6, TNF-?), markers of hypothalamic–pituitary–adrenal axis activity (cortisol, corticosterone) and autonomic nervous system activity (epinephrine, norepinephrine) were monitored. The data obtained in this study suggest that the response of the FC group to cooling vs the SC group response was more likely an insulative–hypothermic response and that the SC vs the FC group displayed a metabolic–insulative response. The observations that an exposure time to 14°C cold water—which was nearly twice as short (96-min vs 170-min) with a greater rectal temperature decrease (35.5°C vs 36.2°C) in the FC group compared with the SC group—induces similar responses of motor, cognitive, and blood stress markers were novel. The most important finding is that subjects with a lower cold-strain-index (SC group) showed stimulation of some markers of innate immunity and suppression of markers of specific immunity. PMID:25275647

  1. Influence of dynamic immunization on epidemic spreading in networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Fu, Xinchu; Jin, Zhen; Small, Michael

    2015-02-01

    We introduce a new dynamic immunization method based on the static immunization algorithm and study the relationship between dynamic and static immunization. By nodes to be immunized according to static immunization strategies, we build a connection between dynamic and static immunization. Using theoretical arguments and computational simulation we show that dynamic immunization (from a finite vaccine reservoir) is not sufficient to prevent epidemic outbreak, nor does it significantly change the asymptotic prevalence. Nonetheless, we do find that less total vaccine is required to implement this strategy. To help understand this better, we examine the extent and distribution of dynamic immunization required to achieve this reduced vaccine demand. Our results suggest that it is not necessary to increase the immunization rate when the infection rate is relatively small.

  2. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity

    PubMed Central

    Rus, Florentina; Flatt, Thomas; Tong, Mei; Aggarwal, Kamna; Okuda, Kendi; Kleino, Anni; Yates, Elisabeth; Tatar, Marc; Silverman, Neal

    2013-01-01

    Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals. PMID:23652443

  3. Nonself perception in plant innate immunity.

    PubMed

    Dubery, Ian A; Sanabria, Natasha M; Huang, Ju-Chi

    2012-01-01

    The ability to distinguish' self' from 'nonself' is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or nonhost resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an 'altered-self' recognition mechanism. PMID:22399375

  4. Polyphenol oxidase as a biochemical seed defense mechanism

    PubMed Central

    Fuerst, E. Patrick; Okubara, Patricia A.; Anderson, James V.; Morris, Craig F.

    2014-01-01

    Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO), when wild oat (Avena fatua L.) caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea), non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems. PMID:25540647

  5. Novel strategies for inhibiting PD-1 pathway-mediated immune suppression while simultaneously delivering activating signals to tumor-reactive T cells.

    PubMed

    Ostrand-Rosenberg, Suzanne; Horn, Lucas A; Alvarez, Juan A

    2015-10-01

    We previously developed cell-based vaccines as therapeutics for metastatic cancers. The vaccines were aimed at activating type I CD4(+)T cells and consisted of tumor cells transfected with genes encoding syngeneic MHC class II and CD80 costimulatory molecules, and lacking the MHC II-associated invariant chain. The vaccines showed some efficacy in mice with sarcoma, melanoma, and breast cancer and activated MHC class II syngeneic T cells from breast, lung, and melanoma patients. During the course of the vaccine studies, we observed that CD80 not only costimulated naïve T cells, but also bound to PD-L1 and prevented tumor cell-expressed PD-L1 from binding to its receptor PD-1 on activated T cells. A soluble form of CD80 (CD80-Fc) had the same effect and sustained IFN? production by both human and murine PD-1(+) activated T cells in the presence of PD-L1(+) human or mouse tumor cells, respectively. In vitro studies with human tumor cells indicated that CD80-Fc was more effective than antibodies to either PD-1 or PD-L1 in sustaining T cell production of IFN?. Additionally, in vivo studies with a murine tumor demonstrated that CD80-Fc was more effective than antibodies to PD-L1 in extending survival time. Studies with human T cells blocked for CD28 and with T cells from CD28 knockout mice demonstrated that CD80-Fc simultaneously inhibited PD-L1/PD-1-mediated immune suppression and delivered costimulatory signals to activated T cells, thereby amplifying T cell activation. These results suggest that CD80-Fc may be a useful monotherapy that minimizes PD-1 pathway immune suppression while simultaneously activating tumor-reactive T cells. PMID:25792524

  6. Innate Immunity, Environmental Drivers,

    E-print Network

    Harvell, Catherine Drew

    Innate Immunity, Environmental Drivers, and Disease Ecology of Marine and Freshwater Invertebrates immunity, ecological immunity, outbreak, prophenoloxidase pathway Abstract Despite progress in the past, and antimicrobial compounds. To demonstrate the links between immunity and the environment, we summarize mechanisms

  7. Defense on the Move: Ant-Based Cyber Defense

    SciTech Connect

    Fink, Glenn A.; Haack, Jereme N.; McKinnon, Archibald D.; Fulp, Errin W.

    2014-04-15

    Many common cyber defenses (like firewalls and IDS) are as static as trench warfare allowing the attacker freedom to probe them at will. The concept of Moving Target Defense (MTD) adds dynamism to the defender side, but puts the systems to be defended themselves in motion, potentially at great cost to the defender. An alternative approach is a mobile resilient defense that removes attackers’ ability to rely on prior experience without requiring motion in the protected infrastructure itself. The defensive technology absorbs most of the cost of motion, is resilient to attack, and is unpredictable to attackers. The Ant-Based Cyber Defense (ABCD) is a mobile resilient defense providing a set of roaming, bio-inspired, digital-ant agents working with stationary agents in a hierarchy headed by a human supervisor. The ABCD approach provides a resilient, extensible, and flexible defense that can scale to large, multi-enterprise infrastructures like the smart electric grid.

  8. Licensing Adaptive Immunity by NOD-Like Receptors

    PubMed Central

    Liu, Dong; Rhebergen, Anne Marie; Eisenbarth, Stephanie C.

    2013-01-01

    The innate immune system is composed of a diverse set of host defense molecules, physical barriers, and specialized leukocytes and is the primary form of immune defense against environmental insults. Another crucial role of innate immunity is to shape the long-lived adaptive immune response mediated by T and B lymphocytes. The activation of pattern recognition receptors (PRRs) from the Toll-like receptor family is now a classic example of innate immune molecules influencing adaptive immunity, resulting in effective antigen presentation to naïve T cells. More recent work suggests that the activation of another family of PRRs, the NOD-like receptors (NLRs), induces a different set of innate immune responses and accordingly, drives different aspects of adaptive immunity. Yet how this unusually diverse family of molecules (some without canonical PRR function) regulates immunity remains incompletely understood. In this review, we discuss the evidence for and against NLR activity orchestrating adaptive immune responses during infectious as well as non-infectious challenges. PMID:24409181

  9. Strategic Defense Initiative program

    SciTech Connect

    Not Available

    1990-03-01

    This report is a review of the extent of foreign contracting in the Strategic Defense Initiative Program. GAO identified 67 foreign contracts valued at $297.1 million, which represents about three percent of total Strategic Defense Initiative contract awards, and 86 foreign subcontracts from U.S. companies totaling $48.4 million. The basis of award for the 67 foreign contracts was more often competitive that sole source, although sole-source awards accounted for a higher dollar amount. The basis of the award by each of the U.S. agencies administering foreign contracts varied. Israel received the largest dollar value of contracts among foreign recipients. DOD and foreign embassy officials said foreign contracts allow the United States not only to share technology with other countries but also benefit from technological developments in those countries.

  10. 75 FR 76423 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ...DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of...

  11. 76 FR 28960 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ...DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of...

  12. Soviet strategic defense technology

    SciTech Connect

    Stubbs, E.

    1987-04-01

    The present status of the Soviet program suggests several observations that have a bearing on predicting the future of the Soviet strategic defense program and its implications for the US: 1. The Soviet Union appears to have a continuing interest in ABM defenses, although ASATs seem to be a much lower priority. 2. The Soviet technology fielded to date was well within the American grasp 10 years ago. Where advanced and as yet undeployed technologies are concerned, the difference seems to be smaller; perhaps as little as five or seven years, with approximate parity in particle-beam research. 3. The Soviet Union, possibly more sensitive to prestige considerations, appears to be much more inclined than the US to demonstrate and deploy a technology before it is actually fully operational, and to undertake field modifications later. They also are much more reluctant to retire aging and obsolete technologies. As a result, they presently possess the world's only deployed ASAT and ABM systems, however, doubtful their actual operational effectiveness might be. 4. Soviet strategic defenses tend to be more fragmentary in design, reflecting their difficulties with the supporting and integrative technologies such as sensing, signal processing, heavy-lift boosters, and computing hardware and software. 5. The Soviets should also be expected to explore alternative avenues of near-term response to SDI, for example by expanding their strategic nuclear arsenal. 28 references, 1 figure, 2 tables.

  13. Taxonomy and Effectiveness of Worm Defense David Brumley, LiHao Liu, Pongsin Poosankam, and Dawn Song

    E-print Network

    Taxonomy and Effectiveness of Worm Defense Strategies David Brumley, Li­Hao Liu, Pongsin Poosankam 15213 Abstract While it is important to develop effective worm defense techniques, most previous work of worm defense requires a more systematic study of the design space. We give the first systematic

  14. Taxonomy and Effectiveness of Worm Defense David Brumley, Li-Hao Liu, Pongsin Poosankam, and Dawn Song

    E-print Network

    Taxonomy and Effectiveness of Worm Defense Strategies David Brumley, Li-Hao Liu, Pongsin Poosankam 15213 Abstract While it is important to develop effective worm defense techniques, most previous work of worm defense requires a more systematic study of the design space. We give the first systematic

  15. Adaptive immunity in cancer immunology and therapeutics

    PubMed Central

    Spurrell, Emma L; Lockley, Michelle

    2014-01-01

    The vast genetic alterations characteristic of tumours produce a number of tumour antigens that enable the immune system to differentiate tumour cells from normal cells. Counter to this, tumour cells have developed mechanisms by which to evade host immunity in their constant quest for growth and survival. Tumour-associated antigens (TAAs) are one of the fundamental triggers of the immune response. They are important because they activate, via major histocompatibility complex (MHC), the T cell response, an important line of defense against tumourigenesis. However, the persistence of tumours despite host immunity implies that tumour cells develop immune avoidance. An example of this is the up-regulation of inhibitory immune checkpoint proteins, by tumours, which induces a form of self-tolerance. The majority of monoclonal antibodies in clinical practice have been developed to target tumour-specific antigens. More recently there has been research in the down-regulation of immune checkpoint proteins as a way of increasing anti-tumour immunity. PMID:25075215

  16. Cutaneous defenses against dermatophytes and yeasts.

    PubMed Central

    Wagner, D K; Sohnle, P G

    1995-01-01

    Predispositions to the superficial mycoses include warmth and moisture, natural or iatrogenic immunosuppression, and perhaps some degree of inherited susceptibility. Some of these infections elicit a greater inflammatory response than others, and the noninflammatory ones are generally more chronic. The immune system is involved in the defense against these infections, and cell-mediated immunity appears to be particularly important. The mechanisms involved in generating immunologic reactions in the skin are complex, with epidermal Langerhans cells, other dendritic cells, lymphocytes, microvascular endothelial cells, and the keratinocytes themselves all participating in one way or another. A variety of defects in the immunologic response to the superficial mycoses have been described. In some cases the defect may be preexistent, whereas in others the infection itself may interfere with protective cell-mediated immune responses against the organisms. A number of different mechanisms may underlie these immunologic defects and lead to the development of chronic superficial fungal infection in individual patients. Although the immunologic defects appear to be involved in the chronicity of certain types of cutaneous fungal infections, treatment of these defects remains experimental at the present time. PMID:7553568

  17. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola

    PubMed Central

    Lachhab, Nihed; Sanzani, Simona M.; Adrian, Marielle; Chiltz, Annick; Balacey, Suzanne; Boselli, Maurizio; Ippolito, Antonio; Poinssot, Benoit

    2014-01-01

    Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy) and casein (cas) to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defense responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signaling events were followed by transcriptome reprogramming, including the up-regulation of defense genes encoding pathogenesis-related (PR) proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, ?- and ?-viniferins. Overall, soy effects were more pronounced as compared to the cas ones. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack. PMID:25566290

  18. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola.

    PubMed

    Lachhab, Nihed; Sanzani, Simona M; Adrian, Marielle; Chiltz, Annick; Balacey, Suzanne; Boselli, Maurizio; Ippolito, Antonio; Poinssot, Benoit

    2014-01-01

    Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy) and casein (cas) to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defense responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signaling events were followed by transcriptome reprogramming, including the up-regulation of defense genes encoding pathogenesis-related (PR) proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, ?- and ?-viniferins. Overall, soy effects were more pronounced as compared to the cas ones. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack. PMID:25566290

  19. Respiratory epithelial cells orchestrate pulmonary innate immunity

    PubMed Central

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and ‘instruct’ the professional immune system to protect the lungs from infection and injury. PMID:25521682

  20. New Insights of an Old Defense System: Structure, Function, and Clinical Relevance of the Complement System

    PubMed Central

    Ehrnthaller, Christian; Ignatius, Anita; Gebhard, Florian; Huber-Lang, Markus

    2011-01-01

    The complement system was discovered a century ago as a potent defense cascade of innate immunity. After its first description, continuous experimental and clinical research was performed, and three canonical pathways of activation were established. Upon activation by traumatic or surgical tissue damage, complement reveals beneficial functions of pathogen and danger defense by sensing and clearing injured cells. However, the latest research efforts have provided a more distinct insight into the complement system and its clinical subsequences. Complement has been shown to play a significant role in the pathogenesis of various inflammatory processes such as sepsis, multiorgan dysfunction, ischemia/reperfusion, cardiovascular diseases and many others. The three well-known activation pathways of the complement system have been challenged by newer findings that demonstrate direct production of central complement effectors (for example, C5a) by serine proteases of the coagulation cascade. In particular, thrombin is capable of producing C5a, which not only plays a decisive role on pathogens and infected/damaged tissues, but also acts systemically. In the case of uncontrolled complement activation, “friendly fire” is generated, resulting in the destruction of healthy host tissue. Therefore, the traditional research that focuses on a mainly positive-acting cascade has now shifted to the negative effects and how tissue damage originated by the activation of the complement can be contained. In a translational approach including structure-function relations of this ancient defense system, this review provides new insights of complement-mediated clinical relevant diseases and the development of complement modulation strategies and current research aspects. PMID:21046060

  1. Interleukin 17-Mediated Host Defense against Candida albicans

    PubMed Central

    Sparber, Florian; LeibundGut-Landmann, Salomé

    2015-01-01

    Candida albicans is part of the normal microbiota in most healthy individuals. However, it can cause opportunistic infections if host defenses are breached, with symptoms ranging from superficial lesions to severe systemic disease. The study of rare congenital defects in patients with chronic mucocutaneous candidiasis led to the identification of interleukin-17 (IL-17) as a key factor in host defense against mucosal fungal infection. Experimental infections in mice confirmed the critical role of IL-17 in mucocutaneous immunity against C. albicans. Research on mouse models has also contributed importantly to our current understanding of the regulation of IL-17 production by different cellular sources and its effector functions in distinct tissues. In this review, we highlight recent findings on IL-17-mediated immunity against C. albicans in mouse and man. PMID:26274976

  2. Artificial Immune System Approaches for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  3. Viral manipulation of the host immune response.

    PubMed

    Christiaansen, Allison; Varga, Steven M; Spencer, Juliet V

    2015-10-01

    Viruses are obligate intracellular parasites that require a host for essential machinery to replicate and ultimately be transmitted to new susceptible hosts. At the same time, the immune system has evolved to protect the human body from invasion by viruses and other pathogens. To counter this, viruses have developed an arsenal of strategies to not only avoid immune detection but to actively manipulate host immune responses to create an environment more favorable for infection. Here, we describe recent advances uncovering novel mechanisms by which viruses skew host immune responses through modulation of cytokine and chemokine signaling networks, interference with antigen presentation and T cell responses, and preventing antibody production. PMID:26177523

  4. Innate immune recognition of hepatitis B virus

    PubMed Central

    Liu, Hong-Yan; Zhang, Xiao-Yong

    2015-01-01

    Hepatitis B virus (HBV) is a hepatotropic DNA virus and its infection results in acute or chronic hepatitis. It is reported that the host innate immune system contributes to viral control and liver pathology, while whether and how HBV can trigger the components of innate immunity remains controversial. In recent years, the data accumulated from HBV-infected patients, cellular and animal models have challenged the concept of a stealth virus for HBV infection. This editorial focuses on the current findings about the innate immune recognition to HBV. Such evaluation could help us to understand HBV immunopathogenesis and develop novel immune therapeutic strategies to combat HBV infection. PMID:26413220

  5. Mechanisms of Toll-like Receptor 4 Endocytosis Reveal a Common Immune-Evasion Strategy Used by Pathogenic and Commensal Bacteria.

    PubMed

    Tan, Yunhao; Zanoni, Ivan; Cullen, Thomas W; Goodman, Andrew L; Kagan, Jonathan C

    2015-11-17

    Microbe-induced receptor trafficking has emerged as an essential means to promote innate immune signal transduction. Upon detection of bacterial lipopolysaccharides (LPS), CD14 induces an inflammatory endocytosis pathway that delivers Toll-like receptor 4 (TLR4) to endosomes. Although several regulators of CD14-dependent TLR4 endocytosis have been identified, the cargo-selection mechanism during this process remains unknown. We reveal that, in contrast to classic cytosolic interactions that promoted the endocytosis of transmembrane receptors, TLR4 was selected as cargo for inflammatory endocytosis entirely through extracellular interactions. Mechanistically, the extracellular protein MD-2 bound to and dimerized TLR4 in order to promote this endocytic event. Our analysis of LPS variants from human pathogens and gut commensals revealed a common mechanism by which bacteria prevent inflammatory endocytosis. We suggest that evasion of CD14-dependent endocytosis is an attribute that transcends the concept of pathogenesis and might be a fundamental feature of bacteria that inhabit eukaryotic hosts. PMID:26546281

  6. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses.

    PubMed

    Mutka, Andrew M; Fawley, Stephen; Tsao, Tiffany; Kunkel, Barbara N

    2013-06-01

    Auxin is a key plant growth regulator that also impacts plant-pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole-3-acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector-triggered immunity was active in YUC1-overexpressing plants, and we observed only minor effects on SA levels and SA-mediated responses. Furthermore, a plant line carrying both the YUC1-overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA-mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA-mediated defenses. PMID:23521356

  7. An Extracellular Subtilase Switch for Immune Priming in Arabidopsis

    PubMed Central

    Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity. PMID:23818851

  8. Environmental Defense Department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. Department of Defense (DoD) is among the leading U.S. government agencies working to reduce greenhouse gas emissions and prevent global warming, according to Environmental Protection Agency Administrator Carol Browner. Browner, in a September 25 Pentagon news conference, said that DoD is “a leader” in using energy-efficient technologies in military construction and renovations as well as weapon systems design. She says the Navy and Army have applied such technologies to design new ship bows and produce lighterweight combat vehicles that save fuel.

  9. Nanomaterials for Defense Applications

    NASA Astrophysics Data System (ADS)

    Turaga, Uday; Singh, Vinitkumar; Lalagiri, Muralidhar; Kiekens, Paul; Ramkumar, Seshadri S.

    Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

  10. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to further explore the effects of space flight on cytokines and cytokine-directed immunological function.

  11. Identification of a gap junction communication pathway critical in innate immunity

    E-print Network

    Patel, Suraj Jagdish

    2010-01-01

    The innate immune system is the first line of host defense, and its ability to propagate antimicrobial and inflammatory signals from the cellular microenvironment to the tissue at-large is critical for survival. In a ...

  12. Integrated Circuit Immunity

    NASA Technical Reports Server (NTRS)

    Sketoe, J. G.; Clark, Anthony

    2000-01-01

    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  13. The Immune System in Cancer Prevention, Development and Therapy.

    PubMed

    Candeias, Serge M; Gaipl, Udo S

    2015-01-01

    The immune system plays a pivotal role in the maintenance of the integrity of an organism. Besides the protection against pathogens, it is strongly involved in cancer prevention, development and defense. This review focuses on how the immune system protects against infections and trauma and on its role in cancer development and disease. Focus is set on the interactions of the innate and adaptive immune system and tumors. The role of IFN-? as a pleiotropic cytokine that plays a very important role at the interface of innate and adaptive immune systems in tumor development and induction of anti-tumor immune responses is outlined. Further, immune cells as prognostic and predictive markers of cancer will be discussed. Data are provided that even the brain as immune privileged organ is subjected to immune surveillance and consequently also brain tumors. Immune therapeutic approaches for glioblastoma multiforme, the most frequent and malignant brain tumor, based on vaccination with dendritic cells are outlined and application of hyperthermia in form of magnetic nanoparticles is discussed. We conclude that the immune system and developing tumors are intimately intertwined. Anti-tumor immune responses can be prominently boosted by multimodal therapies aiming on the one hand to induce immunogenic tumor cell death forms and on the other hand to actively counteract the immune suppressive microenvironment based on the tumor itself. PMID:26299661

  14. Immune regulation of bone metastasis

    PubMed Central

    Capietto, Aude-Hélène; Faccio, Roberta

    2014-01-01

    Metastases to bone occur in about 70% of patients with metastatic prostate and breast cancers. Unfortunately, bone metastases result in significant morbidity and mortality and treatment options are limited. Thus, significant effort has focused on understanding the mechanisms that drive tumor dissemination to bone. Bone metastases are typically characterized by a self-perpetuating ‘vicious' cycle wherein tumor cells and bone-resorbing cells (osteoclasts) are locked in a cycle that leads to osteoclast-driven bone destruction and the release of bone-stored factors that in turn stimulate tumor cell proliferation and survival. To break this ‘vicious' cycle, potent antiresorptive agents such as zoledronic acid (ZOL) have been used. However, in the clinical setting, ZOL failed to improve the overall survival of cancer patients even though it inhibited osteoclast resorptive activity. Thus, other cells in addition to osteoclasts are likely involved in modulating tumor growth in the bone. The immune system has the ability to eliminate tumor cells. Nevertheless, tumor cells can acquire the ability to escape immune control. Our recent observations indicated that a decline in the ability of the immune cells to recognize and kill the tumor drives tumor dissemination to bone even when osteoclasts are inhibited by potent antiresorptive agents. This review focuses on the antitumor and protumor effects of various immune cell populations involved in the bone metastatic process. We also discuss strategies to enhance antitumor immune responses and bypass cancer immune resistance. PMID:25512853

  15. Immune cell promotion of metastasis

    PubMed Central

    Kitamura, Takanori; Qian, Bin-Zhi; Pollard, Jeffrey W.

    2015-01-01

    Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Data from mouse models suggest that the recruitment of immunosuppressive cells to tumours protects metastatic cancer cells from surveillance by killer cells, which nullifies the effects of immunotherapy and thus establishes metastasis. Furthermore, in most cases, tumour-infiltrating immune cells differentiate into cells that promote each step of the metastatic cascade and thus are novel targets for therapy. In this Review, we describe how tumour-infiltrating immune cells contribute to the metastatic cascade and we discuss potential therapeutic strategies to target these cells. PMID:25614318

  16. Chromatin versus pathogens: the function of epigenetics in plant immunity

    PubMed Central

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed. PMID:26388882

  17. Control Processes and Defense Mechanisms

    PubMed Central

    HOROWITZ, MARDI; COOPER, STEVEN; FRIDHANDLER, BRAM; PERRY, J. CHRISTOPHER; BOND, MICHAEL; VAILLANT, GEORGE

    1992-01-01

    Defense-mechanism theory and control-process theory are related psychodynamic approaches to explaining and classifying how people ward off emotional upsets. Although both theories explain defensive maneuvers in the same motivational terms, each defines categories different1y. Classic categories define defense mechanisms at a relatively macroscopic level, whereas control-process theory aims at relatively microgenetic analysis of how cognitive maneuvers—involving what is thought, how it is thought, and how it is organized—may generate defensive states. The theories are not contradictory, but they are focused on different levels of observation; it is useful to compare how these classifications are applied to specific case material. PMID:22700114

  18. Maintaining the Best Defense.

    ERIC Educational Resources Information Center

    Ring, David S.

    1997-01-01

    Explores school bathroom vandalism prevention strategies and tips in improving sanitary conditions. Ways of removing temptation from primary bathroom targets are highlighted, including adding warm-air hand dryers and sensor faucets. (GR)

  19. Immune Computation Robin Callard

    E-print Network

    Peterson, James K

    Immune Computation Robin Callard Institute of Child Health University College London ICARIS 2004 LYMPH NODE DC Cellular immunity Antibody response Th CD4 CD4 The Immune System CD8CD8 Cytotoxic T cells Immune System #12;Antigen Recognition in the Adaptive Immune System B Cell receptors (BCR) T Cell

  20. Time course and metabolic costs of a humoral immune response in the little ringed plover Charadrius dubius.

    PubMed

    Abad-Gómez, José M; Gutiérrez, Jorge S; Villegas, Auxiliadora; Sánchez-Guzmán, Juan M; Navedo, Juan G; Masero, José A

    2013-01-01

    Despite host defense against parasites and pathogens being considered a costly life-history trait, relatively few studies have assessed the energetic cost of immune responsiveness. Knowledge of such energetic costs may help to understand the mechanisms by which trade-offs with other demanding activities occur. The time course and associated metabolic costs of mounting a primary and secondary humoral immune response was examined in little ringed plovers Charadrius dubius challenged with sheep red blood cells. As was expected, the injection with this antigen increased the production of specific antibodies significantly, with peaks 6 d postinjection in both primary and secondary responses. At the peak of secondary antibody response, the antibody production was 29% higher than that observed during the primary response, but the difference was nonsignificant. Mounting the primary response did not significantly increase the resting metabolic rate (RMR) of birds, whereas the secondary response did by 21%, suggesting that the latter was more costly in terms of RMR. In spite of the fact that the primary response did not involve an increase in RMR, birds significantly decreased their body mass. This could imply an internal energy reallocation strategy to cope with the induced immune challenge. Last, we found that RMR and antibody production peaks were not coupled, which could help to conciliate the variable results of previous studies. Collectively, the results of this study support the hypothesis that humoral immunity, especially the secondary response, entails energetic costs that may trade-off with other physiological activities. PMID:23629885

  1. Efficiency of Dendritic Cell Vaccination against B16 Melanoma Depends on the Immunization Route

    PubMed Central

    Edele, Fanny; Dudda, Jan C.; Bachtanian, Eva; Jakob, Thilo; Pircher, Hanspeter; Martin, Stefan F.

    2014-01-01

    Dendritic cells (DC) presenting tumor antigens are crucial to induce potent T cell-mediated anti-tumor immune responses. Therefore DC-based cancer vaccines have been established for therapy, however clinical outcomes are often poor and need improvement. Using a mouse model of B16 melanoma, we found that the route of preventive DC vaccination critically determined tumor control. While repeated DC vaccination did not show an impact of the route of DC application on the prevention of tumor growth, a single DC vaccination revealed that both the imprinting of skin homing receptors and an enhanced proliferation state of effector T cells was seen only upon intracutaneous but not intravenous or intraperitoneal immunization. Tumor growth was prevented only by intracutaneous DC vaccination. Our results indicate that under suboptimal conditions the route of DC vaccination crucially determines the efficiency of tumor defense. DC-based strategies for immunotherapy of cancer should take into account the immunization route in order to optimize tissue targeting of tumor antigen specific T cells. PMID:25121970

  2. Breaking the Cycle of Office Referrals and Suspensions: Defensive Management

    ERIC Educational Resources Information Center

    Fields, Barry

    2004-01-01

    This paper focuses on a strategy--Defensive Management--designed to assist teachers to better manage non-compliance and defiance in the classroom, with the ultimate goal of reducing disciplinary referrals and flow-on suspensions and exclusions from school. Non-compliance and defiance are behaviours that teachers find particularly challenging and,…

  3. The Why, What, and How of the Strategic Defense Initiative.

    ERIC Educational Resources Information Center

    Rankine, Jr., Robert R.

    1985-01-01

    Addresses the strategy and policy implications of effective ballistic missile defense and the scope/priorities of a research program underway to determine its technical feasibility. Several types of "smart bullets" are described, along with sensing devices for space, air, and ground. Procedures established to centrally plan/control the program are…

  4. Immune thrombocytopenia.

    PubMed

    Maher, George M

    2014-10-01

    Immune thrombocytopenia (ITP) in children is a relatively uncommon and generally benign condition presenting as abrupt onset of bruising, petechiae and thrombocytopenia in an otherwise healthy child due to production of anti-platelet autoantibodies. Diagnosis is largely clinical and laboratory investigation should be kept to a minimum. Indications for treatment have not been standardized and include bleeding, parental anxiety and quality of life. Multiple treatments are available that have been proven to increase the platelet count; the most commonly employed include IVIG, steroids and WinRho (anti-D). Intracranial hemorrhage is the most serious potential complication but is extremely rare and splenectomy is reserved for chronically symptomatic patients who have not responded to other modalities. Identification of molecular targets may be a promising avenue for future research. PMID:25423768

  5. Immunization and Pregnancy

    MedlinePLUS

    Immunization & Pregnancy Vaccines help keep apregnant woman and her growing family healthy. Vaccine Before pregnancy Hepatitis A ... 232-4636) • English or Spanish National Center for Immunization and Respiratory Diseases Immunization Services Division CS238938B 03/ ...

  6. Your Child's Immunizations

    MedlinePLUS

    ... Deal With Bullies Pregnant? What to Expect Your Child's Immunizations KidsHealth > Parents > Infections > Immunizations > Your Child's Immunizations ... receives. Take Our Quiz! Continue The Vaccines Your Child Needs The following vaccinations and schedules are recommended ...

  7. Immune System and Disorders

    MedlinePLUS

    ... substances that are usually not harmful Immune deficiency diseases - disorders in which the immune system is missing one or more of its parts Autoimmune diseases - diseases causing your immune system to attack your ...

  8. Childhood Immunization Schedule

    MedlinePLUS

    ... Recommendations Why Immunize? Vaccines: The Basics Instant Childhood Immunization Schedule Recommend on Facebook Tweet Share Compartir Get ... date. See Disclaimer for additional details. Based on Immunization Schedule for Children 0 through 6 Years of ...

  9. Immunization Schedules for Adults

    MedlinePLUS

    ... submit" name="commit" type="submit" value="Submit" /> Immunization Schedules for Adults in Easy-to-read Formats ... previous immunizations. View or Print a Schedule Recommended Immunizations for Adults (19 Years and Older) by Age ...

  10. Innate immunity, coagulation and placenta-related adverse pregnancy outcomes

    PubMed Central

    Li, Min; Huang, S. Joseph

    2009-01-01

    Maternal immunity undergoes subtle adjustment in order to tolerate the semi-allogeneic embryo and maintain the host defense against potential pathogens. Concomitantly, coagulation systems change from an anti-coagulant state to a pro-coagulant state to meet the hemostatic challenge of placentation and delivery. Innate immunity and blood coagulation systems are the first line of defense to protect a host against exogenous challenges, including alloantigens and mechanical insults, and preserve the integrity of an organism. The interactions between coagulation and immune systems have been extensively studied. Immune cells play a pivotal role in the initiation of the coagulation cascade, whereas coagulation proteases display substantial immunomodulatory effects. Upon exogenous challenges, the immune and coagulation systems are capable of potentiating each other leading to a vicious cycle. Natural killer (NK) cells, macrophages (M?s) and dendritic cells (DCs) are three major innate immune cells that have been demonstrated to play essential roles in early pregnancy. However, immune maladaptation and hemostatic imbalance have been suggested to be responsible for adverse pregnant outcomes, such as preeclampsia (PE), miscarriage, recurrent spontaneous abortion (RSA) and intrauterine growth restriction (IUGR). In this review, we will summarize the mutual regulation between blood coagulation and innate immune systems as well as their roles in the maintenance of normal pregnancy and in the pathogenesis of adverse pregnancy outcomes. PMID:19683334

  11. The Problem of Defensive Medicine

    ERIC Educational Resources Information Center

    Barondess, Jeremiah A.; Tancredi, Laurence R.

    1978-01-01

    Defensive medicine (the use of diagnostic and end-treatment measures explicitly for the purposes of averting malpractice suits) is frequently cited as one of the least desirable effects of the current rise in medical litigation. It is claimed that defensive medicine is responsible for the rising cost of health care and the exposure of patients to…

  12. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens.

    PubMed

    Knodler, Leigh A; Crowley, Shauna M; Sham, Ho Pan; Yang, Hyungjun; Wrande, Marie; Ma, Caixia; Ernst, Robert K; Steele-Mortimer, Olivia; Celli, Jean; Vallance, Bruce A

    2014-08-13

    Inflammasome-mediated host defenses have been extensively studied in innate immune cells. Whether inflammasomes function for innate defense in intestinal epithelial cells, which represent the first line of defense against enteric pathogens, remains unknown. We observed enhanced Salmonella enterica serovar Typhimurium colonization in the intestinal epithelium of caspase-11-deficient mice, but not at systemic sites. In polarized epithelial monolayers, siRNA-mediated depletion of caspase-4, a human ortholog of caspase-11, also led to increased bacterial colonization. Decreased rates of pyroptotic cell death, a host defense mechanism that extrudes S. Typhimurium-infected cells from the polarized epithelium, accounted for increased pathogen burdens. The caspase-4 inflammasome also governs activation of the proinflammatory cytokine, interleukin (IL)-18, in response to intracellular (S. Typhimurium) and extracellular (enteropathogenic Escherichia coli) enteric pathogens, via intracellular LPS sensing. Therefore, an epithelial cell-intrinsic noncanonical inflammasome plays a critical role in antimicrobial defense at the intestinal mucosal surface. PMID:25121752

  13. Defensive Pessimism and Optimism Correlates of Adolescent Future Orientation: A Domain-Specific Analysis.

    ERIC Educational Resources Information Center

    Seginer, Rachel

    2000-01-01

    Examined academic and social defensive pessimism and optimism strategies and adolescents' future orientation in the domains of education and military service. Found that academic strategies were significantly linked to prospective education components and social strategies to military service components. Found that investment in prospective…

  14. Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice.

    PubMed

    Ren, Zhihong; Na, Lixin; Xu, Yanmei; Rozati, Mitra; Wang, Junpeng; Xu, Jianguo; Sun, Changhao; Vidal, Karine; Wu, Dayong; Meydani, Simin Nikbin

    2012-08-01

    Despite the availability of vaccines, influenza is a considerable public health problem, which emphasizes the need for development of additional strategies to enhance host defense against influenza. Wolfberry, or goji berry, long used as a medicinal food in China, has recently been shown to improve immune response in mice. Because immune response plays a key role in the body's defense against pathogens, we hypothesized that wolfberry may increase host resistance to influenza infection by enhancing immune response. To test this hypothesis, we fed adult mice (4 mo old) a milk-based preparation of wolfberry called Lacto-Wolfberry (LWB) for 4 wk and then infected them with influenza A/Puerto Rico/8/34 (H1N1) while continuing the same experimental diets. Viral titer, lung pathology, and immune response were determined at different time points postinfection. LWB supplementation prevented infection-induced weight loss and reduced lung pathology on days 6 and 9 postinfection (P < 0.05). LWB-fed mice showed overall, significantly higher concanavalin A-induced IL-2 production (P < 0.05). Furthermore, we found positive correlations between weight loss and lung viral titer, pathology score, TNF?, and IL-6 production as well as negative correlations with T cell proliferation and IL-2 production (all P ? 0.05). These results indicate that LWB supplementation can attenuate symptoms and pathology of influenza infection by decreasing inflammatory cytokines in lungs while enhancing systemic T cell-mediated function as measured by their ability to produce IL-2. PMID:22739381

  15. 76 FR 72391 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ...Secretary [Docket ID DOD-2011-OS-0055] Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Revised...

  16. 76 FR 53119 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ...Secretary [Docket ID: DOD-2011-OS-0055] Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Comment...

  17. 78 FR 78163 - Eligibility of the Gulf Cooperation Council To Receive Defense Articles and Defense Services...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ...Eligibility of the Gulf Cooperation Council To Receive Defense Articles and Defense Services Under the Foreign Assistance Act of 1961...Control Act, I hereby find that the furnishing of defense articles and defense services to the Gulf Cooperation Council will...

  18. 75 FR 52732 - Renewal of Department of Defense Federal Advisory Committee; Missile Defense Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ...of Defense Federal Advisory Committee; Missile Defense Advisory Committee AGENCY: Department...that it is renewing the charter for the Missile Defense Advisory Committee (hereafter...Technology & Logistics and the Director, Missile Defense Agency, independent advice...

  19. 78 FR 69392 - Defense Advisory Committee on Military Personnel Testing; Notice of Federal Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...Defense Advisory Committee on Military Personnel Testing. The purpose...developing computerized tests for military enlistment screening. DATES...developing computerized tests for military enlistment screening. Agenda...timelines, test development strategies, and planned research...

  20. From ''Star Wars'' to strategic defensive initiative. European perceptions and assessments

    SciTech Connect

    Brauch, H.G.

    1986-01-01

    This book examines the Strategic Defense Initiative (SDI) debate. The implications of SDI for the Wests' nuclear strategy are assessed and the implications of SDI for treaties and for arms control are discussed.

  1. Dissecting immunity by germline mutagenesis

    PubMed Central

    Choi, Onjee; Rutschmann, Sophie

    2012-01-01

    The last decades have seen numerous approaches being used to decipher biological phenomena, notably the strategies we employ to defend ourselves against pathogenic attacks. From microarrays to genetics to computing technologies, all have supported a better but not yet comprehensive understanding of the pathways regulating our immune system. Limitations are notably exemplified by cases of immune deficiencies in humans that often result in high susceptibility to infections or even death, without the genetic cause being evident. To provide further insight into the mechanisms by which pathogen detection and eradication occur, several in vivo strategies can be used. The current review focuses on one of them, namely germline mutagenesis in the mouse. After describing the main technical aspects of this forward genetic approach, we will discuss particular germline mutants that have all been instrumental in deciphering innate or adaptive immune responses. Mutations in previously uncharacterized genes in the mouse, like Unc93B or Themis, have demonstrated the impartiality of forward genetics and led to the identification of new crucial immunity actors. Some mutants, like PanR1, have informed us on particular protein domains and their specific functions. Finally, certain mutations identified by this non-hypothesis-driven method have revealed previously unknown gene functions, as recently illustrated by memi, which links a particular nucleoside salvage enzyme to cell proliferation and apoptosis. PMID:22681445

  2. Innate immunity and biodefence vaccines.

    PubMed

    Valiante, Nicholas M; O'Hagan, Derek T; Ulmer, Jeffrey B

    2003-11-01

    Host defence in vertebrates is achieved by the integration of two distinct arms of the immune system: the innate and adaptive responses. The innate response acts early after infection (within minutes), detecting and responding to broad cues from invading pathogens. The adaptive response takes time (days to weeks) to become effective, but provides the fine antigenic specificity required for complete elimination of the pathogen and the generation of immunologic memory. Antigen-independent recognition of pathogens by the innate immune system leads to the rapid mobilization of immune effector and regulatory mechanisms that provide the host with three critical advantages: (i) initiating the immune response (both innate and adaptive) and providing the inflammatory and co-stimulatory context for antigen recognition; (ii) mounting a first line of defence, thereby holding the pathogen in check during the maturation of the adaptive response; and (iii) steering the adaptive immune system towards the cellular or humoral responses most effective against the particular infectious agent. The quest for safer and more effective vaccines and immune-based therapies has taken on a sudden urgency with the increased threat of bioterrorism. Only a handful of vaccines covering a small proportion of potential biowarfare agents are available for human use (e.g. anthrax and small pox) and these suffer from poor safety profiles. Therefore, next generation biodefence-related vaccines and therapies with improved safety and the capacity to induce more rapid, more potent and broader protection are needed. To this end, strategies to target both the innate and adaptive immune systems will be required. PMID:14531891

  3. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection

    PubMed Central

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M.; Casadevall, Arturo; Flynn, JoAnne

    2014-01-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. PMID:25458990

  4. Evaluating Moving Target Defense with PLADD

    SciTech Connect

    Jones, Stephen T.; Outkin, Alexander V.; Gearhart, Jared Lee; Hobbs, Jacob Aaron; Siirola, John Daniel; Phillips, Cynthia A.; Verzi, Stephen Joseph; Tauritz, Daniel; Mulder, Samuel A.; Naugle, Asmeret Bier

    2015-09-15

    This project evaluates the effectiveness of moving target defense (MTD) techniques using a new game we have designed, called PLADD, inspired by the game FlipIt [28]. PLADD extends FlipIt by incorporating what we believe are key MTD concepts. We have analyzed PLADD and proven the existence of a defender strategy that pushes a rational attacker out of the game, demonstrated how limited the strategies available to an attacker are in PLADD, and derived analytic expressions for the expected utility of the game’s players in multiple game variants. We have created an algorithm for finding a defender’s optimal PLADD strategy. We show that in the special case of achieving deterrence in PLADD, MTD is not always cost effective and that its optimal deployment may shift abruptly from not using MTD at all to using it as aggressively as possible. We believe our effort provides basic, fundamental insights into the use of MTD, but conclude that a truly practical analysis requires model selection and calibration based on real scenarios and empirical data. We propose several avenues for further inquiry, including (1) agents with adaptive capabilities more reflective of real world adversaries, (2) the presence of multiple, heterogeneous adversaries, (3) computational game theory-based approaches such as coevolution to allow scaling to the real world beyond the limitations of analytical analysis and classical game theory, (4) mapping the game to real-world scenarios, (5) taking player risk into account when designing a strategy (in addition to expected payoff), (6) improving our understanding of the dynamic nature of MTD-inspired games by using a martingale representation, defensive forecasting, and techniques from signal processing, and (7) using adversarial games to develop inherently resilient cyber systems.

  5. Impact of methamphetamine on infection and immunity

    PubMed Central

    Salamanca, Sergio A.; Sorrentino, Edra E.; Nosanchuk, Joshua D.; Martinez, Luis R.

    2015-01-01

    The prevalence of methamphetamine (METH) use is estimated at ~35 million people worldwide, with over 10 million users in the United States. METH use elicits a myriad of social consequences and the behavioral impact of the drug is well understood. However, new information has recently emerged detailing the devastating effects of METH on host immunity, increasing the acquisition of diverse pathogens and exacerbating the severity of disease. These outcomes manifest as modifications in protective physical and chemical defenses, pro-inflammatory responses, and the induction of oxidative stress pathways. Through these processes, significant neurotoxicities arise, and, as such, chronic abusers with these conditions are at a higher risk for heightened consequences. METH use also influences the adaptive immune response, permitting the unrestrained development of opportunistic diseases. In this review, we discuss recent literature addressing the impact of METH on infection and immunity, and identify areas ripe for future investigation. PMID:25628526

  6. The Three Bacterial Lines of Defense against Antimicrobial Agents.

    PubMed

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  7. The Three Bacterial Lines of Defense against Antimicrobial Agents

    PubMed Central

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  8. Enhanced innate immune responses in a brood parasitic cowbird species: Degranulation and oxidative burst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Design and functionality of the immune system may play a key role in the success of invasive species. We examined the relative effectiveness of functional innate immune defenses in the brown-headed cowbird (Molothrus ater, Icteridae), an invasive avian species that has shown unusual resistance to i...

  9. Obligate brood parasites show more functionally effective innate immune responses: An eco-immunological hypothesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Design and functionality of the immune system may play a key role in the success of invasive species. We examined the relative effectiveness of functional innate immune defenses in the brown-headed cowbird (Molothrus ater, Icteridae), an invasive avian species that has shown unusual resistance to i...

  10. Isolation of a Cyclic Depsipetide, Aspergillicin F, and Synthesis of Aspergillicins with Innate Immune-Modulating Activity.

    PubMed

    Kikuchi, Haruhisa; Hoshikawa, Tsuyoshi; Fujimura, Shimpei; Sakata, Noriaki; Kurata, Shoichiro; Katou, Yasuhiro; Oshima, Yoshiteru

    2015-08-28

    Innate immunity is the front line of self-defense against microbial infection. After searching for natural compounds that regulate innate immunity using an ex vivo Drosophila culture system, we identified a new cyclic depsipeptide, aspergillicin F, from the fungus Aspergillus sp., as an innate immune suppressor. The total synthesis and biological evaluation of the aspergillicin family, including aspergillicin F, were performed, revealing that slight structural differences in the side chains of amino acid residues alter innate immunity-regulating activity. PMID:26273902

  11. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity

    PubMed Central

    Cassat, James E.

    2013-01-01

    Transition metals are essential nutrients to virtually all forms of life, including bacterial pathogens. In Staphylococcus aureus, metal ions participate in diverse biochemical processes such as metabolism, DNA synthesis, regulation of virulence factors, and defense against oxidative stress. As an innate immune response to bacterial infection, vertebrate hosts sequester transition metals in a process that has been termed “nutritional immunity.” To successfully infect vertebrates, S. aureus must overcome host sequestration of these critical nutrients. The objective of this review is to outline the current knowledge of staphylococcal metal ion acquisition systems, as well as to define the host mechanisms of nutritional immunity during staphylococcal infection. PMID:22048835

  12. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance

    PubMed Central

    Manosalva, Patricia; Manohar, Murli; von Reuss, Stephan H.; Chen, Shiyan; Koch, Aline; Kaplan, Fatma; Choe, Andrea; Micikas, Robert J.; Wang, Xiaohong; Kogel, Karl-Heinz; Sternberg, Paul W.; Williamson, Valerie M.; Schroeder, Frank C.; Klessig, Daniel F.

    2015-01-01

    Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture. PMID:26203561

  13. The bacteriome-mycobiome interaction and antifungal host defense.

    PubMed

    Oever, Jaap Ten; Netea, Mihai G

    2014-11-01

    Large communities of microorganisms, collectively termed the microbiome, inhabit our body surfaces. With the advent of next-generation sequencing, the diversity and abundance of these communities are being unravelled. Besides an imporant role in metabolic processes, the microbiome is essential for proper functioning of our immune system, including the defense against fungi. Despite the progress of the past years, studies aimed at characterizing our fungal colonizers (the mycobiome) are limited; nevertheless fungi are important players of the microbiome, either as a cofactor in disease or as potential pathogens. In this review, we describe the role of the bacterial microbiome in antifungal host defense. On the one hand, bacteria provide colonization resistance to fungi, inhibit Candida virulence by preventing yeast-hyphal transition and contribute to epithelial integrity, all factors are important for the pathogenesis of invasive fungal disease. On the other hand, several bacterial species modulate mucosal (antifungal) immune responses. Murine studies demonstrate important effects of the microbiome on the antifungal responses of T-helper 17 cells, regulatory T cells and innate lymphoid cells. Inferred from these studies, perturbation of the healthy microbiome should be avoided and microbiome manipulation and interventions based on bacteria-derived pathways involved in immunomodulation are attractive options for modulating antifungal host defense. PMID:25256886

  14. ImmunoScenarios: A Game for the Immune System.

    ERIC Educational Resources Information Center

    Taylor, Mark F.; Jackson, Sally W.

    1996-01-01

    Describes a board game, ImmunoScenarios, which was developed to reinforce the ideas about the immune system discussed in lecture classes. Emphasizes important characteristics of the body's specific defense system including specificity, cooperation among various cells, and memory. Includes directions for playing, student handouts, and scenarios.…

  15. Resin collection and social immunity in honey bees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined if the use of resins, complex plant secretions with diverse antimicrobial properties, acts as a colony-level immune defense by honey bees. Colonies were enriched with extracts of Brazilian or Minnesotan propolis (a bee mixture of resins and wax) or were left as controls. We measured ge...

  16. Our Immune System

    MedlinePLUS

    Our Immune System A story for children with primary immunodeficiency diseases Written by Sara LeBien IMMUNE DEFICIENCY FOUNDATION A note ... who are immune deficient to better understand their immune system. What is a “ B-cell, ” a “ T-cell, ” ...

  17. The modulation of immunity

    SciTech Connect

    Mitchell, M.S.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: Modulation of Immunity by Thymus-Derived Lymphocytes; Modulation of Immunity by Macrophages; Modulation of Immunity by Soluble Mediators; Viruses and the Immune Response; and Methanol Extraction Residue: Effects and Mechanisms of Action.

  18. Microscale Immune Studies Laboratory.

    SciTech Connect

    Poschet, Jens Fredrich; Carroll-Portillo, Amanda; Wu, Meiye; Manginell, Ronald Paul; Herr, Amy Elizabeth; Martino, Anthony A.; Perroud, Thomas D.; Branda, Catherine; Srivastava, Nimisha; Sinclair, Michael B.; Moorman, Matthew Wallace; Apblett, Christopher Alan; Sale, Kenneth L.; James, Conrad D.; Carles, Elizabeth L.; Lidke, Diane S.; Van Benthem, Mark Hilary; Rebeil, Roberto; Kaiser, Julie; Seaman, William; Rempe, Susan; Brozik, Susan Marie; Jones, Howland D. T.; Gemperline, Paul; Throckmorton, Daniel J.; Misra, Milind; Murton, Jaclyn K.; Carson, Bryan D.; Zhang, Zhaoduo; Plimpton, Steven James; Renzi, Ronald F.; Lane, Todd W.; Ndiaye-Dulac, Elsa; Singh, Anup K.; Haaland, David Michael; Faulon, Jean-Loup Michel; Davis, Ryan W.; Ricken, James Bryce; Branda, Steven S.; Patel, Kamlesh D.; Joo, Jaewook; Kubiak, Glenn D.; Brennan, James S.; Martin, Shawn Bryan; Brasier, Allan

    2009-01-01

    The overarching goal is to develop novel technologies to elucidate molecular mechanisms of the innate immune response in host cells to pathogens such as bacteria and viruses including the mechanisms used by pathogens to subvert/suppress/obfuscate the immune response to cause their harmful effects. Innate immunity is our first line of defense against a pathogenic bacteria or virus. A comprehensive 'system-level' understanding of innate immunity pathways such as toll-like receptor (TLR) pathways is the key to deciphering mechanisms of pathogenesis and can lead to improvements in early diagnosis or developing improved therapeutics. Current methods for studying signaling focus on measurements of a limited number of components in a pathway and hence, fail to provide a systems-level understanding. We have developed a systems biology approach to decipher TLR4 pathways in macrophage cell lines in response to exposure to pathogenic bacteria and their lipopolysaccharide (LPS). Our approach integrates biological reagents, a microfluidic cell handling and analysis platform, high-resolution imaging and computational modeling to provide spatially- and temporally-resolved measurement of TLR-network components. The Integrated microfluidic platform is capable of imaging single cells to obtain dynamic translocation data as well as high-throughput acquisition of quantitative protein expression and phosphorylation information of selected cell populations. The platform consists of multiple modules such as single-cell array, cell sorter, and phosphoflow chip to provide confocal imaging, cell sorting, flow cytomtery and phosphorylation assays. The single-cell array module contains fluidic constrictions designed to trap and hold single host cells. Up to 100 single cells can be trapped and monitored for hours, enabling detailed statistically-significant measurements. The module was used to analyze translocation behavior of transcription factor NF-kB in macrophages upon activation by E. coli and Y. pestis LPS. The chip revealed an oscillation pattern in translocation of NF-kB indicating the presence of a negative feedback loop involving IKK. Activation of NF-kB is preceded by phosphorylation of many kinases and to correlate the kinase activity with translocation, we performed flow cytometric assays in the PhosphoChip module. Phopshorylated forms of p38. ERK and RelA were measured in macrophage cells challenged with LPS and showed a dynamic response where phosphorylation increases with time reaching a maximum at {approx}30-60min. To allow further downstream analysis on selected cells, we also implemented an optical-trapping based sorting of cells. This has allowed us to sort macrophages infected with bacteria from uninfected cells with the goal of obtaining data only on the infected (the desired) population. The various microfluidic chip modules and the accessories required to operate them such as pumps, heaters, electronic control and optical detectors are being assembled in a bench-top, semi-automated device. The data generated is being utilized to refine existing TLR pathway model by adding kinetic rate constants and concentration information. The microfluidic platform allows high-resolution imaging as well as quantitative proteomic measurements with high sensitivity (

  19. Innate Immune Regulation by STAT-mediated Transcriptional Mechanisms

    PubMed Central

    Li, Haiyan S.; Watowich, Stephanie S.

    2014-01-01

    Summary The term innate immunity typically refers to a quick but nonspecific host defense response against invading pathogens. The innate immune system comprises particular immune cell populations, epithelial barriers, and numerous secretory mediators including cytokines, chemokines, and defense peptides. Innate immune cells are also now recognized to play important contributing roles in cancer and pathological inflammatory conditions. Innate immunity relies on rapid signal transduction elicited upon pathogen recognition via pattern recognition receptors (PRRs) and cell:cell communication conducted by soluble mediators, including cytokines. A majority of cytokines involved in innate immune signaling use a molecular cascade encompassing receptor-associated Jak protein tyrosine kinases and STAT (signal transducer and activator of transcription) transcriptional regulators. Here, we focus on roles for STAT proteins in three major innate immune subsets: neutrophils, macrophages, and dendritic cells (DCs). While knowledge in this area is only now emerging, understanding the molecular regulation of these cell types is necessary for developing new approaches to treat human disorders such as inflammatory conditions, autoimmunity, and cancer. PMID:25123278

  20. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. I...

  1. Collaborative Attack vs. Collaborative Defense

    NASA Astrophysics Data System (ADS)

    Xu, Shouhuai

    We have witnessed many attacks in the cyberspace. However, most attacks are launched by individual attackers even though an attack may involve many compromised computers. In this paper, we envision what we believe to be the next generation cyber attacks — collaborative attacks. Collaborative attacks can be launched by multiple attackers (i.e., human attackers or criminal organizations), each of which may have some specialized expertise. This is possible because cyber attacks can become very sophisticated and specialization of attack expertise naturally becomes relevant. To counter collaborative attacks, we might need collaborative defense because each “chain” in a collaborative attack may be only adequately dealt with by a different defender. In order to understand collaborative attack and collaborative defense, we present a high-level abstracted framework for evaluating the effectiveness of collaborative defense against collaborative attacks. As a first step towards realizing and instantiating the framework, we explore a characterization of collaborative attacks and collaborative defense from the relevant perspectives.

  2. Strategic Defense Initiative - an overview

    SciTech Connect

    Abrahamson, J.A.

    1985-01-01

    A general framework for developing the concept and implementing options for strategic ballistic missile defense systems is emerging. The objective of the Strategic Defense Initiative (SDI) program is to conduct research on those technologies for defensive system which could intercept ballistic missiles after they have been launched and prevent them from hitting their targets. Its goal is to acquire the technical knowledge as a basis for a later decision on deployment, not a program for deployment or star wars. Abrahamson reviews the basic technological questions facing researchers, outlines the multi-layered defense possibilities and summarizes the status of technology to date. He argues for a continuity of resources to conduct the program. 4 figures.

  3. DEFENSE MEDICAL SURVEILLANCE SYSTEM (DMSS)

    EPA Science Inventory

    AMSA operates the Defense Medical Surveillance System (DMSS), an executive information system whose database contains up-to-date and historical data on diseases and medical events (e.g., hospitalizations, ambulatory visits, reportable diseases, HIV tests, acute respiratory diseas...

  4. Toward directed energy planetary defense

    E-print Network

    Lubin, Philip

    Asteroids and comets that cross Earth’s orbit pose a credible risk of impact, with potentially severe disturbances to Earth and society. We propose an orbital planetary defense system capable of heating the surface of ...

  5. Infection, immunity and the neuroendocrine response.

    PubMed

    Borghetti, Paolo; Saleri, Roberta; Mocchegiani, Eugenio; Corradi, Attilio; Martelli, Paolo

    2009-08-15

    The Central Nervous (CNS) and Immune Systems (IS) are the two major adaptive systems which respond rapidly to numerous challenges that are able to compromise health. The defensive response strictly linking innate to acquired immunity, works continuously to limit pathogen invasion and damage. The efficiency of the innate response is crucial for survival and for an optimum priming of acquired immunity. During infection, the immune response is modulated by an integrated neuro-immune network which potentiates innate immunity, controls potential harmful effects and also addresses metabolic and nutritional modifications supporting immune function. In the last decade much knowledge has been gained on the molecular signals that orchestrate this integrated adaptive response, with focus on the systemic mediators which have a crucial role in driving and controlling an efficient protective response. These mediators are also able to signal alterations and control pathway dysfunctions which may be involved in the persistence and/or overexpression of inflammation that may lead to tissue damage and to a negative metabolic impact, causing retarded growth. This review aims to describe some important signalling pathways which drive bidirectional communication between the Immune and Nervous Systems during infection. Particular emphasis is placed on pro-inflammatory cytokines, immunomodulator hormones such as Glucocorticoids (GCs), Growth hormone (GH), Insulin-like Growth Factor-1 (IGF-1), and Leptin, as well as nutritional factors such as Zinc (Zn). Finally, the review includes up-to-date information on this neuroimmune cross-talk in domestic animals. Data in domestic animal species are still limited, but there are several exciting areas of research, like the potential interaction pathways between mediators (i.e. cytokine-HPA regulation, IL-6-GCS-Zn, cytokines-GH/IGF-1, IL-6-GH-Leptin and thymus activity) that are or could be promising topics of future research in veterinary medicine. PMID:19261335

  6. Innate and intrinsic antiviral immunity in skin.

    PubMed

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-?B) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1? and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. PMID:24928148

  7. INFECTION AND IMMUNITY, Oct. 2005, p. 67716781 Vol. 73, No. 10 0019-9567/05/$08.00 0 doi:10.1128/IAI.73.10.67716781.2005

    E-print Network

    Nizet, Victor

    INFECTION AND IMMUNITY, Oct. 2005, p. 6771­6781 Vol. 73, No. 10 0019-9567/05/$08.00 0 doi:10 Received 25 April 2005/Returned for modification 17 May 2005/Accepted 2 June 2005 Immune defense by epithelial and immune cells. Resident epithelial cells, such as keratinocytes, produce numerous peptides

  8. Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra

    2008-01-01

    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.

  9. Interactions between behavioral and life-history trade-offs in the evolution of integrated predator-defense plasticity.

    PubMed

    Cressler, Clayton E; King, Aaron A; Werner, Earl E

    2010-09-01

    Inducible defense, which is phenotypic plasticity in traits that affect predation risk, is taxonomically widespread and has been shown to have important ecological consequences. However, it remains unclear what factors promote the evolution of qualitatively different defense strategies and when evolution should favor strategies that involve modification of multiple traits. Previous theory suggests that individual-level trade-offs play a key role in defense evolution, but most of this work has assumed that trade-offs are independent. Here we show that the shape of the behavioral trade-off between foraging gain and predation risk determines the interaction between this trade-off and the life-history trade-off between growth and reproduction. The interaction between these fundamental trade-offs determines the optimal investment into behavioral and life-history defenses. Highly nonlinear foraging-predation risk trade-offs favor the evolution of behavioral defenses, while linear trade-offs favor life-history defenses. Between these extremes, integrated defense responses are optimal, with defense expression strongly depending on ontogeny. We suggest that these predictions may be general across qualitatively different defenses. Our results have important implications for theory on the ecological effects of inducible defense, which has not considered how qualitatively different defenses might alter ecological interactions. PMID:20629540

  10. Validation of Procedures for Monitoring Crewmember Immune Function SDBI-1900, SMO-015 - Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence

    2007-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. Following completion of the SMO the data will be evaluated to determine the optimal set of assays for routine monitoring of crewmember immune system function, should the clinical risk warrant such monitoring.

  11. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense

    PubMed Central

    Yu, Agnès; Lepère, Gersende; Jay, Florence; Wang, Jingyu; Bapaume, Laure; Wang, Yu; Abraham, Anne-Laure; Penterman, Jon; Fischer, Robert L.; Voinnet, Olivier; Navarro, Lionel

    2013-01-01

    DNA methylation is an epigenetic mark that silences transposable elements (TEs) and repeats. Whereas the establishment and maintenance of DNA methylation are relatively well understood, little is known about their dynamics and biological relevance in plant and animal innate immunity. Here, we show that some TEs are demethylated and transcriptionally reactivated during antibacterial defense in Arabidopsis. This effect is correlated with the down-regulation of key transcriptional gene silencing factors and is partly dependent on an active demethylation process. DNA demethylation restricts multiplication and vascular propagation of the bacterial pathogen Pseudomonas syringae in leaves and, accordingly, some immune-response genes, containing repeats in their promoter regions, are negatively regulated by DNA methylation. This study provides evidence that DNA demethylation is part of a plant-induced immune response, potentially acting to prime transcriptional activation of some defense genes linked to TEs/repeats. PMID:23335630

  12. Dermatomycoses: challenges and human immune responses.

    PubMed

    Zahur, Muzna; Afroz, Amber; Rashid, Umer; Khaliq, Saba

    2014-01-01

    The most prevalent skin infections are mainly caused by species of dermatophytes of the genera Trichophyton, Microsporum, and Epidermophyton that infect keratinized tissues and stratum corneum of skin and hair. Besides proteases with putative role of kinases and other enzymes, immune modulators are abundantly secreted during infection as well. The molecular mechanism used by the dermatophytes to infect and counteract the host immune response is not well understood. The defense against infections basically depends on the host's immune responses to metabolites of the fungi, virulence of the infecting strain or species and anatomical site of the infection. The two aspects of the immune system, the immediate hypersensitivity and delayed-type hypersensitivity against dermatophytes may be crucial to the progression and severity of skin infection. Management of the infection through species identification and molecular diagnostic techniques as well as use of novel targeted drugs in addition to conventional anti-fungal compounds is of great importance in dealing with disease onsets and outbreaks. Here we reviewed the fungal skin infections elucidating their biologic and immunologic characteristics. Reaction to fungal invasion by the infected epithelial tissue on the host side is also discussed. Moreover, determinants of protective immunity and treatment options are focused that could confer long-lasting resistance to infection. PMID:24818759

  13. The neuroecology of chemical defenses.

    PubMed

    Derby, Charles D; Aggio, Juan F

    2011-11-01

    Chemicals are a frequent means whereby organisms defend themselves against predators, competitors, parasites, microbes, and other potentially harmful organisms. Much progress has been made in understanding how a phylogenetic diversity of organisms living in a variety of environments uses chemical defenses. Chief among these advances is determining the molecular identity of defensive chemicals and the roles they play in shaping interactions between individuals. Some progress has been made in deciphering the molecular, cellular, and systems level mechanisms underlying these interactions, as well as how these interactions can lead to structuring of communities and even ecosystems. The neuroecological approach unifies practices and principles from these diverse disciplines and at all scales as it attempts to explain in a single conceptual framework the abundances of organisms and the distributions of species within natural habitats. This article explores the neuroecology of chemical defenses with a focus on aquatic organisms and environments. We review the concept of molecules of keystone significance, including examples of how saxitoxin and tetrodotoxin can shape the organization and dynamics of marine and riparian communities, respectively. We also describe the current status and future directions of a topic of interest to our research group-the use of ink by marine molluscs, especially sea hares, in their defense. We describe a diversity of molecules and mechanisms mediating the protective effects of sea hares' ink, including use as chemical defenses against predators and as alarm cues toward conspecifics, and postulate that some defensive molecules may function as molecules of keystone significance. Finally, we propose future directions for studying the neuroecology of the chemical defenses of sea hares and their molluscan relatives, the cephalopods. PMID:21705367

  14. Life in a Diverse Oral Community – Strategies for Oxidative Stress Survival

    PubMed Central

    Henry, Leroy G.; Boutrin, Marie-Claire; Aruni, Wilson; Robles, Antonette; Ximinies, Alexia; Fletcher, Hansel M.

    2015-01-01

    Background While the oral cavity harbors more than 680 bacterial species, the interaction and association of selected bacterial species play a role in periodontal diseases. Bacterial species including Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, a consortium previously designated as the “red complex” is now being expanded to include other new emerging pathogens that are significantly associated with periodontal disease. Highlight In addition to novel mechanisms for oxidative resistance of individual species, community dynamics may lead to an overall strategy for survival in the inflammatory environment of the periodontal pocket. Complex systems controlled by response regulators protect against oxidative and nitrosative stress. Conclusion The combination of these multifaceted strategies would provide a comprehensive defense and support system against the repetitive host immune response to promote microbial persistence and disease.

  15. 76 FR 53119 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... Availability (NOA) in the Federal Register (76 FR 28757) announcing the revised Defense Logistics Agency... of the Secretary Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION:...

  16. Modeling the immune rheostat of macrophages in the lung in response to infection

    PubMed Central

    Day, Judy; Friedman, Avner; Schlesinger, Larry S.

    2009-01-01

    In the lung, alternatively activated macrophages (AAM) form the first line of defense against microbial infection. Due to the highly regulated nature of AAM, the lung can be considered as an immunosuppressive organ for respiratory pathogens. However, as infection progresses in the lung, another population of macrophages, known as classically activated macrophages (CAM) enters; these cells are typically activated by IFN-?. CAM are far more effective than AAM in clearing the microbial load, producing proinflammatory cytokines and antimicrobial defense mechanisms necessary to mount an adequate immune response. Here, we are concerned with determining the first time when the population of CAM becomes more dominant than the population of AAM. This proposed “switching time” is explored in the context of Mycobacterium tuberculosis (MTb) infection. We have developed a mathematical model that describes the interactions among cells, bacteria, and cytokines involved in the activation of both AAM and CAM. The model, based on a system of differential equations, represents a useful tool to analyze strategies for reducing the switching time, and to generate hypotheses for experimental testing. PMID:19549875

  17. Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine

    PubMed Central

    Caballero, Silvia; Pamer, Eric G.

    2015-01-01

    The diverse microbial populations constituting the intestinal microbiota promote immune development and differentiation, but because of their complex metabolic requirements and the consequent difficulty culturing them, they remained, until recently, largely uncharacterized and mysterious. In the last decade, deep nucleic acid sequencing platforms, new computational and bioinformatics tools, and full-genome characterization of several hundred commensal bacterial species facilitated studies of the microbiota and revealed that differences in microbiota composition can be associated with inflammatory, metabolic, and infectious diseases, that each human is colonized by a distinct bacterial flora, and that the microbiota can be manipulated to reduce and even cure some diseases. Different bacterial species induce distinct immune cell populations that can play pro- and anti-inflammatory roles, and thus the composition of the microbiota determines, in part, the level of resistance to infection and susceptibility to inflammatory diseases. This review summarizes recent work characterizing commensal microbes that contribute to the antimicrobial defense/inflammation axis. PMID:25581310

  18. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases

    PubMed Central

    Suzuki, Masato; Danilchanka, Olga; Mekalanos, John J.

    2015-01-01

    SUMMARY The c ellular surveillance-activated detoxification and defenses (cSADD) theory postulates the presence of host surveillance mechanisms that monitor the integrity of common cellular processes and components targeted by pathogen effectors. Being organelles essential for multiple cellular processes, including innate immune responses, mitochondria represent an attractive target for pathogens. We describe a Vibrio cholerae Type 3 secretion system effector VopE that localizes to mitochondria during infection and interferes with the function of mitochondrial Rho GTPases Miro1 and Miro2 by acting as a specific GTPase-activating protein. Miro GTPases modulate mitochondrial dynamics and interference with this functionality effectively blocks innate immune responses that presumably require mitochondria as signaling platforms. Our data indicate that interference with mitochondrial dynamics may be an unappreciated strategy that pathogens use to block host innate immune responses that would otherwise control these bacterial infections. VopE might represent a bacterial effector that targets the cSADD surveillance response. PMID:25450857

  19. PPAR? Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    PubMed

    da Rocha Junior, Laurindo Ferreira; Dantas, Andréa Tavares; Duarte, Angela Luzia Branco Pinto; de Melo Rego, Moacyr Jesus Barreto; Pitta, Ivan da Rocha; Pitta, Maira Galdino da Rocha

    2013-01-01

    Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPAR ? are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPAR ? is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPAR ? has also been associated with B cells. The present review addresses these issues by placing PPAR ? agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity. PMID:23983678

  20. Peptidoglycan from fermentation by-product triggers defense responses in grapevine.

    PubMed

    Chen, Yang; Takeda, Taito; Aoki, Yoshinao; Fujita, Keiko; Suzuki, Shunji; Igarashi, Daisuke

    2014-01-01

    Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation. Using hydrolysis by lysozyme, a silkworm larva plasma detection system, and gel filtration analysis, we identified peptidoglycan as inducing the defense responses. Peptidoglycans of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus also generated similar defensive responses. PMID:25427192