Science.gov

Sample records for immunity protein im7

  1. A structural comparison of the colicin immunity proteins Im7 and Im9 gives new insights into the molecular determinants of immunity-protein specificity.

    PubMed Central

    Dennis, C A; Videler, H; Pauptit, R A; Wallis, R; James, R; Moore, G R; Kleanthous, C

    1998-01-01

    We report the first detailed comparison of two immunity proteins which, in conjunction with recent protein engineering data, begins to explain how these structurally similar proteins are able to bind and inhibit the endonuclease domain of colicin E9 (E9 DNase) with affinities that differ by 12 orders of magnitude. In the present work, we have determined the X-ray structure of the Escherichia coli colicin E7 immunity protein Im7 to 2.0 A resolution by molecular replacement, using as a trial model the recently determined NMR solution structure of Im9. Whereas the two proteins adopt similar four-helix structures, subtle structural differences, in particular involving a conserved tyrosine residue critical for E9 DNase binding, and the identity of key residues in the specificity helix, lie at the heart of their markedly different ability to bind the E9 DNase. Two other crystal structures were reported recently for Im7; in one, Im7 was a monomer and was very similar to the structure reported here, whereas in the other it was a dimer to which functional significance was assigned. Since this previous work suggested that Im7 could exist either as a monomer or a dimer, we used analytical ultracentrifugation to investigate this question further. Under a variety of solution conditions, we found that Im7 only ever exists in solution as a monomer, even up to protein concentrations of 15 mg/ml, casting doubt on the functional significance of the crystallographically observed dimer. This work provides a structural framework with which we can understand immunity-protein specificity, and in addition we believe it to be the first successfully refined crystal structure solved by molecular replacement using an NMR trial model with less than 100% sequence identity. PMID:9639578

  2. Native Contact Density and Nonnative Hydrophobic Effects in the Folding of Bacterial Immunity Proteins

    PubMed Central

    Chen, Tao; Chan, Hue Sun

    2015-01-01

    The bacterial colicin-immunity proteins Im7 and Im9 fold by different mechanisms. Experimentally, at pH 7.0 and 10°C, Im7 folds in a three-state manner via an intermediate but Im9 folding is two-state-like. Accordingly, Im7 exhibits a chevron rollover, whereas the chevron arm for Im9 folding is linear. Here we address the biophysical basis of their different behaviors by using native-centric models with and without additional transferrable, sequence-dependent energies. The Im7 chevron rollover is not captured by either a pure native-centric model or a model augmented by nonnative hydrophobic interactions with a uniform strength irrespective of residue type. By contrast, a more realistic nonnative interaction scheme that accounts for the difference in hydrophobicity among residues leads simultaneously to a chevron rollover for Im7 and an essentially linear folding chevron arm for Im9. Hydrophobic residues identified by published experiments to be involved in nonnative interactions during Im7 folding are found to participate in the strongest nonnative contacts in this model. Thus our observations support the experimental perspective that the Im7 folding intermediate is largely underpinned by nonnative interactions involving large hydrophobics. Our simulation suggests further that nonnative effects in Im7 are facilitated by a lower local native contact density relative to that of Im9. In a one-dimensional diffusion picture of Im7 folding with a coordinate- and stability-dependent diffusion coefficient, a significant chevron rollover is consistent with a diffusion coefficient that depends strongly on native stability at the conformational position of the folding intermediate. PMID:26016652

  3. Isothermal aging of IM7/8320 and IM7/5260

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Siochi, Emilie J.; Gates, Thomas S.

    1992-01-01

    Isothermal aging was conducted on two composite systems being considered as possible candidates for the next generation supersonic transport. The composite systems were IM7/5260, a carbon/thermoset, and IM7/8320, a carbon/amorphous thermoplastic. The materials were isothermally aged for a total of 5000 hours at 125 C and 175 C. These temperatures are approximately equivalent to the upper skin temperatures of an aircraft flying at Mach 2.0 and Mach 2.4, respectively. The variations of the following properties were determined as a function of aging time: weight loss, moduli, glass transition temperature, microcracking, and modulus and strength of a +/- 45 laminate. The difficulties and accuracy of strain measurements are also discussed.

  4. [Immune stimulative potency of milk proteins].

    PubMed

    Ambroziak, Adam; Cichosz, Grazyna

    2014-02-01

    Milk proteins are characterized by the highest immune stimulative potency from among all the proteins present in human diet. Whey proteins and numerous growth factors that regulate insulin secretion, differentiation of intestine epithelium cells, and also tissue restoration, are priceless in stimulation the immune system. Lactoferrin shows the most comprehensive pro-health properties: antioxidative, anticancer, immune stimulative and even chemopreventive. Also peptides and amino acids formed from casein and whey proteins possess immune stimulative activity. The most valuable proteins, i.e. lactoferrin, immune globulins, lactoperoxidase and lisozyme, together with bioactive peptides, are resistant to pepsin and trypsin activity. This is why they maintain their exceptional biological activity within human organism. Properly high consumption of milk proteins conditions correct function of immune system, especially at children and elderly persons. PMID:24720113

  5. Visualizing chaperone-assisted protein folding.

    PubMed

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; Ahlstrom, Logan S; Martin, Raoul; Quan, Shu; Afonine, Pavel V; van den Bedem, Henry; Wang, Lili; Xu, Qingping; Trievel, Raymond C; Brooks, Charles L; Bardwell, James C A

    2016-07-01

    Challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone-substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperone Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone. PMID:27239796

  6. IM7/LARC(tm) MPEI-1 Polymide Composites

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Cano, R. J.; Jensen, B. J.

    1998-01-01

    LARC(Trademark) MPEI-1 (Langley Research Center(Trademark) modified phenylethynyl imide-1) phenylethynyl containing aromatic polymide, is based on the reaction of biphenyl dianhydride (BPDA), 3,4'-oxydianiline (3,4'-ODA), 1,3-bis(3-aminophenoxy)benzene (APB), 2,4,6-triaminopyrimidine (TAP) and 4-phenylethynyl phthalic anhydride (PEPA), presumably resulting in a mixture of linear, branched and star shaped phenylethynyl containing imides which was evaluated as a matrix for high-performance composites. The poly(amid acid) solution of MPEI-1 in N-methypyrrolidinone was synthesized at 35% and 42% solids. Unidirectional prepreg was fabricated from these solutions and Hercules IM7 carbon fiber utilizing NASA- Langley's multipurpose prepreg machine. The temperature-dependent volatile depletion rates, thermal crystallization behavior and resin theology were characterized. Based on this information, a composite molding cycle was developed which yielded well consolidated, void-free laminates. Composite mechanical properties such as short beam shear strength, longitudinal and transverse flexural strength and flexural modulus, longitudinal tensile strength and notched and unnotched compression strengths were measured at room temperature (RT) and elevated temperatures. These mechanical properties are compared with those of IM7/LARC(Trademark) PETI-5 composites.

  7. The structure of pyogenecin immunity protein, a novel bacteriocin-like immunity protein from streptococcus pyogenes.

    SciTech Connect

    Chang, C.; Coggill, P.; Bateman, A.; Finn, R.; Cymborowski, M.; Otwinowski, Z.; Minor, W.; Volkart, L.; Joachimiak, A.; Wellcome Trust Sanger Inst.; Univ. of Virginia; UT Southwestern Medical Center

    2009-12-17

    Many Gram-positive lactic acid bacteria (LAB) produce anti-bacterial peptides and small proteins called bacteriocins, which enable them to compete against other bacteria in the environment. These peptides fall structurally into three different classes, I, II, III, with class IIa being pediocin-like single entities and class IIb being two-peptide bacteriocins. Self-protective cognate immunity proteins are usually co-transcribed with these toxins. Several examples of cognates for IIa have already been solved structurally. Streptococcus pyogenes, closely related to LAB, is one of the most common human pathogens, so knowledge of how it competes against other LAB species is likely to prove invaluable. We have solved the crystal structure of the gene-product of locus Spy-2152 from S. pyogenes, (PDB: 2fu2), and found it to comprise an anti-parallel four-helix bundle that is structurally similar to other bacteriocin immunity proteins. Sequence analyses indicate this protein to be a possible immunity protein protective against class IIa or IIb bacteriocins. However, given that S. pyogenes appears to lack any IIa pediocin-like proteins but does possess class IIb bacteriocins, we suggest this protein confers immunity to IIb-like peptides. Combined structural, genomic and proteomic analyses have allowed the identification and in silico characterization of a new putative immunity protein from S. pyogenes, possibly the first structure of an immunity protein protective against potential class IIb two-peptide bacteriocins. We have named the two pairs of putative bacteriocins found in S. pyogenes pyogenecin 1, 2, 3 and 4.

  8. Functional Classification of Immune Regulatory Proteins

    SciTech Connect

    Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.; Fiser, Andras

    2013-05-01

    Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving the class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.

  9. Substrate protein folds while it is bound to the ATP-independent chaperone Spy.

    PubMed

    Stull, Frederick; Koldewey, Philipp; Humes, Julia R; Radford, Sheena E; Bardwell, James C A

    2016-01-01

    Chaperones assist in the folding of many proteins in the cell. Although the most well-studied chaperones use cycles of ATP binding and hydrolysis to assist in protein folding, a number of chaperones have been identified that promote folding in the absence of high-energy cofactors. Precisely how ATP-independent chaperones accomplish this feat is unclear. Here we characterized the kinetic mechanism of substrate folding by the small ATP-independent chaperone Spy from Escherichia coli. Spy rapidly associates with its substrate, immunity protein 7 (Im7), thereby eliminating Im7's potential for aggregation. Remarkably, Spy then allows Im7 to fully fold into its native state while it remains bound to the surface of the chaperone. These results establish a potentially widespread mechanism whereby ATP-independent chaperones assist in protein refolding. They also provide compelling evidence that substrate proteins can fold while being continuously bound to a chaperone. PMID:26619265

  10. Differential protein network analysis of the immune cell lineage.

    PubMed

    Clancy, Trevor; Hovig, Eivind

    2014-01-01

    Recently, the Immunological Genome Project (ImmGen) completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks. PMID:25309909

  11. The unfolded protein response in immunity and inflammation.

    PubMed

    Grootjans, Joep; Kaser, Arthur; Kaufman, Randal J; Blumberg, Richard S

    2016-08-01

    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses. PMID:27346803

  12. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  13. Out-Life Characteristics of IM7/977-3 Composites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Sutter, James K.; Hou, Tan-Hung; Scheiman, Daniel A.; Martin, Richard E.; Maryanski, Michael; Schlea, Michelle; Gardner, John M.; Schiferl, Zack R.

    2010-01-01

    The capability to manufacture large structures leads to weight savings and reduced risk relative to joining smaller components. However, manufacture of increasingly large composite components is pushing the out-time limits of epoxy/ carbon fiber prepreg. IM7/977-3 is an autoclave processable prepreg material, commonly used in aerospace structures. The out-time limit is reported as 30 days by the manufacturer. The purpose of this work was to evaluate the material processability and composite properties of 977-3 resin and IM7/977-3 prepreg that had been aged at room temperature for up to 60 days. The effects of room temperature aging on the thermal and visco-elastic properties of the materials were investigated. Neat resin was evaluated by differential scanning calorimetry to characterize thermal properties and change in activation energy of cure. Neat resin was also evaluated by rheometry to characterize its processability in composite fabrication. IM7/977-3 prepreg was evaluated by dynamic mechanical analysis to characterize the curing behavior. Prepreg tack was also evaluated over 60 days. The overall test results suggested that IM7/977-3 was a robust material that offered quality laminates throughout this aging process when processed by autoclave.

  14. Immunization with an Autotransporter Protein of Orientia tsutsugamushi Provides Protective Immunity against Scrub Typhus

    PubMed Central

    Ha, Na-Young; Sharma, Prashant; Kim, Gwanghun; Kim, Yuri; Min, Chan-Ki; Choi, Myung-Sik; Kim, Ik-Sang; Cho, Nam-Hyuk

    2015-01-01

    Background Scrub typhus is an acute febrile disease caused by Orientia tsutsugamushi infection. Recently, the rapid increase of scrub typhus incidence in several countries within the endemic region has become a serious public health issue. Despite the wide range of preventative approaches that have been attempted in the past 70 years, all have failed to develop an effective prophylactic vaccine. Currently, the selection of the proper antigens is one of the critical barriers to generating cross-protective immunity against antigenically-variable strains of O. tsutsugamushi. Methodology/Principal Findings We examined the potential role of ScaA protein, an autotransporter protein of O. tsutsugamushi, in bacterial pathogenesis and evaluated the protective attributes of ScaA immunization in lethal O. tsutsugamushi infection in mice. Our findings demonstrate that ScaA functions as a bacterial adhesion factor, and anti-ScaA antibody significantly neutralizes bacterial infection of host cells. In addition, immunization with ScaA not only provides protective immunity against lethal challenges with the homologous strain, but also confers significant protection against heterologous strains when combined with TSA56, a major outer membrane protein of O. tsutsugamushi. Conclusions/Significance Immunization of ScaA proteins provides protective immunity in mice when challenged with the homologous strain and significantly enhanced protective immunity against infection with heterologous strains. To our knowledge, this is the most promising result of scrub typhus vaccination trials against infection of heterologous strains in mouse models thus far. PMID:25768004

  15. Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation.

    PubMed

    Siggs, Owen M; Miosge, Lisa A; Daley, Stephen R; Asquith, Kelly; Foster, Paul S; Liston, Adrian; Goodnow, Christopher C

    2015-03-15

    Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies. PMID:25662996

  16. Characterization of the immune response of domestic fowl following immunization with proteins extracted from Dermanyssus gallinae.

    PubMed

    Harrington, David; Din, Hatem Mohi El; Guy, Jonathan; Robinson, Karen; Sparagano, Olivier

    2009-03-23

    Dermanyssus gallinae is the most significant ectoparasite of European poultry egg laying production systems due to high costs of control and associated production losses as well as adverse effects on bird welfare. In this study, soluble proteins were extracted from unfed D. gallinae (DGE) using a urea-based detergent and ultra-filtration, passed through a 0.22 microm filter and blended aseptically with adjuvant. One group of laying hens was immunized with DGE and adjuvant (Montanide ISA 50 V) whilst another group (Control) received physiological saline and adjuvant. All birds were immunized on two occasions, 21 days apart. Antibody response to immunization was determined by ELISA and western blotting using immunoglobulins (Igs) extracted from egg yolk. DGE immunization of hens resulted in a significant (P<0.05) IgY response compared to controls, although there was no significant difference in IgM response between treatments. A number of proteins were identified by western blotting using IgY antibodies from DGE immunized birds, most prominently at 40 and 230kDa. Analysis of proteins from approximately corresponding bands on SDS-PAGE confirmed the identity of tropomyosin, whilst other proteins showed high sequence homology with myosin and actin from other arachnid and insect species. Immunization of hens with DGE resulted in a 50.6% increase in mite mortality (P<0.001) 17h after feeding when tested by an in vitro mite feeding model. Data in this study demonstrate that somatic antigens from D. gallinae can be used to stimulate a protective immune response in laying hens. Further work is needed to identify other proteins of interest that could confer higher protection against D. gallinae, as well as optimization of the vaccination and in vitro testing protocol. PMID:19091480

  17. The acute phase protein haptoglobin regulates host immunity

    PubMed Central

    Huntoon, Kristin M.; Wang, Yanping; Eppolito, Cheryl A.; Barbour, Karen W.; Berger, Franklin G.; Shrikant, Protul A.; Baumann, Heinz

    2008-01-01

    The contribution of acute phase plasma proteins to host immune responses remains poorly characterized. To better understand the role of the acute phase reactant and major hemoglobin-binding protein haptoglobin (Hp) on the function of immune cells, we generated Hp-deficient C57BL/6J mice. These mice exhibit stunted development of lymphoid organs associated with lower counts of mature T and B cells in the blood and secondary lymphoid compartments. Moreover, these mice show markedly reduced adaptive immune responses as represented by reduced accumulation of IgG antibody after immunization with adjuvant and nominal antigen, abrogation of Th1-dominated delayed-type hypersensitivity reaction, loss of mitogenic responses mounted by T cells, and reduced T cell responses conveyed by APCs. Collectively, these defects are in agreement with the observations that Hp-deficient mice are not capable of generating a recall response or deterring a Salmonella infection as well as failing to generate tumor antigen-specific responses. The administration of Hp to lymphocytes in tissue culture partially ameliorates these functional defects, lending further support to our contention that the acute phase response protein Hp has the ability to regulate immune cell responses and host immunity. The phenotype of Hp-deficient mice suggests a major regulatory activity for Hp in supporting proliferation and functional differentiation of B and T cells as part of homeostasis and in response to antigen stimulation. PMID:18436583

  18. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    PubMed

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen. PMID:26410104

  19. WAP domain proteins as modulators of mucosal immunity.

    PubMed

    Wilkinson, Thomas S; Roghanian, Ali; Simpson, Alexander John; Sallenave, Jean-Michel

    2011-10-01

    WAP (whey acidic protein) is an important whey protein present in milk of mammals. This protein has characteristic domains, rich in cysteine residues, called 4-DSC (four-disulfide core domain). Other proteins, mainly present at mucosal surfaces, have been shown to also possess these characteristic WAP-4-DSC domains. The present review will focus on two WAP-4-DSC containing proteins, namely SLPI (secretory leucocyte protease inhibitor) and trappin-2/elafin. Although first described as antiproteases able to inhibit in particular host neutrophil proteases [NE (neutrophil elastase), cathepsin-G and proteinase-3] and as such, able to limit maladaptive tissue damage during inflammation, it has become apparent that these molecules have a variety of other functions (direct antimicrobial activity, bacterial opsonization, induction of adaptive immune responses, promotion of tissue repair, etc.). After providing information about the 'classical' antiproteasic role of these molecules, we will discuss the evidence pertaining to their pleiotropic functions in inflammation and immunity. PMID:21936824

  20. Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization

    PubMed Central

    Hansen, Debra T.; Robida, Mark D.; Craciunescu, Felicia M.; Loskutov, Andrey V.; Dörner, Katerina; Rodenberry, John-Charles; Wang, Xiao; Olson, Tien L.; Patel, Hetal; Fromme, Petra; Sykes, Kathryn F.

    2016-01-01

    Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins. PMID:26908053

  1. Early innate immune response of immune proteins in juvenile channel catfish Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel catfish (Ictalurus punctatus) are raised for aquaculture in the Southeast U.S. and are susceptible to bacterial and viral infections acquired from their pond environment. Innate immune proteins mannose-binding lectin (MBL) and lysozyme were studied during two consecutive years in channel cat...

  2. Immune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens.

    PubMed Central

    Mowat, A M; Maloy, K J; Donachie, A M

    1993-01-01

    Orally active synthetic vaccines containing purified antigens would have many benefits for immunizing against systemic and mucosal diseases. However, several factors have limited the development of such vaccines, including the poor immunogenicity of purified proteins and their usual ability to induce tolerance when given orally. Here, we show that incorporation of ovalbumin (OVA) into immune-stimulating complexes (ISCOMS) containing saponin prevents the induction of oral tolerance in mice. In parallel, the spleen and mesenteric lymph node of mice fed OVA ISCOMS are primed for class I major histocompatibility complex (MHC)-restricted cytotoxic T-cell activity which recognizes physiologically processed epitopes on OVA. Oral immunization with OVA ISCOMS also stimulates high secretory IgA antibody responses in the intestine itself, as well as serum IgG antibodies. None of these active immune responses are detectable in mice fed OVA alone. Despite the potent priming of mucosal priming by OVA ISCOMS, re-exposure to antigen does not induce the intestinal immunopathology found in other systems after the breakdown of oral tolerance. Thus, ISCOMS have several unique properties as vectors for oral immunization and could provide a basis for future mucosal vaccines. PMID:7508416

  3. Role of immunity to mycobacterial stress proteins in rheumatoid arthritis.

    PubMed Central

    McLean, L.; Winrow, V.; Blake, D.

    1990-01-01

    'Stress Proteins in Inflammation' provided a forum for the discussion of topical issues in this rapidly moving field. The mycobacterial 65 kDa stress proteins play a key role in certain animal models of inflammatory arthritis. However, the impression emerging is that the mechanism probably involves more than a simple cross-reaction between mycobacterial SP65 and either the host SP65 or a cartilage antigen, and that evidence for a primary role in human rheumatoid arthritis is lacking. A realistic role for immune responses against stress proteins might be the amplification or perpetuation of inflammation. If so, this is unlikely to be limited to arthritis. PMID:2184873

  4. Protein Kinase C Enzymes in the Hematopoietic and Immune Systems.

    PubMed

    Altman, Amnon; Kong, Kok-Fai

    2016-05-20

    The protein kinase C (PKC) family, discovered in the late 1970s, is composed of at least 10 serine/threonine kinases, divided into three groups based on their molecular architecture and cofactor requirements. PKC enzymes have been conserved throughout evolution and are expressed in virtually all cell types; they represent critical signal transducers regulating cell activation, differentiation, proliferation, death, and effector functions. PKC family members play important roles in a diverse array of hematopoietic and immune responses. This review covers the discovery and history of this enzyme family, discusses the roles of PKC enzymes in the development and effector functions of major hematopoietic and immune cell types, and points out gaps in our knowledge, which should ignite interest and further exploration, ultimately leading to better understanding of this enzyme family and, above all, its role in the many facets of the immune system. PMID:27168244

  5. Human immune cell targeting of protein nanoparticles - caveospheres

    NASA Astrophysics Data System (ADS)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  6. Human immune cell targeting of protein nanoparticles - caveospheres.

    PubMed

    Glass, Joshua J; Yuen, Daniel; Rae, James; Johnston, Angus P R; Parton, Robert G; Kent, Stephen J; De Rose, Robert

    2016-04-14

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells-an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines. PMID:27031090

  7. DNA and Protein Co-Immunization Improves the Magnitude and Longevity of Humoral Immune Responses in Macaques

    PubMed Central

    Jalah, Rashmi; Kulkarni, Viraj; Patel, Vainav; Rosati, Margherita; Alicea, Candido; Bear, Jenifer; Yu, Lei; Guan, Yongjun; Shen, Xiaoying; Tomaras, Georgia D.; LaBranche, Celia; Montefiori, David C.; Prattipati, Rajasekhar; Pinter, Abraham; Bess, Julian; Lifson, Jeffrey D.; Reed, Steven G.; Sardesai, Niranjan Y.; Venzon, David J.; Valentin, Antonio; Pavlakis, George N.; Felber, Barbara K.

    2014-01-01

    We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques. PMID:24626482

  8. DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques.

    PubMed

    Jalah, Rashmi; Kulkarni, Viraj; Patel, Vainav; Rosati, Margherita; Alicea, Candido; Bear, Jenifer; Yu, Lei; Guan, Yongjun; Shen, Xiaoying; Tomaras, Georgia D; LaBranche, Celia; Montefiori, David C; Prattipati, Rajasekhar; Pinter, Abraham; Bess, Julian; Lifson, Jeffrey D; Reed, Steven G; Sardesai, Niranjan Y; Venzon, David J; Valentin, Antonio; Pavlakis, George N; Felber, Barbara K

    2014-01-01

    We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques. PMID:24626482

  9. Melanosomal proteins as melanoma-specific immune targets.

    PubMed

    Sakai, C; Kawakami, Y; Law, L W; Furumura, M; Hearing, V J

    1997-04-01

    Pigmentation of our skin, hair and eyes is essential for photoprotection, embryological development, detoxification and protective/cosmetic coloration. A number of proteins important to the production of melanin within melanosomes have now been identified including enzymatic and structural proteins encoded at the murine albino, brown, pinkeyed-dilution, MART1, slaty and silver loci. Interestingly, many of those melanosomal proteins (including epitopes derived from tyrosinase, TRP1/gp75, silver/gp100 and MART1/melan-A) function in vivo as targets of humoral and cellular autoimmune responses directed specifically against normal or transformed melanocytes. These findings have provided new impetus to research on immune responses to melanoma and, perhaps more importantly, examining why they are insufficient to provide protection against tumour growth and what type of immune therapy can be designed to correct that. The melanosome must now be considered beyond its function in pigmentation, and assumes the role of a valuable source for specific immune targets for malignant melanoma. PMID:9167173

  10. Plant TRAF Proteins Regulate NLR Immune Receptor Turnover.

    PubMed

    Huang, Shuai; Chen, Xuejin; Zhong, Xionghui; Li, Meng; Ao, Kevin; Huang, Jianhua; Li, Xin

    2016-02-10

    In animals, Tumor necrosis factor receptor-associated factor (TRAF) proteins are molecular adaptors that regulate innate and adaptive immunity, development, and abiotic stress responses. Although gene families encoding TRAF domain-containing proteins exhibit enriched diversity in higher plants, their biological roles are poorly defined. Here, we report the identification of two redundant TRAF proteins, Mutant, snc1-enhancing 13 (MUSE13) and MUSE14, that contribute to the turnover of nucleotide-binding domain and leucine-rich repeat-containing (NLR) immune receptors SNC1 and RPS2. Loss of both MUSE13 and MUSE14 leads to enhanced pathogen resistance, NLR accumulation, and autoimmunity, while MUSE13 overexpression results in reduced NLR levels and activity. In planta, MUSE13 associates with SNC1, RPS2, and the E3 ubiquitin ligase SCF(CPR1). Taken together, we speculate that MUSE13 and MUSE14 associate with the SCF E3 ligase complex to form a plant-type TRAFasome, which modulates ubiquitination and subsequent degradation of NLR immune sensors to maintain their homeostasis. PMID:26867179

  11. RNA-binding protein Lin28 in cancer and immunity.

    PubMed

    Jiang, Shuai; Baltimore, David

    2016-05-28

    The highly conserved RNA-binding protein, Lin28, is involved in many biological processes, including development, reprogramming, pluripotency, and metabolism. Importantly, Lin28 functions as an oncogene, promoting tumor progression and metastasis in various human cancers. Lin28 can regulate gene expression either by directly binding to mRNAs or by blocking microRNA biogenesis, and the underlying mechanisms include Let-7-dependent and Let-7-independent modes of action. Recent evidence shows that Lin28 also plays a fundamental role in immunity. The roles of Lin28 in disease are complex and require characterization of its physiological functions in cancer and immunological contexts. Here we review emerging information on the role of Lin28 in cancer and immunity and the molecular mechanisms it uses. We discuss our present knowledge of the system and highlight remaining mysteries related to the functions of this small RNA-binding protein. This knowledge may lead to Lin28 becoming a diagnostic marker for cancer or immune-related diseases and a possible therapeutic target. PMID:26945970

  12. Immune responses to Mycoplasma bovis proteins formulated with different adjuvants.

    PubMed

    Prysliak, Tracy; Perez-Casal, Jose

    2016-06-01

    Most vaccines for protection against Mycoplasma bovis disease are made of bacterins, and they offer varying degrees of protection. Our focus is on the development of a subunit-based protective vaccine, and to that end, we have identified 10 novel vaccine candidates. After formulation of these candidates with TriAdj, an experimental tri-component novel vaccine adjuvant developed at VIDO-InterVac, we measured humoral and cell-mediated immune responses in vaccinated animals. In addition, we compared the immune responses after formulation with TriAdj with the responses measured in animals vaccinated with a mix of a commercial adjuvant (Emulsigen™) and 2 of the components of the TriAdj, namely polyinosinic:polycytidylic acid (poly I:C) and the cationic innate defense regulator (IDR) peptide 1002 (VQRWLIVWRIRK). In this latter trial, we detected significant IgG1 humoral immune responses to 8 out of 10 M. bovis proteins, and IgG2 responses to 7 out of 10 proteins. Thus, we concluded that the commercial adjuvant formulated with poly I:C and the IDR peptide 1002 is the best formulation for the experimental vaccine. PMID:27105454

  13. Amyloid Precursor Protein Expression Modulates Intestine Immune Phenotype

    PubMed Central

    Puig, Kendra L.; Swigost, Adam J.; Zhou, Xudong; Sens, MaryAnn; Combs, Colin K.

    2014-01-01

    Amyloid precursor protein (APP) is widely expressed across many tissue and cell types. Proteolytic processing of the protein gives rise to a plethora of protein fragments with varied biological activities. Although a large amount of data has been generated describing the metabolism of the protein in neurons, its role in regulating the phenotype of other cells remains unclear. Based upon prior work demonstrating that APP regulates the activation phenotype of monocytic lineage cells, we hypothesized that APP can regulate macrophage activation phenotype in tissues other than brain. Ileums of the small intestines from C57BL6/J wild type and APP−/− mice were compared as a representative tissue normally associated with abundant macrophage infiltration. APP−/− intestines demonstrated diminished CD68 immunoreactivity compared to wild type mice. This correlated with significantly less cycloxygenase-2 (cox-2), CD68, CD40, CD11c, and βIII-tubulin protein levels. Peritoneal macrophage from APP−/− mice demonstrated decreased in vitro migratory ability compared to wild type cells and diminished basal KC cytokine secretion. Whereas, APP−/− intestinal macrophage had an increase in basal KC cytokine secretion compared to wild type cells. Conversely, there was a significant decrease in multiple cytokine levels in APP−/− compared to wild type ileums. Finally, APP−/− mice demonstrated impaired absorption and increased motility compared to wild type mice. These data demonstrate the APP expression regulates immune cell secretions and phenotype and intestinal function. This data set describes a novel function for this protein or its metabolites that may be relevant not only for Alzheimer’s disease but a range of immune-related disorders. PMID:22124967

  14. Cure effects on microcracking in IM7 fiber/Matrimid 5292{reg_sign} BMI composites

    SciTech Connect

    Wilenski, M.S.; Shin, E.; Morgan, R.J.; Drzal, L.T.

    1995-12-31

    Initial results from a study of the microcracking behavior of the Matrimid 5292{reg_sign} BMI/IM7 carbon fiber system are presented. Studies were performed to determine the composite`s Stress Free Temperature (SFT) which is seen to control the presence and extent of microcracking. The SFT was determined using asymmetric laminates [0{sub 2}/90{sub 2}]. Varied post-cure cycles were utilized and it was found that until complete cure is obtained, the SFT is a function of the highest temperature experienced by the laminate, with little effect of previous thermal history. The reactions necessary to fully cure this system are not active at temperatures below 250 C, ruling out the possibility of obtaining a fully cured composite with a low SFT through extended post-cures at lower temperatures.

  15. Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles

    NASA Technical Reports Server (NTRS)

    Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.

    2010-01-01

    Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.

  16. Detection of Innate Immune Response Modulating Impurities in Therapeutic Proteins

    PubMed Central

    Haile, Lydia Asrat; Puig, Montserrat; Kelley-Baker, Logan; Verthelyi, Daniela

    2015-01-01

    Therapeutic proteins can contain multiple impurities, some of which are variants of the product, while others are derived from the cell substrate and the manufacturing process. Such impurities, even when present at trace levels, have the potential to activate innate immune cells in peripheral blood or embedded in tissues causing expression of cytokines and chemokines, increasing antigen uptake, facilitating processing and presentation by antigen presenting cells, and fostering product immunogenicity. Currently, while products are tested for host cell protein content, assays to control innate immune response modulating impurities (IIRMIs) in products are focused mainly on endotoxin and nucleic acids, however, depending on the cell substrate and the manufacturing process, numerous other IIRMI could be present. In these studies we assess two approaches that allow for the detection of a broader subset of IIRMIs. In the first, we use commercial cell lines transfected with Toll like receptors (TLR) to detect receptor-specific agonists. This method is sensitive to trace levels of IIRMI and provides information of the type of IIRMIs present but is limited by the availability of stably transfected cell lines and requires pre-existing knowledge of the IIRMIs likely to be present in the product. Alternatively, the use of a combination of macrophage cell lines of human and mouse origin allows for the detection of a broader spectrum of impurities, but does not identify the source of the activation. Importantly, for either system the lower limit of detection (LLOD) of impurities was similar to that of PBMC and it was not modified by the therapeutic protein tested, even in settings where the product had inherent immune modulatory properties. Together these data indicate that a cell-based assay approach could be used to screen products for the presence of IIRMIs and inform immunogenicity risk assessments, particularly in the context of comparability exercises. PMID:25901912

  17. Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals.

    PubMed

    Fuess, Lauren E; Pinzόn C, Jorge H; Weil, Ernesto; Mydlarz, Laura D

    2016-09-01

    Disease outbreaks in marine ecosystems have driven worldwide declines of numerous taxa, including corals. Some corals, such as Orbicella faveolata, are particularly susceptible to disease. To explore the mechanisms contributing to susceptibility, colonies of O. faveolata were exposed to immune challenge with lipopolysaccharides. RNA sequencing and protein activity assays were used to characterize the response of corals to immune challenge. Differential expression analyses identified 17 immune-related transcripts that varied in expression post-immune challenge. Network analyses revealed several groups of transcripts correlated to immune protein activity. Several transcripts, which were annotated as positive regulators of immunity were included in these groups, and some were downregulated following immune challenge. Correlations between expression of these transcripts and protein activity results further supported the role of these transcripts in positive regulation of immunity. The observed pattern of gene expression and protein activity may elucidate the processes contributing to the disease susceptibility of species like O. faveolata. PMID:27109903

  18. ETRAP (efficient trapping and purification) of target protein polyclonal antibodies from GST-protein immune sera.

    PubMed

    Crimmins, Dan L; Brada, Nancy A; Lockwood, Christina M; Griest, Terry A; Waldemer, Rachel J; Cervinski, Mark A; Ohlendorf, Matthew F; McQuillan, Jay J; Ladenson, Jack H

    2010-12-01

    Recombinant GST (glutathione transferase) proteins are widely used as immunogens to generate polyclonal antibodies. Advantages of using GST proteins include: commercially available cloning vectors, vast literature for protein expression in Escherichia coli, the ease of protein purification, immunogen can be used as an ELISA standard and GST can be removed in some systems. However, there are disadvantages: GST oligomerization, inclusion body formation and target protein insolubility after GST removal. Perhaps the most detrimental is the significant generation of anti-GST antibodies by the host animal. A two-column procedure using a glutathione-GST column and a glutathione-(GST-protein) column can yield affinity-purified anti-(GST-protein) polyclonal antibody. Several passes over the first column are often required, though, to completely extract the anti-GST antibodies from the immune sera. We reasoned that knowledge of the target protein linear epitope(s) would allow construction of a peptide affinity resin for a single-pass 'one and done' purification termed ETRAP (efficient trapping and purification). In the present paper, we describe our efforts and present data on rabbits and sheep immunized with GST proteins having target protein molecular masses of ~8, 21 and 33 kDa. The titre and purity of the target antibodies using the ETRAP protocol were comparable to the more laborious multi-column purifications but with a considerable saving in time. PMID:21054278

  19. [RGS proteins (regulators of G protein signaling) and their roles in regulation of immune response].

    PubMed

    Lewandowicz, Anna M; Kowalski, Marek L; Pawliczak, Rafał

    2004-01-01

    RGS proteins (Regulators of G-protein Signaling) comprise a protein family responsible for regulating G proteins. By enhancing the GTPase activity of the a subunit, they speed up the reconstruction of the heterotrimeric structure of G protein, thus inhibiting its signal transduction. Sst2 protein in yeast Saccharomyces cervisiae, FlbA in fungus Aspergillus nidulans, and Egl-10 in the nematode Caenorhabditis elegans are the first native G regulators with GTPase activity (GAPs:--GTPase-activating proteins). The existence of over 30 RGS human proteins has been confirmed thus far, and they have been grouped and classified into six subfamilies. In immunocompetent cells, RGS proteins are entangled in a complicate net of different interrelating signal pathways. They are connected with B- and T-cell chemokine susceptibility, efficient T cell proliferation, and the regulation of B cell maturation. They also take an essential part in inflammation. High hopes are held for drugs, which handle would be RGS proteins and which would further provide the possibility of modifying the pharmacokinetics of drugs acting through G protein- coupled receptors. The aim of this review is to discuss the new RGS protein family and explain the potential involvement of RGS proteins in the modulation of the immune response PMID:15459549

  20. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

    PubMed

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-05-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  1. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production

    PubMed Central

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L.; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-01-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  2. The immunization-induced antibody response to the Anaplasma marginale major surface protein 2 and its association with protective immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many vector-borne pathogens evade clearance via rapid variation in immunogenic surface expressed proteins. In the case of A. marginale, the generation of major surface protein 2 (Msp2) variants allows for immune escape and long-term pathogen persistence. In the experiments reported here, we pose t...

  3. Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Gates, Thomas S.

    1995-01-01

    An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.

  4. High strain rate mechanical properties of IM7/8551-7 graphite epoxy composite

    SciTech Connect

    Powers, B.M.; Vinson, J.R.; Hall, I.W.

    1995-12-31

    Polymer matrix composites offer excellent mechanical properties such as high specific strength and stiffness which make them attractive for many naval, aerospace and automotive structural components. Although they are candidate materials for many applications where high strain rate loading is probable, little is known of the material responses to shock loading for most composite materials. Because mechanical properties vary significantly with strain rate, the use of static properties in the analysis and design of structures which undergo dynamic loadings can on one hand lead to a very conservative overweight design, or on the other hand can lead to designs which fail prematurely and unexpectedly. The use of dynamic material properties will ensure the design of composite structures which are weight efficient and structurally sound when they are subjected to dynamic loads. In this study, a Split Hopkinson Pressure Bar is used to obtain compressive mechanical properties of a unidirectional IM7/8551-7 graphite epoxy composite. For each of the three principal directions, the yield stress, yield strain, ultimate stress, ultimate strain, modulus of elasticity, elastic strain energy function and the total strain energy to failure are presented for strain rates varying from 49 sec{sup {minus}1} to 1430 sec{sup {minus}1}. The data from 72 tests are statistically analyzed, represented by equations, and discussed in some detail.

  5. Automated Fiber Placement of PEEK/IM7 Composites with Film Interleaf Layers

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce; Banks, William I., III; Pipes, R. Byron; Tiwari, Surendra N.; Cano, Roberto J.; Johnston, Norman J.; Clinton, R. G., Jr. (Technical Monitor)

    2001-01-01

    The incorporation of thin discrete layers of resin between plies (interleafing) has been shown to improve fatigue and impact properties of structural composite materials. Furthermore, interleafing could be used to increase the barrier properties of composites used as structural materials for cryogenic propellant storage. In this work, robotic heated-head tape placement of PEEK/IM7 composites containing a PEEK polymer film interleaf was investigated. These experiments were carried out at the NASA Langley Research Center automated fiber placement facility. Using the robotic equipment, an optimal fabrication process was developed for the composite without the interleaf. Preliminary interleaf processing trials indicated that a two-stage process was necessary; the film had to be tacked to the partially-placed laminate then fully melted in a separate operation. Screening experiments determined the relative influence of the various robotic process variables on the peel strength of the film-composite interface. Optimization studies were performed in which peel specimens were fabricated at various compaction loads and roller temperatures at each of three film melt processing rates. The resulting data were fitted with quadratic response surfaces. Additional specimens were fabricated at placement parameters predicted by the response surface models to yield high peel strength in an attempt to gage the accuracy of the predicted response and assess the repeatability of the process. The overall results indicate that quality PEEK/lM7 laminates having film interleaves can be successfully and repeatability fabricated by heated head automated fiber placement.

  6. Immunity to heat shock proteins and arthritic disorders.

    PubMed Central

    van Eden, W

    1999-01-01

    Adjuvant arthritis (AA) is a frequently used model of experimental arthritis. Because of its histopathology, which is reminiscent of rheumatoid arthritis in humans, AA is used as a model for the development of novel anti-inflammatory drugs. Recently, it has become evident that AA is a typical T-cell-mediated autoimmune condition. Therefore, novel immunotherapies targeted to T cells can be developed in this model. Analysis of responding T cells in AA have now led to the definition of various antigens with potential relevance to arthritis, including human arthritic conditions. One such antigen defined in AA is the 60kD heat shock protein. Both T-cell vaccination approaches and active antigen immunizations and antigen toleration approaches have turned out to be effective in suppressing AA. PMID:10231009

  7. Glycation of extracellular matrix proteins impairs migration of immune cells.

    PubMed

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-01-01

    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells. PMID:24635174

  8. Immunization with Brucella VirB Proteins Reduces Organ Colonization in Mice through a Th1-Type Immune Response and Elicits a Similar Immune Response in Dogs

    PubMed Central

    Pollak, Cora N.; Wanke, María Magdalena; Estein, Silvia M.; Delpino, M. Victoria; Monachesi, Norma E.; Comercio, Elida A.; Fossati, Carlos A.

    2014-01-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  9. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    PubMed

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  10. Using viromes to predict novel immune proteins in non-model organisms

    PubMed Central

    Lim, Yan Wei; Silva, Genivaldo Gueiros Z.; Nelson, Craig E.; Haas, Andreas F.; Kelly, Linda Wegley; Edwards, Robert A.; Rohwer, Forest L.

    2016-01-01

    Immunity is mostly studied in a few model organisms, leaving the majority of immune systems on the planet unexplored. To characterize the immune systems of non-model organisms alternative approaches are required. Viruses manipulate host cell biology through the expression of proteins that modulate the immune response. We hypothesized that metagenomic sequencing of viral communities would be useful to identify both known and unknown host immune proteins. To test this hypothesis, a mock human virome was generated and compared to the human proteome using tBLASTn, resulting in 36 proteins known to be involved in immunity. This same pipeline was then applied to reef-building coral, a non-model organism that currently lacks traditional molecular tools like transgenic animals, gene-editing capabilities, and in vitro cell cultures. Viromes isolated from corals and compared with the predicted coral proteome resulted in 2503 coral proteins, including many proteins involved with pathogen sensing and apoptosis. There were also 159 coral proteins predicted to be involved with coral immunity but currently lacking any functional annotation. The pipeline described here provides a novel method to rapidly predict host immune components that can be applied to virtually any system with the potential to discover novel immune proteins. PMID:27581878

  11. Using viromes to predict novel immune proteins in non-model organisms.

    PubMed

    Quistad, Steven D; Lim, Yan Wei; Silva, Genivaldo Gueiros Z; Nelson, Craig E; Haas, Andreas F; Kelly, Linda Wegley; Edwards, Robert A; Rohwer, Forest L

    2016-08-31

    Immunity is mostly studied in a few model organisms, leaving the majority of immune systems on the planet unexplored. To characterize the immune systems of non-model organisms alternative approaches are required. Viruses manipulate host cell biology through the expression of proteins that modulate the immune response. We hypothesized that metagenomic sequencing of viral communities would be useful to identify both known and unknown host immune proteins. To test this hypothesis, a mock human virome was generated and compared to the human proteome using tBLASTn, resulting in 36 proteins known to be involved in immunity. This same pipeline was then applied to reef-building coral, a non-model organism that currently lacks traditional molecular tools like transgenic animals, gene-editing capabilities, and in vitro cell cultures. Viromes isolated from corals and compared with the predicted coral proteome resulted in 2503 coral proteins, including many proteins involved with pathogen sensing and apoptosis. There were also 159 coral proteins predicted to be involved with coral immunity but currently lacking any functional annotation. The pipeline described here provides a novel method to rapidly predict host immune components that can be applied to virtually any system with the potential to discover novel immune proteins. PMID:27581878

  12. Chaperoned amyloid proteins for immune manipulation: α-Synuclein/Hsp70 shifts immunity toward a modulatory phenotype

    PubMed Central

    Labrador-Garrido, Adahir; Cejudo-Guillén, Marta; Klippstein, Rebecca; De Genst, Erwin J; Tomas-Gallardo, Laura; Leal, María M; Villadiego, Javier; Toledo-Aral, Juan J; Dobson, Christopher M; Pozo, David; Roodveldt, Cintia

    2014-01-01

    α-Synuclein (αSyn) is a 140-residue amyloid-forming protein whose aggregation is linked to Parkinson's disease (PD). It has also been found to play a critical role in the immune imbalance that accompanies disease progression, a characteristic that has prompted the search for an effective αSyn-based immunotherapy. In this study, we have simultaneously exploited two important features of certain heat-shock proteins (HSPs): their classical “chaperone” activities and their recently discovered and diverse “immunoactive” properties. In particular, we have explored the immune response elicited by immunization of C57BL/6 mice with an αSyn/Hsp70 protein combination in the absence of added adjuvant. Our results show differential effects for mice immunized with the αSyn/Hsp70 complex, including a restrained αSyn-specific (IgM and IgG) humoral response as well as minimized alterations in the Treg (CD4+CD25+Foxp3+) and Teff (CD4+Foxp3−) cell populations, as opposed to significant changes in mice immunized with αSyn and Hsp70 alone. Furthermore, in vitro-stimulated splenocytes from immunized mice showed the lowest relative response against αSyn challenge for the “αSyn/Hsp70” experimental group as measured by IFN-γ and IL-17 secretion, and higher IL-10 levels when stimulated with LPS. Finally, serum levels of Th1-cytokine IFN-γ and immunomodulatory IL-10 indicated a unique shift toward an immunomodulatory/immunoprotective phenotype in mice immunized with the αSyn/Hsp70 complex. Overall, we propose the use of functional “HSP-chaperoned amyloid/aggregating proteins” generated with appropriate HSP-substrate protein combinations, such as the αSyn/Hsp70 complex, as a novel strategy for immune-based intervention against synucleinopathies and other amyloid or “misfolding” neurodegenerative disorders. PMID:25866630

  13. Protective immunity against Naegleria fowleri infection on mice immunized with the rNfa1 protein using mucosal adjuvants.

    PubMed

    Lee, Jinyoung; Yoo, Jong-Kyun; Sohn, Hae-Jin; Kang, Hee-kyoung; Kim, Daesik; Shin, Ho-Joon; Kim, Jong-Hyun

    2015-04-01

    The free-living amoeba, Naegleria fowleri, causes a fatal disease called primary amoebic meningoencephalitis (PAM) in humans and experimental animals. Of the pathogenic mechanism of N. fowleri concerning host tissue invasion, the adherence of amoeba to hose cells is the most important. We previously cloned the nfa1 gene from N. fowleri. The protein displayed immunolocalization in the pseudopodia, especially the food-cups structure, and was related to the contact-dependent mechanism of the amoebic pathogenicity in N. fowleri infection. The cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin B subunit (LTB) have been used as potent mucosal adjuvants via the parenteral route of immunization in most cases. In this study, to examine the effect of protective immunity of the Nfa1 protein for N. fowleri infection with enhancement by CTB or LTB adjuvants, intranasally immunized BALB/c mice were infected with N. fowleri trophozoites for the development of PAM. The mean time to death of mice immunized with the Nfa1 protein using LTB or CTB adjuvant was prolonged by 5 or 8 days in comparison with that of the control mice. In particular, the survival rate of mice immunized with Nfa1 plus CTB was 100% during the experimental period. The serum IgG levels were significantly increased in mice immunized with Nfa1 protein plus CTB or LTB adjuvants. These results suggest that the Nfa1 protein, with CTB or LTB adjuvants, induces strong protective immunity in mice with PAM due to N. fowleri infection. PMID:25604672

  14. Thermal Effects on the Compressive Behavior of IM7/PET15 Laminates

    NASA Technical Reports Server (NTRS)

    Walker, Sandra Polesky

    2003-01-01

    The effect of changing operating temperature on the compressive response of IM7/PETI5 composite laminates is investigated within this paper. The three temperatures evaluated for this study were 129 C, 21 C, and 177 C, a spectrum from cryogenic to an elevated operating temperature. Laminate compressive strength property testing was conducted using the Wyoming Combined Load Compression fixture to generate strength data at the three operating temperatures of interest for several lay-ups. A three-dimensional finite element analysis model of a [90/0]8s composite laminate subject to compressive loading is developed. The model is used to study the key attributes of the laminate that significantly influence the state of stress in the laminate. Both the resin rich layer located between lamina and the thermal residual stresses present in the laminate due to curing are included in the analysis model. For the laminate modeled, the effect of modeling temperature dependent material properties was determined to be insignificant for the operating temperatures studied. Simply using the material properties measured at the operating temperature of interest was sufficient for predicting stresses accurately in a linear analysis for the current problem. The three-dimensional analysis results revealed that the application of an applied compressive axial load in the 0-degree direction decreased the interlaminar stresses present in the laminate initially due to curing. Therefore, failure was concluded not be attributable to the interlaminar stresses in the composite laminate being studied when a compressive load is applied. The magnitude of the measured laminate compressive strength change with a change in temperature is concluded to be dominated by the change in the lamina compressive axial strength with a change in temperature.

  15. Induction of innate immune signatures following polyepitope protein-glycoprotein B-TLR4&9 agonist immunization generates multifunctional CMV-specific cellular and humoral immunity

    PubMed Central

    Dasari, Vijayendra; Smith, Corey; Schuessler, Andrea; Zhong, Jie; Khanna, Rajiv

    2014-01-01

    Recent studies have suggested that a successful subunit human cytomegalovirus (CMV) vaccine requires improved formulation to generate broad-based anti-viral immunity following immunization. Here we report the development of a non-live protein-based vaccine strategy for CMV based on a polyepitope protein and CMV glycoprotein B (gB) adjuvanted with TLR4 and/or TLR9 agonists. The polyepitope protein includes contiguous multiple MHC class I-restricted epitopes with an aim to induce CD8+ T cell immunity, while gB is an important target for CD4+ T cell immunity and neutralizing antibodies. Optimal immunogenicity of this bivalent non-live protein vaccine formulation was dependent upon the co-administration of both the TLR4 and TLR9 agonist, which was associated with the activation of innate immune signatures and the influx of different DC subsets including plasmacytoid DCs and migratory CD8-DEC205+CD103-CD326- langerin-negative dermal DCs into the draining lymph nodes. Furthermore these professional antigen presenting cells also expressed IL-6, IL-12p70, TNFα, and IFNα which play a crucial role in the activation of adaptive immunity. In summary, this study provides a novel platform technology in which broad-based anti-CMV immune responses upon vaccination can be maximized by co-delivery of viral antigens and TLR4 and 9 agonists which induce activation of innate immune signatures and promote potent antigen acquisition and cross-presentation by multiple DC subsets. PMID:24463331

  16. Study of Out-Time on the Processing and Properties of IM7/977-3 Composites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Sutter, James K.; Scheiman, Daniel A.; Maryanski, Michael; Schlea, Michelle

    2010-01-01

    The capability to manufacture large structures leads to weight savings and reduced risk relative to joining smaller components. However, manufacture of increasingly large composite components is pushing the out-life limits of epoxy/ carbon fiber prepreg. IM7/977-3 is an autoclave processable prepreg material, commonly used in aerospace structures. The out-life limit is reported as 30 days by the manufacturer. The purpose of this work was to evaluate the material processability and composite properties of 977-3 resin and IM7/977-3 prepreg that had been aged at room temperature for up to 60 days. The neat resin was evaluated by differential scanning calorimetry, DSC, to characterize cure behavior of the aged material, as well as any change in activation energy. The rise in the modulus of the uncured prepreg was monitored throughout the 60 days by dynamic mechanical analysis, DMA. Composite panels made of the fresh and aged prepreg material were also characterized by DMA. The overall test results suggested that IM7/977-3 was a robust material that offered quality laminates throughout this aging process when processed by autoclave.

  17. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV.

    PubMed

    Rascón-Castelo, Edgar; Burgara-Estrella, Alexel; Reséndiz-Sandoval, Mónica; Hernández-Lugo, Andrés; Hernández, Jesús

    2015-01-01

    The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp) and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV). We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC). Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein) than against nsp (nsp2). In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed. PMID:26633527

  18. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV

    PubMed Central

    Rascón-Castelo, Edgar; Burgara-Estrella, Alexel; Reséndiz-Sandoval, Mónica; Hernández-Lugo, Andrés; Hernández, Jesús

    2015-01-01

    The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp) and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV). We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC). Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein) than against nsp (nsp2). In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed. PMID:26633527

  19. Surfactant Protein A Enhances Constitutive Immune Functions of Clathrin Heavy Chain and Clathrin Adaptor Protein 2.

    PubMed

    Moulakakis, Christina; Steinhäuser, Christine; Biedziak, Dominika; Freundt, Katja; Reiling, Norbert; Stamme, Cordula

    2016-07-01

    NF-κB transcription factors are key regulators of pulmonary inflammatory disorders and repair. Constitutive lung cell type- and microenvironment-specific NF-κB/inhibitor κBα (IκB-α) regulation, however, is poorly understood. Surfactant protein (SP)-A provides both a critical homeostatic and lung defense control, in part by immune instruction of alveolar macrophages (AMs) via clathrin-mediated endocytosis. The central endocytic proteins, clathrin heavy chain (CHC) and the clathrin adaptor protein (AP) complex AP2, have pivotal alternative roles in cellular homeostasis that are endocytosis independent. Here, we dissect endocytic from alternative functions of CHC, the α-subunit of AP2, and dynamin in basal and SP-A-modified LPS signaling of macrophages. As revealed by pharmacological inhibition and RNA interference in primary AMs and RAW264.7 macrophages, respectively, CHC and α-adaptin, but not dynamin, prevent IκB-α degradation and TNF-α release, independent of their canonical role in membrane trafficking. Kinetics studies employing confocal microscopy, Western analysis, and immunomagnetic sorting revealed that SP-A transiently enhances the basal protein expression of CHC and α-adaptin, depending on early activation of protein kinase CK2 (former casein kinase II) and Akt1 in primary AMs from rats, SP-A(+/+), and SP-A(-/-) mice, as well as in vivo when intratracheally administered to SP-A(+/+) mice. Constitutive immunomodulation by SP-A, but not SP-A-mediated inhibition of LPS-induced NF-κB activity and TNF-α release, requires CHC, α-adaptin, and dynamin. Our data demonstrate that endocytic proteins constitutively restrict NF-κB activity in macrophages and provide evidence that SP-A enhances the immune regulatory capacity of these proteins, revealing a previously unknown pathway of microenvironment-specific NF-κB regulation in the lung. PMID:26771574

  20. Fanconi Anemia Proteins Function in Mitophagy and Immunity.

    PubMed

    Sumpter, Rhea; Sirasanagandla, Shyam; Fernández, Álvaro F; Wei, Yongjie; Dong, Xiaonan; Franco, Luis; Zou, Zhongju; Marchal, Christophe; Lee, Ming Yeh; Clapp, D Wade; Hanenberg, Helmut; Levine, Beth

    2016-05-01

    Fanconi anemia (FA) pathway genes are important tumor suppressors whose best-characterized function is repair of damaged nuclear DNA. Here, we describe an essential role for FA genes in two forms of selective autophagy. Genetic deletion of Fancc blocks the autophagic clearance of viruses (virophagy) and increases susceptibility to lethal viral encephalitis. Fanconi anemia complementation group C (FANCC) protein interacts with Parkin, is required in vitro and in vivo for clearance of damaged mitochondria, and decreases mitochondrial reactive oxygen species (ROS) production and inflammasome activation. The mitophagy function of FANCC is genetically distinct from its role in genomic DNA damage repair. Moreover, additional genes in the FA pathway, including FANCA, FANCF, FANCL, FANCD2, BRCA1, and BRCA2, are required for mitophagy. Thus, members of the FA pathway represent a previously undescribed class of selective autophagy genes that function in immunity and organellar homeostasis. These findings have implications for understanding the pathogenesis of FA and cancers associated with mutations in FA genes. PMID:27133164

  1. Isoform-specific targeting of ROCK proteins in immune cells

    PubMed Central

    Zanin-Zhorov, Alexandra; Flynn, Ryan; Waksal, Samuel D.; Blazar, Bruce R.

    2016-01-01

    ABSTRACT Rho-associated kinase 1 (ROCK1) and ROCK2 are activated by Rho GTPase and control cytoskeleton rearrangement through modulating the phosphorylation of their down-stream effector molecules. Although these 2 isoforms share more than 90% homology within their kinase domain the question of whether ROCK proteins function identically in different cell types is not clear. By using both pharmacological inhibition and genetic knockdown approaches recent studies suggest that the ROCK2 isoform plays an exclusive role in controlling of T-cell plasticity and macrophage polarization. Specifically, selective ROCK2 inhibition shifts the balance between pro-inflammatory and regulatory T-cell subsets via concurrent regulation of STAT3 and STAT5 phosphorylation, respectively. Furthermore, the administration of an orally available selective ROCK2 inhibitor effectively ameliorates clinical manifestations in experimental models of autoimmunity and chronic graft-vs.-host disease (cGVHD). Because ROCK2 inhibition results in the suppression of M2-type macrophages while favoring polarization of M1-type macrophages, ROCK2 inhibition can correct the macrophage imbalance seen during age-related macular degeneration (AMD). In summary, the exclusive role of ROCK2 in immune system modulation argues for the development and testing of isoform-specific ROCK2 inhibitors for the treatment of inflammatory disorders. PMID:27254302

  2. Modulation of cellular immune response against hepatitis C virus nonstructural protein 3 by cationic liposome encapsulated DNA immunization.

    PubMed

    Jiao, Xuanmao; Wang, Richard Y-H; Feng, Zhiming; Alter, Harvey J; Shih, James Wai-Kuo

    2003-02-01

    A vaccine strategy directed to increase Th1 cellular immune responses, particularly to hepatitis C virus (HCV) nonstructural protein 3 (NS3), has considerable potential to overcome the infection with HCV. DNA vaccination can induce both humoral and cellular immune responses, but it became apparent that the cellular uptake of naked DNA injected into muscle was not very efficient, as much of the DNA is degraded by interstitial nucleases before it reaches the nucleus for transcription. In this paper, cationic liposomes composed of different cationic lipids, such as dimethyl-dioctadecylammonium bromide (DDAB), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), or 1,2-dioleoyl-sn-glycerol-3-ethylphosphocholine (DOEPC), were used to improve DNA immunization in mice, and their efficiencies were compared. It was found that cationic liposome-mediated DNA immunization induced stronger HCV NS3-specific immune responses than immunization with naked DNA alone. Cationic liposomes composed of DDAB and equimolar of a neutral lipid, egg yolk phosphatidylcholine (EPC), induced the strongest antigen-specific Th1 type immune responses among the cationic liposome investigated, whereas the liposomes composed of 2 cationic lipids, DDAB and DOEPC, induced an antigen-specific Th2 type immune response. All cationic liposomes used in this study triggered high-level, nonspecific IL-12 production in mice, a feature important for the development of maximum Th1 immune responses. In conclusion, the cationic liposome-mediated gene delivery is a viable HCV vaccine strategy that should be further tested in the chimpanzee model. PMID:12540796

  3. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  4. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  5. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  6. ApnI, a Transmembrane Protein Responsible for Subtilomycin Immunity, Unveils a Novel Model for Lantibiotic Immunity

    PubMed Central

    Deng, Yun; Li, Cong-Zhi; Zhu, Yi-Guang; Wang, Peng-Xia; Qi, Qing-Dong; Fu, Jing-Jing; Peng, Dong-Hai; Ruan, Li-Fang

    2014-01-01

    Subtilomycin was detected from the plant endophytic strain Bacillus subtilis BSn5 and was first reported from B. subtilis strain MMA7. In this study, a gene cluster that has been proposed to be related to subtilomycin biosynthesis was isolated from the BSn5 genome and was experimentally validated by gene inactivation and heterologous expression. Comparison of the subtilomycin gene cluster with other verified related lantibiotic gene clusters revealed a particular organization of the genes apnI and apnT downstream of apnAPBC, which may be involved in subtilomycin immunity. Through analysis of expression of the apnI and/or apnT genes in the subtilomycin-sensitive strain CU1065 and inactivation of apnI and apnT in the producer strain BSn5, we showed that the single gene apnI, encoding a putative transmembrane protein, was responsible for subtilomycin immunity. To our knowledge, evidence for lantibiotic immunity that is solely dependent on a transmembrane protein is quite rare. Further bioinformatic analysis revealed the abundant presence of ApnI-like proteins that may be responsible for lantibiotic immunity in Bacillus and Paenibacillus. We cloned the paeI gene, encoding one such ApnI-like protein, into CU1065 and showed that it confers resistance to paenibacillin. However, no cross-resistance was detected between ApnI and PaeI, even though subtilomycin and paenibacillin share similar structures, suggesting that the protection provided by ApnI/ApnI-like proteins involves a specific-sequence recognition mechanism. Peptide release/binding assays indicated that the recombinant B. subtilis expressing apnI interacted with subtilomycin. Thus, ApnI represents a novel model for lantibiotic immunity that appears to be common. PMID:25085495

  7. DNA prime-protein boost vaccination enhances protective immunity against infectious bursal disease virus in chickens.

    PubMed

    Gao, Honglei; Li, Kai; Gao, Li; Qi, Xiaole; Gao, Yulong; Qin, Liting; Wang, Yongqiang; Wang, Xiaomei

    2013-05-31

    Infectious bursal disease virus causes an acute contagious immunosuppressive disease in chickens. Using VP2 protein from IBDV (Gx strain) as the immunogen, the goal of the current study was to evaluate the immune responses and protective efficacy elicited by different prime-boost vaccination regimens (DNA only, protein only, and DNA plus protein) in chickens. The results indicated that both pCAGoptiVP2 plasmid and rVP2 protein induced humoral and cellular immune responses. Chickens in the DNA prime-protein boost group developed significantly higher levels of ELISA and neutralizing antibodies to IBDV compared with those immunized with either the DNA vaccine or the protein vaccine alone (P<0.05). Furthermore, the highest levels of lymphocyte proliferation response, IL-4 and IFN-γ production were induced following priming with the DNA vaccine and boosting with the rVP2 protein. Additionally, chickens inoculated with the DNA prime-protein boost vaccine had 100% protection against challenge with vvIBDV, as evidenced by the absence of clinical signs, mortality, and bursal atrophy. In contrast, chickens receiving the DNA vaccine and the rVP2 protein vaccine had 67% and 80% protection, respectively. These findings demonstrated that the DNA prime-protein boost immunization strategy was effective in eliciting both humoral and cellular immune responses in chickens, highlighting the potential value of such an approach in the prevention of vvIBDV infection. PMID:23419823

  8. Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting.

    PubMed

    Hall, M; van Heusden, M C; Söderhäll, K

    1995-11-22

    Lipid-containing hemolymph proteins from males of the crayfish Pacifastacus leniusculus were isolated by density gradient ultracentrifugation. Two major lipoproteins, one high density lipoprotein (HDL) and one very high density lipoprotein (VHDL), were characterized. The HDL and the VHDL were found to be identical to two proteins previously studied for their roles in immune recognition and hemolymph clotting, namely the beta-1,3-glucan binding protein and the clotting protein. These results imply that crayfish lipoproteins have dual functions, and that they are involved in immunity, hemolymph clotting, and lipid transport in these animals. Also, the oxygen-transporting protein hemocyanin was found to have a small lipid content. PMID:7488215

  9. Cross-Protection against Challenge with Puumala Virus after Immunization with Nucleocapsid Proteins from Different Hantaviruses

    PubMed Central

    de Carvalho Nicacio, Cristina; Gonzalez Della Valle, Marcelo; Padula, Paula; Björling, Ewa; Plyusnin, Alexander; Lundkvist, Åke

    2002-01-01

    Hantaviruses are rodent-borne agents that cause hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome in humans. The nucleocapsid protein (N) is relatively conserved among hantaviruses and highly immunogenic in both laboratory animals and humans, and it has been shown to induce efficient protective immunity in animal models. To investigate the ability of recombinant N (rN) from different hantaviruses to elicit cross-protection, we immunized bank voles with rN from Puumala (PUUV), Topografov (TOPV), Andes (ANDV), and Dobrava (DOBV) viruses and subsequently challenged them with PUUV. All animals immunized with PUUV and TOPV rN were completely protected. In the group immunized with DOBV rN, 7 of 10 animals were protected, while only 3 of 8 animals were protected in the group immunized with ANDV rN, which is more closely related to PUUV rN than DOBV rN. Humoral and cellular immune responses after rN immunization were also investigated. The highest cross-reactive humoral responses against PUUV antigen were detected in sera from ANDV rN-immunized animals, followed by those from TOPV rN-immunized animals, and only very low antibody cross-reactivity was observed in sera from DOBV rN-immunized animals. In proliferation assays, T lymphocytes from animals immunized with all heterologous rNs were as efficiently recalled in vitro by PUUV rN as were T lymphocytes from animals immunized with homologous protein. In summary, this study has shown that hantavirus N can elicit cross-protective immune responses against PUUV, and the results suggest a more important role for the cellular arm of the immune response than for the humoral arm in cross-protection elicited by rN. PMID:12050380

  10. Neutralizing antibodies and broad, functional T cell immune response following immunization with hepatitis C virus proteins-based vaccine formulation.

    PubMed

    Martinez-Donato, Gillian; Amador-Cañizares, Yalena; Alvarez-Lajonchere, Liz; Guerra, Ivis; Pérez, Angel; Dubuisson, Jean; Wychowsk, Czeslaw; Musacchio, Alexis; Aguilar, Daylen; Dueñas-Carrera, Santiago

    2014-03-26

    HCV is a worldwide health problem despite the recent advances in the development of more effective therapies. No preventive vaccine is available against this pathogen. However, non-sterilizing immunity has been demonstrated and supports the potential success of HCV vaccines. Induction of cross-neutralizing antibodies and T cell responses targeting several conserved epitopes, have been related to hepatitis C virus (HCV) clearance. Therefore, in this work, the immunogenicity of a preparation (MixprotHC) based on protein variants of HCV Core, E1, E2 and NS3 was evaluated in mice and monkeys. IgG from MixprotHC immunized mice and monkeys neutralized the infectivity of heterologous HCVcc. Moreover, strong CD4+ and CD8+ T cells proliferative and IFN-γ secretion responses were elicited against HCV proteins. Remarkably, immunization with MixprotHC induced control of viremia in a surrogate challenge model in mice. These results suggest that MixprotHC might constitute an effective immunogen against HCV in humans with potential for reducing the likelihood of immune escape and viral persistence. PMID:24486345

  11. Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20.

    PubMed

    Primakoff, P; Lathrop, W; Woolman, L; Cowan, A; Myles, D

    1988-10-01

    Immunization of male and female animals with extracts of whole sperm cells is known to cause infertility. Also, men and women who spontaneously produce antisperm antibodies are infertile but otherwise healthy. Although the critical sperm antigens are unknown, these observations have led to the proposal that sperm proteins might be useful in the development of a contraceptive vaccine. The guinea pig sperm surface protein PH-20 is essential in sperm adhesion to the extracellular coat (zona pellucida) of the egg, a necessary initial step in fertilization. Here, we report that 100% effective contraception was obtained in male and female guinea pigs immunized with PH-20. Antisera from immunized females had high titres, specifically recognized PH-20 in sperm extracts, and blocked sperm adhesion to the egg zona pellucida in vitro. The contraceptive effect was long-lasting and reversible: immunized females, mated at intervals of six to fifteen months after immunization, progressively regained fertility. PMID:3419530

  12. Rapid evolution of immune proteins in social insects.

    PubMed

    Viljakainen, Lumi; Evans, Jay D; Hasselmann, Martin; Rueppell, Olav; Tingek, Salim; Pamilo, Pekka

    2009-08-01

    The existence of behavioral traits connected to defense against pathogens manifests the importance of pathogens in the evolution of social insects. However, very little is known about how pathogen pressure has affected the molecular evolution of genes involved in their innate immune system. We have studied the sequence evolution of several immune genes in ants and honeybees. The results show high rates of evolution in both ants and honeybees as measured by the ratio of amino acid changes to silent nucleotide changes, the ratio being clearly higher than in Drosophila immune genes or in nonimmunity genes of bees. This conforms to our expectations based on high pathogen pressure in social insects. The codon-based likelihood method found clear evidence of positive selection only in one ant gene, even though positive selection has earlier been found in both ant and termite immune genes. There is now indication that selection on the amino acid composition of the immune-related genes has been an important part in the fight against pathogens by social insects. However, we cannot distinguish in all the cases whether the high observed d(N)/d(S) ratio results from positive selection within a restricted part of the studied genes or from relaxation of purifying selection associated with effective measures of behaviorally based colony-level defenses. PMID:19387012

  13. Maltose-binding protein is a potential carrier for oral immunizations.

    PubMed

    Bellot, P; Tiels, P; Melkebeek, V; Devriendt, B; Goddeeris, B M; Cox, E

    2013-03-15

    Maltose binding protein (MBP) is often fused to a relevant protein to improve its yield and facilitate its purification, but MBP can also enhance the immunogenicity of the fused proteins. Recent data suggest that MBP may potentiate antigen-presenting functions in immunized animals by providing intrinsic maturation stimuli to dendritic cells through TLR4. The aim of this study was to examine if an MBP-specific immune response can be elicited by oral administration of MBP. Therefore, in a first experiment the MBP specific immune response was analyzed after oral immunization with MBP or MBP+CT to piglets and both the systemic and mucosal immune responses were examined Although no high systemic response was observed in the MBP-group, a local mucosal IgM MBP-specific response in the jejunal Peyer's patches was observed. In the second experiment MBPFedF was orally administered to piglets. A significant systemic response against MBP and a weak response against FedF were found after oral administration of MBPFedF+CT. Also the presence of MBP-specific IgA ASC in the lamina propria indicates that a local intestinal immune response against MBP was induced. Our data suggests that MBP can cross the epithelial barrier reaching the gut-associated lymphoid tissue after oral administration to pigs, which implicates that MBP could act as a carrier and delivery system for fused proteins to target the vaccine antigens to intestinal immune cells. PMID:23078905

  14. Modulation of host adaptive immunity by hRSV proteins.

    PubMed

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  15. Modulation of host adaptive immunity by hRSV proteins

    PubMed Central

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  16. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    PubMed

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. PMID:26706477

  17. Protein A suppresses immune responses during Staphylococcus aureus bloodstream infection in guinea pigs

    DOE PAGESBeta

    Kim, Hwan Keun; Falugi, Fabiana; Thomer, Lena; Missiakas, Dominique M.; Schneewind, Olaf

    2015-01-06

    Staphylococcus aureus infection is not associated with the development of protective immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that binds immunoglobulin Fcγ and cross-links VH3 clan B cell receptors (IgM), is the staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was examined for protein A cross-linking. High VH3 binding activity occurred with human and guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no binding, respectively. Establishing a guinea pig model of S. aureus bloodstream infection, we show that protein A functions as a virulence determinant and suppresses host Bmore » cell responses. Immunization with SpAKKAA, which cannot bind immunoglobulin, elicits neutralizing antibodies that enable guinea pigs to develop protective immunity.« less

  18. Processing and Properties of Fiber Reinforced Polymeric Matrix Composites. Part 2; Processing Robustness of IM7/PETI Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    1996-01-01

    The processability of a phenylethynyl terminated imide (PETI) resin matrix composite was investigated. Unidirectional prepregs were made by coating an N-methylpyrrolidone solution of the amide acid oligomer onto unsized IM7. Two batches of prepregs were used: one was made by NASA in-house, and the other was from an industrial source. The composite processing robustness was investigated with respect to the effect of B-staging conditions, the prepreg shelf life, and the optimal processing window. Rheological measurements indicated that PETI's processability was only slightly affected over a wide range of B-staging temperatures (from 250 C to 300 C). The open hole compression (OHC) strength values were statistically indistinguishable among specimens consolidated using various B-staging conditions. Prepreg rheology and OHC strengths were also found not to be affected by prolonged (i.e., up to 60 days) ambient storage. An optimal processing window was established using response surface methodology. It was found that IM7/PETI composite is more sensitive to the consolidation temperature than to the consolidation pressure. A good consolidation was achievable at 371 C/100 Psi, which yielded an OHC strength of 62 Ksi at room temperature. However, processability declined dramatically at temperatures below 350 C.

  19. Determination of Interlaminar Toughness of IM7/977-2 Composites at Temperature Extremes and Different Thicknesses

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Pavlick, M. M.; Oliver, M. S.

    2005-01-01

    Composite materials are being used in the aerospace industry as a means of reducing vehicle weight. In particular, polymer matrix composites (PMC) are good candidates due to their high strength-to-weight and high stiffness-to-weight ratios. Future reusable space launch vehicles and space exploration structures will need advanced light weight composites in order to minimize vehicle weight while demonstrating robustness and durability, guaranteeing high factors of safety. In particular, the implementation of composite cryogenic propellant fuel tanks (cryotanks) for future reusable launch vehicles (RLVs) could greatly reduce the vehicle's weight versus identically sized cryotanks constructed of metallic materials. One candidate composite material for future cryotank designs is IM7/977-2, which is a graphite/epoxy system. A successful candidate must demonstrate reasonable structural properties over a wide range of temperatures. Since the matrix material is normally the weak link in the composite, tests that emphasize matrix-dominated behavior need to be conducted. Therefore, the objective of this work is to determine the mode I interlaminar fracture toughness of "unidirectional" 8-ply and 16-ply IM7/977-2 through experimental testing. Tests were performed at -196 degrees Celsius (-320 degrees Fahrenheit), 22 degrees Celsius (72 degrees Fahrenheit), 93 degrees Celsius (200 degrees Fahrenheit) and 160 degrees C (320 degrees Fahrenheit). Low temperature testing was completed while the specimen was submerged in a liquid nitrogen bath. High temperature testing was completed in a temperature-controlled oven.

  20. Rapid evolution of immune proteins in social insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In social insects the existence of behavioral traits connected to defense against pathogens manifests the importance of pathogens in the evolution of social insects. However, very little is known how the pathogen pressure has affected the evolution of genes involved in the innate immune system in so...

  1. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    PubMed Central

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  2. PreImplantation factor (PIF*) regulates systemic immunity and targets protective regulatory and cytoskeleton proteins.

    PubMed

    Barnea, Eytan R; Hayrabedyan, Soren; Todorova, Krassimira; Almogi-Hazan, Osnat; Or, Reuven; Guingab, Joy; McElhinney, James; Fernandez, Nelson; Barder, Timothy

    2016-07-01

    Secreted by viable embryos, PIF is expressed by the placenta and found in maternal circulation. It promotes implantation and trophoblast invasion, achieving systemic immune homeostasis. Synthetic PIF successfully transposes endogenous PIF features to non-pregnant immune and transplant models. PIF affects innate and activated PBMC cytokines and genes expression. We report that PIF targets similar proteins in CD14+, CD4+ and CD8+ cells instigating integrated immune regulation. PIF-affinity chromatography followed by mass-spectrometry, pathway and heatmap analysis reveals that SET-apoptosis inhibitor, vimentin, myosin-9 and calmodulin are pivotal for immune regulation. PIF acts on macrophages down-stream of LPS (lipopolysaccharide-bacterial antigen) CD14/TLR4/MD2 complex, targeting myosin-9, thymosin-α1 and 14-3-3eta. PIF mainly targets platelet aggregation in CD4+, and skeletal proteins in CD8+ cells. Pathway analysis demonstrates that PIF targets and regulates SET, tubulin, actin-b, and S100 genes expression. PIF targets systemic immunity and has a short circulating half-life. Collectively, PIF targets identified; protective, immune regulatory and cytoskeleton proteins reveal mechanisms involved in the observed efficacy against immune disorders. PMID:26944449

  3. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    PubMed

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  4. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  5. A core viral protein binds host nucleosomes to sequester immune danger signals.

    PubMed

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237

  6. Staphylococcus aureus protects its immune-evasion proteins against degradation by neutrophil serine proteases.

    PubMed

    Stapels, D A C; Kuipers, A; von Köckritz-Blickwede, M; Ruyken, M; Tromp, A T; Horsburgh, M J; de Haas, C J C; van Strijp, J A G; van Kessel, K P M; Rooijakkers, S H M

    2016-04-01

    Neutrophils store large quantities of neutrophil serine proteases (NSPs) that contribute, via multiple mechanisms, to antibacterial immune defences. Even though neutrophils are indispensable in fighting Staphylococcus aureus infections, the importance of NSPs in anti-staphylococcal defence is yet unknown. However, the fact that S. aureus produces three highly specific inhibitors for NSPs [the extracellular adherence proteins (EAPs) Eap, EapH1 and EapH2], suggests that these proteases are important for host defences against this bacterium. In this study we demonstrate that NSPs can inactivate secreted virulence factors of S. aureus and that EAP proteins function to prevent this degradation. Specifically, we find that a large group of S. aureus immune-evasion proteins is vulnerable to proteolytic inactivation by NSPs. In most cases, NSP cleavage leads to functional inactivation of virulence proteins. Interestingly, proteins with similar immune-escape functions appeared to have differential cleavage sensitivity towards NSPs. Using targeted mutagenesis and complementation analyses in S. aureus, we demonstrate that all EAP proteins can protect other virulence factors from NSP degradation in complex bacterial supernatants. These findings show that NSPs inactivate S. aureus virulence factors. Moreover, the protection by EAP proteins can explain why this antibacterial function of NSPs was masked in previous studies. Furthermore, our results indicate that therapeutic inactivation of EAP proteins can help to restore the natural host immune defences against S. aureus. PMID:26418545

  7. INVOLVEMENT OF PEPTIDOGLYCAN RECOGNITION PROTEIN L6 IN ACTIVATION OF IMMUNE DEFICIENCY PATHWAY IN THE IMMUNE RESPONSIVE SILKWORM CELLS.

    PubMed

    Tanaka, Hiromitsu; Sagisaka, Aki

    2016-06-01

    The immune deficiency (Imd) signaling pathway is activated by Gram-negative bacteria for producing antimicrobial peptides (AMPs). In Drosophila melanogaster, the activation of this pathway is initiated by the recognition of Gram-negative bacteria by peptidoglycan (PGN) recognition proteins (PGRPs), PGRP-LC and PGRP-LE. In this study, we found that the Imd pathway is involved in enhancing the promoter activity of AMP gene in response to Gram-negative bacteria or diaminopimelic (DAP) type PGNs derived from Gram-negative bacteria in an immune responsive silkworm cell line, Bm-NIAS-aff3. Using gene knockdown experiments, we further demonstrated that silkworm PGRP L6 (BmPGRP-L6) is involved in the activation of E. coli or E. coli-PGN mediated AMP promoter activation. Domain analysis revealed that BmPGRP-L6 contained a conserved PGRP domain, transmembrane domain, and RIP homotypic interaction motif like motif but lacked signal peptide sequences. BmPGRP-L6 overexpression enhances AMP promoter activity through the Imd pathway. BmPGRP-L6 binds to DAP-type PGNs, although it also binds to lysine-type PGNs that activate another immune signal pathway, the Toll pathway in Drosophila. These results indicate that BmPGRP-L6 is a key PGRP for activating the Imd pathway in immune responsive silkworm cells. PMID:26991439

  8. Identification of Brucella abortus virulence proteins that modulate the host immune response.

    PubMed

    Wang, Yufei; Chen, Zeliang; Qiu, Yefeng; Ke, Yuehua; Xu, Jie; Yuan, Xitong; Li, Xianbo; Fu, Simei; Cui, Mingquan; Xie, Yongfei; Du, Xinying; Wang, Zhoujia; Huang, Liuyu

    2012-01-01

    Brucellosis is an important zoonotic disease of almost worldwide distribution. One significant immune phenomenon of this disease is the ability of the pathogen to hide and survive in the host, establishing long lasting chronic infections. Brucella was found to have the ability to actively modulate the host immune response in order to establish chronic infections, but the mechanism by which the pathogen achieves this remains largely unknown. In our screening for protective antigens of Brucella abortus, 3 proteins (BAB1_0597, BAB1_0917, and BAB2_0431) were found to induce significantly higher levels of gamma interferon (IFNγ) in splenocytes of PBS immunized mice than those immunized with S19. This finding strongly implied that these three proteins inhibit the production of IFNγ. Previous studies have shown that LPS, PrpA, and Btp1/TcpB are three important immunomodulatory molecules with the capacity to interfere with host immune response. They have been shown to have the ability to inhibit the secretion of IFNγ, or to increase the production of IL-10. Due to the role of these proteins in virulence and immunomodulation, they likely offer significant potential as live, attenuated Brucella vaccine candidates. Understanding the mechanisms by which these proteins modulate the host immune responses will deepen our knowledge of Brucella virulence and provide important information on the development of new vaccines against Brucellosis. PMID:22743689

  9. A cardiac myosin-specific autoimmune response is induced by immunization with Trypanosoma cruzi proteins.

    PubMed

    Leon, Juan S; Daniels, Melvin D; Toriello, Krista M; Wang, Kegiang; Engman, David M

    2004-06-01

    Trypanosoma cruzi is the protozoan parasite that causes Chagas' heart disease, a potentially fatal cardiomyopathy prevalent in Central and South America. Infection with T. cruzi induces cardiac myosin autoimmunity in susceptible humans and mice, and this autoimmunity has been suggested to contribute to cardiac inflammation. To address how T. cruzi induces cardiac myosin autoimmunity, we investigated whether immunity to T. cruzi antigens could induce cardiac myosin-specific autoimmunity in the absence of live parasites. We immunized A/J mice with a T. cruzi Brazil-derived protein extract emulsified in complete Freund's adjuvant and found that these mice developed cardiac myosin-specific delayed-type hypersensitivity (DTH) and autoantibodies in the absence of detectable cardiac damage. The induction of autoimmunity was specific since immunization with extracts of the related protozoan parasite Leishmania amazonensis did not induce myosin autoimmunity. The immunogenetic makeup of the host was important for this response, since C57BL/6 mice did not develop cardiac myosin DTH upon immunization with T. cruzi extract. Perhaps more interesting, mice immunized with cardiac myosin developed T. cruzi-specific DTH and antibodies. This DTH was also antigen specific, since immunization with skeletal myosin and myoglobin did not induce T. cruzi-specific immunity. These results suggest that immunization with cardiac myosin or T. cruzi antigen can induce specific, bidirectionally cross-reactive immune responses in the absence of detectable cardiac damage. PMID:15155647

  10. Classical Flt3L-dependent dendritic cells control immunity to protein vaccine

    PubMed Central

    Feder, Rachel; Mollah, Shamim; Tse, Sze-Wah; Longhi, Maria Paula; Mehandru, Saurabh; Matos, Ines; Cheong, Cheolho; Ruane, Darren; Brane, Lucas; Teixeira, Angela; Dobrin, Joseph; Mizenina, Olga; Park, Chae Gyu; Meredith, Matthew; Clausen, Björn E.; Nussenzweig, Michel C.; Steinman, Ralph M.

    2014-01-01

    DCs are critical for initiating immunity. The current paradigm in vaccine biology is that DCs migrating from peripheral tissue and classical lymphoid-resident DCs (cDCs) cooperate in the draining LNs to initiate priming and proliferation of T cells. Here, we observe subcutaneous immunity is Fms-like tyrosine kinase 3 ligand (Flt3L) dependent. Flt3L is rapidly secreted after immunization; Flt3 deletion reduces T cell responses by 50%. Flt3L enhances global T cell and humoral immunity as well as both the numbers and antigen capture capacity of migratory DCs (migDCs) and LN-resident cDCs. Surprisingly, however, we find immunity is controlled by cDCs and actively tempered in vivo by migDCs. Deletion of Langerin+ DC or blockade of DC migration improves immunity. Consistent with an immune-regulatory role, transcriptomic analyses reveals different skin migDC subsets in both mouse and human cluster together, and share immune-suppressing gene expression and regulatory pathways. These data reveal that protective immunity to protein vaccines is controlled by Flt3L-dependent, LN-resident cDCs. PMID:25135299

  11. Protein synthesis regulation, a pillar of strength for innate immunity?

    PubMed

    Argüello, Rafael J; Rodriguez Rodrigues, Christian; Gatti, Evelina; Pierre, Philippe

    2015-02-01

    Recognition of pathogen derived molecules by Pattern Recognition Receptors (PRR) induces the production of cytokines (i.e. type I interferons) that stimulate the surrounding cells to transcribe and translate hundreds of genes, in order to prevent further infection and organize the immune response. Here, we report on the rising matter that metabolism sensing and gene expression control at the level of mRNA translation, allow swift responses that mobilize host defenses and coordinate innate responses to infection. PMID:25553394

  12. Comparisons of Allergenic and Metazoan Parasite Proteins: Allergy the Price of Immunity.

    PubMed

    Tyagi, Nidhi; Farnell, Edward J; Fitzsimmons, Colin M; Ryan, Stephanie; Tukahebwa, Edridah; Maizels, Rick M; Dunne, David W; Thornton, Janet M; Furnham, Nicholas

    2015-10-01

    Allergic reactions can be considered as maladaptive IgE immune responses towards environmental antigens. Intriguingly, these mechanisms are observed to be very similar to those implicated in the acquisition of an important degree of immunity against metazoan parasites (helminths and arthropods) in mammalian hosts. Based on the hypothesis that IgE-mediated immune responses evolved in mammals to provide extra protection against metazoan parasites rather than to cause allergy, we predict that the environmental allergens will share key properties with the metazoan parasite antigens that are specifically targeted by IgE in infected human populations. We seek to test this prediction by examining if significant similarity exists between molecular features of allergens and helminth proteins that induce an IgE response in the human host. By employing various computational approaches, 2712 unique protein molecules that are known IgE antigens were searched against a dataset of proteins from helminths and parasitic arthropods, resulting in a comprehensive list of 2445 parasite proteins that show significant similarity through sequence and structure with allergenic proteins. Nearly half of these parasite proteins from 31 species fall within the 10 most abundant allergenic protein domain families (EF-hand, Tropomyosin, CAP, Profilin, Lipocalin, Trypsin-like serine protease, Cupin, BetV1, Expansin and Prolamin). We identified epitopic-like regions in 206 parasite proteins and present the first example of a plant protein (BetV1) that is the commonest allergen in pollen in a worm, and confirming it as the target of IgE in schistosomiasis infected humans. The identification of significant similarity, inclusive of the epitopic regions, between allergens and helminth proteins against which IgE is an observed marker of protective immunity explains the 'off-target' effects of the IgE-mediated immune system in allergy. All these findings can impact the discovery and design of molecules

  13. Evaluation of Immune Responses in Mice after DNA Immunization with Putative Toxoplasma gondii Calcium-Dependent Protein Kinase 5

    PubMed Central

    Zhang, Nian-Zhang; Xu, Ying; Chen, Jia; Wang, Jin-Lei; Tian, Wei-Peng

    2014-01-01

    Toxoplasma gondii can cause serious public health problems and economic losses worldwide. Calcium-dependent protein kinases (CDPKs) are key mediators of T. gondii signaling pathways and are implicated as important virulence factors. In the present study, we cloned a novel T. gondii CDPK gene, named TgCDPK5, and constructed the eukaryotic expression vector pVAX-CDPK5. Then, we evaluated the immune protection induced by pVAX-CDPK5 in Kunming mice. After injection of pVAX-CDPK5 intramuscularly, immune responses, determined with lymphoproliferative assays and cytokine and antibody measurements, were monitored, and mouse survival times and brain cyst formation were evaluated following challenges with the T. gondii RH strain (genotype I) and the PRU strain (genotype II). pVAX-CDPK5 effectively induced immune responses with increased specific antibodies, a predominance of IgG2a production, and a strong lymphocyte proliferative response. The levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), and IL-12(p70) and the percentages of CD3+ CD4+ and CD3+ CD8+ cells in mice vaccinated with pVAX-CDPK5 were significantly increased. However, IL-4 and IL-10 were not produced in the vaccinated mice. These results demonstrate that pVAX-CDPK5 can elicit strong humoral and cellular Th1 immune responses. The survival time of immunized mice challenged with the T. gondii RH strain (8.67 ± 4.34 days) was slightly, but not significantly, longer than that in the control groups within 7 days (P > 0.05). The numbers of brain cysts in the mice in the pVAX-CDPK5 group were reduced by ∼40% compared with those in the control groups (P < 0.05), which provides a foundation for the further development of effective subunit vaccines against T. gondii. PMID:24789795

  14. Encapsulated Cellular Implants for Recombinant Protein Delivery and Therapeutic Modulation of the Immune System

    PubMed Central

    Lathuilière, Aurélien; Mach, Nicolas; Schneider, Bernard L.

    2015-01-01

    Ex vivo gene therapy using retrievable encapsulated cellular implants is an effective strategy for the local and/or chronic delivery of therapeutic proteins. In particular, it is considered an innovative approach to modulate the activity of the immune system. Two recently proposed therapeutic schemes using genetically engineered encapsulated cells are discussed here: the chronic administration of monoclonal antibodies for passive immunization against neurodegenerative diseases and the local delivery of a cytokine as an adjuvant for anti-cancer vaccines. PMID:26006227

  15. Immunizations.

    PubMed

    Sanford, Christopher A; Jong, Elaine C

    2016-03-01

    Vaccinations are a cornerstone of the pretravel consultation. The pretravel provider should assess a traveler's past medical history, planned itinerary, activities, mode of travel, and duration of stay and make appropriate vaccine recommendations. Given that domestic vaccine-preventable illnesses are more common in international travelers than are exotic or low-income nation-associated vaccine-preventable illnesses, clinicians should first ensure that travelers are current regarding routine immunizations. Additional immunizations may be indicated in some travelers. Familiarity with geographic distribution and seasonality of infectious diseases is essential. Clinicians should be cognizant of which vaccines are live, as there exist contraindications for live vaccines. PMID:26900111

  16. The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Feldman, Mark

    1994-01-01

    Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.

  17. Experimental Verification of a Progressive Damage Model for IM7/5260 Laminates Subjected to Tension-Tension Fatigue

    NASA Technical Reports Server (NTRS)

    Coats, Timothy W.; Harris, Charles E.

    1995-01-01

    The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence.

  18. Maternal Immunization with Pneumococcal Surface Protein A Protects against Pneumococcal Infections among Derived Offspring

    PubMed Central

    Hollingshead, Susan K.; Briles, David E.; Yamanaka, Noboru

    2011-01-01

    Pathogen-specific antibody plays an important role in protection against pneumococcal carriage and infections. However, neonates and infants exhibit impaired innate and adaptive immune responses, which result in their high susceptibility to pneumococci. To protect neonates and infants against pneumococcal infection it is important to elicit specific protective immune responses at very young ages. In this study, we investigated the protective immunity against pneumococcal carriage, pneumonia, and sepsis induced by maternal immunization with pneumococcal surface protein A (PspA). Mother mice were intranasally immunized with recombinant PspA (rPspA) and cholera toxin B subunit (CTB) prior to being mated. Anti-PspA specific IgG, predominantly IgG1, was present at a high level in the serum and milk of immunized mothers and in the sera of their pups. The pneumococcal densities in washed nasal tissues and in lung homogenate were significantly reduced in pups delivered from and/or breast-fed by PspA-immunized mothers. Survival after fatal systemic infections with various types of pneumococci was significantly extended in the pups, which had received anti-PspA antibody via the placenta or through their milk. The current findings strongly suggest that maternal immunization with PspA is an attractive strategy against pneumococcal infections during early childhood. (191 words) PMID:22073127

  19. Maternal immunization with pneumococcal surface protein A protects against pneumococcal infections among derived offspring.

    PubMed

    Kono, Masamitsu; Hotomi, Muneki; Hollingshead, Susan K; Briles, David E; Yamanaka, Noboru

    2011-01-01

    Pathogen-specific antibody plays an important role in protection against pneumococcal carriage and infections. However, neonates and infants exhibit impaired innate and adaptive immune responses, which result in their high susceptibility to pneumococci. To protect neonates and infants against pneumococcal infection it is important to elicit specific protective immune responses at very young ages. In this study, we investigated the protective immunity against pneumococcal carriage, pneumonia, and sepsis induced by maternal immunization with pneumococcal surface protein A (PspA). Mother mice were intranasally immunized with recombinant PspA (rPspA) and cholera toxin B subunit (CTB) prior to being mated. Anti-PspA specific IgG, predominantly IgG1, was present at a high level in the serum and milk of immunized mothers and in the sera of their pups. The pneumococcal densities in washed nasal tissues and in lung homogenate were significantly reduced in pups delivered from and/or breast-fed by PspA-immunized mothers. Survival after fatal systemic infections with various types of pneumococci was significantly extended in the pups, which had received anti-PspA antibody via the placenta or through their milk. The current findings strongly suggest that maternal immunization with PspA is an attractive strategy against pneumococcal infections during early childhood. PMID:22073127

  20. Carbon nanotube sensor thread for distributed strain and damage monitoring on IM7/977-3 composites

    NASA Astrophysics Data System (ADS)

    Song, Yi; Hehr, Adam; Shanov, Vesselin; Alvarez, Noe; Kienzle, Nicholas; Cummins, Joshua; Koester, Dave; Schulz, Mark

    2014-07-01

    Laminated composite materials are used in applications where light weight is a key requirement. However, minor delamination damage in composites can propagate and lead to the failure of components. Failure occurs because delamination reduces the local bending stiffness and increases bending stress, which leads to the propagation of damage and eventual failure. These failures may be avoided if the damage could be detected early and repaired. Although many damage detection methods have been investigated, none are in widespread use today to prevent the failure of composites. This paper describes the use of carbon nanotube sensor thread to monitor strain and damage in composite materials. Sensor thread was bonded onto an IM7-laminated composite coupon to measure surface strain in a quasi-static uniaxial tensile test. The sensor thread was calibrated against a strain gage, which was also mounted to the coupon. The sensor thread measured the average strain over the length of the sample and indicated when the strain exceeded a nominal safe level. Sensor thread was also bonded to the surface of laminated composite panels in different patterns and detected, located and partially characterized the damage caused by multiple impacts to the panel. The new findings in this paper can be summarized as; (1) carbon nanotube sensor thread was tested as a distributed sensor for the first time on IM7/977-3 composites; (2) the sensor thread was found to monitor strain and detect damage in the composites with a potential sensitivity down to the micro-crack level; (3) the sensor thread was barely visible on the composite and did not add significant mass or affect the integrity of the composite; (4) the data acquisition system developed was simple and reliable.

  1. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation.

    PubMed

    Roth, Susanne; Ruland, Jürgen

    2013-06-01

    Caspase recruitment domain-containing protein (Card)9 is a nonredundant adapter protein that functions in the innate immune system in the assembly of multifunctional signaling complexes. Together with B cell lymphoma (Bcl)10 and the paracaspase, mucosa-associated lymphoid tissue lymphoma translocation protein (Malt)1, Card9 links spleen-tyrosine kinase (Syk)-coupled C-type lectin receptors to inflammatory responses. Card9 signaling also responds to intracellular danger sensors, such as retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) and nucleotide-oligomerization domain (Nod)2. Card9 complexes are engaged upon fungal, bacterial, or viral recognition, and they are essential for host protection. Moreover, Card9 polymorphisms are commonly associated with human inflammatory diseases. Here, we discuss the molecular regulation and the physiological functions of Card9 in host defense and immune homeostasis, and provide a framework for the therapeutic targeting of Card9 signaling in immune-mediated diseases. PMID:23523010

  2. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  3. Protective immunity induced by recombinant protein CPSIT_p8 of Chlamydia psittaci.

    PubMed

    Liang, Mingxing; Wen, Yating; Ran, Ou; Chen, Liesong; Wang, Chuan; Li, Li; Xie, Yafeng; Zhang, Yang; Chen, Chaoqun; Wu, Yimou

    2016-07-01

    Chlamydia psittaci is a zoonotic pathogen with a broad host range that can lead to severe respiratory and systemic disease in humans. Currently, an effective commercial vaccine against C. psittaci infection is not available. The chlamydial plasmid is an important virulence factor and encodes plasmid proteins that play important roles in chlamydial infection and the corresponding immune response. In this study, we assessed the efficacy of vaccination with plasmid proteins at preventing C. psittaci lung infection in a murine model. BALB/c mice were immunized intraperitoneally, three times at 2-week intervals, with purified recombinant CPSIT_p8 protein and then infected with C. psittaci. Immunization significantly decreased chlamydial load in the lungs of infected mice, resulted in a lower level of IFN-γ, and reduced the extent of inflammation. In vivo or in vitro neutralization of C. psittaci with sera collected from immunized mice did not reduce the amount of viable C. psittaci in the lungs of mice, indicating that CPSIT_p8-specific antibodies do not have neutralizing capacity. Furthermore, confocal fluorescence microscopy using a mouse anti-CPSIT_p8 antibody revealed that CPSIT_p8 was localized inside the inclusion of C. psittaci 6BC-infected cells. Our results demonstrate that CPSIT_p8 protein induces significant protective immunity against challenge with C. psittaci in mice and represents a promising new vaccine candidate for the prevention of C. psittaci infection. PMID:27052378

  4. Human immune response to salivary proteins of wild-caught Phlebotomus papatasi.

    PubMed

    Mukbel, Rami M; Khasharmeh, Rehab H; Hijjawi, Nawal S; Khalifeh, Mohammed S; Hatmal, Ma'mon M; McDowell, Mary Ann

    2016-09-01

    Phlebotomine sand flies are the known vectors of Leishmania parasites. New approaches in vaccination against Leishmania have investigated the possibility of integrating Phlebotomus papatasi salivary proteins to enhance the immune response and protect against the transmission of the infection. The aim of the present study was to screen human immune responses to wild sand fly saliva and evaluate immunogenic salivary proteins. Blood samples were collected from donors in control and sand fly infested areas. Antibodies specific for sand fly antigens in donor plasma were probed using immunoblotting. In addition, recall proliferation capability of peripheral blood mononuclear cells (PBMC) was tested after sand fly salivary homogenates stimulation. The significant immunogenic salivary proteins (SPs) identified by immunoblotting were SP28, SP32, and SP36. A specific proliferative response of PBMC after stimulation with sand fly salivary homogenates was evident in donors that have antibody responses against sand fly salivary proteins. Individuals with antibody recognition to a higher number of salivary proteins (i.e., 3 or more SP bands) showed lower PBMC proliferative responses after in vitro stimulation with salivary gland homogenates (SGH) only in the sand fly infested, leishmaniasis free area. Interestingly, the presence of a humoral immune response to many SP antigens inversely correlates with a strong cell-mediated immune response (CMI). It was also noticed that some other heavily expressed antigens, in sand fly salivary homogenate, lack or have weak humoral immune reactivity in exposed individuals. Therefore, considering these antigens alone as CMI activators, without including the immunodominant humoral immune response proteins, needs future investigation. PMID:27160331

  5. Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity.

    PubMed

    Krause, Anja; Joh, Ju H; Hackett, Neil R; Roelvink, Peter W; Bruder, Joseph T; Wickham, Thomas J; Kovesdi, Imre; Crystal, Ronald G; Worgall, Stefan

    2006-06-01

    On the basis of the concept that the capsid proteins of adenovirus (Ad) gene transfer vectors can be genetically manipulated to enhance the immunogenicity of Ad-based vaccines, the present study compared the antiantigen immunogenicity of Ad vectors with a common epitope of the hemagglutinin (HA) protein of the influenza A virus incorporated into the outer Ad capsid protein hexon, penton base, fiber knob, or protein IX. Incorporation of the same epitope into the different capsid proteins provided insights into the correlation between epitope position and antiepitope immunity. Following immunization of three different strains of mice (C57BL/6, BALB/c, and CBA) with either an equal number of Ad particles (resulting in a different total HA copy number) or different Ad particle numbers (to achieve the same HA copy number), the highest primary (immunoglobulin M [IgM]) and secondary (IgG) anti-HA humoral and cellular CD4 gamma interferon and interleukin-4 responses against HA were always achieved with the Ad vector carrying the HA epitope in fiber knob. These observations suggest that the immune response against an epitope inserted into Ad capsid proteins is not necessarily dependent on the capsid protein number and imply that the choice of incorporation site in Ad capsid proteins in their use as vaccines needs to be compared in vivo. PMID:16699033

  6. Possible association between phages, Hoc protein, and the immune system.

    PubMed

    Dabrowska, K; Switała-Jeleń, K; Opolski, A; Górski, A

    2006-02-01

    Mammals have become "an environment" for enterobacterial phage life cycles. Therefore it could be expected that bacteriophages adapt to them. This adaptation must comprise bacteriophage proteins. Gp Hoc seems to have significance neither for phage particle structure nor for phage antibacterial activity. It is evidently not necessary for the "typical" antibacterial actions of bacteriophages. But the rules of evolution make it improbable that gp Hoc really has no function, and non-essential genes of T4-type phages are probably important for phages' adaptation to their particular lifestyle. More interesting is the eukaryotic origin of gp Hoc: a resemblance to immunoglobulin-like proteins that reflects their evolutionary relation. Substantial differences in biological activity between T4 and a mutant that lacks gp Hoc were observed in a mammalian system. Hoc protein seems to be one of the molecules predicted to interact with mammalian organisms and/or modulate these interactions. PMID:16195787

  7. Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor

    PubMed Central

    Liang, Xiangxiu; Ding, Pingtao; Lian, Kehui; Wang, Jinlong; Ma, Miaomiao; Li, Lin; Li, Lei; Li, Meng; Zhang, Xiaojuan; Chen, She; Zhang, Yuelin; Zhou, Jian-Min

    2016-01-01

    The Arabidopsis immune receptor FLS2 perceives bacterial flagellin epitope flg22 to activate defenses through the central cytoplasmic kinase BIK1. The heterotrimeric G proteins composed of the non-canonical Gα protein XLG2, the Gβ protein AGB1, and the Gγ proteins AGG1 and AGG2 are required for FLS2-mediated immune responses through an unknown mechanism. Here we show that in the pre-activation state, XLG2 directly interacts with FLS2 and BIK1, and it functions together with AGB1 and AGG1/2 to attenuate proteasome-mediated degradation of BIK1, allowing optimum immune activation. Following the activation by flg22, XLG2 dissociates from AGB1 and is phosphorylated by BIK1 in the N terminus. The phosphorylated XLG2 enhances the production of reactive oxygen species (ROS) likely by modulating the NADPH oxidase RbohD. The study demonstrates that the G proteins are directly coupled to the FLS2 receptor complex and regulate immune signaling through both pre-activation and post-activation mechanisms. DOI: http://dx.doi.org/10.7554/eLife.13568.001 PMID:27043937

  8. Tumoral Immune Suppression by Macrophages Expressing Fibroblast Activation Protein-Alpha and Heme Oxygenase-1

    PubMed Central

    Arnold, James N.; Magiera, Lukasz; Kraman, Matthew; Fearon, Douglas T.

    2013-01-01

    The depletion of tumor stromal cells that are marked by their expression of the membrane protein fibroblast activation protein-α (FAP) overcomes immune suppression and allows an anti-cancer cell immune response to control tumor growth. In subcutaneous tumors established with immunogenic Lewis lung carcinoma cells expressing ovalbumin (LL2/OVA), the FAP+ population comprises CD45+ and CD45− cells. In the present study, we further characterize the tumoral FAP+/CD45+ population as a minor sub-population of F4/80hi/CCR2+/CD206+ M2 macrophages. Using bone marrow chimeric mice in which the primate diphtheria toxin receptor (DTR) is restricted either to the FAP+/CD45+ or to the FAP+/CD45− subset, we demonstrate by conditionally depleting each subset that both independently contribute to the immune suppressive tumor microenvironment. A basis for the function of the FAP+/CD45+ subset is shown to be the immune inhibitory enzyme, heme oxygenase-1 (HO-1). The FAP+/CD45+ cells are the major tumoral source of HO-1, and an inhibitor of HO-1, Sn mesoporphyrin, causes the same extent of immune-dependent arrest of LL2/OVA tumor growth as does the depletion of these cells. Since this observation of immune suppression by HO-1 expressed by the FAP+/CD45+ stromal cell is replicated in a transplanted model of pancreatic ductal adenocarcinoma, we conclude that pharmacologically targeting this enzyme may improve cancer immunotherapy. PMID:24778275

  9. Protective immunity of E. coli-synthesized NS1 protein of Japanese encephalitis virus.

    PubMed

    Lin, Cheng-Wen; Liu, Kuang-Ting; Huang, Hong-Da; Chen, Wei-June

    2008-02-01

    Immunogenicity and protective efficacy of recombinant Japanese encephalitis virus (JEV) NS1 proteins generated using DNA vaccines and recombinant viruses have been demonstrated to induce protection in mice against a challenge of JEV at a lethal dose. The West Nile virus NS1 region expressed in E. coli is recognized by these protective monoclonal antibodies and, in this study, we compare immunogenicity and protective immunity of the E. coli-synthesized NS1 protein with another protective immunogen, the envelope domain III (ED3). Pre-challenge, detectable titers of JEV-specific neutralizing antibody were detected in the immunized mice with E. coli-synthesized ED3 protein (PRNT50 = 1:28) and the attenuated JEV strain T1P1 (PRNT50 = 1:53), but neutralizing antibodies were undetectable in the immunized mice with E. coli-synthesized NS1 protein (PRNT50 < 1:10). However, the survival rate of the NS1-immunized mice against the JEV challenge was 87.5% (7/8), showing significantly higher levels of protection than the ED3-immunized mice, 62.5% (5/8) (P = 0.041). In addition, E. coli-synthesized NS1 protein induced a significant increase of anti-NS1 IgG1 antibodies, resulting in an ELISA titer of 100,1000 in the immunized sera before lethal JEV challenge. Surviving mice challenged with the virulent JEV strain Beijing-1 showed a ten-fold or greater rise in IgG1 and IgG2b titers of anti-NS1 antibodies, implying that the Th2 cell activation might be predominantly responsible for antibody responses and mice protection. PMID:17876533

  10. Immune response in mice to ingested soya protein: antibody production, oral tolerance and maternal transfer.

    PubMed

    Christensen, Hanne R; Brix, Susanne; Frøkiaer, Hanne

    2004-05-01

    While allergic reactions to soya are increasingly investigated, the normal immune response to ingested soya is scarcely described. In the present study, we wanted to characterise the soya-specific immune response in healthy mice ingesting soya protein. Mice fed a soya-containing diet (F0) and mice of the first (F1) and second (F2) offspring generation bred on a soya protein-free diet were used either directly or were transferred between the soya-containing and soya protein-free diet during pregnancy or neonatal life. The mice were compared as to levels of naturally occurring specific antibodies analysed by ELISA, and to the presence of oral tolerance detected as a suppressed antibody and cell-proliferation response upon immunisation with soya protein. F0 mice generated soya-specific antibodies, while oral tolerance to the same soya proteins was also clearly induced. When F0 dams were transferred to soya protein-free feed before mating, the F1 and F2 offspring generations showed no significantly different response, indicating that soya-specific immune components were not maternally transmitted. However, the ingestion of dietary soya protein by F1 mice during late pregnancy and lactation caused a lasting antibody response in the offspring, but in this case in the absence of oral tolerance. This indicates that, under certain conditions, factors involved in spontaneous antibody production can be transmitted from mother to offspring. Understanding the immune response to soya protein ingested under healthy conditions is important in the assessment of adverse effects of soya protein and in the use of animal allergy models. The present results add to this understanding. PMID:15137924

  11. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

    PubMed Central

    Park, Chang-Jin; Seo, Young-Su

    2015-01-01

    As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells. PMID:26676169

  12. Staphylococcus aureus proteins differentially recognized by the ovine immune response in mastitis or nasal carriage.

    PubMed

    Seyffert, Nubia; Le Maréchal, Caroline; Jardin, Julien; McCulloch, John A; Rosado, Fabio R; Miyoshi, Anderson; Even, Sergine; Jan, Gwenaël; Berkova, Nadia; Vautor, Eric; Thiéry, Richard; Azevedo, Vasco; Le Loir, Yves

    2012-06-15

    Staphylococcus aureus is an opportunistic pathogen in dairy ruminants where it is found in healthy carriage and can be a major cause of mastitis. A better knowledge of the host-pathogen interactions is needed to tackle this serious animal health problem. This study aimed at identifying S. aureus proteins differentially expressed by S. aureus in nasal colonization versus mastitis. Serological proteome analysis (SERPA) was used to examine protein samples prepared from culture supernatants of S. aureus strains originally isolated from gangrenous mastitis and nasal carriage (O11) or subclinical mastitis (O46) and to compare patterns of immune-reactive proteins. These staphylococcal proteins were revealed by sera obtained from ewes suffering from S. aureus mastitis and by sera obtained from healthy nulliparous ewes (i.e. no lactation and no mastitis or other symptoms) that were nasally colonized by S. aureus. Altogether 49 staphylococcal immune-reactive proteins were identified in this study. Patterns of proteins revealed by sera from infected- or healthy carrier- animals were comparable and analysis singled out one immune-reactive protein, N-acetylmuramyl-L-alanine amidase, which was recognized by each of the 6 sera from infected animals, when tested individually, and not by the sera of healthy carriers. This is the first study that compares the S. aureus seroproteome in colonization versus mastitis context in ruminants. These results open avenues for studies aiming at a better understanding of the balance between infection and commensal lifestyle in this opportunistic pathogen and at new prevention strategies. PMID:22342493

  13. Antibody study in canine distemper virus nucleocapsid protein gene-immunized mice.

    PubMed

    Yuan, B; Li, X Y; Zhu, T; Yuan, L; Hu, J P; Chen, J; Gao, W; Ren, W Z

    2015-01-01

    The gene for the nucleocapsid (N) protein of canine distemper virus was cloned into the pMD-18T vector, and positive recombinant plasmids were obtained by enzyme digestion and sequencing. After digestion by both EcoRI and KpnI, the plasmid was directionally cloned into the eukaryotic expression vector pcDNA; the positive clone pcDNA-N was screened by electrophoresis and then transfected into COS-7 cells. Immunofluorescence analysis results showed that the canine distemper virus N protein was expressed in the cytoplasm of transfected COS-7 cells. After emulsification in Freund's adjuvant, the recombinant plasmid pcDNA-N was injected into the abdominal cavity of 8-week-old BABL/c mice, with the pcDNA original vector used as a negative control. Mice were immunized 3 times every 2 weeks. The blood of immunized mice was drawn 2 weeks after completing the immunizations to measure titer levels. The antibody titer in the pcDNA-N test was 10(1.62 ± 0.164), while in the control group this value was 10(0.52 ± 0.56), indicating that specific humoral immunity was induced in canine distemper virus nucleocapsid protein-immunized mice. PMID:25966074

  14. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris

    PubMed Central

    Brunner, Franziska S.; Schmid-Hempel, Paul; Barribeau, Seth M.

    2014-01-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host–parasite interactions. PMID:24850921

  15. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin

    PubMed Central

    Salmela, Heli; Amdam, Gro V.; Freitak, Dalial

    2015-01-01

    Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae – the gram-positive bacterium causing American foulbrood disease – and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin. PMID:26230630

  16. Establishment of tumor-associated immunity requires interaction of Heat Shock Proteins with CD91

    PubMed Central

    Zhou, Yu Jerry; Messmer, Michelle Nicole; Binder, Robert Julian

    2014-01-01

    Host antitumor adaptive immune responses are generated as a result of the body’s immunosurveillance mechanisms. How the antitumor immune response is initially primed remains unclear, given that soluble tumor antigens generally are quantitatively insufficient for cross-priming and tumors lack the classical pathogen-associated molecular patterns (PAMPs) to activate costimulation and initiate cross-priming. We explored the interaction of the tumor-derived heat-shock proteins (HSP) with their common receptor (CD91) on antigen presenting cells (APCs) as a mechanism for host-priming of T cell-mediated antitumor immunity. Using targeted genetic disruption of the interaction between HSPs and CD19, we demonstrated that specific ablation of CD91 in APCs prevented the establishment of antitumor immunity. The antitumor immunity was also inhibited when the transfer of tumor-derived HSPs to APCs was prevented using an endogenous inhibitor of CD91. Inhibition was manifested in a reduction of cross-presentation of tumor-derived antigenic peptides in the lymph nodes providing a molecular basis for the observed immunity associated with tumor development. Our findings demonstrate that early in tumor development, the HSP-CD91 pathway is critical for the establishment of antitumor immunity. PMID:24778318

  17. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin.

    PubMed

    Salmela, Heli; Amdam, Gro V; Freitak, Dalial

    2015-07-01

    Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin. PMID:26230630

  18. Surfactant Protein-D Is Essential for Immunity to Helminth Infection.

    PubMed

    Thawer, Sumaiyya; Auret, Jennifer; Schnoeller, Corinna; Chetty, Alisha; Smith, Katherine; Darby, Matthew; Roberts, Luke; Mackay, Rosie-Marie; Whitwell, Harry J; Timms, John F; Madsen, Jens; Selkirk, Murray E; Brombacher, Frank; Clark, Howard William; Horsnell, William G C

    2016-02-01

    Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths. PMID:26900854

  19. Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91.

    PubMed

    Zhou, Yu Jerry; Messmer, Michelle Nicole; Binder, Robert Julian

    2014-03-01

    Host antitumor adaptive immune responses are generated as a result of the body's immunosurveillance mechanisms. How the antitumor immune response is initially primed remains unclear, given that soluble tumor antigens generally are quantitatively insufficient for cross-priming and tumors generally lack the classical pathogen-associated molecular patterns to activate costimulation and initiate cross-priming. We explored the interaction of the tumor-derived heat shock proteins (HSP) with their common receptor (CD91) on antigen-presenting cells (APC) as a mechanism for host-priming of T-cell-mediated antitumor immunity. Using targeted genetic disruption of the interaction between HSPs and CD91, we demonstrated that specific ablation of CD91 in APCs prevented the establishment of antitumor immunity. The antitumor immunity was also inhibited when the transfer of tumor-derived HSPs to APCs was prevented using an endogenous inhibitor of CD91. Inhibition was manifested in a reduction of cross-presentation of tumor-derived antigenic peptides in the lymph nodes, providing a molecular basis for the observed immunity associated with tumor development. Our findings demonstrate that early in tumor development, the HSP-CD91 pathway is critical for the establishment of antitumor immunity. PMID:24778318

  20. Surfactant Protein-D Is Essential for Immunity to Helminth Infection

    PubMed Central

    Schnoeller, Corinna; Chetty, Alisha; Smith, Katherine; Darby, Matthew; Roberts, Luke; Mackay, Rosie-Marie; Whitwell, Harry J.; Timms, John F.; Madsen, Jens; Selkirk, Murray E.; Brombacher, Frank; Clark, Howard William; Horsnell, William G. C.

    2016-01-01

    Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths. PMID:26900854

  1. Getting away with murder: how does the BCL-2 family of proteins kill with immunity?

    PubMed

    Renault, Thibaud T; Chipuk, Jerry E

    2013-05-01

    The adult human body produces approximately one million white blood cells every second. However, only a small fraction of the cells will survive because the majority is eliminated through a genetically controlled form of cell death known as apoptosis. This review places into perspective recent studies pertaining to the BCL-2 family of proteins as critical regulators of the development and function of the immune system, with particular attention on B cell and T cell biology. Here we discuss how elegant murine model systems have revealed the major contributions of the BCL-2 family in establishing an effective immune system. Moreover, we highlight some key regulatory pathways that influence the expression, function, and stability of individual BCL-2 family members, and discuss their role in immunity. From lethal mechanisms to more gentle ones, the final portion of the review discusses the nonapoptotic functions of the BCL-2 family and how they pertain to the control of immunity. PMID:23527542

  2. Genetic control of immune responses to influenza A matrix 2 protein (M2).

    PubMed

    Misplon, Julia A; Lo, Chia-Yun; Gabbard, Jon D; Tompkins, S Mark; Epstein, Suzanne L

    2010-08-16

    Vaccines should protect genetically diverse populations. Therefore we tested the candidate "universal" influenza A matrix protein 2 (M2) vaccine in multiple mouse strains. Mice were primed with M2 DNA and boosted with M2 recombinant adenovirus (rAd). C57BL/6 (B6) mice developed no antibody or T-cell response to M2, while BALB/c responded strongly. CBA responses were intermediate. Both MHC and background genes influenced responsiveness. To improve low responses we immunized with adjuvanted peptide-carrier conjugates, or co-immunized with nucleoprotein (NP), which can augment T-cell help. The conjugate vaccine enhanced some outcomes but not others. Co-immunizing with NP improved outcomes over either NP or M2 immunizations alone. These results have implications for vaccination of genetically diverse populations. PMID:20600476

  3. Comparative genomic study of arachnid immune systems indicates loss of beta-1,3-glucanase-related proteins and the immune deficiency pathway.

    PubMed

    Bechsgaard, J; Vanthournout, B; Funch, P; Vestbo, S; Gibbs, R A; Richards, S; Sanggaard, K W; Enghild, J J; Bilde, T

    2016-02-01

    Analyses of arthropod genomes have shown that the genes in the different innate humoral immune responses are conserved. These genes encode proteins that are involved in immune signalling pathways that recognize pathogens and activate immune responses. These immune responses include phagocytosis, encapsulation of the pathogen and production of effector molecules for pathogen elimination. So far, most studies have focused on insects leaving other major arthropod groups largely unexplored. Here, we annotate the immune-related genes of six arachnid genomes and present evidence for a conserved pattern of some immune genes, but also evolutionary changes in the arachnid immune system. Specifically, our results suggest that the family of recognition molecules of beta-1,3-glucanase-related proteins (βGRPs) and the genes from the immune deficiency (IMD) signalling pathway have been lost in a common ancestor of arachnids. These findings are consistent with previous work suggesting that the humoral immune effector proteins are constitutively produced in arachnids in contrast to insects, where these have to be induced. Further functional studies are needed to verify this. We further show that the full haemolymph clotting cascade found in the horseshoe crab is retrieved in most arachnid genomes. Tetranychus lacks at least one major component, although it is possible that this cascade could still function through recruitment of a different protein. The gel-forming protein in horseshoe crabs, coagulogen, was not recovered in any of the arachnid genomes; however, it is possible that the arachnid clot consists of a related protein, spätzle, that is present in all of the genomes. PMID:26528622

  4. Protein Defense Systems against the Lantibiotic Nisin: Function of the Immunity Protein NisI and the Resistance Protein NSR

    PubMed Central

    Khosa, Sakshi; Lagedroste, Marcel; Smits, Sander H. J.

    2016-01-01

    Lantibiotics are potential alternatives to antibiotics because of their broad-range killing spectrum. The producer strain is immune against its own synthesized lantibiotic via the expression of two proteins LanI and LanFEG. Recently, gene operons are found in mainly human pathogenic strains, which confer resistance against lantibiotics. Of all the lantibiotics discovered till date, nisin produced by some Lactococcus lactis strains is the most prominent member. Nisin has multiple mode of actions of which binding to the cell wall precursor lipid II and subsequent insertion into the bacterial membrane to form pores are the most effective. The nisin producing strains express the lipoprotein NisI to prevent a suicidal effect. NisI binds nisin, inducing a reversible cell clustering to prevent nisin from reaching the membrane. Importantly NisI does not modify nisin and releases it as soon as the concentration in the media drops below a certain level. The human pathogen Streptococcus agalactiae is naturally resistant against nisin by expressing a resistance protein called SaNSR, which is a nisin degrading enzyme. By cleaving off the last six amino acids of nisin, its effectiveness is 100-fold reduced. This cleavage reaction appears to be specific for nisin since SaNSR recognizes the C-terminal located lanthionine rings. Recently, the structures of both NisI and SaNSR were determined by NMR and X-ray crystallography, respectively. Furthermore, for both proteins the binding site for nisin was determined. Within this review, the structures of both proteins and their different defense mechanisms are described. PMID:27148193

  5. Lipid Transfer Proteins As Components of the Plant Innate Immune System: Structure, Functions, and Applications

    PubMed Central

    Finkina, E. I.; Melnikova, D. N.; Bogdanov, I. V.; Ovchinnikova, T. V.

    2016-01-01

    Among a variety of molecular factors of the plant innate immune system, small proteins that transfer lipids and exhibit a broad spectrum of biological activities are of particular interest. These are lipid transfer proteins (LTPs). LTPs are interesting to researchers for three main features. The first feature is the ability of plant LTPs to bind and transfer lipids, whereby these proteins got their name and were combined into one class. The second feature is that LTPs are defense proteins that are components of plant innate immunity. The third feature is that LTPs constitute one of the most clinically important classes of plant allergens. In this review, we summarize the available data on the plant LTP structure, biological properties, diversity of functions, mechanisms of action, and practical applications, emphasizing their role in plant physiology and their significance in human life. PMID:27437139

  6. A force-activated trip switch triggers rapid dissociation of a colicin from its immunity protein.

    PubMed

    Farrance, Oliver E; Hann, Eleanore; Kaminska, Renata; Housden, Nicholas G; Derrington, Sasha R; Kleanthous, Colin; Radford, Sheena E; Brockwell, David J

    2013-01-01

    Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (K(d) ≈ fM, lifetime ≈ 4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (<20 pN) increases the rate of complex dissociation 10(6)-fold, to a timescale (lifetime ≈ 10 ms) compatible with intoxication. We term this catastrophic force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21-30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. PMID:23431269

  7. Positive Regulation of TRAF6-Dependent Innate Immune Responses by Protein Phosphatase PP1-γ

    PubMed Central

    Chiang, Chih-yuan; Nguyen, Quy T.; Maestre, Ana M.; Mulder, Lubbertus C. F.; Secundino, Ismael; De Jesus, Paul D.; König, Renate; Simon, Viviana; Nizet, Victor; MacLeod, Graham; Varmuza, Susannah; Fernandez-Sesma, Ana; Chanda, Sumit K.

    2014-01-01

    Innate immune sensors such as Toll-like receptors (TLRs) differentially utilize adaptor proteins and additional molecular mediators to ensure robust and precise immune responses to pathogen challenge. Through a gain-of-function genetic screen, we identified the gamma catalytic subunit of protein phosphatase 1 (PP1-γ) as a positive regulator of MyD88-dependent proinflammatory innate immune activation. PP1-γ physically interacts with the E3 ubiquitin ligase TRAF6, and enhances the activity of TRAF6 towards itself and substrates such as IKKγ, whereas enzymatically inactive PP1-γ represses these events. Importantly, these activities were found to be critical for cellular innate responses to pathogen challenge and microbial clearance in both mouse macrophages and human monocyte lines. These data indicate that PP1-γ phosphatase activity regulates overall TRAF6 E3 ubiquitin ligase function and promotes NF-κB-mediated innate signaling responses. PMID:24586659

  8. TET proteins and 5-methylcytosine oxidation in the immune system

    PubMed Central

    Tsagaratou, Ageliki; Rao, Anjana

    2015-01-01

    DNA methylation in the form of 5-methylcytosine (5mC) is essential for normal development in mammals and influences a variety of biological processes including transcriptional regulation, imprinting and the maintenance of genomic stability. The recent discovery of TET proteins, which oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), has changed our understanding of the process of DNA demethylation. Here, we summarize our current knowledge of the roles of DNA methylation and TET proteins in cell differentiation and function. The intensive research on this subject has so far focused primarily on ES cells and neurons. Here we summarize what is known about DNA methylation in T cell function. PMID:24619230

  9. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    PubMed

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  10. The Solution Structure of the Lantibiotic Immunity Protein NisI and Its Interactions with Nisin.

    PubMed

    Hacker, Carolin; Christ, Nina A; Duchardt-Ferner, Elke; Korn, Sophie; Göbl, Christoph; Berninger, Lucija; Düsterhus, Stefanie; Hellmich, Ute A; Madl, Tobias; Kötter, Peter; Entian, Karl-Dieter; Wöhnert, Jens

    2015-11-27

    Many Gram-positive bacteria produce lantibiotics, genetically encoded and posttranslationally modified peptide antibiotics, which inhibit the growth of other Gram-positive bacteria. To protect themselves against their own lantibiotics these bacteria express a variety of immunity proteins including the LanI lipoproteins. The structural and mechanistic basis for LanI-mediated lantibiotic immunity is not yet understood. Lactococcus lactis produces the lantibiotic nisin, which is widely used as a food preservative. Its LanI protein NisI provides immunity against nisin but not against structurally very similar lantibiotics from other species such as subtilin from Bacillus subtilis. To understand the structural basis for LanI-mediated immunity and their specificity we investigated the structure of NisI. We found that NisI is a two-domain protein. Surprisingly, each of the two NisI domains has the same structure as the LanI protein from B. subtilis, SpaI, despite the lack of significant sequence homology. The two NisI domains and SpaI differ strongly in their surface properties and function. Additionally, SpaI-mediated lantibiotic immunity depends on the presence of a basic unstructured N-terminal region that tethers SpaI to the membrane. Such a region is absent from NisI. Instead, the N-terminal domain of NisI interacts with membranes but not with nisin. In contrast, the C-terminal domain specifically binds nisin and modulates the membrane affinity of the N-terminal domain. Thus, our results reveal an unexpected structural relationship between NisI and SpaI and shed light on the structural basis for LanI mediated lantibiotic immunity. PMID:26459561

  11. Bifurcation of Arabidopsis NLR Immune Signaling via Ca2+-Dependent Protein Kinases

    PubMed Central

    Gao, Xiquan; Chen, Xin; Lin, Wenwei; Chen, Sixue; Lu, Dongping; Niu, Yajie; Li, Lei; Cheng, Cheng; McCormack, Matthew; Sheen, Jen; Shan, Libo; He, Ping

    2013-01-01

    Nucleotide-binding domain leucine-rich repeat (NLR) protein complexes sense infections and trigger robust immune responses in plants and humans. Activation of plant NLR resistance (R) proteins by pathogen effectors launches convergent immune responses, including programmed cell death (PCD), reactive oxygen species (ROS) production and transcriptional reprogramming with elusive mechanisms. Functional genomic and biochemical genetic screens identified six closely related Arabidopsis Ca2+-dependent protein kinases (CPKs) in mediating bifurcate immune responses activated by NLR proteins, RPS2 and RPM1. The dynamics of differential CPK1/2 activation by pathogen effectors controls the onset of cell death. Sustained CPK4/5/6/11 activation directly phosphorylates a specific subgroup of WRKY transcription factors, WRKY8/28/48, to synergistically regulate transcriptional reprogramming crucial for NLR-dependent restriction of pathogen growth, whereas CPK1/2/4/11 phosphorylate plasma membrane-resident NADPH oxidases for ROS production. Our studies delineate bifurcation of complex signaling mechanisms downstream of NLR immune sensors mediated by the myriad action of CPKs with distinct substrate specificity and subcellular dynamics. PMID:23382673

  12. Effects of Arsenic Trioxide Exposure on Heat Shock Protein Response in the Immune Organs of Chickens.

    PubMed

    Guo, Ying; Zhao, Panpan; Guo, Guangyang; Hu, Zhibo; Tian, Li; Zhang, Kexin; Sun, Ying; Zhang, Xianguang; Zhang, Wen; Xing, Mingwei

    2016-01-01

    Arsenic trioxide (As2O3), a kind of pentavalent arsenic, has recently been linked to disrupted immune function. Heat shock proteins (Hsps), a group of highly conserved proteins, are rapidly synthesised when living organisms are exposed to various stress conditions. The objective of this study is to determine the effects of As2O3 on the expression level of Hsps (Hsp90, Hsp70, Hsp60, Hsp40 and Hsp27) in the immune organs (spleen, thymus and bursa of Fabricius (BF)) of chickens. A total of 72 1-day-old male Hy-line chickens were randomly divided into four groups, including the low-As group (L group), middle-As group (M group), high-As group (H group) and control group (C group). Immune organs were collected, and levels of Hsp messenger RNA (mRNA) and protein were examined on days 30, 60 and 90. The results showed that the levels of Hsp mRNA (Hsp90, Hsp70, Hsp60, Hsp40 and Hsp27) and protein (Hsp70 and Hsp60) expression were significantly increased (p < 0.05 or p < 0.01) in the As2O3 treatment groups compared with the corresponding control groups. Taken together, these results suggest that As2O3 influences the level of Hsps in immune organs. PMID:26050236

  13. Protective immunity induced in Aotus monkeys by recombinant SERA proteins of Plasmodium falciparum.

    PubMed Central

    Inselburg, J; Bzik, D J; Li, W B; Green, K M; Kansopon, J; Hahm, B K; Bathurst, I C; Barr, P J; Rossan, R N

    1991-01-01

    We describe the vaccination of Panamanian monkeys (Aotus sp.) with two recombinant blood stage antigens that each contain a portion of the N-terminal region of the SERA (serine repeat antigen) protein of the malaria parasite Plasmodium falciparum. We immunized with either a 262-amino-acid SERA fragment (SERA I) that contains amino acids 24 to 285 of the 989-amino-acid protein or a 483-amino-acid SERA fragment (SERA N) that contains amino acids 24 to 506 as part of a fusion protein with human gamma interferon. The recombinant proteins were shown to stimulate protective immunity when administered with complete and incomplete Freund adjuvant. Four of six immunized monkeys challenged by intravenous inoculation with blood stage P. falciparum developed parasitemias that were reduced by at least 1,000-fold. Two of six immunized monkeys developed parasitemias which were comparable to the lowest parasitemia in one of four controls and were 50- to 1,000-fold lower than in the other three controls. PMID:1900809

  14. Protective immunity induced in Aotus monkeys by recombinant SERA proteins of Plasmodium falciparum.

    PubMed

    Inselburg, J; Bzik, D J; Li, W B; Green, K M; Kansopon, J; Hahm, B K; Bathurst, I C; Barr, P J; Rossan, R N

    1991-04-01

    We describe the vaccination of Panamanian monkeys (Aotus sp.) with two recombinant blood stage antigens that each contain a portion of the N-terminal region of the SERA (serine repeat antigen) protein of the malaria parasite Plasmodium falciparum. We immunized with either a 262-amino-acid SERA fragment (SERA I) that contains amino acids 24 to 285 of the 989-amino-acid protein or a 483-amino-acid SERA fragment (SERA N) that contains amino acids 24 to 506 as part of a fusion protein with human gamma interferon. The recombinant proteins were shown to stimulate protective immunity when administered with complete and incomplete Freund adjuvant. Four of six immunized monkeys challenged by intravenous inoculation with blood stage P. falciparum developed parasitemias that were reduced by at least 1,000-fold. Two of six immunized monkeys developed parasitemias which were comparable to the lowest parasitemia in one of four controls and were 50- to 1,000-fold lower than in the other three controls. PMID:1900809

  15. Conserved Immune Recognition Hierarchy of Mycobacterial PE/PPE Proteins during Infection in Natural Hosts

    PubMed Central

    Vordermeier, H. Martin; Hewinson, R. Glyn; Wilkinson, Robert J.; Wilkinson, Katalin A.; Gideon, Hannah P.; Young, Douglas B.; Sampson, Samantha L.

    2012-01-01

    The Mycobacterium tuberculosis genome contains two large gene families encoding proteins of unknown function, characterized by conserved N-terminal proline and glutamate (PE and PPE) motifs. The presence of a large number of PE/PPE proteins with repetitive domains and evidence of strain variation has given rise to the suggestion that these proteins may play a role in immune evasion via antigenic variation, while emerging data suggests that some family members may play important roles in mycobacterial pathogenesis. In this study, we examined cellular immune responses to a panel of 36 PE/PPE proteins during human and bovine infection. We observed a distinct hierarchy of immune recognition, reflected both in the repertoire of PE/PPE peptide recognition in individual cows and humans and in the magnitude of IFN-γ responses elicited by stimulation of sensitized host cells. The pattern of immunodominance was strikingly similar between cattle that had been experimentally infected with Mycobacterium bovis and humans naturally infected with clinical isolates of M. tuberculosis. The same pattern was maintained as disease progressed throughout a four-month course of infection in cattle, and between humans with latent as well as active tuberculosis. Detailed analysis of PE/PPE responses at the peptide level suggests that antigenic cross-reactivity amongst related family members is a major determinant in the observed differences in immune hierarchy. Taken together, these results demonstrate that a subset of PE/PPE proteins are major targets of the cellular immune response to tuberculosis, and are recognized at multiple stages of infection and in different disease states. Thus this work identifies a number of novel antigens that could find application in vaccine development, and provides new insights into PE/PPE biology. PMID:22870206

  16. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase.

    PubMed

    Mihajlovic, L; Radosavljevic, J; Nordlund, E; Krstic, M; Bohn, T; Smit, J; Buchert, J; Cirkovic Velickovic, T

    2016-05-18

    Food texture can be improved by enzyme-mediated covalent cross-linking of different food components, such as proteins and carbohydrates. Cross-linking changes the biological and immunological properties of proteins and may change the sensitizing potential of food allergens. In this study we applied a microbial polyphenol oxidase, laccase, to cross-link peanut proteins. The size and morphology of the obtained cross-linked proteins were analyzed by electrophoresis and electron microscopy. Structural changes in proteins were analyzed by CD spectroscopy and by using specific antibodies to major peanut allergens. The bioavailability of peanut proteins was analyzed using a Caco-2 epithelial cell model. The in vivo sensitizing potential of laccase-treated peanut proteins was analyzed using a mouse model of food allergy. Finally, peanut polyphenols were analyzed by UHPLC-MS/MS, before and after the enzymatic reaction with laccase. Laccase treatment of peanut proteins yielded a covalently cross-linked material, with the modified tertiary structure of peanut proteins, improved bioavailability of Ara h 2 (by 70 fold, p < 0.05) and modulated allergic immune response in vivo. The modulation of the immune response was related to the increased production of IgG2a antibodies 11 fold (p < 0.05) and reduced IL-13 secretion in in vitro cultured splenocytes 7 fold (p < 0.05). Analysis of the peanut polyphenol content and profile by HPLC-MS/MS revealed that laccase treatment depleted the peanut extract of polyphenol compounds leaving mostly isorhamnetin derivatives and procyanidin dimer B-type in detectable amounts. Treatment of complex food extracts rich in polyphenols with laccase results in both protein cross-linking and modification of polyphenol compounds. These extensively cross-linked proteins have unchanged potency to induce allergic sensitization in vivo, but certain immunomodulatory changes were observed. PMID:27138276

  17. Comparative biology of the pentraxin protein family: evolutionarily conserved component of innate immune system.

    PubMed

    Armstrong, Peter B

    2015-01-01

    The immune system is based on the actions of the collection of specialized immune defense cells and their secreted proteins and peptides that defend the host against infection by parasites. Parasites are organisms that live part or all of their lives in close physical association with the host and extract nutrients from the host and, by releasing toxins and virulence factors, cause disease with the potential for injury and premature death of that host. Parasites of the metazoa can be viruses, eubacteria, fungi, protozoans, and other metazoans. The immune system operates to kill or eliminate parasites and eliminate or detoxify their toxins and virulence factors. Although some of the elements of immune systems are specific to a particular phylum of metazoans, others show extensive evolutionary conservation, being present in several or all major phyla of the metazoa. The pentraxins display this latter character in their roles in immune defense. Pentraxins have been documented in vertebrates, nonvertebrate chordates, arthropods, and mollusks and may be present in other taxa of metazoans. Presumably the pentraxins appeared early in the evolution of metazoa, prior to their evolutionary divergence in the Precambrian epoch into many phyla present today, and have been preserved for the 542 million years since that explosive evolutionary radiation. The fidelity with which these phyla have preserved the pentraxins suggests that the functions of these proteins are important for survival of the members of these diverse taxa of animals. PMID:25805121

  18. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    PubMed

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (P<0.05). The splenocytes from both vaccinated groups of chickens displayed significantly greater proliferation compared with the controls (P<0.05). Serum from chickens immunized with pVAX1-MIC2 and rEmMIC2 protein displayed significantly high levels of IL-2, IFN-γ, IL-10, IL-17, TGF-β and IL-4 (P<0.05) compared to those of negative controls. The challenge experiment results showed that both the recombinant protein and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss, increase oocyst, decrease ratio and provide ACIs of more than 165. All the above results suggested that immunization with EmMIC2 was effective in imparting partial protection against E. maxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. PMID:26072304

  19. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases

    PubMed Central

    Wilmanski, Jeanette M.; Petnicki-Ocwieja, Tanja; Kobayashi, Koichi S.

    2012-01-01

    The innate immune system is the first line of defense against microorganisms and is conserved in both plants and animals. The NLR protein family is a recent addition to the members of innate immunity effector molecules. These proteins are characterized by a central oligomerization domain termed NACHT (or NBD/NOD) and a protein interaction domain, LRRs (Leucine rich repeats) at the C-terminus. It has been shown that NLR proteins are localized to the cytoplasm and recognize microbial products. To date, it is known that Nod1 and Nod2 detect bacterial cell wall components, whereas IPAF and NAIP detect bacterial flagellin and NALP1 has been shown to detect anthrax lethal toxin. NLR proteins comprise a diverse protein family (over 20 in humans), indicating that NLRs have evolved to acquire specificity to various pathogenic microorganisms, thereby controlling host-pathogen interactions. Activation of NLR proteins results in inflammatory responses mediated either by NF-κB, MAPK or Caspase-1 activation, accompanied by subsequent secretion of pro-inflammatory cytokines. Mutations in several members of the NLR protein family have been linked to inflammatory diseases, suggesting these molecules play important roles in maintaining host-pathogen interaction and inflammatory responses. Therefore, understanding NLR signaling is important for the therapeutic intervention of various infectious and inflammatory diseases. PMID:17875812

  20. Short Toxin-like Proteins Attack the Defense Line of Innate Immunity

    PubMed Central

    Tirosh, Yitshak; Ofer, Dan; Eliyahu, Tsiona; Linial, Michal

    2013-01-01

    ClanTox (classifier of animal toxins) was developed for identifying toxin-like candidates from complete proteomes. Searching mammalian proteomes for short toxin-like proteins (coined TOLIPs) revealed a number of overlooked secreted short proteins with an abundance of cysteines throughout their sequences. We applied bioinformatics and data-mining methods to infer the function of several top predicted candidates. We focused on cysteine-rich peptides that adopt the fold of the three-finger proteins (TFPs). We identified a cluster of duplicated genes that share a structural similarity with elapid neurotoxins, such as α-bungarotoxin. In the murine proteome, there are about 60 such proteins that belong to the Ly6/uPAR family. These proteins are secreted or anchored to the cell membrane. Ly6/uPAR proteins are associated with a rich repertoire of functions, including binding to receptors and adhesion. Ly6/uPAR proteins modulate cell signaling in the context of brain functions and cells of the innate immune system. We postulate that TOLIPs, as modulators of cell signaling, may be associated with pathologies and cellular imbalance. We show that proteins of the Ly6/uPAR family are associated with cancer diagnosis and malfunction of the immune system. PMID:23881252

  1. Tight junction proteins expression and modulation in immune cells and multiple sclerosis

    PubMed Central

    Mandel, Ilana; Paperna, Tamar; Glass-Marmor, Lea; Volkowich, Anat; Badarny, Samih; Schwartz, Ilya; Vardi, Pnina; Koren, Ilana; Miller, Ariel

    2012-01-01

    Abstract The tight junction proteins (TJPs) are major determinants of endothelial cells comprising physiological vascular barriers such as the blood–brain barrier, but little is known about their expression and role in immune cells. In this study we assessed TJP expression in human leukocyte subsets, their induction by immune activation and modulation associated with autoimmune disease states and therapies. A consistent expression of TJP complexes was detected in peripheral blood leukocytes (PBLs), predominantly in B and T lymphocytes and monocytes, whereas the in vitro application of various immune cell activators led to an increase of claudin 1 levels, yet not of claudin 5. Claudins 1 and 5 levels were elevated in PBLs of multiple sclerosis (MS) patients in relapse, relative to patients in remission, healthy controls and patients with other neurological disorders. Interestingly, claudin 1 protein levels were elevated also in PBLs of patients with type 1 diabetes (T1D). Following glucocorticoid treatment of MS patients in relapse, RNA levels of JAM3 and CLDN5 and claudin 5 protein levels in PBLs decreased. Furthermore, a correlation between CLDN5 pre-treatment levels and clinical response phenotype to interferon-β therapy was detected. Our findings indicate that higher levels of leukocyte claudins are associated with immune activation and specifically, increased levels of claudin 5 are associated with MS disease activity. This study highlights a potential role of leukocyte TJPs in physiological states, and autoimmunity and suggests they should be further evaluated as biomarkers for aberrant immune activity and response to therapy in immune-mediated diseases such as MS. PMID:21762372

  2. Vaults and the major vault protein: novel roles in signal pathway regulation and immunity.

    PubMed

    Berger, W; Steiner, E; Grusch, M; Elbling, L; Micksche, M

    2009-01-01

    The unique and evolutionary highly conserved major vault protein (MVP) is the main component of ubiquitous, large cellular ribonucleoparticles termed vaults. The 100 kDa MVP represents more than 70% of the vault mass which contains two additional proteins, the vault poly (ADP-ribose) polymerase (vPARP) and the telomerase-associated protein 1 (TEP1), as well as several short untranslated RNAs (vRNA). Vaults are almost ubiquitously expressed and, besides chemotherapy resistance, have been implicated in the regulation of several cellular processes including transport mechanisms, signal transmissions and immune responses. Despite a growing amount of data from diverse species and systems, the definition of precise vault functions is still highly complex and challenging. Here we review the current knowledge on MVP and vaults with focus on regulatory functions in intracellular signal transduction and immune defence. PMID:18759128

  3. Passive immunization by recombinant ferric enterobactin protein (FepA) from Escherichia coli O157

    PubMed Central

    Larrie-Bagha, Seyed Mehdi; Rasooli, Iraj; Mousavi-Gargari, Seyed Latif; Rasooli, Zohreh; Nazarian, Shahram

    2013-01-01

    Background and Objectives Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been recognized as a major food borne pathogen responsible for frequent hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are important reservoirs of E. coli O157:H7, in which the organism colonizes the intestinal tract and is shed in the feces. Objective Vaccination of cattle has significant potential as a pre-harvest intervention strategy for E. coli O157:H7. The aim of this study was to evaluate active and passive immunization against E. coli O157:H7 using a recombinant protein. Materials and Methods The recombinant FepA protein induced by IPTG was purified by nickel affinity chromatography. Antibody titre was determined by ELISA in FepA immunized rabbits sera. Sera collected from vaccinated animals were used for bacterial challenge in passive immunization studies. Results The results demonstrate that passive immunization with serum raised against FepA protects rabbits from subsequent infection. Conclusion Significant recognition by the antibody of ferric enterobactin binding protein may lead to its application in the restriction of Enterobacteriaceae propagation. PMID:23825727

  4. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer

    PubMed Central

    Martinotti, Simona; Patrone, Mauro; Ranzato, Elia

    2015-01-01

    High-mobility group box 1 (HMGB1) protein is a member of the highly conserved non-histone DNA binding protein family. First identified in 1973, as one of a group of chromatin-associated proteins with high acidic and basic amino acid content, it was so named for its characteristic rapid mobility in polyacrylamide gel electrophoresis. HMGB1 was later discovered to have another function. It is released from a variety of cells into the extracellular milieu to act on specific cell-surface receptors. In this latter role, HMGB1 is a proinflammatory cytokine that may contribute to many inflammatory diseases, including sepsis. Therefore, HMGB1 regulates intracellular cascades influencing immune cell functions, including chemotaxis and immune modulation. The bioactivity of the HMGB1 is determined by specific posttranslational modifications that regulate its role in inflammation and immunity. During tumor development, HMGB1 has been reported to play paradoxical roles in promoting both cell survival and death by regulating multiple signaling pathways. In this review, we focus on the role of HMGB1 in physiological and pathological responses, as well as the mechanisms by which it contributes to immunity, inflammation, and cancer progression.

  5. Essential Function for the Nuclear Protein Akirin2 in B Cell Activation and Humoral Immune Responses.

    PubMed

    Tartey, Sarang; Matsushita, Kazufumi; Imamura, Tomoko; Wakabayashi, Atsuko; Ori, Daisuke; Mino, Takashi; Takeuchi, Osamu

    2015-07-15

    Akirin2, an evolutionarily conserved nuclear protein, is an important factor regulating inflammatory gene transcription in mammalian innate immune cells by bridging the NF-κB and SWI/SNF complexes. Although Akirin is critical for Drosophila immune responses, which totally rely on innate immunity, the mammalian NF-κB system is critical not only for the innate but also for the acquired immune system. Therefore, we investigated the role of mouse Akirin2 in acquired immune cells by ablating Akirin2 function in B lymphocytes. B cell-specific Akirin2-deficient (Cd19(Cre/+)Akirin2(fl/fl)) mice showed profound decrease in the splenic follicular (FO) and peritoneal B-1, but not splenic marginal zone (MZ), B cell numbers. However, both Akirin2-deficient FO and MZ B cells showed severe proliferation defect and are prone to undergo apoptosis in response to TLR ligands, CD40, and BCR stimulation. Furthermore, B cell cycling was defective in the absence of Akirin2 owing to impaired expression of genes encoding cyclin D and c-Myc. Additionally, Brg1 recruitment to the Myc and Ccnd2 promoter was severely impaired in Akirin2-deficient B cells. Cd19(Cre/+)Akirin2(fl/fl) mice showed impaired in vivo immune responses to T-dependent and -independent Ags. Collectively, these results demonstrate that Akirin2 is critical for the mitogen-induced B cell cycle progression and humoral immune responses by controlling the SWI/SNF complex, further emphasizing the significant function of Akirin2 not only in the innate, but also in adaptive immune cells. PMID:26041538

  6. Plasmodium falciparum- and merozoite surface protein 1-specific antibody isotype balance in immune Senegalese adults.

    PubMed Central

    Nguer, C M; Diallo, T O; Diouf, A; Tall, A; Dieye, A; Perraut, R; Garraud, O

    1997-01-01

    This study shows markedly different isotype distributions of antibodies to asexual blood stages of Plasmodium falciparum and to merozoite surface protein 1 in clinically immune Senegalese adults depending on the study site. The relationships between immunoglobulin M (IgM) and IgG and between IgG3 and IgG1 antibodies differed in settings where transmission is perennial compared to settings where it is seasonal. This suggests a role for antibody class and/or subclass production and utilization in the regulation of protective immunity to such antigens. PMID:9353079

  7. Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins

    PubMed Central

    Kawai, Taro; Akira, Shizuo

    2011-01-01

    The innate immune system recognizes microbial components through pattern-recognition receptors (PRRs), including membrane-bound Toll-like receptors and cytosolic receptors such as RIG-I-like receptors and deoxyribonucleic acid (DNA) sensors. These PRRs trigger distinct signal transduction pathways that culminate in induction of an array of cytokines and other mediators required for host defense. The tripartite motif (TRIM) family is a diverse family of RING finger domain-containing proteins, which are involved in a variety of cellular functions. Importantly, recent studies have shown that they are also involved in the regulation of innate immune responses through the modulation of PRR signalling pathways. PMID:21826793

  8. Effects of Aging-Time Reference on the Long Term Behavior of the IM7/K3B Composite

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Gates, Thomas S.

    1998-01-01

    An analytical study was undertaken to investigate the effects of the time-based shift reference on the long term behavior of the graphite reinforced thermoplastic polyimide composite IM7/K3B at elevated temperature. Creep compliance and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(sub g). Two matrix dominated loading modes, shear and transverse, were investigated in tension and compression. The momentary sequenced creep/aging curves were collapsed through a horizontal (time) shift using the shortest, middle and longest aging time curve as the reference curve. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. The use of effective time expressions in a laminated plate model allowed for the prediction of long term creep compliance. The effect of using different reference curves with time/aging-time superposition was most sensitive to the physical aging shift rate at lower test temperatures. Depending on the loading mode, the reference curve used can result in a more accurate long term prediction, especially at lower test temperatures.

  9. Comparison of Intralaminar and Interlaminar Mode-I Fracture Toughness of Unidirectional IM7/8552 Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James

    2012-01-01

    The intralaminar and interlaminar mode-I fracture-toughness of a unidirectional IM7/8552 graphite/epoxy composite were measured using compact tension (CT) and double cantilever beam (DCB) test specimens, respectively. Two starter crack geometries were considered for both the CT and DCB specimen configurations. In the first case, starter cracks were produced by 12.5 micron thick, Teflon film inserts. In the second case, considerably sharper starter cracks were produced by fatigue precracking. For each specimen configuration, use of the Teflon film starter cracks resulted in initially unstable crack growth and artificially high initiation fracture-toughness values. Conversely, specimens with fatigue precracks exhibited stable growth onset and lower initiation fracture toughness. For CT and DCB specimens with fatigue precracks, the intralaminar and interlaminar initiation fracture toughnesses were approximately equal. However, during propagation, the CT specimens exhibited more extensive fiber bridging, and rapidly increasing R-curve behavior as compared to the DCB specimens. Observations of initiation and propagation of intralaminar and interlaminar fracture, and the measurements of fracture toughness, were supported by fractographic analysis using scanning electron microscopy.

  10. Processing and properties of fiber reinforced polymeric matrix composites: I. IM7/LARC(TM)-PETI-7 polyimide composites

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    1995-01-01

    A phenylethynyl terminated imide oligomer formed from the reaction of benzophenone tetracarboxylic acid dianhydride, an 75:25 molar ratio of 4,4'-oxydianiline and meta-phenylenediamine and 4-phenylethynylphthalic anhydride as the endcapper at a theoretical number average molecular weight (Mn) of approximately 3,700 g/mol was evaluated as a composite resin matrix. A glass transition temperature (Tg) of 315 deg C was reached after 250 deg C/1 hr annealing of the matrix resin. Unidirectional prepreg was made by coating an N-methylpyrrolidinone solution of the amide acid oligomer onto unsized IM7 graphite fibers. The thermal and rheological properties and the solvent/volatile depletion rates of the amide acid/NMP system were determined. This information was used to successfully design a molding cycle for composite fabrication. Composites molded under 800 Psi at 371 C consistently yielded good consolidation as measured by C-scan and optical photomicrography. The composite's short beam shear strength (SBS), longitudinal and transverse flexural strengths and moduli were measured at various temperatures. These composites exhibited excellent room temperature (RT) longitudinal flexural strength and modulus and RT SBS strength retention at 177 C.

  11. Partially Protective Immunity Induced by a 20 kDa Protein Secreted by Trichinella spiralis Stichocytes

    PubMed Central

    Wang, Lei; Gu, Yuan; Zhan, Bin; Zhu, Xinping

    2015-01-01

    Background Trichinella spiralis infection induces protective immunity against re-infection in animal models. Identification of the antigens eliciting acquired immunity during infection is important for vaccine development against Trichinella infection and immunodiagnosis. Methods and Findings The T. spiralis adult cDNA library was immunoscreened with sera from pigs experimentally infected with 20,000 infective T. spiralis larvae. Total 43 positive clones encoding for 28 proteins were identified; one of the immunodominant proteins was 20 kDa Ts-ES-1 secreted by Trichinella stichocytes and existing in the excretory/secretory (ES) products of T. spiralis adult and muscle larval worms. Ts-ES-1 contains 172 amino acids with a typical signal peptide in the first 20 amino acids. The expression of Ts-ES-1 was detected in both the adult and muscle larval stages at the mRNA and protein expression levels. Mice immunized with recombinant Ts-ES-1 (rTs-ES-1) formulated with ISA50v2 adjuvant exhibited a significant worm reduction in both the adult worm (27%) and muscle larvae burden (42.1%) after a challenge with T. spiralis compared to the adjuvant control group (p<0.01). The rTs-ES-1-induced protection was associated with a high level of specific anti-Ts-ES-1 IgG antibodies and a Th1/Th2 mixed immune response. Conclusion The newly identified rTs-ES-1 is an immunodominant protein secreted by Trichinella stichocytes during natural infection and enables to the induction of partial protective immunity in vaccinated mice against Trichinella infection. Therefore, rTs-ES-1 is a potential candidate for vaccine development against trichinellosis. PMID:26288365

  12. NAIPs: building an innate immune barrier against bacterial pathogens. NAIPs function as sensors that initiate innate immunity by detection of bacterial proteins in the host cell cytosol.

    PubMed

    Kofoed, Eric M; Vance, Russell E

    2012-07-01

    The innate immune system of mammals encodes several families of immune detector proteins that monitor the cytosol for signs of pathogen invasion. One important but poorly understood family of cytosolic immunosurveillance proteins is the NLR (nucleotide-binding domain, leucine-rich repeat containing) proteins. Recent work has demonstrated that one subfamily of NLRs, the NAIPs (NLR family, apoptosis inhibitory proteins), are activated by specific interaction with bacterial ligands, such as flagellin. NAIP activation leads to assembly of a large multiprotein complex called the inflammasome, which initiates innate immune responses by activation of the Caspase-1 protease. NAIPs therefore appear to detect pathogen molecules via a simple and direct receptor-ligand mechanism. Interestingly, other NLR family members appear to detect pathogens indirectly, perhaps by responding to host cell "stress" caused by the pathogen. Thus, the NLR family may have evolved surprisingly diverse mechanisms for detecting pathogens. PMID:22513803

  13. Enhancement of pulmonary clearance of Moraxella (Branhamella) catarrhalis following immunization with outer membrane protein CD in a mouse model.

    PubMed

    Murphy, T F; Kyd, J M; John, A; Kirkham, C; Cripps, A W

    1998-12-01

    Moraxella (Branhamella) catarrhalis is an important human respiratory tract pathogen. Outer membrane protein (OMP) CD is highly conserved among strains and has characteristics that indicate it may be an effective vaccine antigen. This study investigated the effect of immunization with OMP CD on pulmonary clearance following intratracheal challenge of mice with M. catarrhalis. Two routes of immunization were studied: mucosal immunization (intra-Peyer's patch followed by intratracheal boost) and intramuscular immunization with OMP CD. Both resulted in enhanced pulmonary clearance of M. catarrhalis compared with sham-immunized controls. Immunization with OMP CD induced specific antibodies in serum and bronchoalveolar lavage fluid and induced a specific lymphocyte proliferative response in T cells from mesenteric lymph nodes from mice mucosally immunized with OMP CD. On the basis of these results, OMP CD should undergo continued testing to determine whether it will induce a protective immune response in humans. PMID:9815219

  14. Induction of Mucosal and Systemic Immunity to a Recombinant Simian Immunodeficiency Viral Protein

    NASA Astrophysics Data System (ADS)

    Lehner, T.; Bergmeier, L. A.; Panagiotidi, C.; Tao, L.; Brookes, R.; Klavinskis, L. S.; Walker, P.; Walker, J.; Ward, R. G.; Hussain, L.; Gearing, A. J. H.; Adams, S. E.

    1992-11-01

    Heterosexual transmission through the cervico-vaginal mucosa is the principal route of human immunodeficiency virus (HIV) infection in Africa and is increasing in the United States and Europe. Vaginal immunization with simian immunodeficiency virus (SIV) had not yet been studied in nonhuman primates. Immune responses in macaques were investigated by stimulation of the genital and gut-associated lymphoid tissue with a recombinant, particulate SIV antigen. Vaginal, followed by oral, administration of the vaccine elicited three types of immunity: (i) gag protein p27-specific, secretory immunoglobulin A (IgA) and immunoglobulin G (IgG) in the vaginal fluid, (ii) specific CD4^+ T cell proliferation and helper function in B cell p27-specific IgA synthesis in the genital lymph nodes, and (iii) specific serum IgA and IgG, with CD4^+ T cell proliferative and helper functions in the circulating blood.

  15. Cellular immune responses to recombinant heat shock protein 70 from Histoplasma capsulatum.

    PubMed Central

    Allendoerfer, R; Maresca, B; Deepe, G S

    1996-01-01

    Heat shock protein (hsp) 70 from several microbes is antigenic in mammals. In this study we sequenced and expressed the gene encoding this protein from Histoplasma capsulatum to study its immunological activity. The deduced amino acid sequence of the gene demonstrated 71 and 76% identity to hsp7O from humans and Saccharomyces cerevisiae, respectively. A cDNA was synthesized by reverse transcription-PCR and was expressed in Escherichia coli. Recombinant protein reacted with a mouse monoclonal antibody raised against human hsp7O. Splenocytes from C57BL/6 mice immunized with recombinant hsp7O emulsified in adjuvant, but not yeast cells, reacted in vitro to the antigen. Recombinant hsp7O elicited a cutaneous delayed-type hypersensitivity response in mice immunized with protein or with viable yeast cells. Mice were injected with recombinant hsp7O and challenged intranasally with a sublethal inoculum of yeast cells. Vaccination did not confer protection in this model. Thus, recombinant hsp7O can induce a cell-mediated immune response but does not induce a protective response. PMID:8926078

  16. Systemic Immunization with Papillomavirus L1 Protein Completely Prevents the Development of Viral Mucosal Papillomas

    NASA Astrophysics Data System (ADS)

    Suzich, Joann A.; Ghim, Shin-Je; Palmer-Hill, Frances J.; White, Wendy I.; Tamura, James K.; Bell, Judith A.; Newsome, Joseph A.; Bennett Jenson, A.; Schlegel, Richard

    1995-12-01

    Infection of mucosal epithelium by papillomaviruses is responsible for the induction of genital and oral warts and plays a critical role in the development of human cervical and oropharyngeal cancer. We have employed a canine model to develop a systemic vaccine that completely protects against experimentally induced oral mucosal papillomas. The major capsid protein, L1, of canine oral papillomavirus (COPV) was expressed in Sf9 insect cells in native conformation. L1 protein, which self-assembled into virus-like particles, was purified on CsCl gradients and injected intradermally into the foot pad of beagles. Vaccinated animals developed circulating antibodies against COPV and became completely resistant to experimental challenge with COPV. Successful immunization was strictly dependent upon native L1 protein conformation and L1 type. Partial protection was achieved with as little as 0.125 ng of L1 protein, and adjuvants appeared useful for prolonging the host immune response. Serum immunoglobulins passively transferred from COPV L1-immunized beagles to naive beagles conferred protection from experimental infection with COPV. Our results indicate the feasibility of developing a human vaccine to prevent mucosal papillomas, which can progress to malignancy.

  17. A new paradigm: innate immune sensing of viruses via the unfolded protein response.

    PubMed

    Smith, Judith A

    2014-01-01

    THE IMMUNE SYSTEM DEPENDS UPON COMBINATIONS OF SIGNALS TO MOUNT APPROPRIATE RESPONSES: pathogen specific signals in the context of co-stimulatory "danger" signals drive immune strength and accuracy. Viral infections trigger anti-viral type I interferon (IFN) responses by stimulating endosomal and cytosolic pattern recognition receptors (PRRs). However, viruses have also evolved many strategies to counteract IFN responses. Are there intracellular danger signals that enhance immune responses to viruses? During infection, viruses place a heavy demand on the protein folding machinery of the host endoplasmic reticulum (ER). To survive ER stress, host cells mount an unfolded protein response (UPR) to decrease ER protein load and enhance protein-folding capacity. Viruses also directly elicit the UPR to enhance their replication. Increasing evidence supports an intersection between the host UPR and inflammation, in particular the production of pro-inflammatory cytokines and type I IFN. The UPR directly activates pro-inflammatory cytokine transcription factors and dramatically enhances cytokine production in response to viral PRR engagement. Additionally, viral PRR engagement may stimulate specific pathways within the UPR to enhance cytokine production. Through these mechanisms, viral detection via the UPR and inflammatory cytokine production are intertwined. Consequently, the UPR response is perfectly poised to act as an infection-triggered "danger" signal. The UPR may serve as an internal "co-stimulatory" signal that (1) provides specificity and (2) critically augments responses to overcome viral subterfuge. Further work is needed to test this hypothesis during viral infections. PMID:24904537

  18. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas.

    PubMed Central

    Suzich, J A; Ghim, S J; Palmer-Hill, F J; White, W I; Tamura, J K; Bell, J A; Newsome, J A; Jenson, A B; Schlegel, R

    1995-01-01

    Infection of mucosal epithelium by papillomaviruses is responsible for the induction of genital and oral warts and plays a critical role in the development of human cervical and oropharyngeal cancer. We have employed a canine model to develop a systemic vaccine that completely protects against experimentally induced oral mucosal papillomas. The major capsid protein, L1, of canine oral papillomavirus (COPV) was expressed in Sf9 insect cells in native conformation. L1 protein, which self-assembled into virus-like particles, was purified on CsCl gradients and injected intradermally into the foot pad of beagles. Vaccinated animals developed circulating antibodies against COPV and became completely resistant to experimental challenge with COPV. Successful immunization was strictly dependent upon native L1 protein conformation and L1 type. Partial protection was achieved with as little as 0.125 ng of L1 protein, and adjuvants appeared useful for prolonging the host immune response. Serum immunoglobulins passively transferred from COPV L1-immunized beagles to naive beagles conferred protection from experimental infection with COPV. Our results indicate the feasibility of developing a human vaccine to prevent mucosal papillomas, which can progress to malignancy. Images Fig. 1 PMID:8524802

  19. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    PubMed

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385

  20. Humoral and cellular immune responses to matrix protein of measles virus in subacute sclerosing panencephalitis.

    PubMed Central

    Dhib-Jalbut, S; McFarland, H F; Mingioli, E S; Sever, J L; McFarlin, D E

    1988-01-01

    The immune response to matrix (M) protein of measles virus was examined in patients with subacute sclerosing panencephalitis (SSPE) and controls. Antibodies specific for M and nucleocapsid (NC) proteins in 11 serum and 8 cerebrospinal fluid (CSF) samples from patients with SSPE were quantitated by enzyme-linked immunosorbent assay by using affinity-purified measles virus proteins. Geometric mean anti-NC antibody titers were higher in the serum (6.58 +/- 0.98 [mean +/- standard deviation]) and CSF (4.38 +/- 0.74) of SSPE patients compared with controls. Anti-M antibodies were present in the serum and CSF of all SSPE samples tested but in titers lower than those of anti-NC antibodies. Geometric mean anti-M antibody titer was 3.35 +/- 0.53 in sera from patients with SSPE compared with 3.05 +/- 0.66 in sera from patients with other neurological diseases and 3.12 +/- 0.74 in sera from healthy individuals. Geometric mean anti-M antibody titer was 2.59 +/- 0.86 in the CSF of eight patients with SSPE compared with a mean less than 1.00 for patients with other neurological disease (controls). Intrathecal synthesis of anti-M or anti-NC antibodies was established in four patients with SSPE. The cellular immune responses to M, F, HA, and NC proteins were examined in four of the patients with SSPE by lymphoproliferation and were not significantly different from those in five healthy controls. The results demonstrate humoral and cellular immune responses to M protein in patients with SSPE and indicate that it is unlikely that a defect in the immune response to this virus component accounts for the disease process in the patients studied. Images PMID:3373575

  1. Surfactant Protein D Interacts with α2-Macroglobulin and Increases Its Innate Immune Potential*

    PubMed Central

    Craig-Barnes, Hayley A.; Doumouras, Barbara S.; Palaniyar, Nades

    2010-01-01

    Surfactant protein D (SP-D) is an innate immune collectin that recognizes microbes via its carbohydrate recognition domains, agglutinates bacteria, and forms immune complexes. During microbial infections, proteases, such as elastases, cleave the carbohydrate recognition domains and can inactivate the innate immune functions of SP-D. Host responses to counterbalance the reduction of SP-D-mediated innate immune response under these conditions are not clearly understood. We have unexpectedly identified that SP-D could interact with protein fractions containing ovomucin and ovomacroglobulin. Here, we show that SP-D interacts with human α2-macroglobulin (A2M), a protease inhibitor present in the lungs and serum. Using enzyme-linked immunosorbent assays, surface plasmon resonance, and carbohydrate competition assays, we show that SP-D interacts with A2M both in solid phase (KD of 7.33 nm) and in solution via lectin-carbohydrate interactions under physiological calcium conditions. Bacterial agglutination assays further show that SP-D·A2M complexes increase the ability of SP-D to agglutinate bacteria. Western blot analyses show that SP-D, but not A2M, avidly binds bacteria. Interestingly, intact and activated A2M also protect SP-D against elastase-mediated degradation, and the cleaved A2M still interacts with SP-D and is able to enhance its agglutination abilities. We also found that SP-D and A2M can interact with each other in the airway-lining fluid. Therefore, we propose that SP-D utilizes a novel mechanism in which the collectin interacts with protease inhibitor A2M to decrease its degradation and to concurrently increase its innate immune function. These interactions particularly enhance bacterial agglutination and immune complex formation. PMID:20207732

  2. Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release

    PubMed Central

    Nakahira, Kiichi; Haspel, Jeffrey Adam; Rathinam, Vijay AK; Lee, Seon-Jin; Dolinay, Tamas; Lam, Hilaire C; Englert, Joshua A; Rabinovitch, Marlene; Cernadas, Manuela; Kim, Hong Pyo; Fitzgerald, Katherine A; Ryter, Stefan W; Choi, Augustine MK

    2010-01-01

    Autophagy, a cellular process for organelle and protein turnover, regulates innate immune responses. We demonstrate that depletion of autophagic proteins microtubule associated protein-1 light chain 3B (LC3B) and Beclin 1 enhances caspase-1 activation and secretion of interleukin-1β and interleukin-18. Autophagic protein depletion promoted accumulation of dysfunctional mitochondria and cytosolic translocation of mitochondrial DNA (mtDNA) in response to lipopolysaccharide (LPS) and ATP in macrophages. Release of mtDNA into the cytosol depended on the NALP3 inflammasome and mitochondrial ROS. Cytosolic mtDNA contributed to IL-1β and IL-18 secretion in response to LPS and ATP. LC3B-deficient mice produced more caspase-1-dependent cytokines in two sepsis models and were susceptible to LPS-induced mortality. Our study suggests that autophagic proteins regulate NALP3-dependent inflammation by preserving mitochondrial integrity. PMID:21151103

  3. Surfactant protein D induces immune quiescence and apoptosis of mitogen-activated peripheral blood mononuclear cells.

    PubMed

    Pandit, Hrishikesh; Thakur, Gargi; Koippallil Gopalakrishnan, Aghila Rani; Dodagatta-Marri, Eswari; Patil, Anushree; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant protein D (SP-D) is an integral molecule of the innate immunity secreted by epithelial cells lining the mucosal surfaces. The C-type lectin domain of SP-D performs pattern recognition functions while it binds to putative receptors on immune cells to modify cellular functions. Activation of immune cells and increased serum SP-D is observed in a range of patho-physiological conditions including infections. We speculated if SP-D can modulate systemic immune response via direct interaction with activated PBMCs. In this study, we examined interaction of a recombinant fragment of human SP-D (rhSP-D) on PHA-activated PBMCs. We report a significant downregulation of activation receptors such as TLR2, TLR4, CD11c and CD69 upon rhSP-D treatment. rhSP-D inhibited production of Th1 (TNF-α and IFN-γ) and Th17 (IL-17A) cytokines along with IL-6. Interestingly, levels of IL-2, Th2 (IL-4) and regulatory (IL-10 and TGF-β) cytokines remained unaltered. Analysis of co-stimulatory CD28 and co-inhibitory CTLA4 receptors along with their ligands CD80 and CD86 revealed a selective up-regulation of CTLA4 in the lymphocyte subset. rhSP-D induced apoptosis in the activated but not in non-activated lymphocytes. Blockade of CTLA4 inhibited rhSP-D mediated apoptosis of activated lymphocytes, confirming involvement of CTLA4. We conclude that SP-D restores immune homeostasis. It regulates expression of immunomodulatory receptors and cytokines, which is followed by induction of apoptosis in activated lymphocytes. These findings suggest a critical role of SP-D in immune surveillance against activated immune cells. PMID:26563748

  4. Evaluation of Th1/Th2-Related Immune Response against Recombinant Proteins of Brucella abortus Infection in Mice.

    PubMed

    Im, Young Bin; Park, Woo Bin; Jung, Myunghwan; Kim, Suk; Yoo, Han Sang

    2016-06-28

    Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis. PMID:27012238

  5. Immunity against heterosubtypic influenza virus induced by adenovirus and MVA expressing nucleoprotein and matrix protein-1.

    PubMed

    Lambe, Teresa; Carey, John B; Li, Yuanyuan; Spencer, Alexandra J; van Laarhoven, Arjan; Mullarkey, Caitlin E; Vrdoljak, Anto; Moore, Anne C; Gilbert, Sarah C

    2013-01-01

    Alternate prime/boost vaccination regimens employing recombinant replication-deficient adenovirus or MVA, expressing Influenza A virus nucleoprotein and matrix protein 1, induced antigen-specific T cell responses in intradermally (ID) vaccinated mice; with the strongest responses resulting from Ad/MVA immunization. In BALB/C mice the immunodominant response was shifted from the previously identified immunodominant epitope to a novel epitope when the antigen was derived from A/Panama/2007/1999 rather than A/PR/8. Alternate immunization routes did not affect the magnitude of antigen-specific systemic IFN-γ response, but higher CD8(+) T-cell IFN-γ immune responses were seen in the bronchoalveolar lavage following intransal (IN) boosting after intramuscular (IM) priming, whilst higher splenic antigen-specific CD8(+) T cell IFN-γ was seen following IM boosting. Partial protection against heterologous influenza virus challenge was achieved following either IM/IM or IM/IN but not ID/ID immunization. These data may be of relevance for the design of optimal immunization regimens for human influenza vaccines, especially for influenza-naïve infants. PMID:23485942

  6. Innovative immunization protocols using chimeric recombinant protein for the production of polyspecific loxoscelic antivenom in horses.

    PubMed

    Figueiredo, Luís F M; Dias-Lopes, Camila; Alvarenga, Larissa M; Mendes, Thais M; Machado-de-Ávila, Ricardo A; McCormack, Jessica; Minozzo, João C; Kalapothakis, Evanguedes; Chávez-Olórtegui, Carlos

    2014-08-01

    A chimeric protein (rCpLi) was constructed expressing three epitopes of rLiD1, a dermonecrotic toxin from the venom of Loxosceles intermedia spider. We have analyzed the neutralization potential of sera obtained by immunization of horses with rCpLi and rCpLi combined with initial doses of venoms and compared these with antivenom traditionally produced in horses using crude Loxosceles gaucho, Loxosceles laeta and L. intermedia venoms as antigens. We have demonstrated by ELISA that horses immunized with three initial doses of crude venom containing mixtures of L. intermedia, L. gaucho and L. laeta followed by nine doses of rCpLi generate antibodies with the same reactivity as those produced following immunization with traditional antivenom, towards the venoms of the three Loxosceles sp. species. Results from in vivo and in vitro neutralization assays showed that the new horse sera are able to neutralize the dermonecrotic activity of Loxosceles venoms, which are of medical importance in Brazil and some of these sera are capable of meeting the necessary potency requirements that could allow for their therapeutic use in humans. This immunization strategy combining both antigens used approximately 67% less crude Loxosceles venoms compared to traditional immunization protocol and can mean the development of Loxosceles antivenoms with the consequent reduction of devastation of arachnid fauna. PMID:24878371

  7. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  8. The role of STIM and ORAI proteins in phagocytic immune cells

    PubMed Central

    Nunes, Paula

    2016-01-01

    Phagocytic cells, such as neutrophils, macrophages, and dendritic cells, migrate to sites of infection or damage and are integral to innate immunity through two main mechanisms. The first is to directly neutralize foreign agents and damaged or infected cells by secreting toxic substances or ingesting them through phagocytosis. The second is to alert the adaptive immune system through the secretion of cytokines and the presentation of the ingested materials as antigens, inducing T cell maturation into helper, cytotoxic, or regulatory phenotypes. While calcium signaling has been implicated in numerous phagocyte functions, including differentiation, maturation, migration, secretion, and phagocytosis, the molecular components that mediate these Ca2+ signals have been elusive. The discovery of the STIM and ORAI proteins has allowed researchers to begin clarifying the mechanisms and physiological impact of store-operated Ca2+ entry, the major pathway for generating calcium signals in innate immune cells. Here, we review evidence from cell lines and mouse models linking STIM and ORAI proteins to the control of specific innate immune functions of neutrophils, macrophages, and dendritic cells. PMID:26764049

  9. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors.

    PubMed

    Kang, Xunlei; Kim, Jaehyup; Deng, Mi; John, Samuel; Chen, Heyu; Wu, Guojin; Phan, Hiep; Zhang, Cheng Cheng

    2016-01-01

    Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development. PMID:26636629

  10. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors

    PubMed Central

    Kang, Xunlei; Kim, Jaehyup; Deng, Mi; John, Samuel; Chen, Heyu; Wu, Guojin; Phan, Hiep; Zhang, Cheng Cheng

    2016-01-01

    ABSTRACT Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology – as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development. PMID:26636629

  11. Oral and parenteral immunization of chickens (Gallus gallus) against West Nile virus with recombinant envelope protein

    USGS Publications Warehouse

    Fassbinder-Orth, C. A.; Hofmeister, E.K.; Weeks-Levy, C.; Karasov, W.H.

    2009-01-01

    West Nile virus (WNV) causes morbidity and mortality in humans, horses, and in more than 315 bird species in North America. Currently approved WNV vaccines are designed for parenteral administration and, as yet, no effective oral WNV vaccines have been developed. WNV envelope (E) protein is a highly antigenic protein that elicits the majority of virus-neutralizing antibodies during a WNV immune response. Leghorn chickens were given three vaccinations (each 2 wk apart) of E protein orally (20 ??g or 100 ??g/dose), of E protein intramuscularly (IM, 20 ??g/dose), or of adjuvant only (control group) followed by a WNV challenge. Viremias were measured post-WNV infection, and three new enzyme-linked immunosorbent assays were developed for quantifying IgM, IgY, and IgA-mediated immune response of birds following WNV infection. WNV viremia levels were significantly lower in the IM group than in both oral groups and the control group. Total WNV E protein-specific IgY production was significantly greater, and WNV nonstructural 1-specific IgY was significantly less, in the IM group compared to all other treatment groups. The results of this study indicate that IM vaccination of chickens with E protein is protective against WNV infection and results in a significantly different antibody production profile as compared to both orally vaccinated and nonvaccinated birds. ?? 2009 American Association of Avian Pathologists.

  12. Bacterial Virulence Proteins as Tools to Rewire Kinase Pathways in Yeast and Immune Cells

    PubMed Central

    Wei, Ping; Wong, Wilson W.; Park, Jason S.; Corcoran, Ethan E.; Peisajovich, Sergio G.; Onuffer, James J.; Weiss, Arthur; Lim, Wendell A.

    2012-01-01

    Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signaling pathways, provide a mechanism to evade immune responses during infection1,2. Although these effectors are responsible for pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behavior. Here, we have exploited two effector proteins, the Shigella flexneri OspF protein3 and Yersinia pestis YopH protein4, to systematically rewire kinase-mediated responses in both yeast and mammalian immune cells. Bacterial effector proteins can be directed to selectively inhibit specific mitogen activated protein kinase (MAPK) pathways in yeast by artificially targeting them to pathway specific complexes. Moreover, we show that unique properties of the effectors generate novel pathway behaviors: OspF, which irreversibly inactivates MAPKs4, was used to construct a synthetic feedback circuit that displays novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to precisely tune the T cell response amplitude, or as an inducible pause switch that can temporarily disable T cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications. PMID:22820255

  13. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins.

    PubMed

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; Sankaran, Banumathi; Du, Fenglei; Shelton, Catherine L; Herr, Andrew B; Ji, Jun-Yuan; Li, Pingwei

    2016-06-14

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses. PMID:27302953

  14. Promyelocytic Leukemia Zinc Finger Protein Regulates Interferon-Mediated Innate Immunity

    PubMed Central

    Xu, Dakang; Holko, Michelle; Sadler, Anthony J.; Scott, Bernadette; Higashiyama, Shigeki; Berkofsky-Fessler, Windy; McConnell, Melanie J.; Pandolfi, Pier Paolo; Licht, Jonathan D.; Williams, Bryan R.G.

    2009-01-01

    Summary Interferons (IFNs) direct innate and acquired immune responses and, accordingly, are used therapeutically to treat a number of diseases, yet the diverse effects they elicit are not fully understood. Here we identify the promyelocytic leukemia zinc finger (PLZF) protein as a previously unrecognized component of the IFN response. IFN stimulates an association between PLZF, the promyelocytic leukemia protein and histone deacetylase 1, to induce a decisive subset of IFN-stimulated genes (ISGs). Consequently, PLZF-deficient mice have a specific ISG defect and as a result are more susceptible to viral infection. This susceptibility correlates with a marked decrease in the expression of the key antiviral mediators and an impaired IFN-mediated induction of natural killer cell function. These results provide new insights into the regulatory mechanisms of IFN signaling and the induction of innate antiviral immunity. PMID:19523849

  15. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids

    PubMed Central

    Soares-Silva, Mercedes; Diniz, Flavia F.; Gomes, Gabriela N.; Bahia, Diana

    2016-01-01

    Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host’s MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host. PMID:26941717

  16. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids.

    PubMed

    Soares-Silva, Mercedes; Diniz, Flavia F; Gomes, Gabriela N; Bahia, Diana

    2016-01-01

    Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host. PMID:26941717

  17. Glycans and glycan binding proteins in immune regulation: A concise introduction to glycobiology for the allergist

    PubMed Central

    Schnaar, Ronald L.

    2015-01-01

    Cells are endowed with a rich surface coat of glycans carried as glycoproteins and glycolipids on the outer leaflet of their plasma membranes and constituting a major molecular interface between cells and their environment. Each cell’s glycome, the sum of its diverse glycan structures, comprises a distinct cellular signature that is defined by the expression levels of the enzymes responsible for glycan biosynthesis. This signature can be read by complementary glycan binding proteins that translate glycan recognition into function. Nowhere is this more evident than in the immune system, where glycans and glycan binding proteins are integral to pathogen recognition and the control of inflammatory responses. Glycobiology – the study of glycan structures and their functions – is increasingly providing insights into immune regulatory mechanisms and thereby providing opportunities for therapeutic intervention. To promote wider appreciation of this rapidly expanding area of research, this review briefly examines the makeup of the human glycome, the glycan binding proteins that translate glycan recognition into function, and provides examples of glycan recognition events that are responsible for immune system regulation. PMID:25649080

  18. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish.

    PubMed

    Sun, Chen; Zhang, Shicui

    2015-10-01

    Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health. PMID:26506386

  19. Beneficial Immune Effects of Myeloid-Related Proteins in Kidney Transplant Rejection.

    PubMed

    Rekers, N V; Bajema, I M; Mallat, M J K; Petersen, B; Anholts, J D H; Swings, G M J S; van Miert, P P M C; Kerkhoff, C; Roth, J; Popp, D; van Groningen, M C; Baeten, D; Goemaere, N; Kraaij, M D; Zandbergen, M; Heidt, S; van Kooten, C; de Fijter, J W; Claas, F H J; Eikmans, M

    2016-05-01

    Acute rejection is a risk factor for inferior long-term kidney transplant survival. Although T cell immunity is considered the main effector in clinical acute rejection, the role of myeloid cells is less clear. Expression of S100 calcium-binding protein A8 (S100A8) and S100A9 was evaluated in 303 biopsies before and after transplantation from 190 patients. In two independent cohorts of patients with acute rejection (n = 98 and n = 11; mostly cellular rejections), high expression of S100 calcium-binding protein A8 (S100A8) and A9 (S100A9) was related to improved graft outcome. Mechanisms of action of the S100 molecules were investigated. In the graft and peripheral blood cells, S100A8 and S100A9 expression correlated with myeloid-derived suppressor markers. In line with this finding, recombinant S100A8 and S100A9 proteins inhibited maturation and the allogeneic T cell stimulatory capacity of dendritic cells. S100A9 enhanced the production of reactive oxygen species by macrophages, which suppressed T cell activity at low concentrations in the form of hydrogen peroxide. Intragraft S100A8 and S100A9 expression linked to reduced expression of T cell immunity and tissue injury markers and higher expression of immune regulatory molecules. This study sheds new light on the importance of myeloid cell subsets in directing the outcome of T cell-mediated acute rejection. PMID:26607974

  20. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish

    PubMed Central

    Sun, Chen; Zhang, Shicui

    2015-01-01

    Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health. PMID:26506386

  1. Mapping a Dynamic Innate Immunity Protein Interaction Network Regulating Type I Interferon Production

    PubMed Central

    Li, Shitao; Wang, Lingyan; Berman, Michael; Kong, Young-Yun; Dorf, Martin E.

    2011-01-01

    SUMMARY To systematically investigate innate immune signaling networks regulating production of type I interferon, we analyzed protein complexes formed after microbial recognition. Fifty-eight baits were associated with 260 interacting proteins forming a human innate immunity interactome for type I interferon (HI5) of 401 unique interactions; 21% of interactions were modulated by RNA, DNA, or LPS. Overexpression and depletion analyses identified 22 unique genes that regulated NF-κB and ISRE reporter activity, viral replication, or virus-induced interferon production. Detailed mechanistic analysis defined a role for mind bomb (MIB) E3 ligases in K63-linked ubiquitination of TBK1, a kinase that phosphorylates IRF transcription factors controlling interferon production. Mib genes selectively controlled responses to cytosolic RNA. MIB deficiency reduced antiviral activity, establishing the role of MIB proteins as positive regulators of antiviral responses. The HI5 provides a dynamic physical and regulatory network that serves as a resource for mechanistic analysis of innate immune signaling. PMID:21903422

  2. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria

    PubMed Central

    Beeson, James G.; Drew, Damien R.; Boyle, Michelle J.; Feng, Gaoqian; Fowkes, Freya J.I.; Richards, Jack S.

    2016-01-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. PMID:26833236

  3. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria.

    PubMed

    Beeson, James G; Drew, Damien R; Boyle, Michelle J; Feng, Gaoqian; Fowkes, Freya J I; Richards, Jack S

    2016-05-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. PMID:26833236

  4. Study on the immune response to recombinant Hsp70 protein from Megalobrama amblycephala.

    PubMed

    Chen, Nan; Wan, Xiao-Ling; Huang, Chun-Xiao; Wang, Wei-Min; Liu, Hong; Wang, Huan-Ling

    2014-11-01

    The expression of heat shock protein 70 (Hsp70) is induced in response to many factors including high temperature, infection, metal pollutants and toxic chemicals. In this study, Megalobrama amblycephala HSP70 promoter was cloned, and characteristic heat shock elements (HSEs) were identified in the promoter region. The recombinant M. amblycephala Hsp70 protein (rMaHsp70) was expressed and purified from Escherichia coli BL21 (DE3). To evaluate in vivo immune response of rMaHsp70, we administered intraperitoneal (IP) injection, and demonstrated that rMaHsp70 stimulated M. amblycephala immune activity by inducing the expression of HSP70, HIF-1α, HSC70, CXCR4b, TNF-α and IL-1β mRNAs in liver, headkidney, spleen and gill, as well as SOD, glutathione, lysozyme and interferon alpha proteins in serum and liver. The effect of rMaHsp70 as adjuvant against Aeromonas hydrophila was assessed by injecting a mixed vaccine of rMaHsp70 and A. hydrophila (A. hydrophila/Hsp70) into M. amblycephala, and the relative percent survival (RPS) in the A. hydrophila/Hsp70 group was 75% compared to 50% in the A. hydrophila/PBS group. Furthermore, rMaHsp70 also promoted the proliferation and suppressed apoptosis in M. amblycephala fin cells (MAF) in a dose-dependent manner. Taken together, these results suggest that rMaHsp70 can induce organic immune response and improve environmental tolerance. PMID:25113416

  5. Protective Immunity to Vaccinia Virus Induced by Vaccination with Multiple Recombinant Outer Membrane Proteins of Intracellular and Extracellular Virions

    PubMed Central

    Fogg, Christiana; Lustig, Shlomo; Whitbeck, J. Charles; Eisenberg, Roselyn J.; Cohen, Gary H.; Moss, Bernard

    2004-01-01

    Infectious intracellular and extracellular forms of vaccinia virus have different outer membrane proteins, presenting multiple targets to the immune system. We investigated the immunogenicity of soluble forms of L1, an outer membrane protein of the intracellular mature virus, and of A33 and B5, outer membrane proteins of the extracellular enveloped virus. The recombinant proteins, in 10-μg amounts mixed with a Ribi- or saponin-type adjuvant, were administered subcutaneously to mice. Antibody titers to each protein rose sharply after the first and second boosts, reaching levels that surpassed those induced by percutaneous immunization with live vaccinia virus. Immunoglobulin G1 (IgG1) antibody predominated after the protein immunizations, indicative of a T-helper cell type 2 response, whereas live vaccinia virus induced mainly IgG2a, indicative of a T-helper cell type 1 response. Mice immunized with any one of the recombinant proteins survived an intranasal challenge with 5 times the 50% lethal dose of the pathogenic WR strain of vaccinia virus. Measurements of weight loss indicated that the A33 immunization most effectively prevented disease. The superiority of protein combinations was demonstrated when the challenge virus dose was increased 20-fold. The best protection was obtained with a vaccine made by combining recombinant proteins of the outer membranes of intracellular and extracellular virus. Indeed, mice immunized with A33 plus B5 plus L1 or with A33 plus L1 were better protected than mice immunized with live vaccinia virus. Three immunizations with the three-protein combination were necessary and sufficient for complete protection. These studies suggest the feasibility of a multiprotein smallpox vaccine. PMID:15367588

  6. The Dependence of the Change in the Coefficient of Thermal Expansion of Graphite Fiber Reinforced Polyimide IM7-K3B on Microcracking due to Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Stewart, Melissa C.

    1995-01-01

    Composite IM7-K3B was subjected to a simulated high speed aircraft thermal environment to determine the effects of microcracking on the change in CTE. IM7-K3B is a graphite fiber reinforced polyimide laminate, manufactured by Dupont. The lay-up for the material was (0.90((Sub 3)(Sub s))). The specimens were placed in a laser-interferometric dilatometer to obtain thermal expansion measurements and were then repeatedly cycled between -65 F and 350 F up to 1000 cycles. After cycling they were scanned for microcracks at a magnification of 400x. The material was expected not to crack and to have a near zero CTE. Some microcracking did occur in all specimens and extensive microcracking occurred in one specimen. Further testing is required to determine how closely the CTE and microcracking are related.

  7. Identification of novel biomarkers in chronic immune thrombocytopenia (ITP) by microarray-based serum protein profiling.

    PubMed

    Bal, Gürkan; Futschik, Matthias E; Hartl, Daniela; Ringel, Frauke; Kamhieh-Milz, Julian; Sterzer, Viktor; Hoheisel, Jörg D; Alhamdani, Mohamed S S; Salama, Abdulgabar

    2016-02-01

    The pathological mechanisms underlying the development of immune thrombocytopenia (ITP) are unclear and its diagnosis remains a process of exclusion. Currently, there are no known specific biomarkers for ITP to support differential diagnosis and treatment decisions. Profiling of serum proteins may be valuable for identifying such biomarkers. Sera from 46 patients with primary chronic ITP and 34 healthy blood donors were analysed using a microarray of 755 antibodies. We identified 161 differentially expressed proteins. In addition to oncoproteins and tumour-suppressor proteins, including apoptosis regulator BCL2, breast cancer type 1 susceptibility protein (BRCA1), Fanconi anaemia complementation group C (FANCC) and vascular endothelial growth factor A (VEGFA), we detected six anti-nuclear autoantibodies in a subset of ITP patients: anti-PCNA, anti-SmD, anti-Ro/SSA60, anti-Ro/SSA52, anti-La/SSB and anti-RNPC antibodies. This finding may provide a rational explanation for the association of ITP with malignancies and other autoimmune diseases. While RUNX1mRNA expression in the peripheral blood mononuclear cells (PBMC) of patients was significantly downregulated, an accumulation of RUNX1 protein was observed in the platelets of ITP patients. This may indicate dysregulation of RUNX1 expression in PBMC and megakaryocytes and may lead to an imbalanced immune response and impaired thrombopoiesis. In conclusion, we provide novel insights into the pathogenic mechanisms of ITP that warrant further exploration. PMID:26628061

  8. Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein Promotes Protective Immune Responses in Mice

    PubMed Central

    Zhang, Chunyan; Zhu, Shanshan; Wei, Li; Yan, Xu; Wang, Jing; Quan, Rong; She, Ruiping; Hu, Fengjiao; Liu, Jue

    2015-01-01

    The Cap protein of porcine circovirus type 2 (PCV2) that serves as a major host-protective immunogen was used to develop recombinant vaccines for control of PCV2-associated diseases. Growing research data have demonstrated the high effectiveness of flagellin as an adjuvant for humoral and cellular immune responses. Here, a recombinant protein was designed by fusing a modified version of bacterial flagellin to PCV2 Cap protein and expressed in a baculovirus system. When administered without adjuvant to BALB/c mice, the flagellin-Cap fusion protein elicited stronger PCV2-specific IgG antibody response, higher neutralizing antibody levels, milder histopathological changes and lower viremia, as well as higher secretion of cytokines such as TNF-α and IFN-γ that conferred better protection against virus challenge than those in the recombinant Cap alone-inoculated mice. These results suggest that the recombinant Cap protein when fused to flagellin could elicit better humoral and cellular immune responses against PCV2 infection in a mouse model, thereby acting as an attractive candidate vaccine for control of the PCV2-associated diseases. PMID:26070075

  9. Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein Promotes Protective Immune Responses in Mice.

    PubMed

    Zhang, Chunyan; Zhu, Shanshan; Wei, Li; Yan, Xu; Wang, Jing; Quan, Rong; She, Ruiping; Hu, Fengjiao; Liu, Jue

    2015-01-01

    The Cap protein of porcine circovirus type 2 (PCV2) that serves as a major host-protective immunogen was used to develop recombinant vaccines for control of PCV2-associated diseases. Growing research data have demonstrated the high effectiveness of flagellin as an adjuvant for humoral and cellular immune responses. Here, a recombinant protein was designed by fusing a modified version of bacterial flagellin to PCV2 Cap protein and expressed in a baculovirus system. When administered without adjuvant to BALB/c mice, the flagellin-Cap fusion protein elicited stronger PCV2-specific IgG antibody response, higher neutralizing antibody levels, milder histopathological changes and lower viremia, as well as higher secretion of cytokines such as TNF-α and IFN-γ that conferred better protection against virus challenge than those in the recombinant Cap alone-inoculated mice. These results suggest that the recombinant Cap protein when fused to flagellin could elicit better humoral and cellular immune responses against PCV2 infection in a mouse model, thereby acting as an attractive candidate vaccine for control of the PCV2-associated diseases. PMID:26070075

  10. Serum amyloid A in marine bivalves: An acute phase and innate immunity protein.

    PubMed

    Rosani, U; Domeneghetti, S; Gerdol, M; Franzoi, M; Pallavicini, A; Venier, P

    2016-06-01

    Serum amyloid A (SAA) is among the most potent acute phase proteins (APP) in vertebrates. After injury, its early expression can dramatically increase to promote the recruitment of immuno-competent cells, expression of pro-inflammatory proteins and the activation of the innate immune defences. Although APP have been studied in many vertebrates, only recently their search was extended to invertebrates and the finding of SAA-like molecules has opened new questions on the immune-regulatory functions of these soluble proteins in the animal kingdom. Taking advantage of the considerable amount of genomic and transcriptomic data currently available, we retrieved 51 SAA-like proteins in several protostome taxa comprising 21 marine bivalve species and basal metazoans. In addition to vertebrate-like SAAs, we identified a second protein type with peculiar features. In the bivalves Crassostrea gigas and Mytilus galloprovincialis, both digital expression analysis and qPCR data indicated an induction of the classical SAA after bacterial challenge. PMID:26828389

  11. Gene Models, Expression Repertoire, and Immune Response of Plasmodium vivax Reticulocyte Binding Proteins

    PubMed Central

    Hietanen, Jenni; Chim-ong, Anongruk; Chiramanewong, Thanprakorn; Gruszczyk, Jakub; Roobsoong, Wanlapa; Sattabongkot, Jetsumon

    2015-01-01

    Members of the Plasmodium vivax reticulocyte binding protein (PvRBP) family are believed to mediate specific invasion of reticulocytes by P. vivax. In this study, we performed molecular characterization of genes encoding members of this protein family. Through cDNA sequencing, we constructed full-length gene models and verified genes that are protein coding and those that are pseudogenes. We also used quantitative PCR to measure their in vivo transcript abundances in clinical P. vivax isolates. Like genes encoding related invasion ligands of P. falciparum, Pvrbp expression levels vary broadly across different parasite isolates. Through antibody measurements, we found that host immune pressure may be the driving force behind the distinctly high diversity of one of the family members, PvRBP2c. Mild yet significant negative correlation was found between parasitemia and the PvRBP2b antibody level, suggesting that antibodies to the protein may interfere with invasion. PMID:26712206

  12. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania.

    PubMed

    Collin, Nicolas; Gomes, Regis; Teixeira, Clarissa; Cheng, Lily; Laughinghouse, Andre; Ward, Jerrold M; Elnaiem, Dia-Eldin; Fischer, Laurent; Valenzuela, Jesus G; Kamhawi, Shaden

    2009-05-01

    Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-gamma at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG(2) antibody levels and significant IFN-gamma production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-gamma and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response. PMID:19461875

  13. Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    PubMed Central

    Povolotsky, Tatyana Leonidovna; Orlova, Ekaterina; Tamang, Dorjee G.

    2010-01-01

    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members. Electronic supplementary material The online version of this article (doi:10.1007/s00232-010-9260-7) contains supplementary material, which is available to authorized users. PMID:20563570

  14. Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers.

    PubMed

    Houshmand, M; Azhar, K; Zulkifli, I; Bejo, M H; Kamyab, A

    2012-02-01

    An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers. PMID:22252353

  15. Dissociation of immune determinants of outer membrane proteins of Chlamydia psittaci strain guinea pig inclusion conjunctivitis.

    PubMed Central

    Westbay, T D; Dascher, C C; Hsia, R C; Bavoil, P M; Zauderer, M

    1994-01-01

    Chlamydia trachomatis is an important human pathogen. Research to develop a Chlamydia vaccine has focused on the major outer membrane protein (MOMP). Determinants of this protein elicit serovar-specific neutralizing antibodies which are thought to play a critical role in protective immunity. MOMP-specific antibody responses are highly variable in the polymorphic population. Genetic factors which might influence the MOMP-specific immune response are consequently of particular interest. The C. psittaci strain guinea pig inclusion conjunctivitis (GPIC) is a natural pathogen of the guinea pig that causes both ocular and genital tract infections that closely resemble those caused by C. trachomatis in humans. As such, it provides an excellent model for disease. In this report, we explore the influence of major histocompatibility complex-linked genes on the MOMP-specific antibody response in mice immunized with either whole GPIC elementary bodies or recombinant GPIC MOMP. Our results indicate that the MOMP-specific antibody response is major histocompatibility complex linked such that mice of the H-2d haplotype are high responders while mice of the H-2k haplotype are low responders. We demonstrate that MOMP-specific B cells are present in H-2k strains which are, however, deficient in MOMP-specific helper T cells. Although immunization of low-MOMP-responder strains with whole chlamydial elementary bodies induces high levels of immunoglobulin G antibody specific for Omp2, the cysteine-rich outer membrane protein, MOMP-specific B cells are unable to receive help from Omp2-specific T cells. The failure of intermolecular help from Omp2-specific T cells and related observations raise important issues regarding the processing and presentation of chlamydial antigens and the design of optimal subunit vaccines. Images PMID:7525489

  16. Serum immune-related proteins are differentially expressed during hibernation in the American black bear.

    PubMed

    Chow, Brian A; Donahue, Seth W; Vaughan, Michael R; McConkey, Brendan; Vijayan, Mathilakath M

    2013-01-01

    Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears) and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus) may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE) analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears. PMID:23825529

  17. Serum Immune-Related Proteins are Differentially Expressed during Hibernation in the American Black Bear

    PubMed Central

    Chow, Brian A.; Donahue, Seth W.; Vaughan, Michael R.; McConkey, Brendan; Vijayan, Mathilakath M.

    2013-01-01

    Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears) and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus) may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE) analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears. PMID:23825529

  18. Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Huang, Weiwei; Yao, Yufeng; Wang, Shijie; Xia, Ye; Yang, Xu; Long, Qiong; Sun, Wenjia; Liu, Cunbao; Li, Yang; Chu, Xiaojie; Bai, Hongmei; Yao, Yueting; Ma, Yanbing

    2016-01-01

    A. baumannii infections are becoming more and more serious health issues with rapid emerging of multidrug and extremely drug resistant strains, and therefore, there is an urgent need for the development of nonantibiotic-based intervention strategies. This study aimed at identifying whether an outer membrane protein with molecular weight of about 22 kDa (Omp22) holds the potentials to be an efficient vaccine candidate and combat A. baumannii infection. Omp22 which has a molecule length of 217 amino acids kept more than 95% conservation in totally 851 reported A. baumannii strains. Recombinant Omp22 efficiently elicited high titers of specific IgG in mice. Both active and passive immunizations of Omp22 increased the survival rates of mice, suppressed the bacterial burdens in the organs and peripheral blood, and reduced the levels of serum inflammatory cytokines and chemokines. Opsonophagocytosis assays showed in vitro that Omp22 antiserum had highly efficient bactericidal activities on clonally distinct clinical A. baumannii isolates, which were partly complements-dependent and opsonophagocytic killing effects. Additionally, administration with as high as 500 μg of Omp22 didn’t cause obvious pathological changes in mice. In conclusion, Omp22 is a novel conserved and probably safe antigen for developing effective vaccines or antisera to control A. baumannii infections. PMID:26853590

  19. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein

    PubMed Central

    Parra, Marcela; Liu, Xia; Derrick, Steven C.; Yang, Amy; Molina-Cruz, Alvaro; Barillas-Mury, Carolina; Zheng, Hong; Thao Pham, Phuong; Sedegah, Martha; Belmonte, Arnel; Litilit, Dianne D.; Waldmann, Thomas A.; Kumar, Sanjai; Morris, Sheldon L.; Perera, Liyanage P.

    2015-01-01

    Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)–based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies. PMID:26505634

  20. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein.

    PubMed

    Parra, Marcela; Liu, Xia; Derrick, Steven C; Yang, Amy; Molina-Cruz, Alvaro; Barillas-Mury, Carolina; Zheng, Hong; Thao Pham, Phuong; Sedegah, Martha; Belmonte, Arnel; Litilit, Dianne D; Waldmann, Thomas A; Kumar, Sanjai; Morris, Sheldon L; Perera, Liyanage P

    2015-01-01

    Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)-based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies. PMID:26505634

  1. Getting away with murder: how do the BCL-2 family of proteins kill with immunity?

    PubMed Central

    Renault, Thibaud T.; Chipuk, Jerry E.

    2013-01-01

    About 1 million per second is the number of white blood cells the adult human body produces. However, only a small fraction of them will survive as the majority is eliminated through a genetically controlled form of cell death referred to as apoptosis. This review places into perspective recent studies pertaining to the BCL-2 family of proteins as critical regulators of the development and function of the immune system, with particular attention on B cell and T cell biology. Here we discuss how elegant murine model systems have revealed the major contributions of the BCL-2 family in establishing an effective immune system. Moreover, we highlight some key regulatory pathways that influence the expression, function, and stability of individual BCL-2 family members, and discuss their role in immunity. From deadly methods to more gentle manners, the final portion of the review discusses the non-apoptotic functions of the BCL-2 family and how they pertain to the control of immunity. PMID:23527542

  2. Mitochondrial antiviral-signalling protein plays an essential role in host immunity against human metapneumovirus

    PubMed Central

    Deng, Junfang; Chen, Yu; Liu, Guangliang; Ren, Junping; Go, Caroline; Ivanciuc, Teodora; Deepthi, Kolli; Casola, Antonella; Garofalo, Roberto P.

    2015-01-01

    Human metapneumovirus (hMPV) is a common cause of respiratory tract infection in the paediatrics population. Recently, we and others have shown that retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) are essential for hMPV-induced cellular antiviral signalling. However, the contribution of those receptors to host immunity against pulmonary hMPV infection is largely unexplored. In this study, mice deficient in mitochondrial antiviral-signalling protein (MAVS), an adaptor of RLRs, were used to investigate the role(s) of these receptors in pulmonary immune responses to hMPV infection. MAVS deletion significantly impaired the induction of antiviral and pro-inflammatory cytokines and the recruitment of immune cells to the bronchoalveolar lavage fluid by hMPV. Compared with WT mice, mice lacking MAVS demonstrated decreased abilities to activate pulmonary dendritic cells (DCs) and abnormal primary T-cell responses to hMPV infection. In addition, mice deficient in MAVS had a higher peak of viral load at day 5 post-infection (p.i.) than WT mice, but were able to clear hMPV by day 7 p.i. similarly to WT mice. Taken together, our data indicate a role of MAVS-mediated pathways in the pulmonary immune responses to hMPV infection and the early control of hMPV replication. PMID:25953917

  3. Immunization with purified protein antigens from Streptococcus mutans against dental caries in rhesus monkeys.

    PubMed Central

    Lehner, T; Russell, M W; Caldwell, J; Smith, R

    1981-01-01

    Protein antigens I, I/II, II, and III were prepared from Streptococcus mutans (serotype c). Their immunogenicities and protective effects against dental caries were investigated in 40 rhesus monkeys kept entirely on a human-type diet, containing about 15% sucrose. Antigens I, I/II and, to a lesser extent, antigen II induced significant reductions in dental caries, as compared with sham-immunized monkeys. This was achieved with 1 or 2 doses of antigen, the first of which was administered with adjuvant (Freund incomplete adjuvant or aluminum hydroxide). There was no reduction in caries in monkeys immunized with antigen III. The reduction in caries in the animals immunized with antigens I or I/II was comparable to that in monkeys immunized with whole cells. Protection against caries was associated predominantly with serum and gingival crevicular fluid immunoglobulin G antibodies, which appeared to be directed against the antigen I determinant, but antibodies to antigen II, though not to antigen III, were also protective. PMID:7309233

  4. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1.

    PubMed

    Couto, Daniel; Niebergall, Roda; Liang, Xiangxiu; Bücherl, Christoph A; Sklenar, Jan; Macho, Alberto P; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Maclean, Dan; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min; Zipfel, Cyril

    2016-08-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  5. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida.

    PubMed

    Singh, Satparkash; Singh, Vijendra Pal; Cheema, Pawanjit Singh; Sandey, Maninder; Ranjan, Rajeev; Gupta, Santosh Kumar; Sharma, Bhaskar

    2011-04-01

    Haemorrhagic Septicaemia (HS), an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA) has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS. PMID:24031690

  6. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1

    PubMed Central

    Liang, Xiangxiu; Bücherl, Christoph A.; Sklenar, Jan; Macho, Alberto P.; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min

    2016-01-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  7. T-cell immunity to the joining region of p210BCR-ABL protein.

    PubMed Central

    Chen, W; Peace, D J; Rovira, D K; You, S G; Cheever, M A

    1992-01-01

    The hallmark of chronic myelogenous leukemia is the translocation of the human c-abl protooncogene (ABL) from chromosome 9 to the specific breakpoint cluster region (bcr) of the BCR gene on chromosome 22. The t(9;22)(q34;q11) translocation results in the formation of a BCR-ABL fusion gene that encodes a 210-kDa chimeric protein with abnormal tyrosine kinase activity. The ABL and BCR genes are expressed by normal cells and thus the encoded proteins are presumably nonimmunogenic. However, the joining-region segment of the p210BCR-ABL chimeric protein is composed of unique sequences of ABL amino acids joined to BCR amino acids that are expressed only by malignant cells. The current study demonstrates that the joining region of BCR-ABL protein is immunogenic to murine T cells. Immunization of mice with synthetic peptides corresponding to the joining region elicited peptide-specific, CD4+, class II major histocompatibility complex-restricted T cells. The BCR-ABL peptide-specific T cells recognized only the combined sequence of BCR-ABL amino acids and not BCR or ABL amino acid sequences alone. Importantly, the BCR-ABL peptide-specific T cells could recognize and proliferate in response to p210BCR-ABL protein. The response of peptide-specific T cells to protein demonstrated that p210BCR-ABL can be processed by antigen-presenting cells so that the joining segment is bound to class II major histocompatibility complex molecules in a configuration similar to that of the immunizing peptide and in a concentration high enough to stimulate the antigen-specific T-cell receptor. Thus, BCR-ABL protein represents a potential tumor-specific antigen related to the transforming event and shared by many individuals with chronic myelogenous leukemia. PMID:1346932

  8. Serum protein changes in immune and nonimmune pigeons infected with various strains of Trichomonas gallinae

    USGS Publications Warehouse

    Kocan, R.M.; Herman, C.M.

    1970-01-01

    Serum protein changes were studied in immune and nonimmune pigeons infected with three different strains of Trichomonas gallinae. Strain I (nonvirulent) produced no change in the relative concentration of serum components. Strains II (oral canker) and III (Jones' Barn) produced decreases in albumin and alpha globulins, and increases in beta and gamma globulins between the 7th and 20th days post infection. Birds infected with strain II began to return to normal by the 20th day, while all those infected with strain III were dead between 10 and 14 days post infection. Two serum protein patterns resulted from infection of immune birds with the Jones' Barn strain. One showed no change in relative protein concentrations and no tissue invasion by the parasite while the other was similar to that seen in nonimmune birds infected with a strain producing oral canker. These also showed evidence of tissue invasion by the parasite. It was concluded that tissue invasion was necessary to evoke a quantitative change in serum protein concentrations.

  9. Segmental pairs of giant insect cells discharge presumptive immune proteins at each larval molt.

    PubMed

    Nardi, James B; Bee, Charles M; Miller, Lou Ann; Imai, Brian S; Yau, Peter M

    2016-05-15

    A pair of massive secretory cells exists within each thoracic and the nine abdominal segments of Manduca larvae. Each of these cells is nestled between the dorsal integument and underlying muscles. Contents of large vacuoles in these cells are abruptly discharged at each molt and have always been considered to contribute to shedding and/or formation of cuticle. Peanut agglutinin is a specific lectin label for these secretory vacuoles; vacuoles label intensely immediately before each molt as vacuoles attain their maximal size. Contents of vacuoles are restored after each molt and throughout most of each intermolt. During the molt cycle these cells secrete contents of their vacuoles into the interior hemocoel rather than onto the exterior cuticle. Vacuoles discharge via a distinctive mechanism involving partitioning of contents into numerous vesicles that move to the cell surface. Dermal secretory cells were dissected from larvae before and after the 4th-5th instar molt. Proteins from pre-molt and post-molt secretory cells were separated by two-dimensional electrophoresis to establish which proteins are discharged at the molt. While secreted proteins are novel, all have presumptive roles in immune responses. Dermal secretory cells may represent a new, unsuspected component of the innate immune system that release their proteins during the vulnerable molting period of an insect's life. PMID:27039264

  10. The C. elegans CCAAT-enhancer binding protein gamma is required for surveillance immunity

    PubMed Central

    Reddy, Kirthi C.; Dunbar, Tiffany L.; Nargund, Amrita M.; Haynes, Cole M.; Troemel, Emily R.

    2016-01-01

    Pathogens attack host cells by deploying toxins that perturb core host processes. Recent findings from the nematode C. elegans and other metazoans indicate that surveillance or ‘effector-triggered’ pathways monitor functioning of these core processes and mount protective responses when they are perturbed. Despite a growing number of examples of surveillance immunity, the signaling components remain poorly defined. Here we show that CEBP-2, the C. elegans ortholog of mammalian CCAAT-enhancer binding protein gamma, is a key player in surveillance immunity. We show that CEBP-2 acts together with the bZIP transcription factor ZIP-2 in the protective response to translational block by P. aeruginosa Exotoxin A, as well as to perturbations of other processes. CEBP-2 serves to limit pathogen burden, promote survival upon P. aeruginosa infection, and also promote survival upon Exotoxin A exposure. These findings may have broad implications for the mechanisms by which animals sense pathogenic attack and mount protective responses. PMID:26876169

  11. A novel immune-tolerable and permeable lectin-like protein from mushroom Agaricus bisporus.

    PubMed

    Ismaya, Wangsa T; Yunita; Efthyani, Alida; Lai, Xuelei; Retnoningrum, Debbie S; Rachmawati, Heni; Dijkstra, Bauke W; Tjandrawinata, Raymond R

    2016-05-13

    A lectin like protein designated as LSMT is recently discovered in Agaricus bisporus. The protein adopts very similar structure to Ricin-B like lectin from Clitocybe nebularis (CNL) and HA-33 from Clostridium botulinum (HA-33), which both recognize sugar molecules that decorate the surface of the epithelial cells of the intestine. A preliminary study in silico pointed out potential capability of LSMT to perform such biological activity. Following that hypothesis, we demonstrated that LSMT is indeed capable of penetrating out from a dialysis tube of the mice intestine origin. Furthermore, the protein appeared not to evoke the immune response upon introduction into mice, unlike its structural homologs. This is the first report on the biological implication of LSMT that might lead to its application. PMID:27060548

  12. Structural analysis of Pseudomonas aeruginosa H3-T6SS immunity proteins.

    PubMed

    Yang, Xiao-Yun; Li, Zong-Qiang; She, Zhun; Geng, Zhi; Xu, Jian-Hua; Gao, Zeng-Qiang; Dong, Yu-Hui

    2016-08-01

    The Pseudomonas aeruginosa PldB protein is a transkingdom effector secreted by the Type VI Secretion System (T6SS). PA5088, PA5087, and PA5086 are three immunity proteins that can suppress the virulence of PldB. We report the crystal structures of PA5088 and PA5087 at 2.0 and 2.1 Å resolution, respectively. PA5088 and PA5087 both consist of several Sel1-like Repeats (SLRs) and form super-ring folds. Our structural analysis of these proteins revealed key differences among PA5088, PA5087, and their homologs. Our docking experiments have shed light on the putative interaction mechanism of their function as phospholipase D inhibitors. PMID:27397502

  13. Mucosal Immunization with Recombinant Fusion Protein DnaJ-ΔA146Ply Enhances Cross-Protective Immunity against Streptococcus pneumoniae Infection in Mice via Interleukin 17A

    PubMed Central

    Liu, Yusi; Wang, Hong; Zhang, Shuai; Zeng, Lingbin; Xu, Xiuyu; Wu, Kaifeng; Wang, Wei; Yin, Nanlin; Song, Zhixin

    2014-01-01

    Pneumolysin (Ply) and its variants are protective against pneumococcal infections in animal models, and as a Toll-like receptor 4 agonist, pneumolysin has been reported to be a mucosal adjuvant. DnaJ has been approved as a useful candidate vaccine protein; we therefore designed novel fusion proteins of DnaJ with a form of Ply that has a deletion of A146 (ΔA146Ply-DnaJ [the C terminus of ΔA146Ply connected with the N terminus of DnaJ] and DnaJ-ΔA146Ply [the C terminus of DnaJ connected with the N terminus of ΔA146Ply]) to test whether they are protective against focal and lethal pneumococcal infections and their potential protective mechanisms. The purified proteins were used to intranasally immunize the animals without additional adjuvant. Immunization with DnaJ-ΔA146Ply or DnaJ plus ΔA146Ply (Ply with a single deletion of A146) could significantly reduce S. pneumoniae colonization in the nasopharynx and lung relative with DnaJ alone. Additionally, we observed the best protection for DnaJ-ΔA146Ply-immunized mice after challenge with lethal doses of S. pneumoniae strains, which was comparable to that achieved by PPV23. Mice immunized with DnaJ-ΔA146Ply produced significantly higher levels of anti-DnaJ IgG in serum and secretory IgA (sIgA) in saliva than those immunized with DnaJ alone. The production of IL-17A was also striking in DnaJ-ΔA146Ply-immunized mice. IL-17A knockout (KO) mice did not benefit from DnaJ-ΔA146Ply immunization in colonization experiments, and sIgA production was impaired in IL-17A KO mice. Collectively, our results indicate a mucosal adjuvant potential for ΔA146Ply and that, without additional adjuvant, DnaJ-ΔA146Ply fusion protein exhibits extensive immune stimulation and is effective against pneumococcal challenges, properties which are partially attributed to the IL-17A-mediated immune responses. PMID:24491576

  14. Mucosal immunization with recombinant fusion protein DnaJ-ΔA146Ply enhances cross-protective immunity against Streptococcus pneumoniae infection in mice via interleukin 17A.

    PubMed

    Liu, Yusi; Wang, Hong; Zhang, Shuai; Zeng, Lingbin; Xu, Xiuyu; Wu, Kaifeng; Wang, Wei; Yin, Nanlin; Song, Zhixin; Zhang, Xuemei; Yin, Yibing

    2014-04-01

    Pneumolysin (Ply) and its variants are protective against pneumococcal infections in animal models, and as a Toll-like receptor 4 agonist, pneumolysin has been reported to be a mucosal adjuvant. DnaJ has been approved as a useful candidate vaccine protein; we therefore designed novel fusion proteins of DnaJ with a form of Ply that has a deletion of A146 (ΔA146Ply-DnaJ [the C terminus of ΔA146Ply connected with the N terminus of DnaJ] and DnaJ-ΔA146Ply [the C terminus of DnaJ connected with the N terminus of ΔA146Ply]) to test whether they are protective against focal and lethal pneumococcal infections and their potential protective mechanisms. The purified proteins were used to intranasally immunize the animals without additional adjuvant. Immunization with DnaJ-ΔA146Ply or DnaJ plus ΔA146Ply (Ply with a single deletion of A146) could significantly reduce S. pneumoniae colonization in the nasopharynx and lung relative with DnaJ alone. Additionally, we observed the best protection for DnaJ-ΔA146Ply-immunized mice after challenge with lethal doses of S. pneumoniae strains, which was comparable to that achieved by PPV23. Mice immunized with DnaJ-ΔA146Ply produced significantly higher levels of anti-DnaJ IgG in serum and secretory IgA (sIgA) in saliva than those immunized with DnaJ alone. The production of IL-17A was also striking in DnaJ-ΔA146Ply-immunized mice. IL-17A knockout (KO) mice did not benefit from DnaJ-ΔA146Ply immunization in colonization experiments, and sIgA production was impaired in IL-17A KO mice. Collectively, our results indicate a mucosal adjuvant potential for ΔA146Ply and that, without additional adjuvant, DnaJ-ΔA146Ply fusion protein exhibits extensive immune stimulation and is effective against pneumococcal challenges, properties which are partially attributed to the IL-17A-mediated immune responses. PMID:24491576

  15. The Tetraspanin Protein CD37 Regulates IgA Responses and Anti-Fungal Immunity

    PubMed Central

    van Spriel, Annemiek B.; Sofi, Mariam; Gartlan, Kate H.; van der Schaaf, Alie; Verschueren, Ineke; Torensma, Ruurd; Raymakers, Reinier A. P.; Loveland, Bruce E.; Netea, Mihai G.; Adema, Gosse J.

    2009-01-01

    Immunoglobulin A (IgA) secretion by plasma cells in the immune system is critical for protecting the host from environmental and microbial infections. However, the molecular mechanisms underlying the generation of IgA+ plasma cells remain poorly understood. Here, we report that the B cell–expressed tetraspanin CD37 inhibits IgA immune responses in vivo. CD37-deficient (CD37−/−) mice exhibit a 15-fold increased level of IgA in serum and significantly elevated numbers of IgA+ plasma cells in spleen, mucosal-associated lymphoid tissue, as well as bone marrow. Analyses of bone marrow chimeric mice revealed that CD37–deficiency on B cells was directly responsible for the increased IgA production. We identified high local interleukin-6 (IL-6) production in germinal centers of CD37−/− mice after immunization. Notably, neutralizing IL-6 in vivo reversed the increased IgA response in CD37−/− mice. To demonstrate the importance of CD37—which can associate with the pattern-recognition receptor dectin-1—in immunity to infection, CD37−/− mice were exposed to Candida albicans. We report that CD37−/− mice are evidently better protected from infection than wild-type (WT) mice, which was accompanied by increased IL-6 levels and C. albicans–specific IgA antibodies. Importantly, adoptive transfer of CD37−/− serum mediated protection in WT mice and the underlying mechanism involved direct neutralization of fungal cells by IgA. Taken together, tetraspanin protein CD37 inhibits IgA responses and regulates the anti-fungal immune response. PMID:19282981

  16. Immune Defense Protein Expression in Highly Purified Mouse Lung Epithelial Cells.

    PubMed

    Sinha, Meenal; Lowell, Clifford A

    2016-06-01

    Lung epithelial cells play critical roles in initiating and modulating immune responses during pulmonary infection or injury. To better understand the spectrum of immune response-related proteins present in lung epithelial cells, we developed an improved method of isolating highly pure primary murine alveolar type (AT) II cells and murine tracheal epithelial cells (mTECs) using negative selection for a variety of lineage markers and positive selection for epithelial cell adhesion molecule (EpCAM), a pan-epithelial cell marker. This method yielded 2-3 × 10(6) ATII cells/mouse lung and 1-2 × 10(4) mTECs/trachea that were highly pure (>98%) and viable (>98%). Using these preparations, we found that both ATII cells and mTECs expressed the Lyn tyrosine kinase, which is best studied as an inhibitory kinase in hematopoietic cells. However, we found little or no expression of Syk in either ATII cells or mTECs, which is in contrast to earlier published reports. Both cell types expressed C-type lectin receptors, anaphylatoxin receptors, and various Toll-like receptors (TLRs). In addition, stimulation of ATII cells with TLR ligands led to secretion of various cytokines and chemokines. Interestingly, lyn(-/-) ATII cells were hyperresponsive to TLR3 stimulation, suggesting that, as in hematopoietic cells, Lyn might be playing an inhibitory role in ATII cells. In conclusion, the improved isolation method reported here, along with expression profiles of various immune defense proteins, will help refocus investigations of immune-related signaling events in pulmonary epithelium. PMID:26574781

  17. S-Layer Protein Mediates the Stimulatory Effect of Lactobacillus helveticus MIMLh5 on Innate Immunity

    PubMed Central

    Taverniti, Valentina; Stuknyte, Milda; Minuzzo, Mario; Arioli, Stefania; De Noni, Ivano; Scabiosi, Christian; Cordova, Zuzet Martinez; Junttila, Ilkka; Hämäläinen, Sanna; Turpeinen, Hannu; Mora, Diego; Karp, Matti; Pesu, Marko

    2013-01-01

    The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention. PMID:23220964

  18. S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity.

    PubMed

    Taverniti, Valentina; Stuknyte, Milda; Minuzzo, Mario; Arioli, Stefania; De Noni, Ivano; Scabiosi, Christian; Cordova, Zuzet Martinez; Junttila, Ilkka; Hämäläinen, Sanna; Turpeinen, Hannu; Mora, Diego; Karp, Matti; Pesu, Marko; Guglielmetti, Simone

    2013-02-01

    The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention. PMID:23220964

  19. Murine immune responses to a Plasmodium vivax-derived chimeric recombinant protein expressed in Brassica napus

    PubMed Central

    2011-01-01

    Background To develop a plant-based vaccine against Plasmodium vivax, two P. vivax candidate proteins were chosen. First, the merozoite surface protein-1 (MSP-1), a major asexual blood stage antigen that is currently considered a strong vaccine candidate. Second, the circumsporozoite protein (CSP), a component of sporozoites that contains a B-cell epitope. Methods A synthetic chimeric recombinant 516 bp gene encoding containing PvMSP-1, a Pro-Gly linker motif, and PvCSP was synthesized; the gene, named MLC, encoded a total of 172 amino acids. The recombinant gene was modified with regard to codon usage to optimize gene expression in Brassica napus. The Ti plasmid inducible gene transfer system was used for MLC chimeric recombinant gene expression in B. napus. Gene expression was confirmed by polymerase chain reaction (PCR), beta-glucuronidase reporter gene (GUS) assay, and Western blot. Results The MLC chimeric recombinant protein expressed in B. napus had a molecular weight of approximately 25 kDa. It exhibited a clinical sensitivity of 84.21% (n = 38) and a clinical specificity of 100% (n = 24) as assessed by enzyme-linked immunosorbent assay (ELISA). Oral immunization of BALB/c mice with MLC chimeric recombinant protein successfully induced antigen-specific IgG1 production. Additionally, the Th1-related cytokines IL-12 (p40), TNF, and IFN-γ were significantly increased in the spleens of the BALB/c mice. Conclusions The chimeric MLC recombinant protein produced in B. napus has potential as both as an antigen for diagnosis and as a valuable vaccine candidate for oral immunization against vivax malaria. PMID:21529346

  20. Is sporozoite refractile body protein expression different in Eimeria acervulina sporozoites isolated from non-immune versus immune chickens?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hallmark of Eimeria infection in avians is the establishment of immunity against clinical signs of coccidiosis. Resistant birds experience improved weight gain and feed conversion efficiency and lack intestinal lesions. Oocysts excretion is reduced, but not eliminated, in such immune chickens. ...

  1. Successful Interference with Cellular Immune Responses to Immunogenic Proteins Encoded by Recombinant Viral Vectors

    PubMed Central

    Sarukhan, Adelaida; Camugli, Sabine; Gjata, Bernard; von Boehmer, Harald; Danos, Olivier; Jooss, Karin

    2001-01-01

    Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4+ T-cell activation were markedly delayed when AAV vectors were used. Upon recombinant Ad (rAd) gene transfer, T cells were activated both by direct transduction of dendritic cells and by cross-presentation of the transgene product, while upon rAAV gene transfer T cells were only activated by the latter mechanism. These results suggested that activation of the immune system by the transgene product following rAAV-mediated gene transfer might be easier to control than that following rAd-mediated gene transfer. Therefore, we tested protocols aimed at interfering with either antigen presentation by blocking the CD40/CD40L pathway or with the T-cell response by inducing transgene-specific tolerance. Long-term expression of the AAV-HA was achieved in both cases, whereas immune responses against Ad-HA could not be prevented. These data clearly underline the importance of understanding the mechanisms by which vector-encoded proteins are recognized by the immune system in order to specifically interfere with them and

  2. Immunization with synthetic peptides containing epitopes of the class 1 outer-membrane protein of Neisseria meningitidis: production of bactericidal antibodies on immunization with a cyclic peptide.

    PubMed

    Christodoulides, M; McGuinness, B T; Heckels, J E

    1993-08-01

    The class 1 outer-membrane protein of Neisseria meningitidis is the target for subtype-specific, bactericidal monoclonal antibodies (mAbs). The epitopes recognized by these antibodies have been mapped previously to linear peptides corresponding to the sequences thought to be exposed at the apices of surface-exposed loops of the protein. In this work several synthetic peptides containing the subtype Pl.16b epitope have been synthetized with the aim of inducing a polyclonal immune response resembling the reactivity of the mAbs. Initially, peptides of 9 and 15 amino acid residues were synthesized and used for immunization after coupling to a carrier protein. The reactivity of the resulting antisera, with synthetic linear decapeptides, resembled that seen in previous epitope mapping experiments with the protective mAbs. However, despite the induction of antibodies having the desired specificity, the antisera reacted poorly with the native protein in outer membranes, and were non-bactericidal. A 36mer peptide, consisting of the entire surface-exposed loop 4 of the class 1 protein was then synthesized and used for immunization as (i) free peptide, (ii) peptide coupled to carrier and (iii) peptide subjected to cyclization, in an attempt to restrict it to conformations that might more closely resemble the native loop structure. In contrast to antisera raised against linear peptides, antibodies raised by immunization with the 36mer cyclic peptide, did not react with linear peptides recognized by the mAbs, but instead appeared to recognize conformational determinants. This antiserum promoted complement-mediated bactericidal killing of the homologous meningococcal strain, demonstrating the potential of synthetic peptide immunogens for inducing a protective immune response against group B meningococci. PMID:7691983

  3. Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins[W

    PubMed Central

    Qutob, Dinah; Kemmerling, Birgit; Brunner, Frédéric; Küfner, Isabell; Engelhardt, Stefan; Gust, Andrea A.; Luberacki, Borries; Seitz, Hanns Ulrich; Stahl, Dietmar; Rauhut, Thomas; Glawischnig, Erich; Schween, Gabriele; Lacombe, Benoit; Watanabe, Naohide; Lam, Eric; Schlichting, Rita; Scheel, Dierk; Nau, Katja; Dodt, Gabriele; Hubert, David; Gijzen, Mark; Nürnberger, Thorsten

    2006-01-01

    We show that oomycete-derived Nep1 (for necrosis and ethylene-inducing peptide1)–like proteins (NLPs) trigger a comprehensive immune response in Arabidopsis thaliana, comprising posttranslational activation of mitogen-activated protein kinase activity, deposition of callose, production of nitric oxide, reactive oxygen intermediates, ethylene, and the phytoalexin camalexin, as well as cell death. Transcript profiling experiments revealed that NLPs trigger extensive reprogramming of the Arabidopsis transcriptome closely resembling that evoked by bacteria-derived flagellin. NLP-induced cell death is an active, light-dependent process requiring HSP90 but not caspase activity, salicylic acid, jasmonic acid, ethylene, or functional SGT1a/SGT1b. Studies on animal, yeast, moss, and plant cells revealed that sensitivity to NLPs is not a general characteristic of phospholipid bilayer systems but appears to be restricted to dicot plants. NLP-induced cell death does not require an intact plant cell wall, and ectopic expression of NLP in dicot plants resulted in cell death only when the protein was delivered to the apoplast. Our findings strongly suggest that NLP-induced necrosis requires interaction with a target site that is unique to the extracytoplasmic side of dicot plant plasma membranes. We propose that NLPs play dual roles in plant pathogen interactions as toxin-like virulence factors and as triggers of plant innate immune responses. PMID:17194768

  4. GnRH immunization alters the expression and distribution of protein disulfide isomerases in the epididymis.

    PubMed

    Schorr-Lenz, A M; Alves, J; Henckes, N A C; Seibel, P M; Benham, A M; Bustamante-Filho, I C

    2016-09-01

    Hypogonadism is defined as the inadequate gonadal production of testosterone. Low serum testosterone leads to infertility by impairing spermatogenesis and reducing sperm count, however, the impact of hypogonadism in epididymal sperm maturation is poorly understood. From the testis, spermatozoa are transported into the epididymis where they find a specific microenvironment composed of a complex mixture of proteins that facilitate sperm storage and maturation. Inside the epididymal ductule, spermatozoa undergo several changes, resulting in their becoming capable of fertilizing eggs. Protein disulfide isomerases (PDIs) are known to participate in the folding and assembly of secreted proteins in the endoplasmic reticulum. However, little is known about the control and function of PDIs in the testis and epididymis, particularly during male development. The aim of this work was to compare the expression and distribution of PDI and PDIA3 (ERp57) in the testis and epididymis of healthy and GnRH-immunized boars. We detected higher amounts of PDIA3 and PDI in sperm preparations and fluid from the proximal regions of the epididymis of healthy boars. However, we observed an increase in PDIA3 expression in the testis and cauda epididymis in the immunocastrated group. GnRH-immunized boars showed a marked increase in PDI content in cauda spermatozoa and fluid, indicating a possible endocrine dysregulation of PDI. The results of our study suggest that PDIs are associated with epididymal sperm maturation and may be attractive candidates for monitoring male fertility. PMID:27323298

  5. Immune recognition of Onchocerca volvulus proteins in the human host and animal models of onchocerciasis.

    PubMed

    Manchang, T K; Ajonina-Ekoti, I; Ndjonka, D; Eisenbarth, A; Achukwi, M D; Renz, A; Brattig, N W; Liebau, E; Breloer, M

    2015-05-01

    Onchocerca volvulus is a tissue-dwelling, vector-borne nematode parasite of humans and is the causative agent of onchocerciasis or river blindness. Natural infections of BALB/c mice with Litomosoides sigmodontis and of cattle with Onchocerca ochengi were used as models to study the immune responses to O. volvulus-derived recombinant proteins (OvALT-2, OvNLT-1, Ov103 and Ov7). The humoral immune response of O. volvulus-infected humans against OvALT-2, OvNLT-1 and Ov7 revealed pronounced immunoglobulin G (IgG) titres which were, however, significantly lower than against the lysate of O. volvulus adult female worms. Sera derived from patients displaying the hyperreactive form of onchocerciasis showed a uniform trend of higher IgG reactivity both to the single proteins and the O. volvulus lysate. Sera derived from L. sigmodontis-infected mice and from calves exposed to O. ochengi transmission in a hyperendemic area also contained IgM and IgG1 specific for O. volvulus-derived recombinant proteins. These results strongly suggest that L. sigmodontis-specific and O. ochengi-specific immunoglobulins elicited during natural infection of mice and cattle cross-reacted with O. volvulus-derived recombinant antigens. Monitoring O. ochengi-infected calves over a 26-month period, provided a comprehensive kinetic of the humoral response to infection that was strictly correlated with parasite load and occurrence of microfilariae. PMID:24721822

  6. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    PubMed

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. PMID:24965864

  7. Protein A suppresses immune responses during Staphylococcus aureus bloodstream infection in guinea pigs

    SciTech Connect

    Kim, Hwan Keun; Falugi, Fabiana; Thomer, Lena; Missiakas, Dominique M.; Schneewind, Olaf

    2015-01-06

    Staphylococcus aureus infection is not associated with the development of protective immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that binds immunoglobulin Fcγ and cross-links VH3 clan B cell receptors (IgM), is the staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was examined for protein A cross-linking. High VH3 binding activity occurred with human and guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no binding, respectively. Establishing a guinea pig model of S. aureus bloodstream infection, we show that protein A functions as a virulence determinant and suppresses host B cell responses. Immunization with SpAKKAA, which cannot bind immunoglobulin, elicits neutralizing antibodies that enable guinea pigs to develop protective immunity.

  8. Conserved hypothetical protein Rv1977 in Mycobacterium tuberculosis strains contains sequence polymorphisms and might be involved in ongoing immune evasion

    PubMed Central

    Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin

    2015-01-01

    Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion. PMID:26261576

  9. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    SciTech Connect

    Wang, Tianyu; Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng; Liu, Wei

    2013-10-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair.

  10. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    SciTech Connect

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  11. Leptospiral proteins recognized during the humoral immune response to leptospirosis in humans.

    PubMed

    Guerreiro, H; Croda, J; Flannery, B; Mazel, M; Matsunaga, J; Galvão Reis, M; Levett, P N; Ko, A I; Haake, D A

    2001-08-01

    Leptospirosis is an emerging zoonosis caused by pathogenic spirochetes belonging to the genus Leptospira. An understanding of leptospiral protein expression regulation is needed to develop new immunoprotective and serodiagnostic strategies. We used the humoral immune response during human leptospirosis as a reporter of protein antigens expressed during infection. Qualitative and quantitative immunoblot analysis was performed using sera from 105 patients from Brazil and Barbados. Sera from patients with other diseases and healthy individuals were evaluated as controls. Seven proteins, p76, p62, p48, p45, p41, p37, and p32, were identified as targets of the humoral response during natural infection. In both acute and convalescent phases of illness, antibodies to lipopolysaccharide were predominantly immunoglobulin M (IgM) while antibodies to proteins were exclusively IgG. Anti-p32 reactivity had the greatest sensitivity and specificity: positive reactions were observed in 37 and 84% of acute- and convalescent-phase sera, respectively, while only 5% of community control individuals demonstrated positive reactions. Six immunodominant antigens were expressed by all pathogenic leptospiral strains tested; only p37 was inconsistently expressed. Two-dimensional immunoblots identified four of the seven infection-associated antigens as being previously characterized proteins: LipL32 (the major outer membrane lipoprotein), LipL41 (a surface-exposed outer membrane lipoprotein), and heat shock proteins GroEL and DnaK. Fractionation studies demonstrated LipL32 and LipL41 reactivity in the outer membrane fraction and GroEL and DnaK in the cytoplasmic fraction, while p37 appeared to be a soluble periplasmic protein. Most of the other immunodominant proteins, including p48 and p45, were localized to the inner membrane. These findings indicate that leptospiral proteins recognized during natural infection are potentially useful for serodiagnosis and may serve as targets for vaccine

  12. Leptospiral Proteins Recognized during the Humoral Immune Response to Leptospirosis in Humans

    PubMed Central

    Guerreiro, Hygia; Croda, Júlio; Flannery, Brendan; Mazel, Mary; Matsunaga, James; Reis, Mitermayer Galvão; Levett, Paul N.; Ko, Albert I.; Haake, David A.

    2001-01-01

    Leptospirosis is an emerging zoonosis caused by pathogenic spirochetes belonging to the genus Leptospira. An understanding of leptospiral protein expression regulation is needed to develop new immunoprotective and serodiagnostic strategies. We used the humoral immune response during human leptospirosis as a reporter of protein antigens expressed during infection. Qualitative and quantitative immunoblot analysis was performed using sera from 105 patients from Brazil and Barbados. Sera from patients with other diseases and healthy individuals were evaluated as controls. Seven proteins, p76, p62, p48, p45, p41, p37, and p32, were identified as targets of the humoral response during natural infection. In both acute and convalescent phases of illness, antibodies to lipopolysaccharide were predominantly immunoglobulin M (IgM) while antibodies to proteins were exclusively IgG. Anti-p32 reactivity had the greatest sensitivity and specificity: positive reactions were observed in 37 and 84% of acute- and convalescent-phase sera, respectively, while only 5% of community control individuals demonstrated positive reactions. Six immunodominant antigens were expressed by all pathogenic leptospiral strains tested; only p37 was inconsistently expressed. Two-dimensional immunoblots identified four of the seven infection-associated antigens as being previously characterized proteins: LipL32 (the major outer membrane lipoprotein), LipL41 (a surface-exposed outer membrane lipoprotein), and heat shock proteins GroEL and DnaK. Fractionation studies demonstrated LipL32 and LipL41 reactivity in the outer membrane fraction and GroEL and DnaK in the cytoplasmic fraction, while p37 appeared to be a soluble periplasmic protein. Most of the other immunodominant proteins, including p48 and p45, were localized to the inner membrane. These findings indicate that leptospiral proteins recognized during natural infection are potentially useful for serodiagnosis and may serve as targets for vaccine

  13. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    PubMed

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing. PMID:26547105

  14. Effects of inadequate maternal dietary protein:carbohydrate ratios during pregnancy on offspring immunity in pigs

    PubMed Central

    2012-01-01

    Background Inadequate nutrition in utero may retard foetal growth and alter physiological development of offspring. This study investigated the effects of low and high protein diets fed to primiparous German Landrace sows throughout pregnancy on the immune function of their offspring at different ages. Sows were fed diets with adequate (AP, 12.1%; n = 13), low (LP, 6.5%; n = 15), or high (HP, 30%; n = 14) protein content, made isoenergetic by varying carbohydrate levels. Cortisol, total protein and immunoglobulin (IgG, IgM, IgA) concentrations were measured in the blood of sows over the course of pregnancy. Cortisol, total protein, immunoglobulins, lymphocyte proliferation, immune cell counts, and cytokines were assessed in the blood of offspring at baseline and under challenging conditions (weaning; lipopolysaccharide (LPS) administration). Results In sows, the LP diet increased cortisol (P < 0.05) and decreased protein levels (P < 0.01) at the end of pregnancy. Immunoglobulin concentrations were decreased in LP (IgA) and HP piglets (IgG, IgM and IgA) on the first day of life (P < 0.05), whereas the number of lymphocytes and mitogen-induced lymphocyte proliferation of the piglets were unaffected by the maternal diet. Mortality during the suckling period was higher in LP piglets compared with AP and HP offspring (P < 0.01). Furthermore, LP piglets showed an elevated cortisol response to weaning, and in HP piglets, the CD4+ cell percentage and the CD4+/CD8+ ratio increased after weaning (P < 0.05). The lipopolysaccharide-induced rise of IL-6 was higher in LP (P = 0.09) and HP (P < 0.01) compared with AP piglets, and LP piglets displayed higher IL-10 levels than AP piglets (P < 0.05). Conclusions Our results indicate that both low and high protein:carbohydrate ratios in the diet of pregnant sows can induce short-term as well as long-lasting effects on immune competence in piglets that may have serious consequences for host

  15. Extraordinary Diversity of Immune Response Proteins among Sea Urchins: Nickel-Isolated Sp185/333 Proteins Show Broad Variations in Size and Charge.

    PubMed

    Sherman, Lauren S; Schrankel, Catherine S; Brown, Kristy J; Smith, L Courtney

    2015-01-01

    Effective protection against pathogens requires the host to produce a wide range of immune effector proteins. The Sp185/333 gene family, which is expressed by the California purple sea urchin Strongylocentrotus purpuratus in response to bacterial infection, encodes a highly diverse repertoire of anti-pathogen proteins. A subset of these proteins can be isolated by affinity to metal ions based on multiple histidines, resulting in one to four bands of unique molecular weight on standard Western blots, which vary depending on the individual sea urchin. Two dimensional gel electrophoresis (2DE) of nickel-isolated protein samples followed by Western blot was employed to detect nickel-isolated Sp185/333 (Ni-Sp185/333) proteins and to evaluate protein diversity in animals before and after immune challenge with marine bacteria. Ni-Sp185/333 proteins of the same molecular weight on standard Western blots appear as a broad complex of variants that differ in pI on 2DE Western blots. The Ni-Sp185/333 protein repertoire is variable among animals, and shows a variety of changes among individual sea urchins in response to immune challenges with both the same and different species of bacteria. The extraordinary diversity of the Ni-Sp185/333 proteins may provide significant anti-pathogen capabilities for sea urchins that survive solely on innate immunity. PMID:26406912

  16. Extraordinary Diversity of Immune Response Proteins among Sea Urchins: Nickel-Isolated Sp185/333 Proteins Show Broad Variations in Size and Charge

    PubMed Central

    Sherman, Lauren S.; Schrankel, Catherine S.; Brown, Kristy J.; Smith, L. Courtney

    2015-01-01

    Effective protection against pathogens requires the host to produce a wide range of immune effector proteins. The Sp185/333 gene family, which is expressed by the California purple sea urchin Strongylocentrotus purpuratus in response to bacterial infection, encodes a highly diverse repertoire of anti-pathogen proteins. A subset of these proteins can be isolated by affinity to metal ions based on multiple histidines, resulting in one to four bands of unique molecular weight on standard Western blots, which vary depending on the individual sea urchin. Two dimensional gel electrophoresis (2DE) of nickel-isolated protein samples followed by Western blot was employed to detect nickel-isolated Sp185/333 (Ni-Sp185/333) proteins and to evaluate protein diversity in animals before and after immune challenge with marine bacteria. Ni-Sp185/333 proteins of the same molecular weight on standard Western blots appear as a broad complex of variants that differ in pI on 2DE Western blots. The Ni-Sp185/333 protein repertoire is variable among animals, and shows a variety of changes among individual sea urchins in response to immune challenges with both the same and different species of bacteria. The extraordinary diversity of the Ni-Sp185/333 proteins may provide significant anti-pathogen capabilities for sea urchins that survive solely on innate immunity. PMID:26406912

  17. In Vivo Visualization of Tumor Antigen-containing Microparticles Generated in Fluorescent-protein-elicited Immunity.

    PubMed

    Yang, Fei; Liu, Shun; Liu, Xiuli; Liu, Lei; Luo, Meijie; Qi, Shuhong; Xu, Guoqiang; Qiao, Sha; Lv, Xiaohua; Li, Xiangning; Fu, Ling; Luo, Qingming; Zhang, Zhihong

    2016-01-01

    In vivo optical spatio-temporal imaging of the tumor microenvironment is useful to explain how tumor immunotherapies work. However, the lack of fluorescent antigens with strong immunogenicity makes it difficult to study the dynamics of how tumors are eliminated by any given immune response. Here, we develop an effective fluorescent model antigen based on the tetrameric far-red fluorescent protein KatushkaS158A (tfRFP), which elicits both humoral and cellular immunity. We use this fluorescent antigen to visualize the dynamic behavior of immunocytes as they attack and selectively eliminate tfRFP-expressing tumors in vivo; swarms of immunocytes rush toward tumors with high motility, clusters of immunocytes form quickly, and numerous antigen-antibody complexes in the form of tfRFP(+) microparticles are generated in the tumor areas and ingested by macrophages in the tumor microenvironment. Therefore, tfRFP, as both a model antigen and fluorescent reporter, is a useful tool to visualize specific immune responses in vivo. PMID:27375792

  18. Outer Surface Protein A Protects Lyme Disease Spirochetes from Acquired Host Immunity in the Tick Vector▿

    PubMed Central

    Battisti, James M.; Bono, James L.; Rosa, Patricia A.; Schrumpf, Merry E.; Schwan, Tom G.; Policastro, Paul F.

    2008-01-01

    The Lyme disease spirochete Borrelia burgdorferi alters the expression of outer surface protein (osp) genes as the bacterium cycles between ticks and mammals. OspA is produced as borreliae enter the tick vector and remains a major surface antigen during midgut colonization. To elucidate the role of OspA in the vector, we created an insertional deletion of ospA in strain B31-A3. The ospA mutant infects mice when it is injected intradermally and is acquired by larval ticks fed on these mice, where it persists through the molt to the nymph stage. Bacterial survival rates in artificially infected tick larvae fed on naïve mice were compared with those in the vector fed on immune mice. The ospA mutant proliferates in larvae if it is exposed to blood from naïve mice, but it declines in density after larval feeding if the blood is from immune mice. When uninfected larvae are fed on B-cell-deficient mice infected with the ospA mutant, larvae show borrelial densities and persistence that are significantly greater than those fed on infected, immunocompetent mice. We conclude that OspA serves a critical antibody-shielding role during vector blood meal uptake from immune hosts and is not required for persistence in the tick vector. PMID:18779341

  19. Staphylococcus aureus infection induces protein A–mediated immune evasion in humans

    PubMed Central

    Pauli, Noel T.; Kim, Hwan Keun; Falugi, Fabiana; Huang, Min; Dulac, John; Henry Dunand, Carole; Zheng, Nai-Ying; Kaur, Kaval; Andrews, Sarah F.; Huang, Yunping; DeDent, Andrea; Frank, Karen M.; Charnot-Katsikas, Angella; Schneewind, Olaf

    2014-01-01

    Staphylococcus aureus bacterial infection commonly results in chronic or recurrent disease, suggesting that humoral memory responses are hampered. Understanding how S. aureus subverts the immune response is critical for the rescue of host natural humoral immunity and vaccine development. S. aureus expresses the virulence factor Protein A (SpA) on all clinical isolates, and SpA has been shown in mice to expand and ablate variable heavy 3 (VH3) idiotype B cells. The effects of SpA during natural infection, however, have not been addressed. Acutely activated B cells, or plasmablasts (PBs), were analyzed to dissect the ongoing immune response to infection through the production of monoclonal antibodies (mAbs). The B cells that were activated by infection had a highly limited response. When screened against multiple S. aureus antigens, only high-affinity binding to SpA was observed. Consistently, PBs underwent affinity maturation, but their B cell receptors demonstrated significant bias toward the VH3 idiotype. These data suggest that the superantigenic activity of SpA leads to immunodominance, limiting host responses to other S. aureus virulence factors that would be necessary for protection and memory formation. PMID:25348152

  20. Effect of extrusion processing on immune activation properties of hazelnut protein in a mouse model.

    PubMed

    Ortiz, Tina; Para, Radhakrishna; Gonipeta, Babu; Reitmeyer, Mike; He, Yingli; Srkalovic, Ines; Ng, Perry K W; Gangur, Venu

    2016-09-01

    Although food processing can alter food allergenicity, the impact of extrusion processing on in vivo hazelnut allergenicity is unknown. Here, we tested the hypothesis that extrusion processing will alter the immune activation properties of hazelnut protein (HNP) in mice. Soluble extrusion-processed HNP (EHNP) was prepared and evaluated for immune response using an established transdermal sensitization mouse model. Mice were sensitized with identical amounts of EHNP versus raw HNP. After confirming systemic IgE, IgG1 and IgG2a antibody responses, oral hypersensitivity reaction was quantified by hypothermia shock response (HSR). Mechanism was studied by measuring mucosal mast cell (MMC) degranulation. Compared to raw HNP, the EHNP elicited slower but similar IgE antibody (Ab) response, lower IgG1 but higher IgG2a Ab response. The EHNP exhibited significantly lower oral HSR as well as MMC degranulation capacity. These results demonstrate that the extrusion technology can be used to produce soluble HNP with altered immune activation properties. PMID:27251648

  1. The link between small heat shock proteins and the immune system.

    PubMed

    van Noort, Johannes M; Bsibsi, Malika; Nacken, Peter; Gerritsen, Wouter H; Amor, Sandra

    2012-10-01

    There is now compelling evidence that members of the family of small heat shock proteins (HSP) can be secreted by a variety of different types of cells. Secretion of small HSP may at times represent altruistic delivery of supporting and stabilizing factors from one cell to another. A probably more general effect of extracellular small HSP, however, is exerted by their ability to activate macrophages and macrophage-like cells. When doing so, small HSP induce an immune-regulatory state of activation, stimulating macrophages to suppress inflammation. For this reason, small HSP deserve consideration as broadly applicable therapeutic agents for inflammatory disorders. In one particular case, however, adaptive immune responses to the small HSP itself may subvert the protective quality of the innate immune response it triggers. This situation only applies to alpha B-crystallin, and is unique for humans as well. In this special case, local concentrations of alpha B-crystallin determine the balance between protective innate responses and destructive adaptive responses, the latter of which are held responsible for the development of multiple sclerosis lesions. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology. PMID:22233974

  2. HPV16 E2 protein promotes innate immunity by modulating immunosuppressive status.

    PubMed

    Sunthamala, Nuchsupha; Pientong, Chamsai; Ohno, Tatsukuni; Zhang, Chenyang; Bhingare, Arundhati; Kondo, Yuta; Azuma, Miyuki; Ekalaksananan, Tipaya

    2014-04-18

    The balance between active immune responses against human papillomavirus (HPV) and HPV-induced immune escape regulates viral clearance and carcinogenesis. To understand the role of the early viral protein HPV16 E2 in host innate immune responses, the HPV16 E2-transfected murine squamous cell carcinoma cell line SCCVII (SCC/E2) was generated and anti-tumor responses in T-cell-depleted mice were evaluated. Tumor growth of SCC/E2 was markedly reduced. Cytotoxicity against the NK-sensitive targets YAC-1 and SCCVII was clearly enhanced in SCC/E2-inoculated mice. Despite the comparable ratio of NK cells, the proportion of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) was significantly decreased in SCC/E2-inoculated mice. The transcription of MDSC-related mediators such as inducible nitric oxide synthase, indoleamine 2,3-dioxygenase, and heme oxygenase-1 was significantly impaired in the SCC/E2-inoculated tumor tissues on day 3. Our results suggest that HPV16 E2 promotes anti-tumor innate effector function by modulating immunoregulatory events mediated by MDSCs and their mediators. This report describes a new role for HPV16 E2 as a local immunomodulator at infected sites. PMID:24657154

  3. In Vivo Visualization of Tumor Antigen-containing Microparticles Generated in Fluorescent-protein-elicited Immunity

    PubMed Central

    Yang, Fei; Liu, Shun; Liu, Xiuli; Liu, Lei; Luo, Meijie; Qi, Shuhong; Xu, Guoqiang; Qiao, Sha; Lv, Xiaohua; Li, Xiangning; Fu, Ling; Luo, Qingming; Zhang, Zhihong

    2016-01-01

    In vivo optical spatio-temporal imaging of the tumor microenvironment is useful to explain how tumor immunotherapies work. However, the lack of fluorescent antigens with strong immunogenicity makes it difficult to study the dynamics of how tumors are eliminated by any given immune response. Here, we develop an effective fluorescent model antigen based on the tetrameric far-red fluorescent protein KatushkaS158A (tfRFP), which elicits both humoral and cellular immunity. We use this fluorescent antigen to visualize the dynamic behavior of immunocytes as they attack and selectively eliminate tfRFP-expressing tumors in vivo; swarms of immunocytes rush toward tumors with high motility, clusters of immunocytes form quickly, and numerous antigen-antibody complexes in the form of tfRFP+ microparticles are generated in the tumor areas and ingested by macrophages in the tumor microenvironment. Therefore, tfRFP, as both a model antigen and fluorescent reporter, is a useful tool to visualize specific immune responses in vivo. PMID:27375792

  4. Staphylococcus aureus infection induces protein A-mediated immune evasion in humans.

    PubMed

    Pauli, Noel T; Kim, Hwan Keun; Falugi, Fabiana; Huang, Min; Dulac, John; Henry Dunand, Carole; Zheng, Nai-Ying; Kaur, Kaval; Andrews, Sarah F; Huang, Yunping; DeDent, Andrea; Frank, Karen M; Charnot-Katsikas, Angella; Schneewind, Olaf; Wilson, Patrick C

    2014-11-17

    Staphylococcus aureus bacterial infection commonly results in chronic or recurrent disease, suggesting that humoral memory responses are hampered. Understanding how S. aureus subverts the immune response is critical for the rescue of host natural humoral immunity and vaccine development. S. aureus expresses the virulence factor Protein A (SpA) on all clinical isolates, and SpA has been shown in mice to expand and ablate variable heavy 3 (VH3) idiotype B cells. The effects of SpA during natural infection, however, have not been addressed. Acutely activated B cells, or plasmablasts (PBs), were analyzed to dissect the ongoing immune response to infection through the production of monoclonal antibodies (mAbs). The B cells that were activated by infection had a highly limited response. When screened against multiple S. aureus antigens, only high-affinity binding to SpA was observed. Consistently, PBs underwent affinity maturation, but their B cell receptors demonstrated significant bias toward the VH3 idiotype. These data suggest that the superantigenic activity of SpA leads to immunodominance, limiting host responses to other S. aureus virulence factors that would be necessary for protection and memory formation. PMID:25348152

  5. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  6. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response.

    PubMed

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  7. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis

    PubMed Central

    Lightfoot, Yaíma L; Selle, Kurt; Yang, Tao; Goh, Yong Jun; Sahay, Bikash; Zadeh, Mojgan; Owen, Jennifer L; Colliou, Natacha; Li, Eric; Johannssen, Timo; Lepenies, Bernd; Klaenhammer, Todd R; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3−/− mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD. PMID:25666591

  8. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response

    PubMed Central

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  9. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant.

    PubMed

    Monaris, D; Sbrogio-Almeida, M E; Dib, C C; Canhamero, T A; Souza, G O; Vasconcellos, S A; Ferreira, L C S; Abreu, P A E

    2015-08-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigA(C)) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigA(C), either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigA(C) or LigA(C) coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  10. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285