Science.gov

Sample records for immunization reduces damage

  1. Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis

    PubMed Central

    Knight, Jason S.; Luo, Wei; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C.; Thompson, Paul R.; Eitzman, Daniel T.; Kaplan, Mariana J.

    2014-01-01

    Rationale Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Conclusions Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses. PMID:24425713

  2. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  3. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis. PMID:18173180

  4. Inflammation, Immunity, and Hypertensive End-Organ Damage

    PubMed Central

    McMaster, William G.; Kirabo, Annet; Madhur, Meena S.; Harrison, David G.

    2015-01-01

    For more than 50 years, it has been recognized that immunity contributes to hypertension. Recent data have defined an important role of T cells and various T cell-derived cytokines in several models of experimental hypertension. These studies have shown that stimuli like angiotensin II, DOCA-salt and excessive catecholamines lead to formation of effector like T cells that infiltrate the kidney and perivascular regions of both large arteries and arterioles. There is also accumulation of monocyte/macrophages in these regions. Cytokines released from these cells, including IL-17, IFN-γ, TNFα and IL-6 promote both renal and vascular dysfunction and damage, leading to enhanced sodium retention and increased systemic vascular resistance. The renal effects of these cytokines remain to be fully defined, but include enhanced formation of angiotensinogen, increased sodium reabsorption and increased renal fibrosis. Very recent experiments have defined a link between oxidative stress and immune activation in hypertension. These have shown that hypertension is associated with formation of reactive oxygen species in dendritic cells that lead to formation of gamma ketoaldehydes, or isoketals. These rapidly adduct to protein lysines and are presented by dendritic cells as neoantigens that activate T cells and promote hypertension. Thus, cells of both the innate and adaptive immune system contribute to end-organ damage and dysfunction in hypertension. Therapeutic interventions to reduce activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of hypertension including myocardial infarction, heart failure, renal failure and stroke. PMID:25767287

  5. DNA Damage Response and Immune Defense: Links and Mechanisms

    PubMed Central

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  6. Floating intake reduces pump damage

    SciTech Connect

    Kronig, A.

    1993-12-31

    The solution to a costly sand erosion problem at the Grande Dixence hydroelectric project in Switzerland turned out to be as simple as a floating pump. The 726-MW Grande Dixence project drains a 350-square-kilometer reach of the Zermatt and Herens valleys in the southwestern Swiss Alps. About half of the drainage area is covered by active glaciers. Because the glaciers in Zermatt Valley are so low in altitude, their water is collected in Z`mutt Reservoir at the base of the Matterhorn, then pumped up 500 meters for transport to the main Grande Disence Reservoir near Sion. The glacier water is heavily laden with sand. In spite of a gravel pass and a desilter, the 700,000-acubic-meter Z`mutt Reservoir receives large quantities of sand. The sand tends to remain in solution because of the low water temperatures (1 to 2 degrees Centigrade). In the original intake system, the sand would be sucked into the pump intakes, causing extensive erosion to the pump wheels and an expensive yearly program of repair. (Pump damage averaged 200,000 Swiss Francs ($284,000 U.S.) per year between 1980 and 1985.)

  7. Increasing Immunization Compliance by Reducing Provisional Admittance.

    PubMed

    Davis, Wendy S; Varni, Susan E; Barry, Sara E; Frankowski, Barbara L; Harder, Valerie S

    2016-08-01

    Students in Vermont with incomplete or undocumented immunization status are provisionally admitted to schools and historically had a calendar year to resolve their immunization status. The process of resolving these students' immunization status was challenging for school nurses. We conducted a school-based quality improvement effort to increase student compliance with Vermont immunization regulations using a collaborative learning approach with public health school liaisons and school nurses from public schools to reduce provisional admittance in 2011-2012. Strategies included using a tracking system, accessing the immunization registry, promoting immunization importance, tracking immunization plans, and working with medical homes to update records. Participating school nurses observed decreases in the number of provisionally admitted students, although this reduction was not significantly different than matched comparison schools. We also found the number of provisionally admitted students fluctuated throughout the year and resolving the immunization status of New Americans and exchange students required special attention. Our approach supports the coordinated school health model and demonstrates the critical role school nurses play in improving population health outcomes. PMID:26699951

  8. Increasing Immunization Compliance by Reducing Provisional Admittance

    ERIC Educational Resources Information Center

    Davis, Wendy S.; Varni, Susan E.; Barry, Sara E.; Frankowski, Barbara L.; Harder, Valerie S.

    2016-01-01

    Students in Vermont with incomplete or undocumented immunization status are provisionally admitted to schools and historically had a calendar year to resolve their immunization status. The process of resolving these students' immunization status was challenging for school nurses. We conducted a school-based quality improvement effort to increase…

  9. How damage diversification can reduce systemic risk

    NASA Astrophysics Data System (ADS)

    Burkholz, Rebekka; Garas, Antonios; Schweitzer, Frank

    2016-04-01

    We study the influence of risk diversification on cascading failures in weighted complex networks, where weighted directed links represent exposures between nodes. These weights result from different diversification strategies and their adjustment allows us to reduce systemic risk significantly by topological means. As an example, we contrast a classical exposure diversification (ED) approach with a damage diversification (DD) variant. The latter reduces the loss that the failure of high degree nodes generally inflict to their network neighbors and thus hampers the cascade amplification. To quantify the final cascade size and obtain our results, we develop a branching process approximation taking into account that inflicted losses cannot only depend on properties of the exposed, but also of the failing node. This analytic extension is a natural consequence of the paradigm shift from individual to system safety. To deepen our understanding of the cascade process, we complement this systemic perspective by a mesoscopic one: an analysis of the failure risk of nodes dependent on their degree. Additionally, we ask for the role of these failures in the cascade amplification.

  10. Method for Reducing Pumping Damage to Blood

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Robert J. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    Methods are provided for minimizing damage to blood in a blood pump wherein the blood pump comprises a plurality of pump components that may affect blood damage such as clearance between pump blades and housing, number of impeller blades, rounded or flat blade edges, variations in entrance angles of blades, impeller length, and the like. The process comprises selecting a plurality of pump components believed to affect blood damage such as those listed herein before. Construction variations for each of the plurality of pump components are then selected. The pump components and variations are preferably listed in a matrix for easy visual comparison of test results. Blood is circulated through a pump configuration to test each variation of each pump component. After each test, total blood damage is determined for the blood pump. Preferably each pump component variation is tested at least three times to provide statistical results and check consistency of results. The least hemolytic variation for each pump component is preferably selected as an optimized component. If no statistical difference as to blood damage is produced for a variation of a pump component, then the variation that provides preferred hydrodynamic performance is selected. To compare the variation of pump components such as impeller and stator blade geometries, the preferred embodiment of the invention uses a stereolithography technique for realizing complex shapes within a short time period.

  11. Method to reduce damage to backing plate

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2001-01-01

    The present invention is a method for penetrating a workpiece using an ultra-short pulse laser beam without causing damage to subsequent surfaces facing the laser. Several embodiments are shown which place holes in fuel injectors without damaging the back surface of the sack in which the fuel is ejected. In one embodiment, pulses from an ultra short pulse laser remove about 10 nm to 1000 nm of material per pulse. In one embodiment, a plasma source is attached to the fuel injector and initiated by common methods such as microwave energy. In another embodiment of the invention, the sack void is filled with a solid. In one other embodiment, a high viscosity liquid is placed within the sack. In general, high-viscosity liquids preferably used in this invention should have a high damage threshold and have a diffusing property.

  12. Immune Activation Reduces Sperm Quality in the Great Tit

    PubMed Central

    Losdat, Sylvain; Richner, Heinz; Blount, Jonathan D.; Helfenstein, Fabrice

    2011-01-01

    Mounting an immune response against pathogens incurs costs to organisms by its effects on important life-history traits, such as reproductive investment and survival. As shown recently, immune activation produces large amounts of reactive species and is suggested to induce oxidative stress. Sperm are highly susceptible to oxidative stress, which can negatively impact sperm function and ultimately male fertilizing efficiency. Here we address the question as to whether mounting an immune response affects sperm quality through the damaging effects of oxidative stress. It has been demonstrated recently in birds that carotenoid-based ornaments can be reliable signals of a male's ability to protect sperm from oxidative damage. In a full-factorial design, we immune-challenged great tit males while simultaneously increasing their vitamin E availability, and assessed the effect on sperm quality and oxidative damage. We conducted this experiment in a natural population and tested the males' response to the experimental treatment in relation to their carotenoid-based breast coloration, a condition-dependent trait. Immune activation induced a steeper decline in sperm swimming velocity, thus highlighting the potential costs of an induced immune response on sperm competitive ability and fertilizing efficiency. We found sperm oxidative damage to be negatively correlated with sperm swimming velocity. However, blood resistance to a free-radical attack (a measure of somatic antioxidant capacity) as well as plasma and sperm levels of oxidative damage (lipid peroxidation) remained unaffected, thus suggesting that the observed effect did not arise through oxidative stress. Towards the end of their breeding cycle, swimming velocity of sperm of more intensely colored males was higher, which has important implications for the evolution of mate choice and multiple mating in females because females may accrue both direct and indirect benefits by mating with males having better quality sperm

  13. Common trenching reduces damage to buried utilities

    SciTech Connect

    Alfiere, E.P.

    1982-09-01

    Since 1972 Niagara Mohawk Power Co. has established a utility corridor, installing 503 miles of buried gas mains and electric cables in a common trench. Their guidelines for common trenching included (1) the developer's responsibility for providing a subdivision map showing the location of each sidewalk, lot, and roadway, (2) an easement strip paralleling the front lot (street) line that is to be cleared and graded by the developer before construction is started, (3) an electric planning department to prepare detailed construction drawings, coordinate plans with other utilities, determine the responsibility for trenching and backfilling, and determine that all the necessary easements have been secured, and (4) construction specifications varying the width and depth of the trench with the number and type of utilties occupying the joint trench. Advantages of the common trench program comprise reduced exposure to digups, communication and concern for each utility's facility, water and sewer construction installed before the common trench, and cost sharing that would reduce each facility's construction and restoration costs.

  14. Acute systemic DNA damage in youth does not impair immune defense with aging.

    PubMed

    Pugh, Jason L; Foster, Sarah A; Sukhina, Alona S; Petravic, Janka; Uhrlaub, Jennifer L; Padilla-Torres, Jose; Hayashi, Tomonori; Nakachi, Kei; Smithey, Megan J; Nikolich-Žugich, Janko

    2016-08-01

    Aging-related decline in immunity is believed to be the main driver behind decreased vaccine efficacy and reduced resistance to infections in older adults. Unrepaired DNA damage is known to precipitate cellular senescence, which was hypothesized to be the underlying cause of certain age-related phenotypes. Consistent with this, some hallmarks of immune aging were more prevalent in individuals exposed to whole-body irradiation (WBI), which leaves no anatomical repository of undamaged hematopoietic cells. To decisively test whether and to what extent WBI in youth will leave a mark on the immune system as it ages, we exposed young male C57BL/6 mice to sublethal WBI (0.5-4 Gy), mimicking human survivor exposure during nuclear catastrophe. We followed lymphocyte homeostasis thorough the lifespan, response to vaccination, and ability to resist lethal viral challenge in the old age. None of the irradiated groups showed significant differences compared with mock-irradiated (0 Gy) animals for the parameters measured. Even the mice that received the highest dose of sublethal WBI in youth (4 Gy) exhibited equilibrated lymphocyte homeostasis, robust T- and B-cell responses to live attenuated West Nile virus (WNV) vaccine and full survival following vaccination upon lethal WNV challenge. Therefore, a single dose of nonlethal WBI in youth, resulting in widespread DNA damage and repopulation stress in hematopoietic cells, leaves no significant trace of increased immune aging in a lethal vaccine challenge model. PMID:27072188

  15. Unfermented grape juice reduce genomic damage on patients undergoing hemodialysis.

    PubMed

    Corredor, Zuray; Rodríguez-Ribera, Lara; Coll, Elisabeth; Montañés, Rosario; Diaz, Juan Manuel; Ballarin, José; Marcos, Ricard; Pastor, Susana

    2016-06-01

    Chronic kidney disease (CKD) patients in dialysis (HD) are considered to be submitted to a continuous oxidative stress. This stress can cause damage on DNA and, consequently, contribute to the high levels of DNA damage observed in these patients. Due to the well-known role of polyphenols as antioxidant agents we proposed its use to reduce the levels of genotoxicity present in HD-CKD patients. The objective of this study was to evaluate the antigenotoxic effects of unfermented grape juice (UGJ) on HD-CKD patients. The levels of DNA damage were analyzed using different biomarkers, such as breaks and oxidized DNA bases by the comet assay, chromosome damage by the micronucleus test. In addition, TEAC (Trolox equivalent antioxidant capacity) was also evaluated. Thirty-nine patients were followed for six months, of whom 25 were supplemented by UGJ and 14 were not supplemented. The obtained results showed a significant decrease in the underlying levels of oxidative DNA damage, in the supplemented group. Regarding the clinical parameters, LDL and cholesterol, were significantly reduced in the patients studied after the supplementation period, although cholesterol was also decreased in the non-supplemented patients. In conclusion, in our studied group the supplementation with UGJ reduced the levels of oxidative DNA damage of HD-CKD patients. PMID:27016493

  16. Altered Immunity in Crowded Locust Reduced Fungal (Metarhizium anisopliae) Pathogenesis

    PubMed Central

    Wang, Yundan; Yang, Pengcheng; Cui, Feng; Kang, Le

    2013-01-01

    The stress of living conditions, similar to infections, alters animal immunity. High population density is empirically considered to induce prophylactic immunity to reduce the infection risk, which was challenged by a model of low connectivity between infectious and susceptible individuals in crowded animals. The migratory locust, which exhibits polyphenism through gregarious and solitary phases in response to population density and displays different resistance to fungal biopesticide (Metarhizium anisopliae), was used to observe the prophylactic immunity of crowded animals. We applied an RNA-sequencing assay to investigate differential expression in fat body samples of gregarious and solitary locusts before and after infection. Solitary locusts devoted at least twice the number of genes for combating M. anisopliae infection than gregarious locusts. The transcription of immune molecules such as pattern recognition proteins, protease inhibitors, and anti-oxidation proteins, was increased in prophylactic immunity of gregarious locusts. The differentially expressed transcripts reducing gregarious locust susceptibility to M. anisopliae were confirmed at the transcriptional and translational level. Further investigation revealed that locust GNBP3 was susceptible to proteolysis while GNBP1, induced by M. anisopliae infection, resisted proteolysis. Silencing of gnbp3 by RNAi significantly shortened the life span of gregarious locusts but not solitary locusts. By contrast, gnbp1 silencing did not affect the life span of both gregarious and solitary locusts after M. anisopliae infection. Thus, the GNBP3-dependent immune responses were involved in the phenotypic resistance of gregarious locusts to fungal infection, but were redundant in solitary locusts. Our results indicated that gregarious locusts prophylactically activated upstream modulators of immune cascades rather than downstream effectors, preferring to quarantine rather than eliminate pathogens to conserve energy

  17. Trauma equals danger—damage control by the immune system

    PubMed Central

    Stoecklein, Veit M.; Osuka, Akinori; Lederer, James A.

    2012-01-01

    Traumatic injuries induce a complex host response that disrupts immune system homeostasis and predisposes patients to opportunistic infections and inflammatory complications. The response to injuries varies considerably by type and severity, as well as by individual variables, such as age, sex, and genetics. These variables make studying the impact of trauma on the immune system challenging. Nevertheless, advances have been made in understanding how injuries influence immune system function as well as the immune cells and pathways involved in regulating the response to injuries. This review provides an overview of current knowledge about how traumatic injuries affect immune system phenotype and function. We discuss the current ideas that traumatic injuries induce a unique type of a response that may be triggered by a combination of endogenous danger signals, including alarmins, DAMPs, self-antigens, and cytokines. Additionally, we review and propose strategies for redirecting injury responses to help restore immune system homeostasis. PMID:22654121

  18. Immunomodulation by poly-YE reduces organophosphate-induced brain damage.

    PubMed

    Finkelstein, Arseny; Kunis, Gilad; Berkutzki, Tamara; Ronen, Ayal; Krivoy, Amir; Yoles, Eti; Last, David; Mardor, Yael; Van Shura, Kerry; McFarland, Emylee; Capacio, Benedict A; Eisner, Claire; Gonzales, Mary; Gregorowicz, Danise; Eisenkraft, Arik; McDonough, John H; Schwartz, Michal

    2012-01-01

    Accidental organophosphate poisoning resulting from environmental or occupational exposure, as well as the deliberate use of nerve agents on the battlefield or by terrorists, remain major threats for multi-casualty events, with no effective therapies yet available. Even transient exposure to organophosphorous compounds may lead to brain damage associated with microglial activation and to long-lasting neurological and psychological deficits. Regulation of the microglial response by adaptive immunity was previously shown to reduce the consequences of acute insult to the central nervous system (CNS). Here, we tested whether an immunization-based treatment that affects the properties of T regulatory cells (Tregs) can reduce brain damage following organophosphate intoxication, as a supplement to the standard antidotal protocol. Rats were intoxicated by acute exposure to the nerve agent soman, or the organophosphate pesticide, paraoxon, and after 24 h were treated with the immunomodulator, poly-YE. A single injection of poly-YE resulted in a significant increase in neuronal survival and tissue preservation. The beneficial effect of poly-YE treatment was associated with specific recruitment of CD4(+) T cells into the brain, reduced microglial activation, and an increase in the levels of brain derived neurotrophic factor (BDNF) in the piriform cortex. These results suggest therapeutic intervention with poly-YE as an immunomodulatory supplementary approach against consequences of organophosphate-induced brain damage. PMID:21925261

  19. Reducing systems protecting the bacterial cell envelope from oxidative damage.

    PubMed

    Arts, Isabelle S; Gennaris, Alexandra; Collet, Jean-François

    2015-06-22

    Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved. PMID:25957772

  20. Reducing Wildlife Damage with Cost-Effective Management Programmes.

    PubMed

    Krull, Cheryl R; Stanley, Margaret C; Burns, Bruce R; Choquenot, David; Etherington, Thomas R

    2016-01-01

    Limiting the impact of wildlife damage in a cost effective manner requires an understanding of how control inputs change the occurrence of damage through their effect on animal density. Despite this, there are few studies linking wildlife management (control), with changes in animal abundance and prevailing levels of wildlife damage. We use the impact and management of wild pigs as a case study to demonstrate this linkage. Ground disturbance by wild pigs has become a conservation issue of global concern because of its potential effects on successional changes in vegetation structure and composition, habitat for other species, and functional soil properties. In this study, we used a 3-year pig control programme (ground hunting) undertaken in a temperate rainforest area of northern New Zealand to evaluate effects on pig abundance, and patterns and rates of ground disturbance and ground disturbance recovery and the cost effectiveness of differing control strategies. Control reduced pig densities by over a third of the estimated carrying capacity, but more than halved average prevailing ground disturbance. Rates of new ground disturbance accelerated with increasing pig density, while rates of ground disturbance recovery were not related to prevailing pig density. Stochastic simulation models based on the measured relationships between control, pig density and rate of ground disturbance and recovery indicated that control could reduce ground disturbance substantially. However, the rate at which prevailing ground disturbance was reduced diminished rapidly as more intense, and hence expensive, pig control regimes were simulated. The model produced in this study provides a framework that links conservation of indigenous ecological communities to control inputs through the reduction of wildlife damage and suggests that managers should consider carefully the marginal cost of higher investment in wildlife damage control, relative to its marginal conservation return. PMID

  1. Reducing Wildlife Damage with Cost-Effective Management Programmes

    PubMed Central

    Krull, Cheryl R.; Stanley, Margaret C.; Burns, Bruce R.; Choquenot, David; Etherington, Thomas R.

    2016-01-01

    Limiting the impact of wildlife damage in a cost effective manner requires an understanding of how control inputs change the occurrence of damage through their effect on animal density. Despite this, there are few studies linking wildlife management (control), with changes in animal abundance and prevailing levels of wildlife damage. We use the impact and management of wild pigs as a case study to demonstrate this linkage. Ground disturbance by wild pigs has become a conservation issue of global concern because of its potential effects on successional changes in vegetation structure and composition, habitat for other species, and functional soil properties. In this study, we used a 3-year pig control programme (ground hunting) undertaken in a temperate rainforest area of northern New Zealand to evaluate effects on pig abundance, and patterns and rates of ground disturbance and ground disturbance recovery and the cost effectiveness of differing control strategies. Control reduced pig densities by over a third of the estimated carrying capacity, but more than halved average prevailing ground disturbance. Rates of new ground disturbance accelerated with increasing pig density, while rates of ground disturbance recovery were not related to prevailing pig density. Stochastic simulation models based on the measured relationships between control, pig density and rate of ground disturbance and recovery indicated that control could reduce ground disturbance substantially. However, the rate at which prevailing ground disturbance was reduced diminished rapidly as more intense, and hence expensive, pig control regimes were simulated. The model produced in this study provides a framework that links conservation of indigenous ecological communities to control inputs through the reduction of wildlife damage and suggests that managers should consider carefully the marginal cost of higher investment in wildlife damage control, relative to its marginal conservation return. PMID

  2. [Use of vilosen in the treatment of radiation damage of the immune system].

    PubMed

    Tron'ko, M D; Sydorenko, D S; Bykova, L M; Goidash, M M; Boiko, M G; Synel'nikova, G L

    2001-01-01

    The possibility of vilosen usage for the immune system damage liquidation was studied. Rats obtained discrete rentgen irradiation during 1 month in the total dose of 4 Gr. Mice obtained internal 131I irradiation in a dose of 9.25 kBk/g. It was established that thymus and spleen masses, quantity of their cells, blood leukocytes and antibody production decreased by as external and internal irradiation. Irradiated animals treated with vilosen restored their immune system functional state partly or completely. The preparation was assumed to be used for the correction of immune system radiation damage. PMID:11296565

  3. Lymphocytes modulate innate immune responses and neuronal damage in experimental meningitis.

    PubMed

    Hoffmann, Olaf; Rung, Olga; Held, Josephin; Boettcher, Chotima; Prokop, Stefan; Stenzel, Werner; Priller, Josef

    2015-01-01

    In bacterial meningitis, excessive immune responses carry significant potential for damage to brain tissue even after successful antibiotic therapy. Bacterial meningitis is regarded primarily as the domain of innate immunity, and the role of lymphocytes remains unclear. We studied the contribution of lymphocytes to acute inflammation and neurodegeneration in experimental Toll-like receptor 2-driven meningitis, comparing wild-type mice with RAG-1-deficient mice that have no mature T and B lymphocytes. At 24 h after intrathecal challenge with the synthetic bacterial lipopeptide Pam(3)CysSK(4), RAG-1-deficient mice displayed more pronounced clinical impairment and an increased concentration of neutrophils, reduced expression of interleukin-10 (IL-10) mRNA, and increased expression of CXCL1 mRNA in the cerebrospinal fluid. Conversely, neuronal loss in the dentate gyrus was reduced in RAG-1-deficient mice, and expression of IL-10, transforming growth factor β and CCL2 mRNA by microglia was increased compared to wild-type mice. Adoptive transfer of wild-type lymphocytes reversed the enhanced meningeal inflammation and functional impairment observed in RAG-1-deficient mice. Our findings suggest compartment-specific effects of lymphocytes during acute bacterial meningitis, including attenuation of meningeal inflammation and shifting of microglial activation toward a more neurotoxic phenotype. PMID:25348636

  4. Immunization with Pneumolysin Protects Against Both Retinal and Global Damage Caused by Streptococcus pneumoniae Endophthalmitis

    PubMed Central

    Sanders, Melissa E.; Norcross, Erin W.; Moore, Quincy C.; Fratkin, Jonathan; Thompson, Hilary

    2010-01-01

    Abstract Purpose To determine whether immunization with pneumolysin (PLY) protects against pneumococcal endophthalmitis. Methods New Zealand white rabbits were immunized with a mutant form of PLY that retains only 1% of its cytolytic activity until serum IgG titers were ≥51,200. For a negative control, rabbits were immunized with phosphate-buffered saline (mock). Each vitreous was injected with 102 colony-forming units of a clinical endophthalmitis isolate of Streptococcus pneumoniae. Severity of endophthalmitis was graded by slit lamp examination at 24 and 48 h postinfection (PI). Serial dilutions of vitreous were plated for bacterial colony-forming units quantitation, eyes were extracted for histology, and a whole blood survival assay was performed. Results Immunized rabbits had a significantly lower mean slit lamp examination score at 24 and 48 h PI when compared to mock immunized rabbits (P ≤ 0.002). There was not a significant difference in bacterial load in the vitreous at 24 or 48 h PI. Histological sections showed that retinas of mock immunized rabbits appeared to be destroyed, whereas those of PLY immunized rabbits remained largely intact. Damage spread to the aqueous humor, stroma, and conjunctiva of mock immunized rabbits by 48 h PI. Minimal damage was observed in the vitreous of PLY immunized rabbits and did not spread to other parts of the eye. Whole blood from immunized rabbits inhibited the growth of bacteria better than whole blood from mock immunized rabbits. Conclusion Immunization with PLY helps protect the eye from damage caused by pneumococcal endophthalmitis. PMID:21034245

  5. Reducing formation damage through two-stage polymer filtration

    SciTech Connect

    Houchin, L.R.; Hudson, L.M.; Caothien, S.; Daddazio, G.; Hashemi, R.

    1986-01-01

    Formation damage resulting from the use of unfiltered polymers during gravel pack completion operations has been addressed as it relates to HEC completion fluids. However, other filtered polymer systems exhibit properties which, in specific applications, may out perform HEC systems. Thus, the performance characteristics of six commonly used polymer systems, hydroxyethyl cellulose (HEC), clarified xanthan gum (XC), HEC/XC blends, crosslinked carboxymethyl hydroxyethyl cellulose (CMHEC), hydroxypropyl guar (HPG), and standard xanthan gum (XCD), required additional evaluation. Fluid modelling was employed using a new two-stage filtration process (gel filtration) in which the viscosified fluids were optimally sheared and fine-filtered to improve sand placement efficiency and reduce formation damage. The data obtained from this study establishes mixing and filtration design criteria for optimizing completion techniques such as gravel packing, sand washing, polymer diverting, and lost circulation control.

  6. Reduced calcium-dependent mitochondrial damage underlies the reduced vulnerability of excitotoxicity-tolerant hippocampal neurons.

    PubMed

    Pivovarova, Natalia B; Stanika, Ruslan I; Watts, Charlotte A; Brantner, Christine A; Smith, Carolyn L; Andrews, S Brian

    2008-03-01

    In central neurons, over-stimulation of NMDA receptors leads to excessive mitochondrial calcium accumulation and damage, which is a critical step in excitotoxic death. This raises the possibility that low susceptibility to calcium overload-induced mitochondrial damage might characterize excitotoxicity-resistant neurons. In this study, we have exploited two complementary models of preconditioning-induced excitotoxicity resistance to demonstrate reduced calcium-dependent mitochondrial damage in NMDA-tolerant hippocampal neurons. We have further identified adaptations in mitochondrial calcium handling that account for enhanced mitochondrial integrity. In both models, enhanced tolerance was associated with improved preservation of mitochondrial membrane potential and structure. In the first model, which exhibited modest neuroprotection, mitochondria-dependent calcium deregulation was delayed, even though cytosolic and mitochondrial calcium loads were quantitatively unchanged, indicating that enhanced mitochondrial calcium capacity accounts for reduced injury. In contrast, the second model, which exhibited strong neuroprotection, displayed further delayed calcium deregulation and reduced mitochondrial damage because downregulation of NMDA receptor surface expression depressed calcium loading. Reducing calcium entry also modified the chemical composition of the calcium-buffering precipitates that form in calcium-loaded mitochondria. It thus appears that reduced mitochondrial calcium loading is a major factor underlying the robust neuroprotection seen in highly tolerant cells. PMID:18036152

  7. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery.

    PubMed

    Jäger, Ralf; Shields, Kevin A; Lowery, Ryan P; De Souza, Eduardo O; Partl, Jeremy M; Hollmer, Chase; Purpura, Martin; Wilson, Jacob M

    2016-01-01

    Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29) recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm) were assigned to consume either 20 g of casein (PRO) or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC) in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01), with PROBC showing a trend towards reduced muscle damage (p = 0.08). The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (-39.8 watts, -5.3%, p = 0.03)), whereas PROBC maintained performance (+10.1 watts, +1.7%). Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage, improves recovery

  8. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery

    PubMed Central

    Jäger, Ralf; Shields, Kevin A.; Lowery, Ryan P.; De Souza, Eduardo O.; Partl, Jeremy M.; Hollmer, Chase; Purpura, Martin

    2016-01-01

    Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29) recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm) were assigned to consume either 20 g of casein (PRO) or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC) in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01), with PROBC showing a trend towards reduced muscle damage (p = 0.08). The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (−39.8 watts, −5.3%, p = 0.03)), whereas PROBC maintained performance (+10.1 watts, +1.7%). Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage, improves recovery

  9. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns

    PubMed Central

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M.; Cervone, Felice; De Lorenzo, Giulia

    2015-01-01

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP–PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense. PMID:25870275

  10. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns.

    PubMed

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M; Cervone, Felice; De Lorenzo, Giulia

    2015-04-28

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense. PMID:25870275

  11. Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins.

    PubMed

    Reinardy, H C; Chapman, J; Bodnar, A G

    2016-02-01

    Sea urchins are noted for the absence of neoplastic disease and represent a novel model to investigate cellular and systemic cancer protection mechanisms. Following intracoelomic injection of the DNA alkylating agent methyl methanesulfonate, DNA damage was detected in sea urchin cells and tissues (coelomocytes, muscle, oesophagus, ampullae and gonad) by the alkaline unwinding, fast micromethod. Gene expression analyses of the coelomocytes indicated upregulation of innate immune markers, including genes involved in NF-κB signalling. Results suggest that activation of the innate immune system following DNA damage may contribute to the naturally occurring resistance to neoplastic disease observed in sea urchins. PMID:26911343

  12. Evaluation of hepatic damage and local immune response in goats immunized with native glutathione S-transferase of Fasciola hepatica.

    PubMed

    Zafra, R; Pérez-Ecija, R A; Buffoni, L; Mendes, R E; Martínez-Moreno, A; Martínez-Moreno, F J; Galisteo, M E Martínez; Pérez, J

    2010-01-01

    Worm burden, hepatic damage and local cellular and humoral immune responses were assessed in goats immunized with glutathione-S-transferase and challenged with Fasciola hepatica. Infected but unimmunized and uninfected control groups were also studied. Hepatic damage was evaluated grossly and microscopically. Local immune response was evaluated by (1) microscopical examination of hepatic lymph nodes (HLNs); (2) analysis of the distribution of CD2(+), CD4(+), CD8(+), T-cell receptor gammadelta(+) lymphocytes and immunoglobulin (Ig) G(+) plasma cells; and (3) investigation of the distribution of cells expressing interleukin (IL)-4 and interferon (IFN)-gamma in the hepatic inflammatory infiltrates and HLNs. Immunized animals did not have significant reduction in fluke number, but there was significant (P<0.05) reduction of fluke size relative to the control groups. The lesions in the two infected groups were similar and consisted of fibrous perihepatitis and white tortuous tracts, mainly involving the left hepatic lobe. Microscopical lesions were similar in both infected groups and were typical of chronic fascioliosis. These included portal fibrosis, inflammatory infiltration with plasma cells, formation of lymphoid follicles, accumulation of haemosiderin-laden macrophages and granulomatous foci. Both infected groups had a marked local immune response characterized by infiltration of CD2(+), CD4(+) and CD8(+) T lymphocytes, and IgG(+) plasma cells in hepatic lesions and in HLNs. There was no expression of IL-4 or INF-gamma by cells in the hepatic inflammatory infiltrate, but expression of INF-gamma in HLNs was much lower than that of IL-4, suggesting an immune response dominated by T helper 2 cells. PMID:20185148

  13. Grounding after moderate eccentric contractions reduces muscle damage

    PubMed Central

    Brown, Richard; Chevalier, Gaétan; Hill, Michael

    2015-01-01

    Grounding a human to the earth has resulted in changes in the physiology of the body. A pilot study on grounding and eccentric contractions demonstrated shortened duration of pain, reduced creatine kinase (CK), and differences in blood parameters. This follow-up study was conducted to investigate the effects of grounding after moderate eccentric contractions on pain, CK, and complete blood counts. Thirty-two healthy young men were randomly divided into grounded (n=16) and sham-grounded (n=16) groups. On days 1 through 4, visual analog scale for pain evaluations and blood draws were accomplished. On day 1, the participants performed eccentric contractions of 200 half-knee bends. They were then grounded or sham-grounded to the earth for 4 hours on days 1 and 2. Both groups experienced pain on all posttest days. On day 2, the sham-grounded group experienced significant CK increase (P<0.01) while the CK of the grounded group did not increase significantly; the between-group difference was significant (P=0.04). There was also an increase in the neutrophils of the grounded group on day 3 (P=0.05) compared to the sham-grounded group. There was a significant increase in platelets in the grounded group on days 2 through 4. Grounding produced changes in CK and complete blood counts that were not shared by the sham-grounded group. Grounding significantly reduced the loss of CK from the injured muscles indicating reduced muscle damage. These results warrant further study on the effects of earthing on delayed onset muscle damage. PMID:26443876

  14. Reducing methane emissions in sheep by immunization against rumen methanogens.

    PubMed

    Wright, A D G; Kennedy, P; O'Neill, C J; Toovey, A F; Popovski, S; Rea, S M; Pimm, C L; Klein, L

    2004-09-28

    This work was conducted to determine if methane emissions from sheep immunized with an anti-methanogen vaccine were significantly lower than methane emissions from non-immunized sheep, to test the effectiveness of two different vaccine formulations (VF) on methane abatement, and to compare methane emissions measured using a closed-circuit respiration chamber and the sulphur-hexafluoride (SF6) tracer technique. Thirty mature wether sheep were randomly allocated to three treatment groups (n = 10). One group received an immunization of adjuvant only on days 0 and 153 (control), a second group received an immunization with a 3-methanogen mix on days 0 and 153 (VF3 + 3), and a third group received an immunization of a 7-methanogen mix on day 0 followed by a 3-methanogen mix on day 153 (VF7 + 3). Four weeks post-secondary immunization, there was a significant 7.7% reduction in methane production per kg dry matter intake in the VF7 + 3 group compared to the controls (P = 0.051). However, methane emissions from sheep immunized with VF7 + 3 were not significantly different when compared to the sheep in the control group (P = 0.883). The average IgG and IgA antibody titres in both plasma and saliva of the VF3 + 3 immunized sheep were four to nine times higher than those immunized with VF7 + 3 (P< 0.001) at both 3 and 6 weeks post-secondary immunization. Data also revealed that SF6 methane estimates were consistently higher than the respiration chamber estimates and that there was no significant correlation between the SF6 methane estimates and the respiration chamber methane estimates (R2 = 0.11). PMID:15364447

  15. Innate immune memory: Implications for host responses to damage-associated molecular patterns.

    PubMed

    Crișan, Tania O; Netea, Mihai G; Joosten, Leo A B

    2016-04-01

    Cells of the innate immune system build immunological memory via epigenetic reprogramming after stimulations with microbial ligands. This functional readjustment allows for enhanced nonspecific inflammatory responses upon secondary challenges, a process termed "trained immunity." The epigenomic blueprint of trained monocytes has been recently reported, which revealed several important immunologic and metabolic mechanisms that underlie these changes. Interestingly, similar long-term reprogramming of cytokine production has also been described to be induced by endogenous damage-associated molecular patterns (DAMPs). Here, we present an overview of the novel data showing that endogenous alarm signals associated with tissue damage and sterile inflammation can induce trained immunity through epigenetic regulation of transcriptional programs. We describe new and old evidence of persistent effects of DAMPs in driving inflammation and enforce the concept that the influence of tissue-derived signals is critical in adjusting the magnitude and type of immune response built by the host. The better characterization of trained immunity for the persistence of inflammation induced by DAMPs would provide new possibilities for intervention in aging and autoinflammatory disorders. PMID:26970440

  16. Electrochemically Reduced Water Protects Neural Cells from Oxidative Damage

    PubMed Central

    Hamasaki, Takeki; Kinjo, Tomoya; Nakamichi, Noboru; Teruya, Kiichiro; Kabayama, Shigeru

    2014-01-01

    Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50–200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca2+ influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW. PMID:25383141

  17. Electrochemically reduced water protects neural cells from oxidative damage.

    PubMed

    Kashiwagi, Taichi; Yan, Hanxu; Hamasaki, Takeki; Kinjo, Tomoya; Nakamichi, Noboru; Teruya, Kiichiro; Kabayama, Shigeru; Shirahata, Sanetaka

    2014-01-01

    Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50-200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca(2+) influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW. PMID:25383141

  18. DNA damage, tumor mutational load and their impact on immune responses against cancer

    PubMed Central

    Anastasiou, Ioannis; Bamias, Aristotelis; Dimopoulos, Meletios-Athanasios

    2016-01-01

    Advances in immunotherapy have changed the therapeutic landscape in many malignancies. Immune checkpoint inhibitors have already received regulatory approval in melanomas, lung, renal and bladder carcinomas. A common feature of these neoplasms is the increased mutational load, related to a possible increase number of tumor neoantigens that are recognized by the immune system. The mechanisms that DNA damage could confer to the mutational load and the formation of neoantigens and how this could be exploited to advance our immunotherapeutic strategies is discussed in this review. PMID:27563651

  19. Ichthyophonus-induced cardiac damage: a mechanism for reduced swimming stamina in salmonids

    USGS Publications Warehouse

    Kocan, R.; LaPatra, S.; Gregg, J.; Winton, J.; Hershberger, P.

    2006-01-01

    Swimming stamina, measured as time-to-fatigue, was reduced by approximately two-thirds in rainbow trout experimentally infected with Ichthyophonus. Intensity of Ichthyophonus infection was most severe in cardiac muscle but multiple organs were infected to a lesser extent. The mean heart weight of infected fish was 40% greater than that of uninfected fish, the result of parasite biomass, infiltration of immune cells and fibrotic (granuloma) tissue surrounding the parasite. Diminished swimming stamina is hypothesized to be due to cardiac failure resulting from the combination of parasite-damaged heart muscle and low myocardial oxygen supply during sustained aerobic exercise. Loss of stamina in Ichthyophonus-infected salmonids could explain the poor performance previously reported for wild Chinook and sockeye salmon stocks during their spawning migration. ?? 2006 Blackwell Publishing Ltd.

  20. Minocycline treatment reduces white matter damage after excitotoxic striatal injury.

    PubMed

    Guimarães, Joanilson S; Freire, Marco Aurelio M; Lima, Rafael R; Picanço-Diniz, Cristovam W; Pereira, Antonio; Gomes-Leal, Walace

    2010-05-01

    We investigated the protective effects of minocycline following white matter damage (WMD) in the rat striatum. Excitotoxic lesions were induced by N-Methyl-d-Aspartate (NMDA) microinjections and caused striatal damage, concomitant with microglial/macrophage activation. The excitotoxic lesion both damaged oligodendrocytes (Tau-1(+) cells) and caused a decrease in tissue reactivity for myelin basic protein (MBP) after post-lesional day 3 (PLD). Treatment with the semi-synthetic tetracycline antibiotic minocycline, however, led to oligodendrocyte preservation and decreased myelin impairment. Taken together, these results suggest that white matter damage (WMD) is an important component of the physiopathology of acute striatal damage and that microglial/macrophage activation contributes to this pathological phenomenon. PMID:20226770

  1. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage.

    PubMed

    Chang, Yan; Jia, Xiaoyi; Wei, Fang; Wang, Chun; Sun, Xiaojing; Xu, Shu; Yang, Xuezhi; Zhao, Yingjie; Chen, Jingyu; Wu, Huaxun; Zhang, Lingling; Wei, Wei

    2016-01-01

    Paeoniflorin-6'-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin (Pae), was evaluated in rats with adjuvant-induced arthritis (AA) to study its potential anti-arthritic activity. AA rats were treated with CP-25 (25, 50, or 100 mg/kg) from days 17 to 29 after immunization. CP-25 effectively reduced clinical and histopathological scores compared with the AA groups. CP-25-treated rats exhibited decreases in pro-inflammatory cytokines (IL-1β, IL-6, IL-17 and TNF-α) coupled with an increase in the anti-inflammatory cytokine TGF-β1 in the serum. CP-25 treatment inhibited M1 macrophage activation and enhanced M2 macrophage activation by influencing cytokine production. Decreases in Th17-IL-17 and the Th17-associated transcription factor RAR-related orphan receptor gamma (ROR-γt) dramatically demonstrated the immunomodulatory effects of CP-25 on abnormal immune dysfunction. In addition, CP-25 suppressed the production of receptor activator of nuclear factor kappa B ligand (RANKL) and matrix metalloproteinase (MMP) 9, which supported its anti-osteoclastic effects. The data presented here demonstrated that CP-25 significantly inhibited the progression of rat AA by reducing inflammation, immunity and bone damage. The protective effects of CP-25 in AA highlight its potential as an ideal new anti-arthritic agent for human RA. PMID:27184722

  2. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage

    PubMed Central

    Chang, Yan; Jia, Xiaoyi; Wei, Fang; Wang, Chun; Sun, Xiaojing; Xu, Shu; Yang, Xuezhi; Zhao, Yingjie; Chen, Jingyu; Wu, Huaxun; Zhang, Lingling; Wei, Wei

    2016-01-01

    Paeoniflorin-6′-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin (Pae), was evaluated in rats with adjuvant-induced arthritis (AA) to study its potential anti-arthritic activity. AA rats were treated with CP-25 (25, 50, or 100 mg/kg) from days 17 to 29 after immunization. CP-25 effectively reduced clinical and histopathological scores compared with the AA groups. CP-25-treated rats exhibited decreases in pro-inflammatory cytokines (IL-1β, IL-6, IL-17 and TNF-α) coupled with an increase in the anti-inflammatory cytokine TGF-β1 in the serum. CP-25 treatment inhibited M1 macrophage activation and enhanced M2 macrophage activation by influencing cytokine production. Decreases in Th17-IL-17 and the Th17-associated transcription factor RAR-related orphan receptor gamma (ROR-γt) dramatically demonstrated the immunomodulatory effects of CP-25 on abnormal immune dysfunction. In addition, CP-25 suppressed the production of receptor activator of nuclear factor kappa B ligand (RANKL) and matrix metalloproteinase (MMP) 9, which supported its anti-osteoclastic effects. The data presented here demonstrated that CP-25 significantly inhibited the progression of rat AA by reducing inflammation, immunity and bone damage. The protective effects of CP-25 in AA highlight its potential as an ideal new anti-arthritic agent for human RA. PMID:27184722

  3. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  4. Deficiency of the oxidative damage-specific DNA glycosylase NEIL1 leads to reduced germinal center B cell expansion

    PubMed Central

    Mori, Hiromi; Ouchida, Rika; Hijikata, Atsushi; Kitamura, Hiroshi; Ohara, Osamu; Li, Yingqian; Gao, Xiang; Yasui, Akira; Lloyd, R. Stephen; Wang, Ji-Yang

    2016-01-01

    Mammalian cells possess multiple DNA glycosylases, including OGG1, NTH1, NEIL1, NEIL2 and NEIL3, for the repair of oxidative DNA damage. Among these, NEIL1 and NEIL2 are able to excise oxidized bases on single stranded or bubble-structured DNA and has been implicated in repair of oxidative damage associated with DNA replication or transcription. We found that Neil1 was highly constitutively expressed in the germinal center (GC) B cells, a rapidly dividing cell population that is undergoing immunoglobulin (Ig) gene hypermutation and isotype switching. While Neil1−/− mice exhibited normal B and T cell development and maturation, these mice contained a significantly lower frequency of GC B cells than did WT mice after immunization with a T-dependent antigen. Consistent with the reduced expansion of GC B cells, Neil1−/− mice had a decreased frequency of Ig gene hypermutation and produced less antibody against a T-dependent antigen during both primary and secondary immune responses. These results suggest that repair of endogenous oxidative DNA damage by NEIL1 is important for the rapid expansion of GC B cells and efficient induction of humoral immune responses. PMID:19782007

  5. Methods for globally treating silica optics to reduce optical damage

    DOEpatents

    Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie

    2012-11-20

    A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.

  6. Prolonged organ culture reduces the incidence of endothelial immune reactions.

    PubMed

    Maier, P; Heinzelmann, S; Böhringer, D; Reinhard, T

    2016-01-01

    PURPOSE The number of antigen-presenting cells decreases during organ culture of corneoscleral discs. This might result in a decrease of immune reactions with increasing duration of organ culture. To investigate this hypothesis, we performed a retrospective analysis of all penetrating keratoplasties that were consecutively performed over the last 5 years.PATIENTS AND METHODS All cases of penetrating keratoplasties (n=1006) were divided into two groups, with the division made at the median of the storage time (21 days). These two groups were compared by a Cox proportional hazards survival model regarding the incidence of endothelial immune reactions, clear graft survival, and chronic endothelial cell loss following penetrating keratoplasty considering patient's age, donor's age, and risk situation as co-variates.RESULTS We observed statistically significantly fewer endothelial immune reactions (20.1% (95% confidence interval 15.5-24.5%) after 2 years) in the group with a storage time of more than 21 days compared with the group with a storage time of <21 days (26.5% (95% confidence interval 21.6-31.2%) after 2 years). However, the duration of organ culture did not have a statistically significant effect on clear graft survival or chronic endothelial cell loss.CONCLUSION Our results demonstrate that an increased duration of organ culture leads to a lower incidence of endothelial immune reactions following penetrating keratoplasty. However, we do not recommend increased storage times in general as overall graft survival did not improve. The reason for this apparent paradox may be that the endothelial cell count decreases during storage time. PMID:26493031

  7. Tree diversity reduces pest damage in mature forests across Europe

    PubMed Central

    Castagneyrol, Bastien; Vialatte, Aude; Deconchat, Marc; Jactel, Hervé

    2016-01-01

    Forest pest damage is expected to increase with global change. Tree diversity could mitigate this impact, but unambiguous demonstration of the diversity–resistance relationship is lacking in semi-natural mature forests. We used a network of 208 forest plots sampled along two orthogonal gradients of increasing tree species richness and latitudes to assess total tree defoliation in Europe. We found a positive relationship between tree species richness and resistance to insect herbivores: overall damage to broadleaved species significantly decreased with the number of tree species in mature forests. This pattern of associational resistance was frequently observed across tree species and countries, irrespective of their climate. These findings confirm the greater potential of mixed forests to face future biotic disturbances in a changing world. PMID:27122011

  8. Tree diversity reduces pest damage in mature forests across Europe.

    PubMed

    Guyot, Virginie; Castagneyrol, Bastien; Vialatte, Aude; Deconchat, Marc; Jactel, Hervé

    2016-04-01

    Forest pest damage is expected to increase with global change. Tree diversity could mitigate this impact, but unambiguous demonstration of the diversity-resistance relationship is lacking in semi-natural mature forests. We used a network of 208 forest plots sampled along two orthogonal gradients of increasing tree species richness and latitudes to assess total tree defoliation in Europe. We found a positive relationship between tree species richness and resistance to insect herbivores: overall damage to broadleaved species significantly decreased with the number of tree species in mature forests. This pattern of associational resistance was frequently observed across tree species and countries, irrespective of their climate. These findings confirm the greater potential of mixed forests to face future biotic disturbances in a changing world. PMID:27122011

  9. Damage to the ventromedial prefrontal cortex reduces interpersonal disgust

    PubMed Central

    Ciaramelli, Elisa; Sperotto, Rebecca G.; Mattioli, Flavia

    2013-01-01

    Disgust for contaminating objects (core disgust), immoral behaviors (moral disgust) and unsavory others (interpersonal disgust), have been assumed to be closely related. It is not clear, however, whether different forms of disgust are mediated by overlapping or specific neural substrates. We report that 10 patients with damage to the ventromedial prefrontal cortex (vmPFC) avoided behaviors that normally elicit interpersonal disgust (e.g. using the scarf of a busker) less frequently than healthy and brain-damaged controls, whereas they avoided core and moral disgust elicitors at normal rates. These results indicate that different forms of disgust are dissociated neurally. We propose that the vmPFC is causally (and selectively) involved in mediating interpersonal disgust, shaping patterns of social avoidance and approach. PMID:22842816

  10. Molybdenum nano emitters: the effect of the structural feature on oxygen damage immunity

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Deng, Shaozhi; Xu, Ningsheng; Ye, Peng; Zhang, Yu; Liu, Fei; Chen, Jun; She, Juncong

    2016-04-01

    The structural feature of molybdenum (Mo) nano emitters has a significant effect on their field emission reliability in the oxidizing environment. Mo nanowalls have been studied to exhibit high oxygen damage immunity. The two-dimensional (2D) nanostructure has shown stable and recoverable field emission performance during oxygen exposure in the order of magnitude of 10‑4 Pa. By contrast, quasi 1D nanoscrews have more easily suffered irreversible emission degradation due to more serious oxygen molecule and ion erosion at a higher local electric field around the emitter surface. The 2D wall-like structure with a large emission edge has been proven to contribute to such strong immunity. The results indicate that the Mo nanowall emitter apparently could work properly in the vacuum environment with a certain amount of oxygen.

  11. Investigation of water spray to reduce collateral thermal damage during laser resection of soft tissue

    NASA Astrophysics Data System (ADS)

    Theisen-Kunde, D.; Wolken, H.; Ellebrecht, D.; Danicke, V.; Wurster, L.; Kleemann, M.; Birngruber, R.

    2013-06-01

    To reduce unwanted collateral thermal damage to surrounding tissue and organs during laparoscopic laser dissection (cw, wavelength: 1.9μm) of porcine liver water spray was used. Size and amount of the produced water droplets of the water spray were photographed by short time imaging and analyzed by imaging software. At in vivo measurements on fresh porcine liver the depth of thermal damage was reduced by 85 % with water spray and the lateral size of thermal damage at the tissue surface could be reduced by 67%. This results show that especially for laparoscopic laser surgery water spray application might be a useful tool to avoid unwanted collateral thermal damage.

  12. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    PubMed Central

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  13. Reducing Toxicity of Immune Therapy Using Aptamer-Targeted Drug Delivery.

    PubMed

    Gilboa, Eli; Berezhnoy, Alexey; Schrand, Brett

    2015-11-01

    Modulating the function of immune receptors with antibodies is ushering in a new era in cancer immunotherapy. With the notable exception of PD-1 blockade used as monotherapy, immune modulation can be associated with significant toxicities that are expected to escalate with the development of increasingly potent immune therapies. A general way to reduce toxicity is to target immune potentiating drugs to the tumor or immune cells of the patient. This Crossroads article discusses a new class of nucleic acid-based immune-modulatory drugs that are targeted to the tumor or to the immune system by conjugation to oligonucleotide aptamer ligands. Cell-free chemically synthesized short oligonucleotide aptamers represent a novel and emerging platform technology for generating ligands with desired specificity that offer exceptional versatility and feasibility in terms of development, manufacture, and conjugation to an oligonucleotide cargo. In proof-of-concept studies, aptamer ligands were used to target immune-modulatory siRNAs or aptamers to induce neoantigens in the tumor cells, limit costimulation to the tumor lesion, or enhance the persistence of vaccine-induced immunity. Using increasingly relevant murine models, the aptamer-targeted immune-modulatory drugs engendered protective antitumor immunity that was superior to that of current "gold-standard" therapies in terms of efficacy and lack of toxicity or reduced toxicity. To overcome immune exhaustion aptamer-targeted siRNA conjugates could be used to downregulate intracellular mediators of exhaustion that integrate signals from multiple inhibitory receptors. Recent advances in aptamer development and second-generation aptamer-drug conjugates suggest that we have only scratched the surface. PMID:26541880

  14. Recombinant varicella vaccines induce neutralizing antibodies and cellular immune responses to SIV and reduce viral loads in immunized rhesus macaques

    PubMed Central

    Traina-Dorge, V.; Pahar, B.; Marx, P.; Kissinger, P.; Montefiori, D.; Ou, Y.; Gray, W.L.

    2010-01-01

    The development of an effective AIDS vaccine remains one of the highest priorities in HIV research. The live, attenuated varicella-zoster virus (VZV) Oka vaccine, safe and effective for prevention of chickenpox and zoster, also has potential as a recombinant vaccine against other pathogens, including human immunodeficiency virus (HIV). The simian varicella model, utilizing simian varicella virus (SVV), offers an approach to evaluate recombinant varicella vaccine candidates. Recombinant SVV (rSVV) vaccine viruses expressing simian immunodeficiency virus (SIV) env and gag antigens were constructed. The hypothesis tested was that a live, attenuated rSVV-SIV vaccine will induce immune responses against SIV in the rhesus macaques and provide protection against SIV challenge. The results demonstrated that rSVV-SIV vaccination induced low levels of neutralizing antibodies and cellular immune responses to SIV in immunized rhesus macaques and significantly reduced viral loads following intravenous challenge with pathogenic SIVmac251-CX-1. PMID:20654666

  15. Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling

    PubMed Central

    Moon, Eunjung; Han, Jeong Eun; Jeon, Sejin; Ryu, Jong Hoon; Choi, Ji Woong; Chun, Jerold

    2015-01-01

    Initial and recurrent stroke produces central nervous system (CNS) damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R) model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain. PMID:26576074

  16. Experimental Colitis Is Attenuated by Cardioprotective Diet Supplementation That Reduces Oxidative Stress, Inflammation, and Mucosal Damage

    PubMed Central

    Vargas Robles, Hilda; Citalán Madrid, Alí Francisco; García Ponce, Alexander; Silva Olivares, Angelica; Shibayama, Mineko; Betanzos, Abigail; Del Valle Mondragón, Leonardo; Nava, Porfirio; Schnoor, Michael

    2016-01-01

    Inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) are multifactorial, relapsing disorders of the gastrointestinal tract. However, the etiology is still poorly understood but involves altered immune responses, epithelial dysfunction, environmental factors, and nutrition. Recently, we have shown that the diet supplement corabion has cardioprotective effects due to reduction of oxidative stress and inflammation. Since oxidative stress and inflammation are also prominent risk factors in IBD, we speculated that corabion also has beneficial effects on experimental colitis. Colitis was induced in male mice by administration of 3.5% (w/v) dextran sulfate sodium (DSS) in drinking water for a period of 3 or 7 days with or without daily gavage feeding of corabion consisting of vitamin C, vitamin E, L-arginine, and eicosapentaenoic and docosahexaenoic acid. We found that corabion administration attenuated DSS-induced colon shortening, tissue damage, and disease activity index during the onset of colitis. Mechanistically, these effects could be explained by reduced neutrophil recruitment, oxidative stress, production of proinflammatory cytokines, and internalization of the junctional proteins ZO-1 and E-cadherin leading to less edema formation. Thus, corabion may be a useful diet supplement for the management of chronic inflammatory intestinal disorders such as IBD. PMID:26881044

  17. Immunization with excreted-secreted antigens reduces tissue cyst formation in pigs.

    PubMed

    Wang, Yanhua; Zhang, Delin; Wang, Guangxiang; Yin, Hong; Wang, Meng

    2013-11-01

    It has been demonstrated that tachyzoite-pooled excreted-secreted antigens (ESAs) of Toxoplasma gondii are highly immunogenic and can be used in vaccine development. However, most of the information regarding protective immunity induced by immunization with ESAs is derived from studies using mouse model systems. These results cannot be extrapolated to pigs due to important differences in the susceptibility and immune response mechanisms between pigs and mice. We show that the immunization of pigs with ESAs emulsified in Freund's adjuvant induced not only a humoral immune response but also a cellular response. The cellular immune response was associated with the production of IFN-γ and IL-4. The humoral immune response was mainly directed against the antigens with molecular masses between 34 and 116 kDa. After intraperitoneal challenge with 10(7) T. gondii of the Gansu Jingtai strain (GJS) of tachyzoites, the immunized pigs remained clinically normal except for a brief low-grade fever (≤40.5 °C), while the control pigs developed clinical signs of toxoplasmosis (cough, anorexia, prostration, and high fever). At necropsy, visible lesions were found at multiple locations (enlarged mesenteric lymph nodes, an enlarged spleen with focal necrosis, and enlarged lungs with miliary or focal necrosis and off-white lesions) in all of the control pigs but not in the pigs that had been immunized. We also found that immunization with ESAs reduced tissue cyst formation in the muscle (P < 0.01). Our data demonstrate that immunization with ESAs can trigger a strong immune response against T. gondii infection in pigs. PMID:23949245

  18. Tinospora cordifolia inhibits autoimmune arthritis by regulating key immune mediators of inflammation and bone damage.

    PubMed

    Sannegowda, K M; Venkatesha, S H; Moudgil, K D

    2015-12-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints leading to tissue damage. Despite the availability of potent drugs including the biologics, many patients fail to respond to them, whereas others suffer adverse effects following long-term use of these drugs. Accordingly, the use of natural herbal products by RA patients has been increasing over the years. However, limited information about the mechanism of action of these natural products is a major shortcoming that prevents the widespread acceptance of herbal therapy by professionals and patients alike. In this study, we demonstrated the anti-arthritic activity of Tinospora cordifolia extract (TCE) using the rat adjuvant-induced arthritis model of human RA and elaborated the immune mechanisms underlying this effect. TCE treatment suppressed arthritic inflammation and bone and cartilage damage. The anti-inflammatory effect of TCE was mediated via reduction of the pro-inflammatory cytokines such as: IL-1β, TNF-α, IL-6, and IL-17; the frequency of IL-17-producing T cells; and the production of chemokines such as RANTES. Furthermore, TCE treatment limited bone damage by shifting the balance of mediators of bone remodeling (e.g., receptor activator of nuclear factor-kB ligand [RANKL] and MMP-9) in favor of anti-osteoclastic activity. Our results suggest that TCE and its bioactive components should be evaluated for their utility as therapeutic adjuncts to conventional drugs against RA. PMID:26467057

  19. THERAPEUTIC NEUTRALIZATION OF THE NLRP1 INFLAMMASOME REDUCES THE INNATE IMMUNE RESPONSE AND IMPROVES HISTOPATHOLOGY AFTER TRAUMATIC BRAIN INJURY

    PubMed Central

    de Rivero Vaccari, Juan Pablo; Lotocki, George; Alonso, Ofelia F.; Bramlett, Helen M.; Dietrich, W. Dalton; Keane, Robert W.

    2010-01-01

    Traumatic brain injury (TBI) elicits acute inflammation that in turn exacerbates primary brain damage. A crucial part of innate immunity in the immune privileged central nervous system involves production of proinflammatory cytokines mediated by inflammasome signaling. Here we show that the nucleotide-binding, leucine-rich repeat pyrin domain containing protein 1 (NLRP1) inflammasome consisting of NLRP1, caspases-1 and -11, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), the X-linked inhibitor of apoptosis protein (XIAP) and pannexin 1 is expressed in neurons of the cerebral cortex. Moderate parasagittal fluid percussion injury (FPI) induced processing of interleukin-1β (IL-1β), activation of caspase-1, cleavage of XIAP and promoted assembly of the NLRP1 inflammasome complex. Anti-ASC neutralizing antibodies administered immediately after FPI to injured rats reduced caspase-1 activation, XIAP cleavage and processing of IL-1β resulting in a significant decrease in contusion volume. These studies show that the NLRP1 inflammasome constitutes an important component of the innate CNS inflammatory response after TBI and may be a novel therapeutic target for reducing the damaging effects of post-traumatic brain inflammation. PMID:19401709

  20. Oxazolone-Induced Contact Hypersensitivity Reduces Lymphatic Drainage but Enhances the Induction of Adaptive Immunity

    PubMed Central

    Aebischer, David; Willrodt, Ann-Helen; Halin, Cornelia

    2014-01-01

    Contact hypersensitivity (CHS) induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC) migration to draining lymph nodes (dLNs). On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA) was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH) response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40) and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function. PMID:24911791

  1. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes

    PubMed Central

    Kambris, Zakaria; Cook, Peter E.; Phuc, Hoang K.; Sinkins, Steven P.

    2010-01-01

    Wolbachia strain wMelPop reduces longevity of its Drosophila melanogaster host and halves lifespan when introduced into the mosquito Aedes aegypti. We show that wMelPop induces upregulation of the mosquito innate immune system and that its presence inhibits the development of filarial nematodes in the mosquito. These data suggest that wMelPop could be used in the global effort to eliminate lymphatic filariasis, and possibly the control of other mosquito-borne parasites where immune preactivation inhibits their development. The cost of constitutive immune upregulation may contribute to the life-shortening phenotype. PMID:19797660

  2. Immunization with Brucella VirB Proteins Reduces Organ Colonization in Mice through a Th1-Type Immune Response and Elicits a Similar Immune Response in Dogs

    PubMed Central

    Pollak, Cora N.; Wanke, María Magdalena; Estein, Silvia M.; Delpino, M. Victoria; Monachesi, Norma E.; Comercio, Elida A.; Fossati, Carlos A.

    2014-01-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  3. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    PubMed

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  4. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    NASA Astrophysics Data System (ADS)

    Jeon, Myounggun; Cho, Jeiwon; Kim, Yun Kyung; Jung, Dahee; Yoon, Eui-Sung; Shin, Sehyun; Cho, Il-Joo

    2014-02-01

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications.

  5. Radiation damage in protein crystals is reduced with a micron-sized X-ray beam

    PubMed Central

    Sanishvili, Ruslan; Yoder, Derek W.; Pothineni, Sudhir Babu; Rosenbaum, Gerd; Xu, Shenglan; Vogt, Stefan; Stepanov, Sergey; Makarov, Oleg A.; Corcoran, Stephen; Benn, Richard; Nagarajan, Venugopalan; Smith, Janet L.; Fischetti, Robert F.

    2011-01-01

    Radiation damage is a major limitation in crystallography of biological macromolecules, even for cryocooled samples, and is particularly acute in microdiffraction. For the X-ray energies most commonly used for protein crystallography at synchrotron sources, photoelectrons are the predominant source of radiation damage. If the beam size is small relative to the photoelectron path length, then the photoelectron may escape the beam footprint, resulting in less damage in the illuminated volume. Thus, it may be possible to exploit this phenomenon to reduce radiation-induced damage during data measurement for techniques such as diffraction, spectroscopy, and imaging that use X-rays to probe both crystalline and noncrystalline biological samples. In a systematic and direct experimental demonstration of reduced radiation damage in protein crystals with small beams, damage was measured as a function of micron-sized X-ray beams of decreasing dimensions. The damage rate normalized for dose was reduced by a factor of three from the largest (15.6 μm) to the smallest (0.84 μm) X-ray beam used. Radiation-induced damage to protein crystals was also mapped parallel and perpendicular to the polarization direction of an incident 1-μm X-ray beam. Damage was greatest at the beam center and decreased monotonically to zero at a distance of about 4 μm, establishing the range of photoelectrons. The observed damage is less anisotropic than photoelectron emission probability, consistent with photoelectron trajectory simulations. These experimental results provide the basis for data collection protocols to mitigate with micron-sized X-ray beams the effects of radiation damage. PMID:21444772

  6. Efficacy of immune suppression tapering in treating relapse after reduced intensity allogeneic stem cell transplantation

    PubMed Central

    Kekre, Natasha; Kim, Haesook T.; Thanarajasingam, Gita; Armand, Philippe; Antin, Joseph H.; Cutler, Corey; Nikiforow, Sarah; Ho, Vincent T.; Koreth, John; Alyea, Edwin P.; Soiffer, Robert J.

    2015-01-01

    For patients who relapse after allogeneic hematopoietic stem cell transplantation while still on immune suppression, there is anecdotal evidence that tapering the immune suppression may result in graft-versus-tumor activity. We reviewed the medical records of all patients with documented histological or radiographic disease recurrence within 1 year of stem cell transplantation while on immune suppression at our institution. The median time to relapse was 110 days (range, 18–311) after transplant. Among 123 patients with relapse treated with immune suppression tapering without chemotherapy, radiation, or donor lymphocyte infusion, 34 responded (33/101 reduced intensity conditioning transplant and 1/22 myeloablative conditioning transplant, 32.7% and 4.5% respectively; P=0.007). The median time to response after initiation of immune suppression tapering was 82 days (range, 16–189). Thirty-three patients (97.1%) had development or progression of acute or chronic graft-versus-host disease as a consequence of immune suppression tapering, at a median time of 39 days (range, 16–98). Six patients subsequently relapsed late after initial response to immune suppression tapering at a median time of 2 years (range, 0.9–3.8). The median overall survival from immune suppression tapering for responders was 5.1 years (range, 1.9-not estimable). When clinically feasible, immune suppression tapering alone in patients who relapse early after reduced intensity conditioning allogeneic stem cell transplantation can produce durable remissions, but is almost always associated with graft-versus-host disease. PMID:26088931

  7. Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice.

    PubMed

    Garofalo, Stefano; D'Alessandro, Giuseppina; Chece, Giuseppina; Brau, Frederic; Maggi, Laura; Rosa, Alessandro; Porzia, Alessandra; Mainiero, Fabrizio; Esposito, Vincenzo; Lauro, Clotilde; Benigni, Giorgia; Bernardini, Giovanni; Santoni, Angela; Limatola, Cristina

    2015-01-01

    Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment. PMID:25818172

  8. Reproductive effort reduces long-term immune function in breeding tree swallows (Tachycineta bicolor).

    PubMed Central

    Ardia, Daniel R; Schat, Karel A; Winkler, David W

    2003-01-01

    We examined whether strategies of reproductive allocation may reduce long-term immunocompetence through the effects of manipulated effort on secondary or acquired immunity. We tested whether increased reproductive effort leads to reduced immune function and survival by manipulating brood size in tree swallows (Tachycineta bicolor) and exposing breeding females to a primary and secondary exposure of sheep red blood cells to elicit a humoral immune response. Females raising enlarged broods produced fewer secondary antibodies than did females raising control or reduced broods. Most importantly, individuals with high secondary responses were more likely to survive to breed 3 years after brood manipulations, suggesting that differences in disease susceptibility may be caused by trade-offs in reproductive allocation. We also found that individual quality, measured by clutch initiation date, mediated the effects of brood manipulations, with higher-quality birds showing a greater ability to deal with increases in effort. PMID:12964994

  9. Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus.

    PubMed

    Hernroth, Bodil; Sköld, Helen Nilsson; Wiklander, Kerstin; Jutfelt, Fredrik; Baden, Susanne

    2012-11-01

    Rising atmospheric carbon dioxide concentration is causing global warming, which affects oceans by elevating water temperature and reducing pH. Crustaceans have been considered tolerant to ocean acidification because of their retained capacity to calcify during subnormal pH. However, we report here that significant immune suppression of the Norway lobster, Nephrops norvegicus, occurs after a 4-month exposure to ocean acidification (OA) at a level predicted for the year 2100 (hypercapnic seawater with a pH lowered by 0.4 units). Experiments carried out at different temperatures (5, 10, 12, 14, 16, and 18°C) demonstrated that the temperature within this range alone did not affect lobster immune responses. In the OA-treatment, hemocyte numbers were reduced by almost 50% and the phagocytic capacity of the remaining hemocytes was inhibited by 60%. The reduction in hemocyte numbers was not due to increased apoptosis in hematopoetic tissue. Cellular responses to stress were investigated through evaluating advanced glycation end products (AGE) and lipid oxidation in lobster hepatopancreata, and OA-treatment was shown to significantly increase AGEs', indicating stress-induced protein alterations. Furthermore, the extracellular pH of lobster hemolymph was reduced by approximately 0.2 units in the OA-treatment group, indicating either limited pH compensation or buffering capacity. The negative effects of OA-treatment on the nephropidae immune response and tissue homeostasis were more pronounced at higher temperatures (12-18°C versus 5°C), which may potentially affect disease severity and spread. Our results signify that ocean acidification may have adverse effects on the physiology of lobsters, which previously had been overlooked in studies of basic parameters such as lobster growth or calcification. PMID:22974540

  10. Innate immune response after acute myocardial infarction and pharmacomodulatory action of tacrolimus in reducing infarct size and preserving myocardial integrity

    PubMed Central

    2013-01-01

    Background This study investigated the association between innate immune reaction and myocardial damage after acute myocardial infarction (AMI) and anti-inflammatory role of tacrolimus in reducing infarct size. Male mini-pigs (n=18) were equally categorized into sham control (SC), untreated AMI (by ligation of left anterior descending coronary artery), and AMI-Tacrolimus (AMI-Tac) (0.5 mg intra-coronary injection 30 minutes post-AMI). Cardiac magnetic resonance imaging (MRI) was performed at post-AMI days 2, 5 and 21 before sacrificing the animals. Results By post-AMI day 21, left ventricular ejection fraction (LVEF) was lowest in untreated AMI animals, significantly higher in SC than in AMI-Tac group (all p<0.003). Infarct areas at basal, middle, and apical levels, numbers of CD14+ and iNOS+ cells in infarct area (IA) and peri-IA, and protein expression of CD14, CD68, and Ly6g from circulating inflammatory cells showed an opposite pattern compared with that of LVEF in all groups (all p<0.005). Protein expressions of MCP-1, MIP-1, TNF-α, NF-κB, iNOS, and IL-12 in IA and peri-IA exhibited an identical pattern compared to that of CD14, CD68, and Ly6g from circulating inflammatory cells (all p<0.01). Expressions of myocardial damage biomarkers in IA and peri-IA [γ-H2AX, β-myosin heavy chain (MHC), Smad3, TGF-β] were highest in AMI and higher in AMI-Tac than in SC, whereas expressions of myocardial integrity biomarkers (connexin43, mitochondrial cytochrome-C, α-MHC, BMP-2, Smad1/5) were opposite to those of damage biomarkers (all p<0.001). Conclusion Innate immune responses were markedly augmented and LVEF was significantly reduced after AMI but were remarkably improved after tacrolimus treatment. PMID:24165293

  11. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris

    PubMed Central

    Brunner, Franziska S.; Schmid-Hempel, Paul; Barribeau, Seth M.

    2014-01-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host–parasite interactions. PMID:24850921

  12. Increased activity correlates with reduced ability to mount immune defenses to endotoxin in zebra finches.

    PubMed

    Lopes, Patricia C; Springthorpe, Dwight; Bentley, George E

    2014-10-01

    When suffering from infection, animals experience behavioral and physiological alterations that potentiate the immune system's ability to fight pathogens. The behavioral component of this response, termed "sickness behavior," is characterized by an overall reduction in physical activity. A growing number of reports demonstrate substantial flexibility in these sickness behaviors, which can be partially overcome in response to mates, intruders and parental duties. Since it is hypothesized that adopting sickness behaviors frees energetic resources for mounting an immune response, we tested whether diminished immune responses coincided with reduced sickness behaviors by housing male zebra finches (Taeniopygia guttata) in social conditions that alter their behavioral response to an endotoxin. To facilitate our data collection, we developed and built a miniaturized sensor capable of detecting changes in dorsoventral acceleration and categorizing them as different behaviors when attached to the finches. We found that the immune defenses (quantified as haptoglobin-like activity, ability to change body temperature and bacterial killing capacity) increased as a function of increased time spent resting. The findings indicate that when animals are sick attenuation of sickness behaviors may exact costs, such as reduced immune function. The extent of these costs depends on how relevant the affected components of immunity are for fighting a specific infection. PMID:24888267

  13. BPC-15 reduces trinitrobenzene sulfonic acid-induced colonic damage in rats.

    PubMed

    Veljaca, M; Lesch, C A; Pllana, R; Sanchez, B; Chan, K; Guglietta, A

    1995-01-01

    The effect of BPC-15 (Booly Protection Compound-15) was evaluated in a rat model of colonic injury. A single intracolonic administration of trinitrobenzene sulfonic acid (TNBS) dissolved in ethanol induces severe colonic damage, which is characterized by areas of necrosis surrounded by areas of acute inflammation. The damage is associated with high myeloperoxidase (MPO) activity, mainly as a reflection of neutrophilic infiltration into the damaged tissue. In this study, 1 hr before a single intracolonic administration of 50 mg/kg of TNBS in 50% ethanol, the animals were treated with one of the following doses of BPC-15: 0.0001, 0.001, 0.01, 0.1, 1 or 10 nmol/kg administered i.p. or with a dose of 10 nmol/kg administered intracolonically. The animals were sacrificed 3 days later and the extent of colonic necrosis and hyperemia was measured with an image analyzer. The i.p. administration of BPC-15 significantly reduced the extent of TNBS-induced colonic damage in a dose-dependent manner. This was associated with a statistically significant and dose-dependent reduction in colonic tissue MPO activity. At the dose tested (10 nmol/kg), intracolonic administration of BPC-15 did not significantly reduce either the extent of the colonic damage or the increase in MPO activity induced by TNBS. In conclusion, this study showed that i.p. administration of BPC-15 reduced TNBS-induced colonic damage in rats. PMID:7815358

  14. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    PubMed

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  15. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation

    PubMed Central

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  16. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus

    PubMed Central

    Michaelides, Ellie B.; Rupasinghe, Thusitha; Tull, Dedreia; Green, Mark P.; Jones, Therésa M.

    2015-01-01

    Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested. PMID:26339535

  17. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus.

    PubMed

    Durrant, Joanna; Michaelides, Ellie B; Rupasinghe, Thusitha; Tull, Dedreia; Green, Mark P; Jones, Therésa M

    2015-01-01

    Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested. PMID:26339535

  18. Reduced Tumor Growth after Low-Dose Irradiation or Immunization against Blastic Suppressor T Cells

    NASA Astrophysics Data System (ADS)

    Tilkin, A. F.; Schaaf-Lafontaine, N.; van Acker, A.; Boccadoro, M.; Urbain, J.

    1981-03-01

    Suppressor T cells have been shown to be much more radiosensitive than other lymphoid cells, and we have tried to reduce tumor growth by low-dose irradiation. Syngeneic DBA/2 mice received whole-body irradiation (150 rads; 1 rad = 0.01 J/kg) 6 days after P815 tumor inoculation. Tumor growth is significantly reduced in mildly irradiated mice. We also attempted to reduce syngeneic tumor growth by raising immunity against suppressor T cells in two different systems. DBA/2 mice were immunized against splenic T cells collected after disappearance of cytotoxicity and then injected with P815 tumor cells. These mice develop a very high primary cytotoxicity against P815 cells. C57BL/6 mice were immunized against blastic suppressor T cells, before injection of T2 tumor cells. Some of these mice reject the tumor and others develop smaller tumors than control mice. These results could be explained by the induction of antiidiotypic activity directed against the immunological receptors of suppressor T lymphocytes, because immunization with blastic suppressor T cells from mice bearing the T2 tumor does not modify the growth of another tumor, T10.

  19. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout

    USGS Publications Warehouse

    Kurath, Gael; Garver, Kyle A.; Corbeil, Serge; Elliott, Diane G.; Anderson, Eric D.; LaPatra, Scott E.

    2006-01-01

    The DNA vaccine pIHNw-G encodes the glycoprotein of the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV). Vaccine performance in rainbow trout was measured 3, 6, 13, 24, and 25 months after vaccination. At three months all fish vaccinated with 0.1 μg pIHNw-G had detectable neutralizing antibody (NAb) and they were completely protected from lethal IHNV challenge with a relative percent survival (RPS) of 100% compared to control fish. Viral challenges at 6, 13, 24, and 25 months post-vaccination showed protection with RPS values of 47–69%, while NAb seroprevalence declined to undetectable levels. Passive transfer experiments with sera from fish after two years post-vaccination were inconsistent but significant protection was observed in some cases. The long-term duration of protection observed here defined a third temporal phase in the immune response to IHNV DNA vaccination, characterized by reduced but significant levels of protection, and decline or absence of detectable NAb titers. Examination of multiple tissues showed an absence of detectable long-term histopathological damage due to DNA vaccination.

  20. Reduced winter snowfall damages the structure and function of wintergreen ferns.

    PubMed

    Tessier, Jack T

    2014-05-20

    • Premise of the study: The full impact of climate change on ecosystems and the humans that depend on them is uncertain. Anthropogenic climate change is resulting in winters with less snow than is historically typical. This deficit may have an impact on wintergreen ferns whose fronds lie prostrate under the snowpack and are thereby protected from frost.• Methods: Frost damage and ecophysiological traits were quantified for three species of wintergreen fern (Dryopteris intermedia, Dryopteris marginalis, and Polystichum acrostichoides) near Delhi, NY following the winters of 2012 (which had very little snowfall) and 2013 (which had typical snowfall).• Key results: Dryopteris intermedia was the most common species and had the highest percentage of frost-damaged fronds and the highest percentage of its cover damaged in 2012. Frost damage was significantly less in 2013 for all species. Polystichum acrostichoides had the highest vernal photosynthetic rate in undamaged fronds, and all three species had a negative net photosynthetic rate in frost-damaged fronds. The wintergreen fern community lost 36.69 ± 2.80% of its productive surface area to frost damage in 2012. Dryopteris intermedia had the thinnest leaves and this trait may have made it the most susceptible to frost damage.• Conclusions: These results demonstrate that repeated winters of little snow may have a significant impact on the structure and functioning of the wintergreen fern community, and species will respond to a reduced snowpack on an individual basis. PMID:24844709

  1. The Use of Feed Additives to Reduce the Effects of Aflatoxin and Deoxynivalenol on Pig Growth, Organ Health and Immune Status during Chronic Exposure

    PubMed Central

    Weaver, Alexandra C.; See, M. Todd; Hansen, Jeff A.; Kim, Yong B.; De Souza, Anna L. P.; Middleton, Tina F.; Kim, Sung Woo

    2013-01-01

    Three feed additives were tested to improve the growth and health of pigs chronically challenged with aflatoxin (AF) and deoxynivalenol (DON). Gilts (n = 225, 8.8 ± 0.4 kg) were allotted to five treatments: CON (uncontaminated control); MT (contaminated with 150 µg/kg AF and 1100 µg/kg DON); A (MT + a clay additive); B (MT + a clay and dried yeast additive); and C (MT + a clay and yeast culture additive). Average daily gain (ADG) and feed intake (ADFI) were recorded for 42 days, blood collected for immune analysis and tissue samples to measure damage. Feeding mycotoxins tended to decrease ADG and altered the immune system through a tendency to increase monocytes and immunoglobulins. Mycotoxins caused tissue damage in the form of liver bile ductule hyperplasia and karyomegaly. The additives in diets A and B reduced mycotoxin effects on the immune system and the liver and showed some ability to improve growth. The diet C additive played a role in reducing liver damage. Collectively, we conclude that AF and DON can be harmful to the growth and health of pigs consuming mycotoxins chronically. The selected feed additives improved pig health and may play a role in pig growth. PMID:23867763

  2. Interleukin-2/Anti-Interleukin-2 Immune Complex Expands Regulatory T Cells and Reduces Angiotensin II-Induced Aortic Stiffening.

    PubMed

    Majeed, Beenish; Tawinwung, Supannikar; Eberson, Lance S; Secomb, Timothy W; Larmonier, Nicolas; Larson, Douglas F

    2014-01-01

    Adaptive immune function is implicated in the pathogenesis of vascular disease. Inhibition of T-lymphocyte function has been shown to reduce hypertension, target-organ damage, and vascular stiffness. To study the role of immune inhibitory cells, CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), on vascular stiffness, we stimulated the proliferation of Treg lymphocytes in vivo using a novel cytokine immune complex of Interleukin-2 (IL-2) and anti-IL-2 monoclonal antibody clone JES6-1 (mAbCD25). Three-month-old male C57BL/6J mice were treated with IL-2/mAbCD25 concomitantly with continuous infusion of angiotensin type 1 receptor agonist, [Val(5)]angiotensin II. Our results indicate that the IL-2/mAbCD25 complex effectively induced Treg phenotype expansion by 5-fold in the spleens with minimal effects on total CD4(+) and CD8(+) T-lymphocyte numbers. The IL-2/mAbCD25 complex inhibited angiotensin II-mediated aortic collagen remodeling and the resulting stiffening, analyzed with in vivo pulse wave velocity and effective Young's modulus. Furthermore, the IL-2/mAbCD25 complex suppressed angiotensin II-mediated Th17 responses in the lymphoid organs and reduced gene expression of IL-17 as well as T cell and macrophage infiltrates in the aortic tissue. This study provides data that support the protective roles of Tregs in vascular stiffening and highlights the use of the IL-2/mAbCD25 complex as a new potential therapy in angiotensin II-related vascular diseases. PMID:25258681

  3. Chloroquine and beyond: exploring anti-rheumatic drugs to reduce immune hyperactivation in HIV/AIDS.

    PubMed

    Savarino, Andrea; Shytaj, Iart Luca

    2015-01-01

    The restoration of the immune system prompted by antiretroviral therapy (ART) has allowed drastically reducing the mortality and morbidity of HIV infection. However, one main source of clinical concern is the persistence of immune hyperactivation in individuals under ART. Chronically enhanced levels of T-cell activation are associated with several deleterious effects which lead to faster disease progression and slower CD4(+) T-cell recovery during ART. In this article, we discuss the rationale, and review the results, of the use of antimalarial quinolines, such as chloroquine and its derivative hydroxychloroquine, to counteract immune activation in HIV infection. Despite the promising results of several pilot trials, the most recent clinical data indicate that antimalarial quinolines are unlikely to exert a marked beneficial effect on immune activation. Alternative approaches will likely be required to reproducibly decrease immune activation in the setting of HIV infection. If the quinoline-based strategies should nevertheless be pursued in future studies, particular care must be devoted to the dosage selection, in order to maximize the chances to obtain effective in vivo drug concentrations. PMID:26084487

  4. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  5. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  6. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  7. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity.

    PubMed

    Lotze, Michael T; Zeh, Herbert J; Rubartelli, Anna; Sparvero, Louis J; Amoscato, Andrew A; Washburn, Newell R; Devera, Michael E; Liang, Xiaoyan; Tör, Mahmut; Billiar, Timothy

    2007-12-01

    The response to pathogens and damage in plants and animals involves a series of carefully orchestrated, highly evolved, molecular mechanisms resulting in pathogen resistance and wound healing. In metazoans, damage- or pathogen-associated molecular pattern molecules (DAMPs, PAMPs) execute precise intracellular tasks and are also able to exert disparate functions when released into the extracellular space. The emergent consequence for both inflammation and wound healing of the abnormal extracellular persistence of these factors may underlie many clinical disorders. DAMPs/PAMPs are recognized by hereditable receptors including the Toll-like receptors, the NOD1-like receptors and retinoic-acid-inducible gene I-like receptors, as well as the receptor for advanced glycation end products. These host molecules 'sense' not only pathogens but also misfolded/glycated proteins or exposed hydrophobic portions of molecules, activating intracellular cascades that lead to an inflammatory response. Equally important are means to not only respond to these molecules but also to eradicate them. We have speculated that their destruction through oxidative mechanisms normally exerted by myeloid cells, such as neutrophils and eosinophils, or their persistence in the setting of pathologic extracellular reducing environments, maintained by exuberant necrotic cell death and/or oxidoreductases, represent important molecular means enabling chronic inflammatory states. PMID:17979840

  8. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    PubMed

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease. PMID:27427985

  9. Blocking B7-1/CD28 Pathway Diminished Long-Range Brain Damage by Regulating the Immune and Inflammatory Responses in a Mouse Model of Intracerebral Hemorrhage.

    PubMed

    Ma, Lu; Shen, Xi; Gao, Yuan; Wu, Qiong; Ji, Mengmeng; Luo, Chengliang; Zhang, Mingyang; Wang, Tao; Chen, Xiping; Tao, Luyang

    2016-07-01

    Acute brain injuries can activate bidirectional crosstalk between the injured brain and the immune system. The immune system, particularly T lymphocytes and cytokines, has been implicated in the progression of brain injury after intracerebral hemorrhage (ICH). Co-stimulatory molecules B7-1 (CD80)/B7-2 (CD86) binding cognate receptor provides a secondary signaling to T cell activation. The aim of our study was to explore the effects of anti-B7-1 antibody on the development and prognosis of cerebral hemorrhage and to investigate the possible underlying mechanism. Mice were inner canthus veniplex administered with anti-B7-1 antibody at 10 min and 24 h after ICH and sacrificed on the third day after ICH. Immune function was assessed via splenocyte proliferation assay and organism index, respectively. IFN-γ and IL-4 were detected by enzyme-linked immuno sorbent assay. The cerebral edema was evaluated via brain water content. The levels of autophagy and apoptosis related proteins were measured by western blotting analysis. In addition, functional outcome was studied with pole-climbing test and morris water maze. The mice were weighed on 0, 1, 3, 14 and 21 days after ICH. The treatment with anti-B7-1 antibody significantly lowered immune function, and reduced the latency of water maze on 18 and 20 days, the ratio of IFN-γ/IL-4 as well as body weight on day 3 after cerebral hemorrhage. Our study suggests that in the cerebral hemorrhage mice brain anti-B7-1 antibody may reduce long-range brain damage by reversing immune imbalance. PMID:26980009

  10. Patients with genetically heterogeneous synchronous colorectal cancer carry rare damaging germline mutations in immune-related genes.

    PubMed

    Cereda, Matteo; Gambardella, Gennaro; Benedetti, Lorena; Iannelli, Fabio; Patel, Dominic; Basso, Gianluca; Guerra, Rosalinda F; Mourikis, Thanos P; Puccio, Ignazio; Sinha, Shruti; Laghi, Luigi; Spencer, Jo; Rodriguez-Justo, Manuel; Ciccarelli, Francesca D

    2016-01-01

    Synchronous colorectal cancers (syCRCs) are physically separated tumours that develop simultaneously. To understand how the genetic and environmental background influences the development of multiple tumours, here we conduct a comparative analysis of 20 syCRCs from 10 patients. We show that syCRCs have independent genetic origins, acquire dissimilar somatic alterations, and have different clone composition. This inter- and intratumour heterogeneity must be considered in the selection of therapy and in the monitoring of resistance. SyCRC patients show a higher occurrence of inherited damaging mutations in immune-related genes compared to patients with solitary colorectal cancer and to healthy individuals from the 1,000 Genomes Project. Moreover, they have a different composition of immune cell populations in tumour and normal mucosa, and transcriptional differences in immune-related biological processes. This suggests an environmental field effect that promotes multiple tumours likely in the background of inflammation. PMID:27377421

  11. Patients with genetically heterogeneous synchronous colorectal cancer carry rare damaging germline mutations in immune-related genes

    PubMed Central

    Cereda, Matteo; Gambardella, Gennaro; Benedetti, Lorena; Iannelli, Fabio; Patel, Dominic; Basso, Gianluca; Guerra, Rosalinda F.; Mourikis, Thanos P.; Puccio, Ignazio; Sinha, Shruti; Laghi, Luigi; Spencer, Jo; Rodriguez-Justo, Manuel; Ciccarelli, Francesca D.

    2016-01-01

    Synchronous colorectal cancers (syCRCs) are physically separated tumours that develop simultaneously. To understand how the genetic and environmental background influences the development of multiple tumours, here we conduct a comparative analysis of 20 syCRCs from 10 patients. We show that syCRCs have independent genetic origins, acquire dissimilar somatic alterations, and have different clone composition. This inter- and intratumour heterogeneity must be considered in the selection of therapy and in the monitoring of resistance. SyCRC patients show a higher occurrence of inherited damaging mutations in immune-related genes compared to patients with solitary colorectal cancer and to healthy individuals from the 1,000 Genomes Project. Moreover, they have a different composition of immune cell populations in tumour and normal mucosa, and transcriptional differences in immune-related biological processes. This suggests an environmental field effect that promotes multiple tumours likely in the background of inflammation. PMID:27377421

  12. Reducing tuber damage by potato tuberworm (Lepidoptera: Gelechiidae) with cultural practices and insecticides.

    PubMed

    Clough, G H; Rondon, S i; DeBano, S J; David, N; Hamm, P B

    2010-08-01

    Cultural practices and insecticide treatments and combinations were evaluated for effect on tuber damage by potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) in the Columbia basin of eastern Oregon and Washington. A range of intervals between initial application of several insecticides and vine-kill were tested to determine how early to implement a program to control potato tuberworm tuber damage. Esfenvalerate, methamidophos, and methomyl were applied at recommended intervals, with programs beginning from 28 to 5 d before vine-kill. All insecticide treatments significantly reduced tuber damage compared with the untreated control, but there was no apparent advantage to beginning control efforts earlier than later in the season. Esfenvalerate and indoxacarb at two rates and a combination of the two insecticides were applied weekly beginning 4 wk before and at vine-kill, and indoxacarb was applied at and 1 wk postvine-kill as chemigation treatments. Application of insecticides at and after vine-kill also reduced tuberworm infestation. 'Russet Norkotah' and 'Russet Burbank' plants were allowed to naturally senesce or were chemically defoliated. They received either no irrigation or were irrigated by center-pivot with 0.25 cm water daily from vine-kill until harvest 2 wk later. Daily irrigation after vine-kill reduced tuber damage, and chemical vine-kill tended to reduce tuber damage compared with natural senescence. Covering hills with soil provides good protection but must be done by vine-kill. Data from these trials indicate that the most critical time for initiation of control methods is immediately before and at vine-kill. PMID:20857741

  13. Thiazolides Elicit Anti-Viral Innate Immunity and Reduce HIV Replication

    PubMed Central

    Trabattoni, Daria; Gnudi, Federica; Ibba, Salomè V.; Saulle, Irma; Agostini, Simone; Masetti, Michela; Biasin, Mara; Rossignol, Jean-Francois; Clerici, Mario

    2016-01-01

    Nitazoxanide (Alinia®, NTZ) and tizoxanide (TIZ), its active circulating metabolite, belong to a class of agents known as thiazolides (TZD) endowed with broad anti-infective activities. TIZ and RM-4848, the active metabolite of RM-5038, were shown to stimulate innate immunity in vitro. Because natural resistance to HIV-1 infection in HIV-exposed seronegative (HESN) individuals is suggested to be associated with strong innate immune responses, we verified whether TIZ and RM-4848 could reduce the in vitro infectiousness of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 20 healthy donors were infected in vitro with HIV-1BaL in the presence/absence of TIZ or RM4848. HIV-1 p24 were measured at different timepoints. The immunomodulatory abilities of TZD were evaluated by the expression of type I IFN pathway genes and the production of cytokines and chemokines. TZD drastically inhibited in vitro HIV-1 replication (>87%). This was associated with the activation of innate immune responses and with the up-regulation of several interferon-stimulated genes (ISGs), including those involved in cholesterol pathway, particularly the cholesterol-25 hydroxylase (CH25H). TZD inhibition of HIV-1 replication in vitro could be due to their ability to stimulate potent and multifaceted antiviral immune responses. These data warrant the exploration of TZD as preventive/therapeutic agent in HIV infection. PMID:27250526

  14. Thiazolides Elicit Anti-Viral Innate Immunity and Reduce HIV Replication.

    PubMed

    Trabattoni, Daria; Gnudi, Federica; Ibba, Salomè V; Saulle, Irma; Agostini, Simone; Masetti, Michela; Biasin, Mara; Rossignol, Jean-Francois; Clerici, Mario

    2016-01-01

    Nitazoxanide (Alinia(®), NTZ) and tizoxanide (TIZ), its active circulating metabolite, belong to a class of agents known as thiazolides (TZD) endowed with broad anti-infective activities. TIZ and RM-4848, the active metabolite of RM-5038, were shown to stimulate innate immunity in vitro. Because natural resistance to HIV-1 infection in HIV-exposed seronegative (HESN) individuals is suggested to be associated with strong innate immune responses, we verified whether TIZ and RM-4848 could reduce the in vitro infectiousness of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 20 healthy donors were infected in vitro with HIV-1BaL in the presence/absence of TIZ or RM4848. HIV-1 p24 were measured at different timepoints. The immunomodulatory abilities of TZD were evaluated by the expression of type I IFN pathway genes and the production of cytokines and chemokines. TZD drastically inhibited in vitro HIV-1 replication (>87%). This was associated with the activation of innate immune responses and with the up-regulation of several interferon-stimulated genes (ISGs), including those involved in cholesterol pathway, particularly the cholesterol-25 hydroxylase (CH25H). TZD inhibition of HIV-1 replication in vitro could be due to their ability to stimulate potent and multifaceted antiviral immune responses. These data warrant the exploration of TZD as preventive/therapeutic agent in HIV infection. PMID:27250526

  15. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft vs. host disease

    PubMed Central

    Hanash, Alan M.; Dudakov, Jarrod A.; Hua, Guoqiang; O’Connor, Margaret H.; Young, Lauren F.; Singer, Natalie V.; West, Mallory L.; Jenq, Robert R.; Holland, Amanda M.; Kappel, Lucy W.; Ghosh, Arnab; Tsai, Jennifer J.; Rao, Uttam K.; Yim, Nury L.; Smith, Odette M.; Velardi, Enrico; Hawryluk, Elena; Murphy, George F.; Liu, Chen; Fouser, Lynette A.; Kolesnick, Richard; Blazar, Bruce R.; van den Brink, Marcel R.M.

    2012-01-01

    Summary Little is known about the maintenance of intestinal stem cells (ISCs) and progenitors during immune-mediated tissue damage or about the susceptibility of transplant recipients to tissue damage mediated by the donor immune system during graft vs. host disease (GVHD). We demonstrate here that deficiency of recipient-derived IL-22 increased acute GVHD tissue damage and mortality, that ISCs were eliminated during GVHD, and that ISCs as well as their downstream progenitors expressed the IL-22 receptor. Intestinal IL-22 was produced after bone marrow transplant by IL-23-responsive innate lymphoid cells (ILCs) from the transplant recipients, and intestinal IL-22 increased in response to pre-transplant conditioning. However, ILC frequency and IL-22 amounts were decreased by GVHD. Recipient IL-22 deficiency led to increased crypt apoptosis, depletion of ISCs, and loss of epithelial integrity. Our findings reveal IL-22 as a critical regulator of tissue sensitivity to GVHD and a protective factor for ISC during inflammatory intestinal damage. PMID:22921121

  16. Substantially reduced pre-patent parasite multiplication rates are associated with naturally acquired immunity to Plasmodium falciparum.

    PubMed

    Douglas, A D; Andrews, L; Draper, S J; Bojang, K; Milligan, P; Gilbert, S C; Imoukhuede, E B; Hill, A V S

    2011-05-01

    Naturally acquired immunity to Plasmodium falciparum's asexual blood stage reduces parasite multiplication at microscopically detectable densities. The effect of natural immunity on initial prepatent parasite multiplication during the period following a new infection has been uncertain, contributing to doubt regarding the utility of experimental challenge models for blood-stage vaccine trials. Here we present data revealing that parasite multiplication rates during the initial prepatent period in semi-immune Gambian adults are substantially lower than in malaria-naive participants. This supports the view that a blood-stage vaccine capable of emulating the disease-reducing effect of natural immunity could achieve a detectable effect during the prepatent period. PMID:21459819

  17. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites.

    PubMed

    Morrison, Emily B; Lindell, Catherine A

    2012-07-01

    Both birds and bats are important insect predators in tropical systems. However, the relative influence of birds and bats on insect populations and their indirect effects on leaf damage have not previously been investigated in tropical forest restoration sites. Leaf damage by herbivorous insects can negatively affect the growth and survival of tropical plants and thus can influence the success of tropical forest restoration efforts. We used an exclosure experiment to examine the top-down effects of birds and bats on insects and leaf damage in a large-scale forest restoration experiment. Given the potential influence of tree planting design on bird and bat abundances, we also investigated planting design effects on bird and bat insectivory and leaf damage. The experiment included two planting treatment plots: islands, where trees were planted in patches, and plantations, where trees were planted in rows to create continuous cover. In both types of plots, insect biomass was highest on tree branches where both birds and bats were excluded from foraging and lowest on branches without exclosures where both birds and bats were present. In the island plots, birds and bats had approximately equal impacts on insect populations, while in plantations bats appeared to have a slightly stronger effect on insects than did birds. In plantations, the levels of leaf damage were higher on branches where birds and bats were excluded than on branches where both had access. In island plots, no significant differences in leaf damage were found between exclosure treatments although potential patterns were in the same direction as in the plantations. Our results suggest that both birds and bats play important roles as top predators in restoration systems by reducing herbivorous insects and their damage to planted trees. Tropical restoration projects should include efforts to attract and provide suitable habitat for birds and bats, given their demonstrated ecological importance. PMID

  18. Trekking poles reduce downhill walking-induced muscle and cartilage damage in obese women

    PubMed Central

    Cho, Su Youn; Roh, Hee Tae

    2016-01-01

    [Purpose] This study investigated the effect of the use of trekking poles on muscle and cartilage damage and fatigue during downhill walking in obese women. [Subjects and Methods] Subjects included eight obese women who had a body fat percentage greater than 30. Subjects performed downhill walking without a trekking pole (NP) and with a trekking pole (TP) at 50% heart rate reserve for 30 minutes on a treadmill. The treadmill was set at a 15% downhill declination. Blood samples were collected to examine muscle damage (serum creatine kinase [CK] and lactate dehydrogenase [LDH] levels), cartilage damage (serum cartilage oligomeric matrix protein [COMP] levels), and fatigue (plasma lactate levels) at the pre-walking baseline (PWB), immediately after walking (IAW), and 2 hours post-walking (2HPW). [Results] The CK, LDH, COMP, and lactate levels were significantly increased IAW when compared with those at the PWB in both trials. In addition, in the NP trial, the CK, LDH, and COMP levels were significantly increased at 2HPW when compared with those at the PWB. [Conclusion] Downhill walking can cause muscle and cartilage damage, and our results suggest that the use of a trekking pole can reduce temporary muscle and cartilage damage after downhill walking. PMID:27313374

  19. Trekking poles reduce downhill walking-induced muscle and cartilage damage in obese women.

    PubMed

    Cho, Su Youn; Roh, Hee Tae

    2016-05-01

    [Purpose] This study investigated the effect of the use of trekking poles on muscle and cartilage damage and fatigue during downhill walking in obese women. [Subjects and Methods] Subjects included eight obese women who had a body fat percentage greater than 30. Subjects performed downhill walking without a trekking pole (NP) and with a trekking pole (TP) at 50% heart rate reserve for 30 minutes on a treadmill. The treadmill was set at a 15% downhill declination. Blood samples were collected to examine muscle damage (serum creatine kinase [CK] and lactate dehydrogenase [LDH] levels), cartilage damage (serum cartilage oligomeric matrix protein [COMP] levels), and fatigue (plasma lactate levels) at the pre-walking baseline (PWB), immediately after walking (IAW), and 2 hours post-walking (2HPW). [Results] The CK, LDH, COMP, and lactate levels were significantly increased IAW when compared with those at the PWB in both trials. In addition, in the NP trial, the CK, LDH, and COMP levels were significantly increased at 2HPW when compared with those at the PWB. [Conclusion] Downhill walking can cause muscle and cartilage damage, and our results suggest that the use of a trekking pole can reduce temporary muscle and cartilage damage after downhill walking. PMID:27313374

  20. Chemical genoprotection: reducing biological damage to as low as reasonably achievable levels

    PubMed Central

    Alcaraz, M; Armero, D; Martínez-Beneyto, Y; Castillo, J; Benavente-García, O; Fernandez, H; Alcaraz-Saura, M; Canteras, M

    2011-01-01

    Objectives The aim of this study was to evaluate the antioxidant substances present in the human diet with an antimutagenic protective capacity against genotoxic damage induced by exposure to X-rays in an attempt to reduce biological damage to as low a level as reasonably possible. Methods Ten compounds were assessed using the lymphocyte cytokinesis-block micronucleus (MN) cytome test. The compounds studied were added to human blood at 25 μM 5 min before exposure to irradiation by 2 Gy of X-rays. Results The protective capacity of the antioxidant substances assessed was from highest to lowest according to the frequency of the MN generated by X-ray exposure: rosmarinic acid = carnosic acid = δ-tocopherol = l-acid ascorbic = apigenin = amifostine (P < 0.001) > green tea extract = diosmine = rutin = dimetylsulfoxide (P < 0.05) > irradiated control. The reduction in genotoxic damage with the radiation doses administered reached 58%, which represents a significant reduction in X-ray-induced chromosomal damage (P < 0.001). This degree of protection is greater than that obtained with amifostine, a radioprotective compound used in radiotherapy and which is characterised by its high toxicity. Conclusion Several antioxidant substances, common components of the human diet and lacking toxicity, offer protection from the biological harm induced by ionizing radiation. Administering these protective substances to patients before radiological exploration should be considered, even in the case of small radiation doses and regardless of the biological damage expected. PMID:21697157

  1. Cationic liposomes containing antioxidants reduces pulmonary injury in experimental model of sepsis: Liposomes antioxidants reduces pulmonary damage.

    PubMed

    Galvão, Andre Martins; Galvão, Júlia Siqueira; Pereira, Marcela Araújo; Cadena, Pabyton Gonçalves; Magalhães, Nereide Stella Santos; Fink, James B; de Andrade, Armele Dornelas; Castro, Celia Maria Machado Barbosa de; de Sousa Maia, Maria Bernadete

    2016-09-01

    The intracellular redox state of alveolar cells is a determining factor for tolerance to oxidative and pro-inflammatory stresses. This study investigated the effects of intratracheal co-administration of antioxidants encapsulated in liposomes on the lungs of rats subjected to sepsis. For this, male rats subjected to sepsis induced by lipopolysaccharide from Escherichia coli or placebo operation were treated (intratracheally) with antibiotic, 0.9% saline and antioxidants encapsulated or non-encapsulated in liposomes. Experimental model of sepsis by cecal ligation and puncture (CLP) was performed in order to expose the cecum. The cecum was then gently squeezed to extrude a small amount of feces from the perforation site. As an index of oxidative damage, superoxide anions, lipid peroxidation, protein carbonyls, catalase activity, nitrates/nitrites, cell viability and mortality rate were measured. Infected animals treated with antibiotic plus antioxidants encapsulated in liposomes showed reduced levels of superoxide anion (54% or 7.650±1.263 nmol/min/mg protein), lipid peroxidation (33% or 0.117±0.041 nmol/mg protein), protein carbonyl (57% or 0.039 ± 0.022 nmol/mg protein) and mortality rate (3.3%), p value <0.001. This treatment also reduced the level of nitrite/nitrate and increased cell viability (90.7%) of alveolar macrophages. Taken togheter, theses results support that cationic liposomes containing antioxidants should be explored as coadjuvants in the treatment of pulmonary oxidative damage. PMID:27267466

  2. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS

    PubMed Central

    Cofiell, Roxanne; Kukreja, Anjli; Bedard, Krystin; Yan, Yan; Mickle, Angela P.; Ogawa, Masayo; Bedrosian, Camille L.

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic, life-threatening disease characterized by uncontrolled complement activation, systemic thrombotic microangiopathy (TMA), and vital organ damage. We evaluated the effect of terminal complement blockade with the anti-C5 monoclonal antibody eculizumab on biomarkers of cellular processes involved in TMA in patients with aHUS longitudinally, during up to 1 year of treatment, compared with in healthy volunteers. Biomarker levels were elevated at baseline in most patients, regardless of mutational status, plasma exchange/infusion use, platelet count, or lactate dehydrogenase or haptoglobin levels. Eculizumab reduced terminal complement activation (C5a and sC5b-9) and renal injury markers (clusterin, cystatin-C, β2-microglobulin, and liver fatty acid binding protein-1) to healthy volunteer levels and reduced inflammation (soluble tumor necrosis factor receptor-1), coagulation (prothrombin fragment F1+2 and d-dimer), and endothelial damage (thrombomodulin) markers to near-normal levels. Alternative pathway activation (Ba) and endothelial activation markers (soluble vascular cell adhesion molecule-1) decreased but remained elevated, reflecting ongoing complement activation in aHUS despite complete terminal complement blockade. These results highlight links between terminal complement activation and inflammation, endothelial damage, thrombosis, and renal injury and underscore ongoing risk for systemic TMA and progression to organ damage. Further research regarding underlying complement dysregulation is warranted. This trial was registered at www.clinicaltrials.gov as #NCT01194973. PMID:25833956

  3. Activation of innate immunity to reduce lung metastases in breast cancer.

    PubMed

    Jordan, Julie L; Nowak, A; Lee, T D G

    2010-05-01

    Breast cancer continues to be one of the leading causes of cancer death in women. Mortality is primarily due to the development of metastases. Although therapies exist, they lack efficacy in preventing metastatic growth. As a result, novel agents are being investigated. In particular, treatments that target the immune system are being examined as potential anti-neoplastic agents. Cordyceps sinensis (Cs) is a fungus that has been used for over 2,000 years in China as a treatment for a variety of conditions including neoplasms. The available evidence suggests that efficacy of Cs as an anti-neoplastic therapeutic agent is related to a role as an activator of innate immune responses. The objectives of this study were: to investigate the ability of Cs to activate macrophages to produce factors that will induce protective responses against tumour growth; to study the ability of Cs to reduce primary tumour growth in vivo; and to examine the ability of Cs to reduce lung metastasis growth in vivo. We found that oral Cs does not reduce primary tumour growth but can reduce lung metastasis occurrence in a surgical excision model of metastatic mammary carcinoma. The evidence we have shown to date suggests that the reduction in metastases growth may be due to the effects of macrophage-derived factors on tumour cell cycle. PMID:19956948

  4. Seamustard (Undaria pinnatifida) Improves Growth, Immunity, Fatty Acid Profile and Reduces Cholesterol in Hanwoo Steers.

    PubMed

    Hwang, J A; Islam, M M; Ahmed, S T; Mun, H S; Kim, G M; Kim, Y J; Yang, C J

    2014-08-01

    The study was designed to evaluate the effect of 2% seamustard (Undaria pinnatifida) by-product (SW) on growth performance, immunity, carcass characteristics, cholesterol content and fatty acid profile in Hanwoo steers. A total of 20 Hanwoo steers (ave. 22 months old; 619 kg body weight) were randomly assigned to control (basal diet) and 2% SW supplemented diet. Dietary SW supplementation significantly (p<0.05) improved average daily gain and gain:feed ratio as well as serum immunoglobulin G concentration. Chemical composition and quality grade of meat and carcass yield grades evaluated at the end of the trial were found to be unaffected by SW supplementation. Dietary SW significantly reduced meat cholesterol concentration (p<0.05). Dietary SW supplementation significantly reduced the myristic acid (C14:0) and palmitoleic acid (C16:ln-7) concentration, while SW increased the concentration of stearic acid (C18:0) and linolenic acid (C18:3n-3) compared to control (p<0.05). Dietary SW supplementation had no effect on saturated fatty acids (SFA), unsaturated fatty acids, poly unsaturated fatty acid (PUFA) or mono unsaturated fatty acid content in muscles. A reduced ratio of PUFA/SFA and n-6/n-3 were found in SW supplemented group (p<0.05). In conclusion, 2% SW supplementation was found to improve growth, immunity and fatty acid profile with significantly reduced cholesterol of beef. PMID:25083105

  5. Seamustard (Undaria pinnatifida) Improves Growth, Immunity, Fatty Acid Profile and Reduces Cholesterol in Hanwoo Steers

    PubMed Central

    Hwang, J. A.; Islam, M. M.; Ahmed, S. T.; Mun, H. S.; Kim, G. M.; Kim, Y. J.; Yang, C. J.

    2014-01-01

    The study was designed to evaluate the effect of 2% seamustard (Undaria pinnatifida) by-product (SW) on growth performance, immunity, carcass characteristics, cholesterol content and fatty acid profile in Hanwoo steers. A total of 20 Hanwoo steers (ave. 22 months old; 619 kg body weight) were randomly assigned to control (basal diet) and 2% SW supplemented diet. Dietary SW supplementation significantly (p<0.05) improved average daily gain and gain:feed ratio as well as serum immunoglobulin G concentration. Chemical composition and quality grade of meat and carcass yield grades evaluated at the end of the trial were found to be unaffected by SW supplementation. Dietary SW significantly reduced meat cholesterol concentration (p<0.05). Dietary SW supplementation significantly reduced the myristic acid (C14:0) and palmitoleic acid (C16:ln-7) concentration, while SW increased the concentration of stearic acid (C18:0) and linolenic acid (C18:3n-3) compared to control (p<0.05). Dietary SW supplementation had no effect on saturated fatty acids (SFA), unsaturated fatty acids, poly unsaturated fatty acid (PUFA) or mono unsaturated fatty acid content in muscles. A reduced ratio of PUFA/SFA and n-6/n-3 were found in SW supplemented group (p<0.05). In conclusion, 2% SW supplementation was found to improve growth, immunity and fatty acid profile with significantly reduced cholesterol of beef. PMID:25083105

  6. Ionizing Radiation Selectively Reduces Skin Regulatory T Cells and Alters Immune Function

    PubMed Central

    Zhou, Yu; Ni, Houping; Balint, Klara; Sanzari, Jenine K.; Dentchev, Tzvete; Diffenderfer, Eric S.; Wilson, Jolaine M.; Cengel, Keith A.; Weissman, Drew

    2014-01-01

    The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth’s magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel. PMID:24959865

  7. Systemic insecticide and gibberellin reduced cone damage and increased flowering in a spruce seed orchard.

    PubMed

    Rosenberg, O; Almqvist, C; Weslien, J

    2012-06-01

    Insects feeding in conifer cones are difficult to control with nonsystemic insecticides. Newly developed systemic insecticides that can be injected into tree trunks may be a possible way of reducing both insect damage and negative side-effects to the surrounding environment, compared with conventional spraying. Several insecticides that could be injected into tree stems were tested on Picea abies (L.) Karst. In one experiment, insecticides (bifenthrin, deltamethrin, abamectin, and imidacloprid) were injected during flowering; in a second experiment two of these insecticides (abamectin and imidacloprid) were injected 1 yr before the expected flowering. In the second experiment insecticide treatment was also combined with treatments with the flower stimulating hormone, gibberellin (GA(4/7)). The only insecticide that reduced damage was abamectin, both after injection during flowering and after injection 1 yr before the expected flowering. Injections with GA(4/7) increased flowering and were as efficient as the conventional application method of drilling but abamectin was not effective in combination with the drilling method. There was no negative effect of the insecticide injections on seed quality. The injections were ineffective against the seed chalcid Megastigmus strobilobius (Ratzeburg), which was found to have an unexpected, negative effect on seed quality. Our results suggest that it may be possible to reduce damage from certain insect species, and to increase flowering by injecting abamectin and GA(4/7) in the year before a cone crop. PMID:22812130

  8. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina

    PubMed Central

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and “hot spot” extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes. PMID:26469804

  9. Ultrastructural damage of Trypanosoma cruzi epimastigotes exposed to decomplemented immune sera.

    PubMed

    Fernández-Presas, A M; Zavala, J T; Fauser, I B; Merchant, M T; Guerrero, L R; Willms, K

    2001-08-01

    The susceptibility of Trypanosoma cruzi epimastigotes to lysis by normal or immune sera in a complement-dependent reaction has been reported, but the effects induced directly by immune serum depleted of complement remain unstudied. The aim of this work was to study the ultrastructural alterations induced in T. cruzi epimastigotes by immune mouse or rabbit sera with or without complement. A local isolate of T. cruzi (Queretaro) was used in all experiments. Immune sera were raised in both mouse and rabbit by immunization with T. cruzi epimastigote antigens. Light microscopy showed intense agglutination of epimastigotes when incubated with decomplemented mouse or rabbit immune sera. A distinctive ultrastructural feature of this agglutination pattern was the fusion of plasma membranes and a pattern of intercrossing between subpellicular microtubules. Agglutination was associated with fragmentation of nuclear membranes and swelling of cytoplasm, Golgi cisternae, endoplasmic reticulum, mitochondria and kinetoplast membranes. Agglutinated parasites also incorporated trypan blue stain. Results of [3H]-thymidine incorporation confirmed that epimastigotes exposed to specific antibodies in the absence of complement were incapable of proliferating. Ultrastructural changes observed in epimastigote micrographs incubated with decomplemented immune mouse sera were statistically significant (P<0.001) when compared with results obtained from images after incubation with decomplemented normal mouse sera. PMID:11510997

  10. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise

    PubMed Central

    Ke, Chun-Yen; Yang, Fwu-Lin; Wu, Wen-Tien; Chung, Chen-Han; Lee, Ru-Ping; Yang, Wan-Ting; Subeq, Yi-Maun; Liao, Kuang-Wen

    2016-01-01

    Exhaustive exercise results in inflammation and oxidative stress, which can damage tissue. Previous studies have shown that vitamin D has both anti-inflammatory and antiperoxidative activity. Therefore, we aimed to test if vitamin D could reduce the damage caused by exhaustive exercise. Rats were randomized to one of four groups: control, vitamin D, exercise, and vitamin D+exercise. Exercised rats received an intravenous injection of vitamin D (1 ng/mL) or normal saline after exhaustive exercise. Blood pressure, heart rate, and blood samples were collected for biochemical testing. Histological examination and immunohistochemical (IHC) analyses were performed on lungs and kidneys after the animals were sacrificed. In comparison to the exercise group, blood markers of skeletal muscle damage, creatine kinase and lactate dehydrogenase, were significantly (P < 0.05) lower in the vitamin D+exercise group. The exercise group also had more severe tissue injury scores in the lungs (average of 2.4 ± 0.71) and kidneys (average of 3.3 ± 0.6) than the vitamin D-treated exercise group did (1.08 ± 0.57 and 1.16 ± 0.55). IHC staining showed that vitamin D reduced the oxidative product 4-Hydroxynonenal in exercised animals from 20.6% to 13.8% in the lungs and from 29.4% to 16.7% in the kidneys. In summary, postexercise intravenous injection of vitamin D can reduce the peroxidation induced by exhaustive exercise and ameliorate tissue damage, particularly in the kidneys and lungs. PMID:26941574

  11. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise.

    PubMed

    Ke, Chun-Yen; Yang, Fwu-Lin; Wu, Wen-Tien; Chung, Chen-Han; Lee, Ru-Ping; Yang, Wan-Ting; Subeq, Yi-Maun; Liao, Kuang-Wen

    2016-01-01

    Exhaustive exercise results in inflammation and oxidative stress, which can damage tissue. Previous studies have shown that vitamin D has both anti-inflammatory and antiperoxidative activity. Therefore, we aimed to test if vitamin D could reduce the damage caused by exhaustive exercise. Rats were randomized to one of four groups: control, vitamin D, exercise, and vitamin D+exercise. Exercised rats received an intravenous injection of vitamin D (1 ng/mL) or normal saline after exhaustive exercise. Blood pressure, heart rate, and blood samples were collected for biochemical testing. Histological examination and immunohistochemical (IHC) analyses were performed on lungs and kidneys after the animals were sacrificed. In comparison to the exercise group, blood markers of skeletal muscle damage, creatine kinase and lactate dehydrogenase, were significantly (P < 0.05) lower in the vitamin D+exercise group. The exercise group also had more severe tissue injury scores in the lungs (average of 2.4 ± 0.71) and kidneys (average of 3.3 ± 0.6) than the vitamin D-treated exercise group did (1.08 ± 0.57 and 1.16 ± 0.55). IHC staining showed that vitamin D reduced the oxidative product 4-Hydroxynonenal in exercised animals from 20.6% to 13.8% in the lungs and from 29.4% to 16.7% in the kidneys. In summary, postexercise intravenous injection of vitamin D can reduce the peroxidation induced by exhaustive exercise and ameliorate tissue damage, particularly in the kidneys and lungs. PMID:26941574

  12. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection

    PubMed Central

    Meadows, Danielle N.; Bahous, Renata H.; Best, Ana F.; Rozen, Rima

    2015-01-01

    Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host’s immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNFα immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs. PMID:26599510

  13. Passive immunization to reduce Campylobacter jejuni colonization and transmission in broiler chickens

    PubMed Central

    2014-01-01

    Campylobacter jejuni is the most common cause of bacterium-mediated diarrheal disease in humans worldwide. Poultry products are considered the most important source of C. jejuni infections in humans but to date no effective strategy exists to eradicate this zoonotic pathogen from poultry production. Here, the potential use of passive immunization to reduce Campylobacter colonization in broiler chicks was examined. For this purpose, laying hens were immunized with either a whole-cell lysate or the hydrophobic protein fraction of C. jejuni and their eggs were collected. In vitro tests validated the induction of specific ImmunoglobulinY (IgY) against C. jejuni in the immunized hens’ egg yolks, in particular. In seeder experiments, preventive administration of hyperimmune egg yolk significantly (P < 0.01) reduced bacterial counts of seeder animals three days after oral inoculation with approximately 104 cfu C. jejuni, compared with control birds. Moreover, transmission to non-seeder birds was dramatically reduced (hydrophobic protein fraction) or even completely prevented (whole-cell lysate). Purified IgY promoted bacterial binding to chicken intestinal mucus, suggesting enhanced mucosal clearance in vivo. Western blot analysis in combination with mass spectrometry after two-dimensional gel-electrophoresis revealed immunodominant antigens of C. jejuni that are involved in a variety of cell functions, including chemotaxis and adhesion. Some of these (AtpA, EF-Tu, GroEL and CtpA) are highly conserved proteins and could be promising targets for the development of subunit vaccines. PMID:24589217

  14. Lead exposure reduces carotenoid-based coloration and constitutive immunity in wild mallards.

    PubMed

    Vallverdú-Coll, Núria; Mougeot, François; Ortiz-Santaliestra, Manuel E; Rodriguez-Estival, Jaime; López-Antia, Ana; Mateo, Rafael

    2016-06-01

    The ingestion of spent lead (Pb) from ammunition is a known cause of mortality in waterfowl, but little is known about sublethal effects produced by Pb poisoning on birds, especially in wild populations. The authors studied potential sublethal effects associated with Pb exposure in mallards (Anas platyrhynchos) from the Ebro delta (northeastern Spain) after a ban on Pb ammunition. They analyzed the relationships between blood Pb levels and oxidative stress, immune response, and carotenoid-based coloration, which are known to be influenced by oxidative stress. Levels of Pb were reduced by half from 6 yr to 9 yr after the ban. Lipid peroxidation was positively related to Pb levels in females. The δ-aminolevulinic acid dehydratase activity was suppressed by Pb exposure and negatively associated with the activity of antioxidant enzymes. Carotenoid levels were positively associated with blood Pb concentration in both sexes, and males with higher Pb levels presented a less intense coloration in legs and beak. Levels of Pb were positively related to hemolytic activity of circulating immune system components and negatively related to lysozyme levels. In summary, Pb exposure was associated in a gender-specific way with increased oxidative stress, consequences on color expression, and impaired constitutive immunity. In females, antioxidants seemed to be allocated mostly in reproduction rather than in self-maintenance, whereas males seemed to better maintain oxidative balance to the detriment of coloration. Environ Toxicol Chem 2016;35:1516-1525. © 2015 SETAC. PMID:26551027

  15. Drug treatment of malaria infections can reduce levels of protection transferred to offspring via maternal immunity

    PubMed Central

    Staszewski, Vincent; Reece, Sarah E.; O'Donnell, Aidan J.; Cunningham, Emma J. A.

    2012-01-01

    Maternally transferred immunity can have a fundamental effect on the ability of offspring to deal with infection. However, levels of antibodies in adults can vary both quantitatively and qualitatively between individuals and during the course of infection. How infection dynamics and their modification by drug treatment might affect the protection transferred to offspring remains poorly understood. Using the rodent malaria parasite Plasmodium chabaudi, we demonstrate that curing dams part way through infection prior to pregnancy can alter their immune response, with major consequences for offspring health and survival. In untreated maternal infections, maternally transferred protection suppressed parasitaemia and reduced pup mortality by 75 per cent compared with pups from naïve dams. However, when dams were treated with anti-malarial drugs, pups received fewer maternal antibodies, parasitaemia was only marginally suppressed, and mortality risk was 25 per cent higher than for pups from dams with full infections. We observed the same qualitative patterns across three different host strains and two parasite genotypes. This study reveals the role that within-host infection dynamics play in the fitness consequences of maternally transferred immunity. Furthermore, it highlights a potential trade-off between the health of mothers and offspring suggesting that anti-parasite treatment may significantly affect the outcome of infection in newborns. PMID:22357264

  16. Loss of the DNA Damage Repair Kinase ATM Impairs Inflammasome-Dependent Anti-Bacterial Innate Immunity.

    PubMed

    Erttmann, Saskia F; Härtlova, Anetta; Sloniecka, Marta; Raffi, Faizal A M; Hosseinzadeh, Ava; Edgren, Tomas; Rofougaran, Reza; Resch, Ulrike; Fällman, Maria; Ek, Torben; Gekara, Nelson O

    2016-07-19

    The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1β (IL-1β) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection. PMID:27421701

  17. Damage-reducing measures to manage flood risks in a changing climate

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Bubeck, Philip; Van Vliet, Mathijs; De Moel, Hans

    2014-05-01

    Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and a growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepare for unexpected crisis situations via land-use planning, building construction, evacuation and disaster response. Non-structural flood risk mitigation measures like shielding with water shutters or sand bags, building fortification or safeguarding of hazardous substances are often voluntary: they demand self-dependent action by the population at risk (Bubeck et al. 2012; 2013). It is believed that these measures are especially effective in areas with frequent flood events and low flood water levels, but some types of measures showed a significant damage-reducing effect also during extreme flood events, such as the Elbe River flood in August 2002 in Germany (Kreibich et al. 2005; 2011). Despite the growing importance of damage-reducing measures, information is still scarce about factors that motivate people to undertake such measures, the state of implementation of various non-structural measures in different countries and their damage reducing effects. Thus, we collected information and undertook an international review about this topic in the framework of the Dutch KfC project "Climate proof flood risk management". The contribution will present an overview about the available information on damage-reducing measures and draw conclusions for practical flood risk management in a changing climate. References: Bubeck, P., Botzen, W. J. W., Suu, L. T. T., Aerts, J. C. J. H. (2012): Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5, 4, 295-302 Bubeck, P

  18. Soft Perches in an Aviary System Reduce Incidence of Keel Bone Damage in Laying Hens

    PubMed Central

    Stratmann, Ariane; Fröhlich, Ernst K. F.; Harlander-Matauschek, Alexandra; Schrader, Lars; Toscano, Michael J.; Würbel, Hanno; Gebhardt-Henrich, Sabine G.

    2015-01-01

    Keel bone fractures and deviations are one of the major welfare and health issues in commercial laying hens. In non-cage housing systems like aviaries, falls and collisions with perches and other parts of the housing system are assumed to be one of the main causes for the high incidence of keel bone damage. The objectives of this study were to investigate the effectiveness of a soft perch material to reduce keel bone fractures and deviations in white (Dekalb White) and brown laying hens (ISA Brown) kept in an aviary system under commercial conditions. In half of 20 pens, all hard, metal perches were covered with a soft polyurethane material. Palpation of 20 hens per pen was conducted at 18, 21, 23, 30, 38, 44 and 64 weeks of age. Production data including egg laying rate, floor eggs, mortality and feed consumption were collected over the whole laying period. Feather condition and body mass was assessed twice per laying period. The results revealed that pens with soft perches had a reduced number of keel bone fractures and deviations. Also, an interaction between hybrid and age indicated that the ISA hybrid had more fractured keel bones and fewer non-damaged keel bones compared with the DW hybrid at 18 weeks of age, a response that was reversed at the end of the experiment. This is the first study providing evidence for the effectiveness of a soft perch material within a commercial setting. Due to its compressible material soft perches are likely to absorb kinetic energy occurring during collisions and increase the spread of pressure on the keel bone during perching, providing a mechanism to reduce keel bone fractures and deviations, respectively. In combination with genetic selection for more resilient bones and new housing design, perch material is a promising tool to reduce keel bone damage in commercial systems. PMID:25811980

  19. GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury.

    PubMed

    Duann, Pu; Lianos, Elias A

    2009-09-01

    Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-beta1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury. PMID:19587144

  20. Potato consumption on oxidative stress, inflammatory damage and immune response in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigmented potatoes contain high concentrations of antioxidants including phenolic acids, anthocyanins and carotenoids, which are implicated in the inhibition or prevention of cellular oxidative damage and chronic disease susceptibility. Research has demonstrated the beneficial effects of antioxidant...

  1. Immunizations.

    PubMed

    Sanford, Christopher A; Jong, Elaine C

    2016-03-01

    Vaccinations are a cornerstone of the pretravel consultation. The pretravel provider should assess a traveler's past medical history, planned itinerary, activities, mode of travel, and duration of stay and make appropriate vaccine recommendations. Given that domestic vaccine-preventable illnesses are more common in international travelers than are exotic or low-income nation-associated vaccine-preventable illnesses, clinicians should first ensure that travelers are current regarding routine immunizations. Additional immunizations may be indicated in some travelers. Familiarity with geographic distribution and seasonality of infectious diseases is essential. Clinicians should be cognizant of which vaccines are live, as there exist contraindications for live vaccines. PMID:26900111

  2. Medical Malpractice Reform: Noneconomic Damages Caps Reduced Payments 15 Percent, With Varied Effects By Specialty

    PubMed Central

    Seabury, Seth A.; Helland, Eric; Jena, Anupam B.

    2014-01-01

    The impact of medical malpractice reforms on the average size of malpractice payments in specific physician specialties is unknown and subject to debate. We analyzed a national sample of 220,653 malpractice claims from 1985–2010 merged with information on state liability reforms. We estimated the impact of state noneconomic damage caps on average malpractice payment size for physicians overall and for 10 different specialties, and compared how the effects differed according to the restrictiveness of the cap ($250,000 vs. $500,000 cap). We found noneconomic damage caps reduced payments by $42,980 (15%; p<0.001), with a $250,000 cap reducuing average payments by $59,331 (20%; p<0.001), while a $500,000 cap had no significant effect. Effects varied according to specialty and were largest in specialties with high average payments, such as pediatrics. This suggests that the effect of noneconomic damage caps differs by specialty, and only more restrictive caps result in lower average payments. PMID:25339633

  3. Exogenous spermidine alleviates oxidative damage and reduce yield loss in rice submerged at tillering stage

    PubMed Central

    Liu, Ming; Chu, Meijie; Ding, Yanfeng; Wang, Shaohua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Li, Ganghua

    2015-01-01

    To figure out whether spermidine (Spd) can alleviate oxidative damage on rice (Oryza sativa L.) caused by submergence stress, Ningjing 3 was used in this study. The results showed that, spraying Spd on rice leaves at a concentration of 0.5 mM promoted the growth recovery of rice after drainage, such as green leaves, tillers, and aboveground dry mass. According to physiological analysis, Spd accelerate restored chlorophylls damage by submergence, and decreased the rate of O2·− generation and H2O2 content, inhibited submergence-induced lipid peroxidation. Spd also helped to maintain antioxidant enzyme activities after drainage, such as superoxide dismutase, peroxidase, and GR, which ultimately improved the recovery ability of submerged rice. With the effect of Spd, the rice yields increased by 12.1, 17.9, 13.5, and 18.0%, of which submerged for 1, 3, 5, 7 days, respectively. It is supposed that exogenous Spd really has an alleviate effect on submergence damage and reduce yield loss of rice. PMID:26583021

  4. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod

    PubMed Central

    Barreto, Felipe S.; Burton, Ronald S.

    2013-01-01

    Aerobic energy production occurs via the oxidative phosphorylation pathway (OXPHOS), which is critically dependent on interactions between the 13 mitochondrial DNA (mtDNA)-encoded and approximately 70 nuclear-encoded protein subunits. Disruptive mutations in any component of OXPHOS can result in impaired ATP production and exacerbated oxidative stress; in mammalian systems, such mutations are associated with ageing as well as numerous diseases. Recent studies have suggested that oxidative stress plays a role in fitness trade-offs in life-history evolution and functional ecology. Here, we show that outcrossing between populations with divergent mtDNA can exacerbate cellular oxidative stress in hybrid offspring. In the copepod Tigriopus californicus, we found that hybrids that showed evidence of fitness breakdown (low fecundity) also exhibited elevated levels of oxidative damage to DNA, whereas those with no clear breakdown did not show significantly elevated damage. The extent of oxidative stress in hybrids appears to be dependent on the degree of genetic divergence between their respective parental populations, but this pattern requires further testing using multiple crosses at different levels of divergence. Given previous evidence in T. californicus that hybridization disrupts nuclear/mitochondrial interactions and reduces hybrid fitness, our results suggest that such negative intergenomic epistasis may also increase the production of damaging cellular oxidants; consequently, mtDNA evolution may play a significant role in generating postzygotic isolating barriers among diverging populations. PMID:23902912

  5. Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby.

    PubMed

    Torres, Roxana; Velando, Alberto

    2007-11-01

    In animals, male reproduction is commonly a function of sexual attractiveness, based on the expression of sexually dimorphic traits that advertise genuinely the male's quality. Male performance may decline with age because physiological functions underlying sexual attractiveness may be affected by senescence. Here we show that a sexual signal (foot colour) declines with age, due probably to the deleterious effects of oxidative damage. We found that in the blue-footed booby Sula nebouxii foot colour during courtship was less attractive in senescent than in middle-aged males. In addition, we increased reactive oxygen species experimentally by immunizing males with lipopolysaccharide, a bacterial cell wall component that induces marked oxidative stress in animals. The immune system activation induced greater lipid peroxidation and invoked changes on colour expression (less attractive), particularly in senescent males. These results support the idea that oxidative stress affects reproductive senescence, and suggest that oxidative damage might be a proximal mechanism underlying age-reproductive patterns in long-lived animals. PMID:17922712

  6. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  7. The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where.

    PubMed

    Pateras, Ioannis S; Havaki, Sophia; Nikitopoulou, Xenia; Vougas, Konstantinos; Townsend, Paul A; Panayiotidis, Michalis I; Georgakilas, Alexandros G; Gorgoulis, Vassilis G

    2015-10-01

    The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature." PMID:26145166

  8. Chrysanthemum zawadskii extract protects osteoblastic cells from highly reducing sugar-induced oxidative damage.

    PubMed

    Suh, Kwang Sik; Rhee, Sang Youl; Jung, Woon Won; Kim, Nam Jae; Jang, Young Pyo; Kim, Hye Jin; Kim, Min Kyoung; Choi, Young Kil; Kim, Young Seol

    2013-07-01

    In this study, Chrysanthemum zawadskii extract (CZE) was investigated to determine its effects on 2-deoxy-D-ribose (dRib)-induced oxidative damage and cellular dysfunction in the MC3T3-E1 mouse osteoblastic cell line. Osteoblastic cells were treated with the highly reducing sugar, dRib, in the presence or absence of CZE. Cell viability, apoptosis and reactive oxygen species (ROS) production were subsequently examined. It was observed that dRib reduced cell survival, while it markedly increased the intracellular levels of ROS and apoptosis. However, pre-treatment of the cells with CZE attenuated all the dRib-induced effects. The antioxidant, N-acetyl-L-cysteine (NAC), also prevented dRib-induced oxidative cell damage. In addition, treatment with CZE resulted in a significant increase in alkaline phosphatase (ALP) activity and collagen content, as well as in the expression of genes associated with osteoblast differentiation [ALP, collagen, osteopontin (OPN), osteoprotegerin (OPG), bone sialoprotein (BSP), osteocalcin (OC) and bone morphogenetic protein (BMP)2, BMP4 and BMP7]. In mechanistic studies of the antioxidative potential of CZE, we found that CZE reversed the dRib-induced decrease in the expression of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT)1 and AKT2 genes, which are master regulators of survival-related signaling pathways. CZE also upregulated the gene expression of the antioxidant enzymes, superoxide dismutase (SOD)2, SOD3 and glutathione peroxidase 4 (GPx4), which was inhibited by dRib. Taken together, these results suggest that CZE attenuates dRib-induced cell damage in osteoblastic cells and may be useful for the treatment of diabetes-associated bone disease. PMID:23652775

  9. The KnowRISK project: Tools and strategies to reduce non-structural damage

    NASA Astrophysics Data System (ADS)

    Sousa Oliveira, Carlos; Lopes, Mário; Mota de Sá, Francisco; Amaral Ferreia, Mónica; Candeias, Paulo; Campos Costa, Alfredo; Rupakhety, Rajesh; Meroni, Fabrizio; Azzaro, Raffaele; D'Amico, Salvatore; Langer, Horst; Musacchio, Gemma; Sousa Silva, Delta; Falsaperla, Susanna; Scarfì, Luciano; Tusa, Giuseppina; Tuvé, Tiziana

    2016-04-01

    The project KnowRISK (Know your city, Reduce seISmic risK through non-structural elements) is financed by the European Commission to develop prevention measures that may reduce non-structural damage in urban areas. Pilot areas of the project are within the three European participating countries, namely Portugal, Iceland and Italy. Non-structural components of a building include all those components that are not part of the structural system, more specifically the architectural, mechanical, electrical, and plumbing systems, as well as furniture, fixtures, equipment, and contents. Windows, partitions, granite veneer, piping, ceilings, air conditioning ducts and equipment, elevators, computer and hospital equipment, file cabinets, and retail merchandise are all examples of non-structural components that are vulnerable to earthquake damage. We will use the experience gained during past earthquakes, which struck in particular Iceland, Italy and Portugal (Azores). Securing the non-structural elements improves the safety during an earthquake and saves lives. This paper aims at identifying non-structural seismic protection measures in the pilot areas and to develop a portfolio of good practices for the most common and serious non-structural vulnerabilities. This systematic identification and the portfolio will be achieved through a "cross-knowledge" strategy based on previous researches, evidence of non-structural damage in past earthquakes. Shake table tests of a group of non-structural elements will be performed. These tests will be filmed and, jointly with portfolio, will serve as didactic supporting tools to be used in workshops with building construction stakeholders and in risk communication activities. A Practical Guide for non-structural risk reduction will be specifically prepared for citizens on the basis of the outputs of the project, taking into account the local culture and needs of each participating country.

  10. Reduced Sensitivity to Sooner Reward During Intertemporal Decision-Making Following Insula Damage in Humans

    PubMed Central

    Sellitto, Manuela; Ciaramelli, Elisa; Mattioli, Flavia; di Pellegrino, Giuseppe

    2016-01-01

    During intertemporal choice, humans tend to prefer small-sooner rewards over larger-delayed rewards, reflecting temporal discounting (TD) of delayed outcomes. Functional neuroimaging (fMRI) evidence has implicated the insular cortex in time-sensitive decisions, yet it is not clear whether activity in this brain region is crucial for, or merely associated with, TD behavior. Here, patients with damage to the insula (Insular patients), control patients with lesions outside the insula, and healthy individuals chose between smaller-sooner and larger-later monetary rewards. Insular patients were less sensitive to sooner rewards than were the control groups, exhibiting reduced TD. A Voxel-based Lesion-Symptom Mapping (VLSM) analysis confirmed a statistically significant association between insular damage and reduced TD. These results indicate that the insular cortex is crucial for intertemporal choice. We suggest that he insula may be necessary to anticipate the bodily/emotional effects of receiving rewards at different delays, influencing the computation of their incentive value. Devoid of such input, insular patients’ choices would be governed by a heuristic of quantity, allowing patients to wait for larger options. PMID:26793084

  11. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden.

    PubMed

    Rui, Ke; Tian, Jie; Tang, Xinyi; Ma, Jie; Xu, Ping; Tian, Xinyu; Wang, Yungang; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-08-01

    Tumor-elicited immunosuppression is one of the essential mechanisms for tumor evasion of immune surveillance. It is widely thought to be one of the main reasons for the failure of tumor immunotherapy. Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of cells that play an important role in tumor-induced immunosuppression. These cells expand in tumor-bearing individuals and suppress T cell responses via various mechanisms. Curdlan, the linear (1 → 3)-β-glucan from Agrobacterium, has been applied in the food industry and other sectors. The anti-tumor property of curdlan has been recognized for a long time although the underlying mechanism still needs to be explored. In this study, we investigated the effect of curdlan on MDSCs and found that curdlan could promote MDSCs to differentiate into a more mature state and then significantly reduce the suppressive function of MDSCs, decrease the MDSCs in vivo and down-regulate the suppression in tumor-bearing mice, thus leading to enhanced anti-tumor immune responses. We, therefore, increase the understanding of further mechanisms by which curdlan achieves anti-tumor effects. PMID:26832917

  12. Collateral Damage: Microbiota-derived Metabolites and Immune Function in the Antibiotic Era

    PubMed Central

    Lopez, Christopher A.; Kingsbury, Dawn D.; Velazquez, Eric M.; Bäumler, Andreas J.

    2014-01-01

    SUMMARY Our long-standing evolutionary association with gut-associated microbial communities has given rise to an intimate relationship, which affects many aspects of human health. Recent studies on the mechanisms that link these microbial communities to immune education, nutrition and protection against pathogens point to microbiota-derived metabolites as key players during these microbe-host interactions. A disruption of gut-associated microbial communities by antibiotic treatment can result in a depletion of microbiota-derived metabolites, thereby enhancing pathogen susceptibility, impairing immune homeostasis and contributing to the rise of certain chronic inflammatory diseases. Here, we highlight some of the recently elucidated mechanisms that showcase the impacts of microbiota-derived metabolites on human health. PMID:25121745

  13. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant.

    PubMed

    Monaris, D; Sbrogio-Almeida, M E; Dib, C C; Canhamero, T A; Souza, G O; Vasconcellos, S A; Ferreira, L C S; Abreu, P A E

    2015-08-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigA(C)) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigA(C), either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigA(C) or LigA(C) coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  14. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  15. Reducing the Risk of Damage to Power Transformers of 110 kV and Above Accompanying Internal Short Circuits

    SciTech Connect

    L’vova, M. M.; L’vov, S. Yu.; Komarov, V. B.; Lyut’ko, E. O.; Vdoviko, V. P.; Demchenko, V. V.; Belyaev, S. G.; Savel’ev, V. A.; L’vov, M. Yu. L’vov, Yu. N.

    2015-03-15

    Methods of increasing the operating reliability of power transformers, autotransformers and shunting reactors in order to reduce the risk of damage, which accompany internal short circuits and equipment fires and explosions, are considered.

  16. Impact of antiretroviral therapy (ART) timing on chronic immune activation/inflammation and end-organ damage

    PubMed Central

    Rajasuriar, Reena; Wright, Edwina; Lewin, Sharon R.

    2015-01-01

    Purpose of review The purpose of this review was to summarize recent studies on the effect of early antiretroviral therapy (ART) in HIV-infected patients on markers of immune activation/inflammation, viral persistence and serious non-AIDS events. Recent findings Early ART, initiated within days to months of HIV infection, was associated with marked reduction in T-cell activation often reaching levels observed in HIV-uninfected individuals. However, the impact of early ART on markers of innate immune activation, microbial translocation and inflammation/coagulation was less clear. Early ART has also been associated with a significant reduction in the frequency of latently infected cells, which was greater if ART was initiated within days to weeks rather than months following infection. However, few studies have evaluated the relationship between immune activation and viral reservoirs, specifically following early ART. Early ART may potentially reduce serious non-AIDS events and associated mortality, but most of these studies have extrapolated from changes in surrogate markers, such as CD4 : CD8 ratio. Summary Early ART was associated with beneficial effects on multiple markers of immune activation, inflammation and viral persistence. Longer term prospective studies are still needed to determine whether early ART translates to a significant reduction in serious non-AIDS events and mortality. PMID:25415420

  17. High effectiveness of tailored flower strips in reducing pests and crop plant damage.

    PubMed

    Tschumi, Matthias; Albrecht, Matthias; Entling, Martin H; Jacot, Katja

    2015-09-01

    Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle(CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity(8-75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes. PMID:26311668

  18. Damage Detection in Flexible Plates through Reduced-Order Modeling and Hybrid Particle-Kalman Filtering.

    PubMed

    Capellari, Giovanni; Azam, Saeed Eftekhar; Mariani, Stefano

    2015-01-01

    Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation), whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated. PMID:26703615

  19. Oral Resveratrol Reduces Neuronal Damage in a Model of Multiple Sclerosis

    PubMed Central

    Shindler, Kenneth S.; Ventura, Elvira; Dutt, Mahasweta; Elliott, Peter; Fitzgerald, Denise C.; Rostami, Abdolmohamad

    2012-01-01

    Background Neuronal loss in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), correlates with permanent neurological dysfunction. Current MS therapies have limited ability to prevent neuronal damage. Methods We examined whether oral therapy with SRT501, a pharmaceutical-grade formulation of resveratrol, reduces neuronal loss during relapsing/remitting EAE. Resveratrol activates SIRT1, an NAD+-dependent deacetylase that promotes mitochondrial function. Results Oral SRT501 prevented neuronal loss during optic neuritis, an inflammatory optic nerve lesion in MS and EAE. SRT501 also suppressed neurological dysfunction during EAE remission, and spinal cords from SRT501-treated mice had significantly higher axonal density than vehicle-treated mice. Similar neuroprotection was mediated by SRT1720, another SIRT1-activating compound; and sirtinol, a SIRT1 inhibitor, attenuated SRT501 neuroprotective effects. SIRT1 activators did not prevent inflammation. Conclusions These studies demonstrate SRT501 attenuates neuronal damage and neurological dysfunction in EAE by a mechanism involving SIRT1 activation. SIRT1 activators are a potential oral therapy in MS. PMID:21107122

  20. Damage Detection in Flexible Plates through Reduced-Order Modeling and Hybrid Particle-Kalman Filtering

    PubMed Central

    Capellari, Giovanni; Eftekhar Azam, Saeed; Mariani, Stefano

    2015-01-01

    Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation), whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated. PMID:26703615

  1. High effectiveness of tailored flower strips in reducing pests and crop plant damage

    PubMed Central

    Tschumi, Matthias; Albrecht, Matthias; Entling, Martin H.; Jacot, Katja

    2015-01-01

    Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle (CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity (8–75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes. PMID:26311668

  2. A Modified Catheterization Procedure to Reduce Bladder Damage when Collecting Urine Samples from Holstein Cows

    PubMed Central

    TAMURA, Tetsuo; NAKAMURA, Hiroshi; SATO, Say; SEKI, Makoto; NISHIKI, Hideto

    2014-01-01

    ABSTRACT This study proposed a modified procedure, using a small balloon catheter (SB catheter, 45 ml), for reducing bladder damage in cows. Holstein cows and the following catheters were prepared: smaller balloon catheter (XSB catheter; 30 ml), SB catheter and standard balloon catheter (NB catheter; 70 ml, as the commonly used, standard size). In experiment 1, each cow was catheterized. The occurrence of catheter-associated hematuria (greater than 50 RBC/HPF) was lower in the SB catheter group (0.0%, n=7) than in the NB catheter group (71.4%, n=7; P<0.05). In experiment 2, general veterinary parameters, urine pH, body temperature and blood values in cows were not affected before or after insertion of SB catheters (n=6). The incidence of urinary tract infection (UTI) was 3.0% per catheterized day (n=22). In experiment 3, feeding profiles, daily excretion of urinary nitrogen (P<0.05) and rate from nitrogen intake in urine (P<0.01), were higher with use of the SB catheter (n=13) than with the use of the vulva urine cup (n=18), indicating that using the SB catheter can provide accurate nutritional data. From this study, we concluded that when using an SB catheter, the following results occur; reduction in bladder damage without any veterinary risks and accuracy in regard to feeding parameters, suggesting this modified procedure using an SB catheter is a useful means of daily urine collection. PMID:24561376

  3. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  4. Melatonin Improves Outcomes of Heatstroke in Mice by Reducing Brain Inflammation and Oxidative Damage and Multiple Organ Dysfunction

    PubMed Central

    Hsu, Shu-Fen; Lin, Mao-Tsun

    2013-01-01

    We report here that when untreated mice underwent heat stress, they displayed thermoregulatory deficit (e.g., animals display hypothermia during room temperature exposure), brain (or hypothalamic) inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment (e.g., decreased plasma levels of both adrenocorticotrophic hormone and corticosterone during heat stress), multiple organ dysfunction or failure, and lethality. Melatonin therapy significantly reduced the thermoregulatory deficit, brain inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment, multiple organ dysfunction, and lethality caused by heat stroke. Our data indicate that melatonin may improve outcomes of heat stroke by reducing brain inflammation, oxidative damage, and multiple organ dysfunction. PMID:24369441

  5. Photomultiplier circuit including means for rapidly reducing the sensitivity thereof. [and protection from radiation damage

    NASA Technical Reports Server (NTRS)

    Mcclenahan, J. O. (Inventor)

    1974-01-01

    A simple, reliable and inexpensive control circuit is described for rapidly reducing the bias voltage across one or more of the dynode stages of a photomultiplier, to substantially decrease its sensitivity to incoming light at those times where excess light intensity might damage the tube. The control circuit comprises a switching device, such as a silicon controlled rectifier (SCR), coupled between a pair of the electrodes in the tube, preferably the cathode and first dynode, or the first and second dynodes, the switching device operating in response to a trigger pulse applied to its gate to short circuit the two electrodes. To insure the desired reduction in sensitivity, two switching stages, the devices be employed between two of the electrode stages, the devices being operated simultaneously to short circuit both stages.

  6. Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats.

    PubMed

    Jain, Anshu; Yadav, Abhishek; Bozhkov, A I; Padalko, V I; Flora, S J S

    2011-05-01

    We investigated the effects of silymarin and naringenin in counteracting arsenic-induced hepatic oxidative stress post exposure. Male wistar rats were chronically exposed to sodium arsenite for eight months followed by oral treatment with silymarin and naringenin (50 mg/kg each) for 15 consecutive days to evaluate hepatic damage and antioxidant potential. Our results demonstrate a significant decrease in hepatic GSH levels, SOD and catalase activities and an increase in GST and TBARS levels after arsenic administration. Silymarin or naringenin administration increased GSH levels and was beneficial in the recovery of altered SOD and catalase activity besides significantly reducing blood and tissue arsenic concentration. Our results point to the antioxidant potential of these flavonoids, which might be of benefit in the clinical recovery of subject exposed to arsenic. These flavonoids can be incorporated into the diet or co-supplemented during chelation treatment, and thus may afford a protective effect against arsenite-induced cytotoxicity. PMID:20719385

  7. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage. PMID:18579343

  8. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.

    PubMed

    Ewert, Donald L; Lu, Jianzhong; Li, Wei; Du, Xiaoping; Floyd, Robert; Kopke, Richard

    2012-03-01

    Exposure to blast overpressure has become one of the hazards of both military and civilian life in many parts of the world due to war and terrorist activity. Auditory damage is one of the primary sequela of blast trauma, affecting immediate situational awareness and causing permanent hearing loss. Protecting against blast exposure is limited by the inability to anticipate the timing of these exposures, particularly those caused by terrorists. Therefore a therapeutic regimen is desirable that is able to ameliorate auditory damage when administered after a blast exposure has occurred. The purpose of this study was to determine if administration of a combination of antioxidants 2,4-disulfonyl α-phenyl tertiary butyl nitrone (HPN-07) and N-acetylcysteine (NAC) beginning 1 h after blast exposure could reduce both temporary and permanent hearing loss. To this end, a blast simulator was developed and the operational conditions established for exposing rats to blast overpressures comparable to those encountered in an open-field blast of 14 pounds per square inch (psi). This blast model produced reproducible blast overpressures that resulted in physiological and physical damage to the auditory system that was proportional to the number and amplitude of the blasts. After exposure to 3 consecutive 14 psi blasts 100% of anesthetized rats had permanent hearing loss as determined at 21 days post exposure by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) testing. Animals treated with HPN-07 and NAC after blast exposure showed a significant reduction in ABR threshold shifts and DPOAE level shifts at 2-16 kHz with significant reduction in inner hair cell (IHC) and outer hair cell (OHC) loss across the 5-36 kHz region of the cochlea compared with control animals. The time course of changes in the auditory system was documented at 3 h, 24 h, 7 day and 21 day after blast exposure. At 3 h after blast exposure the auditory brainstem response (ABR

  9. Melatonin as a possible antidote to UV radiation induced cutaneous damages and immune-suppression: An overview.

    PubMed

    Goswami, Soumik; Haldar, Chandana

    2015-12-01

    The sun rays brings along the ultraviolet radiations (UVRs) which prove deleterious for living organisms. The UVR is a known mutagen and is the prime cause of skin carcinomas. UVR causes acute oxidative stress and this in turn deteriorates other physiological functions. Inflammatory conditions and elevation of pro-inflammatory molecules are also associated with UVR mediated cellular damages. The inflammatory conditions can secondarily trigger the generation of free radicals and this act cumulatively in further deterioration of tissue homeostasis. Photoimmunologists have also related UVR to the suppression of not only cutaneous but also systemic immunity by different mechanisms. Some researchers have proposed the use of various plant products as antioxidants against UVR induced oxidative imbalances but Melatonin is gaining rapid interest as a product that can be utilized to delineate the pathological effects of UVR since it is an established antioxidant. Besides the antioxidative nature, the capacity of melatonin to attenuate apoptosis and more importantly the efficacy of its metabolites to further aid in the detoxification of free radicals have made it a key player to be utilized against UVR mediated aggravated conditions. However, there is need for further extensive investigation to speculate melatonin as an antidote to UVR. Although too early to prescribe melatonin as a clinical remedy, the hormone can be integrated into dermal formulations or oral supplements to prevent the ever increasing incidences of skin cancers due to the prevalence of the UVR on the surface of the earth. The present review focuses and substantiates the work by different photo-biologists demonstrating the protective effects of melatonin and its metabolites against solar UVR - Melatonin as a possible antidote to UV radiation induced cutaneous damages and immune-suppression: an overview. J Photochem Photobiol B. PMID:26496791

  10. C1 Esterase Inhibitor Reduces Lower Extremity Ischemia/Reperfusion Injury and Associated Lung Damage

    PubMed Central

    Duehrkop, Claudia; Banz, Yara; Spirig, Rolf; Miescher, Sylvia; Nolte, Marc W.; Spycher, Martin; Smith, Richard A. G.; Sacks, Steven H.; Rieben, Robert

    2013-01-01

    Background Ischemia/reperfusion injury of lower extremities and associated lung damage may result from thrombotic occlusion, embolism, trauma, or surgical intervention with prolonged ischemia and subsequent restoration of blood flow. This clinical entity is characterized by high morbidity and mortality. Deprivation of blood supply leads to molecular and structural changes in the affected tissue. Upon reperfusion inflammatory cascades are activated causing tissue injury. We therefore tested preoperative treatment for prevention of reperfusion injury by using C1 esterase inhibitor (C1 INH). Methods and Findings Wistar rats systemically pretreated with C1 INH (n = 6), APT070 (a membrane-targeted myristoylated peptidyl construct derived from human complement receptor 1, n = 4), vehicle (n = 7), or NaCl (n = 8) were subjected to 3h hind limb ischemia and 24h reperfusion. The femoral artery was clamped and a tourniquet placed under maintenance of a venous return. C1 INH treated rats showed significantly less edema in muscle (P<0.001) and lung and improved muscle viability (P<0.001) compared to controls and APT070. C1 INH prevented up-regulation of bradykinin receptor b1 (P<0.05) and VE-cadherin (P<0.01), reduced apoptosis (P<0.001) and fibrin deposition (P<0.01) and decreased plasma levels of pro-inflammatory cytokines, whereas deposition of complement components was not significantly reduced in the reperfused muscle. Conclusions C1 INH reduced edema formation locally in reperfused muscle as well as in lung, and improved muscle viability. C1 INH did not primarily act via inhibition of the complement system, but via the kinin and coagulation cascade. APT070 did not show beneficial effects in this model, despite potent inhibition of complement activation. Taken together, C1 INH might be a promising therapy to reduce peripheral ischemia/reperfusion injury and distant lung damage in complex and prolonged surgical interventions requiring tourniquet application

  11. Reduced photoreceptor death and improved retinal function during retinal degeneration in mice lacking innate immunity adaptor protein MyD88

    PubMed Central

    Syeda, Sarah; Patel, Amit K.; Lee, Tinthu; Hackam, Abigail S.

    2015-01-01

    The injury inflammatory response mediated by the innate immune system is an important contributor to neurodegeneration in the central nervous system (CNS) and retina. A major branch of the innate immune system is regulated by the Toll-like receptors (TLRs), which are receptors for endogenous damage associated molecules released from injured cells as well as pathogen-derived molecules, and interleukin-1 receptors (IL-1R), which are activated by IL-1α, IL-1β and IL-18 cytokines. TLRs and IL-1R are expressed on immune and non-immune cell types and act as first responders to cell damage, which results in tissue repair, or inflammation and apoptosis. Both TLR and IL-1R require the adaptor protein myeloid differentiation primary response gene 88 (MyD88) for signaling. Although inflammation is implicated in neuronal death in the retina, the role of MyD88-dependent TLR and IL-1R signaling in retinal degeneration is unknown. Therefore, the purpose of this study was to investigate the role of MyD88-mediated signaling in neuronal degeneration in the retinal degeneration 1 (rd1) mouse model, which exhibits a phenotype of rapid photoreceptor death and inflammation. To generate rd1 mice lacking the MyD88 gene, rd1 were bred with MyD88 knockout mice (MyD88-/-) for several generations to produce rd1/MyD88+/+ and rd1/MyD88-/- genotypes. Chemokine mRNA expression levels were analyzed by qRT-PCR, and recruitment of activated microglia was quantified by immunodetection of the IBA-1 protein. Retinal outer nuclear layer cell counts were performed to quantify photoreceptor degeneration, and retinal function was assessed using electroretinograms (ERG). Our results revealed that retinal expression of Ccl2, Ccl4, Ccl7 and Cxcl10 was reduced by 2 to 8-fold in rd1/MyD88-/- mice compared with rd1/MyD88+/+ mice (p<0.05), which coincided with attenuated microglial activation, higher numbers of photoreceptors and higher retina responses to photopic and scotopic stimuli. At later ages, rd1/MyD88

  12. NAAG peptidase inhibitor reduces cellular damage in a model of TBI with secondary hypoxia.

    PubMed

    Feng, Jun-Feng; Gurkoff, Gene G; Van, Ken C; Song, Minsoo; Lowe, David A; Zhou, Jia; Lyeth, Bruce G

    2012-08-21

    Traumatic brain injury (TBI) leads to a rapid and excessive glutamate elevation in the extracellular milieu, resulting in neuronal degeneration and astrocyte damage. Posttraumatic hypoxia is a clinically relevant secondary insult that increases the magnitude and duration of glutamate release following TBI. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, suppresses presynaptic glutamate release by its action at the mGluR3 (a group II metabotropic glutamate receptor). However, extracellular NAAG is rapidly converted into NAA and glutamate by the catalytic enzyme glutamate carboxypeptidase II (GCPII) reducing presynaptic inhibition. We previously reported that the GCPII inhibitor ZJ-43 and its prodrug di-ester PGI-02776 reduce the deleterious effects of excessive extracellular glutamate when injected systemically within the first 30 min following injury. We now report that PGI-02776 (10mg/kg) is neuroprotective when administered 30 min post-injury in a model of TBI plus 30 min of hypoxia (FiO(2)=11%). 24h following TBI with hypoxia, significant increases in neuronal cell death in the CA1, CA2/3, CA3c, hilus and dentate gyrus were observed in the ipsilateral hippocampus. Additionally, there was a significant reduction in the number of astrocytes in the ipsilateral CA1, CA2/3 and in the CA3c/hilus/dentate gyrus. Administration of PGI-02776 immediately following the cessation of hypoxia significantly reduced neuronal and astrocytic cell death across all regions of the hippocampus. These findings indicate that NAAG peptidase inhibitors administered post-injury can significantly reduce the deleterious effects of TBI combined with a secondary hypoxic insult. PMID:22750589

  13. Lonicera caerulea fruits reduce UVA-induced damage in hairless mice.

    PubMed

    Vostálová, Jitka; Galandáková, Adéla; Palíková, Irena; Ulrichová, Jitka; Doležal, Dalibor; Lichnovská, Radka; Vrbková, Jana; Rajnochová Svobodová, Alena

    2013-11-01

    UVA photons are less energetic than UVB photons but they are more abundant in solar radiation. Modern tools have shown that UVA light has serious adverse effects on the skin. We investigated the effect of consuming Lonicera caerulea berries on UVA-induced damage in SKH-1 mice. The mice were fed a diet containing L. caerulea berries (10%, w/w) for 14 days before a single UVA (30 J/cm(2)) treatment. Effects on haematological and antioxidant parameters were evaluated 4 and 24h after irradiation. The bioavailability of L. caerulea phenolics was also assessed. Consuming the L. caerulea berry-enriched diet caused reduced malondialdehyde production and increased catalase activity and glutathione levels were found in skin and erythrocytes. UVA-induced NADPH:quinone oxidoreductase-1 and gamma-L-glutamate-L-cysteine ligase protein in skin were reduced in mice fed L. caerulea berries. Enhanced heme oxygenase-1 level in skin, interleukin-17 in plasma and reduced interleukin-12 levels in plasma were found in the mice on the experimental diet. Histological (pyknotic) changes in the nuclei of basal cells induced by UVA exposure were reduced in L. caerulea berry consuming animals. HLPC-MS analysis showed high concentrations of hippuric acid, one of the main metabolites of aromatic amino acids and phenolic compounds, in skin, liver, urine and faeces of mice consuming the berries. Taken together, consumption of L. caerulea berries affords protection from the adverse effects of a single UVA exposure mainly via modulation of antioxidant parameters. PMID:23974431

  14. Reduced-order modeling for mistuned centrifugal impellers with crack damages

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zi, Yanyang; Li, Bing; Zhang, Chunlin; He, Zhengjia

    2014-12-01

    An efficient method for nonlinear vibration analysis of mistuned centrifugal impellers with crack damages is presented. The main objective is to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. Firstly, in order to reduce the input information needed for component mode synthesis (CMS), the whole model of an impeller is obtained by rotation transformation based on the finite element model of a sector model. Then, a hybrid-interface method of CMS is employed to generate a reduced-order model (ROM) for the cracked impeller. The degrees of freedom on the crack surfaces are retained in the ROM to simulate the crack breathing effects. A novel approach for computing the inversion of large sparse matrix is proposed to save memory space during model order reduction by partitioning the matrix into many smaller blocks. Moreover, to investigate the effects of mistuning and cracks on the resonant frequencies, the bilinear frequency approximation is used to estimate the resonant frequencies of the mistuned impeller with a crack. Additionally, statistical analysis is performed using the Monte Carlo simulation to study the statistical characteristics of the resonant frequencies versus crack length at different mistuning levels. The results show that the most significant effect of mistuning and cracks on the vibration response is the shift and split of the two resonant frequencies with the same nodal diameters. Finally, potential quantitative indicators for detection of crack of centrifugal impellers are discussed.

  15. Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets

    PubMed Central

    Nachbagauer, Raffael; Miller, Matthew S.; Hai, Rong; Ryder, Alex B.; Rose, John K.; Palese, Peter; García-Sastre, Adolfo

    2015-01-01

    We assessed whether influenza virus hemagglutinin stalk-based immunity protects ferrets against aerosol-transmitted H1N1 influenza virus infection. Immunization of ferrets by a universal influenza virus vaccine strategy based on viral vectors expressing chimeric hemagglutinin constructs induced stalk-specific antibody responses. Stalk-immunized ferrets were cohoused with H1N1-infected ferrets under conditions that permitted virus transmission. Hemagglutinin stalk-immunized ferrets had lower viral titers and delayed or no virus replication at all following natural exposure to influenza virus. PMID:26719251

  16. Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets.

    PubMed

    Nachbagauer, Raffael; Miller, Matthew S; Hai, Rong; Ryder, Alex B; Rose, John K; Palese, Peter; García-Sastre, Adolfo; Krammer, Florian; Albrecht, Randy A

    2016-03-01

    We assessed whether influenza virus hemagglutinin stalk-based immunity protects ferrets against aerosol-transmitted H1N1 influenza virus infection. Immunization of ferrets by a universal influenza virus vaccine strategy based on viral vectors expressing chimeric hemagglutinin constructs induced stalk-specific antibody responses. Stalk-immunized ferrets were cohoused with H1N1-infected ferrets under conditions that permitted virus transmission. Hemagglutinin stalk-immunized ferrets had lower viral titers and delayed or no virus replication at all following natural exposure to influenza virus. PMID:26719251

  17. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies.

    PubMed

    Lathuilière, Aurélien; Laversenne, Vanessa; Astolfo, Alberto; Kopetzki, Erhard; Jacobsen, Helmut; Stampanoni, Marco; Bohrmann, Bernd; Schneider, Bernard L; Aebischer, Patrick

    2016-05-01

    Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders. PMID:26956423

  18. Can nerve damage disrupt neuroendocrine immune homeostasis? Leprosy as a case in point.

    PubMed

    Rook, Graham A W; Lightman, Stafford L; Heijnen, Cobi J

    2002-01-01

    The crucial clinical problem in leprosy is the occurrence of acute inflammatory episodes that lead to nerve damage, even after the infecting organisms have been killed by antibiotics. We suggest that the instability of these inflammatory sites is attributable to a disturbance of the role that nerves play in the regulation of inflammation. The destruction of sensory C fibers and sympathetic innervation will remove anti-inflammatory feedback circuits. Moreover, diminishing levels of neuropeptides and changes in the cytokine profile will affect the cortisol-sensitivity of infiltrating T cells, and modulate the cortisol-cortisone shuttle so that the inflammatory site becomes resistant to physiological levels of anti-inflammatory adrenocortical steroids. PMID:11801450

  19. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease.

    PubMed

    Baruch, Kuti; Deczkowska, Aleksandra; Rosenzweig, Neta; Tsitsou-Kampeli, Afroditi; Sharif, Alaa Mohammad; Matcovitch-Natan, Orit; Kertser, Alexander; David, Eyal; Amit, Ido; Schwartz, Michal

    2016-02-01

    Systemic immune suppression may curtail the ability to mount the protective, cell-mediated immune responses that are needed for brain repair. By using mouse models of Alzheimer's disease (AD), we show that immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway evokes an interferon (IFN)-γ-dependent systemic immune response, which is followed by the recruitment of monocyte-derived macrophages to the brain. When induced in mice with established pathology, this immunological response leads to clearance of cerebral amyloid-β (Aβ) plaques and improved cognitive performance. Repeated treatment sessions were required to maintain a long-lasting beneficial effect on disease pathology. These findings suggest that immune checkpoints may be targeted therapeutically in AD. PMID:26779813

  20. The beneficial effects of dietary restriction: reduced oxidative damage and enhanced apoptosis.

    PubMed

    Wachsman, J T

    1996-02-19

    There is compelling evidence for the central role of oxidative damage in the aging process and for the participation of reactive oxygen species in tumor initiation and promotion. Caloric restriction (CR) or energy restriction retards age-associated increases in mitochondrial free-radical production and reduces the accumulation of oxidatively damaged cell components. CR has also been shown to slow down age-related declines in various repair capabilities, including some types of DNA repair. It is proposed that inhibitors of mitochondrial electron transport and/or uncouplers of oxidative phosphorylation (rotenone, amytal, amiodarone, valinomycin, etc.), when used at extremely low doses, could mimic the effects of CR in model systems. The objective is to lower mitochondrial free-radical production by decreasing the fraction of electron carriers in the reduced state. In addition to a variety of other effects, CR has been shown to increase the rate of apoptosis, particularly in preneoplastic cells, and in general, to promote elevated levels of free glucocorticoids (GCs). GCs are known to induce tissue-specific apoptosis and to upregulate gap-junction-mediated intercellular communication (GJIC). Tumor promoters like phorbol esters have the opposite effect, in that they inhibit both the process of apoptosis and GJIC. The enzyme poly (ADP-ribose) polymerase (PARP) is thought to play a central role in apoptosis, in a manner that has been highly conserved in evolution. There is good evidence that the apoptosis-associated Ca/Mg-dependent DNA endonuclease is maintained in a latent form by being poly (ADP-ribosylated). Apoptosis would require the removal of this polymer from the endonuclease, and, most likely, its removal from topoisomerase II and histone H1 as well. The role of poly (ADP-ribose) in apoptosis, carcinogenesis, and aging could be studied by the use of modulators of PARP activity (3-aminobenzamide, 3-nitrosobenzamide, 1% ethanol, etc.), inhibitors of poly ADP

  1. Hsp90 inhibitor geldanamycin enhances the antitumor efficacy of enediyne lidamycin in association with reduced DNA damage repair.

    PubMed

    Han, Fei-Fei; Li, Liang; Shang, Bo-Yang; Shao, Rong-Guang; Zhen, Yong-Su

    2014-01-01

    Inhibition of heat shock protein 90 (Hsp90) leads to inappropriate processing of proteins involved in DNA damage repair pathways after DNA damage and may enhance tumor cell radio- and chemo-therapy sensitivity. To investigate the potentiation of antitumor efficacy of lidamycin (LDM), an enediyne agent by the Hsp90 inhibitor geldanamycin (GDM), and possible mechanisms, we have determined effects on ovarian cancer SKOV- 3, hepatoma Bel-7402 and HepG2 cells by MTT assay, apoptosis assay, and cell cycle analysis. DNA damage was investigated with H2AX C-terminal phosphorylation (γH2AX) assays. We found that GDM synergistically sensitized SKOV-3 and Bel-7402 cells to the enediyne LDM, and this was accompanied by increased apoptosis. GDM pretreatment resulted in a greater LDM-induced DNA damage and reduced DNA repair as compared with LDM alone. However, in HepG2 cells GDM did not show significant sensitizing effects both in MTT assay and in DNA damage repair. Abrogation of LDM-induced G2/M arrest by GDM was found in SKOV-3 but not in HepG2 cells. Furthermore, the expression of ATM, related to DNA damage repair responses, was also decreased by GDM in SKOV-3 and Bel-7402 cells but not in HepG2 cells. These results demonstrate that Hsp90 inhibitors may potentiate the antitumor efficacy of LDM, possibly by reducing the repair of LDM-induced DNA damage. PMID:25227788

  2. Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by foodborne pathogens: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic pressure on the modern poultry industry has directed the selection process towards fast-growing broilers that have a reduced feed conversion ratio. Selection based heavily on growth characteristics could adversely affect immune competence leaving chickens more susceptible to disease. Sinc...

  3. Reduced Leukocyte Infiltration in Absence of Eosinophils Correlates with Decreased Tissue Damage and Disease Susceptibility in ΔdblGATA Mice during Murine Neurocysticercosis

    PubMed Central

    Mishra, Pramod K.; Li, Qun; Munoz, Luis E.; Mares, Chris A.; Morris, Elizabeth G.; Teale, Judy M.; Cardona, Astrid E.

    2016-01-01

    Neurocysticercosis (NCC) is one of the most common helminth parasitic diseases of the central nervous system (CNS) and the leading cause of acquired epilepsy worldwide. NCC is caused by the presence of the metacestode larvae of the tapeworm Taenia solium within brain tissues. NCC patients exhibit a long asymptomatic phase followed by a phase of symptoms including increased intra-cranial pressure and seizures. While the asymptomatic phase is attributed to the immunosuppressive capabilities of viable T. solium parasites, release of antigens by dying organisms induce strong immune responses and associated symptoms. Previous studies in T. solium-infected pigs have shown that the inflammatory response consists of various leukocyte populations including eosinophils, macrophages, and T cells among others. Because the role of eosinophils within the brain has not been investigated during NCC, we examined parasite burden, disease susceptibility and the composition of the inflammatory reaction in the brains of infected wild type (WT) and eosinophil-deficient mice (ΔdblGATA) using a murine model of NCC in which mice were infected intracranially with Mesocestoides corti, a cestode parasite related to T. solium. In WT mice, we observed a time-dependent induction of eosinophil recruitment in infected mice, contrasting with an overall reduced leukocyte infiltration in ΔdblGATA brains. Although, ΔdblGATA mice exhibited an increased parasite burden, reduced tissue damage and less disease susceptibility was observed when compared to infected WT mice. Cellular infiltrates in infected ΔdblGATA mice were comprised of more mast cells, and αβ T cells, which correlated with an abundant CD8+ T cell response and reduced CD4+ Th1 and Th2 responses. Thus, our data suggest that enhanced inflammatory response in WT mice appears detrimental and associates with increased disease susceptibility, despite the reduced parasite burden in the CNS. Overall reduced leukocyte infiltration due to

  4. Reduced Leukocyte Infiltration in Absence of Eosinophils Correlates with Decreased Tissue Damage and Disease Susceptibility in ΔdblGATA Mice during Murine Neurocysticercosis.

    PubMed

    Mishra, Pramod K; Li, Qun; Munoz, Luis E; Mares, Chris A; Morris, Elizabeth G; Teale, Judy M; Cardona, Astrid E

    2016-06-01

    Neurocysticercosis (NCC) is one of the most common helminth parasitic diseases of the central nervous system (CNS) and the leading cause of acquired epilepsy worldwide. NCC is caused by the presence of the metacestode larvae of the tapeworm Taenia solium within brain tissues. NCC patients exhibit a long asymptomatic phase followed by a phase of symptoms including increased intra-cranial pressure and seizures. While the asymptomatic phase is attributed to the immunosuppressive capabilities of viable T. solium parasites, release of antigens by dying organisms induce strong immune responses and associated symptoms. Previous studies in T. solium-infected pigs have shown that the inflammatory response consists of various leukocyte populations including eosinophils, macrophages, and T cells among others. Because the role of eosinophils within the brain has not been investigated during NCC, we examined parasite burden, disease susceptibility and the composition of the inflammatory reaction in the brains of infected wild type (WT) and eosinophil-deficient mice (ΔdblGATA) using a murine model of NCC in which mice were infected intracranially with Mesocestoides corti, a cestode parasite related to T. solium. In WT mice, we observed a time-dependent induction of eosinophil recruitment in infected mice, contrasting with an overall reduced leukocyte infiltration in ΔdblGATA brains. Although, ΔdblGATA mice exhibited an increased parasite burden, reduced tissue damage and less disease susceptibility was observed when compared to infected WT mice. Cellular infiltrates in infected ΔdblGATA mice were comprised of more mast cells, and αβ T cells, which correlated with an abundant CD8+ T cell response and reduced CD4+ Th1 and Th2 responses. Thus, our data suggest that enhanced inflammatory response in WT mice appears detrimental and associates with increased disease susceptibility, despite the reduced parasite burden in the CNS. Overall reduced leukocyte infiltration due to

  5. Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes.

    PubMed

    Bin-Umer, Mohamed Anwar; McLaughlin, John E; Butterly, Matthew S; McCormick, Susan; Tumer, Nilgun E

    2014-08-12

    Trichothecene mycotoxins are natural contaminants of small grain cereals and are encountered in the environment, posing a worldwide threat to human and animal health. Their mechanism of toxicity is poorly understood, and little is known about cellular protection mechanisms against trichothecenes. We previously identified inhibition of mitochondrial protein synthesis as a novel mechanism for trichothecene-induced cell death. To identify cellular functions involved in trichothecene resistance, we screened the Saccharomyces cerevisiae deletion library for increased sensitivity to nonlethal concentrations of trichothecin (Tcin) and identified 121 strains exhibiting higher sensitivity than the parental strain. The largest group of sensitive strains had significantly higher reactive oxygen species (ROS) levels relative to the parental strain. A dose-dependent increase in ROS levels was observed in the parental strain treated with different trichothecenes, but not in a petite version of the parental strain or in the presence of a mitochondrial membrane uncoupler, indicating that mitochondria are the main site of ROS production due to toxin exposure. Cytotoxicity of trichothecenes was alleviated after treatment of the parental strain and highly sensitive mutants with antioxidants, suggesting that oxidative stress contributes to trichothecene sensitivity. Cotreatment with rapamycin and trichothecenes reduced ROS levels and cytotoxicity in the parental strain relative to the trichothecene treatment alone, but not in mitophagy deficient mutants, suggesting that elimination of trichothecene-damaged mitochondria by mitophagy improves cell survival. These results reveal that increased mitophagy is a cellular protection mechanism against trichothecene-induced mitochondrial oxidative stress and a potential target for trichothecene resistance. PMID:25071194

  6. Reflective Polyethylene Mulch Reduces Mexican Bean Beetle (Coleoptera: Coccinellidae) Densities and Damage in Snap Beans.

    PubMed

    Nottingham, L B; Kuhar, T P

    2016-08-01

    Mexican bean beetle, Epilachna varivestis Mulsant, is a serious pest of snap beans, Phaseolus vulgaris L., in the eastern United States. These beetles are intolerant to direct sunlight, explaining why individuals are typically found on the undersides of leaves and in the lower portion of the plant canopy. We hypothesized that snap beans grown on reflective, agricultural polyethylene (plastic mulch) would have fewer Mexican bean beetles and less injury than those grown on black plastic or bare soil. In 2014 and 2015, beans were seeded into beds of metallized, white, and black plastic, and bare soil, in field plots near Blacksburg, VA. Mexican bean beetle density, feeding injury, predatory arthropods, and snap bean yield were sampled. Reflected light intensity, temperature, and humidity were monitored using data loggers. Pyranometer readings showed that reflected light intensity was highest over metallized plastic and second highest over white plastic; black plastic and bare soil were similarly low. Temperature and humidity were unaffected by treatments. Significant reductions in Mexican bean beetle densities and feeding injury were observed in both metallized and white plastic plots compared to black plastic and bare soil, with metallized plastic having the fewest Mexican bean beetle life stages and injury. Predatory arthropod densities were not reduced by reflective plastic. Metallized plots produced the highest yields, followed by white. The results of this study suggest that growing snap beans on reflective plastic mulch can suppress the incidence and damage of Mexican bean beetle, and increase yield in snap beans. PMID:27341891

  7. Low-Power 2-MHz Pulsed-Wave Transcranial Ultrasound Reduces Ischemic Brain Damage in Rats.

    PubMed

    Alexandrov, Andrei V; Barlinn, Kristian; Strong, Roger; Alexandrov, Anne W; Aronowski, Jaroslaw

    2011-09-01

    It is largely unknown whether prolonged insonation with ultrasound impacts the ischemic brain tissue by itself. Our goal was to evaluate safety and the effect of high-frequency ultrasound on infarct volume in rats. Thirty-two Long-Evans rats with permanent middle cerebral and carotid artery occlusions received either 2-MHz ultrasound at two levels of insonation power (128 or 10 mW) or no ultrasound (controls). We measured cerebral hemorrhage, indirect and direct infarct volume as well as edema volume at 24 h. No cerebral hemorrhages were detected in all animals. Exposure to low-power (10 mW) ultrasound resulted in a significantly decreased indirect infarct volume (p = 0.0039), direct infarct volume (p = 0.0031), and brain edema volume (p = 0.01) compared with controls. High-power (128 mW) ultrasound had no significant effects. An additional experiment with India ink showed a greater intravascular penetration of dye into ischemic tissues exposed to low-power ultrasound. Insonation with high-frequency, low-power ultrasound reduces ischemic brain damage in rat. Its effect on edema reduction and possible promotion of microcirculation could be used to facilitate drug and nutrient delivery to ischemic areas. PMID:24323655

  8. Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes

    PubMed Central

    Bin-Umer, Mohamed Anwar; McLaughlin, John E.; Butterly, Matthew S.; McCormick, Susan; Tumer, Nilgun E.

    2014-01-01

    Trichothecene mycotoxins are natural contaminants of small grain cereals and are encountered in the environment, posing a worldwide threat to human and animal health. Their mechanism of toxicity is poorly understood, and little is known about cellular protection mechanisms against trichothecenes. We previously identified inhibition of mitochondrial protein synthesis as a novel mechanism for trichothecene-induced cell death. To identify cellular functions involved in trichothecene resistance, we screened the Saccharomyces cerevisiae deletion library for increased sensitivity to nonlethal concentrations of trichothecin (Tcin) and identified 121 strains exhibiting higher sensitivity than the parental strain. The largest group of sensitive strains had significantly higher reactive oxygen species (ROS) levels relative to the parental strain. A dose-dependent increase in ROS levels was observed in the parental strain treated with different trichothecenes, but not in a petite version of the parental strain or in the presence of a mitochondrial membrane uncoupler, indicating that mitochondria are the main site of ROS production due to toxin exposure. Cytotoxicity of trichothecenes was alleviated after treatment of the parental strain and highly sensitive mutants with antioxidants, suggesting that oxidative stress contributes to trichothecene sensitivity. Cotreatment with rapamycin and trichothecenes reduced ROS levels and cytotoxicity in the parental strain relative to the trichothecene treatment alone, but not in mitophagy deficient mutants, suggesting that elimination of trichothecene-damaged mitochondria by mitophagy improves cell survival. These results reveal that increased mitophagy is a cellular protection mechanism against trichothecene-induced mitochondrial oxidative stress and a potential target for trichothecene resistance. PMID:25071194

  9. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin

    PubMed Central

    McFarlin, Brian K.; Venable, Adam S.; Henning, Andrea L.; Sampson, Jill N. Best; Pennel, Kathryn; Vingren, Jakob L.; Hill, David W.

    2016-01-01

    Background Exercise-Induced Muscle Damage (EIMD) and delayed onset muscle soreness (DOMS) impact subsequent training sessions and activities of daily living (ADL) even in active individuals. In sedentary or diseased individuals, EIMD and DOMS may be even more pronounced and present even in the absence of structured exercise. Methods The purpose of this study was to determine the effects of oral curcumin supplementation (Longvida® 400 mg/days) on muscle & ADL soreness, creatine kinase (CK), and inflammatory cytokines (TNF-α, IL-6, IL-8, IL-10) following EMID (eccentric-only dual-leg press exercise). Subjects (N = 28) were randomly assigned to either curcumin (400 mg/day) or placebo (rice flour) and supplemented 2 days before to 4 days after EMID. Blood samples were collected prior to (PRE), and 1, 2, 3, and 4 days after EIMD to measure CK and inflammatory cytokines. Data were analyzed by ANOVA with P < 0.05. Results Curcumin supplementation resulted in significantly smaller increases in CK (− 48%), TNF-α (− 25%), and IL-8 (− 21%) following EIMD compared to placebo. We observed no significant differences in IL-6, IL-10, or quadriceps muscle soreness between conditions for this sample size. Conclusions Collectively, the findings demonstrated that consumption of curcumin reduced biological inflammation, but not quadriceps muscle soreness, during recovery after EIMD. The observed improvements in biological inflammation may translate to faster recovery and improved functional capacity during subsequent exercise sessions. General significance These findings support the use of oral curcumin supplementation to reduce the symptoms of EIMD. The next logical step is to evaluate further the efficacy of an inflammatory clinical disease model. PMID:27051592

  10. Intravaginal Chlamydia trachomatis Challenge Infection Elicits TH1 and TH17 Immune Responses in Mice That Promote Pathogen Clearance and Genital Tract Damage.

    PubMed

    Vicetti Miguel, Rodolfo D; Quispe Calla, Nirk E; Pavelko, Stephen D; Cherpes, Thomas L

    2016-01-01

    While ascension of Chlamydia trachomatis into the upper genital tract of women can cause pelvic inflammatory disease and Fallopian tube damage, most infections elicit no symptoms or overt upper genital tract pathology. Consistent with this asymptomatic clinical presentation, genital C. trachomatis infection of women generates robust TH2 immunity. As an animal model that modeled this response would be invaluable for delineating bacterial pathogenesis and human host defenses, herein we explored if pathogen-specific TH2 immunity is similarly elicited by intravaginal (ivag) infection of mice with oculogenital C. trachomatis serovars. Analogous to clinical infection, ascension of primary C. trachomatis infection into the mouse upper genital tract produced no obvious tissue damage. Clearance of ivag challenge infection was mediated by interferon (IFN)-γ-producing CD4+ T cells, while IFN-γ signaling blockade concomitant with a single ivag challenge promoted tissue damage by enhancing Chlamydia-specific TH17 immunity. Likewise, IFN-γ and IL-17 signaling blockade or CD4+ T cell depletion eliminated the genital pathology produced in untreated controls by multiple ivag challenge infections. Conversely, we were unable to detect formation of pathogen-specific TH2 immunity in C. trachomatis-infected mice. Together, our work revealed C. trachomatis infection of mice generates TH1 and TH17 immune responses that promote pathogen clearance and immunopathological tissue damage. Absence of Chlamydia-specific TH2 immunity in these mice newly highlights the need to identify experimental models of C. trachomatis genital infection that more closely recapitulate the human host response. PMID:27606424

  11. North American ginseng protects against muscle damage and reduces neutrophil infiltration after an acute bout of downhill running in rats.

    PubMed

    Estaki, Mehrbod; Noble, Earl G

    2015-02-01

    Eccentric muscle contractions such as those experienced during downhill running are associated with inflammation, delayed-onset of muscle soreness, myofiber damage, and various functional deficits. North American ginseng (Panax quinquefolius L.) has been reported to possess anti-inflammatory properties and thus may offset some of this exercise-induced damage. Hence, we tested the hypothesis that intervention with North American ginseng would reduce eccentric exercise-induced muscle damage and inflammation. Male Wistar rats were fed (300 mg/(kg·day)(-1)) of either an alcohol (AL) or aqueous (AQ) extract of North American ginseng for 14 days before a single bout of downhill running and were compared with matching nonexercised (C) groups. Plasma creatine kinase levels were significantly reduced in both ginseng treated groups compared with the C group that received a water placebo (p < 0.002). Further, the AQ but not AL group also showed attenuated morphological signs of damage (hemotoxylin and eosin) as well as reduced levels of infiltrating neutrophils (HIS48) in the soleus muscle (p < 0.001). In summary, supplementation with an AQ but not AL extract of North American ginseng was able to reduce eccentric exercise-induced muscle damage and inflammation. PMID:25531801

  12. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees.

    PubMed

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee's susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358

  13. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees

    PubMed Central

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358

  14. Normobaric hyperoxia markedly reduces brain damage and sensorimotor deficits following brief focal ischaemia.

    PubMed

    Ejaz, Sohail; Emmrich, Julius V; Sitnikov, Sergey L; Hong, Young T; Sawiak, Stephen J; Fryer, Tim D; Aigbirhio, Franklin I; Williamson, David J; Baron, Jean-Claude

    2016-03-01

    'True' transient ischaemic attacks are characterized not only clinically, but also radiologically by a lack of corresponding changes on magnetic resonance imaging. During a transient ischaemic attack it is assumed that the affected tissue is penumbral but rescued by early spontaneous reperfusion. There is, however, evidence from rodent studies that even brief focal ischaemia not resulting in tissue infarction can cause extensive selective neuronal loss associated with long-lasting sensorimotor impairment but normal magnetic resonance imaging. Selective neuronal loss might therefore contribute to the increasingly recognized cognitive impairment occurring in patients with transient ischaemic attacks. It is therefore relevant to consider treatments to reduce brain damage occurring with transient ischaemic attacks. As penumbral neurons are threatened by markedly constrained oxygen delivery, improving the latter by increasing arterial O2 content would seem logical. Despite only small increases in arterial O2 content, normobaric oxygen therapy experimentally induces significant increases in penumbral O2 pressure and by such may maintain the penumbra alive until reperfusion. Nevertheless, the effects of normobaric oxygen therapy on infarct volume in rodent models have been conflicting, although duration of occlusion appeared an important factor. Likewise, in the single randomized trial published to date, early-administered normobaric oxygen therapy had no significant effect on clinical outcome despite reduced diffusion-weighted imaging lesion growth during therapy. Here we tested the hypothesis that normobaric oxygen therapy prevents both selective neuronal loss and sensorimotor deficits in a rodent model mimicking true transient ischaemic attack. Normobaric oxygen therapy was applied from the onset and until completion of 15 min distal middle cerebral artery occlusion in spontaneously hypertensive rats, a strain representative of the transient ischaemic attack

  15. Reducing the Risks of Nonstructural Earthquake Damage: A Practical Guide. Earthquake Hazards Reduction Series 1.

    ERIC Educational Resources Information Center

    Reitherman, Robert

    The purpose of this booklet is to provide practical information to owners, operators, and occupants of office and commercial buildings on the vulnerabilities posed by earthquake damage to nonstructural items and the means available to deal with these potential problems. Examples of dangerous nonstructural damages that have occurred in past…

  16. Platelet Apoptosis in Adult Immune Thrombocytopenia: Insights into the Mechanism of Damage Triggered by Auto-Antibodies

    PubMed Central

    Goette, Nora P.; Glembotsky, Ana C.; Lev, Paola R.; Grodzielski, Matías; Contrufo, Geraldine; Pierdominici, Marta S.; Espasandin, Yesica R.; Riveros, Dardo; García, Alejandro J.; Molinas, Felisa C.; Heller, Paula G.

    2016-01-01

    Mechanisms leading to decreased platelet count in immune thrombocytopenia (ITP) are heterogeneous. This study describes increased platelet apoptosis involving loss of mitochondrial membrane potential (ΔΨm), caspase 3 activation (aCasp3) and phosphatidylserine (PS) externalization in a cohort of adult ITP patients. Apoptosis was not related to platelet activation, as PAC-1 binding, P-selectin exposure and GPIb-IX internalization were not increased. Besides, ITP platelets were more sensitive to apoptotic stimulus in terms of aCasp3. Incubation of normal platelets with ITP plasma induced loss of ΔΨm, while PS exposure and aCasp3 remained unaltered. The increase in PS exposure observed in ITP platelets could be reproduced in normal platelets incubated with ITP plasma by adding normal CD3+ lymphocytes to the system as effector cells. Addition of leupeptin -a cathepsin B inhibitor- to this system protected platelets from apoptosis. Increased PS exposure was also observed when normal platelets and CD3+ lymphocytes were incubated with purified IgG from ITP patients and was absent when ITP plasma was depleted of auto-antibodies, pointing to the latter as responsible for platelet damage. Apoptosis was present in platelets from all patients carrying anti-GPIIb-IIIa and anti-GPIb auto-antibodies but was absent in the patient with anti-GPIa-IIa auto-antibodies. Platelet damage inversely correlated with platelet count and decreased during treatment with a thrombopoietin receptor agonist. These results point to a key role for auto-antibodies in platelet apoptosis and suggest that antibody-dependent cell cytotoxicity is the mechanism underlying this phenomenon. PMID:27494140

  17. Platelet Apoptosis in Adult Immune Thrombocytopenia: Insights into the Mechanism of Damage Triggered by Auto-Antibodies.

    PubMed

    Goette, Nora P; Glembotsky, Ana C; Lev, Paola R; Grodzielski, Matías; Contrufo, Geraldine; Pierdominici, Marta S; Espasandin, Yesica R; Riveros, Dardo; García, Alejandro J; Molinas, Felisa C; Heller, Paula G; Marta, Rosana F

    2016-01-01

    Mechanisms leading to decreased platelet count in immune thrombocytopenia (ITP) are heterogeneous. This study describes increased platelet apoptosis involving loss of mitochondrial membrane potential (ΔΨm), caspase 3 activation (aCasp3) and phosphatidylserine (PS) externalization in a cohort of adult ITP patients. Apoptosis was not related to platelet activation, as PAC-1 binding, P-selectin exposure and GPIb-IX internalization were not increased. Besides, ITP platelets were more sensitive to apoptotic stimulus in terms of aCasp3. Incubation of normal platelets with ITP plasma induced loss of ΔΨm, while PS exposure and aCasp3 remained unaltered. The increase in PS exposure observed in ITP platelets could be reproduced in normal platelets incubated with ITP plasma by adding normal CD3+ lymphocytes to the system as effector cells. Addition of leupeptin -a cathepsin B inhibitor- to this system protected platelets from apoptosis. Increased PS exposure was also observed when normal platelets and CD3+ lymphocytes were incubated with purified IgG from ITP patients and was absent when ITP plasma was depleted of auto-antibodies, pointing to the latter as responsible for platelet damage. Apoptosis was present in platelets from all patients carrying anti-GPIIb-IIIa and anti-GPIb auto-antibodies but was absent in the patient with anti-GPIa-IIa auto-antibodies. Platelet damage inversely correlated with platelet count and decreased during treatment with a thrombopoietin receptor agonist. These results point to a key role for auto-antibodies in platelet apoptosis and suggest that antibody-dependent cell cytotoxicity is the mechanism underlying this phenomenon. PMID:27494140

  18. Immunization with Staphylococcus aureus Clumping Factor B, a Major Determinant in Nasal Carriage, Reduces Nasal Colonization in a Murine Model

    PubMed Central

    Schaffer, Adam C.; Solinga, Robert M.; Cocchiaro, Jordan; Portoles, Marta; Kiser, Kevin B.; Risley, Allison; Randall, Suzanne M.; Valtulina, Viviana; Speziale, Pietro; Walsh, Evelyn; Foster, Timothy; Lee, Jean C.

    2006-01-01

    Staphylococcus aureus is responsible for a wide range of infections, including soft tissue infections and potentially fatal bacteremias. The primary niche for S. aureus in humans is the nares, and nasal carriage is a documented risk factor for staphylococcal infection. Previous studies with rodent models of nasal colonization have implicated capsule and teichoic acid as staphylococcal surface factors that promote colonization. In this study, a mouse model of nasal colonization was utilized to demonstrate that S. aureus mutants that lack clumping factor A, collagen binding protein, fibronectin binding proteins A and B, polysaccharide intercellular adhesin, or the accessory gene regulator colonized as well as wild-type strains colonized. In contrast, mutants deficient in sortase A or clumping factor B (ClfB) showed reduced nasal colonization. Mice immunized intranasally with killed S. aureus cells showed reduced nasal colonization compared with control animals. Likewise, mice that were immunized systemically or intranasally with a recombinant vaccine composed of domain A of ClfB exhibited lower levels of colonization than control animals exhibited. A ClfB monoclonal antibody (MAb) inhibited S. aureus binding to mouse cytokeratin 10. Passive immunization of mice with this MAb resulted in reduced nasal colonization compared with the colonization observed after immunization with an isotype-matched control antibody. The mouse immunization studies demonstrate that ClfB is an attractive component for inclusion in a vaccine to reduce S. aureus nasal colonization in humans, which in turn may diminish the risk of staphylococcal infection. As targets for vaccine development and antimicrobial intervention are assessed, rodent nasal colonization models may be invaluable. PMID:16552044

  19. Blockade of Thrombopoietin Reduces Organ Damage in Experimental Endotoxemia and Polymicrobial Sepsis

    PubMed Central

    De Giuli, Paolo; Bosco, Ornella; Martin-Conte, Erica; Spatola, Tiziana; Turco, Emilia; Montrucchio, Giuseppe

    2016-01-01

    Background and Purpose Thrombopoietin (TPO), a growth factor primarily involved in thrombopoiesis may also have a role in the pathophysiology of sepsis. In patients with sepsis, indeed, TPO levels are markedly increased, with disease severity being the major independent determinant of TPO concentrations. Moreover, TPO increases and correlates with ex vivo indices of platelet activation in patients with burn injury upon sepsis development, and may contribute to depress cardiac contractility in septic shock. Still, the role of TPO in sepsis pathophysiology remains controversial, given the protective role of TPO in other experimental disease models, for instance in doxorubicin-induced cardiotoxicity and myocardial ischemia/reperfusion injury. The aim of our study was to define the contribution of TPO in the development of organ damage induced by endotoxemia or sepsis, and to investigate the effects of inhibiting TPO in these conditions. Methods We synthesized a chimeric protein able to inhibit TPO, mTPOR-MBP, and studied its effect in two murine experimental models, acute endotoxemia and cecal ligation and puncture (CLP) model. Results In both models, TPO levels markedly increased, from 289.80±27.87 pg/mL to 465.60±45.92 pg/mL at 3 hours in the LPS model (P<0.01), and from 265.00±26.02 pg/mL to 373.70±26.20 pg/mL in the CLP model (P<0.05), respectively. Paralleling TPO levels, also platelet-monocyte aggregates increased, from 32.86±2.48% to 46.13±1.39% at 3 hours in the LPS model (P<0.01), and from 43.68±1.69% to 56.52±4.66% in the CLP model (P<0.05). Blockade of TPO by mTPOR-MBP administration reduced histological damage in target organs, namely lung, liver, and gut. In particular, neutrophil infiltration and lung septal thickening were reduced from a score of 1.86±0.34 to 0.60±0.27 (P<0.01) and from 1.43±0.37 to 0.40±0.16 (P<0.05), respectively, in the LPS model at 3 hours, and from a score of 1.75±0.37 to 0.38±0.18 (P<0.01) and from 1.25±0.31 to 0

  20. Modelling the benefits of flood emergency management measures in reducing damages: a case study on Sondrio, Italy

    NASA Astrophysics Data System (ADS)

    Molinari, D.; Ballio, F.; Menoni, S.

    2013-08-01

    The European "Floods Directive" 2007/60/EU has produced an important shift from a traditional approach to flood risk management centred only on hazard analysis and forecast to a newer one which encompasses other aspects relevant to decision-making and which reflect recent research advances in both hydraulic engineering and social studies on disaster risk. This paper accordingly proposes a way of modelling the benefits of flood emergency management interventions calculating the possible damages by taking into account exposure, vulnerability, and expected damage reduction. The results of this model can be used to inform decisions and choices for the implementation of flood emergency management measures. A central role is played by expected damages, which are the direct and indirect consequence of the occurrence of floods in exposed and vulnerable urban systems. How damages should be defined and measured is a key question that this paper tries to address. The Floods Directive suggests that mitigation measures taken to reduce flood impact need to be evaluated also by means of a cost-benefit analysis. The paper presents a methodology for assessing the effectiveness of early warning for flash floods, considering its potential impact in reducing direct physical damage, and it assesses the general benefit in regard to other types of damages and losses compared with the emergency management costs. The methodology is applied to the case study area of the city of Sondrio in the northern Alpine region of Italy. A critical discussion follows the application. Its purpose is to highlight the strengths and weaknesses of available models for quantifying direct physical damage and of the general model proposed, given the current state of the art in damage and loss assessment.

  1. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus.

    PubMed

    Di Curzio, Domenico L; Buist, Richard J; Del Bigio, Marc R

    2013-10-01

    Hydrocephalus is a neurological condition characterized by altered cerebrospinal fluid (CSF) flow with enlargement of ventricular cavities in the brain. A reliable model of hydrocephalus in gyrencephalic mammals is necessary to test preclinical hypotheses. Our objective was to characterize the behavioral, structural, and histological changes in juvenile ferrets following induction of hydrocephalus. Fourteen-day old ferrets were given an injection of kaolin (aluminum silicate) into the cisterna magna. Two days later and repeated weekly until 56 days of age, magnetic resonance (MR) imaging was used to assess ventricle size. Behavior was examined thrice weekly. Compared to age-matched saline-injected controls, severely hydrocephalic ferrets weighed significantly less, their postures were impaired, and they were hyperactive prior to extreme debilitation. They developed significant ventriculomegaly and displayed white matter destruction. Reactive astroglia and microglia detected by glial fibrillary acidic protein (GFAP) and Iba-1 immunostaining were apparent in white matter, cortex, and hippocampus. There was a hydrocephalus-related increase in activated caspase 3 labeling of apoptotic cells (7.0 vs. 15.5%) and a reduction in Ki67 labeling of proliferating cells (23.3 vs. 5.9%) in the subventricular zone (SVZ). Reduced Olig2 immunolabeling suggests a depletion of glial precursors. GFAP content was elevated. Myelin basic protein (MBP) quantitation and myelin biochemical enzyme activity showed early maturational increases. Where white matter was not destroyed, the remaining axons developed myelin similar to the controls. In conclusion, the hydrocephalus-induced periventricular disturbances may involve developmental impairments in cell proliferation and glial precursor cell populations. The ferret should prove useful for testing hypotheses about white matter damage and protection in the immature hydrocephalic brain. PMID:23769908

  2. Real-time immune cell interactions in target tissue during autoimmune-induced damage and graft tolerance

    PubMed Central

    Miska, Jason; Abdulreda, Midhat H.; Devarajan, Priyadharshini; Lui, Jen Bon; Suzuki, Jun; Pileggi, Antonello; Berggren, Per-Olof

    2014-01-01

    Real-time imaging studies are reshaping immunological paradigms, but a visual framework is lacking for self-antigen-specific T cells at the effector phase in target tissues. To address this issue, we conducted intravital, longitudinal imaging analyses of cellular behavior in nonlymphoid target tissues to illustrate some key aspects of T cell biology. We used mouse models of T cell–mediated damage and protection of pancreatic islet grafts. Both CD4+ and CD8+ effector T (Teff) lymphocytes directly engaged target cells. Strikingly, juxtaposed β cells lacking specific antigens were not subject to bystander destruction but grew substantially in days, likely by replication. In target tissue, Foxp3+ regulatory T (Treg) cells persistently contacted Teff cells with or without involvement of CD11c+ dendritic cells, an observation conciliating with the in vitro “trademark” of Treg function, contact-dependent suppression. This study illustrates tolerance induction by contact-based immune cell interaction in target tissues and highlights potentials of tissue regeneration under antigenic incognito in inflammatory settings. PMID:24567447

  3. Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage.

    PubMed

    Pohl, Hartmut B F; Porcheri, Cristina; Mueggler, Thomas; Bachmann, Lukas C; Martino, Gianvito; Riethmacher, Dieter; Franklin, Robin J M; Rudin, Markus; Suter, Ueli

    2011-01-19

    Loss of oligodendrocytes is a feature of many demyelinating diseases including multiple sclerosis. Here, we have established and characterized a novel model of genetically induced adult oligodendrocyte death. Specific primary loss of adult oligodendrocytes leads to a well defined and highly reproducible course of disease development that can be followed longitudinally by magnetic resonance imaging. Histological and ultrastructural analyses revealed progressive myelin vacuolation, in parallel to disease development that includes motor deficits, tremor, and ataxia. Myelin damage and clearance were associated with induction of oligodendrocyte precursor cell proliferation, albeit with some regional differences. Remyelination was present in the mildly affected corpus callosum. Consequences of acutely induced cell death of adult oligodendrocytes included secondary axonal damage. Microglia were activated in affected areas but without significant influx of B-cells, T-helper cells, or T-cytotoxic cells. Analysis of the model on a RAG-1 (recombination activating gene-1)-deficient background, lacking functional lymphocytes, did not change the observed disease and pathology compared with immune-competent mice. We conclude that this model provides the opportunity to study the consequences of adult oligodendrocyte death in the absence of primary axonal injury and reactive cells of the adaptive immune system. Our results indicate that if the blood-brain barrier is not disrupted, myelin debris is not removed efficiently, remyelination is impaired, and axonal integrity is compromised, likely as the result of myelin detachment. This model will allow the evaluation of strategies aimed at improving remyelination to foster axon protection. PMID:21248132

  4. Oral tungstate (Na2WO4) exposure reduces adaptive immune responses in mice after challenge.

    PubMed

    Osterburg, Andrew R; Robinson, Chad T; Mokashi, Vishwesh; Stockelman, Michael; Schwemberger, Sandy J; Chapman, Gail; Babcock, George F

    2014-01-01

    Tungstate (WO²⁻₄) has been identified as a ground water contaminant at military firing ranges and can be absorbed by ingestion. In this study, C57BL6 mice were exposed to sodium tungstate (Na2WO4·2H2O) (0, 2, 62.5, 125, and 200 mg/kg/day) in their drinking water for an initial 28-day screen and in a one-generation (one-gen) model. Twenty-four hours prior to euthanasia, mice were intraperitoneally injected with Staphylococcal enterotoxin B (SEB) (20 μg/mouse) or saline as controls. After euthanasia, splenocytes and blood were collected and stained with lymphocyte and/or myeloid immunophenotyping panels and analyzed by flow cytometry. In the 28-day and one-gen exposure, statistically significant reductions were observed in the quantities of activated cytotoxic T-cells (TCTL; CD3(+)CD8(+)CD71(+)) and helper T-cells (TH; CD3(+)CD4(+)CD71(+)) from spleens of SEB-treated mice. In the 28-day exposures, CD71(+) TCTL cells were 12.87 ± 2.05% (SE) in the 0 tungstate (control) group compared to 4.44 ± 1.42% in the 200 mg/kg/day (p < 0.001) group. TH cells were 4.85 ± 1.23% in controls and 2.76 ± 0.51% in the 200 mg/kg/day (p < 0.003) group. In the one-gen exposures, TCTL cells were 7.98 ± 0.49% and 6.33 ± 0.49% for P and F1 mice after 0 mg/kg/day tungstate vs 1.58 ± 0.23% and 2.52 ± 0.25% after 200 mg/kg/day of tungstate (p < 0.001). Similarly, TH cells were reduced to 6.21 ± 0.39% and 7.20 ± 0.76%, respectively, for the 0 mg/kg/day P and F1 mice, and 2.28 ± 0.41% and 2.85 ± 0.53%, respectively, for the 200 mg/kg/day tungstate P and F1 groups (p < 0.001). In delayed-type hypersensitivity Type IV experiments, tungstate exposure prior to primary and secondary antigen challenge significantly reduced footpad swelling at 20 and 200 mg/kg/day. These data indicate that exposure to tungstate can result in immune suppression that may, in turn, reduce host defense against

  5. Prevalence of Plasmodium falciparum transmission reducing immunity among primary school children in a malaria moderate transmission region in Zimbabwe.

    PubMed

    Paul, Noah H; Vengesai, Arthur; Mduluza, Takafira; Chipeta, James; Midzi, Nicholas; Bansal, Geetha P; Kumar, Nirbhay

    2016-11-01

    Malaria continues to cause alarming morbidity and mortality in more than 100 countries worldwide. Antigens in the various life cycle stages of malaria parasites are presented to the immune system during natural infection and it is widely recognized that after repeated malaria exposure, adults develop partially protective immunity. Specific antigens of natural immunity represent among the most important targets for the development of malaria vaccines. Immunity against the transmission stages of the malaria parasite represents an important approach to reduce malaria transmission and is believed to become an important tool for gradual elimination of malaria. Development of immunity against Plasmodium falciparum sexual stages was evaluated in primary school children aged 6-16 years in Makoni district of Zimbabwe, an area of low to modest malaria transmission. Malaria infection was screened by microscopy, rapid diagnostic tests and finally using nested PCR. Plasma samples were tested for antibodies against recombinant Pfs48/45 and Pfs47 by ELISA. Corresponding serum samples were used to test for P. falciparum transmission reducing activity in Anopheles stephensi and An. gambiae mosquitoes using the membrane feeding assay. The prevalence of malaria diagnosed by rapid diagnostic test kit (Paracheck)™ was 1.7%. However, of the randomly tested blood samples, 66% were positive by nested PCR. ELISA revealed prevalence (64% positivity at 1:500 dilution, in randomly selected 66 plasma samples) of antibodies against recombinant Pfs48/45 (mean A 405nm=0.53, CI=0.46-0.60) and Pfs47 (mean A405nm=0.91, CI=0.80-1.02); antigens specific to the sexual stages. The mosquito membrane feeding assay demonstrated measurable transmission reducing ability of the samples that were positive for Pfs48/45 antibodies by ELISA. Interestingly, 3 plasma samples revealed enhancement of infectivity of P. falciparum in An. stephensi mosquitoes. These studies revealed the presence of antibodies with

  6. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    PubMed Central

    Kmetko, Jan; Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E.

    2011-01-01

    Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystalliz­ation or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions. PMID:21931220

  7. Managing population immunity to reduce or eliminate the risks of circulation following the importation of polioviruses.

    PubMed

    Thompson, Kimberly M; Kalkowska, Dominika A; Duintjer Tebbens, Radboud J

    2015-03-24

    Poliovirus importations into polio-free countries represent a major concern during the final phases of global eradication of wild polioviruses (WPVs). We extend dynamic transmission models to demonstrate the dynamics of population immunity out through 2020 for three countries that only used inactivated poliovirus vaccine (IPV) for routine immunization: the US, Israel, and The Netherlands. For each country, we explore the vulnerability to re-established transmission following an importation for each poliovirus serotype, including the impact of immunization choices following the serotype 1 WPV importation that occurred in 2013 in Israel. As population immunity declines below the threshold required to prevent transmission, countries become at risk for re-established transmission. Although importations represent stochastic events that countries cannot fully control because people cross borders and polioviruses mainly cause asymptomatic infections, countries can ensure that any importations die out. Our results suggest that the general US population will remain above the threshold for transmission through 2020. In contrast, Israel became vulnerable to re-established transmission of importations of live polioviruses by the late 2000s. In Israel, the recent WPV importation and outbreak response use of bivalent oral poliovirus vaccine (bOPV) eliminated the vulnerability to an importation of poliovirus serotypes 1 and 3 for several years, but not serotype 2. The Netherlands experienced a serotype 1 WPV outbreak in 1992-1993 and became vulnerable to re-established transmission in religious communities with low vaccine acceptance around the year 2000, although the general population remains well-protected from widespread transmission. All countries should invest in active management of population immunity to avoid the potential circulation of imported live polioviruses. IPV-using countries may wish to consider prevention opportunities and/or ensure preparedness for response

  8. A padding method to reduce edge effects for enhanced damage identification using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Montanari, Lorenzo; Basu, Biswajit; Spagnoli, Andrea; Broderick, Brian M.

    2015-02-01

    Vibration response based structural damage identification by spatial wavelet analysis is widely considered a powerful tool in Structural Health Monitoring (SHM). This work deals with the issue of border distortions in wavelet transform that can mask tiny damages close to the boundary of a structure. Since traditional padding methods (e.g., zero-padding, symmetric padding, linear padding) are often not satisfactory, a simple and computationally inexpensive signal extension method, based on fitting polynomial functions and continuity conditions at the extrema, is proposed. The method is applied to analyze noisy mode shapes and static deflection of cracked cantilever and simply supported beams. The effectiveness and the versatility of the method in localizing tiny damages close to clamped, free or hinged beam boundaries is demonstrated. Furthermore, an extensive comparison with the linear padding method and Messina's isomorphism methods is carried out.

  9. Damage Characterization Method for Structural Health Management Using Reduced Number of Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Hochhalter, Jacob D.; Gallegos, Adam M.

    2012-01-01

    The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage (cracks) due to fatigue and low velocity foreign impacts that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage in critical structural components is highly important in developing efficient structural health management systems.

  10. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    SciTech Connect

    Kmetko, Jan; Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E.

    2011-10-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions.

  11. Immune reconstitution after haploidentical hematopoietic cell transplantation: impact of reduced intensity conditioning and CD3/CD19 depleted grafts.

    PubMed

    Federmann, B; Hägele, M; Pfeiffer, M; Wirths, S; Schumm, M; Faul, C; Vogel, W; Handgretinger, R; Kanz, L; Bethge, W A

    2011-01-01

    Haploidentical hematopoietic cell transplantation (HHCT) using CD34 selected grafts is complicated by slow engraftment and immune reconstitution. Engraftment and immune reconstitution might be improved using CD3/CD19-depleted grafts and reduced intensity conditioning (RIC). We report on 28 patients after HHCT with CD3/CD19-depleted grafts using RIC, which were prospectively evaluated for engraftment and immune reconstitution. Engraftment was rapid with full chimerism reached on day +15 after HHCT. T-cell reconstitution was delayed with a median of 205 CD3+ cells/μl, 70 CD3+CD4+ cells/μl and 66 CD3+ CD8+ cells/μl on day +100, respectively. A skewed T-cell receptor-Vβ repertoire with oligoclonal T-cell expansions to day +100 and normalization after day +200 was observed. B-cell reconstitution was slow with a median of 100 CD19+ CD20+ cells/μl on day +150. Natural killer (NK) cell engraftment was fast reaching normal values on day +20. An increased natural cytotoxicity receptor and NKG2A, but decreased NKG2D and KIR expressions were observed on NK cells until day +100. We observed a positive impact of donor lymphocyte infusions on immune reconstitution. In conclusion, after HHCT, using CD3/CD19-depleted grafts and RIC, T- and B-cell reconstitution is delayed, whereas NK-cell reconstitution occurs early and fast. PMID:20944677

  12. Functions of innate and acquired immune system are reduced in domestic pigeons (Columba livia domestica) given a low protein diet.

    PubMed

    Mabuchi, Yuko; Frankel, Theresa L

    2016-03-01

    Racing pigeons are exposed to and act as carriers of diseases. Dietary protein requirement for their maintenance has not been determined experimentally despite their being domesticated for over 7000 years. A maintenance nitrogen (protein) requirement (MNR) for pigeons was determined in a balance study using diets containing 6, 10 and 14% crude protein (CP). Then, the effects of feeding the diets were investigated to determine whether they were adequate to sustain innate and acquired immune functions. Nitrogen intake from the 6% CP diet was sufficient to maintain nitrogen balance and body weight in pigeons. However, the immune functions of phagocytosis, oxidative burst and lymphocyte proliferation in pigeons fed this diet were reduced compared with those fed 10 and 14% CP diets. Pigeons given the 6 and 10% CP diets had lower antibody titres following inoculation against Newcastle disease (ND) than those on the 14% CP diet. A confounding factor found on autopsy was the presence of intestinal parasites in some of the pigeons given the 6 and 10% CP diets; however, none of the pigeons used to measure MNR or acquired immunity to ND were infested with parasites. In conclusion, neither the 6 nor 10% CP diets adequately sustained acquired immune function of pigeons. PMID:27069640

  13. Functions of innate and acquired immune system are reduced in domestic pigeons (Columba livia domestica) given a low protein diet

    PubMed Central

    Mabuchi, Yuko; Frankel, Theresa L.

    2016-01-01

    Racing pigeons are exposed to and act as carriers of diseases. Dietary protein requirement for their maintenance has not been determined experimentally despite their being domesticated for over 7000 years. A maintenance nitrogen (protein) requirement (MNR) for pigeons was determined in a balance study using diets containing 6, 10 and 14% crude protein (CP). Then, the effects of feeding the diets were investigated to determine whether they were adequate to sustain innate and acquired immune functions. Nitrogen intake from the 6% CP diet was sufficient to maintain nitrogen balance and body weight in pigeons. However, the immune functions of phagocytosis, oxidative burst and lymphocyte proliferation in pigeons fed this diet were reduced compared with those fed 10 and 14% CP diets. Pigeons given the 6 and 10% CP diets had lower antibody titres following inoculation against Newcastle disease (ND) than those on the 14% CP diet. A confounding factor found on autopsy was the presence of intestinal parasites in some of the pigeons given the 6 and 10% CP diets; however, none of the pigeons used to measure MNR or acquired immunity to ND were infested with parasites. In conclusion, neither the 6 nor 10% CP diets adequately sustained acquired immune function of pigeons. PMID:27069640

  14. PARP2 Is the Predominant Poly(ADP-Ribose) Polymerase in Arabidopsis DNA Damage and Immune Responses.

    PubMed

    Song, Junqi; Keppler, Brian D; Wise, Robert R; Bent, Andrew F

    2015-05-01

    Poly (ADP-ribose) polymerases (PARPs) catalyze the transfer of multiple poly(ADP-ribose) units onto target proteins. Poly(ADP-ribosyl)ation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family) accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390), rather than PARP1 (At2g31320), makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose) glycohydrolase (PARG) enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose) removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosyl)ation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosyl)ation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation. PMID:25950582

  15. PARP2 Is the Predominant Poly(ADP-Ribose) Polymerase in Arabidopsis DNA Damage and Immune Responses

    PubMed Central

    Song, Junqi; Keppler, Brian D.; Wise, Robert R.; Bent, Andrew F.

    2015-01-01

    Poly (ADP-ribose) polymerases (PARPs) catalyze the transfer of multiple poly(ADP-ribose) units onto target proteins. Poly(ADP-ribosyl)ation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family) accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390), rather than PARP1 (At2g31320), makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose) glycohydrolase (PARG) enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose) removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosyl)ation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosyl)ation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation. PMID:25950582

  16. Onions showing reduced damage by thrips and iris yellow spot virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goals of a USDA SCRI project were to understand better the epidemiology of the virus and to identify onion populations that suffer less damage under severe pressure from thrips and IYSV. Research demonstrated that North American isolates of IYSV were not all identical, indicating that the virus ...

  17. Pest tradeoffs in technology: Reduced damage by caterpillars in Bt cotton benefits aphids.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of studies have now reported increased levels of non Bt-targeted secondary pests in Bt crops. We carried out a series of greenhouse and field experiments comparing aphid populations on Bt-and non Bt-cotton that were damaged by the Bt-targeted caterpillar, Heliothis virescens. We found in bo...

  18. Neuroendocrine, metabolic, and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged, hyperadipose male rat.

    PubMed

    Castrogiovanni, Daniel; Gaillard, Rolf C; Giovambattista, Andrés; Spinedi, Eduardo

    2008-01-01

    In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity. PMID:18382067

  19. Antiparasite treatments reduce humoral immunity and impact oxidative status in raptor nestlings

    PubMed Central

    Hanssen, Sveinn Are; Bustnes, Jan Ove; Schnug, Lisbeth; Bourgeon, Sophie; Johnsen, Trond Vidar; Ballesteros, Manuel; Sonne, Christian; Herzke, Dorte; Eulaers, Igor; Jaspers, Veerle L B; Covaci, Adrian; Eens, Marcel; Halley, Duncan J; Moum, Truls; Ims, Rolf Anker; Erikstad, Kjell Einar

    2013-01-01

    Parasites are natural stressors that may have multiple negative effects on their host as they usurp energy and nutrients and may lead to costly immune responses that may cause oxidative stress. At early stages, animals may be more sensitive to infectious organisms because of their rapid growth and partly immature immune system. The objective of this study was to explore effects of parasites by treating chicks of two raptor species (northern goshawk Accipiter gentilis and white-tailed sea eagle Haliaeetus albicilla) against both endoparasites (internal parasites) and ectoparasites (external parasites). Nests were either treated against ectoparasites by spraying with pyrethrin or left unsprayed as control nests. Within each nest, chicks were randomly orally treated with either an antihelminthic medication (fenbendazole) or sterile water as control treatment. We investigated treatment effects on plasma (1) total antioxidant capacity TAC (an index of nonenzymatic circulating antioxidant defenses), (2) total oxidant status TOS (a measure of plasmatic oxidants), and (3) immunoglobulin levels (a measure of humoral immune function). Treatment against ectoparasites led to a reduction in circulating immunoglobulin plasma levels in male chicks. TOS was higher when not receiving any parasite reduction treatment and when receiving both endo- and ectoparasitic reduction treatment compared with receiving only one treatment. TAC was higher in all treatment groups, when compared to controls. Despite the relatively low sample size, this experimental study suggests complex but similar relationships between treatment groups and oxidative status and immunoglobulin levels in two raptor species. PMID:24455145

  20. Angiogenin Reduces Immune Inflammation via Inhibition of TANK-Binding Kinase 1 Expression in Human Corneal Fibroblast Cells

    PubMed Central

    Min, Kyong-Mi; Kim, Kyu-Wan; Chang, Soo-Ik

    2014-01-01

    Angiogenin (ANG) is reportedly multifunctional, with roles in angiogenesis and autoimmune diseases. This protein is involved in the innate immune system and has been implicated in several inflammatory diseases. Although ANG may be involved in the anti-inflammatory response, there is no evidence that it has direct anti-inflammatory effects. In this study we sought to determine whether ANG has an anti-inflammatory effect in human corneal fibroblasts (HCFs) exposed to media containing tumor necrosis factor-alpha (TNF-α). We found that ANG reduced the mRNA expression of interleukin-1 beta (IL-1β), -6, -8 and TNF-α receptors (TNFR) 1 and 2. In contrast, ANG increased the mRNA expression of IL-4 and -10. Protein levels of TANK-binding kinase 1 (TBK1) were reduced by ANG in HCFs treated with TNF-α. Moreover, ANG diminished the expression of IL-6 and -8 and monocyte chemotactic protein- (MCP-) 1. The protein expression of nuclear factor-κB (NF-κB) was downregulated by ANG treatment. These findings suggest that ANG suppressed the TNF-α-induced inflammatory response in HCFs through inhibition of TBK1-mediated NF-κB nuclear translocation. These novel results are likely to play a significant role in the selection of immune-mediated inflammatory therapeutic targets and may shed light on the pathogenesis of immune-mediated inflammatory diseases. PMID:24860242

  1. Passive Immunization Reduces Behavioral and Neuropathological Deficits in an Alpha-Synuclein Transgenic Model of Lewy Body Disease

    PubMed Central

    Masliah, Eliezer; Rockenstein, Edward; Mante, Michael; Crews, Leslie; Spencer, Brian; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Rohn, Troy T.; Mueller-Steiner, Sarah; Seubert, Peter; Barbour, Robin; McConlogue, Lisa; Buttini, Manuel; Games, Dora; Schenk, Dale

    2011-01-01

    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB. PMID:21559417

  2. Immunization with recombinant Pb27 protein reduces the levels of pulmonary fibrosis caused by the inflammatory response against Paracoccidioides brasiliensis.

    PubMed

    Morais, Elis Araujo; Martins, Estefânia Mara do Nascimento; Boelone, Jankerle Neves; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2015-02-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis in which the host response to the infectious agent typically consists of a chronic granulomatous inflammatory process. This condition causes lesions that impair lung function and lead to chronic pulmonary insufficiency resulting from fibrosis development, which is a sequel and disabling feature of the disease. The rPb27 protein has been studied for prophylactic and therapeutic treatment against PCM. Previous studies from our laboratory have shown a protective effect of rPb27 against PCM. However, these studies have not determined whether rPb27 immunization prevents lung fibrosis. We therefore conducted this study to investigate fibrosis resulting from infection by Paracoccidioides brasiliensis in the lungs of animals immunized with rPb27. Animals were immunized with rPb27 and subsequently infected with a virulent strain of P. brasiliensis. Fungal load was evaluated by counting colony-forming units, and Masson's trichrome staining was performed to evaluate fibrosis at 30 and 90 days post-infection. The levels of CCR7, active caspase 3, collagen and cytokines were analyzed. At the two time intervals mentioned, the rPb27 group showed lower levels of fibrosis on histology and reduced levels of collagen and the chemokine receptor CCR7 in the lungs. CCR7 was detected at higher levels in the control groups that developed very high levels of pulmonary fibrosis. Additionally, the immunized groups showed high levels of active caspase 3, IFN-γ, TGF-β and IL-10 in the early phase of P. brasiliensis infection. Immunization with Pb27, in addition to its protective effect, was shown to prevent pulmonary fibrosis. PMID:25487973

  3. Carvedilol promotes neurological function, reduces bone loss and attenuates cell damage after acute spinal cord injury in rats.

    PubMed

    Liu, Da; Huang, Ying; Li, Bin; Jia, Changqing; Liang, Feng; Fu, Qin

    2015-02-01

    Acute spinal cord injury (SCI) leads to permanent functional deficits via mechanical injury and secondary mechanisms, but the therapeutic strategy for SCI is limited. Carvedilol has been shown to possess multiple biological and pharmacological properties. The of the present study was to investigate the possible protective effect of carvedilol in SCI rats. An acute SCI rat model was established and neurological function was tested. After carvedilol (10 mg/kg, oral gavage) treatment for 21 days, the status of osteoporosis, neuron damage, astrocyte activation, inflammation, oxidative stress and apoptosis were evaluated in rats. Carvedilol significantly improved locomotor activity that was decreased by SCI. In addition, carvedilol promoted bone growth by regulating the expression of nuclear factor-κB ligand (receptor activator of nuclear factor-κB ligand; RANKL) and osteoprotegerin (OPG), inactivating osteoclasts and thereby increasing bone mineral density in tibias. In addition, carvedilol reduced SCI-induced neural damage, increased neuron number and reduced astrocyte activation in the spinal cord. Furthermore, the production and mRNA expression of tumour necrosis factor-α, interleukin (IL)-1β and IL-6 were significantly reduced, reduced glutathione content and superoxide dismutase activity were markedly increased and malondialdehyde content was markedly decreased in the spinal cords of carvedilol-treated rats. These results indicate that carvedilol exhibits anti-inflammatory and anti-oxidative effects in SCI rats. In addition, the expression of Fas and Fas ligand was reduced by carvedilol treatment, which, in turn, reduced cleaved caspase 3 expression and finally decreased the number of apoptotic cells in the spinal cord. In conclusion, carvedilol promotes neurological function, reduces bone loss and attenuates cell damage after acute SCI in rats. PMID:25424914

  4. Orthotopic bone transplantation in mice. III. Methods of reducing the immune response and their effect on healing

    SciTech Connect

    Kliman, M.; Halloran, P.F.; Lee, E.; Esses, S.; Fortner, P.; Langer, F.

    1981-01-01

    Various methods of reducing the immune response to allogeneic bone grafts, either by pretreating the graft or by immunosuppressing the recipient, were compared. Tibial grafts from B10.D2 mice, either untreated or pretreated in various ways, were transplanted into B10 recipients. The antibody response was followed and the extent of bone healing at 4 months was assessed. Pretreatment of the graft by X-irradiation, freezing, or by incubation in alloantisera (either anti-H-2 or anti-Ia) reduced or abolished the immunogenicity of the graft. Immunosuppression of the recipient with methotrexate or antilymphocyte serum (ALS) also greatly depressed the antibody response. But when healing was assessed, none of these treatments except ALS improved the delayed healing of the bone allografts. The reason for this failure was probably that X-irradiation, freezing, alloantiserum pretreatment, and methotrexate all interfered with bone healing directly, whereas ALS did not. We conclude that many methods will reduce the immune response to allogeneic bone, but that only ALS will improve the healing of the allogeneic bone. Furthermore, as a corollary to the observation that pretreatment with anti-Ia serum markedly reduced the immunogenicity of bone allografts, we conclude that much of the immunogenicity of bone allografts is attributable to a population of Ia-positive cells.

  5. Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats

    PubMed Central

    Al-Awaida, Wajdy; Akash, Muhanad; Aburubaiha, Zaid; Talib, Wamidh H.; Shehadeh, Hayel

    2014-01-01

    Objective(s): One cause of cigarette smoking is oxidative stress that may alter the cellular antioxidant defense system, induce apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. It has been shown that Chinese green tea (CGT) (Lung Chen Tea) has higher antioxidant property than black tea. In this paper, we will explore the preventive effect of CGT on cigarette smoke-induced oxidative damage, apoptosis and tissues inflammation in albino rat model. Materials and Methods: Albino rats were randomly divided into four groups, i.e. sham air (SA), cigarette smoke (CS), CGT 2% plus SA or plus CS. The exposure to smoking was carried out as a single daily dose (1 cigarette/rat) for a period of 90 days using an electronically controlled smoking machine. Sham control albino rats were exposed to air instead of cigarette smoke. Tissues were collected 24 hr after last CS exposure for histology and all enzyme assays. Apoptosis was evidenced by the fragmentation of DNA using TUNEL assay. Results: Long-term administration of cigarette smoke altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. All these pathophysiological and biochemical events were significantly improved when the cigarette smoke-exposed albino rats were given CGT infusion as a drink instead of water. Conclusion: Exposure of albino rat model to cigarette smoke caused oxidative stress, altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and tissues damage, which could be prevented by supplementation of CGT. PMID:25729541

  6. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOEpatents

    Plancher, Henry; Petersen, Joseph C.

    1982-01-01

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  7. Structural Damage Detection Using Artificial Neural Networks and Measured Frf Data Reduced via Principal Component Projection

    NASA Astrophysics Data System (ADS)

    ZANG, C.; IMREGUN, M.

    2001-05-01

    This paper deals with structural damage detection using measured frequency response functions (FRFs) as input data to artificial neural networks (ANNs). A major obstacle, the impracticality of using full-size FRF data with ANNs, was circumvented by applying a principal component analysis (PCA)-based data reduction technique to the measured FRFs. The compressed FRFs, represented by their projection onto the most significant principal components, were then used as the ANN input variables instead of the raw FRF data. The output is a prediction for the actual state of the specimen, i.e., healthy or damaged. A further advantage of this particular approach was found to be the ability to deal with relatively high measurement noise, which is of common occurrence when dealing with industrial structures. The methodology was applied to the measured FRFs of a railway wheel, each response function having 4096 spectral lines. The available FRF data were grouped into x, y and z direction FRFs and a compression ratio of about 400 was achieved for each direction. Three different networks, each corresponding to a co-ordinate direction, were trained and verified using 80 PCA-compressed FRFs. Twenty compressed FRFs, obtained from further measurements, were used for the actual damage detection tests. Half of the test FRFs were polluted further by adding 5% random noise in order to assess the robustness of the method in the presence of significant experimental noise. The results showed that, in all cases considered, it was possible to distinguish between the healthy and damaged states with very good accuracy and repeatability.

  8. Altered peptide ligands of myelin basic protein (MBP87–99) conjugated to reduced mannan modulate immune responses in mice

    PubMed Central

    Katsara, Maria; Yuriev, Elizabeth; Ramsland, Paul A; Tselios, Theodore; Deraos, George; Lourbopoulos, Athanasios; Grigoriadis, Nikolaos; Matsoukas, John; Apostolopoulos, Vasso

    2009-01-01

    Mutations of peptides to generate altered peptide ligands, capable of switching immune responses from T helper 1 (Th1) to T helper 2 (Th2), are promising candidates for the immunotherapy of autoimmune diseases such as multiple sclerosis (MS). We synthesized two mutant peptides from myelin basic protein 87–99 (MBP87–99), an immunodominant peptide epitope identified in MS. Mutations of residues K91 and P96, known to be critical T-cell receptor (TCR) contact sites, resulted in the mutant peptides [R91, A96]MBP87–99 and [A91, A96]MBP87–99. Immunization of mice with these altered peptide ligands emulsified in complete Freund’s adjuvant induced both interferon-γ (IFN-γ) and interleukin-4 (IL-4) responses compared with only IFN-γ responses induced to the native MBP87–99 peptide. It was of interest that [R91, A96]MBP87–99 conjugated to reduced mannan induced 70% less IFN-γ compared with the native MBP87–99 peptide. However, [A91, A96]MBP87–99 conjugated to reduced mannan did not induce IFN-γ-secreting T cells, but elicited very high levels of interleukin-4 (IL-4). Furthermore, antibodies generated to [A91, A96]MBP87–99 peptide conjugated to reduced mannan did not cross-react with the native MBP87–99 peptide. By molecular modelling of the mutant peptides in complex with major histocompatibility complex (MHC) class II, I-As, novel interactions were noted. It is clear that the double-mutant peptide analogue [A91, A96]MBP87–99 conjugated to reduced mannan is able to divert immune responses from Th1 to Th2 and is a promising mutant peptide analogue for use in studies investigating potential treatments for MS. PMID:19930042

  9. LKB1 reduces ROS-mediated cell damage via activation of p38

    PubMed Central

    Xu, Hua-Guo; Zhai, Ying-Xian; Chen, Jianfeng; Lu, Yibing; Wang, Jian-Wei; Quan, Cheng-Shi; Zhao, Rui-Xun; Xiao, Xuxian; He, Qiongqiong; Werle, Kaitlin D.; Kim, Hyung-Gyoon; Lopez, Richard; Cui, Rutao; Liang, Jiyong; Li, Yu-Lin; Xu, Zhi-Xiang

    2014-01-01

    Liver kinase B1 (LKB1, also known as serine/threonine kinase 11, STK11) is a tumor suppressor mutated in Peutz-Jeghers syndrome and in a variety of sporadic cancers. Herein, we demonstrate that LKB1 controls the levels of intracellular reactive oxygen species (ROS) and protects the genome from oxidative damage. Cells lacking LKB1 exhibit markedly increased intracellular ROS levels, excessive oxidation of DNA, increased mutation rates, and accumulation of DNA damage, which are effectively prevented by ectopic expression of LKB1 and by incubation with antioxidant N-acetylcysteine (NAC). The role of LKB1 in suppressing ROS is independent of AMPK, a canonical substrate of LKB1. Instead, under the elevated ROS, LKB1 binds to and maintains the activity of cdc42-PAK1 (p21 activated kinase 1) complex, which triggers the activation of p38 and its downstream signaling targets, such as ATF-2, thereby enhancing the activity of SOD-2 and catalase, two antioxidant enzymes that protect the cells from ROS accumulation, DNA damage, and loss of viability. Our results provide a new paradigm for a non-canonical tumor suppressor function of LKB1 and highlight the importance of targeting ROS signaling as a potential therapeutic strategy for cancer cells lacking LKB1. PMID:25263448

  10. Evaluating the Thermal Damage Resistance of Reduced Graphene Oxide/Carbon Nanotube Hybrid Coatings

    NASA Astrophysics Data System (ADS)

    David, Lamuel; Feldman, Ari; Mansfield, Elisabeth; Lehman, John; Singh, Gurpreet; National Institute of Standards and Technology Collaboration

    2014-03-01

    Carbon nanotubes and graphene are known to exhibit some exceptional thermal (K ~ 2000 to 4400 W.m-1K-1 at 300K) and optical properties. Here, we demonstrate preparation and testing of multiwalled carbon nanotubes and chemically modified graphene-composite spray coatings for use on thermal detectors for high-power lasers. The synthesized nanocomposite material was tested by preparing spray coatings on aluminum test coupons used as a representation of the thermal detector's surface. These coatings were then exposed to increasing laser powers and extended exposure times to quantify their damage threshold and optical absorbance. The graphene/carbon nanotube (prepared at varying mass% of graphene in CNTs) coatings demonstrated significantly higher damage threshold values at 2.5 kW laser power (10.6 μm wavelength) than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens showed that the composite coating endured high laser-power densities (up to 2 kW.cm-2) without significant visual damage. This research is based on work supported by the National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems Division), under grant no. 1335862 to G. Singh.

  11. Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen.

    PubMed

    Savage, Anna E; Terrell, Kimberly A; Gratwicke, Brian; Mattheus, Nichole M; Augustine, Lauren; Fleischer, Robert C

    2016-01-01

    The relationship between amphibian immune function and disease susceptibility is of primary concern given current worldwide declines linked to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We experimentally infected lowland leopard frogs (Lithobates yavapaiensis) with Bd to test the hypothesis that infection causes physiological stress and stimulates humoral and cell-mediated immune function in the blood. We measured body mass, the ratio of circulating neutrophils to lymphocytes (a known indicator of physiological stress) and plasma bacterial killing ability (BKA; a measure of innate immune function). In early exposure (1-15 days post-infection), stress was elevated in Bd-positive vs. Bd-negative frogs, whereas other metrics were similar between the groups. At later stages (29-55 days post-infection), stress was increased in Bd-positive frogs with signs of chytridiomycosis compared with both Bd-positive frogs without disease signs and uninfected control frogs, which were similar to each other. Infection decreased growth during the same period, demonstrating that sustained resistance to Bd is energetically costly. Importantly, BKA was lower in Bd-positive frogs with disease than in those without signs of chytridiomycosis. However, neither group differed from Bd-negative control frogs. The low BKA values in dying frogs compared with infected individuals without disease signs suggests that complement activity might signify different immunogenetic backgrounds or gene-by-environment interactions between the host, Bd and abiotic factors. We conclude that protein complement activity might be a useful predictor of Bd susceptibility and might help to explain differential disease outcomes in natural amphibian populations. PMID:27293759

  12. Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen

    PubMed Central

    Savage, Anna E.; Terrell, Kimberly A.; Gratwicke, Brian; Mattheus, Nichole M.; Augustine, Lauren; Fleischer, Robert C.

    2016-01-01

    The relationship between amphibian immune function and disease susceptibility is of primary concern given current worldwide declines linked to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We experimentally infected lowland leopard frogs (Lithobates yavapaiensis) with Bd to test the hypothesis that infection causes physiological stress and stimulates humoral and cell-mediated immune function in the blood. We measured body mass, the ratio of circulating neutrophils to lymphocytes (a known indicator of physiological stress) and plasma bacterial killing ability (BKA; a measure of innate immune function). In early exposure (1–15 days post-infection), stress was elevated in Bd-positive vs. Bd-negative frogs, whereas other metrics were similar between the groups. At later stages (29–55 days post-infection), stress was increased in Bd-positive frogs with signs of chytridiomycosis compared with both Bd-positive frogs without disease signs and uninfected control frogs, which were similar to each other. Infection decreased growth during the same period, demonstrating that sustained resistance to Bd is energetically costly. Importantly, BKA was lower in Bd-positive frogs with disease than in those without signs of chytridiomycosis. However, neither group differed from Bd-negative control frogs. The low BKA values in dying frogs compared with infected individuals without disease signs suggests that complement activity might signify different immunogenetic backgrounds or gene-by-environment interactions between the host, Bd and abiotic factors. We conclude that protein complement activity might be a useful predictor of Bd susceptibility and might help to explain differential disease outcomes in natural amphibian populations. PMID:27293759

  13. Antioxidant and micronutrient-rich milk formula reduces lead poisoning and related oxidative damage in lead-exposed mice.

    PubMed

    Zhang, Yu; Li, Qingqing; Liu, Xiaojie; Zhu, Hui; Song, Aihua; Jiao, Jingjing

    2013-07-01

    Lead poisoning is a global environmental disease that induces lifelong adverse health effects. The effect of a milk formula consisting of antioxidant of bamboo leaves (AOB), vitamin C (Vc), calcium lactate (CaLac), ferrous sulfate (FeSO₄) and zinc sulfate (ZnSO₄) on the reduction of lead and lead-induced oxidative damage in lead-exposed mice was studied. The lead-reducing effect of milk formula was investigated via a 7-week toxicokinetics study and a tissue distribution level examination. The ameliorating effect of milk formula on lead-induced oxidative damage was investigated. Results demonstrated current milk formula could effectively reduce blood lead levels (BLLs) and lead distribution levels of liver, kidneys, thighbones and brain in mice based on metal ion-mediated antagonism and chelation mechanisms. This milk formula could not only protect lead-susceptible tissues against lead poisoning, but also maintain normal absorption and distribution of essential elements in vivo. Meanwhile, current milk formula could prevent the reduction of δ-aminolevulinic acid dehydratase (δ-ALAD) activity and enhancement of free erythrocyte protoporphyrins (FEP) levels in blood erythrocytes of mice. Also, this formula could indirectly protect blood cell membranes against lead-induced lipid peroxidation. We conclude that current optimized milk formula effectively reduces lead poisoning and lead-induced in vivo oxidative damage in lead-exposed mice. PMID:23537597

  14. EndoS Reduces the Pathogenicity of Anti-mCOL7 IgG through Reduced Binding of Immune Complexes to Neutrophils

    PubMed Central

    Yu, Xinhua; Zheng, Junfeng; Collin, Mattias; Schmidt, Enno; Zillikens, Detlef; Petersen, Frank

    2014-01-01

    Endo-β-N-acetylglucosaminidase (EndoS) has been shown to act as a potent pathogen-derived immunomodulatory molecule in autoimmune diseases. Here we investigated how EndoS treatment reduces the pathogenicity of rabbit anti-mCOL7 IgG using different experimental models of epidermolysis bullosa acquisita (EBA). Our results show that the EndoS treatment does not interfere with the binding of the antibody to the antigen but reduces immune complex (IC)-mediated neutrophil activation by impairing the binding of the IC to FcγR on neutrophils. On the basis of this newly identified EndoS-mediated mechanism we hope to develop new strategies in the treatment of the disease. PMID:24504190

  15. A reduced immunization scheme to obtain an experimental anti-Loxosceles laeta ("violinist spider") venom.

    PubMed

    de Roodt, Adolfo Rafael; Litwin, Silvana; Dokmetjian, José Christian; Vidal, Juan Carlos

    2002-08-01

    Bites by Loxosceles (L.) laeta spiders can produce severe envenomation in humans. The only specific treatment is the early administration of antivenom. The production of anti-Loxosceles antivenom is hampered by the extremely low venom yield by these spiders and by the difficulties in maintaining a large breeder of Loxosceles. We developed an experimental equinum L. laeta antivenom, using as immunogen venom glands homogenates from spiders captured in Argentina. Horses immunized with venom gland homogenate (1.0 mg total protein per horse) by the subcutaneous route were bled after completion of the immunization scheme. Plasma was fractionated by ammonium sulfate precipitation and treated with pepsin to obtain F(ab')2 fragments. The protein composition of the experimental antivenom was assessed by SDS-PAGE, and its immunochemical reactivity was compared with those of other anti-Loxosceles antivenoms available for therapeutic use in Argentina by ELISA and Western blot. The experimental, homologous anti-L. laeta antivenom appeared to be more efficient in neutralizing the lethal potency in mice and the necrotizing activity in rabbits than of the heterologous antivenom. PMID:12182539

  16. Repeated Administration of Hyaluronic Acid Coated Liposomes with Improved Pharmacokinetics and Reduced Immune Response.

    PubMed

    Zhang, Quan; Deng, Caifeng; Fu, Yao; Sun, Xun; Gong, Tao; Zhang, Zhirong

    2016-06-01

    PEGylated liposomes (PEG-Lip) have been widely used as a drug carrier for their good stealth property in blood circulation. However, the second injection of PEG-Lip was reported to result in the accelerated blood clearance (ABC) phenomenon and trigger hypersensitivity reactions in sensitive individuals for its complement activation effect. To avoid adverse immune responses, HA was selected to modify liposomes to afford HA modified liposomes (HA-Lip). Repeated administrations of PEG-Lip and HA-Lip were performed in rats. Our results showed that PEG-Lip induced the ABC phenomenon accompanied by a greatly increased accumulation of PEG-Lip in the liver. In contrast, HA-Lip showed good stealth property without inducing either the ABC phenomenon or an increase in liver uptake. Moreover, HA-Lip did not trigger complement activation in human serum in vitro and in rat blood in vivo. Consequently, HA modification represents a viable strategy to prolong the blood circulation time of liposomes without inducing the ABC phenomenon and adverse immune responses. PMID:27112287

  17. Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

    PubMed Central

    Liu, Song; Wang, Zhonghua; Xu, Bo; Chen, Kui; Sun, Jinyuan; Ren, Lianping

    2016-01-01

    Objective(s): Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods: Cell proliferation of BV2 cells after exposure to IH were observed by MTT assay and then DNA damage was detected by comet assay. RNA-sequencing assay was performed in cells under IH condition and normal conditions to find out the differentially expressed genes, which were further confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot assay. Results: As results, IH inhibited the proliferation of BV2 cells, as well as caused DNA damage. RNA-sequencing assay revealed 4 differentially expressed genes (p21, Cyclin D1, Cyclin E2, and Gadd45α) which were associated with the network of P53 signaling pathways in BV2 cells, among which, p21 and Gadd45α were dramatically increased while Cyclin D1 and Cyclin E2 were both decreased significantly. Moreover, inflammatory factors including IL-6, TNF-α and iNOS were significantly up-regulated in microglia cells under IH conditions for 8 hr. Conclusion: Our results indicated that IH could inhibit cyclin D1 and cyclin E2 expression via initiating multiple P53 pathways, which further blocked cell cycle transition and attenuated proliferative capability of BV2 cells. Meanwhile, IH activated inflammation reactions in BV2 cells. Present study elaborate the effects of IH on biological functions of microglia and provide theoretical foundation for further study on new therapy methods for OSA. PMID:27403256

  18. Norepinephrine Reduces Reactive Oxygen Species (ROS) and DNA Damage in Ovarian Surface Epithelial Cells

    PubMed Central

    Patel, Pooja R; Hegde, Muralidhar L; Theruvathu, Jacob; Mitra, Sankar A; Boldogh, Istvan; Sowers, Lawrence

    2015-01-01

    Objective To determine the role of norepinephrine (NE) on DNA damage and reactive oxygen species (ROS) generation in ovarian surface epithelial cells. Method Non-tumorigenic, immortalized ovarian surface epithelial cells were treated with NE, bleomycin, and bleomycin followed by NE. The comet assay was performed on each treatment group to determine the amount of single and double-strand breaks induced by treatments. ROS levels for each treatment group were measured using the H2DCF-DA fluorescence assay. Finally, RNA transcripts were measured for each treatment group with regards to the expression of DNA repair and oxidative stress genes. Results The mean tail moment of untreated cells was significantly greater than that of cells treated with NE (p=0.02). The mean tail moment of cells treated with bleomycin was significantly greater than that of cells treated with bleomycin followed by NE (p<0.01). Treatment with NE resulted in significantly less ROS generation than in untreated cells (p<0.01). NE treatment after hydrogen peroxide treatment resulted in a noticeable decrease in ROS generation. Genes associated with oxidative stress were upregulated in cells treated with bleomycin, however this upregulation was blunted when bleomycin-treated cells were treated subsequently with NE. Conclusion NE is associated with decreased DNA damage and ROS production in ovarian surface epithelial cells. This effect is protective in the presence of the oxidative-damaging agent bleomycin. These results suggest an additional physiologic role for the stress hormone NE, in protecting ovarian surface epithelial cells from oxidative stress. PMID:26167254

  19. Can Mass Trapping Reduce Thrips Damage and Is It Economically Viable? Management of the Western Flower Thrips in Strawberry

    PubMed Central

    Sampson, Clare; Kirk, William D. J.

    2013-01-01

    The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a cosmopolitan, polyphagous insect pest that causes bronzing to fruit of strawberry (Fragaria x ananassa). The main aim of this study was to test whether mass trapping could reduce damage and to predict whether this approach would be economically viable. In semi-protected strawberry crops, mass trapping of F. occidentalis using blue sticky roller traps reduced adult thrips numbers per flower by 61% and fruit bronzing by 55%. The addition of the F. occidentalis aggregation pheromone, neryl (S)-2-methylbutanoate, to the traps doubled the trap catch, reduced adult thrips numbers per flower by 73% and fruit bronzing by 68%. The factors affecting trapping efficiency through the season are discussed. Damage that would result in downgrading of fruit to a cheaper price occurred when bronzing affected about 10% of the red fruit surface. Cost-benefit analysis using this threshold showed that mass trapping of thrips using blue sticky roller traps can be cost-effective in high-value crops. The addition of blue sticky roller traps to an integrated pest management programme maintained thrips numbers below the damage threshold and increased grower returns by a conservative estimate of £2.2k per hectare. Further work is required to develop the F. occidentalis aggregation pheromone for mass trapping and to determine the best timing for trap deployment. Mass trapping of thrips is likely to be cost-effective in other countries and other high-value crops affected by F. occidentalis damage, such as cucumber and cut flowers. PMID:24282554

  20. Can mass trapping reduce thrips damage and is it economically viable? Management of the Western flower thrips in strawberry.

    PubMed

    Sampson, Clare; Kirk, William D J

    2013-01-01

    The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a cosmopolitan, polyphagous insect pest that causes bronzing to fruit of strawberry (Fragaria x ananassa). The main aim of this study was to test whether mass trapping could reduce damage and to predict whether this approach would be economically viable. In semi-protected strawberry crops, mass trapping of F. occidentalis using blue sticky roller traps reduced adult thrips numbers per flower by 61% and fruit bronzing by 55%. The addition of the F. occidentalis aggregation pheromone, neryl (S)-2-methylbutanoate, to the traps doubled the trap catch, reduced adult thrips numbers per flower by 73% and fruit bronzing by 68%. The factors affecting trapping efficiency through the season are discussed. Damage that would result in downgrading of fruit to a cheaper price occurred when bronzing affected about 10% of the red fruit surface. Cost-benefit analysis using this threshold showed that mass trapping of thrips using blue sticky roller traps can be cost-effective in high-value crops. The addition of blue sticky roller traps to an integrated pest management programme maintained thrips numbers below the damage threshold and increased grower returns by a conservative estimate of £2.2k per hectare. Further work is required to develop the F. occidentalis aggregation pheromone for mass trapping and to determine the best timing for trap deployment. Mass trapping of thrips is likely to be cost-effective in other countries and other high-value crops affected by F. occidentalis damage, such as cucumber and cut flowers. PMID:24282554

  1. Method and apparatus for reducing diffraction-induced damage in high power laser amplifier systems

    DOEpatents

    Campillo, Anthony J.; Newnam, Brian E.; Shapiro, Stanley L.; Terrell, Jr., N. James

    1976-01-01

    Self-focusing damage caused by diffraction in laser amplifier systems may be minimized by appropriately tailoring the input optical beam profile by passing the beam through an aperture having a uniform high optical transmission within a particular radius r.sub.o and a transmission which drops gradually to a low value at greater radii. Apertures having the desired transmission characteristics may readily be manufactured by exposing high resolution photographic films and plates to a diffuse, disk-shaped light source and mask arrangement.

  2. Postirradiation administration of adenosine monophosphate combined with dipyridamole reduces early cellular damage in mice

    SciTech Connect

    Bohacek, J.; Hosek, B.; Pospisil, M. )

    1993-01-01

    The administration of dipyridamole and adenosine 5'-monophosphate (AMP) to mice 5 to 25 min after 1 Gy of total-body gamma irradiation was found to decrease cellular damage, as indicated by the thymidine level in plasma and the amount of saline soluble polynucleotides in the thymus. The drug combination used did not influence similar cytotoxic effects of hydrocortisone. Furthermore, it was shown that the addition of dipyridamole and AMP to in vitro irradiated suspensions of thymocytes enhanced the rejoining processes of DNA strand breaks. Receptor-mediated action of extracellular adenosine may be responsible for the therapeutic effects observed.

  3. The Compatible Solute Ectoine Reduces the Exacerbating Effect of Environmental Model Particles on the Immune Response of the Airways

    PubMed Central

    Gotić, Marijan

    2014-01-01

    Exposure of humans to particulate air pollution has been correlated with the incidence and aggravation of allergic airway diseases. In predisposed individuals, inhalation of environmental particles can lead to an exacerbation of immune responses. Previous studies demonstrated a beneficial effect of the compatible solute ectoine on lung inflammation in rats exposed to carbon nanoparticles (CNP) as a model of environmental particle exposure. In the current study we investigated the effect of such a treatment on airway inflammation in a mouse allergy model. Ectoine in nonsensitized animals significantly reduced the neutrophilic lung inflammation after CNP exposure. This effect was accompanied by a reduction of inflammatory factors in the bronchoalveolar lavage. Reduced IL-6 levels in the serum also indicate the effects of ectoine on systemic inflammation. In sensitized animals, an aggravation of the immune response was observed when animals were exposed to CNP prior to antigen provocation. The coadministration of ectoine together with the particles significantly reduced this exacerbation. The data indicate the role of neutrophilic lung inflammation in the exacerbation of allergic airway responses. Moreover, the data suggest to use ectoine as a preventive treatment to avoid the exacerbation of allergic airway responses induced by environmental air pollution. PMID:24822073

  4. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage.

    PubMed

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound "natural Aβ", sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson's disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  5. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    PubMed Central

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  6. Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis.

    PubMed

    Spormann, Thomas M; Albert, Franz W; Rath, Thomas; Dietrich, Helmut; Will, Frank; Stockis, Jean-Pierre; Eisenbrand, Gerhard; Janzowski, Christine

    2008-12-01

    Hemodialysis patients face an elevated risk of cancer, arteriosclerosis, and other diseases, ascribed in part to increased oxidative stress. Red fruit juice with high anthocyanin/polyphenol content had been shown to reduce oxidative damage in healthy probands. To test its preventive potential in hemodialysis patients, 21 subjects in a pilot intervention study consumed 200 mL/day of red fruit juice (3-week run-in; 4-week juice uptake; 3-week wash-out). Weekly blood sampling was done to monitor DNA damage (comet assay +/- formamidopyrimidine-DNA glycosylase enzyme), glutathione, malondialdehyde, protein carbonyls, trolox equivalent antioxidant capacity, triglycerides, and DNA binding capacity of the transcription factor nuclear factor-kappaB. Results show a significant decrease of DNA oxidation damage (P < 0.0001), protein and lipid peroxidation (P < 0.0001 and P < 0.001, respectively), and nuclear factor-kappaB binding activity (P < 0.01), and an increase of glutathione level and status (both P < 0.0001) during juice uptake. We attribute this reduction in oxidative (cell) damage in hemodialysis patients to the especially high anthocyanin/polyphenol content of the juice. This provides promising perspectives into the prevention of chronic diseases such as cancer and cardiovascular disease in population subgroups exposed to enhanced oxidative stress like hemodialysis patients. PMID:19064553

  7. Blocking Type I Interferon Production: A New Therapeutic Option to Reduce the HIV-1-Induced Immune Activation

    PubMed Central

    Ries, Moritz; Pritschet, Kathrin; Schmidt, Barbara

    2012-01-01

    Highly active antiretroviral therapy has dramatically improved the morbidity and mortality of HIV-1-infected individuals. A total of 25 licensed drugs provide the basis for an optimized virus-suppressive treatment of nearly each subject. The promises of immune reconstitution and normal life expectancy, however, fall short for a number of patients, either through inadequate recovery of CD4+ T-cell counts or the occurrence of non-AIDS defining malignancies. In this respect, the prevalence of Epstein-Barr virus-associated Hodgkin lymphoma and human papillomavirus-related anal neoplasia is rising in aging HIV-1-infected individuals despite antiretroviral therapy. An important cause appears to be the HIV-1-induced chronic immune activation, propagated by inappropriate release of proinflammatory cytokines and type I interferons. This immune dysregulation can be reduced in vitro by inhibitors blocking the endosomal acidification. Recent data suggest that this concept is also of relevance in vivo, which opens the door for adjuvant immunomodulatory therapies in HIV-1 infection. PMID:22203858

  8. Immunization with chlamydial type III secretion antigens reduces vaginal shedding and prevents fallopian tube pathology following live C. muridarum challenge.

    PubMed

    Bulir, David C; Liang, Steven; Lee, Amanda; Chong, Sylvia; Simms, Elizabeth; Stone, Christopher; Kaushic, Charu; Ashkar, Ali; Mahony, James B

    2016-07-25

    Chlamydia trachomatis infections in women are often asymptomatic and if left untreated can lead to significant late sequelae including pelvic inflammatory disease and tubal factor infertility. Vaccine development efforts over the past three decades have been unproductive and there is no vaccine approved for use in humans. The existence of serologically distinct strains or serovars of C. trachomatis mandates a vaccine that will provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of both structural and effector proteins which is an essential virulence factor for infection and intracellular replication. In this study we evaluated a novel fusion protein antigen (BD584) which consists of three T3SS proteins from C. trachomatis (CopB, CopD, and CT584) as a potential chlamydial vaccine candidate. Intranasal immunization with BD584 elicited serum neutralizing antibodies that inhibited C. trachomatis infection in vitro. Following intravaginal challenge with C. muridarum, immunized mice had a 95% reduction in chlamydial shedding from the vagina at the peak of infection and cleared the infection sooner than control mice. Immunization with BD584 also reduced the rate of hydrosalpinx by 87.5% compared to control mice. Together, these results suggest that highly conserved proteins of the chlamydial T3SS may represent good candidates for a Chlamydia vaccine. PMID:27325352

  9. Sublingual immunization with the phosphate-binding-protein (PstS) reduces oral colonization by Streptococcus mutans.

    PubMed

    Ferreira, E L; Batista, M T; Cavalcante, R C M; Pegos, V R; Passos, H M; Silva, D A; Balan, A; Ferreira, L C S; Ferreira, R C C

    2016-10-01

    Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries. PMID:26462737

  10. Inhibition of mTOR Pathway by Rapamycin Reduces Brain Damage in Rats Subjected to Transient Forebrain Ischemia

    PubMed Central

    Yang, Xiao; Hei, Changhun; Liu, Ping; Song, Yaozu; Thomas, Taylor; Tshimanga, Sylvie; Wang, Feng; Niu, Jianguo; Sun, Tao; Li, P. Andy

    2015-01-01

    The aims of this study are to clarify the role of mTOR in mediating cerebral ischemic brain damage and the effects of rapamycin on ischemic outcomes. Ten minutes of forebrain ischemia was induced in rats, and their brains were sampled after 3 h, 16 h, and 7 days reperfusion for histology, immunohistochemistry and biochemical analysis. Our data demonstrated that cerebral ischemia resulted in both apoptotic and necrotic neuronal death; cerebral ischemia and reperfusion led to significant increases of mRNA and protein levels of p-mTOR and its downstream p-P70S6K and p-S6; elevation of LC3-II, and release of cytochrome c into the cytoplasm in both the cortex and hippocampus. Inhibition of mTOR by rapamycin markedly reduced ischemia-induced damage; suppressed p-Akt, p-mTOR, p-P70S6K and p-S6 protein levels; decreased LC3-II and Beclin-1; and prevented cytochrome c release in the two structures. All together, these data provide evidence that cerebral ischemia activates mTOR and autophagy pathways. Inhibition of mTOR deactivates the mTOR pathway, suppresses autophagy, prevents cytochrome c release and reduces ischemic brain damage. PMID:26681922

  11. Black Currant Nectar Reduces Muscle Damage and Inflammation Following a Bout of High-Intensity Eccentric Contractions.

    PubMed

    Hutchison, Alexander T; Flieller, Emily B; Dillon, Kimber J; Leverett, Betsy D

    2016-01-01

    This investigation determined the efficacy of black currant nectar (BCN) in reducing symptoms of exercise-induced muscle damage (EIMD). Sixteen college students were randomly assigned to drink either 16 oz of BCN or a placebo (PLA) twice a day for eight consecutive days. A bout of eccentric knee extensions (3 × 10 sets @ 115% of 1RM) was performed on the fourth day. Outcome measures included muscle soreness (subjective scale from 0 to 10) and blood markers of muscle damage (creatine kinase, CK), inflammation (interleukin-6, IL-6), and oxygen radical absorbance capacity (ORAC). Although there were no differences in reported soreness between groups, consumption of BCN reduced CK levels at both 48 (PLA = 82.13% vs. BCN = -6.71%, p = .042) and 96 h post exercise (PLA = 74.96% vs. BCN = -12.11%, p = .030). The change in IL-6 was higher in the PLA group (PLA = 8.84% vs. BCN = -6.54%, p = .023) at 24 h post exercise. The change in ORAC levels was higher in the treatment group (BCN = 2.68% vs. PLA = -6.02%, p = .039) at 48 h post exercise. Our results demonstrate that consumption of BCN prior to and after a bout of eccentric exercise attenuates muscle damage and inflammation. PMID:25153307

  12. Radix Ilicis Pubescentis total flavonoids ameliorates neuronal damage and reduces lesion extent in a mouse model of transient ischemic attack

    PubMed Central

    Miao, Ming-san; Guo, Lin; Li, Rui-qi; Zhang, Xiao-lei

    2016-01-01

    Flavonoids are a major component in the traditional Chinese medicine Radix Ilicis Pubescentis. Previous studies have shown that the administration of Radix Ilicis Pubescentis total flavonoids is protective in cerebral ischemia. However, to our knowledge, no studies have examined whether the total flavonoids extracted from Radix Ilicis Pubescentis prevent or ameliorate neuronal damage following transient ischemic attacks. Therefore, Radix Ilicis Pubescentis total flavonoids question and the potential underlying mechanisms. Thus, beginning 3 days before the induction of a mouse model of transient ischemic attack using tert-butyl hydroperoxide injections, mice were intragastrically administered 0.3, 0.15, or 0.075 g/kg of Radix Ilicis Pubescentis total flavonoids daily for 10 days. The results of spectrophotometric analyses demonstrated that Radix Ilicis Pubescentis total flavonoids enhanced oxygen free radical scavenging and reduced pathological alterations in the brain. Hematoxylin-eosin staining results showed that Radix Ilicis Pubescentis total flavonoids reduced hippocampal neuronal damage and cerebral vascular injury in this mouse model of transient ischemic attack. These results suggest that the antioxidant effects of Radix Ilicis Pubescentis total flavonoids alleviate the damage to brain tissue caused by transient ischemic attack. PMID:27127483

  13. Modified otter trawl legs to reduce damage and mortality of benthic organisms in North East Atlantic fisheries (Bay of Biscay)

    NASA Astrophysics Data System (ADS)

    Guyonnet, B.; Grall, J.; Vincent, B.

    2008-07-01

    Despite a consensus about the significant damages to marine benthos and commercial fish stocks induced by mobile fishing gear, the extent and intensity of this practice have currently grown all over the world. The main problems of fisheries management are the capture and killing of juvenile and undersized fish and thus restrictions mainly concern mesh size in cod-end. However another recurrent problem and non-negligible is the by-catch of undersize commercial fish and of non-target species. Hence, regulations to reduce such by-catch have formed a part of fisheries management techniques since the early 20th century. As a consequence, successful developments and technical modification have been used to reduce capture of undersized fish and discards (i.e. mesh size, separator panels, and sorting grids) in the last decades. Technical modification concerning reduction of damage and mortality to benthic communities are less documented. Most of the tentative to replace tickler chain, panels or legs by other systems have failed, while results showed a decrease in non-target catch, and a decrease in commercial catch was observed. This paper presents fishing experiments with modified otter trawl aimed at reducing discard rates and direct mortality of benthic infauna and epifauna without affecting the level of landings (i.e. a comparison of environmental effects caused by a conventional otter trawl compared to a modified otter trawl with enlighten experimental legs). Catch composition, by-catch and short-term effects to macro- and megafauna communities of both fishing gear (conventional and modified) were investigated. Results show that no differences for commercial catch biomass or for benthic communities' structure were observed. Moreover, by-catch analysis showed no difference while significant higher damage and direct mortality were observed for target and non-target species caught by the normal otter trawl compared to those caught by the modified one. Consequently

  14. Immune interventions in stroke

    PubMed Central

    Fu, Ying; Liu, Qiang; Anrather, Josef

    2016-01-01

    Inflammatory and immune responses in the brain can shape the clinical presentation and outcome of stroke. Approaches for effective management of acute stroke are sparse and many measures for brain protection fail, but our ability to modulate the immune system and modify the disease progression of multiple sclerosis is increasing. As a result, immune interventions are currently being explored as therapeutic interventions in acute stroke. In this Review, we compare the immunological features of acute stroke with those of multiple sclerosis, identify unique immunological features of stroke, and consider the evidence for immune interventions. In acute stroke, microglia activation and cell death products trigger an inflammatory cascade that damages vessels and the parenchyma within minutes to hours of the ischaemia or haemorrhage. Immune interventions that restrict brain inflammation, vascular permeability and tissue oedema must be administered rapidly to reduce acute immune-mediated destruction and to avoid subsequent immunosuppression. Preliminary results suggest that the use of drugs that modify disease in multiple sclerosis might accomplish these goals in ischaemic and haemorrhagic stroke. Further elucidation of the immune mechanisms involved in stroke is likely to lead to successful immune interventions. PMID:26303850

  15. Feasibility of reducing rabies immunoglobulin dosage for passive immunization against rabies: results of In vitro and In vivo studies.

    PubMed

    Madhusudana, Shampur Narayan; Ashwin, Belludi Yajaman; Sudarshan, Sampada

    2013-09-01

    Passive immunization is a crucial parameter for prevention of human rabies. Presently as World Health Organization (WHO) strongly advocates local infiltration of rabies immunoglobulin in and around the bite wound, we feel that there is no basis for calculating the dose of immunoglobulin based on body weight. Keeping this in view we conducted both in vitro and in vivo studies to know whether the dose of immunoglobulin can be reduced and still obtain complete neutralization of the virus. In vitro neutralization studies were conducted using CVS strain of virus and BHK 21 cells. In vivo experiments were conducted in 4 weeks old Swiss albino mice by initial challenge with CVS followed by infiltration with increasing dilutions of either human rabies immunoglobulin (HRIG) and equine rabies immunoglobulin (ERIG). In vitro studies showed that a dose of 100 FFD 50 of CVS was neutralized by increasing dilution of both HRIG and ERIG and 100% neutralization was observed with HRIG and ERIG in as low quantities as 0.025 IU. In mice studies there was 100% survival of mice infiltrated with 0.025 IU of both HRIG and ERIG compared with 100% mortality in mice infiltrated with normal saline. These results suggest that it is possible to reduce the dose of rabies immunoglobulins by at least 16 times the presently advocated dose. These findings needs to be further evaluated using larger animal models and street viruses prevalent in nature but cannot serve as recommendations for use of RIG for passive immunization in humans. PMID:23792347

  16. Iron (FeII) Chelation, Ferric Reducing Antioxidant Power, and Immune Modulating Potential of Arisaema jacquemontii (Himalayan Cobra Lily)

    PubMed Central

    Sudan, Rasleen; Bhagat, Madhulika; Singh, Jasvinder; Koul, Anupurna

    2014-01-01

    This study explored the antioxidant and immunomodulatory potential of ethnomedicinally valuable species, namely, Arisaema jacquemontii of north-western Himalayan region. The tubers, leaves, and fruits of this plant were subjected to extraction using different solvents. In vitro antioxidant studies were performed in terms of chelation power on ferrous ions and FRAP assay. The crude methanol extract of leaves was found to harbour better chelating capacity (58% at 100 μg/mL) and reducing power (FRAP value 1085.4 ± 0.11 μMFe3+/g dry wt.) than all the other extracts. The crude methanol extract was thus further partitioned with solvents to yield five fractions. Antioxidant study of fractions suggested that the methanol fraction possessed significant chelation capacity (49.7% at 100 μg/mL) and reducing power with FRAP value of 1435.4 μM/g dry wt. The fractions were also studied for immune modulating potential where it was observed that hexane fraction had significant suppressive effect on mitogen induced T-cell and B-cell proliferation and remarkable stimulating effect on humoral response by 141% and on DTH response by 168% in immune suppressed mice as compared to the controls. Therefore, it can be concluded that A. jacquemontii leaves hold considerable antioxidant and immunomodulating potential and they can be explored further for the identification of their chemical composition for a better understanding of their biological activities. PMID:24895548

  17. Immune evasion or avoidance: fungal skin infection linked to reduced defence peptides in Australian green-eyed treefrogs, Litoria serrata.

    PubMed

    Woodhams, Douglas C; Bell, Sara C; Kenyon, Nicole; Alford, Ross A; Rollins-Smith, Louise A

    2012-12-01

    Many parasites and pathogens suppress host immunity to maintain infection or initiate disease. On the skin of many amphibians, defensive peptides are active against the fungus Batrachochytrium dendrobatidis (Bd), the causative agent of the emerging infectious disease chytridiomycosis. We tested the hypothesis that infection with the fungus may be linked to lower levels of defensive peptides. We sampled both ambient (or constitutive) skin peptides on the ventral surface immediately upon capture, and stored skin peptides induced from granular glands by norepinephrine administration of Australian green-eyed treefrogs, Litoria serrata. Upon capture, uninfected frogs expressed an array of antimicrobial peptides on their ventral surface, whereas infected frogs had reduced skin peptide expression. Expression of ambient skin peptides differed with infection status, and antimicrobial peptides maculatin 1.1 and 2.1 were on average three times lower on infected frogs. However, the repertoire of skin peptides stored in granular glands did not differ with infection status; on average equal quantities were recovered from infected and from uninfected frogs. Our results could have at least two causes: (1) frogs with reduced peptide expression are more likely to become infected; (2) Bd infection interferes with defence peptides by inhibiting release or causing selective degradation of peptides on the skin surface. Immune evasion therefore may contribute to the pathogenesis of chytridiomycosis and a mechanistic understanding of this fungal strategy may lead to improved methods of disease control. PMID:23245614

  18. Cytomegalovirus Infection May Contribute to the Reduced Immune Function, Growth, Development, and Health of HIV-Exposed, Uninfected African Children

    PubMed Central

    Filteau, Suzanne; Rowland-Jones, Sarah

    2016-01-01

    With increasing access to antiretroviral therapy (ART) in Africa, most children born to HIV-infected mothers are not themselves HIV-infected. These HIV-exposed, uninfected (HEU) children are at increased risk of mortality and have immune, growth, development, and health deficits compared to HIV-unexposed children. HEU children are known to be at higher risk than HIV-unexposed children of acquiring cytomegalovirus (CMV) infection in early life. This risk is largely unaffected by ART and is increased by breastfeeding, which itself is critically important for child health and survival. Early CMV infection, namely in utero or during early infancy, may contribute to reduced growth, altered or impaired immune functions, and sensory and cognitive deficits. We review the evidence that CMV may be responsible for the health impairments of HEU children. There are currently no ideal safe and effective interventions to reduce postnatal CMV infection. If a clinical trial showed proof of the principle that decreasing early CMV infection improved health and development of HEU children, this could provide the impetus needed for the development of better interventions to improve the health of this vulnerable population. PMID:27446087

  19. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity

    SciTech Connect

    Thom, Stephen R. . E-mail: sthom@mail.med.upenn.edu; Bhopale, Veena M.; Fisher, Donald

    2006-06-01

    The goal of this investigation was to determine whether exposure to hyperbaric oxygen (HBO{sub 2}) would ameliorate biochemical and functional brain abnormalities in an animal model of carbon monoxide (CO) poisoning. In this model, CO-mediated oxidative stress causes chemical alterations in myelin basic protein (MBP), which initiates an adaptive immunological response that leads to a functional deficit. CO-exposed rats do not show improvements in task performance in a radial maze. We found that HBO{sub 2} given after CO poisoning will prevent this deficit, but not eliminate all of the CO-mediated biochemical alterations in MBP. MBP from HBO{sub 2} treated CO-exposed rats is recognized normally by a battery of antibodies, but exhibits an abnormal charge pattern. Lymphocytes from HBO{sub 2}-treated and control rats do not become activated when incubated with MBP, immunohistological evidence of microglial activation is not apparent, and functional deficits did not occur, unlike untreated CO-exposed rats. The results indicate that HBO{sub 2} prevents immune-mediated delayed neurological dysfunction following CO poisoning.

  20. Immunization with DAT fragments is associated with long-term striatal impairment, hyperactivity and reduced cognitive flexibility in mice

    PubMed Central

    2012-01-01

    Background Possible interactions between nervous and immune systems in neuro-psychiatric disorders remain elusive. Levels of brain dopamine transporter (DAT) have been implicated in several impulse-control disorders, like attention deficit / hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). Here, we assessed the interplay between DAT auto-immunity and behavioural / neurochemical phenotype. Methods Male CD-1 mice were immunized with DAT peptide fragments (DAT-i), or vehicle alone (VEH), to generate elevated circulating levels of DAT auto-antibodies (aAbs). Using an operant delay-of-reward task (20 min daily sessions; timeout 25 sec), mice had a choice between either an immediate small amount of food (SS), or a larger amount of food after a delay (LL), which increased progressively across sessions (from 0 to 150 sec). Results DAT-i mice exhibited spontaneous hyperactivity (2 h-longer wake-up peak; a wake-up attempt during rest). Two sub-populations differing in behavioural flexibility were identified in the VEH control group: they showed either a clear-cut decision to select LL or clear-cut shifting towards SS, as expected. Compared to VEH controls, choice-behaviour profile of DAT-i mice was markedly disturbed, together with long-lasting alterations of the striatal monoamines. Enhanced levels of DA metabolite HVA in DAT-i mice came along with slower acquisition of basal preferences and with impaired shifting; elevation also in DOPAC levels was associated with incapacity to change a rigid selection strategy. This scarce flexibility of performance is indicative of a poor adaptation to task contingencies. Conclusions Hyperactivity and reduced cognitive flexibility are patterns of behaviour consistent with enduring functional impairment of striatal regions. It is yet unclear how anti-DAT antibodies could enter or otherwise affect these brain areas, and which alterations in DAT activity exactly occurred after immunization. Present neuro

  1. Treatment with novel RSV Ig RI-002 controls viral replication and reduces pulmonary damage in immunocompromised Sigmodon hispidus.

    PubMed

    Boukhvalova, M; Blanco, J C G; Falsey, A R; Mond, J

    2016-01-01

    Respiratory syncytial virus (RSV) is a significant cause of bronchiolitis and pneumonia in several high health risk populations, including infants, elderly and immunocompromised individuals. Mortality in hematopoietic stem cell transplant recipients with lower respiratory tract RSV infection can exceed 80%. It has been shown that RSV replication in immunosuppressed individuals is significantly prolonged, but the contribution of pulmonary damage, if any, to the pathogenesis of RSV disease in this susceptible population is not known. In this work, we tested RI-002, a novel standardized Ig formulation containing a high level of RSV-neutralizing Ab, for its ability to control RSV infection in immunocompromised cotton rats Sigmodon hispidus. Animals immunosuppressed by repeat cyclophosphamide injections were infected with RSV and treated with RI-002. Prolonged RSV replication, characteristic of immunosuppressed cotton rats, was inhibited by RI-002 administration. Ab treatment reduced detection of systemic dissemination of viral RNA. Importantly, pulmonary interstitial inflammation and epithelial hyperplasia that were significantly elevated in immunosuppressed animals were reduced by RI-002 administration. These results indicate the potential of RI-002 to improve outcome of RSV infection in immunocompromised subjects not only by controlling viral replication, but also by reducing damage to lung parenchyma and epithelial airway lining, but further studies are needed. PMID:26367224

  2. Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: results from an intervention study.

    PubMed

    Bakuradze, Tamara; Boehm, Nadine; Janzowski, Christine; Lang, Roman; Hofmann, Thomas; Stockis, Jean-Pierre; Albert, Franz W; Stiebitz, Herbert; Bytof, Gerhard; Lantz, Ingo; Baum, Matthias; Eisenbrand, Gerhard

    2011-05-01

    Epidemiological and experimental evidence increasingly suggests coffee consumption to be correlated to prevention or delay of degenerative diseases connected with oxidative cellular stress. In an intervention study comprising 33 healthy volunteers, we examined DNA-protective and antioxidative effects exerted in vivo by daily ingestion of 750 mL of freshly brewed coffee rich in both green coffee bean constituents as well as roast products. The study design encompassed an initial 4 wk of wash-out, followed by 4 wk of coffee intake and 4 wk of second wash-out. At the start and after each study phase blood samples were taken to monitor biomarkers of oxidative stress response. In addition, body weight/composition and intake of energy/nutrients were recorded. In the coffee ingestion period, the primary endpoint, oxidative DNA damage as measured by the Comet assay (± FPG), was markedly reduced (p<0.001). Glutathione level (p<0.05) and GSR-activity (p<0.01) were elevated. Body weight (p<0.01)/body fat (p<0.05) and energy (p<0.001)/nutrient (p<0.001-0.05) intake were reduced. Our results allow to conclude that daily consumption of 3-4 cups of brew from a special Arabica coffee exerts health beneficial effects, as evidenced by reduced oxidative damage, body fat mass and energy/nutrient uptake. PMID:21462335

  3. Epicatechin Reduces Striatal MPP⁺-Induced Damage in Rats through Slight Increases in SOD-Cu,Zn Activity.

    PubMed

    Rubio-Osornio, M; Gorostieta-Salas, E; Montes, S; Pérez-Severiano, F; Rubio, C; Gómez, C; Ríos, C; Guevara, J

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder characterized by movement alterations caused by reduced dopaminergic neurotransmission in the nigrostriatal pathway, presumably by oxidative stress (OS). MPP(+) intrastriatal injection leads to the overproduction of free radicals (FR). The increasing formation of FR produces OS, a decline in dopamine (DA) content, and behavioral disorders. Epicatechin (EC) has shown the ability to be FR scavenger, an antioxidant enzyme inductor, a redox state modulator, and transition metal chelator. Acute administration of 100 mg/kg of EC significantly prevented (P < 0.05) the circling MPP(+)-induced behavior (10 μg/8 μL). Likewise, EC significantly (P < 0.05) reduced the formation of fluorescent lipid products caused by MPP(+). MPP(+) injection produced (P < 0.05) increased enzymatic activity of the constitutive nitric oxide synthase (cNOS). This effect was blocked with acute EC pretreatment. Cu/Zn-dependent superoxide dismutase (Cu/Zn-SOD) activity was significantly (P < 0.05) reduced as a consequence of MPP(+) damage. EC produced a slight increase (≈20%) in Cu/Zn-SOD activity in the control group. Such effects persisted in animals injured with MPP(+). The results show that EC is effective against MPP(+)-induced biochemical and behavioral damage, which is possible by an increase in Cu/Zn-SOD activity. PMID:26301040

  4. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication

    PubMed Central

    Bristol, Molly L.; Wang, Xu; Smith, Nathan W.; Son, Minkyeong P.; Evans, Michael R.; Morgan, Iain M.

    2016-01-01

    Human papillomaviruses (HPVs) are causative agents in almost all cervical carcinomas. HPVs are also causative agents in head and neck cancer, the cases of which are increasing rapidly. Viral replication activates the DNA damage response (DDR) pathway; associated proteins are recruited to replication foci, and this pathway may serve to allow for viral genome amplification. Likewise, HPV genome double-strand breaks (DSBs) could be produced during replication and could lead to linearization and viral integration. Many studies have shown that viral integration into the host genome results in unregulated expression of the viral oncogenes, E6 and E7, promoting HPV-induced carcinogenesis. Previously, we have demonstrated that DNA-damaging agents, such as etoposide, or knocking down viral replication partner proteins, such as topoisomerase II β binding protein I (TopBP1), does not reduce the level of DNA replication. Here, we investigated whether these treatments alter the quality of DNA replication by HPV16 E1 and E2. We confirm that knockdown of TopBP1 or treatment with etoposide does not reduce total levels of E1/E2-mediated DNA replication; however, the quality of replication is significantly reduced. The results demonstrate that E1 and E2 continue to replicate under genomically-stressed conditions and that this replication is mutagenic. This mutagenesis would promote the formation of substrates for integration of the viral genome into that of the host, a hallmark of cervical cancer. PMID:27338449

  5. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication.

    PubMed

    Bristol, Molly L; Wang, Xu; Smith, Nathan W; Son, Minkyeong P; Evans, Michael R; Morgan, Iain M

    2016-01-01

    Human papillomaviruses (HPVs) are causative agents in almost all cervical carcinomas. HPVs are also causative agents in head and neck cancer, the cases of which are increasing rapidly. Viral replication activates the DNA damage response (DDR) pathway; associated proteins are recruited to replication foci, and this pathway may serve to allow for viral genome amplification. Likewise, HPV genome double-strand breaks (DSBs) could be produced during replication and could lead to linearization and viral integration. Many studies have shown that viral integration into the host genome results in unregulated expression of the viral oncogenes, E6 and E7, promoting HPV-induced carcinogenesis. Previously, we have demonstrated that DNA-damaging agents, such as etoposide, or knocking down viral replication partner proteins, such as topoisomerase II β binding protein I (TopBP1), does not reduce the level of DNA replication. Here, we investigated whether these treatments alter the quality of DNA replication by HPV16 E1 and E2. We confirm that knockdown of TopBP1 or treatment with etoposide does not reduce total levels of E1/E2-mediated DNA replication; however, the quality of replication is significantly reduced. The results demonstrate that E1 and E2 continue to replicate under genomically-stressed conditions and that this replication is mutagenic. This mutagenesis would promote the formation of substrates for integration of the viral genome into that of the host, a hallmark of cervical cancer. PMID:27338449

  6. Curcumin reduces oxidative and nitrative DNA damage through balancing of oxidant-antioxidant status in hamsters infected with Opisthorchis viverrini.

    PubMed

    Pinlaor, Somchai; Yongvanit, Puangrat; Prakobwong, Suksanti; Kaewsamut, Butsara; Khoontawad, Jarinya; Pinlaor, Porntip; Hiraku, Yusuke

    2009-10-01

    Opisthorchis viverrini (OV) infection is endemic in northeastern Thailand. We have previously reported that OV infection induces oxidative and nitrative DNA damage via chronic inflammation, which contributes to the disease and cholangiocarcinogenesis. Here, we examined the effect of curcumin, an antioxidant, on pathogenesis in OV-infected hamsters. DNA lesions were detected by double immunofluorescence and the hepatic expression of oxidant-generating and antioxidant genes was assessed by quantitative RT-PCR analysis. Dietary 1.0% curcumin significantly decreased OV-induced accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an oxidative DNA lesion, and 8-nitroguanine, a nitrative DNA lesion, in the nucleus of bile duct epithelial and inflammatory cells. Expression of oxidant-generating genes (inducible nitric oxide synthase; iNOS, its nuclear transcriptional factor, NF-kappaB, and cyclooxygenase-2), and plasma levels of nitrate, malondialdehyde, and alanine aminotransferase, were also decreased in curcumin-treated group. In contrast, curcumin increased the mRNA expression of antioxidant enzymes (Mn-superoxide dismutase and catalase), and ferric-reducing anti-oxidant power in the plasma. In conclusion, curcumin reduced oxidative and nitrative DNA damage by suppression of oxidant-generating genes and enhancement of antioxidant genes, leading to inhibition of oxidative and nitrative stress. Therefore, curcumin may be used as a chemopreventive agent to reduce the severity of OV-associated diseases and the risk of cholangiocarcinoma (CCA). PMID:19753608

  7. Carbon Monoxide-Releasing Molecule-2 Reduces Intestinal Epithelial Tight-Junction Damage and Mortality in Septic Rats

    PubMed Central

    Wang, Xin; Shi, Qiankun; Wang, Xiang; Yuan, Shoutao; Wang, Guozheng; Ji, Zhenling

    2015-01-01

    Objective Damage to intestinal epithelial tight junctions plays an important role in sepsis. Recently we found that Carbon Monoxide-Releasing Molecule-2 (CORM-2) is able to protect LPS-induced intestinal epithelial tight junction damage and in this study we will investigate if CORM-2 could protect intestinal epithelial tight junctions in the rat cecal ligation and puncture (CLP) model. Materials and Methods The CLP model was generated using male Sprague-Dawley (SD) rats according to standard procedure and treated with CORM-2 or inactive CORM-2 (iCORM-2), 8 mg/kg, i.v. immediately after CLP induction and euthanized after 24h or 72h (for mortality rate only). Morphological changes were investigated using both transmission electron and confocal microscopy. The levels of important TJ proteins and phosphorylation of myosin light chain (MLC) were examined using Western blotting. Cytokines, IL-1β and TNF-α were measured using ELISA kits. The overall intestinal epithelial permeability was evaluated using FD-4 as a marker. Results CORM-2, but not iCORM-2, significantly reduced sepsis-induced damage of intestinal mucosa (including TJ disruption), TJ protein reduction (including zonula occludens-l (ZO-1), claudin-1 and occludin), MLC phosphorylation and proinflammatory cytokine release. The overall outcomes showed that CORM-2 suppressed sepsis-induced intestinal epithelial permeability changes and reduced mortality rate of those septic rats. Conclusions Our data strongly suggest that CORM-2 could be a potential therapeutic reagent for sepsis by suppressing inflammation, restoring intestinal epithelial barrier and reducing mortality. PMID:26720630

  8. Efficacy of plastic mesh tubes in reducing herbivory damage by the invasive nutria (Myocastor coypus) in an urban restoration site

    USGS Publications Warehouse

    Sheffels, Trevor R.; Systma, Mark D.; Carter, Jacoby; Taylor, Jimmy D.

    2014-01-01

    The restoration of stream corridors is becoming an increasingly important component of urban landscape planning, and the high cost of these projects necessitates the need to understand and address potential ecological obstacles to project success. The nutria(Myocastor coypus) is an invasive, semi-aquatic rodent native to South America that causes detrimental ecological impacts in riparian and wetland habitats throughout its introduced range, and techniques are needed to reduce nutria herbivory damage to urban stream restoration projects. We assessed the efficacy of standard Vexar® plastic mesh tubes in reducing nutria herbivory damage to newly established woody plants. The study was conducted in winter-spring 2009 at Delta Ponds, a 60-ha urban waterway in Eugene, Oregon. Woody plants protected by Vexar® tubes demonstrated 100% survival over the 3-month initial establishment period, while only 17% of unprotected plantings survived. Nutria demonstrated a preference for black cottonwood (Populus balsamifera ssp trichocarpa) over red osier dogwood (Cornussericea) and willow (Salix spp). Camera surveillance showed that nutria were more active in unprotected rather than protected treatments. Our results suggest that Vexar® plastic mesh tubing can be an effective short-term herbivory mitigation tool when habitat use by nutria is low. Additionally, planting functionally equivalent woody plant species that are less preferred by nutria, and other herbivores, may be another method for reducing herbivory and improving revegetation success. This study highlights the need to address potential wildlife damage conflicts in the planning process for stream restoration in urban landscapes.

  9. Deciphering maize genetics and ecology to reduce insect damage and aflatoxin accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ear-colonizing insects and diseases, which reduce yield and impose health threats via mycotoxin contaminations, are critical impediments for maize production in the southern US states. To address this problem a combination of basic and applied research approaches are being conducted by the interdis...

  10. Power Line Damage, Electrical Outages Reduced in the ''Sleet Belt'': NICE3 Steel Project Fact Sheet

    SciTech Connect

    2000-04-25

    The AR Windamper System was developed through a grant from the Inventions and Innovation Program, to protect power transmission lines in sleet belt states and provinces by eliminating the ''galloping'' phenomenon. Wind damping products minimize power outages and reduce repair costs to transmission lines.