Science.gov

Sample records for impact ejecta meterorites

  1. Ejecta from Ocean Impacts

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  2. Chicxulub Impact Ejecta in Belize

    NASA Technical Reports Server (NTRS)

    Ocampo, A.; Pope, K.; Fischer, A.; Alvarez, W.; Fouke, B.; Asaro, F.; Webster, C., Jr.; Vega, F.; Smith, J.; Fritsche, A. E.

    1997-01-01

    Chicxulub ejecta deposits in Belize provide the closest exposures of ejecta to the crater and the only exposures of proximal ejecta deposited in a terrestrial environment. A quarry on Albion Island in northern Belize exposes Late Cretaceous, possibly Maastrichtian, carbonate platform sediments that were folded, eroded, and subaerially weathered prior to the deposition of coarse ejecta from Chicxulub. These ejecta deposits are composed of a basal, about 1-m-thick clay and dolomite Spheroid Bed overlain by a about 15-m-thick coarse Diamictite Bed. Many and perhaps most of the clay spheroids are altered glass. Many dolomite spheroids have concentric layers and angular cores are probably of accretionary lapilli origin. A slight Ir concentration (111-152 ppt) was detected in the base of the Spheroid Bed. The Diamictite Bed contains about 10% altered glass, rare shocked quartz, 3-8 m diameter boulders and striated and polished cobbles, one with a penetrating rock chip that plastically deformed the cobble. Ejecta deposits extend to the surface at Albion and the maximum thickness in this area is not known. Ejecta deposits are exposed in several roadside quarries in the Cayo District of central Belize. The Late Cretaceous here is also represented by carbonate platform sediments. The upper surface of the carbonate platform is a highly irregular and extensively recrystallized horizon possibly representing deep karst weathering. Approximately 30 in of diamictite overlies this horizon with a texture similar to the Diamictite Bed at the Albion quarry, but with a more diverse lithology. In three locations the Cayo diamictites, contain red clay layers with abundant polished and striated limestone pebbles and cobbles called Pook's Pebbles, several of which have penetrating rock chips and ablated surfaces. We interpret the Albion Spheroid Bed as a deposit from the impact vapor plume and the Albion and Cayo diamictites as the result of a turbulent flow that contained debris derived

  3. Impact ejecta on the moon

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1976-01-01

    The response of a lunar-sized object to the impact of meteoroids no more than about 100 km in radius is studied by means of a numerical model. The partitioning of impact energy into the kinetic and internal energy of the ejecta is obtained by using the conservation of mass, momentum, and energy conservation equations in finite-difference form within an Eulerian framework with approximate equations of state. The calculations are performed for a 15 km/sec impact of an iron object 5 cm in radius on a gabbroic anorthosite surface. Ejecta ballistic analysis is then performed. Most of the material lost escaping the moon is lunar crust material. Only 0.2% of the meteoroid escapes, all in the vapor phase.

  4. Characterizing Secondary Debris Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Schonberg, W. P.

    1999-08-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystems and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impact on a typical aerospace structural surface.

  5. Characterizing Secondary Debris Impact Ejecta

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.

    1999-01-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  6. Characterizing Secondary Debris Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Schonberg, W. P.

    1999-08-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  7. Impact ejecta on the moon

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.

    1976-01-01

    The partitioning of energy and the distribution of the resultant ejecta on the moon is numerically modeled using a Eulerian finite difference grid. The impact of an iron meteoroid at 15 km/sec on a gabbroic anorthosite lunar crust is examined. The high speed impact induced flow is described over the entire hydrodynamic regime from a time where the peak pressures are 6 Mbar until the stresses everywhere in the flow are linearly elastic, and less than 5 kbar. Shock-induced polymorphic phase changes, (plagioclase and pyroxene to hollandite and perovskite), and the subsequent reversion to low pressure phases are demonstrated to enhance shock wave attenuation. A rate-dependent equation of state is used for describing the hysteretic effect of the phase change. Ballistic equations for a spherical planet are then applied to material with net velocity away from the moon.

  8. Impact ejecta emplacement on terrestrial planets

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Tornabene, Livio L.; Grieve, Richard A. F.

    2011-10-01

    Impact cratering is one of the most fundamental processes responsible for shaping the surfaces of solid planetary bodies. One of the principal characteristics of impact events is the formation and emplacement of ejecta deposits, an understanding of which is critical for planetary exploration. Current models of ejecta emplacement, however, do not account for several important observations of ejecta deposits on the terrestrial planets, in particular, the presence of more than one layer of ejecta. Furthermore, there is also no universal model for the origin and emplacement of ejecta on different planetary bodies. We present a unifying working hypothesis for the origin and emplacement of ejecta on the terrestrial planets, in which the ejecta are emplaced in a multi-stage process. The generation of the continuous ejecta blanket occurs during the excavation stage of cratering, via the conventional ballistic sedimentation and radial flow model. This is followed by the emplacement of more melt-rich, ground-hugging flows - the "surface melt flow" phase - during the terminal stages of crater excavation and the modification stage of crater formation. Minor fallback occurs during the final stages of crater formation. Several factors will affect the final morphology and character of ejecta deposits. The volatile content and cohesiveness of the uppermost target rocks will significantly affect the runout distance of the ballistically emplaced continuous ejecta blanket, with impact angle also influencing the overall geometry of the deposits (e.g., the production of the characteristic butterfly pattern seen in very oblique impacts). Ejecta deposited during the surface melt flow stage is influenced by several factors, most importantly planetary gravity, surface temperature, and the physical properties of the target rocks. Topography and angle of impact play important roles in determining the final distribution of surface melt flow ejecta deposits with respect to the source crater

  9. Chicxulub Ejecta Impact Trenches And Terminal Impact

    NASA Astrophysics Data System (ADS)

    Page, R. L.

    2013-05-01

    DISCOVERY During a Pacific voyage from E. Australia to the US on a small sailing research vessel what appears to be two Chicxulub impact trenches were discovered in the ocean floor at depths of 4,627m and 3,519m. DESCRIPTION Trench A begins at a depth of 4,627m, 704km from the Chicxulub impact and is 18km long, 5km wide and 225m deep. Trench B begins at a depth of 3,519m, 732km from the Chixculub impact and is 23km long, 7 km wide and 400m deep. At the end of Trench B is what appears to be a debris deposit 5km long. Their relationship to the Chicxulub impact seems confirmed by their central axis, which when extended intersect at the Chicxulub impact at N Lat 21.33, W Long 89.5. Down range 286km from the end of Trench B is what appears to be the terminal impact of the object that created the two trenches. This is in the form of several large boulders, small seamounts, and islands in shallower depths indicating breakup of the object 1040km from the Chicxulub impact. The trenches are in an area of the Caribbean where currents prevented them from being silted in, preserving their physical form on the ocean floor. The object that created the trenches could have been large ejecta from the impact or possibly part of the asteroid that separated before impact or upon impact and carried on 1000km down range. The trajectory of both trenches is an upward angle of about 3 degrees. This indicates that the trajectory of the object was at a low angle, very high velocity and was deflected slightly upward upon impact with the ocean floor 4,627 below sea level. RESEARCH The first two phases of 10 phases consisting of mapping, exploration, research, and documentation of the impacts have been completed. Phase 1 consisted of assembling available sea floor data of the area of the impacts. Phase 2 consisted of selecting aerial and under water images from Google Earth, preparing bathymetric mapping from a GEBCO_08. BODC raster analysis with 50m contour intervals of the impact area

  10. Jet ejecta mass upon oblique impact

    NASA Technical Reports Server (NTRS)

    Yang, W.; Ahrens, T. J.; Miller, G. H.; Petach, M. B.

    1991-01-01

    Theoretical models in the jetting regime for symmetric and asymmetric impact of thin plates predict the mass and velocity of jetted material upon oblique impact. However, experimental constraints on the amount of material which form jets upon oblique impact are not known. A series of preliminary experiments were conducted in which tungsten (W) flyer plates at speeds of 1.5 to 2.0 km/s were obliquely impacted into carbon targets at 30 deg in the regime of jetting, yielding radiation temperatures in the about 3200 K range. Both framing-camera and flash X-ray imaging were conducted. Broad cm-sized craters induced by jet ejecta on 2024 Al witness plates were used to infer jet mass. We infer, from measured witness plate crater volumes, that jet masses in the range of 0.01 to 0.06 g are produced by a 32 mm diameter, 6 mm thick W impactor. This is about one to two orders of magnitude less than those calculated from present theoretical models. In contrast, in refractory material experiments, the mass of gabbro ejecta trapped in styrofoam is 0.52 g, which is similar to that calculated.

  11. Trajectories of ballistic impact ejecta on a rotating Earth

    NASA Technical Reports Server (NTRS)

    Alvarez, W.

    1994-01-01

    On an airless, slowly rotating planetary body like the Moon, ejecta particles from an impact follow simple ballistic trajectories. If gaseous interactions in the fireball are ignored, ejecta particles follow elliptical orbits with the center of the planetary body at one focus until they encounter the surface at the point of reimpact. The partial elliptical orbit of the ejecta particle lies in a plane in inertial (galactic) coordinates. Because of the slow rotation rate (for example, 360 degrees/28 days for the Moon), the intersection of the orbital plane and the surface remains nearly a great circle during the flight time of the ejecta. For this reason, lunar rays, representing concentrations of ejecta with the same azimuth but different velocities and/or ejecta angles, lie essentially along great circles. Ejecta from airless but more rapidly rotating bodies will follow more complicated, curving trajectories when plotted in the coordinate frame of the rotating planet or viewed as rays on the planetary surface. The curvature of trajectories of ejecta particles can be treated as a manifestation of the Coriolis effect, with the particles being accelerated by Coriolis pseudoforces. However, it is more straightforward to calculate the elliptical orbit in inertial space and then determine how far the planet rotates beneath the orbiting ejecta particle before reimpact. The Earth's eastward rotation affects ballistic ejecta in two ways: (1) the eastward velocity component increases the velocity of eastbound ejecta and reduces the velocity of westbound ejecta; and (2) the Earth turns underneath inflight ejecta, so that although the latitude of reimpact is not changed, the longitude is displaced westward, with the displacement increasing as a function of the time the ejecta remains aloft.

  12. The Acraman impact and its widespread ejecta, South Australia

    NASA Technical Reports Server (NTRS)

    Gostin, V. A.; Keays, R. R.; Wallace, M. W.

    1992-01-01

    Discovery of a widespread horizon of shock-deformed volcaniclastic ejecta preserved in Late Proterozoic (approx. 600 Ma) shales in South Australia and its probable link to the Acraman impact structure in the Middle Proterozoic Gawler Range. Volcanics provide a rare opportunity to study the effects of a major terrestrial impact, including the sedimentology and distribution of an ejecta blanket and its precious-metal signature. The ejecta horizon occurs in the Bunyeroo Formation at many localities within the Adelaide Geosyncline, including the Wearing Hills, which are approx. 350 km northeast of the Acraman impact site. Following a search at the same stratigraphic level in other basins in South Australia, the ejecta has been located within the Lower Rodda beds of the Officer Basin, extending the limits of the ejecta to approx. 470 km northwest of the Acraman impact structure. The ejecta is therefore widely dispersed, and provides an important chronostratigraphic marker enabling precise correlation of Late Proterozoic sequences in southern Australia. In summary, the Bunyeroo ejecta is unique as the only known example of a widely dispersed, coarse-grained ejecta blanket that is, moreover, strongly linked to a known major impact structure. The marked Ir-PGE anomalies in the ejecta horizon provide support for the hypothesis that meteorite impact events can produce Ir anomalies interrestrial sediments. The findings also indicate that Ir can be mobilized and concentrated in sediments by low-temperature diagenetic processes. The identification of ejecta horizons in sedimentary rocks therefore should be based on the coincidence of shock-metamorphic features in the detritus and clear Ir anomalies.

  13. Chicxulub Ejecta Trenches and Terminal Impact

    NASA Astrophysics Data System (ADS)

    Page, R.

    2012-12-01

    DISCOVERY During a Pacific voyage from E. Australia to the US on a small sailing research vessel what appears to be two Chicxulub impact trenches were discovered in the ocean floor at depths of 4,627m and 3,519m. DESCRIPTION Trench A begins at a depth of 4,627m, 704km from the Chicxulub impact and is 18km long, 5km wide and 225m deep. Trench B begins at a depth of 3,519m, 732km from the Chixculub impact and is 23km long, 7 km wide and 400m deep. At the end of Trench B is what appears to be a debris deposit 5km long. Their relationship to the Chicxulub impact seems confirmed by their central axis, which when extended intersect at the Chicxulub impact at N Lat 21.33, W Long 89.5. Down range 286km from the end of Trench B is what appears to be the terminal impact of the object that created the two trenches. This is in the form of several large boulders, small seamounts, and islands in shallower depths indicating breakup of the object 1040km from the Chicxulub impact. The trenches are in an area of the Caribbean where currents prevented them from being silted in, preserving their physical form on the ocean floor. The object that created the trenches could have been large ejecta from the impact or possibly part of the asteroid that separated before impact or upon impact and carried on 1000km down range. The trajectory of both trenches is an upward angle of about 3 degrees. This indicates that the trajectory of the object was at a low angle, very high velocity and was deflected slightly upward upon impact with the ocean floor 3,519m below sea level. RESEARCH The first two phases of 10 phases consisting of mapping, exploration, research, and documentation of the impacts have been completed. Phase 1 consisted of assembling available sea floor data of the area of the impacts. Phase 2 consisted of selecting aerial and under water images from Google Earth, preparing bathymetric mapping from a GEBCO_08. BODC raster analysis with 50m contour intervals of the impact area

  14. Detection of Impact Ejecta on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Srama, Ralf

    2015-04-01

    One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. The impact ejecta of interplanetary meteoroids is one of the source mechanics of the lunar dust environment. A dust detector placed on the lunar surface is exposed to strong variations in the impact ejecta environment. The purpose of this article is a study of the speed and trajectory information of ejecta created by micrometeoroid impacts. Autodyn14.0/2D software was used to simulate the impacting by micrometeoroids bombarding the lunar surface. The projectiles were selected as 10 μm spheres in diameter with the speed of 17 km-s-1. We used impact angles of 30°, 45°, 60° and 90°. A part of impact ejecta grains created in the early stage of impact process can be captured by a sensor placed on the lunar surface (e.g. Lunar Ejecta and Meteorites (LEAM) experiment) or mounted on a lunar lander (e.g. Lunar Dust eXplorer (LDX)). Most of the detectable ejecta grains have very-low-speeds (< 100 m-s-1) together with a few of high-speed ejecta grains (> 1 km-s-1). Comparing with the most recently analysis of LEAM data, the impact ejecta grains are considered as one of the most possible sources for the recorded events. Furthermore, a sensor mounted on a lander instead of directly placed on the lunar surface has more chances to measure high-speed ejecta. A new developed instrument, such as LDX, will be a powerful tool to study the lunar dust environment.

  15. Ejecta Dynamics during Hypervelocity Impacts into Dry and Wet Sandstone

    NASA Astrophysics Data System (ADS)

    Hoerth, T.; Schäfer, F.; Thoma, K.; Poelchau, M.; Kenkmann, T.; Deutsch, A.

    2011-03-01

    Hypervelocity impact experiments into dry and water saturated porous Seeberger sandstone were conducted at the two-stage light gas accelerator at the Ernst-Mach-Institute (EMI) and the ejecta dynamics were analyzed.

  16. Modeling the detection of impact ejecta on the lunar surface

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Srama, Ralf; Wu, Yiyong; Grün, Eberhard

    2015-12-01

    The lunar surface is continuously exposed to the micrometeoroid environment. Hypervelocity impacts of interplanetary dust particles with speeds around 17 kms-1 generate secondary ejecta on the lunar surface. A dust detector placed on the moon is capable of characterizing the secondary ejecta population. The purpose of this paper is to study the speed and trajectory information of ejecta by impact simulations and its implications for the location of a dust sensor on the surface. AUTODYN15.0/2D software was used to simulate the velocity and angular distributions of ejecta created by the primary impacts of interplanetary dust particles. We considered projectiles with sizes of 10 μm spheres in diameter with speeds of 17 kms-1. We used impact angles of 15°, 30°, 45°, 60°, 75°, and 90° with respect to the surface. A significant percentage of the impact ejecta are created in the early-time stage of the impact process. This population can be captured by a sensor placed on the lunar surface (e.g. Lunar Ejecta and Meteorites (LEAM) experiment) or by a sensor mounted directly on a lander (e.g. Lunar Dust eXplorer (LDX)). The secondary ejecta population above the lunar surface is considered to explain the results of the LEAM experiment. A sensor directly placed on the surface like LEAM is not very well suited to measure the high-speed ejecta component - a sensor located at a few meters height (e.g. on top of a lunar lander) would measure higher fluxes.

  17. Impact ejecta dynamics in an atmosphere - Experimental results and extrapolations

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1982-01-01

    It is noted that the impacts of 0.635-cm aluminum projectiles at 6 km/sec into fine pumice dust, at 1 atm, generate a ball of ionized gas behind an expanding curtain of upward moving ejecta. The gas ball forms a toroid which dissolves as it is driven along the interior of the ejecta curtain, by contrast to near-surface explosions in which a fireball envelops early-time crater growth. High frame rate Schlieren photographs show that the atmosphere at the base of the ejecta curtain is initially turbulent, but later forms a vortex. These experiments suggest that although small size ejecta may be decelerated by air drag, they are not simply lofted and suspended but become incorporated in an ejecta cloud that is controlled by air flow which is produced by the response of the atmosphere to the impact. The extrapolation of these results to large body impacts on the earth suggests such contrasts with laboratory experiments as a large quantity of impact-generated vapor, the supersonic advance of the ejecta curtain, the lessened effect of air drag due to the tenuous upper atmosphere, and the role of secondary cratering.

  18. Standardizing the nomenclature of Martian impact crater ejecta morphologies

    USGS Publications Warehouse

    Barlow, Nadine G.; Boyce, Joseph M.; Costard, Francois M.; Craddock, Robert A.; Garvin, James B.; Sakimoto, Susan E.H.; Kuzmin, Ruslan O.; Roddy, David J.; Soderblom, Laurence A.

    2000-01-01

    The Mars Crater Morphology Consortium recommends the use of a standardized nomenclature system when discussing Martian impact crater ejecta morphologies. The system utilizes nongenetic descriptors to identify the various ejecta morphologies seen on Mars. This system is designed to facilitate communication and collaboration between researchers. Crater morphology databases will be archived through the U.S. Geological Survey in Flagstaff, where a comprehensive catalog of Martian crater morphologic information will be maintained.

  19. Martian impact craters: Continuing analysis of lobate ejecta sinuosity

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1990-01-01

    The lobate ejecta morphology surrounding most fresh Martian impact craters can be quantitatively analyzed to determine variations in ejecta sinuosity with diameter, latitude, longitude, and terrain. The results of such studies provide another clue to the question of how these morphologies formed: are they the results of vaporization of subsurface volatiles or caused by ejecta entrainment in atmospheric gases. Kargel provided a simple expression to determine the degree of non-circularity of an ejecta blanket. This measure of sinuosity, called 'lobateness', is given by the ratio of the ejecta perimeter to the perimeter of a circle with the same area as that of the ejecta. The Kargel study of 538 rampart craters in selected areas of Mars led to the suggestion that lobateness increased with increasing diameter, decreased at higher latitude, and showed no dependence on elevation or geologic unit. Major problems with the Kargel analysis are the limited size and distribution of the data set and the lack of discrimination among the different types of lobate ejecta morphologies. Bridges and Barlow undertook a new lobateness study of 1582 single lobe (SL) and 251 double lobe (DL) craters. The results are summarized. These results agree with the finding of Kargel that lobateness increases with increasing diameter, but found no indication of a latitude dependence for SL craters. The Bridges and Barlow study has now been extended to multiple lobe (ML) craters. Three hundred and eighty ML craters located across the entire Martian surface were studied. ML craters provide more complications to lobateness studies than do SL and DL craters - in particular, the ejecta lobes surrounding the crater are often incomplete. Since the lobateness formula compares the perimeter of the ejecta lobe to that of a circle, the analysis was restricted only to complete lobes. The lobes are defined sequentially starting with the outermost lobe and moving inward.

  20. An Impact Ejecta Behavior Model for Small, Irregular Bodies

    NASA Technical Reports Server (NTRS)

    Richardson, J. E.; Melosh, H. J.; Greenberg, R.

    2003-01-01

    In recent years, spacecraft observations of asteroids 951 Gaspra, 243 Ida, 253 Mathilde, and 433 Eros have shown the overriding dominance of impact processes with regard to the structure and surface morphology of these small, irregular bodies. In particular, impact ejecta play an important role in regolith formation, ranging from small particles to large blocks, as well as surface feature modification and obscuration. To investigate these processes, a numerical model has been developed based upon the impact ejecta scaling laws provided by Housen, Schmidt, and Holsapple, and modified to more properly simulate the late-stage ejection velocities and ejecta plume shape changes (ejection angle variations) shown in impact cratering experiments. A target strength parameter has also been added to allow the simulation of strength-dominated cratering events in addition to the more familiar gravity-dominated cratering events. The result is a dynamical simulation which models -- via tracer particles -- the ejecta plume behavior, ejecta blanket placement, and impact crater area resulting from a specified impact on an irregularly shaped target body, which is modeled in 3-dimensional polygon fashion. This target body can be placed in a simple rotation state about one of its principal axes, with the impact site and projectile/target parameters selected by the user. The gravitational force from the irregular target body (on each tracer particle) is determined using the polygonized surface (polyhedron) gravity technique developed by Werner.

  1. The Ejecta Evolution of Deep Impact: Insight from Experiments

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.; Schultz, P. H.; Heineck, J. T.

    2010-12-01

    The Deep Impact (DI) probe impacted comet 9P/Tempel 1 at an angle of ~30° from local horizontal with a velocity of 10.2 km/s. Examination of the resulting ballistic (e.g., non-vapor driven) ejecta revealed phenomena that largely followed expectations from laboratory investigations of oblique impacts into low-density porous material, including a downrange bias, uprange zone of avoidance, and cardioid (curved) rays (Schultz, et al, 2005, 2007). Modeling of the impact based on canonical models and scaling laws (Richardson, et al, 2007) allowed a first-order reconstruction of the event, but did not fully represent the three-dimensional nature of the ejecta flow-field in an oblique impact essential for interpretation of the DI data. In this study, we present new experimental measurements of the early-time ejecta dynamics in oblique impacts that allow a more complete reconstruction of the ballistic ejecta from the impact, including visualization of the DI encounter and predictions for the upcoming re-encounter with Tempel 1. A suite of hypervelocity 30° impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR) for the purpose of interpreting the Deep Impact event. A technique based on Particle Tracking Velocimetry (PTV) permitted non-intrusive measurement of the ejecta velocity within the ejecta curtain. The PTV system developed at the AVGR utilizes a laser light sheet projected parallel to the impact surface to illuminate horizontal “slices” of the ejecta curtain that are then recorded by multiple cameras. Particle displacement between successive frames and cameras allows determination of the three-component velocity of the ejecta curtain. Pioneering efforts with a similar technique (Anderson, et al, 2003, 2006) characterized the main-stage ejecta velocity distributions and demonstrated that asymmetries in velocity and ejection angle persist well into the far-field for oblique impacts. In this study, high-speed cameras

  2. Petrography and geochemistry of ejecta from the Sudbury impact event

    NASA Astrophysics Data System (ADS)

    Huber, Matthew S.; McDonald, Iain; Koeberl, Christian

    2014-10-01

    Ejecta from the Connors Creek site in Michigan (500 km from the Sudbury Igneous Complex [SIC]), the Pine River site in western Ontario (650 km from the SIC), and the Coleraine site in Minnesota (980 km from the SIC) were petrographically and geochemically analyzed. Connors Creek was found to have approximately 2 m of ejecta, including shocked quartz, melt droplets, and accretionary lapilli; Pine River has similar deposits about 1 m in thickness, although with smaller lapilli; Coleraine contains only impact spherules in a 20 cm-thick layer (impact spherules being similar to microkrystites or microtektites). The ejecta transition from chaotic deposits of massively bedded impactoclastic material with locally derived detritus at Connors Creek to a deposit with apparently very little detrital material that is primarily composed of melt droplets at Pine River to a deposit that is almost entirely composed of melt spherules at Coleraine. The major and trace element compositions of the ejecta confirm the previously observed similarity of the ejecta deposits to the Onaping Formation in the SIC. Platinum-group element (PGE) concentrations from each of the sites were also measured, revealing significantly elevated PGE contents in the spherule samples compared with background values. PGE abundances in samples from the Pine River site can be reproduced by addition of approximately 0.2 wt% CI chondrite to the background composition of the underlying sediments in the core. PGE interelement ratios indicate that the Sudbury impact event was probably caused by a chondritic impactor.

  3. Impact and explosion crater ejecta, fragment size, and velocity

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1983-01-01

    A model was developed for the mass distribution of fragments that are ejected at a given velocity for impact and explosion craters. The model is semi-empirical in nature and is derived from (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter and an assumption on the functional form for the distribution of fragements ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity are nearly monodisperse, e.g., 20% of the mass of the ejecta at a given velocity contain fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. Using this model, the largest fragment that can be ejected from asteroids, the moon, Mars, and Earth is calculated as a function of crater diameter. In addition, the internal energy of ejecta versus ejecta velocity is found. The internal energy of fragments having velocities exceeding the escape velocity of the moon will exceed the energy required for incipient melting for solid silicates and thus, constrains the maximum ejected solid fragment size.

  4. Correlation between speed and size for ejecta from hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Sachse, M.; Schmidt, J.; Kempf, S.; Spahn, F.

    2015-11-01

    Ejecta created in hypervelocity impacts of micrometeoroids on atmosphereless bodies are an efficient source for circumplanetary and interplanetary dust. The impact erodes the target surface and releases material into space. The ejecta are typically micron sized and populate a dust cloud around the parent body, whose number density decreases with increasing distance from the target. Unbound particles escape and add to the planetary dust environment. Here we explore the influence of a correlation between the fragment size and the ejection speed, such that larger fragments are (on average) launched with lower speeds. This behavior is suggested by theoretical considerations and impact experiments. We find that such a correlation provides a dynamical filter that removes large ejecta from high altitudes. The effect is stronger for bigger ejecta and for more massive parent bodies. Our results suggest that large particles found in the circumplanetary and interplanetary dust environment either originate from impacts on smaller moons, impacts of unusually large or fast impactors, or an entirely different process of dust production.

  5. Ejecta from Hypervelocity Dust Impacts Based on Light Flash Measurements

    NASA Astrophysics Data System (ADS)

    Drake, Keith; Sternovsky, Z.; Horányi, M.; Kempf, S.; Srama, R.

    2013-10-01

    Ejecta from hypervelocity dust impacts have been shown to depend on the impinging particles’ velocity, mass, composition, etc. (J. Friichtenicht 1965, G. Eichhorn 1976). Ejecta is thought to be responsible for developing rings and dusty atmospheres of moons throughout the solar system. In order for rings to be produced, dust velocities must be greater than the moon’s escape speed. To understand the dust impact yield; impact ejecta parameters (velocities, masses, angular distributions) must be well understood. Laboratory experiments provide direct information about the ejecta production rates and impactor fluxes. Using hypervelocity (1-60km/s) iron dust at the University of Colorado dust accelerator in Boulder, Colorado we measured the time characteristics and intensities of light flashes produced on a quartz disc from primary and secondary impacts. The flashes were measured with a photomultiplier tube at varying distances and angles. By analyzing the light flashes produced by such impacts we show that this method is a viable technique for measuring these parameters. These measurements provide detailed information about the secondary mass and velocity profiles, leading to insights into the formation of dusty rings and atmospheres.

  6. Distal ejecta - an efficient tool to study ancient impacts?

    NASA Astrophysics Data System (ADS)

    Artemieva, N.

    2011-12-01

    Ejecta from impact craters received a scientific attention not too many years ago, after the revolutionary discovery of the global K-Pg layer and its Ir-anomaly. Impact ejecta are subjected to quick erosion and, hence, are not widely presented on Earth. However, globally distributed ejecta from the largest terrestial craters may be locally preserved even if the crater itself is totally obliterated. The oldest craters on Earth, Vredefort and Sudbury, are ~1.5 Gyr younger than then oldest Archean spherule layers [1-2]. These ejecta layers potentially allow to extract an important information regarding a projectile type/size, the Earth's crust and ocean. Recent numerical modeling of the K-Pg layer [3] successfully reproduced ejecta distribution around the globe including chemical composition, shock metamorphic features, and pressure-temperature history of deposited materials. It has been shown that the main components of global ejecta are projectile and sediments (the uppermost layer of the target), while materials from the crystalline basement represent the minor component and have been transported non-ballistically by atmospheric flows. These results could serve as a benchmark for the modeling of ancient impacts. As the Archean layers are much thicker and the spherules are larger, we can speculate about much larger and more frequent impacts. A few questions should be addressed via numerical modeling: 1) are these ejecta layers proximal layers of relatively small impacts or distal layers of giant impacts; 2) is there any correlation between layers at different locations;.3) why there are no any shocked minerals within these layers; 3) why the composition of spherules is mainly basaltic? In this paper the modeling results are compared with available observations (mainly on K-Pg boundary) and then are extrapolated to much larger impacts. [1] Lowe D.R., Byerly G. R., Asaro F., Kyte F. T. (1989) Science 245:959-962. [2] Simonson, B. M. and B. P. Glass (2004) Annual

  7. Biomass preservation in impact melt ejecta

    NASA Astrophysics Data System (ADS)

    Howard, Kieren Torres; Bailey, Melanie J.; Berhanu, Deborah; Bland, Phil A.; Cressey, Gordon; Howard, Lauren E.; Jeynes, Chris; Matthewman, Richard; Martins, Zita; Sephton, Mark A.; Stolojan, Vlad; Verchovsky, Sasha

    2013-12-01

    Meteorites can have played a role in the delivery of the building blocks of life to Earth only if organic compounds are able to survive the high pressures and temperatures of an impact event. Although experimental impact studies have reported the survival of organic compounds, there are uncertainties in scaling experimental conditions to those of a meteorite impact on Earth and organic matter has not been found in highly shocked impact materials in a natural setting. Impact glass linked to the 1.2-km-diameter Darwin crater in western Tasmania is strewn over an area exceeding 400km2 and is thought to have been ejected by a meteorite impact about 800kyr ago into terrain consisting of rainforest and swamp. Here we use pyrolysis-gas chromatography-mass spectrometry to show that biomarkers representative of plant species in the local ecosystem--including cellulose, lignin, aliphatic biopolymer and protein remnants--survived the Darwin impact. We find that inside the impact glass the organic components are trapped in porous carbon spheres. We propose that the organic material was captured within impact melt and preserved when the melt quenched to glass, preventing organic decomposition since the impact. We suggest that organic material can survive capture and transport in products of extreme impact processing, at least for a Darwin-sized impact event.

  8. Experimental Investigation of the Distribution of Shock Effects in Regolith Impact Ejecta Using an Ejecta Recovery Chamber

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Montes, R.; Cardenas, F.; Cintala, M. J.

    2016-01-01

    Because the mass-flux of solar system meteoroids is concentrated in the approx. 200 microns size range, small-scale impacts play a key role in driving the space weathering of regoliths on airless bodies. Quantifying this role requires improved data linking the mass, density and velocity of the incoming impactors to the nature of the shock effects produced, with particular emphasis on effects, such as production of impact melt and vapor, that drive the optical changes seen in space weathered regoliths. Of particular importance with regard to space weathering is understanding not only the composition of the shock melt created in small-scale impacts, but also how it is partitioned volumetrically between the local impact site and more widely distributed ejecta. To improve the ability of hypervelocity impact experiments to obtain this type of information, we have developed an enclosed sample target chamber with multiple-geometry interior capture cells for in-situ retention of ejecta from granular targets. A key design objective was to select and test capture cell materials that could meet three requirements: 1) Capture ejecta fragments traveling at various trajectories and velocities away from the impact point, while inducing minimal additional damage relative to the primary shock effects; 2) facilitate follow-up characterization of the ejecta either on or in the cell material by analytical SEM, or ex-situ by microprobe, TEM and other methods; and 3) enable the trajectories of the captured and characterized ejecta to be reconstructed relative to the target.

  9. Spitzer spectral observations of the deep impact ejecta.

    PubMed

    Lisse, C M; Vancleve, J; Adams, A C; A'hearn, M F; Fernández, Y R; Farnham, T L; Armus, L; Grillmair, C J; Ingalls, J; Belton, M J S; Groussin, O; McFadden, L A; Meech, K J; Schultz, P H; Clark, B C; Feaga, L M; Sunshine, J M

    2006-08-01

    Spitzer Space Telescope imaging spectrometer observations of comet 9P/Tempel 1 during the Deep Impact encounter returned detailed, highly structured, 5- to 35-micrometer spectra of the ejecta. Emission signatures due to amorphous and crystalline silicates, amorphous carbon, carbonates, phyllosilicates, polycyclic aromatic hydrocarbons, water gas and ice, and sulfides were found. Good agreement is seen between the ejecta spectra and the material emitted from comet C/1995 O1 (Hale-Bopp) and the circumstellar material around the young stellar object HD100546. The atomic abundance of the observed material is consistent with solar and C1 chondritic abundances, and the dust-to-gas ratio was determined to be greater than or equal to 1.3. The presence of the observed mix of materials requires efficient methods of annealing amorphous silicates and mixing of high- and low-temperature phases over large distances in the early protosolar nebula. PMID:16840662

  10. Ejecta Production in Microgravity from Low Velocity Impacts in Regolith

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Dove, A.; Brisset, J.; Rascon, A. N.; Brightwell, K.

    2015-12-01

    We report on the results of the third PRIME (Physics of Regolith Impacts in Microgravity Experiment) campaign on-board the NASA C-9 airplane in August 2014. The objective of PRIME is to study low-velocity impacts of cm-scale particles into planetary regolith under reduced gravity and microgravity conditions, measuring how dust on the surfaces of planetary ring particles, planetesimals and asteroids dissipates energy in the collision and the mass-velocity distribution of any ejecta produced in the impact. PRIME can perform impacts into granular materials at speeds of ~5-50 cm/s in microgravity. Impacts are performed in vacuum and projectiles are spherical particles launched by a spring designed to provide the desired impact energy. The target materials studied are quartz sand and JSC-1 lunar regolith simulant, filled to a depth of 2 cm in the target tray. Projectile materials are quartz, brass, and stainless steel to provide a range of impact energies at constant impact velocity. Impacts are performed in isolated chambers and up to 8 experiments can be performed per flight. The data collected consists of video recordings of the impacts, taken with a high resolution video camera at 120 frames per second. The impacts observed during the PRIME-3 campaign resulted in 9 marble rebounds and 15 impacts with ejecta. Seven of these 15 were at accelerations of ~0.05 g while the remaining impacts were performed in free fall. For each rebound observed, the coefficient of restitution of the impact was measured and for each collision that produced ejecta, the ejected particles were tracked to determine their initial velocities. The PRIME-3 campaign successfully extended the region of the parameter field explored by investigating impacts at velocities lower than observed during previous campaigns while collecting new data on impacts at asteroid gravity levels. We present our new results and combine them with results from previous similar experiments and discuss applications to

  11. Popigai Impact Structure Modeling: Morphology and Worldwide Ejecta

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Artemieva, N. A.; Pierazzo, E.

    2004-01-01

    The approx. 100 km in diameter, 35.7 0.2 Ma old Popigai structure [1], northern Siberia (Russia), is the best-preserved of the large terrestrial complex crater structures containing a central-peak ring [2- 4]. Although remotely located, the excellent outcrops, large number of drill cores, and wealth of geochemical data make Popigai ideal for the general study of the cratering processes. It is most famous for its impact-diamonds [2,5]. Popigai is the best candidate for the source crater of the worldwide late Eocene ejecta [6,7].

  12. Distal Impact Ejecta from the Gulf of Carpentaria: Have We Found Cometary Fragments as Part of the Ejecta Suite?

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. E.; Abbott, D. H.; Breger, D.

    2011-12-01

    Analysis using light microscopy, analytical scanning electron microscopy, and measurements of the magnetic susceptibility of five sediment cores (MD 28-MD 32) from the Gulf of Carpentaria have revealed that each has had an impact layer less than a centimeter (10s to 100s of micrometers) thick prior to bioturbation. The present stratigraphic thickness of the impact layer (result of bioturbation) within every core was determined based on whether or not we had observed at least one of the following impact ejecta: FeNiCrCl (a recent discovery), metallic spherules (some of which consisted of Fe and Ni), or chlorinated hydrocarbon; the highest peak of magnetic susceptibility correlated with the highest concentration of impact ejecta. We used modeling of the magnetic susceptibility of a hematite-calcium carbonate mixture to constrain the minimum thickness of the impact ejecta layer (prior to bioturbation). Until recently we had been unaware that the red, glassy, semi-spherules we found within the impact layer were in fact FeNiCrCl. Nickel is not abundant within the Earth's crust, thus it is highly likely that these fragments are cometary debris from an impact event within the Gulf of Carpentaria. Furthermore, SEM analysis has confirmed that the chlorinated hydrocarbon was not PVC contamination from the coring process; with such high levels of chlorine the results strongly suggest that the material was a by product of a marine water impact event. In addition, by using impact modeling we deduced that the observed impact ejecta layer could not have been transported via an impact generated tsunami. The model also predicts that the layer could have been produced by a cometary impact event (average velocity 51 km/s) that would have produced the 12 km crater at the site of the Tabban crater candidate.

  13. Impact Ejecta above an Unconformity in Hudson River Sediments

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.; Gogan, N.; Breger, D.

    2012-12-01

    We examined three Hudson River cores just above a step increase in density that we infer to be an erosional unconformity circa 2300 BP in age (Goodbred et al., 2006). Each core has a layer containing impact ejecta and marine microfossils that lies directly above the unconformity. As the river water is too fresh for marine organisms, there are no marine microfossils in the sediments above and below this unusual layer. The marine microfossils are pelagic and benthic foraminifera, radiolarians, and coccoliths. The impact ejecta include marine microfossils coated with Sn oxide, often in crystalline form. The Sn oxide coating contains quantitative levels of Ni as determined by microprobe analysis. Ni is a marker for extraterrestrial material. Sn oxide also appears as a coating on glauconite grains within the layer. Glauconite is highly unstable and only forms in a marine setting. Marine sediments on the continental shelf outside the mouth of the Hudson River contain abundant glauconite. We also found impact breccia containing flow-textured glass, shocked ilmenite, pyroxene, and K-feldspar. Some of the glass cemented impact breccias are enriched in pyrite. The layer above the unconformity increases in thickness towards the mouth of the Hudson. The water depth of the cores in some cases exceeds 10 meters. Because the flow depths of storm surges do not exceed 10 meters and are generally less than 3 meters, we can eliminate storm surge as a cause of the event. Alternatively, tsunamis can exhibit flow depths that exceed 10 meters, suggesting that the erosional event was produced by an impact-generated tsunami. The cores containing the unconformity are located between 27 and 41 km upstream from the mouth of the Hudson River.

  14. Corvid meteoroids are not ejecta from the Giordano Bruno impact

    NASA Technical Reports Server (NTRS)

    Harris, A. W.

    1993-01-01

    The study points out three difficulties with the hypothesis of Hartung (1993) that the Corvid meteor system, observed only once in 1937, may be the return of the clump of ejecta from the formation of a lunar crater, specifically, an event recorded in the chronicles of Gervase of Canterbury on June 25, 1178, which Hartung (1976) previously suggested may be an eyewitness account of the formation of the lunar crater Giordano Bruno. On the basis of this, he predicts that another Corvid shower may be observed in 2003 or 2006. This hypothesis is rejected on the contention that it is implausible that a clump of ejecta could be launched into heliocentric orbit with a low enough dispersion in velocity among separate pieces that it would produce a meteor shower in just one year and not others. Subsequent perturbations by the earth on parts of the clump passing near the earth but not impacting would destroy the coherence of the clump on a time scale much shorter than the 759-yr interval proposed. There are so many orbits that could yield a shower after 759 yr that it is unlikely that a prediction of a return in a specific year would be correct.

  15. Corvid meteoroids are not ejecta from the Giordano Bruno impact

    NASA Astrophysics Data System (ADS)

    Harris, A. W.

    1993-05-01

    The study points out three difficulties with the hypothesis of Hartung (1993) that the Corvid meteor system, observed only once in 1937, may be the return of the clump of ejecta from the formation of a lunar crater, specifically, an event recorded in the chronicles of Gervase of Canterbury on June 25, 1178, which Hartung (1976) previously suggested may be an eyewitness account of the formation of the lunar crater Giordano Bruno. On the basis of this, he predicts that another Corvid shower may be observed in 2003 or 2006. This hypothesis is rejected on the contention that it is implausible that a clump of ejecta could be launched into heliocentric orbit with a low enough dispersion in velocity among separate pieces that it would produce a meteor shower in just one year and not others. Subsequent perturbations by the earth on parts of the clump passing near the earth but not impacting would destroy the coherence of the clump on a time scale much shorter than the 759-yr interval proposed. There are so many orbits that could yield a shower after 759 yr that it is unlikely that a prediction of a return in a specific year would be correct.

  16. Modeling Atmospheric Entrainment and Transport of Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Barnouin-Jha, Olivier Serge

    1998-10-01

    Many mechanisms have been proposed to explain the origin of fluidized ejecta morphologies observed at craters formed by an asteroid or comet colliding with a planetary surface. The predominant mechanisms include: the incorporation of water or volatiles into a subsequently fluidized ejecta flow resembling a mudslide; the incorporation of air and volatiles into a debris cloud of primary and secondary ejecta that slides along the target surface; the formation of an ejecta ''sturzstrom' following the gravitational collapse of an ejecta curtain that has been decelerated and steepened by impinging atmosphere; and, the formation of strong atmospheric winds generated by an advancing ejecta curtain that entrain and deposit ejecta. Laboratory experiments show that this last mechanism produces fluidized ejecta facies with contiguous ramparts and lobate flows that are remarkably similar to features seen on Mars, Venus and the Earth. In order to quantitatively assess the importance of such winds at planetary scales, this thesis combines a variety of analytical, numerical and empirical techniques to investigate the interactions between an advancing ejecta curtain and an atmosphere. The physical models developed describe the entrainment capacity and initial transport of ejecta by these winds, as well as some of the factors controlling ejecta deposition. The ultimate objective of this study is to model most aspects of ejecta entrainment, transport and deposition. In combination with observations of fluidized ejecta facies, such models should provide new insight into the target and atmospheric conditions present during crater formation. Such information may improve our understanding of past climatic and surface conditions on planets such as Mars.

  17. Impact ejecta in upper Eocene deposits at Massignano, Italy

    NASA Astrophysics Data System (ADS)

    Glass, Billy P.; Liu, Shaobin; Montanari, Alessandro

    2004-04-01

    Previous workers have shown that an impact ejecta layer at Massignano, Italy contains a positive Ir anomaly, flattened spheroids (pancake spherules), Ni-rich spinel crystals, and shocked quartz with multiple sets of planar deformation features. Because of sample sizes and work by different investigators, it was not clear if the shocked quartz is associated with the Ir anomaly and pancake spherules or if it belongs to a separate impact event. To address this problem, we carried out a high-resolution stratigraphic study of this ejecta layer. The ejecta layer was sampled continuously at 1 cm intervals in two adjacent columns. The carbonate was removed with dilute HCl, and the noncarbonate fraction was gently sieved. Pancake spherules were recovered from the 250-500 mm size fraction and counted. At the peak abundance, the number of pancake spherules in the 250-500 mm size fraction is about 6-7/g of sample. The pancake spherules removed from the 250-500 mm size fraction are mostly translucent to opaque pale green, but some have a grey color or dark opaque patches due to a coating of Ni- and Cr-rich spinel crystals. Energy-dispersive X-ray analysis and X-ray diffraction data indicate that the green spherules are composed of iron-rich smectite, probably nontronite. Black opaque spinel stringers (dark spinel-rich pancake spherules), usually <200 mm across, can be seen in a polished section of a block that includes the ejecta layer. None of the dark spinel-rich pancake spherules were recovered from the sieved non-carbonate fraction due to their fragile nature, but we believe that they are from the same impact event as the green pancake spherules. The <250 mm size fractions from both columns were disaggregated using ultrasonics and re-sieved. The 63-125 mm size fractions were then searched for shocked quartz using a petrographic microscope. At the peak-abundance level, the number of shocked quartz grains in the 63-125 mm size fraction is about 7/g of sample. Some of the

  18. Analysis of Regolith Simulant Ejecta Distributions from Normal Incident Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Suggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has established the Constellation Program. The Constellation Program has defined one of its many goals as long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013 'Meteoroid Environment Model Near Earth to Lunar Surface', was developed for the Apollo program in 1969 and contains the latest definition of the lunar ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powdered pumice and unconsolidated JSC-1A Lunar Mare Regolith simulant targets. Projectiles were accelerated to velocities between 2.45 and 5.18 km/s at normal incidence using the Ames Vertical Gun Range (AVGR). The ejected particles were detected by thin aluminum foil targets strategically placed around the impact site and angular ejecta distributions were determined. Assumptions were made to support the analysis which include; assuming ejecta spherical symmetry resulting from normal impact and all ejecta particles were of mean target particle size. This analysis produces a hemispherical flux density distribution of ejecta with sufficient velocity to penetrate the aluminum foil detectors.

  19. Energy and mass distributions of impact ejecta blankets on the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Okeefe, J. D.

    1978-01-01

    The paper applies previously calculated impact-induced flow fields (O'Keefe and Ahrens, 1977) resulting from interaction of 5-cm radius gabbroic anorthosite impactor with a half-space of the same material, at various velocities, to obtain mass and energy ejecta distributions. Whereas earlier results described the ejecta distribution from a 15 km/s impact of an iron object on the moon in terms of mass vs. distance, the present results describe, at a given distance from the impact, the energy content as a function of depth, i.e., the thermal structure of ejecta blankets. Pertinent computational methods are included, and several tables and plots supplement the text.

  20. An analytic study of impact ejecta trajectories in the atmospheres of Venus, Mars, and earth

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.; Kirk, D. B.; Gault, D. E.

    1978-01-01

    Calculations have been made to determine the effects of atmospheric drag and gravity on impact ejecta trajectories on Venus, Mars, and earth. The equations of motion were numerically integrated for a broad range of body sizes, initial velocities, and initial elevation angles. A dimensionless parameter was found from approximate analytic solutions which correlated the ejecta range, final impact angle, and final impact velocity for all three planets.

  1. NOx production and rainout from Chicxulub impact ejecta reentry

    NASA Astrophysics Data System (ADS)

    Parkos, Devon; Alexeenko, Alina; Kulakhmetov, Marat; Johnson, Brandon C.; Melosh, H. Jay

    2015-12-01

    The Chicxulub impact 66.0 Ma ago initiated the second biggest extinction in the Phanerozoic Eon. The cause of the concurrent oceanic nitrogen isotopic anomaly, however, remains elusive. The Chicxulub impactor struck the Yucatán peninsula, ejecting 2 × 1015 kg of molten and vaporized rock that reentered globally as approximately 1023 microscopic spherules. Here we report that modern techniques indicate that this ejecta generates 1.5 × 1014 moles of NOx, which is enough to cause the observed nitrogen enrichment of the basal layer. Additionally, reentry-based NO production would explain the anomalously heavy isotopic composition of the observed nitrogen. We include N, O, N2, O2, and NO species in simulations of nonequilibrium chemically reacting flow around a reentering spherule. We then determine the net production of NO from all the spherules and use turbulence models to determine how quickly this yield diffuses through the atmosphere. Upon reaching the stratosphere and troposphere, cloud moisture absorbs the NOx and forms nitric acid. We model this process and determine the acidity of the resulting precipitation, which peaks about 1 year after the impact. The precipitation ultimately reaches the upper ocean, where we assume that the well-mixed surface layer is 100 m deep. We then model the naturally occurring carbonate/bicarbonate buffer and determine the net pH. We find that insufficient NOx reaches the ocean to directly cause the observed end-Cretaceous oceanic extinction via acidification and buffer removal. However, the resulting nitrates are sufficient to explain the concurrent nitrogen isotopic anomaly and facilitate an end-Cretaceous algae bloom.

  2. Atmospheric interactions during global deposition of Chicxulub impact ejecta

    NASA Astrophysics Data System (ADS)

    Goldin, Tamara Joan

    Atmospheric interactions affected both the mechanics of impact ejecta deposition and the environmental effects from the catastrophic Chicxulub impact at the Cretaceous-Paleogene (K-Pg) boundary. Hypervelocity reentry and subsequent sedimentation of Chicxulub impact spherules through the Earth's atmosphere was modeled using the KFIX-LPL two-phase flow code, which includes thermal radiation and operates at the necessary range of flow regimes and velocities. Spherules were injected into a model mesh approximating a two-dimensional slice of atmosphere at rates based on ballistic models of impact plume expansion. The spherules decelerate due to drag, compressing the upper atmosphere and reaching terminal velocity at ˜70 km in altitude. A band of spherules accumulates at this altitude, below which is compressed cool air and above which is hot (>3000 K) relatively-empty atmosphere. Eventually the spherule-laden air becomes unstable and density currents form, transporting the spherules through the lower atmosphere collectively as plumes rather than individually at terminal velocity. This has implications for the depositional style and sedimentation rate of the global K-Pg boundary layer. Vertical density current formation in both incompressible (water) and compressible (air) fluids is evaluated numerically via KFIX-LPL simulations and analytically using new instability criteria. Models of density current formation due to particulate loading of water are compared to tephra fall experiments in order to validate the model instabilities. The impact spherules themselves obtain peak temperatures of 1300-1600 K and efficiently radiate that heat as thermal radiation. However, the downward thermal radiation emitted from decelerating spherules is increasingly blocked by previously-entered spherules settling lower in the atmosphere. This self-shielding effect strengthens with time as the settling spherule cloud thickens and becomes increasingly opaque, limiting both the magnitude

  3. Lunar Impact ejecta: The View from Radar and Thermal Infrared Observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Carter, L. M.; Tai Udovicic, C. J.; Bandfield, J. L.; Campbell, B. A.

    2014-12-01

    The lunar regolith is derived from impact ejecta, and so understanding ejecta characteristics is a key element of regolith studies. Here we report on the physical properties of impact ejecta from Earth-based and orbital radar (Arecibo / Green Bank telescopes at 12.6- and 70-cm wavelengths, and the Lunar Reconnaissance Orbiter Mini-RF) and LRO Diviner thermal infrared observations. Diviner thermal IR data provide estimates of surface rock abundance, and the radar datasets reveal rocks buried beneath up to several meters of regolith. These four datasets represent a spectrum of observational wavelengths, and their intercomparison provides a means of constraining both ejecta block content and depth extent. We examine all craters on the lunar nearside that show evidence for blocky ejecta, whether buried or on the surface, in order to investigate spatial, crater size-, and time-dependent variations in ejecta block size distribution and spatial extent. Previous work has shown that it is possible to quantify the relationship between surface ejecta rock content and crater age for craters younger than ~1 Gyr; we will now present the results of our effort to extend the age range over which this relationship can be applied by investigating buried ejecta as well. Further, we report on the thermophysical characteristics of distal fine-grained ejecta that have previously been shown to exhibit unique radar characteristics (low radar return and circular polarization ratio). Our results constrain the physical properties of ejecta, and variations in those properties with time and depth, to an extent not possible from examination of visible-wavelength images and multispectral data alone.

  4. Corvid meteoroids are ejecta from the Giordano Bruno impact

    NASA Astrophysics Data System (ADS)

    Hartung, J. B.

    1993-05-01

    Attention is given to Corvid meteoroids, with reference to a Corvid meteor shower observed in late June of 1937. On June 18, 1178, the upper horn of a crescent moon was reported to have split, with fire and sparks emanating from the division point. This report was interpreted to be a description of events related to the formation of the lunar crater Giordano Bruno. Corvid meteoroids are judged to be Giordano Bruno ejecta fragments based on similarities in their heliocentric positions, directions of motion, and speeds. Commensurability relationships between meteoroid/ejecta and earth-moon system orbital periods enable definitive predictions of Corvid showers in the years 2003 and/or 2006.

  5. Identification and Characterization of Well-Preserved Impact Ejecta Deposits Using THEMIS Global Infrared Mosaics

    NASA Astrophysics Data System (ADS)

    Hill, J. R.; Christensen, P. R.

    2014-12-01

    The Thermal Emission Imaging System (THEMIS) onboard the 2001 Mars Odyssey spacecraft has been acquiring infrared observations of the Martian surface for nearly thirteen years. Daytime infrared images from the first twelve years of the mission have previously been used to generate a complete global mosaic, while nighttime infrared images have been used to generate a near-global mosaic between 60°N-60°S. A combined product has been generated by overlaying the daytime global mosaic with a colorized version of the nighttime global mosaic, resulting in a near-global map that can be used to more easily identify surface features with unique thermal characteristics.Well-preserved ejecta deposits associated with fresh impact craters are readily identifiable in the combined map by their characteristic nighttime temperature pattern, which is controlled by variations in the thermal inertia of the ejecta material. The pattern consists of relatively high thermal inertia material in and around the crater, an inner ejecta ring composed of intermediate thermal inertia material and an outer ejecta ring composed of low thermal inertia material.A near-global survey (60°N-60°S) of these well-preserved ejecta deposits has shown that the vast majority occur in a small region covering northern Terra Sirenum and eastern Daedalia Planum, with a smaller concentration present in Syria Planum. A comparison of THEMIS and Viking images has verified that the larger craters and ejecta deposits were present at the time of the Viking mission and are not the result of more recent impacts. The survey also identified similarly fresh impact craters across the planet that are lacking an outer ring of low thermal inertia ejecta material, possibly due to erosion of the original ejecta deposits. This suggests that local conditions in Terra Sirenum, Daedalia Planum and Syria Planum are favorable for the long-term preservation of the fine-grained component of fresh impact ejecta deposits.

  6. Simulated meteorite impacts and volcanic explosions: Ejecta analyses and planetary implications

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Nellis, W. J.

    1992-01-01

    Past cratering studies have focused primarily on crater morphology. However, important questions remain about the nature of crater deposits. Phenomena that need to be studied include the distribution of shock effects in crater deposits and crater walls; the origin of mono- and polymict breccia; differences between local and distal ejecta; deformation induced by explosive volcanism; and the production of unshocked, high-speed ejecta that could form the lunar and martian meteorites found on the Earth. To study these phenomena, one must characterize ejecta and crater wall materials from impacts produced under controlled conditions. New efforts at LLNL simulate impacts and volcanism and study resultant deformation. All experiments use the two-stage light-gas gun facility at LLNL to accelerate projectiles to velocities of 0.2 to 4.3 km/s, including shock pressures of 0.9 to 50 GPa. We use granite targets and novel experimental geometries to unravel cratering processes in crystalline rocks. We have thus far conducted three types of simulations: soft recovery of ejecta, 'frozen crater' experiments, and an 'artificial volcano. Our ejecta recovery experiments produced a useful separation of impactites. Material originally below the projectile remained trapped there, embedded in the soft metal of the flyer plate. In contrast, material directly adjacent to the projectile was jetted away from the impact, producing an ejecta cone that was trapped in the foam recovery fixture. We find that a significant component of crater ejecta shows no signs of strong shock; this material comes from the near-surface 'interference zone' surrounding the impact site. This phenomenon explains the existence of unshocked meteorites on the Earth of lunar and martian origin. Impact of a large bolide on neighboring planets will produce high-speed, weakly shocked ejecta, which may be trapped by the Earth's gravitational field. 'Frozen crater' experiments show that the interference zone is highly

  7. Inferences on the Emplacement Dynamics of Martian Impact Crater Ejecta: Constraints from Mola Topography

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Baloga, S. M.

    1998-01-01

    Lobate ejecta deposits surround many of the younger impact craters on Mars. Viking Orbiter images indicate the distal parts of the ejecta blankets of these lobate craters are characterized by ramparts. In the absence of detailed topographic data for characterizing the topology of these apparently fluidized ejecta deposits, physical models have relied upon their morphologic characteristics. The most widely accepted model for the formation of such rampart ejecta deposits on Mars invokes fluidization of the ejecta to produce one or more viscous flow lobes. The availability of high-precision topographic data from the Mars Orbiter Laser Altimeter [4,51 facilitates a more quantitative examination of the physical processes involved in the formation of rampart ejecta deposits on Mars. Here we investigate the emplacement constraints that can be developed from the dimensions, topography, and morphology of martian rampart craters. The primary assumptions we have adopted are: (1) the ejecta blanket is emplaced as a continuum flow over the martian surface, rather than an airfall deposit, and (2) that the observable dimensions of the deposits are indicative of flow dimensions during emplacement.

  8. Comparison of Ejecta Distributions from Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Scruggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is progressing toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013, was developed for the Apollo program and is the latest definition of the ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powered pumice and unconsolidated JSC-1A Lunar Mare Regolith stimulant (JSC-1A) targets. The Ames Vertical Gun Range (AVGR) was used to accelerate projectiles to velocities in excess of 5 km/s and impact the targets at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the impact site and angular distributions were determined for ejecta. Comparison of ejecta angular distribution with previous works will be presented. A simplistic technique to characterize the ejected particles was formulated and improvements to this technique will be discussed for implementation in future tests.

  9. Transfer of Impact Ejecta Material from the Surface of Mars to Phobos and Deimos

    PubMed Central

    Melosh, Henry J.; Vaquero, Mar; Howell, Kathleen C.

    2013-01-01

    Abstract The Russian Phobos-Grunt spacecraft originally planned to return a 200 g sample of surface material from Phobos to Earth. Although it was anticipated that this material would mainly be from the body of Phobos, there is a possibility that such a sample may also contain material ejected from the surface of Mars by large impacts. An analysis of this possibility is completed by using current knowledge of aspects of impact cratering on the surface of Mars and the production of high-speed ejecta that might reach Phobos or Deimos. Key Words: Impact cratering—Ejecta transfer—Phobos. Astrobiology 13, 963–980. PMID:24131246

  10. Impact Ejecta in a Possible Tsunami Layer in the Hudson River: Regional or Local Event?

    NASA Astrophysics Data System (ADS)

    Cagen, K. T.; Abbott, D.; Nitsche, F.; West, A.; Bunch, T.; Breger, D.; Slagle, A.; Carbotte, S.

    2009-03-01

    Recent discoveries point to a tsunami event in the New York metropolitan area approximately 2300 BP. Our discovery of impact ejecta deposited by the tsunami in the Hudson River suggests that the tsunami was caused by an impact in the Atlantic Ocean.

  11. A new look at lunar impact craters provides insights into ejecta and melt emplacement on the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Grieve, R. A.; Tornabene, L. L.

    2011-12-01

    Impact cratering is one of the most fundamental processes responsible for shaping the surfaces of solid planetary bodies. Even on Earth, where the impact record is sparse, it is now apparent that impact events also have played an important role throughout Earth's history, shaping the geological landscape, affecting the evolution of life and producing economic benefits. It is widely acknowledged that the Moon provides a unique natural laboratory for studying the impact processes on planetary scales. One of the most important, but least understood aspects of impact cratering is the generation and emplacement of impact ejecta. In this contribution, we utilize new high-resolution imagery of lunar craters in addition to observations of terrestrial impact structures. Current models of ejecta emplacement do not account for several important observations of ejecta deposits on the terrestrial planets, in particular, the presence of more than one layer of ejecta. On the Moon, this addional ejecta layer takes the form of impact melt ponds on the rim terraces of complex lunar craters and overlying parts of the continuous ejecta blanket. It is also notable that there is also no universal model for the origin and emplacement of ejecta on different planetary bodies. We present a unifying working hypothesis for the origin and emplacement of ejecta on the terrestrial planets, in which the ejecta are emplaced in a multi-stage process. The generation of the continuous ejecta blanket occurs during the excavation stage of cratering, via the conventional ballistic sedimentation and radial flow model. This is followed by the emplacement of more melt-rich, ground-hugging flows - the "surface melt flow" phase - during the terminal stages of crater excavation and the modification stage of crater formation. Minor fallback occurs during the final stages of crater formation. Several factors will affect the final morphology and character of ejecta deposits. The volatile content and cohesiveness

  12. Exploring hotspots of pneumococcal pneumonia and potential impacts of ejecta dust exposure following the Christchurch earthquakes.

    PubMed

    Pearson, Amber L; Kingham, Simon; Mitchell, Peter; Apparicio, Philippe

    2013-12-01

    The etiology of pneumococcal pneumonia (PP) is well-known. Yet, some events may increase its incidence. Natural disasters may worsen air quality, a risk factor for PP. We investigated spatial/spatio-temporal clustering of PP pre- and post-earthquakes in Christchurch, New Zealand. The earthquakes resulted in deaths, widespread damage and liquefaction ejecta (a source of air-borne dust). We tested for clusters and associations with ejecta, using 97 cases (diagnosed 10/2008-12/2011), adjusted for age and area-level deprivation. The strongest evidence to support the potential role of ejecta in clusters of PP cases was the: (1) geographic shift in the spatio-temporal cluster after deprivation adjustment to match the post-earthquake clusters and; (2) increased relative risk in the fully-adjusted post-earthquake compared to the pre-earthquake cluster. The application of spatial statistics to study PP and ejecta are novel. Further studies to assess the long-term impacts of ejecta inhalation are recommended particularly in Christchurch, where seismic activity continues. PMID:24238077

  13. Highly comminuted lunar impact ejecta: Earth-based radar and LRO DIVINER observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Campbell, B. A.; Pithawala, T.

    2008-09-01

    Introduction Recent work [1-3] using Earth-based radar measurements has shown that large impacts on the Moon produce a distinct facies of highly comminuted ejecta depleted in fragments >10 cm in diameter, forming concentric radar-dark haloes around the source craters and representing a mantling layer on the order of 10m thick. We have also recently observed similar haloes of fine ejecta surrounding Martian craters >5 km in diameter, characterized by micron- to mm-sized particles. Preliminary measurements suggest that the lunar and Martian fine ejecta haloes are geometrically similar: that is, they scale in much the same way with respect to their source craters. This implies that a) the comminution process and emplacement of ejecta on the two planets occur in similar ways; and b) like the Martian case, the lunar crater haloes also have a thin mantling layer of very fine particles, which cannot be detected using Earth-based radar. Because of their extensive spatial coverage and high resolution, LRO DIVINER measurements will provide the first opportunity to bridge this gap and to more completely characterize the rock size distribution represented in lunar continuous ejecta. Radar remote sensing of fine-grained ejecta haloes Fine-grained lunar ejecta haloes were first observed [4], and later studied in detail [1-3], using Earth-based delay-Doppler radar imagery at 70-cm wavelength. Recent observations in two circular polarizations have been made using the Arecibo telescope in Puerto Rico and the Greenbank telescope in West Virginia in a bistatic geometry [5; Campbell et al., IEEE]. In general, the radar backscatter of the lunar regolith is comprised of echoes from the surface, rocks suspended within the fine-grained matrix, and a possible basal regolith interface. The relative importance of each of these components varies with radar wavelength and is a function of surface roughness, surface and volume rock populations, the depth and dielectric properties of the matrix

  14. Ejecta Pattern of the Impact of Comet Shoemaker-Levy 9

    NASA Technical Reports Server (NTRS)

    Pankine, Alexey A.; Ingersoll, Andrew P.

    1999-01-01

    The collision of Comet Shoemaker-Levy 9 (SL 9) with Jupiter created crescent-shaped ejecta patterns around impact sites. Although the observed impact plumes rose through a similar height of approx.3000 km, the radii of the created ejects patterns differ from impact to impact and generally are larger for larger impacts. The azimuthal angle of the symmetry axis of the ejects pattern is larger than that predicted by the models of oblique impacts, due to the action of the Coriolis force that rotates ejecta patterns counterclockwise from the south. We study the formation of ejects patterns using a simple model of ballistic plume above a rotating plane. The ejected particles follow ballistic trajectories and slide horizontally for about an hour after reentry into the jovian atmosphere. The lateral expansion of the plume is stopped by the friction force, which is assumed to be proportional to the square of the horizontal velocity. Two different mass-velocity distributions used in the simulations produce qualitatively similar results. The simulated ejecta patterns fit very well the "crescents" observed at the impact sites. The sizes and azimuthal angles of symmetry axis of ejects patterns depend on a parameter L, which has dimension of length and is related to the mass of the fragment. Thus more massive impacts produce larger ejects patterns that are rotated through a wider angle.

  15. Measurement of Primary Ejecta From Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Moser, Danielle; Swift, Wesley

    2007-01-01

    The National Aeronautics and Space Administration (NASA) continues to make progress toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment. A subject for further definition is the lunar primary ejecta environment. The document NASA SP-8013 was developed for the Apollo program and is the latest definition of the primary ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar primary ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface primary ejecta environment. This paper reports the results of experiments on projectile impact into pumice targets, simulating lunar regolith. The Ames Vertical Gun Range (AVGR) was used to accelerate spherical Pyrex projectiles of 0.29g to velocities ranging between 2.5 km/s and 5.18 km/s. Impact on the pumice target occurred at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the pumice target in a 0.5 Torr vacuum. A simplistic technique to characterize the ejected particles was formulated. Improvements to this technique will be discussed for implementation in future tests.

  16. Ejecta Blanket from the Morasko Meteorite Impact — First Results

    NASA Astrophysics Data System (ADS)

    Szokaluk, M.; Jagodziński, R.; Muszyński, A.; Szczuciński, W.

    2015-09-01

    Morasko in the northern part of Poznań (western Poland) has witnessed the largest known iron meteorite shower in the central Europe. Apart from the thousands of iron meteorite pieces, the impact has left also at least seven meteorite impact craters.

  17. Meteorite impact ejecta: dependence of mass and energy lost on planetary escape velocity.

    PubMed

    O'keefe, J D; Ahrens, T J

    1977-12-23

    The calculated energy efficiency of mass ejection for iron and anorthosite objects striking an anorthosite planet at speeds of 5 to 45 kilometers per second decreases with increasing impact velocity at low escape velocities. At escape velocities of >10(5) and >2 x 10(4) centimeters per second, respectively, the slower impactors produce relatively less ejecta for a given impact energy. The impact velocities at which ejecta losses equal meteorite mass gains are found to be approximately 20, 35, and 45 kilometers per second for anorthosite objects and approximately 25, 35, and 40 kilometers per second for iron objects striking anorthosite surfaces for the gravity fields of the moon, Mercury, and Mars. PMID:17741703

  18. Observations of ejecta clouds produced by impacts onto Saturn's rings.

    PubMed

    Tiscareno, Matthew S; Mitchell, Colin J; Murray, Carl D; Di Nino, Daiana; Hedman, Matthew M; Schmidt, Jürgen; Burns, Joseph A; Cuzzi, Jeffrey N; Porco, Carolyn C; Beurle, Kevin; Evans, Michael W

    2013-04-26

    We report observations of dusty clouds in Saturn's rings, which we interpret as resulting from impacts onto the rings that occurred between 1 and 50 hours before the clouds were observed. The largest of these clouds was observed twice; its brightness and cant angle evolved in a manner consistent with this hypothesis. Several arguments suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather are due to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. The responsible interplanetary meteoroids were initially between 1 centimeter and several meters in size, and their influx rate is consistent with the sparse prior knowledge of smaller meteoroids in the outer solar system. PMID:23620048

  19. Development of the Deep Impact Ejecta Based on Early MRI Images

    NASA Astrophysics Data System (ADS)

    Nagdimunov, Lev; Ludmilla, Kolokolova; Wolff, Michael; A'Hearn, Michael F.; Farnham, Tony

    2014-11-01

    We analyze a sequence of the images acquired by the Deep Impact spacecraft High Resolution (HRI) and Medium Resolution (MRI) instruments during the first seconds after impact. These early images reflect the development of material excavation from the cometary nucleus, enabling a study of variations in the excavated material with time, and potentially allowing a peek into the nucleus’ interior. Simply studying the brightness of the ejecta plume and its distribution as a function of height and time-after-impact could provide some insight into the characteristics of the ejecta. However, including the optical thickness of the ejecta offers an additional source of information through the resultant shadow on the surface of the nucleus, and brightness variations within it. Our goal was to reproduce both the distribution of brightness in the plume and in its shadow, thus constraining the characteristics of the ejecta. To achieve this, we used a 3D radiative transfer package HYPERION (http://hyperion-rt.org). The parameters of our dust modeling were composition, size distribution, and number density of particles at the base of the ejecta cone. Composition was created as a mixture of silicates, carbon and organics, ice, as well as voids to account for particle porosity. In our current modeling, we use the results of a parameter survey of dust characteristics reported previously, which was targeted to primarily simulating an HRI image taken at around 1 sec. In this survey, the best fit to Deep Impact data and excavated mass constraints showed a dust/ice mass ratio ≥ 1, with some individual particle porosity necessary to retrieve a good fit (we checked individual particle density extremes of 0.4 g/cm3 and 1.75 g/cm3). Our current work explores the spatial distribution of dust within the ejecta plume and focuses on the changes in dust characteristics over time by analyzing and simulating a sequence of Medium Resolution (MRI) images, attempting to reveal the structure of the

  20. Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.

    1975-01-01

    Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.

  1. Geochemistry and Stratigraphy of the Cretaceous/tertiary Boundary Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Hildebrand, Alan Russell

    1992-01-01

    An array of stratigraphic, chemical, isotopic, and mineralogical evidence indicates that an impact terminated the Cretaceous Period. The 180-km-diameter Chicxulub crater, which now lies buried on the Yucatan peninsula of Mexico, was probably formed by the impact. The impactor was probably a long-period comet. Shock devolatization of the thick carbonate/evaporite sequence impacted at Chicxulub probably led to a severe and long-lasting greenhouse warming and a prompt pulse of sulfuric acid rain. The fallout of crater ejecta formed two layers: a lower layer which varies in thickness following a power -law relation based on distance from the Chicxulub crater and an upper, globally-distributed, uniformly ~3-mm-thick layer. The upper layer probably represents the fallout of condensates and entrained solid and liquid particles which were distributed globally by the impact fireball. The lower layer consists of brecciated rock and impact melt near the crater and largely altered tektites far from the crater. The clasts of this layer were probably ballistically transported. The Raton, New Mexico K/T boundary section preserves the fireball and ejecta layers in a coal-free nonmarine environment. Siderophile, chalcophile, and lithophile trace element anomalies occur similar to those found at marine K/T boundary localities. Soot occurs peaking in the 3-mm-thick fireball layer and the immediately overlying 3 mm of sediment, implying prompt burning of the Cretaceous forests. The Brazos River, Texas continental-shelf K/T sections preserve coarse boundary sediments which were probably produced by impact waves. Siderophile and chalcophile trace-element anomalies occur suggesting that the fireball layer and possibly part of the ejecta layer are interbedded with the coarse boundary sediments. The Beloc, Haiti deep-sea K/T sections preserve a thick ejecta sequence including altered and unaltered tektites and shocked minerals capped by the fireball layer. The thick K/T ejecta preserved at

  2. Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF Radar

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Neish, Catherine D.; Bussey, D. B. J.; Spudis, Paul D.; Patterson, G. Wesley; Cahill, Joshua T.; Raney, R. Keith

    2011-01-01

    The Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows.

  3. Meteoroid Impact Ejecta Detection by Nanosatellites for Asteroid Surface Characterization

    NASA Astrophysics Data System (ADS)

    Lee, N.; Close, S.; Goel, A.

    2015-12-01

    Asteroids are constantly bombarded by much smaller meteoroids at extremely high speeds, which results in erosion of the material on the asteroid surface. Some of this material is vaporized and ionized, forming a plasma that is ejected into the environment around the asteroid where it can be detected by a constellation of closely orbiting nanosatellites. We present a concept to leverage this natural phenomenon and to analyze this excavated material using low-power plasma sensors on nanosatellites in order to determine the composition of the asteroid surface. This concept would enable a constellation of nanosatellites to provide useful data complementing existing techniques such as spectroscopy, which require larger and more power-hungry sensors. Possible mission architectures include precursor exploratory missions using nanosatellites to survey and identify asteroid candidates worthy of further study by a large spacecraft, or simultaneous exploration by a nanosatellite constellation with a larger parent spacecraft to decrease the time required to cover the entire asteroid surface. The use of meteoroid impact plasma to analyze the surface composition of asteroids will not only produce measurements that have not been previously obtained, including the molecular composition of the surface, but will also yield a better measurement of the meteoroid flux in the vicinity of the asteroid. Current meteoroid models are poorly constrained beyond the orbit of Mars, due to scarcity of data. If this technology is used to survey asteroids in the main belt, it will offer a dramatic increase in the availability of meteoroid flux measurements in deep space, identifying previously unknown meteoroid streams and providing additional data to support models of solar system dust dynamics.

  4. Scenario Of The 4 kyr Extraterrestrial Impact : Crater Location, Ejecta-Dispersion and Consequences.

    NASA Astrophysics Data System (ADS)

    Courty, M.; Abbott, D. H.; Cortese, G.; Crisci, A.; Crosta, X.; de Wever, P.; Fedoroff, M.; Greenwood, P.; Grice, K.; Mermoux, M.; Scharer, U.; Smith, D. C.; Thiemens, M. H.

    2006-12-01

    The 4 kyr BP impact event has been identified from deep-sea, soil and archaeological records as the worldwide pulverisation of a volatile-rich debris jet(1). High resolution sequences show two stages of ejecta fallout linked to the impact-triggered doublet gaseous regime(2): scattered solid debris at the ground surface and spray of the vaporized hot fireball with thermal blast and local ignition. Ejecta debris consist of flow- textured impact glass, impact breccia and incompletely melted marine clasts: volcano-clastic sandy mudstone, calcareous mud, granite-gneiss, schists, volcanic breccia, kerogen and algal mud. Marine microfossils, organo-mineral markers, and the debris-fallout spatial pattern indicate two potential impact craters: an Antarctic source with an admixture of volcanic glass and ice rafted debris, from the vicinity of Heard Island and the Kerguelen plateau; a low latitude, shallow water one with hydrocarbons possibly from the Gulf of Mexico. Fine mixing of target materials from far distant source craters emphasizes a unique impact-ejecta. This matches the theoretical view of a debris jet channelled along the corridor cut through the atmosphere by the incoming projectile, raised upward, and dispersed widely(3). The isotopic anomaly of the sulphur phase in the kerogen volatile-component, indicating mass independent fractionation due to photolytic transformation, suggests launching at great heights, beyond the O2-O3 UV shield, responsible for climate disturbances. The incomplete melting of target rocks and global dispersion of impact breccia out of the craters would result from splash of small-sized projectile at rather great water depth and a low angle impact (10-15 degrees) into porous, highly compressible marine sediments. The spatially variable distribution of the organo-mineral and melt components, and the wide range of phase transformation reflect nonequilibrium shock-melting and micro-scale thermal processes in the heterogeneous vapor plume

  5. Ejecta thickness and structural rim uplift measurements of Martian impact craters: Implications for the rim formation of complex impact craters

    NASA Astrophysics Data System (ADS)

    Sturm, Sebastian; Kenkmann, Thomas; Hergarten, Stefan

    2016-06-01

    The elevated rim in simple craters results from the structural uplift of preimpact target rocks and the deposition of a coherent proximal ejecta blanket at the outer edge of the transient cavity. Given the considerable, widening of the transient cavity during crater modification and ejecta thickness distributions, the cause of elevated crater rims in complex craters is less obvious. The thick, proximal ejecta in complex impact craters is deposited well inside the final crater rim and target thickening should rapidly diminish with increasing distance from the transient cavity rim. Our study of 10 complex Martian impact craters ranging from 8.2 to 53.0 km in diameter demonstrates that the mean structural rim uplift at the final crater rim makes 81% of the total rim elevation, while the mean ejecta thickness contributes 19%. Thus, the structural rim uplift seems to be the dominant factor to build up the total amount of the raised crater rim of complex craters. To measure the widening of the transient cavity during modification and the distance between the rim of the final crater and that of the transient cavity, we constructed balanced cross section restorations to estimate the transient cavity of nine complex Martian impact craters. The final crater radii are ~1.38-1.87 times the transient cavity radii. We propose that target uplift at the position of the final crater rim was established during the excavation stage.

  6. Striations, Polish, and Related Features from Clasts in Impact-Ejecta Deposits and the "Tillite Problem"

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Ernstson, K.; Anguita, F.; Claudin F.

    1997-01-01

    Proximal ejecta deposits related to three large terrestrial impacts, the 14.8-Ma Ries impact structure in Germany (the Bunte Breccia), the 65-Ma Chicxulub impact structure in the Yucatan (the Albion and Pook's Hill Diamictites in Belize) and the mid-Tertiary Azuara impact structure in Spain (the Pelarda Fm.) occur in the form of widespread debris-flow deposits most likely originating from ballistic processes. These impact-related diamictites typically are poorly sorted, containing grain sizes from clay to large boulders and blocks, and commonly display evidence of mass flow, including preferred orientation of long axes of clasts, class imbrication, flow noses, plugs and pods of coarse debris, and internal shear planes. Clasts of various lithologies show faceting, various degrees of rounding, striations (including nailhead striae), crescentic chattermarks, mirror-like polish, percussion marks, pitting, and penetration features. Considering the impact history of the Earth, it is surprising that so few ballistic ejecta, deposits have been discovered, unless the preservation potential is extremely low, or such materials exist but have been overlooked or misidentified as other types of geologic deposits . Debris-flow diamictites of various kinds have been reported in the geologic record, but these are commonly attributed to glaciation based on the coarse and poorly sorted nature of the deposits and, in many cases, on the presence of clasts showing features considered diagnostic of glacial action, including striations of various kinds, polish, and pitting. These diamictites are the primary evidence for ancient ice ages. We present evidence of the surface features on clasts from known proximal ejecta debris-flow deposits and compare these features with those reported in diamictites. interpreted as ancient glacial deposits (tillites). Our purpose is to document the types of features seen on clasts in diamictites of ejecta origin in order to help in the interpretation of

  7. Meteorite impact ejecta - Dependence of mass and energy lost on planetary escape velocity

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1977-01-01

    The amounts of material and energy which escape a planet in a meteorite impact event is calculated as functions of impact and escape velocities. Results are obtained from the computed flow induced by the impact of iron and gabbroic anorthosite spheres onto a half-space of anorthosite at impact velocities of 5 to 45 km/sec. The impact-induced flows were determined by a numerical method using the mass, momentum, and energy conservation relations in finite-difference approximation, within an Eulerian computational grid. The impact velocities at which ejecta losses equal meteorite mass gains are found to be approximately 20, 35, and 45 km/sec for anorthosite objects and approximately 25, 35, and 40 km/sec for iron objects striking anorthosite surfaces for the gravity fields of the moon, Mercury and Mars.

  8. Iridium Concentrations and Abundances of Meteoritic Ejecta from the Eltanin Impact in Sediment Cores from Polarstern Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    The abundances of meteoritic ejecta from the Eltanin asteroid impact have been examined in several sediment cores recovered by the FS Polarstern during expedition ANT XII/4 using elemental concentrations of iridium and weights of coarse ejecta debris. Three cores with well-preserved impact deposits, PS204-1, PS2708-1, and PS2709-1, each contain Ir and ejecta fluences similar to those found in USNS Eltanin core E13-4. Small Ir anomalies and traces of ejecta were found in cores PS2706-1 and PS2710-1, but since these cores lack well-defined deposits, these are considered to be reworked and not representative of the fallout. No evidence of ejecta was found in cores PS2802-1 and PS2705-1. These results confirm earlier speculation that the Eltanin impact resulted in deposits of ejecta with up to 1 gram/sq centimeter of depris over a wide area of the ocean floor. However, there are sill large uncertainties over the actual regional or global extent of this unique sediment deposit.

  9. Comparing Radar and Optical Data Sets of Lunar Impact Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Patterson, G.; Cahill, J.; Grier, J.

    2015-12-01

    Impact cratering is a primary weathering process of airless bodies and is the dominant method of redistributing material across the lunar surface. Crater ejecta blankets are a window into the impact cratering process and can provide important information on the properties of subsurface materials as well as surface evolution. Radar scattering information, in particular the circular polarization ratio (CPR), provides a useful means of investigating these properties. Using data returned from the Mini-RF instrument onboard NASA's LRO, we observe significant diversity in the CPR around young mare craters as a function of distance from the crater rim, regardless of crater size or relative age. Some commonalities in the scattering profiles are observed for all crater diameters: higher CPR values occur near the crater rim that decay with radial distance outward, larger craters have a higher CPR than smaller craters, and the overall shapes of the profiles are similar such that the main scattering characteristics of the studied craters can generally be grouped into three main categories. Comparing CPR profiles with data at other wavelengths provides additional insights and suggests two interesting results. The first is that comparisons of radar and optical data imply relationships between mare subsurface stratigraphy and structure and the relative size of the material found within the ejecta blanket. Of the examined craters, twelve have shelves of approximately constant CPR as well as discrete layers outcropping in the subsurface, and nine fall along a trend line when comparing shelf-width with thickness of subsurface layers. The second is that comparisons of radar data with other wavelengths may provide insights into the maturity of the surface. For example, some examined craters have laterally extensive, optically bright ejecta blankets suggesting that a region of rough, high-CPR material should be present near the crater rim, though this is not observed. Radar data is

  10. Search for, and study of, paleozoic impact ejecta: Progress made during the past year

    NASA Technical Reports Server (NTRS)

    Read, William F.

    1987-01-01

    Nodule-like objects which the author believes to be impact bombs had been found in Middle Ordovician rocks of southeastern Wisconsin and northern Illinois. In northern Illinois, rock fragments containing oolith-like spherules, which the author believes to be solidified impact droplets, and numerous large bubble-holes, had been found at the same stratigraphic level. The discovery of bomb-like nodules in Lower Ordovician rocks of southeastern Wisconsin was reported. Bomb-type nodules associated with droplet-type spherules have been found in Lower Ordovician rocks of central Pennsylvania. These discoveries, in the authors opinion, suffice to show that impact ejecta are widespread in marine sediments of Ordovician age and are likely to be widespread also in marine sediments of other ages. Unfortunately, according to the author, there is little indication so far that this evidence has been accepted as valid by the concerned scientific community.

  11. Modification of Mercury's Bulk Mantle Composition by Reaccumulation of Condensed Ejecta from a Formative Giant Impact

    NASA Astrophysics Data System (ADS)

    Wahl, Sean; Stevenson, D. J.; Elkins-Tanton, L.

    2010-10-01

    Difficulties encountered in reproducing Mercury's compositional attributes through modeling of formational processes have bolstered support for the hypothesis that one or more giant impacts stripped away a significant proportion of proto-Mercury's silicate mantle. Previous investigations demonstrate sufficient removal of mantle material to account for the planet's unusually high mean density, but do not consider the effects of multiple silicate and oxide phases. In this study we extend the present theory by investigating the consequences of a more realistic chemical model on the evolution of the ejected material. We suggest that the majority of condensation within the expanding vapor plume can be modeled as an equilibrium process following homogeneous nucleation of refractory phases leading to larger particle sizes than previously estimated. We use a thermodynamic model focused on major element composition of ejected material to analyze the effect of differential condensation on the expansion and final state of ejecta. For ejecta of sufficiently high specific entropy, our simplified chemical models indicate that energy released during condensation of MgO-rich phases buffers the temperature, delaying or preventing onset of FeO condensation. If sufficient spatial separation between condensates and vapor arises or if significant amounts of uncondensed FeO vapor remain uncondensed, reaccumulated ejecta would be enriched in MgO and refractory phases. This is compatible with an FeO depletion of Mercury's surface relative to other terrestrial bodies as spectroscopic data suggest (McClintock, Science, 2008). Despite conflicts in the data and the necessity for further relating it to bulk mantle composition, we describe potential tests of our model. Concentration of incompatible elements in the crust formed by a magma ocean would intensify FeO loss. The proposed process leads to a greater depletion in FeO and a lesser depletion in refractory, incompatible elements (Al2O3, Ca

  12. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Lindgren, Paula

    2010-07-01

    On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record

  13. The origin of Phobos grooves from ejecta launched from impact craters on Mars: Tests of the hypothesis

    NASA Astrophysics Data System (ADS)

    Ramsley, Kenneth R.; Head, James W.

    2013-01-01

    The surface of the martian moon Phobos is characterized by parallel and intersecting grooves that bear resemblance to secondary crater chains observed on planetary surfaces. Murray (2011) has hypothesized that the main groove-forming process on Phobos is the intersection of Phobos with ejecta from primary impact events on Mars to produce chains of secondary craters. The hypothesis infers a pattern of parallel jets of ejecta, either fluidized or solidified, that break into equally-spaced fragments and disperse uniformly along-trajectory during the flight from Mars to Phobos. At the moment of impact with Phobos the dispersed fragments emplace secondary craters that are aligned along strike corresponding to the flight pattern of ejecta along trajectory. The aspects of the characteristics of grooves on Phobos cited by this hypothesis that might be explained by secondary ejecta include: their observed linearity, parallelism, planar alignment, pitted nature, change in character along strike, and a "zone of avoidance" where ejecta from Mars is predicted not to impact (Murray, 2011). To test the hypothesis we plot precise Keplerian orbits for ejecta from Mars (elliptical and hyperbolic with periapsis located below the surface of Mars). From these trajectories we: (1) set the fragment dispersion limits of ejecta patterns required to emplace the more typically well-organized parallel grooves observed in returned images from Phobos; (2) plot ranges of the ejecta flight durations from Mars to Phobos and map regions of exposure; (3) utilize the same exposure map to observe trajectory-defined ejecta exposure shadows; (4) observe hemispheric exposure in response to shorter and longer durations of ejecta flight; (5) assess the viability of ejecta emplacing the large family of grooves covering most of the northern hemisphere of Phobos; and (6) plot the arrival of parallel lines of ejecta emplacing chains of craters at oblique incident angles. We also assess the bulk volume of

  14. Dynamics of ejecta from a binary asteroid impact in the framework of the AIDA mission: a NEOShield-2 contribution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Schwartz, S. R.; Michel, P.; Benner, L. A. M.

    2015-10-01

    The dynamics of the ejecta cloud that results from a binary asteroid impact is one of the tasks of the NEOShield-2 project, funded by the European Commission in its program Horizon 2020. Results from such an investigation will have great relevance to the Phase-A study of the AIDA space mission, a collaborative effort between ESA and NASA, which aims to perform a kinetic impactor demonstration. Our study presents a multi-scale dynamical model of the ejecta cloud produced by a hypervelocity impact, which enables us to check the behaviors of the ejecta at different spatial and time scales. This model is applied to the impact into the small moon of the binary Near- Earth asteroid (65803) Didymos on October 2022 as considered by the AIDA mission. We attempt to model the process by including as much practical information as possible, e.g., the gravitational environment influenced by the non-spherical shapes of the bodies based on observed shape of the primary), the solar tides, and the solar radiation pressure. Our simulations show the general patterns of motion of the ejecta cloud, which we use to assess the potential hazard to an observing spacecraft. We also look into the grain-scale dynamics of the ejecta during this process, which has influence on the re-accumulation of particles orbiting in the vicinity.

  15. Fine-grained impact ejecta on the Moon: Views from Earth-based radar and the LRO Diviner thermal mapper

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Koziar, J.; Paige, D. A.; Vasavada, A. R.

    2009-12-01

    The goal of this work is to use Diviner thermal mapper observations to constrain the surface block populations of fine-grained impact ejecta on the Moon. The statistical distribution of rocks in impact ejecta deposits is important because it constrains the processes by which fragmentary impact debris is produced and subsequently deposited on the surface. Earth-based radar observations have revealed meters-thick haloes of material depleted in blocks 1cm and greater in diameter, surrounding nearside impact craters. Radar observations allow characterization of the bulk properties of the upper ~10m of material, but do not yield direct information about the surface rock distribution. Diviner’s four thermal infrared channels, ranging from 12.5 to 200 microns, provide the means to investigate variations in surface thermophysical properties between impact ejecta and surrounding regolith. In this paper, we will report on comparisons between Diviner thermal infrared and Earth-based radar observations for nearside craters with radar-dark, fine-grained ejecta haloes. The brightness temperature of the lunar surface as measured by Diviner is a function of albedo, emissivity, and thermal inertia, and the bulk thermal inertia of a given mixture of soil and rocks varies with rock fraction. The resulting differences in brightness temperature are most pronounced during the night, and the particular way in which the temperature varies with rock fraction depends on the soil emissivity. The spatial resolution of the Diviner measurements (320 m / pixel) is close to that of existing 70-cm wavelength radar images (at 400 m / pixel), which facilitates comparison between the two data sets. Preliminary work indicates that radar-bright, blocky ejecta close to crater rims show higher pre-dawn brightness temperatures than either more distal fine ejecta or background regolith, and the location of the transition correlates closely between the two data sets. Current work is focused on extending

  16. Martian impact cratering rate over the last 3 billions years derived from layered ejecta craters dating

    NASA Astrophysics Data System (ADS)

    Lagain, Anthony; Bouley, Sylvain; Costard, François; Baratoux, David

    2016-04-01

    All chronology models used in dating planetary surfaces are based on the lunar chronology system. The cratering density of the Moon has been calibrated with absolute ages from Apollo lunar samples. However, there are no lunar samples between 3 Gy and 800 My and only four samples have been dated between 800 My and present. Therefore, the evolution of the cratering rate after the LHB and before 3 Gy is well constrained. The cratering rate between 3 Gy and present has been assumed to be constant [1, 2]. Nevertheless, this assumption is challenged by the analysis of the geological record, such as the frequency of landslide on Mars as a function of time [3, 4]. It is therefore necessary to re-examine the validity of this assumption and place constraints on the cratering rate since the last 3 Gy. For this purpose, we study the rate of impact cratering using small craters on a set of 53 layered ejecta craters larger than 5 km in diameter in Acidalia Planitia, Mars. LECs larger than 5km have large enough surfaces to date their formation by counting craters larger than 100m present on their blankets. Furthermore, limits of their ejecta blankets are clearly defined by a terminal bead. In order to determine the crater emplacement ages, we have applied the methodology dating described in our previous study [6] on all ejecta layers. Errors on measured ages were calculated following [7]. The age of the study area is 2.8±0.2 Gy. Our crater counts on distal ejecta blankets reveal ages younger than the age of the surrounding surface, as expected. It is essential to take into account errors on measured ages. The statistical sample used to build this emplacement frequency distribution and our dating methodology are sufficiently reliable to deduce that a constant impact cratering rate over the last 3 Gy is not a correct approximation. The excessive number of craters emplaced 1Gy ago compared to the cratering rate used suggests a decreased impact cratering rate over the last 1Gy and

  17. Investigating Atmospheric Effects on Impact Ejecta Morphology: Possible Tool for Determining Past Climate Conditions on Mars?

    NASA Technical Reports Server (NTRS)

    Appleby, John F.; Barnouin-Jha, Oliver S.; Cheng, Andrew F.

    1999-01-01

    The combined use of impact crater morphology and mechanics provides important information on the physical conditions of both planetary atmospheres and planetary and asteroid surfaces present during crater formation, while an understanding of the rate of crater production on the surface of asteroids provides information of their surface and spin rate evolution. The research performed with support from this project improves our understanding of (1) the mechanics of impact cratering in order to gain insights on the evolution of these physical surface conditions on planets with atmospheres and asteroids, and (2) how impact flux across an asteroid surface may vary due to anisotropic distribution of impactors in the solar system. As part of this project, we have undertaken three studies. In the first study, we investigate atmospheric effects on the morphology of ejecta excavated during a cratering event in order to determine the atmospheric and target conditions from observed crater morphologies. In the second study, we use the physical and morphological consequences of oblique impacts on an asteroid to understand how the asteroid Mathilde (recently imaged by the Near Earth Asteroid Rendezvous - NEAR- spacecraft) could have survived the formation of five giant craters. In a third study, we use a Monte Carlo method to calculate the impact flux on an asteroid given a distribution of impactors on elliptical orbits. In the following section, we present the result obtained from all three studies.

  18. Dating a Small Impact Crater: An Age of Kaali Crater (Estonia) Based on Charcoal Emplaced Within Proximal Ejecta

    NASA Astrophysics Data System (ADS)

    Losiak, A.; Wild, E. M.; Geppert, W. D.; Huber, M. S.; Jõeleht, A.; Kriiska, A.; Kulkov, A.; Paavel, K.; Pirkovic, I.; Plado, J.; Steier, P.; Välja, R.; Wilk, J.; Wisniowski, T.; Zanetti, M.

    2015-09-01

    The Kaali crater was formed shortly after (tpq) 1530-1455 BC (3237 ± 10 14C yr BP). This age is based on dating charcoal within the ejecta blanket that makes it directly related to the impact, and not susceptible to potential reservoir effects.

  19. Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Wünnemann, Kai; Zhu, Meng-Hua; StöFfler, Dieter

    2016-08-01

    We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2-D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color-coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power-law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock-comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.

  20. Generation and emplacement of fine-grained ejecta in planetary impacts

    USGS Publications Warehouse

    Ghent, R.R.; Gupta, V.; Campbell, B.A.; Ferguson, S.A.; Brown, J.C.W.; Fergason, R.L.; Carter, L.M.

    2010-01-01

    We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks 1cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ???10??m to 10mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r for all three planets. On the Moon, ???R-0.18 for craters 5-640km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as ???R-0.49, consistent with ejecta entrainment in Venus' dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R-0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials. ?? 2010 Elsevier Inc.

  1. Problems in the interpretation of lunar mare stratigraphy and relative ages indicated by ejecta from small impact craters

    NASA Technical Reports Server (NTRS)

    Young, R. A.; Brennan, W. J.; Nichols, D. J.

    1974-01-01

    The numbers of large ejecta blocks in excess of several meters in diameter ('blockiness') around the rims of small craters in southeastern Mare Serenitatis exceed those around similar craters in southern Mare Imbrium (and some other regions) at all but the final stages of crater degradation. Terrestrial explosion crater analogs, studies of impact processes, and a layered mare model suggest that the nature of the layering in the subsurface, including lavas, ejecta and buried regolith horizons, could account for the variable blockiness of crater ejecta and, possibly, for some variation in crater size-frequency distributions. Such effects would limit the reliability and utility of counting postmare craters for the purpose of estimating the relative ages of mare surfaces. Similarly, comparisons of the effects of progressive degradation on small impact craters to determine relative or absolute ages of individual craters may be limited by the influence of stratigraphy on ejecta fragment size distributions, which would in turn affect micrometeorite erosion rates and regolith production models.

  2. P/2010 A2: evidence for conical impact ejecta from a novel modeling technique

    NASA Astrophysics Data System (ADS)

    Kleyna, Jan

    2015-08-01

    P/2010 A2 is an object on an asteroidal orbit that was seen to have an extended tail or trail on January 2010. HST imaging revealed a complicated structure of arcs and knots. This tail could have arisen from 1) sublimation activity; 2) an impact event; or 3) rotational disruption. We developed a new modeling technique to address this question, tracing the orbital development of impact debris cones into debris trails. We found that P/2010 A2 was fit well by a initial ejecta cone with an opening angle of 40° to 50°, in agreement with numerical and laboratory simulations of cratering events. Mapping debris orbits to sky positions suggests that the distinctive arc features in the debris correspond to the same debris cone inferred from the broad envelope of the extended dust tail. From the velocity of the debris, and from the presence of a velocity maximum at around 15 cm s-1, we infer that the surface of P2010 A2 probably has a very low strength (1 kPa), comparable to lunar regolith. This modeling technique will be of use in analyzing the origin of other newly discovered active objects.

  3. Multiple (immiscible) melt phases of mafic composition in Chicxulub impact ejecta from northeastern Mexico: New constraints on target lithologies

    NASA Astrophysics Data System (ADS)

    Schulte, P.; Stinnesbeck, W.; Kontny, A.; Stüben, D.; Kramar, U.; Harting, M.

    2002-12-01

    Proximal ejecta deposits in sections from NE Mexico (Rancho Nuevo, La Sierrita, El Peñon, El Mimbral) have been investigated by backscattered electron imaging, wave-length dispersive electron microprobe analyses, and cathodoluminiscence, in order to characterize target lithologies, and ejecta mixing, fractionation, and distribution mechanisms. Additional investigations included magnetic properties (Kontny et al, this meeting) and trace element analyses (Harting et al, this meeting). Petrological features of these ejecta deposits are extraordinarily well preserved. They consist of mm-cm sized vesiculated spherical to drop-shaped spherules and angular to filamentous (ejecta-) fragments, as well as carbonate clasts, marl clasts, and rare benthic foraminifera floating in a carbonaceous matrix. Occasionally, spherules and fragments show welding-amalgamation features and enclose other components, thus resulting in a foam-like texture. An origin from the Chicxulub impact is suggested by geographical proximity and morphologically similarity to spherules found in other K-T sites in North to Central America and the Atlantic. The far distribution of such coarse-grained, foamy, and fragile ejecta-clasts as well as welding features suggest ignimbrite-like transport mechanisms or nearby secondary impacts. Several silicic ejecta phases have been observed that occur as distinct phases, even within one ejecta particle with textures indicative of liquid immiscibility: (1) Fe- (25-35 wt%), Mg- (10-15 wt%) rich phases with <25 wt% SiO2, altered to chlorite, (2) K- (5-8 wt.%) and Al- (25-30 wt%) rich hydrated glass with 45-50 wt% SiO2, and (3) rare SiO2- (>60 wt%) rich andesitic glasses. In addition to these silicic phases, abundant carbonate characterizes all studied ejecta deposits. It occurs within spherules and fragments and as clasts and globules, and shows textures indicative of either liquid immiscibility and/or quenching (`feathery calcite'). Quenched carbonates are enriched

  4. Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Bunch, Ted E.; Flemming, Roberta L.; Buitenhuis, Eric; Wittke, James H.

    2015-12-01

    Our understanding of the impact cratering process continues to evolve and, even at well-known and well-studied structures, there is still much to be learned. Here, we present the results of a study on impact-generated melt phases within ejecta at Barringer Crater, Arizona, one of the first impact craters on Earth to be recognized and arguably the most famous. We report on previously unknown impact melt-bearing breccias that contain dispersed fragments of the projectile as well as impact glasses that contain a high proportion of projectile material - higher than any other glasses previously reported from this site. These glasses are distinctly different from so-called "melt beads" that are found as a lag deposit on the present-day erosion surface and that we also study. It is proposed that the melts in these impact breccias were derived from a more constrained sub-region of the melt zone that was very shallow and that also had a larger projectile contribution. In addition to low- and high-Fe melt beads documented previously, we document Ca-Mg-rich glasses and calcite globules within silicate glass that provide definitive evidence that carbonates underwent melting during the formation of Barringer Crater. We propose that the melting of dolomite produces Ca-Mg-rich melts from which calcite is the dominant liquidus phase. This explains the perhaps surprising finding that despite dolomite being the dominant rock type at many impact sites, including Barringer Crater, calcite is the dominant melt product. When taken together with our estimate for the amount of impact melt products dispersed on, and just below, the present-day erosional surface, it is clear that the amount of melt produced at Barringer Crater is higher than previously estimated and is more consistent with recent numerical modeling studies. This work adds to the growing recognition that sedimentary rocks melt during hypervelocity impact and do not just decompose and/or devolatilize as was previously thought

  5. Computer modeling of large asteroid impacts into continental and oceanic sites: Atmospheric, cratering, and ejecta dynamics

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Schuster, S. H.; Rosenblatt, M.; Grant, L. B.; Hassig, P. J.; Kreyenhagen, K. N.

    1988-01-01

    Numerous impact cratering events have occurred on the Earth during the last several billion years that have seriously affected our planet and its atmosphere. The largest cratering events, which were caused by asteroids and comets with kinetic energies equivalent to tens of millions of megatons of TNT, have distributed substantial quantities of terrestrial and extraterrestrial material over much or all of the Earth. In order to study a large-scale impact event in detail, computer simulations were completed that model the passage of a 10 km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics associated with impact of the asteroid into two different targets, i.e., an oceanic site and a continental site. The calcuations were designed to broadly represent giant impact events that have occurred on the Earth since its formation and specifically represent an impact cratering event proposed to have occurred at the end of Cretaceous time. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock that expanded radially outward. Behind the shock front was a region of highly shock compressed and intensely heated air. Behind the asteroid, rapid expansion of this shocked air created a large region of very low density that also expanded away from the impact area. Calculations of the cratering events in both the continental and oceanic targets were carried to 120 s. Despite geologic differences, impacts in both targets developed comparable dynamic flow fields, and by approx. 29 s similar-sized transient craters approx. 39 km deep and approx. 62 km across had formed. For all practical purposes, the atmosphere was nearly completely removed from the impact area for tens of seconds, i.e., air pressures were less than fractions of a bar out to ranges of over 50 km. Consequently, much of the asteroid and target materials were ejected upward into a near vacuum. Effects of secondary

  6. Digital Elevation Models Aid the Analysis of Double Layered Ejecta (DLE) Impact Craters on Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Boyce, J. M.; Garbeil, H.

    2014-12-01

    Considerable debate has recently taken place concerning the origin of the inner and outer ejecta layers of double layered ejecta (DLE) craters on Mars. For craters in the diameter range ~10 to ~25 km, the inner ejecta layer of DLE craters displays characteristic grooves extending from the rim crest, and has led investigators to propose three hypotheses for their formation: (1) deposition of the primary ejecta and subsequent surface scouring by either atmospheric vortices or a base surge; (2) emplacement through a landslide of the near-rim crest ejecta; and (3) instabilities (similar to Gortler vortices) generated by high flow-rate, and high granular temperatures. Critical to resolving between these models is the topographic expression of both the ejecta layer and the groove geometry. To address this problem, we have made several digital elevation models (DEMs) from CTX and HiRISE stereo pairs using the Ames Stereo Pipeline at scales of 24 m/pixel and 1 m/pixel, respectively. These DEMs allow several key observations to be made that bear directly upon the origin of the grooves associated with DLE craters: (1) Grooves formed on the sloping ejecta layer surfaces right up to the preserved crater rim; (2) There is clear evidence that grooves traverse the topographic boundary between the inner and outer ejecta layers; and (3) There are at least two different sets of radial grooves, with smaller grooves imprinted upon the larger grooves. There are "deep-wide" grooves that have a width of ~200 m and a depth of ~10 m, and there are "shallow-narrow" grooves with a width of <50 m and depth <5 m. These two scales of grooves are not consistent with their formation analogous to a landslide. Two different sets of grooves would imply that, simultaneously, two different depths to the flow would have to exist if the grooves were formed by shear within the flow, something that is not physically possible. All three observations can only be consistent with a model of groove formation

  7. New modeling results of the Bunte breccia ejecta morphology and thickness variations outside the Ries impact crater, southern Germany

    NASA Astrophysics Data System (ADS)

    Sturm, S.; Wulf, G.; Jung, D.; Kenkmann, T.

    2012-04-01

    The Ries impact crater with a diameter of ~25 km represents a relatively pristine, complex impact crater in southern Germany that was formed during the Miocene (14.34+-0.08 Ma) [1, 2]. The impact occurred into a two-layered target that consists of ~650 m partly water-saturated and subhorizontally layered sediments (limestones, sandstones, shales) of Triassic to Tertiary ages underlain by crystalline basement rocks (mainly gneisses, granites and amphibolites) [3, 4]. The continuous ejecta blanket of the crater ejected up to a distance of 45 km from the crater center is built up by so called Bunte breccias, a polymict lithic breccia. The ejected breccia material mainly consists of unshocked to weakly shocked sedimentary target clasts in addition to a minority of crystalline basement clasts and reworked surfical sediments (e.g., Upper Freshwater Molasses or Upper Seawater Molasses) [5, 6]. Here we present new results of the morphology of the (i) paleo-relief and (ii) the thickness variations of the continuous ejecta blanket with radial range. For this study we combined digital elevation data and geologic information of the recent geologic map [7] in ArcGIS (ESRI) and RockWorks14 (RockWare) to extract the elevation of the lower contact plane ("paleo-surface") and the contact between the Bunte breccia and the overlain Suevite deposits. In detail, we extracted the mapping information of the autochthonous-allochthonous ("Bunte breccia base") and allochthonous-suevite ("Bunte breccia top") intersections from the geologic map [7], descriptions of nine NASA drilling sites [6], and included up to 40 drillings carried out by the Bavarian Environment Agency to interpolate the morphology and thickness variation of the Bunte breccia ejecta outside the Ries impact crater. Due to the highest data density and the widespread occurrence of Bunte breccia deposits as well as Suevite, the southwestern part of the ejecta blanket was selected for the study and delivered a more or less

  8. Distal Impact Ejecta Material in Marine Sediments in the North-Central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Leung, I. S.; Hagstrum, J. T.

    2006-12-01

    We studied a sample of red clay weighing 1.4 grams, derived from a deep sea core (GPC3) located at Latitude 30 degrees N, Longitude 158 degrees W, provided by Jim Broda at the core lab of Woods Hole Oceanographic Institution (supported by NSF). The 65 Ma K/T boundary layer was identified by magnetic susceptibility measurements and Ir anomaly which peaked at a down-hole depth of 2055-2056 cm. We dissolved calcium carbonate in the red clay with dilute HCl to facilitate wet sieving for the size fraction greater than 38 microns. This process yielded 0.0l gram of clean grains from which we hand-picked materials under a binocular microscope. We picked out 40 microtektites (glass spherules, now devitrified), 12 olive- green aggregates composed of talc (probably from alteration of olivine), pyroxene, and magnetite, 6 crystals of biotite, a few magnetic oxide minerals and spherules, and 3 green and 1 blue crystals of silicon carbide (SiC). We are studying the SiC by X-rays. Also, there are abundant quartz grains. Six of the grains we picked out show two sets of shock lamellae decorated by a black substance. Some quartz crystals show mosaic structures. One other grain has a foreign particle embedded in it, while another has two penetrating hollow tubes. These two grains might have been impacted upon by high-velocity "bullets". Because the olive-green aggregates we found have both their mineralogy and texture similar to those often observed in chondrules, in addition to the presence of SiC, which is typically associated with carbonaceous chondrites, we recognize that there seems to be a strong implication that the impactor at Chicxulub which caused extinction of dinosaurs might have been a carbonaceous chondrite which sent the distal ejecta to our core site.

  9. IMPACT OF TYPE Ia SUPERNOVA EJECTA ON BINARY COMPANIONS IN THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu

    2012-05-10

    Type Ia supernovae are thought to be caused by thermonuclear explosions of a carbon-oxygen white dwarf in close binary systems. In the single-degenerate scenario (SDS), the companion star is non-degenerate and can be significantly affected by the explosion. We explore this interaction by means of multi-dimensional adaptive mesh refinement simulations using the FLASH code. We consider several different companion types, including main-sequence-like stars (MS), red giants (RG), and helium stars (He). In addition, we include the symmetry-breaking effects of orbital motion, rotation of the non-degenerate star, and Roche-lobe overflow. A detailed study of a sub-grid model for Type Ia supernovae is also presented. We find that the dependence of the unbound stellar mass and kick velocity on the initial binary separation can be fitted by power-law relations. By using the tracer particles in FLASH, the process leading to the unbinding of matter is dominated by ablation, which has usually been neglected in past analytical studies. The level of Ni/Fe contamination of the companion that results from the passage of the supernova ejecta is found to be {approx}10{sup -5} M{sub Sun} for the MS star, {approx}10{sup -4} M{sub Sun} for the He star, and {approx}10{sup -8} M{sub Sun} for the RG. The spinning MS companion star loses about half of its initial angular momentum during the impact, causing the rotational velocity to drop to a quarter of the original rotational velocity, suggesting that the Tycho G star is a promising progenitor candidate in the SDS.

  10. Comet Ejecta in Aerogel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for annotated image

    This image shows a particle impact on the aluminum frame that holds the aerogel tiles. The debris from the impact shot into the adjacent aerogel tile producing the explosion pattern of ejecta framents captured in the material. A nice cratering experiment.

  11. Fingerprinting the K/T impact site and determining the time of impact by UPb dating of single shocked zircons from distal ejecta

    USGS Publications Warehouse

    Krogh, T.E.; Kamo, S.L.; Bohor, B.F.

    1993-01-01

    UPb isotopic dating of single 1-3 ??g zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 ?? 5 Ma primary age for a component of the target site, white those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 ?? 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With UPb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age. ?? 1993.

  12. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Astrophysics Data System (ADS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-09-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  13. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-01-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  14. Noachian Impact Ejecta on Murray Ridge and Pre-impact Rocks on Wdowiak Ridge, Endeavour Crater, Mars: Opportunity Observations

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Gellert, R.; Ming, D. W.; Morris, R. V.; Schroeder, C.; Yen, A. S.; Farrand, W. H.; Arvidson, R. E.; Franklin, B. J.; Grant, J. A.; Herkenhoff, K. E.; Jolliff, B. J.

    2015-01-01

    Mars Exploration Rover Opportunity has been exploring Meridiani Planum since January 2004, and has completed 4227% of its primary mission. Opportunity has been investigating the geology of the rim of 22 km diameter Endeavour crater, first on the Cape York segment and now on Cape Tribulation. The outcrops are divided York; (ii) the Shoemaker fm, impact breccias representing ejecta from the crater; into three formations: (i) the lower Matijevic fm, a pre-impact lithology on Cape and (iii) the upper Grasberg fm, a post-impact deposit that drapes the lower portions of the eroded rim segments. On the Cape Tribulation segment Opportunity has been studying the rocks on Murray Ridge, with a brief sojourn to Wdowiak Ridge west of the rim segment. team member Thomas Wdowiak, who died in 2013.) One region of Murray Ridge has distinctive CRISM spectral characteristics indicating the presence of a small concentration of aluminous smectite based on a 2.2 micron Al-OH combination band (hereafter, the Al-OH region).

  15. The Ries impact crater described as an analogue for a Martian double-layered ejecta crater on Earth

    NASA Astrophysics Data System (ADS)

    Sturm, Sebastian; Wulf, Gerwin; Jung, Dietmar; Kenkmann, Thomas

    2014-05-01

    The Ries impact crater (~26 km-diameter) is described as a relatively pristine, complex impact crater in southern Germany. The oblique impact occurred during the Miocene (14.9 Ma) and hit into a two-layered target material that consists of ~650 m partly water-saturated and subhorizontally layered sediments (limestones, sandstones, shales) of Triassic to Tertiary ages underlain by crystalline basement rocks (mainly gneisses, granites and amphibolites) [1, 2, 3, 4]. The continuous and well-preserved ejecta blanket reaches up to a distance of 45 km from the crater center. It is built up by so called Bunte Breccia material that is described as a polymict lithic breccia. Bunte Breccia mainly consists of unshocked to weakly shocked sedimentary target clasts including a minority of crystalline basement clasts and reworked surfical sediments (e.g., Upper Freshwater Molasses or Upper Seawater Molasses) [5, 6]. Here we present our final interpolation results of the morphology of the paleo-surface and the thickness variations of the continuous ejecta blanket (Bunte Breccia) with radial range outside of the Ries impact crater. Our results were then compared with ejecta distribution characteristics of Martian complex double-layered ejecta craters (DLE) [7]. We combined digital elevation data (ASTER DEM) and geologic information of the recent geologic map [8], in addition with nine NASA Drillings [6], and up to 40 Bavarian Environment Agency drillings in ArcGIS (ESRI) and RockWorks14 (RockWare) to interpolate the elevation of the lower contact plane ("paleo-surface") and the contact between the Bunte breccia and the overlain Suevite deposits to reconstruct the Bunte Breccia thickness variation outside of the Ries impact crater [7]. Our final interpolation results of the paleo-surface and Bunte Breccia top surface provide an increasing Bunte breccia thickness with increasing distance from the crater center. The ejecta thickness distribution clearly deviates from a steady decrease

  16. A formation mechanism for concentric ridges in ejecta surrounding impact craters in a layer of fine glass beads

    NASA Astrophysics Data System (ADS)

    Suzuki, Ayako I.; Nakamura, Akiko M.; Kadono, Toshihiko; Wada, Koji; Yamamoto, Satoru; Arakawa, Masahiko

    2013-07-01

    Ejecta patterns are experimentally examined around craters formed in a layer of glass beads by vertical impacts at low velocities. The diameters of the constituent glass beads of three different targets range 53-63 μm, 90-106 μm, and 355-500 μm. The impact velocities and ambient pressures range from a few to 240 m s-1 and from 500 Pa to the atmospheric pressure, respectively. Various ejecta patterns are observed around craters and are classified into two major classes based on whether they have concentric ridges or not. We propose a possible formation model for the ridges in which the wake created by a projectile as it passes through the atmosphere causes the crater rim to collapse: The model can explain the observation that the degree of collapse of the resultant crater rim depends on the impact velocity and ambient pressure. Using the ratio between the hydrodynamic drag of the airflow induced by the wake and the gravitational force of the degraded part of the rim, we calculate the critical conditions of the impact velocity and ambient pressure necessary for the wake to erode the rim. The conditions turn out to be roughly consistent with the boundary between the two morphological classes. As a result, it is possible that the projectile wake triggers the collapse of the crater rim, leading to a ground-hugging flow that settles to form the distal ridge observed in this study. This mechanism may play a role in producing ejecta morphologies on planetary bodies with atmosphere.

  17. Ejecta velocity distribution of impact craters formed on quartz sand: Effect of projectile density on crater scaling law

    NASA Astrophysics Data System (ADS)

    Tsujido, Sayaka; Arakawa, Masahiko; Suzuki, Ayako I.; Yasui, Minami

    2015-12-01

    In order to clarify the effects of projectile density on ejecta velocity distributions for a granular target, impact cratering experiments on a quartz sand target were conducted by using eight types of projectiles with different densities ranging from 11 g cm-3 to 1.1 g cm-3, which were launched at about 200 m s-1 from a vertical gas gun at Kobe University. The scaling law of crater size, the ejection angle of ejecta grains, and the angle of the ejecta curtain were also investigated. The ejecta velocity distribution obtained from each projectile was well described by the π-scaling theory of v0/√{gR} =k2(x0/R)-1/μ, where v0, g, R and x0 are the ejection velocity, gravitational acceleration, crater radius and ejection position, respectively, and k2 and μ are constants mostly depending on target material properties (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856-875). The value of k2 was found to be almost constant at 0.7 for all projectiles except for the nylon projectile, while μ increased with the projectile density, from 0.43 for the low-density projectile to 0.6-0.7 for the high-density projectile. On the other hand, the π-scaling theory for crater size gave a μ value of 0.57, which was close to the average of the μ values obtained from ejecta velocity distributions. The ejection angle, θ, of each grain decreased slightly with distance, from higher than 45° near the impact point to 30-40° at 0.6 R. The ejecta curtain angle is controlled by the two elementary processes of ejecta velocity distribution and ejection angle; it gradually increased from 52° to 63° with the increase of the projectile density. The comparison of our experimental results with the theoretical model of the crater excavation flow known as the Z-model revealed that the relationship between μ and θ obtained by our experiments could not be described by the Z-model (Maxwell, D.E. [1977]. In: Roddy, D.J., Pepin, R.O., Merrill, R.B. (Eds.), Impact and Explosion Cratering

  18. Evidence for Multiple Holocene Marine Impact Events: Ejecta in a Bog Core

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.; Courty, M.; Breger, D.; Costa, S.; Gerard-Little, P.; Burckle, L.; Pekar, S.

    2006-12-01

    In a core from Tamarack Pond (a former bog) in the Hudson Highlands of New York, we found two layers containing marine microfossils. Because carbon rich sediments can be bioturbated over 20 cm depths, we give the layer thicknesses as 20 cm. The first layer is at 332-354 cm depth. It contains a radiolarian with a splashed on coating of Fe-Cr-Ni metal. It also contains a benthonic foraminiferal fossil. The second layer is at 432-454 cm depth. The second layer contains a degraded radiolarian fossil, a silicate with a splashed on coating of Fe-Cr-Ni metal, a carbon rich spherule containing Fe-Cr-Ni metal, and a grain of titanomagnetite with multiple craters. It also contains organic matter with Sn in it. As Tamarack Pond is quite far from the ocean, the marine fossils in the cores are unlikely to be windblown debris of Holocene age. A benthonic foraminifera is particularly unlikely to be blown by the wind. This conclusion is strengthened by the observation that the splashed on coating of Fe-Cr-Ni metal occurs in chondritic relative abundances with Fe>Cr>Ni. In grains with a thick layer of splashed metal, the Ni is sufficiently abundant to produce 3 distinct Ni peaks in the X-ray analysis. Such a high abundance of Ni coupled with chondritic relative abundances suggests that the Fe-Cr- Ni splash is derived from the vaporization of an extraterrestrial impactor. If we assume that the sedimentation rate of the Tamarack Pond core is the same as that of a previously dated core from nearby Sutherland Pond, the two layers have an uncorrected C-14 age of around 900-1200 B.C. for the layer at 332-354 cm and 2100 to 2400 B.C. for the layer at 432-454 cm. Both ages have a rough correspondence with times of climate downturn recorded in tree ring data (1159 and 2354 B.C.). These climate downturns cannot be explained by volcanic eruptions and are proposed to be cosmogenic in origin[1]. The older layer also corresponds in components to a previously studied circa 2350 B.C. impact ejecta

  19. The Global K-T Ejecta layer - Is it Diagnostic of Impact Angle, and was There More Than one Impact Site?

    NASA Astrophysics Data System (ADS)

    Lana, C.; Morgan, J.

    2005-05-01

    We have collected samples from the Chicxulub impact breccias in Yaxcopoil-1, from the global K-T iridium-rich layer found at distances greater that ~1400 km from Chicxulub, and also from the proximal spherule layer close to Chicxulub. We will use these samples to: try to determine the angle and direction of impact at Chicxulub, provide the compelling evidence that Chicxulub is K-T, and ascertain whether there were multiple impacts at the K-T boundary. The clearest indicator of angle of impact for circular craters on other planetary bodies is in the ejecta pattern. Experiments, numerical modelling and field observations all indicate that the plumes of oblique impacts expand initially in the downrange direction. We are currently documenting how the size of the coarse-grained ejecta particles and the geochemistry of spinels varies with geographical location. If the distribution of the size and/or geochemistry of the ejecta is asymmetric it is likely to be diagnostic of the direction of vapour plume expansion, and hence an indicator of impact direction. The majority of planetary scientists agree that Chicxulub is the K-T impact crater - but dissenters argue that the evidence is not yet compelling. To link Chicxulub unequivocally to the K-T boundary we must be able to prove that components of this global K-T ejecta layer originate from the target rocks at the Chicxulub impact site. All the evidence presented so far (the dating of melt rocks, the change in ejecta size with distance from Chicxulub, the dating of zircons,) is compatible with a genetic link but does not prove it. Dating of melt-rich rocks at Chicxulub at ~64.98 Myr show that the Chicxulub impact occurred at about K-T time. Zircons dates at Chicxulub (main age of ~545 Myr, minor component of ~420 Myr) are similar to those found at a few North American K-T sites, suggesting that these zircons could have originated from Yucatan basement rocks. However, some of the ages found within the global K-T ejecta layer

  20. Recent research on the Chesapeake Bay impact structure, USA - Impact debris and reworked ejecta

    USGS Publications Warehouse

    Horton, J.W., Jr.; Aleinikoff, J.N.; Kunk, M.J.; Gohn, G.S.; Edwards, L.E.; Self-Trail J.M.; Powars, D.S.; Izett, G.A.

    2005-01-01

    Four new coreholes in the western annular trough of the buried, late Eocene Chesapeake Bay impact structure provide samples of shocked minerals, cataclastic rocks, possible impact melt, mixed sediments, and damaged microfossils. Parautochthonous Cretaceous sediments show an upward increase in collapse, sand fluidization, and mixed sediment injections. These impact-modifi ed sediments are scoured and covered by the upper Eocene Exmore beds, which consist of highly mixed Cretaceous to Eocene sediment clasts and minor crystalline-rock clasts in a muddy quartz-glauconite sand matrix. The Exmore beds are interpreted as seawater-resurge debris flows. Shocked quartz is found as sparse grains and in rock fragments at all four sites in the Exmore, where these fallback remnants are mixed into the resurge deposit. Crystalline-rock clasts that exhibit shocked quartz or cataclastic fabrics include felsites, granitoids, and other plutonic rocks. Felsite from a monomict cataclasite boulder has a sensitive high-resolution ion microprobe U-Pb zircon age of 613 ?? 4 Ma. Leucogranite from a polymict cataclasite boulder has a similar Neoproterozoic age based on muscovite 40Ar/39Ar data. Potassium-feldspar 40Ar/39Ar ages from this leucogranite show cooling through closure (???150 ??C) at ca. 261 Ma without discernible impact heating. Spherulitic felsite is under investigation as a possible impact melt. Types of crystalline clasts, and exotic sediment clasts and grains, in the Exmore vary according to location, which suggests different provenances across the structure. Fractured calcareous nannofossils and fused, bubbled, and curled dinofl agellate cysts coexist with shocked quartz in the Exmore, and this damage may record conditions of heat, pressure, and abrasion due to impact in a shallow-marine environment. ?? 2005 Geological Society of America.

  1. Ejecta Yardangs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 15 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    The yardangs in today's image are the remains of the rim and ejecta of the large impact crater at the top right of the image. The black pixels are due to exposure saturation.

    Image information: VIS instrument. Latitude -1.9, Longitude 152.8 East (207.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and

  2. Impact of weak interactions of free nucleons on the r-process in dynamical ejecta from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Bauswein, A.; Just, O.; Pllumbi, E.; Janka, H.-Th.

    2015-10-01

    We investigate β-interactions of free nucleons and their impact on the electron fraction (Ye) and r-process nucleosynthesis in ejecta characteristic of binary neutron star mergers (BNSMs). For that we employ trajectories from a relativistic BNSM model to represent the density-temperature evolutions in our parametric study. In the high-density environment, positron captures decrease the neutron richness at the high temperatures predicted by the hydrodynamic simulation. Circumventing the complexities of modelling three-dimensional neutrino transport, (anti)neutrino captures are parametrized in terms of prescribed neutrino luminosities and mean energies, guided by published results and assumed as constant in time. Depending sensitively on the adopted νe-bar{ν }_e luminosity ratio, neutrino processes increase Ye to values between 0.25 and 0.40, still allowing for a successful r-process compatible with the observed solar abundance distribution and a significant fraction of the ejecta consisting of r-process nuclei. If the νe luminosities and mean energies are relatively large compared to the bar{ν }_e properties, the mean Ye might reach values >0.40 so that neutrino captures seriously compromise the success of the r-process. In this case, the r-abundances remain compatible with the solar distribution, but the total amount of ejected r-material is reduced to a few per cent, because the production of iron-peak elements is favoured. Proper neutrino physics, in particular also neutrino absorption, have to be included in BNSM simulations before final conclusions can be drawn concerning r-processing in this environment and concerning observational consequences like kilonovae, whose peak brightness and colour temperature are sensitive to the composition-dependent opacity of the ejecta.

  3. Computer simulations of large asteroid impacts into oceanic and continental sites--preliminary results on atmospheric, cratering and ejecta dynamics

    USGS Publications Warehouse

    Roddy, D.J.; Schuster, S.H.; Rosenblatt, M.; Grant, L.B.; Hassig, P.J.; Kreyenhagen, K.N.

    1987-01-01

    Computer simulations have been completed that describe passage of a 10-km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics caused by impact of the asteroid into both oceanic and continental sites. The asteroid was modeled as a spherical body moving vertically at 20 km/s with a kinetic energy of 2.6 ?? 1030 ergs (6.2 ?? 107 Mt ). Detailed material modeling of the asteroid, ocean, crustal units, sedimentary unit, and mantle included effects of strength and fracturing, generic asteroid and rock properties, porosity, saturation, lithostatic stresses, and geothermal contributions, each selected to simulate impact and geologic conditions that were as realistic as possible. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock wave followed by a highly shock compressed and heated air mass. Rapid expansion of this shocked air created a large low-density region that also expanded away from the impact area. Shock temperatures in air reached ???20,000 K near the surface of the uplifting crater rim and were as high as ???2000 K at more than 30 km range and 10 km altitude. Calculations to 30 s showed that the shock fronts in the air and in most of the expanding shocked air mass preceded the formation of the crater, ejecta, and rim uplift and did not interact with them. As cratering developed, uplifted rim and target material were ejected into the very low density, shock-heated air immediately above the forming crater, and complex interactions could be expected. Calculations of the impact events showed equally dramatic effects on the oceanic and continental targets through an interval of 120 s. Despite geologic differences in the targets, both cratering events developed comparable dynamic flow fields and by ???29 s had formed similar-sized transient craters ???39 km deep and ???62 km across. Transient-rim uplift of ocean and crust reached a maximum altitude of nearly

  4. Proximal ejecta deposits of the K-Pg Chixulub impact: The case for carbonate impact melt spherules

    NASA Astrophysics Data System (ADS)

    Deutsch, Alex; Schulte, Peter

    2010-05-01

    When 65.5 million yrs. ago an about ~10 km-sized asteroid hit Earth (Chicxulub impact event), ejecta was distributed world-wide to form the Cretaceous-Paleogene (K-Pg) event bed. Continuous sections across this K-Pg boundary document unambiguously that the 'K-T' mass extinction was triggered by the Chicxulub event, not only because of the projectile's size but particularly by the specific composition of the target, namely a 3-km- (in the West) to about 4.5-km-thick (in the Gulf area) layer of volatile-rich carbonate and sulfate platform sediments on top of the crystalline basement (Schulte et al., 2010). Modeling, petrographic and geochemical studies on natural samples as well as experimental results show that shock pressure and high post-shock temperatures yield irreversible deformations and transformations on carbonate and sulfate target lithologies which are also expected to occur in the context of the Chicxulub event. Twofold devastating effects on life are predicted (i) dissociation of carbonates and sulfates with nearly instantaneous release of vast quantities of CO2, and of about 100 to 500 Gt sulfur triggering severe climate effects, and (ii) deposition of carbonate and sulfate melts together with silicate melts, causing short-term disruption of the thermal conditions proximal to the crater. Silicate impact glasses with high CaO contents occur, for example, as spherules in the K-Pg event bed at Haiti and in melt lithologies from drill cores (e.g., Yucatan-6, Chicxulub-1, Yaxcopoil-1). Carbonate melt glasses have not been reported so far in K-Pg event beds. Hence, the following question was answered so far: Where are the huge amounts of carbonates that suffered impact metamorphism and were ejected in the Chicxulub event? The Chicxulub ejecta deposits in the Gulf of Mexico area contain up to 80 wt% carbonates which, however, have been interpreted as precipitation product during diagenesis. In consequence, the abundant mm-sized ejecta spherules consisting of a

  5. Ejecta types on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Horner, V. M.; Greeley, Ronald

    1987-01-01

    Ejecta types on Ganymede and Callisto have been identified from Voyager 1 and 2 images. Image resolution used range from approx. 0.6 to approx. 4 km/pxl, which allowed the surveying of almost all of the mappable surface of the two satellites. Seven ejecta classes were identified on Voyager images of Ganymede on the basis of albedo pattern and type of terminus. The ejecta of different terrains on ejecta characteristics were investigated for the most populated ejecta types. Two major ejecta types were identified on Callisto; both have counterparts on Ganymede. Type C1 has a uniformly high albedo and a sharp terminus. Type C2 has a gradational terminus and a moderate albedo. The similarity in ejecta types on Ganymede and Callisto may indicate similarities in the near surface environment of the two satellites, with different ejecta types representing several possible conditions for the impact environment.

  6. Dating a small impact crater: An age of Kaali crater (Estonia) based on charcoal emplaced within proximal ejecta

    NASA Astrophysics Data System (ADS)

    Losiak, A.; Wild, E. M.; Geppert, W. D.; Huber, M. S.; Jõeleht, A.; Kriiska, A.; Kulkov, A.; Paavel, K.; Pirkovic, I.; Plado, J.; Steier, P.; VäLja, R.; Wilk, J.; Wisniowski, T.; Zanetti, M.

    2016-04-01

    The estimates of the age of the Kaali impact structure (Saaremaa Island, Estonia) provided by different authors vary by as much as 6000 years, ranging from ~6400 to ~400 before current era (BCE). In this study, a new age is obtained based on 14C dating charred plant material within the proximal ejecta blanket, which makes it directly related to the impact structure, and not susceptible to potential reservoir effects. Our results show that the Kaali crater was most probably formed shortly after 1530-1450 BCE (3237 ± 10 14C yr BP). Saaremaa was already inhabited when the bolide hit the Earth, thus, the crater-forming event was probably witnessed by humans. There is, however, no evidence that this event caused significant change in the material culture (e.g., known archeological artifacts) or patterns of human habitation on Saaremaa.

  7. Impact melt-bearing breccias of the Mistastin Lake impact structure: A unique planetary analogue for ground-truthing proximal ejecta emplacement

    NASA Astrophysics Data System (ADS)

    Mader, M. M.; Osinski, G. R.

    2013-12-01

    Impact craters are the dominant geological landform on rocky planetary surfaces; however, relationships between specific craters and their ejecta are typically poorly constrained. With limited planetary samples, scientists look to terrestrial craters as analogues. Impact ejecta is defined here as any target material, regardless of its physical state, that is transported beyond the rim of the transient cavity [1]. The original transient cavity reaches its maximum size during the excavation stage of crater formation, before rim collapse begins in the modification stage [2]. In complex craters, during the modification stage, rocks around the periphery of the bowl-shaped transient crater collapse downward and inward to form a series of terraces along the outer margin of the crater structure [3]. Proximal impact ejecta, can therefore be found on the terraces of the modified rim of a complex crater, interior to the final crater rim [1]. Although typically poorly preserved on Earth due to post-impact erosional processes, impact ejecta have been identified in the terraced rim region of the Mistastin Lake impact structure, located in northern Labrador, Canada (55°53'N; 63°18'W) [4]. The Mistastin Lake impact structure is an intermediate-size, complex crater (28 km apparent crater diameter) formed by a meteorite impact ~36 Ma in crystalline target rocks. The original crater has been differentially eroded; however, a terraced rim and distinct central uplift are still observed [5]. The inner portion of the structure is covered by the Mistastin Lake and the surrounding area is locally covered by soil/glacial deposits and vegetation. Locally, allochthonous impactites overlying fractured target rocks are exposed along the lakeshore and along banks of radially cutting streams. They define a consistent stratigraphy, including, from bottom to top: monomict, lithic breccias, allochthonous polymict lithic breccias, and allochthonous impact melt rocks. Mistastin impact breccias range

  8. Fates of Ejecta from Tethys

    NASA Astrophysics Data System (ADS)

    Alvarellos, J. L.; Dobrovolskis, A. R.; Zahnle, K. J.; Lissauer, J. J.

    2009-12-01

    In this work we investigate in detail the dynamics of ejecta originating from Saturn's moon Tethys. We use the SWIFT numerical integration package to compute the orbital evolution of the impact ejecta in the Saturn system. Ejection velocities are consistent with impact on competent surfaces and unto unconsolidated regolith. We do not include near-field effects, jetting, or effects peculiar to highly oblique impact. Ejecta are launched at velocities comparable to or exceeding the satellite's escape speed. Most test particles are swept up by Tethys on time-scales of a few to several decades. Depending on the source crater and ejection model, as much as 16% of ejecta is able to reach satellites other than the source moon. Ejecta originating near the leading side of Tethys are scattered outwards (with respect to Tethys' orbit) in the Saturn satellite system. By contrast, ejecta originating near the trailing side are scattered inwards. Of particular interest is the ability of ejecta from Tethys to reach its coorbital companions Calypso and Telesto.

  9. Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure

    USGS Publications Warehouse

    Katongo, C.; Koeberl, C.; Witzke, B.J.; Hammond, R.H.; Anderson, R.R.

    2004-01-01

    The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock-metamorphosed minerals. The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2, (29-58 wt%), Al2O3 (6-14 wt%), and CaO (7-30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75-99), coupled with the Al2O3-(CaO*,+Na2O -K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson

  10. Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure

    NASA Astrophysics Data System (ADS)

    Katongo, Crispin; Koeberl, Christian; Witzke, Brian J.; Hammond, Richard H.; Anderson, Raymond R.

    2004-01-01

    The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock-metamorphosed minerals. The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2 (29-58 wt%), Al2O3 (6-14 wt%), and CaO (7-30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75-99), coupled with the Al2O3-(CaO*+Na2O)-K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson

  11. Impact spallation processes on the Moon: A case study from the size and shape analysis of ejecta boulders and secondary craters of Censorinus crater

    NASA Astrophysics Data System (ADS)

    Krishna, N.; Kumar, P. Senthil

    2016-01-01

    Impact spallation is a fundamental process responsible for formation of ejecta boulders from impact craters. Although theoretical spallation models were developed about three decades ago, only limited geological observations have been made so far to test these models. The 3.8 km Censorinus crater on the Moon provides an excellent opportunity for studying the impact spallation processes associated with a fresh simple crater formed by oblique impact. Using the Lunar Reconnaissance Orbiter Narrow Angle Camera images, we prepared the ejecta boulder distribution map of Censorinus crater and measured the boulder sizes and shapes. Mapping of about 242,000 ejecta boulders enabled us to document the size distribution of boulders both radial and concentric to the impact crater. Larger size boulders dominate the crater rim areas, while they become smaller away from the crater. The boulder distribution exhibits a radial asymmetry suggesting Censorinus is a oblique impact, in which the uprange ejecta have smaller ranges with larger concentration of boulders near the southwestern crater rim, while the downrange ejecta are in general characterized by smaller boulders with high spatial dispersion. The cumulative size-frequency distribution (CSFD) of boulders shows a highly variable fragmentation history in which the uprange boulders suffered more complex fragmentation. The ejecta boulders also exhibit a variety of shapes that are gleaned from their axial ratios and edge angle characteristics. There is a general decrease of axial ratios away from the crater rim. Rectangular boulders dominate the crater rim and they become more equant away from the crater. In addition to the boulder sizes, the boulder shape distribution also exhibits a mild asymmetry in response to the oblique impact. Small size fresh impact craters (84,000 craters) are abundant on the Censorinus ejecta and post-date Censorinus. These craters are found in two morphologic types in which a large majority of craters

  12. The Manson impact crater: Estimation of the energy of formation, possible size of the impacting asteroid or comet, and ejecta volume and mass

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Shoemaker, E. M.; Anderson, R. R.

    1993-01-01

    A research program on the Manson impact structure has substantially improved our knowledge of the detailed features of this eroded crater. As part of our structural studies, we have derived a value of 21 km for the diameter of the final transient cavity formed during crater excavation. With this information, we can estimate the energy of formation of the Manson crater and the possible size of the impacting asteroid or comet. In addition, we have estimated the near- and far-field ejecta volumes and masses.

  13. The Manson impact crater: Estimation of the energy of formation, possible size of the impacting asteroid or comet, and ejecta volume and mass

    NASA Astrophysics Data System (ADS)

    Roddy, D. J.; Shoemaker, E. M.; Anderson, R. R.

    1993-03-01

    A research program on the Manson impact structure has substantially improved our knowledge of the detailed features of this eroded crater. As part of our structural studies, we have derived a value of 21 km for the diameter of the final transient cavity formed during crater excavation. With this information, we can estimate the energy of formation of the Manson crater and the possible size of the impacting asteroid or comet. In addition, we have estimated the near- and far-field ejecta volumes and masses.

  14. Magnetic properties of the ejecta blanket from the Chicxulub impact crater: Analog for robotic exploration of similar deposits on Mars

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Wasilewski, P. J.; Ocampo, A.; Pope, K.

    2001-05-01

    A major focus in the search for fossil life on Mars is on recognition of the proper material on the surface. Heavily cratered surface suggests high concentration of fluidized ejecta deposits. Because magnetism of rocks is an easy measure for remote robotic tools we collected samples of ejecta blanket deposits in southern Mexico and throughout Belize as a Martian analog. The ejecta layer (spheroid bed) that blankets the preexisting Cretaceous dolomite units consists of green glassy fragments, pink and white spheroids (accretionary lapilli) and darker fragments of limestone. The spheroid bed is overlain by a coarse unit of pebbles, cobbles, and boulders, which in more distal locations is composed of a pebble conglomerate. Clasts in the conglomerate (Pooks Pebbles) have striated features consistent with hypervelocity collisions during impact. We examined the magnetic properties of individual fragments within the spheroid bed. Green glassy fragments are highly paramagnetic (0.2 to 0.3 Am2kg-1 at 2 Tesla field) with no ferromagnetic component detected. Pink spheroids are slightly paramagnetic (0.001 to 0.04 Am2kg-1 at 2 Tesla field) and commonly contain soft ferromagnetic component (saturation magnetization (Ms) = 0.02 to 0.03 Am2kg-1). White spheroids have more or less equal amount of paramagnetic and diamagnetic components (-0.08 to 0.03 Am2kg-1 at 2 Tesla field) and no apparent ferromagnetism. Darker fragments are diamagnetic (-0.05 to -0.02 Am2kg-1 at 2 Tesla field) with absence of ferromagnetism. Intense paramagnetic properties of the glass allow easy distinction of glass containing samples. Pink spheroids appear to contain the largest amount of ferromagnetic particles. Diamagnetic dark grains are most likely fragments of limestone. Pebbles from the conglomerate unit are dolomite and consequently diamagnetic. The diamagnetism was established with field magnetic susceptibility measurements. Pebbles have very small natural remanent magnetization (NRM). Thermal

  15. Asteroid impact ejecta units overlain by iron-rich sediments in 3.5 2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause effect relationships?

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    2006-06-01

    The significance of temporal and spatial associations between asteroid/comet impact ejecta units and overlying iron-rich sediments, including banded iron-formation (BIF), jaspilite and ferruginous shale, observed in the Pilbara Craton, Western Australia and the Barberton Greenstone Belt (BGB), Kaapvaal Craton, South Africa, is considered. Such associations include (1) 3470.1 ± 1.9 Ma impact spherule units and tsunami-type breccia overlain by jaspilite in the Antarctic Chert Member, central Pilbara Craton; (2) 3258 ± 3 Ma impact spherule unit (S2) in the BGB overlain by BIF, jaspilite and ferruginous shale; (3) 3243 ± 4 Ma impact unit (S3) in the BGB overlain by iron-rich sediments (Ulundi Formation); (4) two formations of BIF and ferruginous shale at the base (Nimmingarra Iron Formation) and lower part (Paddy Market Formation) of the Gorge Creek Group, central Pilbara Craton, which overlie 3235 ± 3 Ma felsic volcanics along a boundary correlated with the BGB-S3 unit; (5) 2629 ± 5 Ma impact spherule unit and tsunami-type deposit overlain by BIF and ferruginous shale (Marra Mamba Iron Formation), central Pilbara Craton; (5) 2481 ± 4 Ma spherule unit intercalated at the lower part of the Dales Gorge Iron Member of the Brockman Iron Formation, Hamersley Basin, and possible equivalents in the Kuruman Formation, western Transvaal. No significant thicknesses of iron-rich sediments are known to overlie carbonate-hosted impact ejecta units, including the Bee Gorge Member (BGM) of the Wittenoom Formation (2561 ± 8 Ma), Carawine Dolomite (eastern Hamersley Basin, Pilbara Craton), Monteville Formation and Reivilo Formation (Griqualand West Basin, Transvaal Group), or the Graensco-Vallen spherule occurrence (southwest Greenland). The juxtaposition between impact ejecta units and overlying BIF and jaspilite may be accidental or purely related to preservation of these units in below-wave-base environments. Alternatively, this association may hint at enrichment of seawater

  16. The Cretaceous-Paleogene transition and Chicxulub impact ejecta in the northwestern Gulf of Mexico: Paleoenvironments, sequence stratigraphic setting and target lithologies

    NASA Astrophysics Data System (ADS)

    Schulte, Peter

    2003-07-01

    The Cretaceous-Paleogene (K-P) transition is characterized by a period of mass extinctions, the Chicxulub impact event, sea-level changes, and considerable climate changes (e.g., cooling). The Gulf of Mexico region is a key area for addressing these issues, specifically because of the proximity to the large Chicxulub impact structure in southern Mexico, and because of its shallow shelf areas throughout the Maastrichtian to Danian period. This study presents the results of a multidisciplinary investigation of Chicxulub impact ejecta and marine sediments from the K-P transition in the western Gulf of Mexico. Sedimentological, mineralogical, and geochemical aspects of K-P sections and cores from northeastern Mexico, Texas, and Alabama have been by studied with focus on Chicxulub ejecta, long- or short-term facies change, and sequence stratigraphic setting. CHICXULUB EJECTA: The Chicxulub ejecta (or impact spherule) deposits from northeastern Mexico and Texas revealed an unexpected complex and localized ejecta composition. Fe-Mg-rich chlorite- as well as Si-Al-K-rich glass-spherules are the predominant silicic ejecta components in northeastern Mexico, whereas in Texas, spherules of Mg-rich smectite compositions were encountered. Spherules contain Fe-Ti-K-rich schlieren, Fe-Mg-rich globules, and rare µm-sized metallic and sulfidic Ni-Co-(Ir-?) rich inclusions. This composition provides evidence for a distinct range of target rocks of mafic to intermediate composition, presumably situated in the northwestern sector of the Chicxulub impact structure, in addition to the possibility of contamination by meteoritic material. The absence of spinels and the ubiquitous presence of hematite and goethite points to high oxygen fugacity during the impact process. Besides these silicic phases, the most prominent ejecta component is carbonate.! Carbonate is found in ejecta deposits as unshocked clasts, accretionary lapilli-like grains, melt globules (often with quenching textures

  17. Mapping of a Widespread Olivine-Rich Layer on Mars: Identification of a Global Impact Ejecta Deposit?

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Christensen, P. R.

    2011-12-01

    Exposures of the most ancient materials on Mars, much like on Earth, have the possibility to illuminate a period of planetary surface evolution that is difficult to constrain. However, these exposures on planetary surfaces are rare and often difficult to positively identify without in situ measurements. Identification of these materials is especially difficult on Mars, as it is a largely volcanic planet dominated by basaltic magmatism and the ability to distinguish ancient materials from more recent deposits is primarily reliant on convincing stratigraphic relationships. Important but relatively minor variations in the basaltic composition of the planet are observed on the global scale; however, the majority of the planet's mineralogical variability and diversity occurs at small scales, for example the identification of in place phyllosilicates, carbonates, olivine-rich basalts, sulfate deposits, and opaline silica. It is these local-scale deposits that have fundamentally refined and shaped our current understanding of the evolutionary history and geology of Mars. Olivine-rich basalts have been characterized and mapped extensively, both globally and locally. These units have been associated with a variety of formation mechanisms, including volcanism, impact ejecta material, and lag deposits. Following the work of Edwards et al. (2008), we have mapped and characterized a compositionally distinct olivine-rich layer using TES, THEMIS, and CRISM spectral data. This thin and flat lying (~200m thick), continuous, rocky (TI >600-800 J K-1m-2s-1/2), olivine-rich (>15% areal abundance of ~Fo58-Fo74) basalt layer extends for a minimum of thousands of kilometers and may be global in scale. Additionally, the composition of this material is consistent with the crystallization of a melt derived from the martian mantle that underwent little fractional crystallization. The stratigraphic location of this layer, which was first identified in the walls of Valles Marineris in Ganges

  18. Butterfly Ejecta

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 4 September 2003

    In the heavily cratered southern highlands of Mars, the type of crater seen in this THEMIS visible image is relatively rare. Elliptical craters with 'butterfly' ejecta patterns make up roughly 5% of the total crater population of Mars. They are caused by impactors which hit the surface at oblique, or very shallow angles. Similar craters are also seen in about the same abundance on the Moon and Venus.

    Image information: VIS instrument. Latitude -24.6, Longitude 41 East (319 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Crater Ejecta

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 21 May 2004 This image of ejecta (top-left) from a rampart crater was acquired March 3, 2003, during northern summer.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 25.9, Longitude 322 East (38 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science

  20. Impact ejecta layer from the mid-Devonian: possible connection to global mass extinctions.

    PubMed

    Ellwood, Brooks B; Benoist, Stephen L; El Hassani, Ahmed; Wheeler, Christopher; Crick, Rex E

    2003-06-13

    We have found evidence for a bolide impacting Earth in the mid-Devonian ( approximately 380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera. PMID:12805544

  1. Impact Ejecta Layer from the Mid-Devonian: Possible Connection to Global Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Ellwood, Brooks B.; Benoist, Stephen L.; Hassani, Ahmed El; Wheeler, Christopher; Crick, Rex E.

    2003-06-01

    We have found evidence for a bolide impacting Earth in the mid-Devonian (~380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.

  2. Ejecta- and Size-Scaling Considerations from Impacts of Glass Projectiles into Sand

    NASA Technical Reports Server (NTRS)

    Anderson J. L. B.; Cintala, M. J.; Siebenaler, S. A.; Barnouin-Jha, O. S.

    2007-01-01

    One of the most promising means of learning how initial impact conditions are related to the processes leading to the formation of a planetary-scale crater is through scaling relationships.1,2,3 The first phase of deriving such relationships has led to great insight into the cratering process and has yielded predictive capabilities that are mathematically rigorous and internally consistent. Such derivations typically have treated targets as continuous media; in many, cases, however, planetary materials represent irregular and discontinuous targets, the effects of which on the scaling relationships are still poorly understood.4,5 We continue to examine the effects of varying impact conditions on the excavation and final dimensions of craters formed in sand. Along with the more commonly treated variables such as impact speed, projectile size and material, and impact angle,6 such experiments also permit the study of changing granularity and friction angle of the target materials. This contribution presents some of the data collected during and after the impact of glass spheres into a medium-grained sand.

  3. Still Water: Dead Zones and Collimated Ejecta from the Impact of Granular Jets

    NASA Astrophysics Data System (ADS)

    Ellowitz, Jake; Turlier, Hervé; Guttenberg, Nicholas; Zhang, Wendy W.; Nagel, Sidney R.

    2013-10-01

    When a dense granular jet hits a target, it forms a large dead zone and ejects a highly collimated conical sheet with a well-defined opening angle. Using experiments, simulations, and continuum modeling, we find that this opening angle is insensitive to the precise target shape and the dissipation mechanisms in the flow. We show that this surprising insensitivity arises because dense granular jet impact, though highly dissipative, is nonetheless controlled by the limit of perfect fluid flow.

  4. Chicxulub Ejecta Blanket Deposits From Belize

    NASA Technical Reports Server (NTRS)

    Ocampo, A.

    1995-01-01

    The Chicxulub impact into a thick sequence of carbonates and sulfates released over a trillion tons of volatiles. The importance of the explosive release of such a large mass of volatiles has been greatly underestimated in studies of ejecta depositional processes. Proximal Chicxulub ejecta blanket deposits recent discovered on Albion Island in Belize provide a key to understanding the role of volatile-rich target material during large impact events.

  5. Crater ejecta scaling laws - Fundamental forms based on dimensional analysis

    NASA Technical Reports Server (NTRS)

    Housen, K. R.; Schmidt, R. M.; Holsapple, K. A.

    1983-01-01

    Self-consistent scaling laws are developed for meteoroid impact crater ejecta. Attention is given to the ejection velocity of material as a function of the impact point, the volume of ejecta with a threshold velocity, and the thickness of ejecta deposit in terms of the distance from the impact. Use is made of recently developed equations for energy and momentum coupling in cratering events. Consideration is given to scaling of laboratory trials up to real-world events and formulations are developed for calculating the ejection velocities and ejecta blanket profiles in the gravity and strength regimes of crater formation. It is concluded that, in the gravity regime, the thickness of an ejecta blanket is the same in all directions if the thickness and range are expressed in terms of the crater radius. In the strength regime, however, the ejecta velocities are independent of crater size, thereby allowing for asymmetric ejecta blankets. Controlled experiments are recommended for the gravity/strength transition.

  6. Double-layered ejecta craters on Mars: morphology, formation, and a comparison with the Ries ejecta blanket

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Wulf, Gerwin; Sturm, Sebastian; Pietrek, Alexa

    2015-04-01

    The ejecta blankets of impact craters in volatile-rich environments often show characteristic layered ejecta morphologies. The so-called double-layer ejecta (DLE) craters are probably the most confusing crater types showing two ejecta layers with distinct morphologies. A phenomenological ejecta excavation and emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim - a textbook like, pristine DLE crater - and studies of other DLE craters [1]. The observations show that DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice. The deposits of the ejecta curtain are wet in the distal part and dryer in composition in the proximal part. As a result, the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a fluid saturated debris flow mode after landing overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits. This slide overruns and superimposes parts of the outer ejecta layer. Basal melting of the ice components of the ejecta volumes at the transient crater rim is induced by frictional heating and the enhanced pressure at depth. The results indicate similar processes also for other planetary bodies with volatile-rich environments, such as Ganymede, Europa or the Earth. The Ries crater on Earth has a similar ejecta thickness distribution as DLE craters on Mars [2]. Here basal sliding and fluidization of the ejecta increases outward by the entrainment of locally derived Tertiary sands and clays, that are saturated with groundwater. References: [1] Wulf, G. & Kenkmann, T. (2015) Met. Planet. Sci. (in press); [2] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013) Geology 41, 531-534.

  7. Paleomagnetism of Triassic bedded chert from Japan for determining the age of an impact ejecta layer deposited on peri-equatorial latitudes of the paleo-Pacific Ocean: A preliminary analysis

    NASA Astrophysics Data System (ADS)

    Uno, Koji; Yamashita, Daisuke; Onoue, Tetsuji; Uehara, Daiki

    2015-12-01

    Bedded chert samples from the Norian (Upper Triassic) Sakahogi section of the Mino Terrane in the Inuyama area, southwest Japan, have been collected for paleomagnetic study in order to determine the age of an impact ejecta layer interbedded within it and the paleolatitude of its deposition. Thermal demagnetization of the bedded chert samples revealed four distinct remanent magnetization components. The last demagnetized component with both polarities is interpreted to be the primary magnetization, which produced the first magnetostratigraphic data of the middle to upper Norian from Panthalassa, consistent with Tethyan magnetostratigraphic sections. Tie points were derived from paleomagnetic and paleontological data, from which the stratigraphic position of the ejecta layer was compared with the astronomically tuned geomagnetic polarity time scale (APTS). The age of ejecta layer is estimated to be about 212 Ma. This magnetostratigraphic age is consistent with the radiometric age of the Manicouagan impact that formed the second largest known crater in the Phanerozoic at Quebec, Canada. The results of this study, as well as previous studies, suggest that the chert section, which includes the ejecta layer, was deposited within a paleolatitude range of 0.3-14.4°N. This indicates that the material ejected by the Manicouagan impact event reached near the equatorial region of the paleo-Pacific Ocean.

  8. Research on the Statistical Property of the Ejecta Population Derivation

    NASA Astrophysics Data System (ADS)

    Ju, Fangfei; Xiao, Weike; Pang, Baojun

    2013-08-01

    During the debris population derivation in current versions of the orbital debris engineering model, NASA's ORDEM2010 and ESA's MASTER-2009, the ejecta model is simplified in some degree so as to link the populations with data. As a requirement for more accurate space debris environment model, researches on the statistical inference of population derivation of the ejecta model are essential. We simulate single particle impacts in various relative velocity directions in space with current ejecta model, in order to figure out features in ejecta orbital evolution such as orbital lifetime. In view of the nearly continuous generation of this secondary source, information of the on-orbit spacecraft area especially the debris flux is also taken into account. The simulation results show that by assuming the ejecta model is precise, these features which make the ejecta model distinct could increase the debris population accuracy before being linked to the observed data.

  9. Chicxulub High-Altitude Ballistic Ejecta from Central Belize

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ocampo, A. C.

    2000-01-01

    Chicxulub ejecta are found in central Belize, 475 km southeast of the impact crater center. These deposits are ballistic ejecta launched along high-altitude trajectories above the atmosphere and deposited as a discontinuous sheet on the terminal Cretaceous land surface.

  10. Ejecta emplacement: from distal to proximal

    NASA Astrophysics Data System (ADS)

    Artemieva, N.

    2008-09-01

    Introduction Most part of impact ejecta is deposited ballistically at some distance from a crater, defined by ejection velocity V and ejection angle α: d=v2sinα/g. In case of giant impacts, planetary curvature should be taken into account [1]. Combined with ejecta scaling [2], these relations allow to define ejecta thickness as a function of distance. Ejecta from large craters are deposited at velocity high enough to mobilize substrate material and to thicken ejecta deposits [3]. Ballistic approximation is valid for airless bodies (if impact vaporization is not vast) or for proximal ejecta of large impact craters, where ejecta mass per unit area is substantially greater than the mass of involved vapor/atmosphere (M-ratio). Deposition of distal ejecta, in which ejecta mass is negligible compared to the atmosphere, may be also treated in a simplified manner, i.e. as 1) passive motion of ejected particles within an impact plume and 2) later, as sedimentation of particles in undisturbed atmosphere (equilibrium between gravity and drag). In all intermediate M-ratio values, impact ejecta move like a surge, i.e. dilute suspension current in which particles are carried in turbulent flows under the influence of gravity. Surges are well-known for near-surface explosive tests, described in detail for volcanic explosions (Plinian column collapse, phreato-magmatic eruption, lateral blast), and found in ejecta from the Chicxulub [4] and the Ries [5]. Important aspects of surge transport include its ability to deposit ejecta over a larger area than that typical of continuous ballistic ejecta and to create multiple ejecta layers. Numerical model Two-phase hydrodynamics. Surges should be modeled in the frame of two-phase hydrodynamics, i.e. interaction between solid/molten particles and atmospheric gas/impact vapor should be taken into account. There are two techniques of solving equations for dust particle motion in a gas flow. The first one describes solid/molten particles as a

  11. Lunar craters with radar bright ejecta

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Zisk, S. H.; Schultz, P. H.; Cutts, J. A.; Shorthill, R. W.

    1981-01-01

    The properties of the 3.8-cm radar-bright halos observed around certain lunar impact craters are compiled and compared with 70-cm radar, thermal infrared and photogeological data in order to address the nature of the halos. Diameters, positions, and radar and IR signal strengths are presented for 120 radar-bright ejecta regions of size greater than 20 km and twice the diameter of the crater. The 3.8-cm halos are noted to range in size up to 30 times that of the crater itself, although the strength of the signal from the crater and rim lies in a narrow range, while the IR halos are smaller in extent and variable in signal strength. The radar-bright ejecta are found to have a range of optical properties, and to be associated with fresh primary impact craters. Data are thus consistent with craters having radar-bright ejecta deposits having ages of less than 10 million to 1 billion years, with the radar and infrared signatures of the ejecta deposits produced by combinations of enhanced blockiness and roughness.

  12. Ejecta emplacement: from distal to proximal

    NASA Astrophysics Data System (ADS)

    Artemieva, N.

    2008-09-01

    Introduction Most part of impact ejecta is deposited ballistically at some distance from a crater, defined by ejection velocity V and ejection angle α: d=v2sinα/g. In case of giant impacts, planetary curvature should be taken into account [1]. Combined with ejecta scaling [2], these relations allow to define ejecta thickness as a function of distance. Ejecta from large craters are deposited at velocity high enough to mobilize substrate material and to thicken ejecta deposits [3]. Ballistic approximation is valid for airless bodies (if impact vaporization is not vast) or for proximal ejecta of large impact craters, where ejecta mass per unit area is substantially greater than the mass of involved vapor/atmosphere (M-ratio). Deposition of distal ejecta, in which ejecta mass is negligible compared to the atmosphere, may be also treated in a simplified manner, i.e. as 1) passive motion of ejected particles within an impact plume and 2) later, as sedimentation of particles in undisturbed atmosphere (equilibrium between gravity and drag). In all intermediate M-ratio values, impact ejecta move like a surge, i.e. dilute suspension current in which particles are carried in turbulent flows under the influence of gravity. Surges are well-known for near-surface explosive tests, described in detail for volcanic explosions (Plinian column collapse, phreato-magmatic eruption, lateral blast), and found in ejecta from the Chicxulub [4] and the Ries [5]. Important aspects of surge transport include its ability to deposit ejecta over a larger area than that typical of continuous ballistic ejecta and to create multiple ejecta layers. Numerical model Two-phase hydrodynamics. Surges should be modeled in the frame of two-phase hydrodynamics, i.e. interaction between solid/molten particles and atmospheric gas/impact vapor should be taken into account. There are two techniques of solving equations for dust particle motion in a gas flow. The first one describes solid/molten particles as a

  13. Thicknesses of and Primary Ejecta Fractions in Basin Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; McKinnon, William B.

    2003-01-01

    We have developed a model for production of ba-sin ejecta deposits to address provenances of materials collected at the Apollo and Luna landing sites and for consideration in interpreting remote sensing data.

  14. Thicknesses of and Primary Ejecta Fractions in Basin Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; McKinnon, William B.

    2003-01-01

    We have developed a model for production of basin ejecta deposits to address provenances of materials collected at the Apollo and Luna landing sites and for consideration in interpreting remote sensing data.

  15. Structure of Solar Ejecta

    NASA Astrophysics Data System (ADS)

    Muñoz, G.; Cantó, J.; Lara, A.; González, R.; Schwenn, R.

    Solar Ejecta (SE) have been of interest in the last years, especially those which may reach Earth environment. It is possible to observe the SE early evolution, when they are in the field of view of coronagraphs. There are few indirect observations, as the case of interplanetary scintillation, of SEs in the interplanetary medium. Finally, we observe SEs in situ when they arrive at 1 AU.The SEs structure and evolution are important to understand the origin of these phenomena but to predict the possible effects in the space weather. It is of general acceptance that SEs are "Erupting Flux Ropes" traveling trough the Solar Wind. The "shapes" have been modeled as cylinders or as "ice cream cones" in order to represent the many different projections observed on Coronagraphs.We present a model of the SE evolution based on purely Hydrodynamic considerations. This model reproduces in good approximation some of the features observed in the images and in the measures of the shocks near Earth.

  16. Influence of shockwave profile on ejecta

    SciTech Connect

    Zellner, Michael B; Dimonte, Guy; Germann, Tim C; Hammerberg, James E; Rigg, Paulo A; Buttler, William T; Stevens, Gerald D; Turley, William D

    2009-01-01

    This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins. Assay foils, optical shadowgraphy, and x-ray attenuation.

  17. Morphology and Scaling of Ejecta Deposits on Icy Satellites

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Ridolfi, Francis J.; Bredekamp, Joe (Technical Monitor)

    2002-01-01

    Continuous ejecta deposits on Ganymede consist of two major units, or facies: a thick inner hummocky pedestal facies, and a relatively thin outer radially scoured facies defined also by the inner limit of the secondary crater field. Both ejecta facies have a well-defined power-law relationship to crater diameter for craters ranging from 15 to approx. 600 km across. This relationship can be used to estimate the nominal crater diameter for impact features on icy satellites (such as palimpsests and multiring basins) for which the crater rim is no longer recognizable. Ejecta deposits have also been mapped on 4 other icy satellites. Although morphologically similar to eject deposits on the Moon, ejecta deposits for smaller craters are generally significantly broader in extent on the icy satellites, in apparent defiance of predictions of self-similarity. A greater degree of rim collapse and enlargement on the Moon may explain the observed difference.

  18. Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew; Vickers, John

    2007-02-01

    The temporal association between late Archaean to earliest Proterozoic asteroid impact ejecta/fallout units and overlying banded iron formations suggests that, in some instances, these impacts were closely followed by significant transformation in the nature of source terrains of the sediments. The Jeerinah Impact Layer (JIL) [B.M. Simonson, D. Davies, S.W. Hassler, Discovery of a layer of probable impact melt spherules in the late Archean Jeerinah Formation, Fortescue Group, Western Australia. Aust. J. Earth Sci. 47 (2000) 315-325; B.M. Simonson, S.W. Hassler, Revised correlations in the early Precambrian Hamersley Basin based on a horizon of resedimented impact spherules. Aust. J. Earth Sci. 44 (1997) 37-48; B.M. Simonson, B.P. Glass, Spherule layers - records of ancient impacts. Ann. Rev. Earth Planet. Sci. 32 (2004) 329-361; A.Y. Glikson, Early Precambrian asteroid impact-triggered tsunami: excavated seabed, debris flows, exotic boulders, and turbulence features associated with 3.47-2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Astrobiology 4 (2001) 19-50; S.W. Hassler, B.M. Simonson, D.Y. Sumner, D. Murphy, Neoarchaean impact spherule layers in the Fortescue and Hamersley Groups, Western Australia: stratigraphic and depositional implications of re-correlation. Aust. J. Earth Sci. 52 (2005) 759-772; B. Rasmussen, C. Koeberl, Iridium anomalies and shocked quartz in a late Archean spherule layer from the Pilbara Craton: new evidence for a major asteroid impact at 2.63 Ga. Geology 32 (2004) 1029-1032; B. Rasmussen, T.S. Blake, I.R. Fletcher, U-Pb zircon age constraints on the Hamersley spherule beds: Evidence for a single 2.63 Ga Jeerinah-Carawine impact ejecta layer. Geology, 33 (2005) 725-728.] overlies an argillite-dominated unit (Jeerinah Formation, 2684 ± 6 Ma [A.F. Trendall, W. Compston, D.R. Nelson, J.R. deLaeter, V.C. Bennett, SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western

  19. Flow-ejecta Crater in Icaria Planum

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Global Surveyor Orbiter Camera (MOC) acquired this high resolution image of a flow ejecta crater on November 19, 1997, at 8:26 PM PST, about 18 minutes after the start the 45th orbit of Mars. The area shown is roughly 6.5 by 40.2 kilometers (4 by 25 miles), and is located near 40 degrees South latitude, 120 degrees West longitude. Features as small as 15-18 m (50-60 feet) across are visible in the picture.

    Flow ejecta craters are so named because the material blasted out of the crater during the impact process appears to have flowed across the surface of Mars. First seen in Mariner 9 images in 1973, and described in detail using Viking Orbiter images acquired in 1976-78, flow-ejecta craters are considered by many scientists to be evidence that liquid water could be found in the near-subsurface at the time the craters formed. This image (right), a factor of two better than any previous view of such features (and a factor of 33 better than the best Viking frame of the specific crater, 056A61, left), shows two smaller, pre-existing craters and the interaction of the flowing ejecta with these craters. The uppermost small crater has been over-topped and partly buried by the flow, while the flow has been diverted around the lower crater. Ridges formed where the flow 'stacked up' behind obstacles, or came to rest.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  20. Ejecta curtain radiative transfer modeling for probing its geometry and dust optical properties

    NASA Astrophysics Data System (ADS)

    Shalima, P.; Wada, K.; Kimura, H.

    2015-10-01

    An ejecta curtain is produced as a result of impact cratering of celestial bodies that excavates and ejects their surface and underground material. Since ejecta particles are thought to reflect the interior materials and structures of celestial bodies, ejecta and ejecta curtains provide us with valuable information about the interior of the bodies. Following the Deep Impact mission, more and more in situ data on ejecta curtains are expected to become available in future space missions. To draw valuable information from such in situ measurements, a radiative-transfer model of the ejecta curtain plays an important role. This urges us to carefully assess the model parameters with experimental results as well as understand the contribution of each model parameter to the predicted intensities of the radiative calculations. In this work, we study the dependences of the projected intensity images of the ejecta on the scattering phase function and the geometry of an ejecta curtain produced by impact on an airless-body's surface, as a first step toward a correct interpretation of ejecta observations. Using the Monte-Carlo multiple scattering method, we have calculated the scattered intensities for three different orientations of the ejecta curtain. We have also computed the intensities for ejecta material using different phase functions. We find that the scattered intensities are highest for the isotropic phase function irrespective of the orientation of the ejecta cone for the scattering angles and geometry considered here. Observations from the other side could lead to higher intensities for forward scattering grains that are typical for asteroids. Therefore in situ observations of ejecta-curtains at different angles will enable us to use our model predictions to extract the phase functions as well as column densities of its component dust grains.

  1. Rampart Crater Ejecta

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 25 May 2004 This image of rampart crater ejecta was acquired Feb. 16, 2003, during northern summer.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 45.9, Longitude 347 East (13 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D

  2. Eltanin: Ground Truth for Kilometer-Sized Deep-Ocean Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Kyte, F. T.; Gersonde, R.; Kuhn, G.

    2009-12-01

    Deposits of the late Pliocene (2.5 Ma) Eltanin impact are unique in the known geological record. The only known example of a km-sized asteroid to impact a deep-ocean (5 km) basin, is the most meterorite-rich locality known on Earth. This was discovered as an Ir anomaly in sediments from three cores collected in the SE Pacific in 1965 by the USNS Eltanin. Subsequently, two expeditions of the R/V Polarstern in 1995 and 2001 have conducted geological and geophysical investigations in the impact region. An area of ~80,000 km2 has been mapped in some detail, and deposits from the impact are found in 23 cores spanning a region extending 660 (E-W) by 250 km (N-S). We find a central region 50 to 100 km across, near the Freeden Seamounts (57.3S, 90.5W), where sediments as old as Eocene have been ripped up (perhaps to basement) and redeposited by the impact into a chaotic mix of pebble to boulder-sized fragments. This is overlain by a fining upward sequence of sediments with laminations and some cross-bedding consistent with deposition in a high-energy flow regime. Near the top of this impact deposit, sub mm- to cm-sized meteoritic ejecta is mixed into the disturbed sediment. This ejecta is composed of 90% shock-melted asteroid and 10% unmelted meteorite fragments from the lo-metal mesosiderite asteroid. The amount of meteoritic ejecta in 13 cores from the central region record deposition of 3 to 50 kg of asteroid material per square meter. Km-sized impacts are fairly common on geological timescales, occurring a few times per m.y., so one or two other similar-sized, and several smaller projectiles likely hit the Pacific basin since the Late Pliocene. Undoubtedly, this is not the only such impact collected in deep-sea cores; it is unique only in that it has been recognized. Eltanin thus serves as type section for identifying ocean-impact deposits at other localities. Projectiles of this size cannot penetrate to the ocean floor and indeed there is no chemical evidence in the

  3. Martian rampart crater ejecta - Experiments and analysis of melt-water interaction

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Sheridan, M. F.

    1983-10-01

    Viking images of Martian craters with rampart-bordered ejecta deposits reveal distinct impact ejecta morphology when compared to that associated with similar-sized craters on the Moon and Mercury. It is suggested that target water explosively vaporized during impact alters initial ballistic trajectories of ejecta and produces surging flow emplacement. The dispersal of particulates during a series of controlled steam explosions generated by interaction of a thermite melt with water has been experimentally modeled. Study of terrestrial, lobate, volcanic ejecta produced by steam-blast explosions reveals that particle size and vapor to clast volume ratio are primary parameters characterizing the emplacement mechanism and deposit morphology.

  4. Summary of Results from Analyses of Deposits of the Deep-Ocean Impact of the Eltanin Asteroid

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Kuhn, Gerhard; Gersonde, Rainer

    2005-01-01

    Deposits of the late Pliocene (2.5 Ma) Eltanin impact are unique in the known geological record. The only known example of a km-sized asteroid to impact a deep-ocean (5 km) basin, is the most meterorite-rich locality known. This was discovered as an Ir anomaly in sediments from three cores collected in 1965 by the USNS Eltanin. These cores contained mm-sized shock-melted asteroid materials and unmelted meteorite fragments. Mineral chemistry of meteorite fragments, and siderophole concentrations in melt rocks, indicate that the parent asteroid was a low-metal (4\\%) mesosiderite. A geological exploration of the impact in 1995 by Polarstern expedition ANT-XIV4 was near the Freeden Seamounts (57.3S, 90.5 W), and successfully collected three cores with impact deposits. Analyses showed that sediments as old as Eocene were eroded by the impact disturbance and redeposited in three distinct units. The lowermost is a chaotic assemblage of sediment fragments up to 50 cm in size. Above this is a laminated sand-rich unit that deposited as a turbulent flow, and this is overlain by a more fine-grained deposit of silts and clays that settled from a cloud of sediment suspended in the water column. Meteoritic ejecta particles were concentrated near the base of the uppermost unit, where coarse ejecta caught up with the disturbed sediment. Here we will present results from a new suite of cores collected on Polarstern expedition ANT-XVIIU5a. In 2001, the Polarstern returned to the impact area and explored a region of 80,000 sq-km., collecting at least 16 sediment cores with meteoritic ejecta. The known strewn field extends over a region 660 by 200 km. The meteoritic ejecta is most concentrated in cores on the Freeden seamounts, and in the basins to the north, where the amount of meteoritic material deposited on the ocean floor was as much as 3 g/sq-cm. These concentrations drop off to the north and the east to levels as low as approximately 0.1 g/sq-cm. We were unable to sample the

  5. η Carinae - The outer ejecta

    NASA Astrophysics Data System (ADS)

    Weis, K.

    2009-03-01

    η Carinae is a unique object among the most massive evolved stars in the LBV phase. The central object(s) is(are) surrounded by a complex circumstellar nebula ejected during more than one eruption in the 19th century. Beyond the well-defined edges of its famous bipolar nebula, the Homunculus, are additional nebulous features referred to as the outer ejecta. The outer ejecta contains a large variety of structures of very different sizes and morphologies distributed in a region 0.67 pc in diameter. Individual features in the outer ejecta are moving extremely fast, up to 3200 km/s, in general the expansion velocities are between 400-900 km/s. A consequence of these high velocities is that structures in the outer ejecta interact with the surrounding medium and with each other. The strong shocks that arise from these interactions give rise to soft X-ray emission. The global expansion pattern of the outer ejecta reveals an overall bipolar distribution, giving a symmetric structure to its morphologically more irregular appearance. The long, highly collimated filaments, called strings, are particularly unusual. The material in the strings follows a Hubble-flow and appears to originate at the central object.

  6. Venusian extended ejecta deposits as time-stratigraphic markers

    NASA Technical Reports Server (NTRS)

    Izenberg, Noam R.

    1992-01-01

    Use of impact crater ejects at time-stratigraphic markers was established during lunar geologic mapping efforts. The basic premise is that the deposition of impact ejecta, either by itself or mixed with impact-excavated material, is superimposed on a surface. The deposit becomes an observable, mappable unit produced in a single instant in geologic time. Up to two-thirds of Venus craters exhibit extended ejecta deposits. A reconnaissance survey of 336 craters (about 40 percent of the total population) was conducted. About half the craters examined were located in and around the Beta-Atla-Themis region, and half were spread over the western hemisphere of the planet. The survey was conducted using primarily C1-MIDR images. The preliminary survey shows: (1) of the 336 craters, 223 were found to have extended ejecta deposits. This proportion is higher than that found in other Venus crater databases by up to a factor of 2. (2) 53 percent of all extended ejecta craters were unambiguously superimposed on all volcanic and tectonic units. Crater Annia Faustina's associated parabolic ejecta deposit is clearly superimposed on volcanic flows coming from Gula Mons to the west. Parabola material from Faustina has covered the lava flows, smoothing the surface and reducing its specific backscatter cross section. The stratigraphy implies that the parabola material is the youngest observable unit in the region. (3) 12 percent of extended ejecta deposits are superimposed by volcanic materials. Crater Hwangcini has extended ejecta that has been covered by volcanic flows from a dome field to the northwest, implying that the volcanic units were emplaced subsequent to the ejecta deposit and are the youngest units in the locality. (4) It is difficult to determine the stratigraphic relationships of the remaining extended ejecta deposits in SAR at C1-MIDR resolution. Examination of higher resolution images and application of the other Magellan datasets in systematic manner should resolve

  7. Ejecta production mechanisms on painted surfaces

    NASA Astrophysics Data System (ADS)

    Bariteau, Muriel; Mandeville, Jean-Claude; Schäfer, Frank

    2001-10-01

    Painted surfaces are frequently used on space vehicles, whether on satellites or on rocket bodies. A bibliographic research allows us to evaluate the painted surfaces in orbit at about 63000 m2. The observation of impacts on painted surfaces of the LDEF satellite shows that the total ejected mass is large. However, no description of hypervelocity impact tests on painted surfaces has been found in the literature. An ejecta model has been previously developed at ONERA/DESP. This model is applicable for hypervelocity impacts on homogeneous ductile targets, homogeneous brittle targets and solar cells. The objective of this work is to extend this model to the case of painted surfaces. Consequently, impact pictures on painted surfaces of LDEF were analysed and some laboratory impact tests were performed at the Ernst-Mach-Institut, in Freiburg, under an ESA contract.

  8. The ejecta of η Carinae

    NASA Astrophysics Data System (ADS)

    Gull, Theodore R.

    2007-08-01

    High-dispersion spectroscopic observations of the neutral Homunculus and the ionized Little Homunculus, ejecta of η Car, are being analyzed to determine the relative abundances of metals. Thousands of lines of neutral and singly-ionized metals and molecules seen in the Homunculus suggest that this oxygen-, carbon-poor, nitrogen-, helium-rich gas contains very different dust grains likely devoid of metal oxides. The gas to dust ratio is likely much larger than the canonical 100:1 implying that the 12 M estimate of the ejecta is a lower limit.

  9. The Manson Impact Structure: 40Ar/39Ar age and its distal impact ejecta in the pierre shale in southeastern South Dakota

    USGS Publications Warehouse

    Izett, G.A.; Cobban, W.A.; Obradovich, J.D.; Kunk, M.J.

    1993-01-01

    The 40Ar/39Ar ages of a sanidine clast from a melt-matrix breccia of the Manson, Iowa, impact structure (MIS) indicate that the MIS formed 73.8 ?? 0.3 million years ago (Ma) and is not coincident with the Cretaceous-Tertiary boundary (64.43 ?? 0.05 Ma). The MIS sanidine is 9 million years older than 40Ar/39Ar age spectra of MIS shock-metamorphosed microcline and melt-matrix breccia interpreted earlier to be 64 to 65 Ma. Grains of shock-metamorphosed quartz, feldspar, and zircon were found in the Crow Creek Member (upper Campanian) at a biostratigraphic level constrained by radiometric ages in the Pierre Shale of South Dakota that are consistent with the 40Ar/39Ar age of 73.8 ?? 0.3 Ma for MIS reported herein.

  10. The Manson Impact Structure: 40Ar/39Ar Age and Its Distal Impact Ejecta in the Pierre Shale in Southeastern South Dakota

    NASA Astrophysics Data System (ADS)

    Izett, G. A.; Cobban, W. A.; Obradovich, J. D.; Kunk, M. J.

    1993-10-01

    The 40Ar/39Ar ages of a sanidine clast from a melt-matrix breccia of the Manson, lowa, impact structure (MIS) indicate that the MIS formed 73.8 ± 0.3 million years ago (Ma) and is not coincident with the Cretaceous-Tertiary boundary (64.43 ± 0.05 Ma). The MIS sanidine is 9 million years older than 40Ar/39Ar age spectra of MIS shock-metamorphosed microcline and melt-matrix breccia interpreted earlier to be 64 to 65 Ma. Grains of shock-metamorphosed quartz, feldspar, and zircon were found in the Crow Creek Member (upper Campanian) at a biostratigraphic level constrained by radiometric ages in the Pierre Shale of South Dakota that are consistent with the 40Ar/39Ar age of 73.8 ± 0.3 Ma for MIS reported herein.

  11. Ejecta experiments at the Pegasus Pulsed Power facility

    SciTech Connect

    Sorenson, D.S.; Carpenter, B.; King, N.S.P.

    1997-08-01

    When a shock wave interacts at the surface of a metal target, target material can be emitted from the surface called ejecta. The mass, size, shape, and velocity of ejecta varies depending on the initial shock conditions, and target material properties. In order to understand this phenomena, diagnostics have been developed and implemented at the Pegasus Pulsed Power facility located at Los Alamos National Laboratory. The facility provides both radial and axial access for making measurements. There exist optical, laser, and x-ray paths for performing measurements on the target assembly located near the center of the machine. The facility can provide many mega amps of current which is transported to a 5.0 cm diameter, 2.0 cm high aluminum cylinder. The current and associated magnetic field set up forces which implode the aluminum cylinder radially inward. As the aluminum cylinder reaches the appropriate velocity it impacts a target cylinder. Due to this impact, a shock wave is set up in the target and eventually interacts at the inner surface of the target cylinder where ejecta are produced. A 1.5 cm diameter collimator cylinder located inside the target cylinder is used to control the number of ejecta particles that arrive at the center region where ejecta measurements are made. Diagnostics have been developed including in-line Fraunhofer holography and visible shadowgraph. Details of these diagnostics are described.

  12. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.

  13. A model for wind-extension of the Copernicus ejecta blanket

    NASA Technical Reports Server (NTRS)

    Rehfuss, D. E.; Michael, D.; Anselmo, J. C.; Kincheloe, N. K.

    1977-01-01

    The interaction between crater ejecta and the transient wind from impact-shock vaporization is discussed. Based partly on Shoemaker's (1962) ballistic model of the Copernicus ejecta and partly on Rehfuss' (1972) treatment of lunar winds, a simple model is developed which indicates that if Copernicus were formed by a basaltic meteorite impacting at 20 km/s, then 3% of the ejecta mass would be sent beyond the maximum range expected from purely ballistic trajectories. That 3% mass would, however, shift the position of the outer edge of the ejecta blanket more than 400% beyond the edge of the ballistic blanket. For planetary bodies lacking an intrinsic atmosphere, the present model indicates that this form of hyperballistic transport can be very significant for small (no more than about 1 kg) ejecta fragments.

  14. Transient classification and novae ejecta

    NASA Astrophysics Data System (ADS)

    Williams, Robert

    2016-07-01

    A third parameter, in addition to luminosity and rate of brightness decline, derived from the spectra of transients is suggested as a means of more accurately classifying objects in outburst. Principal component analysis of the spectra of transients is suggested as the best way to determine the third parameter. A model is suggested for novae ejecta that is based on the ballistic ejection of an ensemble of clouds having a wide range of sizes. Short term brightness fluctuations of novae, the formation of dust, and the production of X-ray emission follow naturally from such a picture of the evolving clouds.

  15. The interaction of rock and water during shock decompression: A hybrid model for fluidized ejecta formation

    NASA Astrophysics Data System (ADS)

    Rager, Audrey Hughes

    Crater and ejecta morphology provide insight into the composition and structure of the target material. Martian rampart craters, with their unusual single-layered (SLE), double-layered (DLE), and multi-layered ejecta (MLE), are the subject of particular interest among planetary geologists because these morphologies are thought to result from the presence of water in the target. Also of interest are radial lines extending from the crater rim to the distal rampart of DLE craters. Exactly how these layered ejecta morphologies and radial lines form is not known, but they are generally thought to result from interaction of the ejecta with the atmosphere, subsurface volatiles, or some combination of both. Using the shock tube at the University of Munich, this dissertation tests the hypothesis that the decompression of a rock-water mixture across the vaporization curve for water during the excavation stage of impact cratering results in an increased proportion of fines in the ejecta. This increase in fine material causes the ejecta to flow with little or no liquid water. Also tested are the effects of water on rock fragmentation during shock decompression when the vaporization curve for water is not crossed. Using results from these experiments, a hybrid model is proposed for the formation of fluidized ejecta and suggests that the existing atmospheric and subsurface volatile models are end members of a mechanism resulting in ejecta fluidization. Fluidized ejecta can be emplaced through interaction with an atmosphere (atmospheric model) or through addition of liquid water into the ejecta through shock melting of subsurface ice (subsurface volatile model). This dissertation proposes that these models are end members that explain the formation of fluidized ejecta on Mars. When the vaporization curve for water is crossed, the expanding water vapor increases the fragmentation of the ejecta as measured by a significant reduction in the median grain size of ejecta. Reducing the

  16. Planet Earth Set to Broil: Thermal Radiation from Chicxulub Ejecta Reentry

    NASA Astrophysics Data System (ADS)

    Goldin, T. J.; Melosh, H. J.

    2009-03-01

    We model the thermal radiation transfer due to the atmospheric reentry of hypervelocity Chicxulub impact ejecta. Self-shielding of downward radiation by the spherules limits the magnitude and duration of the thermal pulse at the Earth’s surface.

  17. A possible formation mechanism of rampart-like ejecta pattern in a laboratory

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Kadono, T.; Nakamura, A. M.; Arakawa, M.; Wada, K.; Yamamoto, S.

    2011-12-01

    The ejecta morphologies around impact craters represent highly diverse appearance on the surface of solid bodies in our Solar System. It is considered that the varied ejecta morphologies result from the environments such as the atmospheric pressure, the volatile content in the subsurface, because they affect the emplacement process of the ejecta. Clarifying the relationships between the ejecta morphologies and the formation processes and environments could constrain the ancient surface environment and the evolution of the planets. We have investigated the ejecta patterns around the impact craters which formed on a glass beads layer in a laboratory, and found that the patterns depend on impact velocity, atmospheric pressure, and initial state of packing of the target [Suzuki et al., 2010, JpGU abstract]. Now, we focus on one of the ejecta patterns which has a petal-like (or sometimes concentric) ridges on the distal edge of the continuous ejecta. This ejecta pattern looks very similar to the rampart ejecta morphology observed around Martian impact craters [e.g. Barlow et al., 2000]. The experiments are conducted with the small light gas gun placed in Kobe University, Japan. The projectile is a cylinder with a diameter of 10 mm and a height of 10 mm, and is made of aluminum, nylon, or stainless. The target is a layer of glass beads (nearly uniform diameter) in a tub with ~28 cm in diameter. The bulk density is about 1.7 g/cm^3. The following three parameters are varied: 1) the diameter of the target glass beads (50, 100, 420 microns), 2) the ambient atmospheric pressure in the chamber (from ~500 Pa to atmospheric pressure), 3) the impact velocity of the projectile (from a few to ~120 m/s). In our experiments, the rampart-like ridged patterns are observed within the following conditions: 1) the diameter of the target glass beads is 50 and 100 microns, 2) the ambient pressure in the chamber is higher than ~10^4 Pa, and 3) the impact velocity is higher than 16 m

  18. The ICDP Lake Bosumtwi impact crater scientific drilling project (Ghana): Core LB-08A litho-log, related ejecta, and shock recovery experiments

    NASA Astrophysics Data System (ADS)

    Deutsch, Alexander; Luetke, Sabine; Heinrich, Volker

    The 1.07 Myr old Lake Bosumtwi impact crater in Ghana was drilled within the framework of the International Continental Scientific Drilling Project (ICDP). Hole LB-08A, drilled into the outer flank of the central uplift and with a total depth of 451 m, yielded 215.71 m of impact-related rocks. This paper summarizes observations of the lithological logging on core LB-08A. Between a depth of 235.6 and ~260 m, the section consists of a melt-bearing allochthonous, polymict, and mostly clast-supported impact breccia. Down to ~418 m, the section comprises a rather uniform unit of metagraywacke alternating with phyllite to slate (lower greenschist facies); few (par-) autochthonous impact breccia bodies and rare impact dike breccias are present. The lowermost part of the section contains several centimeter- to decimeter-thick melt-bearing breccia dikes in country rocks identical to those occurring above. Omnipresent fracturing was mapped in a qualitative manner. Most prominent shock effects in the uplifted target rocks comprise planar fractures and deformation elements in quartz and polysynthetic twinning in carbonate minerals; the maximum shock pressure as evidenced by quartz is below 26 GPa. The allochthonous breccias occasionally contain a few vol% of melt particles. Suevites occur outside the crater rim, carrying diaplectic crystals, coesite, and ballen quartz as well as true melt glasses and a variety of lithic clasts, among those spectacular staurolite-rich mica-schists. The recorded shock level in the uplifted target rocks is lower than expected and modeled. Shock recovery experiments with analogue carbonaceous graywackes at 34 and 39.5 GPa yielded nearly complete transformation of quartz into diaplectic glass. We therefore exclude a specific shock behavior of the soft, fluid-rich target material (carbonaceous graywackes, shales, slates) in core LB-08A as the prime or only reason for the melt deficit and the generally low shock levels recorded inside the Lake

  19. Investigations of primary and secondary impact structures on the moon and laboratory experiments to study the ejecta of secondary particles. Ph.D. Thesis - Ruprecht Karl Univ.

    NASA Technical Reports Server (NTRS)

    Koenig, B.

    1977-01-01

    Young lunar impact structures were investigated by using lunar orbiter, Apollo Metric and panorama photographs. Measurements on particularly homogeneous areas low in secondary craters made possible an expansion of primary crater distribution to small diameters. This is now sure for a range between 20m or = D or = 20km and this indicates that the size and velocity distribution of the impacting bodies in the last 3 billion years has been constant. A numerical approximation in the form of a 7th degree polynomial was obtained for the distribution.

  20. Large ejecta fragments from asteroids. [Abstract only

    NASA Technical Reports Server (NTRS)

    Asphaug, E.

    1994-01-01

    The asteroid 4 Vesta, with its unique basaltic crust, remains a key mystery of planetary evolution. A localized olivine feature suggests excavation of subcrustal material in a crater or impact basin comparable in size to the planetary radius (R(sub vesta) is approximately = 280 km). Furthermore, a 'clan' of small asteroids associated with Vesta (by spectral and orbital similarities) may be ejecta from this impact 151 and direct parents of the basaltic achondrites. To escape, these smaller (about 4-7 km) asteroids had to be ejected at speeds greater than the escape velocity, v(sub esc) is approximately = 350 m/s. This evidence that large fragments were ejected at high speed from Vesta has not been reconciled with the present understanding of impact physics. Analytical spallation models predict that an impactor capable of ejecting these 'chips off Vesta' would be almost the size of Vesta! Such an impact would lead to the catastrophic disruption of both bodies. A simpler analysis is outlined, based on comparison with cratering on Mars, and it is shown that Vesta could survive an impact capable of ejecting kilometer-scale fragments at sufficient speed. To what extent does Vesta survive the formation of such a large crater? This is best addressed using a hydrocode such as SALE 2D with centroidal gravity to predict velocities subsequent to impact. The fragmentation outcome and velocity subsequent to the impact described to demonstrate that Vesta survives without large-scale disassembly or overturning of the crust. Vesta and its clan represent a valuable dataset for testing fragmentation hydrocodes such as SALE 2D and SPH 3D at planetary scales. Resolution required to directly model spallation 'chips' on a body 100 times as large is now marginally possible on modern workstations. These boundaries are important in near-surface ejection processes and in large-scale disruption leading to asteroid families and stripped cores.

  1. High-resolution studies of double-layered ejecta craters: Morphology, inherent structure, and a phenomenological formation model

    NASA Astrophysics Data System (ADS)

    Wulf, Gerwin; Kenkmann, Thomas

    2015-02-01

    The ejecta blankets of impact craters in volatile-rich environments often possess characteristic layered ejecta morphologies. The so-called double-layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high-resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well-preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile-rich environments, such as Ganymede, Europa, and the Earth.

  2. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  3. The Absorption Spectrum of the η Car Ejecta

    NASA Astrophysics Data System (ADS)

    Nielsen, K. E.; Viera, G.; Gull, T. R.

    2005-09-01

    The ultraviolet spectrum of η Car and the very nearby ejecta is dominated by complex wind profiles of the extended atmosphere. Increasingly from the STIS NUV to FUV, absorption features from the ejecta and the interstellar medium are superimposed. The absorption from the foreground ejecta display a velocity dispersion between -650 > v > -100 km s-1, with two easily separated components at -146 and -513 km s-1. These two velocities components have earlier been determined to be formed at very different distances from the central source (Gull et al. 2004), and seem to be linked to Little Homunculus and the Homunculus, respectively.The -146 and -513 km s-1 components show different ionization structures. While the -146 km s-1 component shows a spectrum from almost exclusively singly ionized iron group elements, the fast -513 km s-1 has a lower excitation temperature and consequently shows lines from both neutral and singly ionized species. H2 has a huge impact on the spectrum between 1200 to 1650 Å{} and can for some regions completely describe the ejecta spectrum. The ejecta vary in absorption throughout the spectroscopic period. The -146 km s-1 component strengthens when the minimum approaches. The fast component is not significantly affected across the minimum, however, the molecular lines show a dramatic decrease in intensity likely caused by the drop of FUV radiation reaching the -513 km s-1 ejecta. In this spectral range interstellar features such as S II, C II, C IV, Si II and Si IV have a significant impact on the spectrum. We used an earlier study by Walborn et al. (2002) to estimate the ISM's influence on the η Car spectrum. Many of the interstellar lines show a large velocity dispersion (-388 to +127 km s-1). Within 0.1 arcsec of the central source, STIS resolves spatial features at the 0.25 arcsec scale. A number of strong emission lines are observable in the spectrum and associable with the Weigelt blobs B and C. During the minimum when the FUV and X

  4. Molecules in the ejecta of SN 1987A

    SciTech Connect

    Lepp, S.; Dalgarno, A.; Mccray, R. Joint Institute for Laboratory Astrophysics, Boulder, CO )

    1990-07-01

    Carbon monoxide has been observed in the ejecta of SN 1987A. The molecular formation and destruction mechanisms in the ejecta environment are explored to determine how the CO and other molecules may be formed. In the absence of grains the first molecules must be formed either through negative ion reactions or through radiative association. The molecules are destroyed by interactions with the radiation field, by fast electron impact, and most effectively by charge transfer reactions with He(+) ions. The CO masses inferred from the observations of vibrational emission can be reproduced by a partially mixed model of the element distribution or by a fully mixed model with rapid charge transfer of He(+) to metal atoms. 23 refs.

  5. In plain sight: the Chesapeake Bay crater ejecta blanket

    NASA Astrophysics Data System (ADS)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  6. CME dynamics using coronagraph and interplanetary ejecta observations

    NASA Astrophysics Data System (ADS)

    Dal Lago, Alisson; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; de Lucas, Aline; Braga, Carlos Roberto; Ramos Vieira, Lucas

    One of the key issues of Space Weather is the dynamics of coronal mass ejections, from their release from the Sun, their propagation throughout the interplanetary space, eventually im-pacting the earth and other planets. These impacts of CMEs are the most important drivers of space weather phenomena. A number of empirical and analytical studies have addressed this point so far, using observations from coronagraphs and interplanetary monitors, in order to correlate CMEs observed near the Sun and in situ (e.g. earth vincity). However, results are far from conclusive. Error bars in CME travel time predictions from the Sun to earth, are of the order of 1 day, which is considerably big for the typical time scale of 1 to 3 days of their travel time. After many years of intensive investigations of CMEs observed with the Large An-gle and Spectrometric Coronagraph (LASCO), abord the Solar and Heliospheric Observatory (SOHO), we found that the subset of interplanetary counterparts of CMEs, the ICMEs, with a well defined ejecta structure are those with best predictable behaviour. The prediction of these interplanetary ejecta travel time to earth, using coronagraph observations is the one with lowest error bar among other sets of events, such as interplanetary shock. We present a statistic study of all the CME-ejecta events observed by SOHO and by the Advanced Composition Explorer (ACE) satellite since 1997.

  7. Ejecta particle size distributions for shock loaded Sn and Al metals.

    SciTech Connect

    Sorenson, D. S.; Minich, R. W.; Romero, J. L.; Tunnell, T. W.; Malone, R. M.

    2001-01-01

    When a shock wave interacts at the surface of a metal sample 'ejected matter' (ejecta) can be emitted from the surface. The mass, size, shape, and velocity of the ejecta varies depending on the initial shock conditions and the material properties of the target. To understand this phenomena, experiments have been conducted at the Pegasus Pulsed Power Facility (PPPF) located at Los Alamos National Laboratory (LANL). The facility is used to implode cylinders to velocities of many mm/{micro}sec. The driving cylinder impacts a smaller target cylinder where shock waves of a few hundreds of kilobars can be reached and ejecta formation proceeds. The ejecta particle sizes are measured for shock loaded Sn and Al metal samples using an in-line Fraunhofer holography technique. The distributions will be compared to calculations from 3 and 2 dimensional percolation theory.

  8. Insights into complex layered ejecta emplacement and subsurface stratigraphy in Chryse Planitia, Mars, through an analysis of THEMIS brightness temperature data

    NASA Astrophysics Data System (ADS)

    Jones, Eriita; Caprarelli, Graziella; Osinski, Gordon R.

    2016-06-01

    Layered ejecta craters on Mars have been interpreted to indicate the presence of volatiles in the substrate, making them important targets for the investigation of sites of astrobiological significance. If the ejecta are associated with the presence of water in the substratum, specific surface grain size trends are expected. In this study we explore the distribution of grain sizes in the layered ejecta of impact craters located in Chryse Planitia, using Thermal Emission Imaging System (THEMIS) thermal infrared data. Ejecta grain size trends, in conjunction with ejecta mobility and lobateness values, are applied to assess the degree of surface flow of the ejecta, and in turn to constrain the plausible volatile abundance, cohesion, and fine particle content of the target materials. Craters with a larger fraction of small grain sizes in their ejecta showed greater ejecta mobility and lobateness, consistent with a water-rich and/or a low-cohesion target. Craters displaying decreasing grain size with increasing radius had smaller diameters and lower ejecta mobility and lobateness, indicating only a minimal component of surface ejecta flow. Ejecta grain size trends varied with crater diameter, from which the presence of vertical compositional stratigraphy in Chryse Planitia is inferred and interpreted. Our observations are synthesized into a number of plausible geologic scenarios for Chryse Planitia.

  9. Latitudinal variation of wind erosion of crater ejecta deposits on Mars

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Coradini, M.; Carusi, A.; Coradini, A.; Fulchignoni, M.; Federico, C.; Funiciello, R.; Salomone, M.

    1976-01-01

    The characteristics of wind erosion as the dominant process involved in eroding crater ejecta deposits on Mars are studied. Present-day crater formation in mid to high latitudes involves impact into some thickness of aeolian debris, while impact in the equatorial zone is more likely to involve target materials consisting of coarse-grained aeolian lag deposits or even bedrock. Latitudinal variation dominates differences in ejecta emplacement mechanisms and probably differences in patterns of wind erosion of ejecta and surrounding intercrater materials. Escarpments develop as the deposits are eroded back toward crater rims. Erosion only takes places at escarpment edges where surface roughness may be low enough to allow particle entrainment. Preferential preservation of ejecta emplaced in thick debris may occur. An empirical model developed for wind erosion of ejecta deposits in nonmantled areas suggests that removal of ejecta materials on the average is exceedingly slow. Results suggest high differential aeolian erosion rates that are a function of both grain sizes and large-scale surface roughness.

  10. Flow-ejecta Crater in Icaria Planum - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Global Surveyor Orbiter Camera (MOC) acquired this high resolution image of a flow ejecta crater on November 19, 1997, at 8:26 PM PST, about 18 minutes after the start the 45th orbit of Mars. The area shown is roughly 6.5 by 40.2 kilometers (4 by 25 miles), and is located near 40 degrees South latitude, 120 degrees West longitude. Features as small as 15-18 m (50-60 feet) across are visible in the picture.

    Flow ejecta craters are so named because the material blasted out of the crater during the impact process appears to have flowed across the surface of Mars. First seen in Mariner 9 images in 1973, and described in detail using Viking Orbiter images acquired in 1976-78, flow-ejecta craters are considered by many scientists to be evidence that liquid water could be found in the near-subsurface at the time the craters formed. This image, a factor of two better than any previous view of such features (and a factor of 33 better than the best Viking frame of the specific crater, 056A61), shows two smaller, pre-existing craters and the interaction of the flowing ejecta with these craters. The uppermost small crater has been over-topped and partly buried by the flow, while the flow has been diverted around the lower crater. Ridges formed where the flow 'stacked up' behind obstacles, or came to rest.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  11. Ejecta emplacement and modes of formation of Martian fluidized ejecta craters

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.

    1981-01-01

    From an analysis of 1173 craters possessing single (type 1) and double (type 2) concentric ejecta deposits, type 2 craters are found to occur most frequently in areas that have also been described as possessing periglacial features. The frequency of occurrence of central peaks and wall failure (terraces plus scallops) within the craters indicates that, by analogy with previous analyses, type 1 craters form in more fragmental targets than type 2 craters. The maximum range of the outer ejecta deposits of type 2 craters, however, consistently extends about 0.8 crater radii further than ejecta deposits of type 1 craters, suggesting a greater degree of ejecta fluidization for the twin-lobed type 2 craters. Numerous characteristics of Ries Crater, West Germany, show similarities to craters on Mars, indicating that Martian fluidized ejecta craters may be closer analogs to this terrestrial crater than are lunar craters.

  12. Ejecta modeling in the FLAG hydrocode

    NASA Astrophysics Data System (ADS)

    Fung, Jimmy; Harrison, Alan

    2011-11-01

    We present the development of an ejecta model in the FLAG code. Ejecta is the term given to particulate matter produced at the free surface of a material subject to extreme shock loading. Modeling ejecta in a continuum hydrodynamics code challenges assumptions underlying the numerical approximations made in the hydrodynamics; the representative scales for the particulates are much smaller than the scales for the bulk material producing the ejecta. The FLAG hydrocode models continuum mechanics in an Arbitrary-Eulerian-Lagrangian framework. To model ejecta in FLAG, a hybrid particle-mesh representation was defined that allows for coupling with continuum materials. Numerical models were developed and implemented for particle production and integrating the particle equations of motion, while conserving mass, momentum and energy. This work documents advances in source and transport modeling, calibration and validation. Spatial and temporal dependencies have been added to the source models to account for free-surface geometry, mesh dependence, and shock loading. Physically relevant drag models have been implemented. These will be presented along with calibration results.

  13. The interaction of core-collapse supernova ejecta with a companion star

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Tauris, T. M.; Röpke, F. K.; Moriya, T. J.; Kruckow, M.; Stancliffe, R. J.; Izzard, R. G.

    2015-12-01

    Context. The progenitors of many core-collapse supernovae (CCSNe) are expected to be in binary systems. After the SN explosion in a binary, the companion star may suffer from mass stripping and be shock heated as a result of the impact of the SN ejecta. If the binary system is disrupted by the SN explosion, the companion star is ejected as a runaway star, and in some cases as a hypervelocity star. Aims: By performing a series of three-dimensional (3D) hydrodynamical simulations of the collision of SN ejecta with the companion star, we investigate how CCSN explosions affect their binary companion. Methods: We use the BEC stellar evolution code to construct the detailed companion structure at the moment of SN explosion. The impact of the SN blast wave on the companion star is followed by means of 3D smoothed particle hydrodynamics (SPH) simulations using the Stellar GADGET code. Results: For main-sequence (MS) companion stars, we find that the amount of removed stellar mass, the resulting impact velocity, and the chemical contamination of the companion that results from the impact of the SN ejecta strongly increases with decreasing binary separation and increasing explosion energy. Their relationship can be approximately fitted by power laws, which is consistent with the results obtained from impact simulations of Type Ia SNe. However, we find that the impact velocity is sensitive to the momentum profile of the outer SN ejecta and, in fact, may decrease with increasing ejecta mass, depending on the modeling of the ejecta. Because most companion stars to Type Ib/c CCSNe are in their MS phase at the moment of the explosion, combined with the strongly decaying impact effects with increasing binary separation, we argue that the majority of these SNe lead to inefficient mass stripping and shock heating of the companion star following the impact of the ejecta. Conclusions: Our simulations show that the impact effects of Type Ib/c SN ejecta on the structure of MS companion

  14. Numerical modeling of the ejecta distribution and formation of the Orientale basin on the Moon

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Hua; Wünnemann, Kai; Potter, Ross W. K.

    2015-12-01

    The formation and structure of the Orientale basin on the Moon has been extensively studied in the past; however, estimates of its transient crater size, excavated volume and depth, and ejecta distribution remain uncertain. Here we present a new numerical model to reinvestigate the formation and structure of Orientale basin and better constrain impact parameters such as impactor size and velocity. Unlike previous models, the observed ejecta distribution and ejecta thickness were used as the primary constraints to estimate transient crater size—the best measure of impact energy. Models were also compared to basin morphology and morphometry, and subsurface structures derived from high-resolution remote sensing observations and gravity data, respectively. The best fit model suggests a 100 km diameter impactor with a velocity of ~12 km s-1 formed the Orientale basin on a relatively "cold" Moon. In this impact scenario the transient crater diameter is ~400 km or 460 km depending on whether the crater is defined using the diameter of the excavation zone or the diameter of the growing cavity at the time of maximum crater volume, respectively. The volume of ejecta material is ~4.70 × 106 km3, in agreement with recent estimates of the Orientale ejecta blanket thickness from remote sensing studies. The model also confirms the remote sensing spectroscopic observations that no mantle material was excavated and deposited at Orientale's rim.

  15. Effects of ejecta accumulation on the crater population of asteroid 433 Eros

    NASA Astrophysics Data System (ADS)

    Blitz, C.; Lognonné, P.; Komatitsch, D.; Baratoux, D.

    2009-06-01

    The crater population of asteroid 433 Eros exhibits a deficit in small crater diameters that has been suggested to result from impact-induced seismic shaking initiating downslope movements of regolith material, covering these small craters. As in lunar maria, saturation equilibrium was expected to characterize the crater population of Eros, but was surprisingly not shown by the data set. The surface of Eros displays evidence of burial by regolith especially for boulders, suggesting that ejecta coverage erases the craters in addition to seismic shaking erasure. In this work we investigate the production and erasure of craters by impact ejecta and compare derived crater size distributions with those measured for Eros. We simulate a bombardment of Eros by an impactor population derived from the Main Asteroid Belt and estimate the crater and ejecta characteristics with a scaling law, allowing ejecta to progressively create a regolith blanket. Assuming the contribution of the ejecta blanketing process only, we find a good agreement between the simulated and the observed population of 250 m to 4 km diameter craters for exposure times of 600 Ma and 400 Ma. This suggests a major impact or breakup that occurred about 500 Ma ago, inducing a surface reset. A mismatch for craters with a diameter smaller than ˜100 m remains, indicating that seismic shaking (or another erasure process) is still necessary to explain their low number. Our simulations emphasize the importance of an accurate modeling of both processes to fully understand and interpret the small body size-frequency crater curves.

  16. Martian rampart crater ejecta - Experiments and analysis of melt-water interaction

    NASA Technical Reports Server (NTRS)

    Wohletz, K. H.; Sheridan, M. F.

    1983-01-01

    The possible effects of explosive water vaporization on ejecta emplacement after impact into a wet target are described. A general model is formulated from analysis of Viking imagery of Mars and experimental vapor explosions as well as consideration of fluidized particulate transport and lobate volcanic deposits. The discussed model contends that as target water content increases, the effects of vapor expansion due to impact increasingly modify the ballistic flow field during crater excavation. This modification results in transport by gravity-driven surface flowage, and is similar to that of atmospheric drag effects on ejecta modelled by Schultz and Gault (1979).

  17. Kinematical analysis of the ejecta created after a catastrophic collision

    NASA Astrophysics Data System (ADS)

    Dell'Oro, A.; Cellino, A.; Paolicchi, P.; Tanga, P.

    2014-07-01

    avoid huge computations, whenever one is interested in the general properties of the process, and not in the details? In this preliminary analysis, we have studied a pair of ejecta fields produced by old SPH computations (Michel et al., 2001). The most surprising and significant indication is that, at least in these cases, about 20 % of the original ejecta appear to have initially crossing trajectories forcing them to have necessarily mutual impacts, without any role played by the mutual gravity. This property marks a significant difference with respect to the ''simple'' models, usually allowing collisions only as a consequence of the gravity, and might be important to shape the reaccumulation properties. It has to be noted that this property is not resolution-independent (in principle, for a given total volume of the ejecta, a larger number of smaller ejecta with similar kinematical properties should entail a larger collision probability). We also discuss the possibility of identifying in these ejection fields an analogue of the ''irradiation point'' usually defined in the semiempirical models.

  18. Resolving Eta Carinae and It's Ejecta

    NASA Technical Reports Server (NTRS)

    Gull Theodore R.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Imaging spectroscopy of Eta Carinae and the Homunculus has led to considerable new insight on the excitation mechanisms, the elemental abundances, and the physical properties of ejecta from Eta Carinae. With HST/STIS we have been able to resolve the central source into many substructures.

  19. Condensation of dust in supernova ejecta

    NASA Astrophysics Data System (ADS)

    Sarangi, A.; Cherchneff, I.

    Observations in the infrared and submm indicate the presence of molecules and dust in the ejecta of type II-P supernovae. The mass of dust formed in the ejecta of supernovae is still uncertain and highly debated: Infrared observations indicate smaller dust masses (10-5 to 10-3 M ) before 500 days post-explosion, compared to submm observations with Herschel revealing supernova remnants as large reservoirs of cool dust (10-2 to 0.7 M ). We study the ejecta of a typical type II-P supernova with a chemical kinetic approach considering a 15 M progenitor as a benchmark. The synthesis of molecules (e.g., CO, SiO, O2, AlO, SiS, FeS, SiC, SO) and small clusters (e.g., silicates, carbon, metal oxides, metallic clusters etc.) in the gas phase is considered. The clusters form gradually over time in different ejecta zones, small dust masses form in the first 600 days (˜ 10-4 M ), that gradually increase up to ˜ 0.1 M at 1500 days post-explosion. The small clusters condense to form dust grains in the gas phase. The size distributions of different dust components are derived from the study.

  20. Self-Secondary Crater Populations on Copernican Continuous Ejecta Blankets

    NASA Astrophysics Data System (ADS)

    Zanetti, M.; Jolliff, B.; van der Bogert, C. H.; Hiesinger, H.; Plescia, J.; Artemieva, N.

    2016-05-01

    Self-secondary craters (a population of craters formed on continuous ejecta deposits by fragments from the parent crater) may account for melt/ejecta CSFD discrepancies, and may imply inner Solar System cratering flux estimates are overestimated.

  1. Lunar Basin Ejecta Emplacement: Evidence from Schiller-Schickard

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Hawke, B. R.

    1993-07-01

    Basin-forming impacts have played a major role in the geologic history of the Moon, serving to modify and redistribute crustal materials. The Orientale basin has become the model for understanding lunar basin structure [e.g., 1]. Orientale can also provide information on a key aspect of basin formation: the nature of the processes occurring during the emplacement of basin ejecta. In the Schiller-Schickard (SS) region, roughly 1300 km from the basin center, Orientale ejecta has interacted with pre- existing mare basalt [2]. This interaction produced a light plains deposit of the type sometimes referred to as a cryptomare. The amount of mare basalt in the light plains is an expression of the extent of "local mixing," i.e., the degree to which the substrate is disrupted by the impacting ejecta and incorporated into the resulting deposit. The SS region presents an opportunity to test the Oberbeck model of ejecta emplacement [3] because of the presence of a spectrally distinct substrate (mare basalt). Near-infrared (0.6-2.5 micrometer) reflectance spectra for a variety of features in the SS region have been collected with Univ. of Hawaii telescopes and analyzed to extract compositional information from the characteristics of the "1 micrometer" mafic mineral absorption band [4]. Further insight into a multivariate data set such as these spectra can be obtained through application of principal components analysis (PCA) [5]. The mapping of the spectra into PC space aids in the identification of spectral endmembers and reveals mixing trends. Four endmembers identified in the group of SS spectra are (1) mature highlands surfaces, (2) fresh highlands surfaces, (3) mature mare surfaces, and (4) fresh mare surfaces. Spectra for light plains deposits and mare surfaces with highlands contamination fall between these endmembers in PC space. Mixing models based on PCA enable the contribution of each endmember to the mixture spectra to be quantified. Preliminary results indicate

  2. Dynamical Behavior of Ejecta Produced by the Proposed ISIS Kinetic Impactor Demonstration

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene G.; Chesley, Steven R.; Farnocchia, Davide

    2014-05-01

    Impactor for Surface and Interior Science (ISIS) is a proposed mission of opportunity that would demonstrate and test kinetic impact (KI) for orbit modification of a hypothetical NEO to reduce its Earth impact probability. Unlike Deep Impact, this test entails measuring ΔV imparted to a far smaller asteroidal target body (Bennu) using another spacecraft in rendezvous with that body both before and after the KI event (OSIRIX-REx). To quantify any hazard to OSIRIS-REx from collision with liberated ejecta, we perform detailed study of the ejecta's dynamical behavior. For KI event energy matching a 440 kg impactor at 13.43 km/s closing velocity, we model crater formation and ejecta generation consistent with the small net surface acceleration in the targeted equatorial region of the sunlit hemisphere at the February 2021 impact epoch, and reasonable material strength for such a low-density rubble-pile. A crater ≈25 m in diameter is excavated over several minutes, liberating several thousand metric tons of material, with maximum velocity ≈34 m/s. We propagate ejecta under all relevant dynamical effects, including shape-model-derived full body gravity, differential solar tide acceleration, and solar radiation pressure (SRP) accounting for realistic particle size-frequency distribution, optical properties, and shadowing. We present the proportion of particles reaching the dynamical fates of return impact or exit from the region of importance to OSIRIS-REx operations, vs. time. We show where the re-accreted ejecta deposits on the surface, and the size-frequency distribution of the population remaining at 1, 5, 10, etc. days post-impact. We find clearing times from the system are nonlinearly dependent on particle size as expected, especially for low-velocity ejecta which stream away anti-sunward under the action of SRP within a paraboloid zone. Higher-velocity ejecta persist for longer durations within a sunward extension of the original ejecta cone. We visualize

  3. Detection of Crater Ejecta in Venus Tessera Terrain using Magellan SAR Data

    NASA Astrophysics Data System (ADS)

    Whitten, J. L.; Campbell, B. A.

    2015-12-01

    Tesserae, areas of high radar backscatter with a highly deformed morphology, are hypothesized to be some of the oldest materials on the surface of Venus, while parabolic crater ejecta deposits are some of the youngest geologic features. Recently, Earth-based radar data were used to make the first detailed maps of crater ejecta deposits within tessera terrains, such as Alpha Regio. In this work, we analyze tesserae using Magellan radar image data based on this new understanding of surface properties, with the goal of extending the technique for identifying crater deposits beyond the coverage of the Earth-based data. Our goals are to define stratigraphic relationships, determine whether there is a non-uniform distribution of crater ejecta within the tesserae, and identify uncontaminated tessera regions as possible future landing sites. We first present detections of ejecta in tesserae from Magellan images of craters also observed in the Earth-based data, then show several tessera regions that have only Magellan coverage but apparently similar surface mantling deposits. Tellus Tessera contains a concentration of low radar backscatter surfaces, in its center and southwest, interpreted as fine-grained ejecta deposits from Bernhardt crater. At Sudenitsa Tessera, located on the northern edge of the Beta-Atla-Themis region, several low backscatter tessera areas occur that are not associated with any obvious impact crater. This suggests that the low-backscatter ejecta were sourced from a crater that was resurfaced in the recent (likely less than 50-100 Ma) past. From these analyses it is evident that crater parabola deposits are non-uniformly distributed in tesserae, and future landing site selection will need to account for the presence of these deposits. Fine-grained deposits in the tesserae may also preserve evidence of ejecta after the parent crater is buried by plains-forming lavas.

  4. Properties of Ejecta Generated at High-Velocity Perforation of Thin Bumpers made from Different Constructional Materials

    NASA Astrophysics Data System (ADS)

    Myagkov, N. N.; Shumikhin, T. A.; Bezrukov, L. N.

    2013-08-01

    The series of impact experiments were performed to study the properties of ejecta generated at high-velocity perforation of thin bumpers. The bumpers were aluminum plates, fiber-glass plastic plates, and meshes weaved of steel wire. The projectiles were 6.35 mm diameter aluminum spheres. The impact velocities ranged from 1.95 to 3.52 km/s. In the experiments the ejecta particles were captured with low-density foam collectors or registered with the use of aluminum foils. The processing of the experimental results allowed us to estimate the total masses, spatial and size distributions, and perforating abilities of the ejecta produced from these different bumpers. As applied to the problem of reducing the near-Earth space pollution caused by the ejecta, the results obtained argue against the use of aluminum plates as first (outer) bumper in spacecraft shield protection.

  5. Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Tai Udovicic, C. J.; Campbell, B. A.

    2016-07-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages >3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  6. A new model of the lunar ejecta cloud: implications for in situ dust measurements

    NASA Astrophysics Data System (ADS)

    Christou, A. A.

    2015-10-01

    We apply a recent model of the cloud of ballistic impact ejecta surrounding an airless body [1] to the lunar case. For power-law-distributed ejection speeds [2, 3, 4], we identify regimes where the height and the speed distribution of ejecta are approximately power- law functions that directly depend on the exponent of the ejection law. Likewise, key features of the distribution of a particle's speed with respect to an orbiting spacecraft depend sensitively on the ejection zenith angle. Measurements at those regimes can therefore constrain the ejection physics.

  7. Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta.

    PubMed

    Nayak, M; Asphaug, E

    2016-01-01

    The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties. PMID:27575002

  8. Variation in ejecta size with ejection velocity

    NASA Technical Reports Server (NTRS)

    Vickery, Ann M.

    1987-01-01

    The sizes and ranges of over 25,000 secondary craters around twelve large primaries on three different planets were measured and used to infer the size-velocity distribution of that portion of the primary crater ejecta that produced the secondaries. The ballistic equation for spherical bodies was used to convert the ranges to velocities, and the velocities and crater sizes were used in the appropriate Schmidt-Holsapple scaling relation of estimate ejecta sizes, and the velocity exponent was determined. The latter are generally between -1 and -13, with an average value of about -1.9. Problems with data collection made it impossible to determine a simple, unique relation between size and velocity.

  9. (U-Th)/He Zircon Dating of Chesapeake Bay Ejecta; Ocean Drilling Program Site 1073A

    NASA Astrophysics Data System (ADS)

    Biren, M. B.; van Soest, M. C.; Wartho, J.-A.; Hodges, K. V.; Glass, B. P.; Koeberl, C.; Hale, W.

    2014-09-01

    Results from our (U-Th)/He zircon dating of distal ejecta associated with the 40 km diameter Chesapeake Bay impact structure of Virginia, are in excellent agreement with previous K-Ar and Ar-Ar dating studies of the North American tektites.

  10. 40Ar/39Ar age of the Manson impact structure, Iowa, and correlative impact ejecta in the Crow Creek member of the Pierre Shale (Upper Cretaceous), South Dakota and Nebraska

    USGS Publications Warehouse

    Izett, G.A.; Cobban, W.A.; Dalrymple, G.B.; Obradovich, J.D.

    1998-01-01

    A set of 34 laser total-fusion 40Ar/39Ar analyses of sanidine from a melt layer in crater-fill deposits of the Manson impact structure in Iowa has a weighted-mean age of 74.1 ?? 0.1 Ma. This age is about 9.0 m.y. older than 40Ar/39Ar ages of shocked microcline from the Manson impact structure reported previously by others. The 74.1 Ma age of the sanidine, which is a melt product of Precambrian microcline clasts, indicates that the Manson impact structure played no part in the Cretaceous-Tertiary (K-T) mass extinction at 64.5 Ma. Moreover, incremental-heating 40Ar/39Ar ages of the sanidine show that it is essentially free of excess 40Ar and has not been influenced by postcrystallization heating or alteration. An age spectrum of the matrix of the melt layer shows effects of 39Ar recoil, including older ages in the low-temperature increments and younger ages in the high-temperature increments. At 17 places in eastern South Dakota and Nebraska, shocked quartz and feldspar grains are concentrated in the lower part of the Crow Creek Member of the Pierre Shale (Upper Cretaceous). The grains are largest (3.2 mm) in southeastern South Dakota and decrease in size (0.45 mm) to the northwest, consistent with the idea that the Manson impact structure was their source. The ubiquitous presence of shocked grains concentrated in a thin calcarenite at the base of the Crow Creek Member suggests it is an event bed recording an instant of geologic time. Ammonites below and above the Crow Creek Member limit its age to the zone of Didymoceras nebrascense of earliest late Campanian age. Plagioclase from a bentonite bed in this zone in Colorado has a 40Ar/39Ar age of 74.1 ?? 0.1 Ma commensurate with our sanidine age of 74.1 Ma for the Manson impact structure. 40Ar/39Ar ages of bentonite beds below and above the Crow Creek are consistent with our 74.1 ?? 0.1 Ma age for the Manson impact structure and limit its age to the interval ?? 74.5 0.1 to 73.8 ?? 0.1 Ma. Recently, two origins for the

  11. An Investigation of Regolith Cover on Ejecta Blocks: Implications for Regolith Development

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Bandfield, J. L.; Carter, L. M.; Campbell, B. A.; Allen, C.; Hayne, P. O.; Paige, D. A.

    2011-12-01

    We present an investigation of the thickness of regolith covering lunar impact ejecta using LRO Diviner thermal infrared and both Earth-based and orbital radar observations. Blocky continuous ejecta associated with fresh impact craters show elevated values of radar circular polarization ratio (CPR) in observations acquired at a range of wavelengths. By contrast, many of these craters lack a corresponding enhancement in either calculated rock concentration or rock-free regolith temperature derived from Diviner observations, rendering their ejecta blankets thermally indistinguishable from the background regolith. The radar datasets are sensitive to rocks larger than ~1/10 the wavelength both on the surface and within the upper ~10 wavelengths of regolith, whereas the low-density, low-thermal conductivity upper regolith materials effectively shield rocks from Diviner at thicknesses on the mm- to cm-scale. Therefore, we interpret our observations as evidence that many craters' ejecta are covered by thermally insulating regolith material. In this work, we seek to constrain the thickness of this cover using Earth-based radar observations at 70-cm and 12.6-cm wavelengths, LRO Mini-RF radar observations at 12.6-cm wavelength, Diviner observations, and the results of one-dimensional analytical thermal models. As endmember cases, we investigate both mare and highlands craters whose ejecta are completely thermally insulated, and craters with exposed ejecta blocks, the latter of which show enhancements in calculated rock abundance and soil temperature that are broadly consistent with radar CPR enhancements. We also examine intermediate examples, for which enhancements in rock abundance and regolith temperature exist but are spatially limited relative to the regions of elevated radar CPR. The results of this work shed light on the mechanism(s) and rate of lunar regolith development.

  12. A new model of the lunar ejecta cloud

    NASA Astrophysics Data System (ADS)

    Christou, A. A.

    2014-04-01

    Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such "dust exospheres" have been observed around the Galilean satellites of Jupiter [2, 3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the recent investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.

  13. Fragment size-ejection speed correlation in impactor-ejecta processes

    NASA Astrophysics Data System (ADS)

    Sachse, M.

    2014-04-01

    Ejecta created in high velocity impacts (v > 10 km s ) of micro-meteoroids on atmosphereless cosmic bodies is an efficient source for interplanetary dust. The impact erodes the target surface and releases material into space. The ejecta are typically micron-sized and populate a dust cloud whose number density decreases with increasing distance from the target. Unbound particles escape and add to the planetary dust environment. However, even mesoscopic particles (R > 100 μm) can severely damage manmade space hardware as they have high kinetic energies when they encounter spacecraft with high relative velocities. Here we investigate the influence of a correlation between the fragment size R and the ejection speed u in the form stating that larger fragments are (in average) launched with slower speeds as suggested by theoretical considerations and impact experiments (Melosh, 1984; Miljkovíc et al., 2012). We found that such a correlation constitutes a dynamical filter which removes large ejecta from high altitudes. For large moons they are always bound and restricted to regions close to the target surface. The effect is stronger for bigger ejecta and for more massive target bodies. Our results show that the risk to encounter dangerous particles during close flybys around large moons is lower than expected from the uncorrelated model of Krivov et al. (2003). Further changes due to strong planetary magnetic fields at the other end of the size range are discussed.

  14. Dynamics of ejecta from the binary asteroid Didymos, the target of the AIDA mission

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Yu, Yang; Schwartz, Stephen; Naidu, Shantanu; Benner, Lance

    2016-04-01

    The AIDA space mission, a collaborative effort between ESA and NASA, aims to characterize the near-Earth asteroid binary (65803) Didymos and to perform a kinetic impactor demonstration on the small moon of the binary system. Our study presents a multi-scale dynamical model of the ejecta cloud produced by a hypervelocity impact, which enables us to compute the ejecta properties at different spatial and time scales. This model is applied to the impact into the small moon of Didymos on October 2022 as considered by the AIDA mission. We model the process by including as much practical information as possible, e.g., the gravitational environment influenced by the non-spherical shapes of the bodies (based on the observed shape of the primary), the solar tides, and the solar radiation pressure. Our simulations show where and for how long the ejecta cloud evolves with time for the considered ejecta initial conditions. This information is used to assess the potential hazard to the ESA Asteroid Impact Mission (AIM) observing spacecraft and to determine the safest positions. This study is performed with support of the European Space Agency and in the framework of the NEOShield-2 project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 640351.

  15. A class of ejecta transport test problems

    SciTech Connect

    Hammerberg, James E; Buttler, William T; Oro, David M; Rousculp, Christopher L; Morris, Christopher; Mariam, Fesseha G

    2011-01-31

    Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function ofparticulate masses and velocities, f{sub 0}(m, v;t). Some of the properties of this source distribution function have been determined from extensive Taylor and supported wave experiments on shock loaded Sn interfaces of varying surface and subsurface morphology. Such experiments measure the mass moment of f{sub o} under vacuum conditions assuming weak particle-particle interaction and, usually, fully inelastic capture by piezo-electric diagnostic probes. Recently, planar Sn experiments in He, Ar, and Kr gas atmospheres have been carried out to provide transport data both for machined surfaces and for coated surfaces. A hydro code model of ejecta transport usually specifies a criterion for the instantaneous temporal appearance of ejecta with source distribution f{sub 0}(m, v;t{sub 0}). Under the further assumption of separability, f{sub 0}(m,v;t{sub 0}) = f{sub 1}(m)f{sub 2}(v), the motion of particles under the influence of gas dynamic forces is calculated. For the situation of non-interacting particulates, interacting with a gas via drag forces, with the assumption of separability and simplified approximations to the Reynolds number dependence of the drag coefficient, the dynamical equation for the time evolution of the distribution function, f(r,v,m;t), can be resolved as a one-dimensional integral which can be compared to a direct hydro simulation as a test problem. Such solutions can also be used for preliminary analysis of experimental data. We report solutions for several shape dependent drag coefficients and analyze the results of recent planar dsh experiments in Ar and Xe.

  16. Small-body deflection techniques using spacecraft: Techniques in simulating the fate of ejecta

    NASA Astrophysics Data System (ADS)

    Schwartz, Stephen R.; Yu, Yang; Michel, Patrick; Jutzi, Martin

    2016-04-01

    We define a set of procedures to numerically study the fate of ejecta produced by the impact of an artificial projectile with the aim of deflecting an asteroid. Here we develop a simplified, idealized model of impact conditions that can be adapted to fit the details of specific deflection-test scenarios, such as what is being proposed for the AIDA project. Ongoing studies based upon the methodology described here can be used to inform observational strategies and safety conditions for an observing spacecraft. To account for ejecta evolution, the numerical strategies we are employing are varied and include a large N-Body component, a smoothed-particle hydrodynamics (SPH) component, and an application of impactor scaling laws. Simulations that use SPH-derived initial conditions show high-speed ejecta escaping at low angles of inclination, and very slowly moving ejecta lofting off the surface at higher inclination angles, some of which reimpacts the small-body surface. We are currently investigating the realism of this and other models' behaviors. Next steps will include the addition of solar perturbations to the model and applying the protocol developed here directly to specific potential mission concepts such as the proposed AIDA scenario.

  17. Evidence for hydrothermal alteration in the Hellas ejecta

    NASA Astrophysics Data System (ADS)

    Noe Dobrea, E. Z.; Swayze, G. A.

    2011-12-01

    We have analyzed data from MRO/CRISM, HiRISE, and CTX to study the massifs in the NW Hellas region. The Hellas basin is thought to have formed during the late heavy bombardment [Acuña et al. 1999] as a consequence of a massive impact. The impact not only excavated rocks from the deep stratigraphy, but it also deposited enough energy into the ejecta to support hydrothermal conditions [Newsom 1980]. Spectral observations of the mineralogy of the martian highlands north of Hellas suggest that the region was experiencing aqueous activity during that era [Pelkey et al. 2007]. Therefore, spectroscopic studies of the well-preserved massifs that form the rim and ejecta in northwest Hellas have the potential to reveal zones of hydrothermal alteration. Additionally, studies of the deep crustal rocks excavated as part of the ejecta are of particular relevance in light of recent discoveries of carbonate-bearing rocks exposed in complex craters on Mars [Michalski and Niles 2010; Wray et al. 2011]. Our analyses reveal outcrops in the massifs where evidence for products of hydrothermal alteration are observed. In particular, we find evidence for smectites, prehnite, chlorite, and illite exposed in these outcrops (Fig 1). The spectra of these altered units also exhibit a strong, broad concave-up absorption in the 1-1.5 μm region, consistent with the presence of Fe2+ in olivine, suggesting that only partial alteration has occurred. The mineralogy of hydrothermal alteration products is a function of the original composition of the host rock; the temperature, chemistry, and pH of the water; and the overburden pressure [DeRudder and. Beck 1963; Morris et al. 2001; 2003; Brown et al. 2010; Inoue et al. 2010]. On Earth, prehnite can form via low-grade metamorphism, where it occurs as part of the prehnite-pumpellyite metamorphic facies [Blatt and Tracy 1995], or as a product of the low-temperature (100-350°C) hydrothermal alteration of mafic rocks [Freedman et al. 2009; Marks et al

  18. Ejecta patterns diagnostic of planetary rotations

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    1981-08-01

    A new scheme for determining a body's rotational history from the geological record is presented. Trajectories of ejecta on a rotating object are affected by the Coriolis effect in a manner characteristic of the direction and speed of the object's spin. This information is registered on the surface in the form of debris deposits and ray patterns, and can be interpreted by comparing photographs of the planet's surface with specified paradigms. This approach has the advantage of being independent of the body's internal structure and of relating its rotational history directly to its cratering chronology. This approach could be used, for example, to date the despinning of Mercury relative to its latest bombardment.

  19. Eta Carinae and Its Ejecta, the Homunculus

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2014-01-01

    Eta Carinae (Eta Car), its interacting winds and historical ejecta provide an unique astrophysical laboratory that permits addressing a multitude of questions ranging from stellar evolution, colliding winds, chemical enrichment, nebular excitation to the formation of molecules and dust. Every 5.54 years, Eta Car changes from high excitation to several-months-long low excitation caused by modulation of the massive interacting winds due to a very eccentric binary orbit. The surrounding Homunculus (Figure 1) and Little Homunculus, thrown out in the 1840s Great Eruption and the 1890s Lesser Eruption, respond to the changing flux, providing clues to many physical phenomena of great interest to astrophysicists.

  20. Tyrrhena Terra: hydrated lobates ejecta and plains, as seen by OMEGA/MEx

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Bouley, S.; Mangold, N.; Meresse, S.; Costard, F.; Poulet, F.; Ansan, V.; Le Mouelic, S.; Bibring, J.-P.; Gondet, B.

    2009-04-01

    networks located on the higher plateaus, or plains cut by valleys. Their typical size is 10 to 20 km x 50 to 100 km. Most of them are located be-tween 1 km and 1.5 km in altitude. Here also, pyroxene is identified with OMEGA on every hydrated plain, but OMEGA does not detect olivine on the same outcrops. These detections suggest a partial alteration of rocks in Tyrrhena Terra, or a spatial mixing of hydrated and unal-tered materials (for example a pyroxene-rich cap over a hydrated unit, or an intricate mixing of altered and unaltered materials). Two hypotheses can be drawn at this stage for the origin of the hydrated minerals restricted to the ejecta blan-kets: (1) formation of phyllosilicates and hydrated silicate minerals resulting from impact associated processes; (2) excavation of hydrated materials buried before the impact [3]. The study of hydrated minerals in ejecta can also be important concerning the implication of volatiles for the lo-bate ejecta. The studied region is located in Noachian terrains, but most craters are not of Noachian age. They are surrounded by fresh ejecta without high erosion and relative low density of craters. This shows that, if formed by hydrothermal alteration during the impact, the hydrated minerals would be recent, while an excavation would limit the age of the alteration to the age of the terrain, i.e. Noachian. In addition, the observed alteration is located on the ejecta blankets, while hydrothermal models due to the impact predict alteration in the crater center, but do not find alteration possible on distal ejecta. The observation of the hydrated minerals in alluvial plains suggests that this material was collected material from the highlands or formed in situ by weathering [9]. The observation at high spatial resolution of hydrated minerals inside the valley flanks, upstream from the alluvial plains, is crucial to understand the location and time of alteration, and would constrain the process of alteration of the ejecta blankets

  1. The Fate of Ejecta from Hyperion

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Ejecta from Saturn's moon Hyperion is subject to powerful perturbations from nearby Titan, which control its ultimate fate. We have performed numerical integrations to simulate a simplified system consisting of Saturn (including oblateness), Tethys, Dione, Titan, Hyperion, Iapetus, and the Sun (treated simply as a massive satellite). In addition, 1050 massless particles were ejected from Hyperion at five different points in its orbit. These particles started more or less evenly distributed over latitude and longitude, 1 km above Hyperion's mean radius, and were ejected radially outward at speeds 10\\% faster than its escape speed. Only about 4\\% of the particles survived for the 100,000-year course of the integration, while $\\sim$8/% escaped from the Saturnian system. Titan accreted $\\sim$77\\% of all the particles, while Hyperion reaccreted only $\\sim$5\\%. This may help to account for Hyperion's rugged shape. Three particles hit Rhea and 2 hit Dione, but $\\sim$5\\% of the particles were removed when they penetrated within 150,000 km of Saturn. Most removals occurred within the first few thousand years. In general, ejecta from Hyperion are much more widely scattered than previously thought, and cross the orbits of all of the other classical satellites.

  2. Spectropolarimetric signatures of clumpy supernova ejecta

    NASA Astrophysics Data System (ADS)

    Hole, Karen Tabetha

    Polarization has been detected at early times for all types of supernova, indicating that all such systems result from or quickly develop some form of asymmetry. In addition, the detection of strong line polarization in supernovae is suggestive of chemical inhomogeneities ("clumps") in the layers above the photosphere, which may reflect hydrodynamical instabilities during the explosion. We have developed a fast, flexible, approximate semi-analytic code for modeling polarized line radiative transfer within 3-D inhomogeneous rapidly-expanding atmospheres. Given a range of model parameters, the code randomly generates sets of clumps in the expanding ejecta and calculates the emergent line profile and Stokes parameters for each configuration. The ensemble of these configurations represents both the effects of various host geometries and of different viewing angles. We present results for the first part of our survey of model geometries, specifically the effects of the number and size of clumps (and the related effect of filling factor) on the emergent spectrum and Stokes parameters. We have also developed a method to connect the results of our simulations to robust observational parameters such as maximum degree of polarization and polarized flux throughout the line. Our models, in connection with spectropolarimetric observations, can constrain the 3- D structure of supernova ejecta and offer important insight into the SN explosion physics and the nature of their progenitor system.

  3. Particulate distribution function evolution for ejecta transport

    SciTech Connect

    Hammerberg, James Edward; Plohr, Bradley J

    2010-01-01

    The time evolution of the ejecta distribution function in a gas is discussed in the context of the recent experiments of W. Buttler and M. Zellner for well characterized Sn surfaces. Evolution equations are derived for the particulate distribution function when the dominant gas-particle interaction in is particulate drag. In the approximation of separability of the distribution function in velocity and size, the solution for the time dependent distribution function is a Fredholm integral equation of the first kind whose kernel is expressible in terms of the vacuum time dependent velocity distribution function measured with piezo probes or Asay foils. The solution of this equation in principle gives the size distribution function. We discuss the solution of this equation and the results of the Buttler - Zellner experiments. These suggest that correlations in velocity and size are necessary for a complete description of the transport dala. The solutions presented also represent an analytic test problem for the calculated distribution function in ejecta transport implementations.

  4. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-09-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and superluminous supernovae (SNe). We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳10-100 yr. In the rapidly rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Secondly, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (≲10-100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  5. A steady-state model of the lunar ejecta cloud

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos

    2014-05-01

    Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.

  6. Lunar Photometry and Composition of Ejecta Terrains

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. V.; Pugacheva, S. G.; Pinet, P.; Chevrel, S.; Daydou, Y.

    One scientific goal of the AMIE experiment to fly onboard the SMART-1 mission is to investigate, at low polar orbit, the South Pole regions of the Moon. The AMIE camera will observe the surface in nadir direction within a large phase angle interval, thus providing photometric investigation of selected regions, in particular the South Pole- Aitken basin. The view is taken here that information retrieved from the local surface photometric behaviour of the Moon could be used for guiding the remote sensing anal- yses of specific geological targets. In a preliminary investigation, we have compared the Lunar Prospector thorium contents for some regions of the lunar near side with surface roughness estimated by means of the local photometric function. The aver- age structure of the lunar surface consists in a porous upper layer with various small fragments. Reflecting properties of this layer gives the uniform shape of photometric function. The average integrated lunar indicatrix was used as a background photomet- ric model. Taken as a reference, it permits to intercompare in a uniform system the shape of the phase function of different areas located at different longitude and lati- tude on the Moon. If the observed surface is represented by significant fields of ejecta materials, with many fragments of rocks, a shadow-hiding mechanism is involved, showing up at low phase angles. Thus, the fast decrease of the brightness in the phase function curve should reveal the presence of fragments on the surface. The Saari and Shorthill catalog data were used as observed phase functions. Both kinds of photo- metric functions were converted to symmetric form. Then, the difference between the modeled and observed phase functions for phase angle about 18 degree was used as a photometric parameter of the surface roughness. In the areas under study, this pa- rameter (which can vary between 0 and 1) varies from 0.05 (smooth mare surface) to 0.25 (crater Tycho and its ejecta

  7. Ejecta Knot Evolution in Cas A

    NASA Astrophysics Data System (ADS)

    Rutherford, John; Figueroa-Feliciano, E.; Dewey, D.; Trowbridge, S.; Bastien, F.; Sato, K.

    2011-01-01

    Supernova remnants are remarkable laboratories for studying, among other phenomena, explosive nucleosynthesis and plasma dynamics. Time-dependent signatures of such processes can further inform our understanding, and may be found in widely spaced epochs of observation from high spatial and spectral resolution instruments. We investigated the spectral evolution in the X-ray band of the bright ejecta knots in Cassiopeia A over the last decade. Both dispersed and non-dispersed spectra from the Chandra HETG and ACIS instruments were used for this study, helping to better constrain signs of evolution. We present our findings of how such physical properties as the temperature, elemental abundances, velocity, and non-equilibrium ionization age changed over ten years of the several hundred year old remnant's lifetime, along with a careful analysis of the confounding background contamination and model parameter correlations.

  8. Tektites - Volcanic ejecta from the moon

    NASA Technical Reports Server (NTRS)

    Cameron, W. S.; Lowrey, B. E.

    1975-01-01

    The possibility is considered that tektites are lunar volcanic ejecta, and lunar regions are examined from which tektites could be ejected with the necessary velocities and trajectories to reach the earth. The examined regions include areas around the Lunar Transient Phenomena sites near Censorinus, Messier, Messier A, and Taruntius, the area of Mare Foecunditatis near Secchi X, areas near Cauchy and Capella, and the eastern part of Mare Tranquillitatis. Evidence of acidic volcanic activity in these regions is described in detail, including possible calderas, mudflows, and endogenous domes. It is suggested that the moon is still gently degassing and that more violent eruptions of material may still occur on rare occasions. Remotely-sensed evidence of recent lunar internal activity is noted.

  9. Mineral-produced high-pressure striae and clay polish: Key evidence for nonballistic transport of ejecta from Ries crater

    USGS Publications Warehouse

    Chao, E.C.T.

    1976-01-01

    Recently discovered mineral-produced, deeply incised striae and mirror-like polish on broken surfaces of limestone fragments from the sedimentary ejecta of the Ries impact crater of southern Germany are described. The striae and polish were produced under high confining pressures during high-velocity nonballistic transport of the ejecta mass within the time span of the cratering event (measured in terms of seconds). The striae on these fragments were produced by scouring by small mineral grains embedded in the surrounding clay matrix, and the polish was formed under the same condition, by movements of relatively fragment-free clay against the fragment surfaces. The occurrence of these striae and polish is key evidence for estimating the distribution and determining the relative importance of nonballistic and ballistic transport of ejecta from the shallow Ries stony meteorite impact crater.

  10. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-06-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and super-luminous supernovae. We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly-rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳ 10 - 100 yr. In the rapidly-rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Second, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (˜10 - 100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  11. Formation of Radial Features Associated With Martian Double Layer Ejecta (DLE) Craters

    NASA Astrophysics Data System (ADS)

    Harrison, T. N.; Tornabene, L. L.; Osinski, G. R.; Jones, E.

    2013-12-01

    Martian DLE craters display a distinctive pattern of radial grooves typically not observed in association with other fluidized ejecta craters (single layer (SLE) and multi layer (MLE) ejecta). Here we propose that DLEs represent impacts into target material with a volatile content high enough, and a penetration depth shallow enough, to generate a significant base surge, resulting in scouring of ejecta and formation of the radial grooves. SLEs, which are generally smaller in diameter than DLEs, do not typically exhibit these grooves due to either (or a combination of) smaller depths of excavation or lower volatile content of the target material. MLEs on the other hand, which are typically larger in diameter than DLEs, are proposed to form in higher volatile content targets but at deeper penetration depths such that significant base surges are not generated to form radial grooves. Base surges occur on Earth in both nuclear tests and phreatomagmatic volcanic eruptions. From nuclear tests it is known that the radial extent of a base surge falls off as a function of ~1/3 power of the yield of the explosion; for example, the optimum depth for a 1-kiloton burst is 10-15 m. At greater depths, more energy is dissipated in lifting the overburden, and at shallower depths, energy is dissipated into the atmosphere without mixing gases and ejecta at the crater rim. Base surges in alluvium were also found to travel roughly twice as far as explosions of the same energy in basalt due to the larger particle size of basalt causing it to fall out of the plume more quickly, the greater energy required to disaggregate the basalt and the larger amount of noncondensible gas produced from wetter alluvium. Martian Low-Aspect-Ratio Layered Ejecta (LARLE) craters, which are a subset of SLE and DLE craters displaying a thin ejecta deposit extending up to 20 crater radii out from the rim, are confined to regions blanketed by relatively thick mantles of fine-grained material. The regional

  12. Thermomagnetic analysis of meterorites. 4: Ureilites

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.; Larson, E. E.; Watson, D. E.

    1974-01-01

    Samples of all available ureilites have been analyzed thermomagnetically. For three of the six (Dyalpur, Goalpara and Havero) evidence was found for only low-nickel metallic-iron as the magnetic component and the (saturation magnetization vs, temperature) curves were reversible. In the Novo Urei ureilite, magnetite in addition to low-nickel metallic-iron was indicated and again the Js-T curve was reversible. For the two badly weathered ureilites, Dingo Pup Donga and North Haig, indication was also found that both initial magnetite and low-nickel metallic-iron were present. However, the Js-T curves were somewhat irreversible and the final saturation magnetization was 20% and 50% greater than initially for North Haig and Dingo Pup Donga, respectively. This behavior is interpreted to be the result of magnetite production from a secondary iron oxide during the experiment.

  13. Ejecta Curtains and Ground Ice on Mars: Efficiencies of Volatile Release

    NASA Astrophysics Data System (ADS)

    Plesko, C. S.; Asphaug, E.; Gisler, G. R.; Zahnle, K.; Weaver, R. P.; Gittings, M. L.

    2004-12-01

    One of the leading hypotheses that might account for a vigorous hydrologic cycle in the late Hesperian on Mars is that major impact events injected near-surface water into the atmosphere (Segura et al. 2001). In particular, a 50 km diameter impactor is calculated to deposit several meters of "rock rain" globally, potentially triggering the widespread global release of water from ground ice. While the release of volatiles near the impact site is a comparatively simple matter of plotting shock levels as a function of distance, and assuming that target rocks shocked to greater than a given level release all their ice as vapor (Dey, 1989), the potentially greater effect is how efficiently the crater ejecta, which is far more widespread, releases vapor. Near the crater thick sheets of poorly sorted but shock-heated materials plow up the surface at relatively low velocities. Far from the crater the ejecta strike the surface at high velocities but are more thinly spread or confined to discrete patches or jets. Beginning with 1D models, and moving to 2D and eventually 3D models, we examine, using the adaptive-mesh Eulerian hydrocode SAGE (Gisler et al. 2004), the effect of crater ejecta and secondary impacts on the transient volatile budget in the proposed late Hesperian hydrologic cycles. We make use of advanced equations of state, including mixed Alluvium-H20 equation of state in the ice-saturated regolith.

  14. The Inner Ejecta and the Infrared Spectrum of Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Laming, John

    We propose detailed analysis and modeling of the infra-red line emission of Cassiopeia A observed by Spitzer and Herschel to determine the amount and composition of cold ejecta still inside the reverse shock. The mass of Fe in the inner ejecta will be of particular interest, as there is surprisingly no evidence thus far for Fe in the inner ejecta, with Fe ejecta visible only in the outer ejecta as X-ray emission. Recent observations with NuSTAR, however, show 44Ti distributed in the inner regions in a manner not correlated with the X-ray distribution of Fe. We will compute photoionization-equilibrium for the inner ejecta in the radiation field coming from the forward and reverse shocks, together with UV-EUV emission from radiative shocks in ejecta and CSM knots. We will explore the parameter space to understand whether Fe could be "hidden", for example in charge states inaccessible to Spitzer observation, or whether Fe really is truly absent. Our work will have implications for the nature of the explosion and the mechanism for the kick imparted to the central compact object. As well as exploiting existing data to their full scientific potential, we will be able to make predictions for future observations with e.g. JWST.

  15. Hellas Basin ejecta: A prime stratigraphic marker and sampling target

    NASA Technical Reports Server (NTRS)

    King, Elbert A.

    1988-01-01

    The Hellas Basin and associated ejecta deposits dominate a large portion of the southern highlands of Mars. These deposits have been particularly well-documented at the scale 1:5,000,000 in the Sinus Sabaeus (MC-20), Iapygia (MC-21) and Mare Tyrrhenum (MC-22) quadrangles (1,2,3) where they have been mapped as ancient hilly and cratered material. In MC-22 the ejecta deposit is interpreted to thin from west to east, away from Hellas. In the eastern part of MC-22, the outlines of some large older craters, such as Hershel, can be seen through the thin ejecta cover and some of these buried craters even have enough relief to act as depositional traps for later mostly eolian sediments. Superposed on the ejecta is a population of numerous intermediate-sized to smaller craters which indicates the relatively old age of the ejecta deposit and causes the unit to have rather rough surface topography. Numerous small channels on steeply sloping crater rims and regionally sloping surface indicate erosion, transportation and redeposition of substantial amounts of ejecta materials, probably by aqueous fluvial processes. Numerous more recent volcanic constructs and flows also are superposed on the ejecta.

  16. Estimates of primary ejecta and local material for the Orientale basin: Implications for the formation and ballistic sedimentation of multi-ring basins

    NASA Astrophysics Data System (ADS)

    Xie, Minggang; Zhu, Meng-Hua

    2016-04-01

    A clear understanding of thickness distributions of primary ejecta and local material is critical to interpreting the process of ballistic sedimentation, provenances of lunar samples, the evolution of the lunar surface, and the origin of multi-ring basins. The youngest lunar multi-ring basin, Orientale, provides the best preserved structure for determining the thicknesses of primary ejecta and local material. In general, the primary ejecta thickness was often estimated using crater morphometry. However, previous methods ignored either crater erosion, the crater interior geometry, or both. In addition, ejecta deposits were taken as mostly primary ejecta. And, as far as we know, the local material thickness had not been determined for the Orientale. In this work, we proposed a model based on matching measurements of partially filled pre-Orientale craters (PFPOCs) with the simulations of crater erosion to determine their thicknesses. We provided estimates of primary ejecta thickness distribution with the thickness of 0.85 km at Cordillera ring and a decay power law exponent of b = 2.8, the transient crater radius of 200 km, excavation volume of 2.3 ×106 km3, primary ejecta volume of 2.8 ×106 km3. These results suggest that previous works (e.g., Fassett et al., 2011; Moore et al., 1974) might overestimate the primary ejecta thicknesses of Orientale, and the primary ejecta thickness model of Pike (1974a) for multi-ring basins may give better estimates than the widely cited model of McGetchin et al. (1973) and the scaling law for impacts into Ottawa Sand (Housen et al., 1983). Structural uplift decays slower than previously thought, and rim relief is mostly rim uplift for Orientale. The main reason for rim uplift may be the fracturing and squeezing upward of the surrounding rocks. The proportion of local material to ejecta deposits increases with increasing radial distance from basin center, and the thickness of local material is larger than that of primary ejecta at

  17. Flow Ejecta and Slope Landslides in Small Crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of a moderately small impact crater on Mars was taken by the Mars Global Surveyor Orbiter Camera (MOC) on October 17, 1997 at 4:11:07 PM PST, during MGS orbit 22. The image covers an area 2.9 by 48.4 kilometers (1.8 by 30 miles) at 9.6 m (31.5 feet) per picture element, and is centered at 21.3 degrees N, 179.8 degrees W, near Orcus Patera. The MOC image is a factor of 15X better than pervious Viking views of this particular crater (left, Viking image 545A49).

    The unnamed crater is one of three closely adjacent impact features that display the ejecta pattern characteristic of one type of 'flow-ejecta' crater. Such patterns are considered evidence of fluidized movement of the materials ejected during the cratering event, and are believed to indicate the presence of subsurface ice or liquid water.

    Long, linear features of different brightness values can be seen on the on the steep slopes inside and outside the crater rim. This type of feature, first identified in Viking Orbiter images acquired over 20 years ago, are more clearly seen in this new view (about 3 times better than the best previous observations). Their most likely explanation is that small land or dirt slides, initiated by seismic or wind action, have flowed down the steep slopes. Initially dark because of the nature of the surface disturbance, these features get lighter with time as the ubiquitous fine, bright dust settles onto them from the martian atmosphere. Based on estimates of the dust fall-out rate, many of these features are probably only a few tens to hundreds of years old. Thus, they are evidence of a process that is active on Mars today.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with

  18. Calculation of ejecta thickness and structural uplift for Lunar and Martian complex crater rims.

    NASA Astrophysics Data System (ADS)

    Krüger, Tim; Sturm, Sebastian; Kenkmann, Thomas

    2014-05-01

    Crater rims of simple and complex craters have an elevation that is formed during the excavation stage of crater formation. For simple crater rims it is believed that the elevation is due to the sum of two equal parts, the thickness of the most proximal impact ejecta blanket (overturned flap) plus the thickness that results from plastic deformation including injection [1, 2, 3]. We intend to measure and quantify the kinematics of mass movements, especially concerning the question why complex impact craters have elevated crater rims like simple craters and precisely constrain the ejecta thickness and structural uplift of Lunar and Martian crater rims to understand what the main contributor to the elevated rim is [4]. We investigated a pristine 16 km-diameter unnamed Martian complex crater (21.52°N, 184.35°) and the lunar complex craters Bessel (21.8°N, 17.9°E) 16 km in diameter and Euler (23.3°N, 29.2°W) 28 km in diameter [5, 6]. In the crater walls of these craters we found columnar lavas on Mars and basaltic layering on the Moon. We used the uppermost layers of these exposed outcrops along the crater wall to determine the dip of the target rocks (Mars) and to distinguish between the bedrock and the overlying ejecta. We precisely measured the structural uplift and ejecta thickness of these complex craters. The unnamed crater on Mars has a mean rim height of 375.75 m, with a structural uplift of 233.88 m (57.44%), exposed as columnar lavas and the superposing ejecta has a height of 141.87 m (43.56%). For the Lunar complex crater Euler the mean total rim height is 790 ± 100 m, with a minimal structural uplift of 475 ± 100 m (60 ± 10 %), exposed as basaltic layers [e.g., 7, 8] and a maximum ejecta thickness of 315 ± 100 m (40 ± 10%). The Lunar complex crater Bessel has a total rim height of 430 ± 15 m , with a minimal structural uplift of 290 ± 15 m (67 ± 3 %), exposed as basaltic layers and a maximum ejecta thickness of 140 ± 115 m (33 ± 3%). For the

  19. Slumping and ejecta sliding accompanying some 10-ton cratering events

    SciTech Connect

    Gaffney, E.S.

    1981-12-01

    Both inward slumping and outward ejecta sliding are inferred to have occurred in four 10-ton explosive cratering events in Gulf coastal plain sediments. These inferences result from a comparison of displacements obtained by integration of real-time velocity data from subsurface gauges with displacements based on post-shot surveys. The slumping did not occur immediately after crater excavation; it was delayed by more than 5 seconds but less than one day. This delay probably resulted from slow recompaction and resaturation of the ejecta and crater walls on a scale of minutes to hours after the excavation and attendant dilation of the media. Ejecta sliding, probably at a few meters per second, apparently moved concrete blocks on the surface up to 2 meters outward relative to gauges buried at the same initial range. The ejecta sliding was not uniform and may occasionally have included portions of the underlying ground.

  20. X-ray Observations of Shocked Nova Ejecta

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Nelson, T.; Chomiuk, L.; Mioduszewski, A.; Rupen, M. P.; Sokoloski, J. L.; Weston, J. H. S.; Bode, M. F.; Eyres, S. P. S.; O'Brien, T. J.

    2014-12-01

    We present X-ray observations of novae, obtained in conjunction with radio observations. The 1-10 keV X-rays are optically thin thermal emission from the ejecta shock-heated to >10 million degrees, while the radio emission is often dominated by Bremsstrahlung emission from ˜10,000 K gas, perhaps with additional contributions from shocks. The very presence of hard X-ray emission requires faster ejecta to catch up with a slower material ejected earlier. The X-ray temperatures allow us to estimate the velocity differential between the two systems. Non-ionization-equilibrium signatures, when present, allow us to constrain the density of the shocked plasma. The absorbing columns, usually observed to decrease as the ejecta expand, constrain the amount of the slower, earlier ejecta that still remain unshocked. Specifically, we will present our analysis of the Swift and Suzaku observations of T Pyx and Nova Mon 2012 and discuss implications.

  1. Target delamination by spallation and ejecta dragging: An example from the Ries crater's periphery

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Ivanov, Boris A.

    2006-11-01

    Subhorizontal shear planes (detachments) are observed in bedded limestones in the periphery of the Ries impact crater, Germany. These detachments occur at 0.8-1.8 crater radii distance from the crater center beneath deposits of the continuous ejecta blanket. Striations on detachment planes and offsets of markers indicate top-outward shearing with radial slip vectors. Detachments were found at depths between a few meters and more than 50 m beneath the target surface. The displacements along these faults range from meters to decameters and decrease with increasing depth and distance from the crater center. With increasing crater distance, detachment horizons tend to climb to shallower levels. Cross-cutting relationships to faults associated with the crater collapse indicate that detachment faulting started prior to the collapse but continued during crater modification. Numerical modeling of the cratering process shows that near-surface deformation outside the transient crater is induced by two separate mechanisms: (i) weak spallation by interference of shock and release waves near the target surface and (ii) subsequent dragging by the deposition of the ejecta curtain. Spallation causes an upward and outward directed motion of target material that increases in magnitude toward the target surface. It leads to decoupling of the uppermost target layers in the early cratering stage without totally disintegrating the rock. The subsequent arrival of the oblique impact shower of the ejecta curtain at the target surface delivers a horizontal momentum to the uppermost target area and results in a second horizontal displacement increment by dragging. With increasing depth this effect vanishes rapidly. Spallation decoupling and subsequent ejecta dragging of near-surface rocks is probably a general cratering mechanism around craters in layered targets with weak interbeds.

  2. EJECTA KNOT FLICKERING, MASS ABLATION, AND FRAGMENTATION IN CASSIOPEIA A

    SciTech Connect

    Fesen, Robert A.; Zastrow, Jordan A.; Hammell, Molly C.; Shull, J. Michael; Silvia, Devin W.

    2011-08-01

    Ejecta knot flickering, ablation tails, and fragmentation are expected signatures associated with the gradual dissolution of high-velocity supernova (SN) ejecta caused by their passage through an inhomogeneous circumstellar medium or interstellar medium (ISM). Such phenomena mark the initial stages of the gradual merger of SN ejecta with and the enrichment of the surrounding ISM. Here we report on an investigation of this process through changes in the optical flux and morphology of several high-velocity ejecta knots located in the outskirts of the young core-collapse SN remnant Cassiopeia A using Hubble Space Telescope images. Examination of WFPC2 F675W and combined ACS F625W + F775W images taken between 1999 June and 2004 December of several dozen debris fragments in the remnant's northeast ejecta stream and along the remnant's eastern limb reveal substantial emission variations ('flickering') over timescales as short as nine months. Such widespread and rapid variability indicates knot scale lengths {approx_equal} 10{sup 15} cm and a highly inhomogeneous surrounding medium. We also identify a small percentage of ejecta knots located all around the remnant's outer periphery which show trailing emissions typically 0.''2-0.''7 in length aligned along the knot's direction of motion suggestive of knot ablation tails. We discuss the nature of these trailing emissions as they pertain to ablation cooling, knot disruption, and fragmentation, and draw comparisons to the emission 'strings' seen in {eta} Car. Finally, we identify several tight clusters of small ejecta knots which resemble models of shock-induced fragmentation of larger SN ejecta knots caused by a high-velocity interaction with a lower density ambient medium.

  3. Anisotropies observed within ejecta during solar particle onsets

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    1995-01-01

    The observation of solar energetic particle onsets within ejecta material suggests that the magnetic field topology of these ejecta is more likely to be that of a 'magnetic bottle' rooted at the Sun than that of a detached plasmoid-like structure. Another possibility is that only open field lines are present. We examine the anisotropies of particle onsets which onset inside ejecta material. A striking feature of a significant fraction of these events is that they show, at onset, strong flows from the east of the Sun, in contrast to the flows from the west usually observed at the onset of solar particle events outside of ejecta. This observation confirms that magnetic field lines can be strongly distorted inside ejecta so as to lie nearly opposite to the Parker spiral direction. This conclusion is fully consistent with the presence of looped magnetic structures in ejecta. If only open field lines are present, it is unclear how these large field line distortions could have been produced.

  4. Numerical Modelling and Ejecta Distribution Analysis of a Martian Fresh Crater

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Cremonese, G.; Cambianica, P.; Daubar, I.; McEwen, A. S.; Re, C.

    2015-12-01

    Images taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter reveal fresh craters on Mars that are known to be recent as they are constrained by before and after images (Daubar et al., 2013). In particular, on Nov. 19, 2013 an image acquired by HiRISE, ESP_034285_1835, observed a 25 m diameter fresh crater located at 3.7° N, 53.4° E. This impact occurred between July 2010 and May 2012, as constrained by Context camera (CTX) images. Because the terrain where the crater formed is dusty, the fresh crater appears blue in the enhanced color of the HiRISE image, due to removal of the reddish dust in that area. We analyze this crater using the iSALE shock physics code (Amsden et al., 1980, Collins et al., 2004, Ivanov et al., 1997, Melosh et al., 1992, Wünnemann et al., 2006) to model the formation of this impact structure which is ~25 m in diameter and ~ 2.5 - 3 m in depth. These values are obtained from the DTM profile we have generated. We model the Martian surface considering different target compositions as regolith and fractured basalt rock and we based our simulations on a basalt projectile with a porosity of 10% (which is derived from the average of the meteorite types proposed by Britt et al., 2002) that hits the Martian surface with a beginning velocity equal to 7 km/s (Le Feuvre & Wieczorek, 2011) and an impact angle of 90°. The projectile size is around 1 m and it is estimated from the comparison between the DTM profile and the profiles obtained by numerical modelling. The primary objective of this analysis is the detailed study of the ejecta, in fact we will track the ejecta coming from the simulation and compare them to the ejecta distribution computed on the image (the ejecta reached a distance of more than 15 km). From the matching of the simulated ejecta with their real distribution, we will be able to understand the goodness of the simulation and also put constraints on the target material.

  5. The LCROSS Ejecta Plume Revealed: First Characterization from Earth-based Imaging

    NASA Astrophysics Data System (ADS)

    Miller, C.; Chanover, N.; Hermalyn, B.; Strycker, P. D.; Hamilton, R. T.; Suggs, R. M.

    2012-12-01

    On October 9, 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) struck the floor of Cabeus crater. We observed the LCROSS impact site at 0.5-second intervals throughout the time of impact in the V-band (491 to 591 nm) using the Agile camera on the 3.5 m telescope at the Apache Point Observatory. Our initial analysis of these images showed that the ejecta plume could be no brighter than 9.5 magnitudes/arcsec^2. (Chanover et al. 2011, JGR). We subsequently applied a Principal Component Analysis (PCA) technique to filter out time-varying seeing distortions and image registration errors from an 8-minute sequence of images centered on the LCROSS impact time and unambiguously detected the evolving plume below the noise threshold. This is the first and only reported image detection of the LCROSS plume from ground-based instruments. Our detection is consistent with an ejecta plume that reaches peak brightness between 12 and 20 seconds after impact and fades to an undetectable level within 90 seconds after impact. This is consistent with in situ observations made by the LCROSS Shepherding Satellite (LCROSS S/SC) and the Lunar Reconnaissance Orbiter (LRO) that observed the impact from above (Colaprete et al., and Hayne et. al., 2010, Science). To test our detection method, we compared the brightness profiles derived from our impact image sequence to those extracted from a sequence with a simulated ejecta pattern. We performed 3-D ballistic simulations of trial impacts, starting with initial particle ejection angles and velocities derived from laboratory measurements made with the NASA Ames Vertical Gun of impacts of hollow test projectiles (Hermalyn et. al., 2012, Icarus). We extracted images from these simulations at 0.5-second intervals, combined them with a computer generated lunar landscape, and introduced image distortions due to time-varying seeing conditions and instrumental noise sources to produce a synthetic ejecta image sequence. We then re

  6. Geologic Mapping of Ejecta Deposits in Oppia Quadrangle, Asteroid (4) Vesta

    NASA Technical Reports Server (NTRS)

    Garry, W. Brent; Williams, David A.; Yingst, R. Aileen; Mest, Scott C.; Buczkowski, Debra L.; Tosi, Federico; Schafer, Michael; LeCorre, Lucille; Reddy, Vishnu; Jaumann, Ralf; Pieters, Carle M.; Russell, Christopher T.; Raymond, Carol A.

    2014-01-01

    Oppia Quadrangle Av-10 (288-360 deg E, +/- 22 deg) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA's Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (approximately 45 km diameter) and Oppia (approximately 40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as 'dark mantle' material because it appears dark orange in the Framing Camera 'Clementine-type' colorratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera 'Clementine-type' color-ratio image as 'light mantle material' supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced greater than 5 crater radii away) in a microgravity environment.

  7. Geologic mapping of ejecta deposits in Oppia Quadrangle, Asteroid (4) Vesta

    NASA Astrophysics Data System (ADS)

    Garry, W. Brent; Williams, David A.; Yingst, R. Aileen; Mest, Scott C.; Buczkowski, Debra L.; Tosi, Federico; Schäfer, Michael; Le Corre, Lucille; Reddy, Vishnu; Jaumann, Ralf; Pieters, Carle M.; Russell, Christopher T.; Raymond, Carol A.

    2014-12-01

    Oppia Quadrangle Av-10 (288-360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA's Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (∼45 km diameter) and Oppia (∼40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as 'dark mantle' material because it appears dark orange in the Framing Camera 'Clementine-type' color-ratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera 'Clementine-type' color-ratio image as 'light mantle material' supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced >5 crater radii away) in a microgravity environment.

  8. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una

    2013-01-01

    The ejecta of the Cas A supernova remnant has a complex morphology, consisting of dense fast-moving line emitting knots and diffuse X-ray emitting regions that have encountered the reverse shock, as well as more slowly expanding, unshocked regions of the ejecta. Using the Spitzer 5-35 micron IRS data cube, and Herschel 70, 100, and 160 micron PACS data, we decompose the infrared emission from the remnant into distinct spectral components associated with the different regions of the ejecta. Such decomposition allows the association of different dust species with ejecta layers that underwent distinct nuclear burning histories, and determination of the dust heating mechanisms. Our decomposition identified three characteristic dust spectra. The first, most luminous one, exhibits strong emission features at approx. 9 and 21 micron, and a weaker 12 micron feature, and is closely associated with the ejecta knots that have strong [Ar II] 6.99 micron and [Ar III] 8.99 micron emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low MgO-to-SiO2 ratios. A second, very different dust spectrum that has no indication of any silicate features, is best fit by Al2O3 dust and is found in association with ejecta having strong [Ne II] 12.8 micron and [Ne III] 15.6 micron emission lines. A third characteristic dust spectrum shows features that best matched by magnesium silicates with relatively high MgO-to-SiO2 ratio. This dust is primarily associated with the X-ray emitting shocked ejecta and the shocked interstellar/circumstellar material. All three spectral components include an additional featureless cold dust component of unknown composition. Colder dust of indeterminate composition is associated with [Si II] 34.8 micron emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. The dust mass giving rise to the warm dust component is about approx. 0.1solar M. However, most of the dust mass

  9. Thickness of Proximal Ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for Multi-Ring Basin Formation

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb I.a; Head, James W.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.

    2011-01-01

    Quantifying the ejecta distribution around large lunar basins is important to understanding the origin of basin rings, the volume of the transient cavity, the depth of sampling, and the nature of the basin formation processes. We have used newly obtained altimetry data of the Moon from the Lunar Orbiter Laser Altimeter (LOLA) instrument to estimate the thickness of ejecta in the region surrounding the Orientale impact basin, the youngest and best preserved large basin on the Moon. Our measurements yield ejecta thicknesses of approx.2900 m near the Cordillera Mountains, the topographic rim of Orientale, decaying to approx.1 km in thickness at a range of 215 km. These measurements imply a volume of ejecta in the region from the Cordillera ring to a radial range of one basin diameter of approx.2.9 x 10(exp 6)cu km and permit the derivation of an ejecta-thickness decay model, which can be compared with estimates for the volume of excavation and the size of the transient cavity. These data are consistent with the Outer Rook Mountains as the approximate location of the transient cavity s rim crest and suggest a volume of approx.4.8 x 10(exp 6)cu km for the total amount of basin ejecta exterior to this location.

  10. Characterization of Lunar Crater Ejecta Deposits Using Radar Data from the Mini-RF Instrument on LRO

    NASA Astrophysics Data System (ADS)

    Patterson, G. W.; Raney, R. K.; Cahill, J. T.; Bussey, B.

    2012-12-01

    Impact cratering is the dominant weathering process on the surface of the Moon and a primary means of distrib-uting material on the lunar surface [1]. Radar data provide unique information on both the horizontal and vertical distribution of impact deposits [2]. The Miniature Radio Frequency (Mini-RF) instrument flown on the Lunar Re-connaissance Orbiter (LRO) is a Synthetic Aperture Radar (SAR) with an innovative hybrid dual-polarimetric archi-tecture, transmitting (quasi-) circular polarization, and receiving orthogonal linear polarizations and their relative phase [3]. The four Stokes parameters that characterize the observed backscattered EM field are calculated from the received data. These parameters can be used to derive a variety of child products that include the circular polariza-tion ratio (CPR) and the m-chi decomposition. The former provides an indication of surface roughness and the latter provides an indication of the scattering properties of the surface [4]. Using these products, we examine the crater Byrgius A and demonstrate the ability to differentiate materials within ejecta deposits and their relative thicknesses. Byrgius A is a 19 km diameter Copernican located in the lunar highlands east of the Orientale Basin and west of Mare Humorum. Visible image data of the region obtained by the Lunar Reconnaissance Orbiter Camera Wide An-gle Camera (LROC WAC) [5] at a resolution of 100 m/pixel show optically bright ejecta deposits associated with the crater that extend to radial distances of 100s of km, with near continuous deposits observed to an average radial distance of 70 km. Mini-RF CPR information derived from S-band (12.6 cm) data of the region show an increased roughness for Byrgius A and its ejecta deposits relative to the surrounding terrain. This is a commonly observed characteristic of young, fresh craters and indicates that the crater and its ejecta have a higher fraction of cm- to m-scale scatterers at the surface and/or buried to depths

  11. Ejecta Behavior and Dynamics within the Proposed ISIS Kinetic Impactor Demonstration Mission

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene G.; Chesley, S. R.

    2013-10-01

    Impactor for Surface and Interior Science (ISIS) is a proposed mission of opportunity which would demonstrate and test kinetic impact (KI) as a method of imparting a small ΔV to a hypothetical Near Earth Object (NEO) found in the future to be hazardous, i.e. have a non-negligible probability of Earth impact. In contrast to Deep Impact, 'test' here means having another spacecraft in rendezvous with the KI target, and accumulating sufficient tracking of that spacecraft, and target observations from it, both before and after the KI event, to measure the ΔV imparted to the target. A bounty of scientific information about cratering mechanics, geomorphology, and even internal structure of small asteroids would also result from in-situ observations of the event and its aftermath. For ISIS, the non-hazardous target and observing spacecraft would be respectively 1999 RQ36 (Bennu) and the OSIRIX-REx sample return mission. Motivated by a need to understand any hazard to OSIRIS-REx and any necessary changes to its plan of proximity operations, we embarked on a detailed study of the ejecta/debris that would be liberated by the KI event. For an event energy matching a 440 kg impactor at 13.43 km/s closing velocity, we modeled ejecta generation from the cratering itself, considering the on-surface net acceleration environment. We propagated the ejecta particles under all relevant dynamical effects, e.g. shape-model-derived full body gravity, differential solar tide acceleration, and solar radiation pressure accounting for particle size, optical properties, and shadowing. We present the proportion of particles reaching the dynamical fates of return impact or escape, and the time history of their doing so. We find clearing times from the system are nonlinearly dependent on particle size as expected. We present the size-frequency distribution of the population remaining at 1, 5, 10, etc. days post-impact, and where the re-accreted ejecta deposits on the surface. We also further

  12. Ejecta model development at pRad (u)

    SciTech Connect

    Buttler, William T; Oro, David M; Dimonte, Guy; Terrones, Guillermo; Morris, Christopher; Bainbridge, J R; Hogan, Gary E.; Hollander, Brian J.; Holtkamp, David B.; Kwiathowski, Kris; Marr-Lyon, Mark; Mariam, Fesseha G.; Merrill, Frank E; Nedrow, Paul; Saunders, Alexander; Schwartz, C L; Stone, B; Tupa, Dale; Vogan-McNeil, Wendy S

    2010-02-09

    In July 2009 we fielded three explosively (HE) driven Richtmyer-Meshkov instability experiments at the LANSCE Proton Radiography Facility (pRad), and in August of 2009 we fielded one flyer plate experiment on the pRad 40 mm powder gun. One HE experiment was done in vacuum, and the other two within four atmospheres of noble gasses: Xe and Ne. These two gases were chosen to study the viscous effects on ejecta formation. It is unexpected, but the viscosity {eta} of Ne is twice that of Xe, and, due to the atomic mass difference between the two, the kinematic viscosity ({eta}/{rho}) of Ne is about ten times that of Xe. The results showed that ejecta formation is sensitively linked to the gas density, which implies that the Weber number is more important in ejecta formation than the Reynolds number.

  13. DUST FORMATION IN THE EJECTA OF COMMON ENVELOPE SYSTEMS

    SciTech Connect

    Lue Guoliang; Zhu Chunhua; Podsiadlowski, Philipp

    2013-05-10

    The material that is ejected in a common-envelope (CE) phase in a close binary system provides an ideal environment for dust formation. By constructing a simple toy model to describe the evolution of the density and the temperature of CE ejecta and using the AGBDUST code to model dust formation, we show that dust can form efficiently in this environment. The actual dust masses produced in the CE ejecta depend strongly on their temperature and density evolution. We estimate the total dust masses produced by CE evolution by means of a population synthesis code and show that, compared to dust production in asymptotic giant branch stars, the dust produced in CE ejecta may be quite significant and could even dominate under certain circumstances.

  14. Regions of abnormally low proton temperature as signatures of ejecta: Solar cycle dependence and association with other ejecta signatures

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    1995-01-01

    Solar wind proton temperatures lower than expected for 'normal' solar wind expansion are a common signature of 'ejecta' (i.e. interplanetary coronal mass ejections). We have surveyed the OMNI solar wind data base for 1965-1991, and Helios data for 1974-1980, to identify regions of abnormally low temperatures. Their occurrence rate is clearly dependent on solar activity levels, in particular when the minority of events associated with encounters with the heliospheric plasma sheet are excluded. The analysis of the OMNI data may provide an indication of the rate of ejecta at the Earth, and hence of the CME rate, extending back to before spacecraft coronagraph observations became available in the early 1970's. We discuss the association of these solar wind structures with cosmic ray depressions bidirectional particle flows, and other ejecta signatures. Our impression is that no one ejecta signature provides a truly comprehensive indication of the presence of ejecta, but that abnormally low temperature depressions encompass most of the regions identified by these other individual signatures.

  15. The dynamic ejecta of compact object mergers and eccentric collisions.

    PubMed

    Rosswog, Stephan

    2013-06-13

    Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the 'heavy' (A>130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta ('macronovae'), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium. PMID:23630377

  16. Interstellar and ejecta dust in the cas a supernova remnant

    SciTech Connect

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jeonghee; Hwang, Una

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  17. Planetary geological studies. [MARS crater morphology and ejecta deposit topography

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.

    1981-01-01

    A global data base was assembled for the study of Mars crater ejecta morphology. The craters were classified as to morhology using individual photographic prints of Viking orbiter frames. Positional and scale information were derived by fitting digitized mosaic coordinates to lattitude-longitude coordinates of surface features from the Mars geodetic control net and feature coordinates from the U.S.G.S. series of 1:5,00,000 scale shaded relief maps. Crater morphology characteristics recorded are of two classes - attributes of each ejecta deposit and other crater charactersitics. Preliminary efforts to check the data base with findings of other workers are described.

  18. MIXING OF CLUMPY SUPERNOVA EJECTA INTO MOLECULAR CLOUDS

    SciTech Connect

    Pan Liubin; Desch, Steven J.; Scannapieco, Evan; Timmes, F. X.

    2012-09-01

    Several lines of evidence, from isotopic analyses of meteorites to studies of the Sun's elemental and isotopic composition, indicate that the solar system was contaminated early in its evolution by ejecta from a nearby supernova. Previous models have invoked supernova material being injected into an extant protoplanetary disk, or isotropically expanding ejecta sweeping over a distant (>10 pc) cloud core, simultaneously enriching it and triggering its collapse. Here, we consider a new astrophysical setting: the injection of clumpy supernova ejecta, as observed in the Cassiopeia A supernova remnant, into the molecular gas at the periphery of an H II region created by the supernova's progenitor star. To track these interactions, we have conducted a suite of high-resolution (1500{sup 3} effective) three-dimensional numerical hydrodynamic simulations that follow the evolution of individual clumps as they move into molecular gas. Even at these high resolutions, our simulations do not quite achieve numerical convergence, due to the challenge of properly resolving the small-scale mixing of ejecta and molecular gas, although they do allow some robust conclusions to be drawn. Isotropically exploding ejecta do not penetrate into the molecular cloud or mix with it, but, if cooling is properly accounted for, clumpy ejecta penetrate to distances {approx}10{sup 18} cm and mix effectively with large regions of star-forming molecular gas. In fact, the {approx}2 M{sub Sun} of high-metallicity ejecta from a single core-collapse supernova is likely to mix with {approx}2 Multiplication-Sign 10{sup 4} M{sub Sun} of molecular gas material as it is collapsing. Thus, all stars forming late ( Almost-Equal-To 5 Myr) in the evolution of an H II region may be contaminated by supernova ejecta at the level {approx}10{sup -4}. This level of contamination is consistent with the abundances of short-lived radionuclides and possibly some stable isotopic shifts in the early solar system and is

  19. Long-wave stratospheric transmission of Mount St. Helens ejecta

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Haughney, L. C.; Innis, R. C.

    1981-01-01

    The NASA/Ames Research C-141 aircraft underflew the Mount St. Helens ejecta plume in Utah three days after the eruption. Upward-looking 20-40-microns on-board radiometry provided data resulting in a calculated long-wave transmission of 0.93. From this value, an optical depth of 0.073 is inferred. This value is compared with an accepted background, stratospheric infrared optical depth of 0.06. Assumptions on particle size, shortwave albedo, and thermal warming imply little surface temperature change caused by the ejecta on the third day immediately following the eruption.

  20. Long-wave stratospheric transmission of Mount St. Helens ejecta

    SciTech Connect

    Kuhn, P.M.; Haughney, L.C.; Innis, R.C.

    1981-01-01

    The NASA/Ames Research C-141 aircraft underflew the Mount St. Helens ejecta plume in Utah three days after the eruption. Upward-looking 20--40-..mu..m on-board radiometry provided data resulting in a calculated long-wave transmission of 0.93. From this value, an optical depth of 0.073 is inferred. This value is compared with an accepted background, stratospheric infrared optical depth of 0.06. Assumptions on particle size, shortwave albedo, and thermal warming imply little surface temperature change caused by the ejecta on the third day immediately following the eruption.

  1. Clay mineralogy of the Cretaceous-Tertiary boundary clay. [in search for asteroid ejecta

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Reynolds, R. C.

    1983-01-01

    Cretaceous-Tertiary boundary layer clay samples from four localities were subjected to analyses which imply that they are neither mineralogically exotic nor distinct from locally derived clays above and below the boundary. The anomalous iridium-rich ejecta component predicted by the asteroid impact scenario of Alvarez et al (1980) was not detected. It is proposed that volcanic material be considered as an explanation of the geochemical anomalies of the Cretaceous-Tertiary boundary. A model which involves a period of intense volcanism at the end of the Cretaceous would generate a variety of climatic and biological effects consonant with the geologic history of that period.

  2. A Model for SiC Grain Coagulation in Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Deneault, Ethan

    2009-12-01

    We present a model for the formation of silicon carbide grains within the expanding and cooling supernova ejecta. Supernova SiC grains (SiC-X grains) have been found to be aggregates of smaller subgrains. We propose that the subgrains initially condensed in interior dense shell, were moved out of that region through velocity differentiation due to reverse shocks, and coagulated via impacts with other subgrains. The size distribution as well as the isotopic homogeneity of the subgrains places a limit on the initial location and conditions of their formation.

  3. Observations of Martian layered ejecta craters and constraints on their formation mechanisms

    NASA Astrophysics Data System (ADS)

    Li, Li; Yue, Zongyu; di, Kaichang; Peng, Man

    2015-03-01

    The formation mechanism of layered ejecta craters on Mars has remained a topic of intense debate since their discovery. In this study, we perform a global morphological analysis of Martian layered ejecta craters using Thermal Emission Imaging System (THEMIS) images and Mars Orbiter Laser Altimeter (MOLA) data. The study focuses on the ejecta morphologies and well-defined distal rampart characteristics associated with 9945 layered ejecta craters with a diameter greater than 1.5 km distributed across the entire Martian surface. Data analysis based on the new database provides new information on the distribution and morphological details of the three major layered ejecta morphologies (single layer ejecta [SLE], double layer ejecta [DLE], and multiple layer ejecta [MLE]). Global analysis is applied to the latitudinal distribution of characteristic parameters, including the ejecta mobility, lobateness values, and onset diameter. Our survey of the distribution and characteristics of layered ejecta craters reveals that strong correlations exist between ejecta mobility and latitude, and there is a latitudinal dependence of onset diameter. Our study of Martian layered ejecta craters provides more detailed information and insights of a connection between the layered ejecta morphologies and the subsurface volatiles.

  4. Geology of Lunar Landing Sites and Origin of Basin Ejecta from a Clementine Perspective

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Haskin, Larry A.

    1998-01-01

    The goals of this research were to examine Clementine multispectral data covering the Apollo landing sites in order to: (1) provide ground truth for the remotely sensed observations, (2) extend our understanding of the Apollo landing sites to the surrounding regions using the empirically calibrated Clementine data, and (3) investigate the composition and distribution of impact-basin ejecta using constraints based upon the remotely sensed data and the Apollo samples. Our initial efforts (in collaboration with P. Lucey and coworkers) to use the Apollo soil compositions to "calibrate" information derived from the remotely sensed data resulted in two extremely useful algorithms for computing estimates of the concentrations of FeO and TiO2 from the UV-VIS 5-band data. In this effort, we used the average surface soil compositions from 37 individual Apollo and 3 Luna sample stations that could be resolved using the Clementine data. We followed this work with a detailed investigation of the Apollo 17 landing site, where the sampling traverses were extensive and the spectral and compositional contrast between different soils covers a wide range. We have begun to investigate the nature and composition of basin ejecta by comparing the thick deposits on the rim of Imbrium in the vicinity of the Apollo 15 site and those occurring southeast of the Serenitatis basin, in the Apollo 17 region. We continue this work under NAG5-6784, "Composition, Lithology, and Heterogeneity of the lunar crust using remote sensing of impact-basin uplift structures and ejecta as probes. The main results of our work are given in the following brief summaries of major tasks. Detailed accounts of these results are given in the attached papers, manuscripts, and extended abstracts.

  5. Ejecta transfer in the Pluto system

    NASA Astrophysics Data System (ADS)

    Porter, Simon B.; Grundy, William M.

    2015-01-01

    The small satellites of the Pluto system (Styx, Nix, Kerberos, and Hydra) have very low surface escape velocities, and impacts should therefore eject a large amount of material from their surfaces. We show that most of this material then escapes from the Pluto system, though a significant fraction collects on the surfaces of Pluto and Charon. The velocity at which the dust is ejected from the surfaces of the small satellites strongly determines which object it is likely to hit, and where on the surfaces of Pluto and Charon it is most likely to impact. We also show that the presence of an atmosphere around Pluto eliminates most particle size effects and increases the number of dust impacts on Pluto. In total, Pluto and Charon may have accumulated several centimeters of small-satellite dust on their surfaces, which could be observed by the New Horizons spacecraft.

  6. Modelling circumplanetary ejecta clouds at low altitudes: A probabilistic approach

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos A.

    2015-04-01

    A model is presented of a ballistic, collisionless, steady state population of ejecta launched at randomly distributed times and velocities and moving under constant gravity above the surface of an airless planetary body. Within a probabilistic framework, closed form solutions are derived for the probability density functions of the altitude distribution of particles, the distribution of their speeds in a rest frame both at the surface and at altitude and with respect to a moving platform such as an orbiting spacecraft. These expressions are validated against numerically-generated synthetic populations of ejecta under lunar surface gravity. The model is applied to the cases where the ejection speed distribution is (a) uniform (b) a power law. For the latter law, it is found that the effective scale height of the ejecta envelope directly depends on the exponent of the power law and increases with altitude. The same holds for the speed distribution of particles near the surface. Ejection model parameters can, therefore, be constrained through orbital and surface measurements. The scope of the model is then extended to include size-dependency of the ejection speed and an example worked through for a deterministic power law relation. The result suggests that the height distribution of ejecta is a sensitive proxy for this dependency.

  7. The Morphology of IRC+10420's Circumstellar Ejecta

    NASA Astrophysics Data System (ADS)

    Tiffany, Chelsea; Humphreys, Roberta M.; Jones, Terry J.; Davidson, Kris

    2010-08-01

    Images of the circumstellar ejecta associated with the post-red supergiant IRC+10420 show a complex ejecta with visual evidence for episodic mass loss. In this paper, we describe the transverse motions of numerous knots, arcs, and condensations in the inner ejecta measured from second epoch Hubble Space Telescope/WFPC2 images. When combined with the radial motions for several of the features, the total space motion and direction of the outflows show that they were ejected at different times, in different directions, and presumably from separate regions on the surface of the star. These discrete structures in the ejecta are kinematically distinct from the general expansion of the nebula and their motions are dominated by their transverse velocities. They are apparently all moving within a few degrees of the plane of the sky. We are thus viewing IRC+10420 nearly pole-on and looking nearly directly down onto its equatorial plane. We also discuss the role of surface activity and magnetic fields on IRC+10420's recent mass-loss history. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  8. Radar Scattering Properties of Young Lunar Crater Ejecta Blankets Using Mini-RF

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Patterson, G. W.; Cahill, J. T. S.; Bussey, D. B. J.

    2016-05-01

    Mini-Rf data provides a powerful way to examine young lunar crater ejecta. Radial profiles of radar returns outward from the crater rim provide insights into ejecta emplacement, crater degradation, and near surface stratigraphy.

  9. The Links Between Target Properties and Layered Ejecta Craters in Acidalia and Utopia Planitiae Mars

    NASA Astrophysics Data System (ADS)

    Jones, E.; Osinski, G. R.

    2013-08-01

    Layered ejecta craters on Mars may form from excavation into subsurface volatiles. We examine a new catalogue of martian craters to decipher differences between the single- and double-layered ejecta populations in Acidalia and Utopia.

  10. Unmelted Meteoritic Debris Collected from Eltanin Ejecta in Polarstern Cores from Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    A total of 1.7g of unmelted meteorite particles have been recovered from FS Polarstern piston cores collected on expedition ANT XII/4 that contain ejecta from the Eltanin impact event. Most of the mass (1.2 g) is a large, single specimen that is a polymict breccia, similar in mineralogy and chemistry to howardites or the silicate fraction of mesosiderites. Most of the remaining mass is in several large individual pieces (20-75mg each) that are polymict breccias, fragments dominated by pyroxene, and an igneous rock fragment. The latter has highly fractionated REE, similar to those reported in mafic clasts from mesosiderites. Other types of specimens identified include fragments dominated by maskelynite or olivine. These pieces of the projectile probably survived impact by being blown off the back surface of the Eltanin asteroid during its impact into the Bellingshausen Sea.

  11. The effects of water vaporization on rock fragmentation during rapid decompression: Implications for the formation of fluidized ejecta on Mars

    NASA Astrophysics Data System (ADS)

    Rager, Audrey Hughes; Smith, Eugene I.; Scheu, Bettina; Dingwell, Donald B.

    2014-01-01

    Crater and ejecta morphology provide insight into the composition and structure of the target material. Fluidized ejecta surrounding Martian rampart craters are thought to result from the addition of water to the ejecta during impact into a water-rich (ice or liquid) regolith. Here we test experimentally an alternate hypothesis. We propose that the decompression of a rock-water mixture across the water vaporization curve during the excavation stage of impact cratering results in an increased proportion of fines in the ejecta. This enables the ejecta to flow with little or no liquid water present. To test this hypothesis, fragmentation experiments were conducted on sandstone (28 vol% open porosity) from the northern Eldorado Mountains, Nevada, using a shock-tube apparatus at the LMU Munich, Germany. Rock samples with 0-92% of their open pore space filled with water were pressurized to 15 MPa at 177 °C or 300 °C and rapidly decompressed. As the water vaporization curve is crossed, the water in the pore space rapidly flashes to steam causing, together with the expanding gas in the water-free pore space, the sample to fragment. The presence of water has a significant effect on the grain size distribution and grain shape of the fragmented rock samples. In comparison with (dry) control samples, samples with water with 15-50% open pore space exhibit much smaller grain sizes. The predominant grain shape of dry as well as partially water-saturated samples is bladed, reflecting fracturing parallel to the decompression front. Samples with >80% water in open pore space had an increase in fines and larger particles but less intermediate sized particles. Fragments from experiments with >80% water in open pore space also displayed a more equant grain shape, indicating that the decompression of water caused fracturing independent of the orientation of the decompression front. These results may provide insight into the morphology of Martian rampart craters. We propose here that

  12. Investigation of the enhanced spatial density of submicron lunar ejecta between L values 1.2 and 3.0 in the earth's magnetosphere: Theory

    NASA Technical Reports Server (NTRS)

    Alexander, W. M.; Tanner, W. G.; Goad, H. S.

    1987-01-01

    Initial results from the measurement conducted by the dust particle experiment on the lunar orbiting satellite Lunar Explorer 35 (LE 35) were reported with the data interpreted as indicating that the moon is a significant source of micrometeroids. Primary sporadic and stream meteoroids impacting the surface of the moon at hypervelocity was proposed as the source of micron and submicron particles that leave the lunar craters with velocities sufficient to escape the moon's gravitational sphere of influence. No enhanced flux of lunar ejecta with masses greater than a nanogram was detected by LE 35 or the Lunar Orbiters. Hypervelocity meteoroid simulation experiments concentrating on ejecta production combined with extensive analyses of the orbital dynamics of micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space have shown that a pulse of these lunar ejecta, with a time correlation relative to the position of the moon relative to the earth, intercepts the earth's magnetopause surface (EMPs). As shown, a strong reason exists for expecting a significant enhancement of submicron dust particles in the region of the magnetosphere between L values of 1.2 and 3.0. This is the basis for the proposal of a series of experiments to investigate the enhancement or even trapping of submicron lunar ejecta in this region. The subsequent interaction of this mass with the upper-lower atmosphere of the earth and possible geophysical effects can then be studied.

  13. The dynamical and radiative evolution of clumpy supernova ejecta

    NASA Technical Reports Server (NTRS)

    Anderson, M. C.; Jones, T. W.; Rudnick, L.; Tregillis, I. L.; Kang, Hyesung

    1994-01-01

    Numerical simulations describing the dynamical and radiative evolution of clumpy supernova ejecta are compared with observations of optical and radio emission knots in supernova remnant (SNR) Cassiopeia A. Three major phases are identified in the evolution of clumpy ejecta: a bow-shock phase, an instability phase, and a dispersal phase. The phenomenological and radiative signatures of each phase are discussed and compared with multi-epoch measurements of small-scale features in Cas A. Good correspondence is found between theory and observations. Both support the premise that compact radio emission features are controlled more by magnetic field amplification triggered in the instability phase than by in situ acceleration of new relativistic particles.

  14. Nucleosynthesis in the ejecta of neutron star mergers

    SciTech Connect

    Wanajo, Shinya; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru; Nishimura, Nobuya; Kyutoku, Koutarou

    2014-05-02

    We present, for the first time, the result of nucleosynthesis calculations based on the fully general-relativistic simulation of a NS-NS merger with approximate neutrino transport taken into account. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino-processed, resulting in a wide range of electron fraction, Y{sub e} ∼ 0.1-0.4. The mass-averaged abundance distribution of calculated nucleosynthesis yields is in remarkable agreement with the full-mass range (A ≈ 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers can be the origin of the Galactic r-process nuclei.

  15. Radiative Transfer Simulations of Neutron Star Merger Ejecta

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Hotokezaka, Kenta

    2013-10-01

    Mergers of binary neutron stars (NSs) are among the most promising gravitational wave (GW) sources. Next generation GW detectors are expected to detect signals from NS mergers within about 200 Mpc. The detection of electromagnetic wave (EM) counterparts is crucial to understanding the nature of GW sources. Among the possible EM emission from the NS merger, emission powered by radioactive r-process nuclei is one of the best targets for follow-up observations. However, predictions so far have not taken into account detailed r-process element abundances in the ejecta. We perform for the first time radiative transfer simulations of the NS merger ejecta including all the r-process elements from Ga to U. We show that the opacity of the NS merger ejecta is about κ = 10 cm2 g-1, which is higher than that of Fe-rich Type Ia supernova ejecta by a factor of ~100. As a result, the emission is fainter and lasts longer than previously expected. The spectra are almost featureless due to the high expansion velocity and bound-bound transitions of many different r-process elements. We demonstrate that the emission is brighter for a higher mass ratio of the two NSs and a softer equation of state adopted in the merger simulations. Because of the red color of the emission, follow-up observations in red optical and near-infrared (NIR) wavelengths will be the most efficient. At 200 Mpc, the expected brightness of the emission is i = 22-25 AB mag, z = 21-23 AB mag, and 21-24 AB mag in the NIR JHK bands. Thus, observations with wide-field 4 m- and 8 m-class optical telescopes and wide-field NIR space telescopes are necessary. We also argue that the emission powered by radioactive energy can be detected in the afterglow of nearby short gamma-ray bursts.

  16. Lunar Radar Scattering from Near-Surface Buried Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Ustinov, E. A.; Heggy, E.

    2009-12-01

    The Apollo 15, 16, and 17 core tubes show that the uppermost few meters of the lunar regolith are interlaced layers of a fine grained powders and blocky crater ejecta. The layers of crater ejecta have dielectric constants in the range of 7-9 while the fine-grained powders has dielectric constant on the order of 2.7. These differences in dielectric constant, in turn, create radar reflections that are both refracted and reflected back through the space-regolith interface. Note that for a dielectric constant of 2.7 for the lunar regolith, radio waves incident on the lunar surface at the angle of 30-degrees from the normal will propagate in the regolith at an angle of 18-degrees. At the limb, radio waves incident on the lunar surface at an angle near 90-degrees from the normal will propagate in the regolith at an angle of about 37-degrees. These angles are within the range where radar backscatter is in the quasi-specular regime. When these buried crater ejecta layers are modeled using Hagfors’ formulation (Hagfors, 1963), echo powers match the behavior observed for average lunar backscatter at centimeter wavelengths for higher (30° to 90°) angles of incidence. In addition, Hagfors et al. (1965) conducted an experiment where the Moon was illuminated at 23-cm wavelength with circular polarization and the differences were observed in orthogonal linear polarizations. Modeling of these observations and assuming again that the buried crater ejecta scatter in a quasi-specular manner, echo differences in horizontal and vertical linear polarizations are in relatively good agreement with the observations. The data from Chandrayaan Mini-RF radar, which operated at S-Band (13cm) wavelength, and the Lunar Reconnaissance Orbiter (LRO) Mini-RF radar, which is operating at S-Band and X-Band (4-cm) wavelengths, provide an opportunity for a new examination of whether radar backscatter from buried crater ejecta behaves like a quasi-specular scatter. These radars reproduce the

  17. Advance warning of high-speed ejecta based on real-time shock analyses: When fast-moving ejecta appear to be overtaking slow-moving shocks

    NASA Astrophysics Data System (ADS)

    Paulson, Kristoff W.; Taylor, David K.; Smith, Charles W.; Vasquez, Bernard J.; Hu, Q.

    2012-12-01

    Interplanetary shocks propagating into the magnetosphere can have significant space weather consequences. However, for many purposes it is the ejecta behind the shock that is the greater threat. The ejecta can be fast moving, impart significant momentum upon the magnetopause, and may contain a flux rope with strong southward magnetic fields. When transient solar wind activity strikes the magnetosphere, it can lead to enhanced magnetospheric currents and elevated radiation levels in the near-Earth environment. It is therefore desirable to use the observed shocks ahead of ejecta to predict any aspects of the approaching ejecta that can be predicted. We have examined 39 shocks observed by the Advanced Composition Explorer spacecraft in the years 1998 to 2003. Within the selection are shocks that were chosen because they appear to propagate significantly more slowly than the speed of the ejecta behind it. While appearing at first to be a contradiction, we show that the shocks are propagating across the radial direction and at significant angles to the velocity of the ejecta. These slow-moving shocks are actually precursors of fast-moving and potentially significant ejecta. Reversing the analysis, we are able to predict the peak speed of the ejecta well in advance of their observation, up to or in excess of 10 h following the shock crossing, when slow-moving shocks are seen, and we have incorporated this feature into our real-time shock analysis.

  18. A Shallow-Wave Model for the Emplacement of Layered Ejecta Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Fagents, S. A.; Baloga, S. M.; Glaze, L. S.

    2010-12-01

    Layered ejecta deposits of impact craters on Mars take three main morphological classifications: single-layer (SLE), multi-layer (MLE) and double-layer (DLE) ejecta deposits. It has long been thought that these deposits involved fluid-particulate flows, although there has been extensive debate as to the nature (vapor or liquid) and origin (atmospheric or crustal) of the fluid. We have modeled the emplacement of such deposits as overland flows originating from or near the crater rim using a shallow-wave formulation of momentum and volume conservation. Given the prodigious energy of impact, it is conjectured that the initial velocity uo at the crater rim exceeds √gho, where ho is the initial flow depth. When this is the case, the character of the solutions for flow depth h(r,t) and velocity u(r,t) fundamentally features two waves with different forward propagation speeds. The faster wave occupies an advancing outer zone, while both the fast and slow waves interact in an expanding inner zone. The ways in which these waves propagate and interact produce widely varying flow profiles that, in turn, explain the broad features of the three main ejecta deposit types. Measurements of the rampart runouts, heights and leading and trailing slopes were made for 27 ejecta deposits in Lunae Planum. The plane wave solutions suggest that the transit times are only a few minutes or less, with initial velocities in the range 20-100 m s-1. SLE deposits form preferentially when the flow duration is relatively short. MLE deposits, on the other hand, form when the flow is fed for a longer time and instability is promoted. All DLE and most MLE deposits seem to retain the two-component character of the flow. The slope of the advancing front is sensitive to the value of the friction factor C. Measurements of the leading slopes of SLE deposits (1-2°) give C-values two orders of magnitude less than those of terrestrial debris flows, suggesting vapor as a fluidizing agent rather than liquid

  19. Self-Shielding of Thermal Radiation by Chicxulub Ejecta: Firestorm or Fizzle?

    NASA Astrophysics Data System (ADS)

    Goldin, T. J.; Melosh, H. J.

    2008-12-01

    The discovery of soot within the Chicxulub ejecta sequence and the observed survival patterns of terrestrial organisms across the K/Pg boundary led to the hypothesis that thermal radiation from the atmospheric reentry of hypervelocity impact ejecta was sufficient to ignite global wildfires and cause biological catastrophe. Using a two-dimensional, two-phase fluid flow code, KFIX-LPL, we model the atmospheric reentry of distal Chicxulub ejecta and calculate the fluxes of thermal radiation throughout the atmosphere. The model treatment includes optical opacity, allowing us to examine the effects that greenhouse gases and the spherules themselves have on the transfer of thermal radiation to the ground. We model a simple Chicxulub scenario where 250-µm spherules reenter the atmosphere for an hour with maximum inflow after 10 minutes. Our models predict a pulse of thermal radiation at the ground peaking at ~6 kW/m2, analogous to an oven set on 'broil'. Previous calculations, which did not consider spherule opacity, yielded >10 kW/ m2 sustained over an hour or more and such an extended pulse of high fluxes is thought to be required for wildfire ignition. However, our model suggests a half-hour in which fluxes exceed the solar norm and only a few minutes >5 kW/m2. Large fluxes are not sustained in our models due to the increasingly opaque cloud of settling spherules, which increasingly blocks the transmission of thermal radiation from the decelerating spherules above. Hence, the spherules themselves limit the magnitude and duration of thermal radiation at the ground. Such self-shielding may have prevented the ignition of global wildfires following Chicxulub and limited other environmental effects. Keeping the impact wildfire hypothesis will require a mechanism to override this effect. A nonuniform distribution of spherule reentry may produce gaps in the opaque spherule layer through which the downward thermal radiation may be concentrated. Additionally, an opaque cloud

  20. Neutron Star Kicks and their Relationship to Supernovae Ejecta Mass

    NASA Astrophysics Data System (ADS)

    Bray, J. C.; Eldridge, J. J.

    2016-05-01

    We propose a simple model to explain the velocity of young neutron stars. We attempt to confirm a relationship between the amount of mass ejected in the formation of the neutron star and the `kick' velocity imparted to the compact remnant resulting from the process. We assume the velocity is given by vkick = α (Mejecta/Mremnant) + β . To test this simple relationship we use the BPASS (Binary Population and Spectral Synthesis) code to create stellar population models from both single and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply different α and β values and three different `kick' orientations then record the resulting velocity probability distributions. We find that while a single star population provides a poor fit to the observational data, the binary population provides an excellent fit. Values of α = 70 km s-1 and β = 110 km s-1 reproduce the Hobbs et al. (2005) observed 2-dimensional velocities and α = 70 km s-1 and β = 120 km s-1 reproduce their inferred 3-dimensional velocity distribution for nearby single neutron stars with ages less than 3 Myrs. After testing isotropic, spin-axis aligned and orthogonal to spin-axis `kick' orientations, we find no statistical preference for a `kick' orientation. While ejecta mass cannot be the only factor that determines the velocity of supernovae compact remnants, we suggest it is a significant contributor and that the ejecta based `kick' should replace the Maxwell-Boltzmann velocity distribution currently used in many population synthesis codes.

  1. Life near the Roche limit - Behavior of ejecta from satellites close to planets

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A. R.; Burns, J. A.

    1980-01-01

    A study of the dynamics of nearby debris from impact craters was made to explain the distinctive features seen on Phobos, Deimis, and Amalthea. The planetary tides and satellite rotation were considered, and the usual pseudo-energy (Jacobi) integral was numerically calculated in the framework of a restricted body problem where satellites are modelled as triaxial ellipsoids rather than point masses. Iso-contours of this integral show that Deimos and Amalthea are entirely closed by Roche lobes, and the surfaces of their model ellipsoids lie nearly along equipotentials. Presently, the surface of Phobos overflows its Roche lobe, except for regions within a few km of the sub-Mars and anti-Mars points. The behavior of crater ejecta from the satellites of Mars were also examined by numerical integration of trajectories for particles leaving their surfaces in the equatorial plane.

  2. NUMERICAL SIMULATIONS OF SUPERNOVA DUST DESTRUCTION. II. METAL-ENRICHED EJECTA KNOTS

    SciTech Connect

    Silvia, Devin W.; Smith, Britton D.; Shull, J. Michael E-mail: michael.shull@colorado.edu

    2012-03-20

    Following our previous work, we investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We vary the relative velocity between the reverse shock and ejecta clump to explore the effects of shock heating and cloud compression. Because supernova ejecta will be metal-enriched, we consider gas metallicities from Z/Z{sub Sun} = 1 to 100 and their influence on the cooling properties of the cloud and the thermal sputtering rates of embedded dust grains. We post-process the simulation output to calculate grain sputtering for a variety of species and size distributions. In the metallicity regime considered in this paper, the balance between increased radiative cooling and increased grain erosion depends on the impact velocity of the reverse shock. For slow shocks (v{sub shock} {<=} 3000 km s{sup -1}), the amount of dust destruction is comparable across metallicities or in some cases is decreased with increased metallicity. For higher shock velocities (v{sub shock} {>=} 5000 km s{sup -1}), an increase in metallicity from Z/Z{sub Sun} = 10 to 100 can lead to an additional 24% destruction of the initial dust mass. While the total dust destruction varies widely across grain species and simulation parameters, our most extreme cases result in complete destruction for some grain species and only 44% dust mass survival for the most robust species. These survival rates are important in understanding how early supernovae contribute to the observed dust masses in high-redshift galaxies.

  3. Dating Kaali Crater (Estonia) based on charcoal emplaced within proximal ejecta blanket

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Wild, Eva Maria; Huber, Matthew S.; Wisniowski, Tomasz; Paavel, Kristiina; Jõeleht, Argo; Välja, Rudolf; Plado, Jüri; Kriiska, Aivar; Wilk, Jakob; Zanetti, Michael; Geppert, Wolf D.; Kulkov, Alexander; Steier, Peter; Pirkovic, Irena

    2015-04-01

    The Kaali impact field consists of nine identified craters located on the Saaremaa Island in Estonia. The largest crater is 110 m in diameter (centered around 58°22'21.94"N, 22°40'09.91" E). It was formed by impact of an IAB iron meteoroid into Silurian dolomite target rocks covered by up to a few meters of glacial till (Veski et al. 2007). The age of the Kaali impact structure is still a matter of debate, and the estimates provided by different authors vary considerably between ~6400 BC (Raukas et al. 1995, Moora et al. 2012) and ~400 BC (Rasmussen et al. 2000, Veski et al. 2001). These ages were derived by 14C dating of marker horizons, characterized by a slightly elevated iridium content within the nearby Piila bog yielding a calibrated age of 800-400 BC (Rasmussen et al. 2000, Veski et al. 2001) and occurrences of glassy siliceous material in the Piila bog (~6400 BC: Raukas et al. 1995) or iron microspherules in an organic-rich layer of the Reo gravel pit (6400 BC: Moora et al. 2012). However, the source of the foreign material within those layers was never unequivocally connected with the Kaali crater. 14C dating of material from post-impact organic sediments within Kaali impact craters yielded ages between 1800-1500 BC (Saarse et al. 1991, Veski et al. 2004) and 1450-400 BC (Aaloe et al. 1963). These dates underestimate the age of impact as organic sediments within the crater started to form at unknown period after the impact. On the other hand, Veski et al. (2004) suggested a reservoir effect that might have caused artificially "aging" of the organic matter because the crater was emplaced within Silurian dolomite which is rich in old carbon. The aim of this study is to determine the age of the Kaali crater by 14C dating of organic material covered by the continuous layer of proximal ejecta. This research was conducted in conjunction with a new structural investigation of Kaali Main (Zanetti et al. 2015). Ten samples collected from different locations

  4. NUCLEOSYNTHETIC LAYERS IN THE SHOCKED EJECTA OF CASSIOPEIA A

    SciTech Connect

    Isensee, Karl; Olmschenk, Greg; Rudnick, Lawrence; DeLaney, Tracey; Rho, Jeonghee; Smith, J. D.; Reach, William T.; Kozasa, Takashi; Gomez, Haley E-mail: larry@astro.umn.edu E-mail: jrho@sofia.usra.edu E-mail: reach@ipac.caltech.edu E-mail: haley.morgan@astro.cf.ac.uk

    2012-10-01

    We present a three-dimensional analysis of the supernova remnant Cassiopeia A using high-resolution spectra from the Spitzer Space Telescope. We observe supernova ejecta both immediately before and during the shock-ejecta interaction. We determine that the reverse shock of the remnant is spherical to within 7%, although the center of this sphere is offset from the geometric center of the remnant by 810 km s{sup -1}. We determine that the velocity width of the nucleosynthetic layers is {approx}1000 km s{sup -1} over 4000 arcsec{sup 2} regions, although the velocity width of a layer along any individual line of sight is <250 km s{sup -1}. Si and O, which come from different nucleosynthetic layers in the progenitor star, are observed to be coincident in velocity space in some directions, but segregated by up to {approx}500 km s{sup -1} in other directions. We compare these observations of the nucleosynthetic layers to predictions from supernova explosion models in an attempt to constrain such models. Finally, we observe small-scale, corrugated velocity structures that are likely caused during the supernova explosion itself, rather than hundreds of years later by dynamical instabilities at the remnant's reverse shock.

  5. Modeling The Structure Of Shocked Ejecta In Tycho's Snr

    NASA Astrophysics Data System (ADS)

    Warren, Donald; Blondin, J.; Borkowski, K.; Reynolds, S.

    2010-05-01

    SN 1572 is a famous, and nearby, example of a type Ia supernova; its remnant, Tycho's SNR, has been studied extensively by the Chandra X-ray observatory. Chandra's images show the fluffy structure of the ejecta, potentially due to Rayleigh-Taylor fluid instabilities. The absence of a sharp cutoff in limb brightening suggests that either the reverse shock has been disrupted by these instabilities or that only the Rayleigh-Taylor fingers are radiating in the X-ray band. This project attempts to model these features of Tycho's SNR, using the exponential ejecta profile of Dwarkadas and Chevalier (1998); the hydrodynamics code was augmented by incorporating ionization timescale. The simulation was performed in 3-D, allowing for line-of-sight integration to model the effects Chandra observes and for unfettered instability growth. Further, in order to avoid preferential selection of small angular modes, the simulation was run over all 4π steradians; coordinate singularities at the poles were avoided by using a specialized Yin-Yang grid. We present the results from this simulation, consider the role of ionization timescale in modeling Chandra's observations, and offer suggestions for refinements and changes to the model used.

  6. Impact crater degradation on venusian plains

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Arvidson, R. E.; Phillips, R. J.

    1994-02-01

    In venusian plains, impact craters without extensive low backscatter ejecta deposits are more likely to have low backscatter floors, be embayed by volcanic deposits, and exhibit fractures as compared to craters with extensive low backscatter ejecta. We interpret these trends as evidence of ongoing degradation of low backscatter ejecta by aeolian activity, weathering, and volcanism. Using a crater age sequence based on extent of preservation of low backscatter ejecta, together with Monte Carlo simulations, we find that tectonic activity has extended over a longer time period than volcanism.

  7. Unburned Material in the Ejecta of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Folatelli, Gastón; Phillips, M. M.; Morrell, Nidia; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi; Stritzinger, Maximilian; Burns, Christopher R.; Hamuy, Mario; Mazzali, Paolo; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; González, Sergio; Roth, Miguel; Salgado, Francisco; Freedman, W. L.; Madore, Barry F.; Persson, S. E.; Suntzeff, Nicholas B.

    2012-01-01

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at ≈6300 Å which is attributed to C II λ6580. An alternative identification of this absorption as Hα is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 Å absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely ≈1000 km s-1 above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10-3 to 10-2 M ⊙. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for objects which show carbon. This paper includes data gathered with

  8. Molecules and Dust in the Humunculus: Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, T.

    2007-01-01

    In the 18401s, Eta Carinae ejected massive amounts of nitrogen-rich, carbon- and oxygen-poor material which we see as the hourglass-shaped Homunculus. With the Hubble Space Telescope Imaging Spectrograph, we detected multiple shells in line of sight, the most massive and intriguing being at -513 km/s. Numerous lines of Fe I, Fe II, Ni II, Cr II, Sc II, Sr II, Ti II, V II, etc are identified as well as nearly a thousand H2 lines. The metals have energy level populations consistent with 760K and excited by photons < 8.5eV. We have now identified CH, CH+, OH, and NH at the same velocity, but at 60K, suggesting stratification in the outer ejecta. Analysis of the interior, photoionized emission hourglass structure, known as the Little Homunculus, indicates He, N overabundances and C, 0 underabundances (approximately 1/80 solar). A skirt of neutral and partially ionized gas lies between the lobes of the hourglasses. A portion is seen as the Strontium Filament, a metal- ionized, neutral hydrogen structure. Relative abundances of TiNi are 1/80 solar, CrNi are 1/20 solar. This complex of ejecta appears to have been ejected by a massive star(s) at the end of the hydrogen-burning phase when convection led to overproduction of nitrogen at the expense of carbon and oxygen. Given the underabundances of carbon and oxygen, the chemistry of this system is quite different to the normal ISM, leading to a nitrogen- dominated chemistry. What little C and 0 that is formed is immediately taken up by SiO and Al0 molecules leading to a very different gas/dust ratio than the normal ISM. Dust in this ejecta is abundance, but known to be very grey in character. Observations with HST/STIS and VLT/UVES will be presented along with simple physical models and CLOUD modeling. Insight by the participants will be solicited.

  9. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Folatelli, Gaston; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi; Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; Gonzalez, Sergio; Roth, Miguel; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E.; Hamuy, Mario; Mazzali, Paolo; Boldt, Luis; Contreras, Carlos; Salgado, Francisco; Suntzeff, Nicholas B.

    2012-01-20

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at Almost-Equal-To 6300 A which is attributed to C II {lambda}6580. An alternative identification of this absorption as H{alpha} is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 A absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely Almost-Equal-To 1000 km s{sup -1} above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10{sup -3} to 10{sup -2} M{sub Sun }. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for

  10. Is the Ejecta of ETA Carinae Overabundant or Overexcited

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Davidson, Kris; Johansson, Sveneric; Damineli, Augusto; Ishibashi, Kaxunori; Corcoran, Michael; Hartman, Henrick; Viera, Gladys; Nielsen, Krister

    2003-01-01

    The ejecta of Eta Carinae, revealed by HST/STIS, are in a large range of physical conditions. As Eta Carinae undergoes a 5.52 period, changes occur in nebular emission and nebular absorption. "Warm" neutral regions, partially ionized regions, and fully ionized regions undergo significant changes. Over 2000 emission lines, most of Fe-like elements, have been indentified in the Weigelt blobs B and D. Over 500 emission lines have been indentified in the Strontium Filament. An ionized Little Homunculus is nestled within the neutral-shelled Homunculus. In line of sight, over 500 nebular absorption lines have been identified with up to twenty velocity components. STIS is following changes in many nebular emission and absorption lines as Eta Carinae approaches the minimum, predicted to be in June/July 2003, during the General Assembly. Coordinated observations with HST, CHANDRA, RXTE, FUSE, UVES/VLT, Gemini and other observatories are following this minimum.

  11. The Ejecta of Eta Carinae as Studied by STIS

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The Space Telescope Imaging Spectrograph has been used to study the emission and absorption spectra of ejecta surrounding Eta Carinae. Discussion will be presented on the overall structure of the Homunculus, the Weigelt blobs and the Strontium filament. Three visits have been accomplished with the Position Angle precisely the same and covering the Central Source and Weigelt Blobs B and D. Deep spectra have been done at several positions to obtain the overall velocity structure of the Homunculus and the disk region. Mapping has been done with the STIS medium dispersion gratings set near H beta and H alpha. We have obtained full coverage of the strontium filament from 1640 Angstroms to 10300 Angstroms. The structure and physical properties will be described.

  12. Reduction of ejecta from asperities on a metal surface upon shock breakout

    NASA Astrophysics Data System (ADS)

    Georges, William; Loiseau, Jason; Higgins, Andrew; Tyler, Troy; Zimmermann, Joerg

    2015-06-01

    Ejecta can be produced when a shock breaks out of a metallic surface with imperfections. The amount of material ejected depends on the strength of the shock and the surface roughness. This work focuses on the differences between square wave and Taylor wave loading, as well as examining techniques to reduce the amount of ejecta produced. In the case of square wave loading, an explosively driven flyer was launched onto an aluminum target featuring machined V-grooves on its surface. The velocity of ejecta launched into vacuum was monitored by photon Doppler velocimetry (PDV). The Taylor wave was produced by detonating a high explosive next to the aluminum target and the ejecta again monitored with PDV. To attempt to suppress the ejecta, the shock breakout pressure was reduced by the addition of an air gap. A nearly shock-less compression was also achieved by evacuating the space between the explosive and the target.

  13. A 3D view of the SN 1987A Ejecta

    NASA Astrophysics Data System (ADS)

    Fransson, Claes

    2013-10-01

    SN 1987A represents the most important source of information about the explosion physics of any SN. For this the morphology of the ejecta is together with the radioactive isotopes the best diagnostics. From HST imaging in H-alpha and NIR AO imaging in Si/Fe at 1.64 mu one finds completely different morphologies, with the 1.64 mu image dominated by the processed core and H-alpha by the surrounding H envelope. Besides Cas A (Type IIb), this is the only core collapse SN where we have this information. We propose to use STIS to map the debris in SN 1987A in 3D with the best possible angular resolution. There has been no such STIS map since 2004, while the physics of the emission has undergone some profound changes. From being powered by radioactivity the energy input is now dominated by X-rays from the collision with the circumstellar ring. Compared to 2004 the 3D structure can be determined with a factor of 3 better spatial resolution and also better spectral resolution. The 3D structure in H-alpha can also give independent clues to where the large mass of dust detected by Herschel is located as well as its properties. It also gives a complementary view of the ejecta to the future ALMA imaging in CO which will have similar spatial resolution. Besides the debris we will be able to probe the 10,000 km/s reverse shock close to the ring in H-alpha. By observing this also in Ly-alpha one may test different emission processes which have been proposed, as well as probing the region producing the synchrotron emission observed by ALMA. The opportunity to observe the SN in this stage will never come back

  14. Fresh lunar impact craters - Review of variations with size

    NASA Technical Reports Server (NTRS)

    Howard, K. A.

    1974-01-01

    Thirty-three morphologic characteristics are reviewed for fresh lunar impact craters wider than 1 km. Bar graphs express the way each characteristic varies with crater size. The features are grouped as crater structure, ejecta, and downhill flow features. Major structural transitions occur at diameters of about 15 and 200 km. Details of the ejecta blanket, which include several kinds of lineations, dunelike ridges, troughs, and lobes, reflect different transport regimes in the ejecta. Some materials at larger craters flowed downhill in lavalike fashion after the ejecta was deposited; the lavalike materials are probably impact melt.

  15. Impact Crater Size and Evolution: Expectations for Deep Impact

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Anderson, J. L. B.; Heineck, J. T.

    2002-01-01

    Deep Impact will involve a unique cratering experiment designed to probe below the surface of a comet. Laboratory experiments provide critical data for crater scaling and evolution of the ejecta curtain. Additional information is contained in the original extended abstract.

  16. Flow Ejecta and Slope Landslides in Small Crater - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of a moderately small impact crater on Mars was taken by the Mars Global Surveyor Orbiter Camera (MOC) on October 17, 1997 at 4:11:07 PM PST, during MGS orbit 22. The image covers an area 2.9 by 48.4 kilometers (1.8 by 30 miles) at 9.6 m (31.5 feet) per picture element, and is centered at 21.3 degrees N, 179.8 degrees W, near Orcus Patera. The MOC image is a factor of 15X better than pervious Viking views of this particular crater.

    The unnamed crater is one of three closely adjacent impact features that display the ejecta pattern characteristic of one type of 'flow-ejecta' crater. Such patterns are considered evidence of fluidized movement of the materials ejected during the cratering event, and are believed to indicate the presence of subsurface ice or liquid water.

    Long, linear features of different brightness values can be seen on the on the steep slopes inside and outside the crater rim. This type of feature, first identified in Viking Orbiter images acquired over 20 years ago, are more clearly seen in this new view (about 3 times better than the best previous observations). Their most likely explanation is that small land or dirt slides, initiated by seismic or wind action, have flowed down the steep slopes. Initially dark because of the nature of the surface disturbance, these features get lighter with time as the ubiquitous fine, bright dust settles onto them from the martian atmosphere. Based on estimates of the dust fall-out rate, many of these features are probably only a few tens to hundreds of years old. Thus, they are evidence of a process that is active on Mars today.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner

  17. Geochemistry of K/T-boundary Chicxulub ejecta of NE-Mexico

    NASA Astrophysics Data System (ADS)

    Harting, M.; Deutsch, A.; Rickers, K.

    2003-12-01

    Many K/T sections all over the world contain impact spherules supposed related to the Chicxulub event. This study focus on ejecta layers in NE-Mexican profiles. We carried out systematic XRF and synchrotron radiation measurements on such spherules at the HASYLAB and ANKA facilities as well as microprobe analyses (CAMECA SX50). Area scans on tektite-like material of the Bochil section reveal a pronounced zonation in the inner part, dominated by Ba and Sr whereas secondary CaCO3 dominates in the altered margin. The composition of the spherules from the Mesa-Juan Perez section differ significantly from the Beloc (Haiti) and Bochil tektite glasses. At Mesa-Juan Perez, spherules are either extremely rich in Fe and Ca or consist of smectite, some of those carry carbonate inclusions. Yttrium, La and Ce are zoned within the smectite with concentrations below the detection limit and up to 20 æg/g The Ca-rich inclusions are enriched in Y (up to 35 æg/g) and La (18 æg/g) and, compared to the surrounding smectite, also in Ce (up to 34 æg/g). The Ce enrichment in spherules from the Mesa-Juan Perez section indicates impact-melted carbonates of the Yucatan carbonate platform as possible precursor rocks. Recent investigations focus on the chemistry of melt rock samples from the PEMEX wells Yucatan-6 and Chicxulub-1: Their average composition (mean of 250 data points in wt-percent ) is 61.6 for SiO2, 0.16 for TiO2, 18.07 for Al2O3, 0.01 for Cr2O3, 1.98 for Na2O, 1.5 for FeO, 0.05 for MnO, 0.01 for NiO, 0.31 for MgO, 9.14 for K2O, 3.44 for CaO, and 0.01 for SO2. These results are in some cases comparable to the geochemistry of ejecta glasses, e.g. from Beloc (Haiti).

  18. Propagation Characteristics of CMEs Associated Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, Roksoon; Gopalswamy, N.; Cho, K.; Moon, Y.; Yashiro, S.

    2012-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counter parts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, speed, and direction parameter, D, that quantifies the propagation direction of a CME. For the 54 CDAW events, we found several properties of the CMEs as follows: (1) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly to the Earth than the EJ-associated CMEs; (2) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; (3) the mean speed of MC-associated CMEs (946 km/s) is faster than that of EJ-associated CMEs (771 km/s). For seven very fast CMEs (> 1500 km/s), all CMEs with large D (> 0.4) are associated with MCs and the CMEs with small D are associated with EJs. On the basis of these results, we suggest that the CME trajectory essentially decides the observed ICME structure.

  19. Atypical dust species in the ejecta of classical novae

    NASA Astrophysics Data System (ADS)

    Helton, L. A.; Evans, A.; Woodward, C. E.; Gehrz, R. D.

    2011-03-01

    A classical nova outburst arises from a thermonuclear runaway in the hydrogen-rich material accreted onto the surface of a white dwarf in a binary system. These explosions can produce copious amounts of heavy element enriched material that are ejected violently into the surrounding interstellar medium. In some novae, conditions in the ejecta are suitable for the formation of dust of various compositions, including silicates, amorphous carbon, silicon carbide, and hydrocarbons. Multiple dust grain types are sometimes produced in the same system. CO formation in novae may not reach saturation, thus invalidating the usual paradigm in which the C:O ratio determines the dust species. A few novae, such as V705 Cas and DZ Cru, have exhibited emission features near 6, 8, and 11 μmthat are similar to "Unidentified Infrared" (UIR) features, but with significant differences in position and band structure. Here, we present Spitzer IRS spectra of two recent dusty novae, V2361 Cyg and V2362 Cyg, that harbor similar peculiar emission structures superimposed on features arising from carbonaceous grains. In other astronomical objects, such as star forming regions and young stellar objects, emission peaks at 6.2, 7.7, and 11.3 μmhave been associated with polycyclic aromatic hydrocarbon (PAH) complexes. We suggest that hydrogenated amorphous carbon (HAC) may be the source of these features in novae based upon the spectral behavior of the emission features and the conditions under which the dust formed.

  20. Modeling of fluidized ejecta emplacement over digital topography on Venus

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey R.; Gaddis, Lisa

    The FLOW computer model of McEwen and Malin (1989) modified for application to the study of Venus fluidized ejecta blankets (FEBs) demonstrates that relatively low viscosities, yield strengths, and initial velocities are required to duplicate the observed flow paths of the outflow materials. The model calculates the velocities and simulated flow paths of gravity flows over Magellan topography. The model is formulated to determine flow movements from initial conditions, gravitational acceleration, and resistance to motion as described by Coulomb, viscous, and turbulent resistance forces. Successful duplication of observed FEB flow paths has been achieved for the FEB craters Addams, Isabella, and Cochran. When used as a simple energy-line model, the model requires low coefficients of friction to extend FEBs to near their observed termini in the synthetic aperture radar (SAR) imagery, although the resulting straight flow lines do not follow the observed flow paths well. For Bingham flow, the model requires low values of viscosity and yield strength which are more similar to pyroclastic or debris flows than basaltic lavas. Flows of 100-m depth require 1 to 2 orders of magnitude higher values of both viscosity and yield strength than 10-m-deep flows. The complicated nature of the flow lines for the low velocity model suggests that FEBs were probably emplaced under variably laminar and turbulent flow conditions, where underlying topography influenced both the direction and energy of flow materials.

  1. Structural uplift and ejecta thickness of lunar mare craters: New insights into the formation of complex crater rims

    NASA Astrophysics Data System (ADS)

    Krüger, Tim; Kenkmann, Thomas

    2015-04-01

    Most complex impact craters on solid planetary surfaces throughout the Solar System exhibit elevated crater rims similar to the elevated crater rims of simple craters. In principal the final elevation of the crater rim is due to the deposition of ejecta on the structurally uplifted bedrock of the pre-impact surface. For simple craters the elevated crater rim is due to two well understood factors: (i) Emplacement of the coherent proximal ejecta material at the transient cavity rim (overturned flap) [1]. (ii) Structural uplift of the pre-impact surface in the proximity of the transient cavity [1, 2]. The amount of structural uplift at the rim of simple craters is due to plastic thickening of the target rock, the emplacement of interthrust wedges and/or the injection of dike material in the underlying target [1, 2, 3, 4]. Both factors, (i) and (ii), are believed to equally contribute to the structural uplift of simple craters. Larger craters have complex morphologies and the crater's extent may considerably exceed that of the transient cavity due to gravity-driven adjustment movements. For instance, the Ries crater's final diameter is twice of its transient cavity size. It is expected that both ejecta thickness and structural uplift decrease with increasing distance from the rim of the transient crater. For lunar craters the continuous ejecta extends up to 2 crater radii from the crater center. The ejecta blanket thickness ET at the rim crest of the transient crater (which is inside the final crater) is a function of the distance r from the crater center, with RT as the radius of the transient crater [2, 6, 7] and is expressed by the following function: (1) ET = 0.033 RT (r/RT)^-3.0 for r ≥ RT [5, 6] The structural uplift is largest at the transient cavity rim and gets rapidly smaller with increasing distance to the crater center and disappears after 1.3 - 1.7 crater radii [1]. These circumstances raise the question, how elevated rims of complex craters form? Based

  2. Analysis of ejecta fate from proposed man-made impactors into near-Earth objects --- a NEOShield study

    NASA Astrophysics Data System (ADS)

    Schwartz, S.; Michel, P.; Jutzi, M.

    2014-07-01

    Asteroids measuring 100 meters across tend to impact the Earth once every 5,000 years on average [1]. Smaller bodies enter into the Earth's atmosphere more frequently, but may detonate before reaching the surface. Conversely, impacts from larger bodies are more rare [2], but can come with devastating global consequences to living species. In 2005, a United States Congressional mandate called for NASA to detect, by 2020, 90 percent of near-Earth objects (NEOs) having diameters of 140 meters or greater [3]. One year prior, ESA's Near-Earth Object Mission Advisory Panel (NEOMAP) recommended the study of a kinetic impactor mission as a priority in the framework of NEO risk assessment [4]. A ''Phase-A'' study of such a mission, Don Quixote, took place at ESA until 2007. In accordance with NEOMAP and with the Target NEO Global Community's recommendations in 2011 [5], the NEOShield Project is being funded for 3.5 years by the European Commission in its FP7 program. NEOShield began in 2012 and is primarily, but not exclusively, a European consortium of research institutions and engineering industries that aims to analyze promising mitigation options and provide solutions to the critical scientific and technical obstacles involved in confronting threats posed by the small bodies in the neighborhood of the Earth's orbit [6]. To further explore the NEO threat mitigation via the strategy of kinetic impact, building upon the Don Quixote study, the idea is to target a specific NEO for impact and attempt to quantify the response. How long do ejecta remain aloft and where do they end up? Fragments that are ejected at high speeds escape, but what about material moving at or near the escape speed of the NEO or that suffer energy-dissipating collisions after being ejected? Where would be a ''safe'' location for an observing spacecraft during and subsequent to the impact? Here, we outline the early phases of an ongoing numerical investigation of the fate of the material ejected from a

  3. X-Ray Heating of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Larsson, Josefin; Fransson, Claes; Kirshner, Robert; Challis, Peter; McCray, Richard

    2012-01-01

    Analysis of Hubble Space Telescope Band R band images from 1994 to 2009 show that the optical luminosity of SN 1987A has transitioned from being powered by radioactive decay of Ti-44 to energy deposited by X-rays produced as the ejecta interacts with the surrounding material (Larsson et al. 2011, Nature, 474, 484). The B and R band flux from the densest, central parts of the ejecta followed the expected exponential decline until 2001 (about day 5000) when the flux in these bands started increasing, more than doubling by the end of 2009. This increase is the result of heat deposited by X-rays from the shock interaction of the fast-moving outer ejecta with the inner circumstellar ring. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyze the structure and chemistry of the vanished star.

  4. Systematic X-ray Mapping of Metal-Rich Ejecta in Bright Supernova Remnants.

    NASA Astrophysics Data System (ADS)

    Schenck, Andrew; Park, Sangwook; Bhalerao, Jayant; Post, Seth; Alan, Neslihan; Abualfoul, Mujahed

    2015-01-01

    We apply our adaptive mesh technique coupled with simple automated NEI spectral modelings for archival Chandra data of several bright supernova remnants (SNRs) DEML71, N132D, E0102-72.3, G292.0+1.8, G299.2-2.9, Kepler, and Tycho. Based on the chi-square distributions of these model fits, we identify regions in which metal elements are enhanced compared to the circumstellar/interstellar abundances, and thus map over-abundant ejecta regions throughout these SNRs. With these maps we also reveal spatial structures of the individual ejecta elements O, Ne, Mg, Si, and Fe. We find that this simple chi-square mapping is effective to study spatial distributions of ejecta elements without performing extensive spectral model fits for individual sub-regions in SNRs. These ejecta maps may also be useful to reveal global structures such as the contact discontinuity. We present our preliminary results demonstrating the utility of this method.

  5. Comprehensive investigation of the dynamics of micron and submicron lunar ejecta in heliocentric space

    SciTech Connect

    Hargrave, A.D.

    1984-01-01

    The forces which act on micron and submicron dust particles in interplanetary space are studied in detail. Particular attention is given to Mie scattering theory as it applies to the calculation of the force due to radiation pressure. All of the forces are integrated into a computer model to study the heliocentric orbits of lunar ejecta. It is shown that lunar ejecta contribute to a geocentric dust cloud, as well as to a heliocentric dust belt.

  6. Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques

    NASA Technical Reports Server (NTRS)

    McDonald, G.; Storrie-Lombardi, M.; Nealson, K.

    1999-01-01

    The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.

  7. A CHANDRA X-RAY SURVEY OF EJECTA IN THE CASSIOPEIA A SUPERNOVA REMNANT

    SciTech Connect

    Hwang, Una; Laming, J. Martin E-mail: laming@nrl.navy.mil

    2012-02-20

    We present a survey of the X-ray-emitting ejecta in the Cassiopeia A supernova remnant (SNR) based on an extensive analysis of over 6000 spectral regions extracted on 2.''5-10'' angular scales using the Chandra 1 Ms observation. We interpret these results in the context of hydrodynamical models for the evolution of the remnant. The distributions of fitted temperature and ionization age, and the implied mass coordinates, are highly peaked and suggest that the ejecta were subjected to multiple secondary shocks following reverse shock interaction with ejecta inhomogeneities. Based on the fitted emission measure and element abundances, and an estimate of the emitting volume, we derive masses for the X-ray-emitting ejecta and also show the distribution of the mass of various elements over the remnant. An upper limit to the total shocked Fe mass visible in X-rays appears to be roughly 0.13 M{sub Sun }, which accounts for nearly all of the mass expected in Fe ejecta. We find two populations of Fe ejecta, that associated with normal Si burning and that possibly associated with {alpha}-rich freezeout, with a mass ratio of approximately 2:1. Essentially all of the observed Fe (both components) lies well outside the central regions of the SNR, possibly having been ejected by hydrodynamic instabilities during the explosion. We discuss this and its implications for the neutron star kick.

  8. Low-Energy Impacts onto Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Seward, L. M.; Colwell, J. E.

    2011-12-01

    Collisions in space are vital to the formation and evolution of planetary bodies such as protoplanetary disks, planetary rings, the Kuiper belt, and the asteroid belt. Low-velocity impacts are common in planetary rings and protoplanetary disks. Saturn ring particles collide at speeds less than 1 m/s throughout most of the main rings, with more energetic collisions occurring in the dynamically stirred F ring. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into regolith. We use direct measurement of ejecta mass and high resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target size distribution, regolith depth, and target relative density, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. Our results show that the production of ejecta mass increases as a function of impact kinetic energy. The production of mass also increases as a function of target relative density to a point of maximum ejecta production, beyond which the trend reverses.

  9. Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.; Campbell, Donald B.; Morgan, Gareth A.; Carter, Lynn M.; Nolan, Michael C.; Chandler, John F.

    2015-04-01

    We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had similar viewing geometries. Processing of both datasets with better image focusing and co-registration techniques, and summing over multiple looks, yields maps with 1-2 km spatial resolution and improved signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest for future spacecraft landings. The Earth-based radar images reveal multiple examples of tessera mantling by impact "parabolas" or "haloes", and can extend mapping of locally thick material from Magellan data by revealing thinner deposits over much larger areas. Of particular interest is an ejecta deposit from Stuart crater that we infer to mantle much of eastern Alpha Regio. Some radar-dark tessera occurrences may indicate sediments that are trapped for longer periods than in the plains. We suggest that such radar information is important for interpretation of orbital infrared data and selection of future tessera landing sites.

  10. Evidence for Crater Ejecta on Venus Tessera Terrain from Earth-Based Radar Images

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Campbell, Donald B.; Morgan, Gareth A.; Carter, Lynn M.; Nolan, Michael C.; Chandler, John F.

    2014-01-01

    We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had similar viewing geometries. Processing of both datasets with better image focusing and co-registration techniques, and summing over multiple looks, yields maps with 1-2 km spatial resolution and improved signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest for future spacecraft landings. The Earth-based radar images reveal multiple examples of tessera mantling by impact ''parabolas'' or ''haloes'', and can extend mapping of locally thick material from Magellan data by revealing thinner deposits over much larger areas. Of particular interest is an ejecta deposit from Stuart crater that we infer to mantle much of eastern Alpha Regio. Some radar-dark tessera occurrences may indicate sediments that are trapped for longer periods than in the plains. We suggest that such radar information is important for interpretation of orbital infrared data and selection of future tessera landing sites.

  11. OPACITIES AND SPECTRA OF THE r-PROCESS EJECTA FROM NEUTRON STAR MERGERS

    SciTech Connect

    Kasen, Daniel; Barnes, Jennifer; Badnell, N. R.

    2013-09-01

    Material ejected during (or immediately following) the merger of two neutron stars may assemble into heavy elements through the r-process. The subsequent radioactive decay of the nuclei can power transient electromagnetic emission similar to, but significantly dimmer than, an ordinary supernova. Identifying such events is an important goal of future optical surveys, offering new perspectives on the origin of r-process nuclei and the astrophysical sources of gravitational waves. Predictions of the transient light curves and spectra, however, have suffered from the uncertain optical properties of heavy ions. Here we argue that the opacity of an expanding r-process material is dominated by bound-bound transitions from those ions with the most complex valence electron structure, namely the lanthanides. For a few representative ions, we run atomic structure models to calculate the radiative transition rates for tens of millions of lines. The resulting r-process opacities are orders of magnitude larger than that of ordinary (e.g., iron-rich) supernova ejecta. Radiative transport calculations using these new opacities suggest that the light curves should be longer, dimmer, and redder than previously thought. The spectra appear to be pseudo-blackbody, with broad absorption features, and peak in the infrared ({approx}1 {mu}m). We discuss uncertainties in the opacities and attempt to quantify their impact on the spectral predictions. The results have important implications for observational strategies to find and study the radioactively powered electromagnetic counterparts to neutron star mergers.

  12. Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Moon, Y.-J.; Yashiro, S.

    2013-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km s-1) is faster than that of EJ-associated CMEs (771 km s-1). For seven very fast CMEs (≥ 1500 km s-1), all CMEs with large D (≥ 0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.

  13. Nebular Hydrogen Absorption in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Space Telescope Imaging Spectrograph (STIS) observations of Eta Carinae and immediate ejecta reveal narrow Balmer absorption lines in addition to the nebular-scattered broad P-Cygni absorptions. The narrow absorption correlates with apparent disk structure that separates the two Homunculus lobes. We trace these features about half way up the Northern lobe until the scattered stellar Balmer line doppler-shifts redward beyond the nebular absorption feature. Three-dimensional data cubes, made by mapping the Homunculus at Balmer alpha and Balmer beta with the 52 x 0.1 arcsecond aperture and about 5000 spectral resolving power, demonstrate that the absorption feature changes slowly in velocity with nebular position. We have monitored the stellar Balmer alpha line profile of the central source over the past four years. The equivalent width of the nebular absorption feature changes considerably between observations. The changes do not correlate with measured brightness of Eta Carinae. Likely clumps of neutral hydrogen with a scale size comparable to the stellar disk diameter are passing through the intervening light path on the timescales less than several months. The excitation mechanism involves Lyman alpha radiation (possibly the Lyman series plus Lyman continuum) and collisions leading to populating the 2S metastable state. Before the electron can jump to the ground state by two photon emission (lifetime about 1/8 second), a stellar Balmer photon is absorbed and the electron shifts to an NP level. We see the absorption feature in higher Balmer lines, and but not in Paschen lines. Indeed we see narrow nebular Paschen emission lines. At present, we do not completely understand the details of the absorption. Better understanding should lead to improved insight of the unique conditions around Eta Carinae that leads to these absorptions.

  14. Small Impact Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    22 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small impact crater with a 'butterfly' ejecta pattern. The butterfly pattern results from an oblique impact. Not all oblique impacts result in an elliptical crater, but they can result in a non-radial pattern of ejecta distribution. The two-toned nature of the ejecta -- with dark material near the crater and brighter material further away -- might indicate the nature of subsurface materials. Below the surface, there may be a layer of lighter-toned material, underlain by a layer of darker material. The impact throws these materials out in a pattern that reflects the nature of the underlying layers.

    Location near: 3.7oN, 348.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  15. Ejectas Coverage And Seismic Shaking On Asteroid Eros: Effect On The Frequency-Size Distribution Of The Craters

    NASA Astrophysics Data System (ADS)

    Blitz, C.; Lognonne, P.; Le Feuvre, M.; Komatitsch, D.

    2006-12-01

    Studies performed using NEAR spacecraft data have shown that craters on the Eros asteroid can be covered by ejectas from impact events (Thomas et al., 2002) or can be filled by a seismic shaking mechanism (Richardson et al., 2005). In this study, we aim to compute the frequency-size distribution of the craters population on a spherical model representing the asteroid Eros. Although this model is spherical, it has the same average gravity as Eros and the same mean diameter (17 km, Richardson et al., 2005). To create a population of craters, we assume that the craters of Eros have been formed during its stay in the Main Belt. Thus, we adopt the distribution law of projectiles suggested by O'Brien et al. (2006). Once the craters are formed on our model, two kinds of simulations are performed. The first simulation consists in modelling ejecta coverage on the asteroid model. Based on the scaling law method (Housen et al., 1983), the volumes of reimpacting ejectas are computed for each crater and spread on the surface of the modelled asteroid. This leads to ejectas coverage and erasure of several craters. A frequency-size distribution of the craters population can be inferred, accounting for the rate of erased craters. A second simulation aims to quantify the effect of seismic shaking. Based on the normal- mode summation method (Lognonne and Clevede, 2002), maximum accelerations as a function of epicentral distance are computed on the model of Eros for a given seismic source, up to a maximum frequency of 30 Hz. The seismic response of the asteroid behaves linearly with the intensity of the source. Each impactor is then considered as a seismic source having its own seismic momentum, depending on its mass and velocity. From this we can compute the accelerations a given crater is subjected to. Knowing the acceleration history of each crater, we estimate the rate of craters erased by seismic shaking. A second frequency-size distribution of the craters is then computed

  16. Data analysis to separate particles of different speed regimes and charges. [lunar ejecta and meteorite experiment and pioneer space probe data

    NASA Technical Reports Server (NTRS)

    Wolf, H.

    1977-01-01

    Although the instruments on the lunar ejecta and meteorite experiment (LEAM) and the Pioneer 8 and 9 space probes were essentially similar, a comparison of their results indicates that different sets of particles caused the different responses. On Pioneer, the events were caused by the impact of cosmic dust, the so-called beta particles expelled from the vicinity of the sun by solar radiation pressure, augmented by extremely high energy but definitely identifiable interstellar grains. On the moon, the events were due to the impact of slowly moving, highly charged lunar dust being propelled electrostatically across the terminator. Both theoretical analysis and experimental testing confirming these conclusions are discussed.

  17. Multiproxy Approach of the K-T and Chicxulub Ejecta Layers Along the Brazos River, Texas, USA

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.

    2006-05-01

    from the K-T boundary by at least 20 to cm of normal hemipelagic claystone showing calcite, phyllosilicates, TOC, isotope and granulometric values similar to the pre-event sediments and reflect therefore normal sedimentary conditions. The Chicxulub spherule ejecta in the glauconitic sand near the base of the storm beds is reworked from an older original ejecta layer, as indicated by abundant reworked fossil shells. This is similar to the reworked spherule layers at the base of the siliciclastic deposits throughout NE Mexico, where the original layer is within marls up to 5 m below (base of CF1) and predating the K-T by 300,000 years. The original ejecta layer in Cottonmouth Creek lies 60 cm below the basal unconformity of the storm beds and within claystones near the base of zone CF1. This layer consists of a prominent 3-4 cm thick yellow clay of pure and well-crystallized smectite (Cheto Mg-smectite) that possibly represents the alteration product of Chicxulub impact glass. Glass altered smectite spherules are commonly present and present the same geochemical composition as glass and spherules weathered to smectite from Haiti and NE-Mexico. Similar Cheto smectite layers have been documented from ejecta spherule deposits in Central America and the Caribbean. The Brazos results confirm that the Chicxulub impact predates the K-T boundary by about 300,000 years, as earlier observed based on impact glass spherule layers in northeastern Mexico and the suevite breccia from the Yaxcopoil-1 core in Yucatan.

  18. Evidence for multiple ejecta: April 7-11, 1997, ISTP Sun-Earth connection event

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D.; Bougeret, J.-L.; Delaboudinière, J.-P.; Fox, N.; Kaiser, M.; Lepping, R.; Michels, D.; Plunkett, S.; Reames, D.; Reiner, M.; Richardson, I.; Rostoker, G.; Steinberg, J.; Thompson, B.; von Rosenvinge, T.

    Evidence is presented that the enhanced geomagnetic activity, on April 10-11, 1997, was caused by one of two ejecta that left the Sun at ≈ 14 UT on April 7. This ejecta was not directly detected at the Earth. The evidence for this interpretation is based on WIND spacecraft observations in the solar wind (SW). It is consistent with: (i) measured velocities of the coronal mass ejections from the SOHO coronagraph; (ii) the initial propagation speed of the shock generated in this event, estimation from type II radio burst observations from the WAVES instrument on WIND, and (iii) the time profile of energetic ions observed by EPACT on WIND. This locally unobserved ejecta (moving at 600 to 700 kms-1) generated a fast shock which accelerated ions to several tens of MeV/amu. The inferred passage of the first ejecta close to Earth (on April 10 to 11) is based on the observation of an interplanetary shock (IS) ahead of a field and plasma compressional region where the draping of the SW flow and possibly the changes in the direction of the IMF are consistent with a location northward of a faster ejecta. This ejecta was responsible for disturbed SW conditions including approximately ten hours of southward orientation of the interplanetary magnetic field (IMF) and a ram pressure many times above normal. The slower moving ejecta was directed toward Earth and was observed with WIND from about 0550 until 1500 UT on April 11. It had a strong northward IMF and produced density enhancements which elevated the ram pressure to more than four times above normal.

  19. Composition of the Innermost Core-Collapse Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Hauser, P.; Liebendörfer, M.; Martínez-Pinedo, G.; Thielemann, F.-K.; Bravo, E.; Zinner, N. T.; Hix, W. R.; Langanke, K.; Mezzacappa, A.; Nomoto, K.

    2006-01-01

    With currently known input physics and computer simulations in one dimension, a self-consistent treatment of core-collapse supernovae does not yet lead to successful explosions, while two-dimensional models show some promise. Thus, there are strong indications that the delayed neutrino mechanism works combined with a multidimensional convection treatment for unstable layers (possibly with the aid of rotation, magnetic fields and/or still existent uncertainties in neutrino opacities). On the other hand, there is a need to provide correct nucleosynthesis abundances for the progressing field of galactic evolution and observations of low-metallicity stars. The innermost ejecta is directly affected by the explosion mechanism, i.e., most strongly, the yields of Fe group nuclei for which an induced piston or thermal bomb treatment will not provide the correct yields because the effect of neutrino interactions is not included. We apply parameterized variations to the neutrino-scattering cross sections in order to mimic in one dimension the possible increase of neutrino luminosities caused by uncertainties in proto-neutron star convection. Alternatively, parameterized variations are applied to the neutrino absorption cross sections on nucleons in the ``gain region'' to mimic the increase in neutrino energy deposition enabled by convective turnover. We find that both measures lead to similar results, causing explosions and a Ye>0.5 in the innermost ejected layers, due to the combined effect of a short weak-interaction timescale and a negligible electron degeneracy, unveiling the proton-neutron mass difference. We include all weak interactions (electron and positron capture, β-decay, neutrino and antineutrino capture on nuclei, and neutrino and antineutrino capture on nucleons) and present first nucleosynthesis results for these innermost ejected layers to discuss how they improve predictions for Fe group nuclei. The proton-rich environment results in enhanced abundances of

  20. Searching for the Circumstellar Ejecta Around Cool Hypergiants

    NASA Astrophysics Data System (ADS)

    Schuster, M. T.; Humphreys, R. M.; Marengo, M.; Gehrz, R. D.; Woodward, C. E.; Polomski, E.

    2005-05-01

    We present HST and Spitzer images of several of the most luminous cool stars in the Galaxy. These highly unstable, very massive stars lie on or near the empirical upper luminosity boundary in the H-R diagram, and are characterized by high mass loss phenomena, sometimes violent, which may be responsible for the upper boundary. These observations are designed to search for circumstellar structures close to the star as well as more distant nebulosity. We discuss the presence, or lack of, ejecta around these hypergiants, and the evolutionary implications. Our high-resolution WFPC2 images show compact nebulosity around the cool M-type hypergiants NML Cyg, VX Sgr and S Per. The powerful OH/IR source NML Cyg exhibits a small, peculiar bean-shaped asymmetric nebula that closely matches the distribution of the surrounding H2O vapor masers. NML Cyg's concave outer envelope is likely shaped by photo-dissociation from the powerful, nearby association Cyg OB2 inside the Cygnus X superbubble. VX Sgr and S Per, also OH/IR sources, have marginally resolved envelopes. S Per's circumstellar nebula appears elongated in a NE/SW orientation similar to that for its surrounding OH and H2O masers, while VX Sgr is obscured by a spheroidal envelope. We find no evidence in our WFPC2 images for circumstellar nebulosity around the intermediate-type hypergiants ρ Cas, HR 8752, HR 5171a nor the normal M-type supergiant μ Cep. We conclude that very likely, there has been no high mass loss event prior to 500-1000 yrs ago for these four stars. Our IRAC images (ρ Cas, HR 8752, and R 150) also show no evidence for extended structure. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work is in part provided by NASA through contracts 1256406 and 1215746 issued by JPL/Caltech to the University of Minnesota.

  1. A two-ejecta event associated with a two-step geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Jordanova, V. K.; Thomsen, M. F.; Lu, G.; Cowley, S. W. H.; Ogilvie, K. W.

    2006-11-01

    A new view on how large disturbances in the magnetosphere may be prolonged and intensified further emerges from a recently discovered interplanetary process: the collision/merger of interplanetary (IP) coronal mass ejections (ICMEs; ejecta) within 1 AU. As shown in a recent pilot study, the merging process changes IP parameters dramatically with respect to values in isolated ejecta. The resulting geoeffects of the coalesced ("complex") ejecta reflect a superposition of IP triggers which may result in, for example, two-step, major geomagnetic storms. In a case study, we isolate the effects on ring current enhancement when two coalescing ejecta reached Earth on 31 March 2001. The magnetosphere "senses" the presence of the two ejecta and responds with a reactivation of the ring current soon after it started to recover from the passage of the first ejection, giving rise to a double-dip (DD) great storm (each min Dst < -250 nT). A drift-loss global kinetic model of ring current buildup shows that in this case the major factor determining the intensity of the storm activity is the very high (up to ˜10 cm-3) plasma sheet density. The plasma sheet density, in turn, is found to correlate well with the very high solar wind density, suggesting the compression of the leading ejecta as the source of the hot, superdense plasma sheet in this case. This correlation is similar to that obtained in a previous investigation extending over several years, but the present case study extends the range of plasma sheet densities from ˜2 to ˜10 cm-3. Since the features of the ejecta interaction in this example are fairly general, we propose that interacting ejecta are a new, important IP source of DD major storms. Peculiarities in the behavior of the magnetopause current during these extreme events are briefly discussed in the light of recent work. In a brief discussion of a second example (21-23 October 2001), we suggest that by strengthening the leading shock, the ejecta merger may have

  2. Spall strength and ejecta production of gold under explosively driven shock wave compression

    SciTech Connect

    La Lone, B. M.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Holtkamp, D. B.

    2013-12-16

    Explosively driven shock wave experiments were conducted to characterize the spall strength and ejecta production of high-purity cast gold samples. The samples were from 0.75 to 1.84 mm thick and 30 mm in diameter. Peak stresses up to 44 GPa in gold were generated using PBX-9501 high explosive. Sample free surface and ejecta velocities were recorded using photonic Doppler velocimetry techniques. Lithium niobate pins were used to quantify the time dependence of the ejecta density and the total ejected mass. An optical framing camera for time-resolved imaging and a single-image x-ray radiograph were used for additional characterization. Free surface velocities exhibited a range of spall strengths from 1.7 to 2.4 GPa (mean: 2.0 ±0.3 GPa). The pullback signals were faint, minimal ringing was observed in the velocity records, and the spall layer continued to decelerate after first pull back. These results suggest finite tensile strength was present for some time after the initial void formation. Ejecta were observed for every sample with a roughened free surface, and the ejecta density increased with increased surface roughness, which was different in every experiment. The total ejected mass is consistent with the missing mass model.

  3. A Chandra X-Ray Survey of Ejecta in the Cassiopeia A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Laming, J. Martin

    2011-01-01

    We present a survey of the X-ray emitting ejecta in the Cassiopeia A supernova remnant based on an extensive analysis of over 6000 spectral regions extracted on 2.5-10" angular scales using the Chandra 1 Ms observation. We interpret these results in the context of hydrodynamical models for the evolution of the remnant. The distributions of fitted temperature and ionization age are highly peaked and suggest that the ejecta were subjected to multiple secondary shocks. Based on the fitted emission measure and element abundances, and an estimate of the emitting volume, we derive masses for the X-ray emitting ejecta as well as showing the distribution of the mass of various elements over the remnant. The total shocked Fe mass appears to be roughly 0.14 Solar Mass, which accounts for nearly all of the mass expected in Fe ejecta. We find two populations of Fe ejecta, that associated with normal Si-burning and that associated with alpha-rich freeze-out, with a mass ratio of approximately 2:1. Surprisingly, essentially all of this Fe (both components) is well outside the central regions of the SNR, presumably having been ejected by hydrodynamic instabilities during the explosion. We discuss this, and its implications for the neutron star kick.

  4. Low-Energy Impacts onto Lunar Regolith Simulant

    NASA Astrophysics Data System (ADS)

    Seward, Laura M.; Colwell, J.; Mellon, M.; Stemm, B.

    2012-10-01

    Low-Energy Impacts onto Lunar Regolith Simulant Laura M. Seward1, Joshua E. Colwell1, Michael T. Mellon2, and Bradley A. Stemm1, 1Department of Physics, University of Central Florida, Orlando, Florida, 2Southwest Research Institute, Boulder, Colorado. Impacts and cratering in space play important roles in the formation and evolution of planetary bodies. Low-velocity impacts and disturbances to planetary regolith are also a consequence of manned and robotic exploration of planetary bodies such as the Moon, Mars, and asteroids. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into JSC-1 lunar regolith simulant, JSC-Mars-1 Martian regolith simulant, and silica targets under 1 g. We use direct measurement of ejecta mass and high-resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. Additionally, we conduct similar experiments under microgravity conditions in a laboratory drop tower and on parabolic aircraft with velocities as low as 10 cm/s. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target shape and size distribution, regolith depth, target relative density, and crater depth, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. The total ejecta mass is also dependent on the packing density (porosity) of the regolith. We find that ejecta mass velocity fits a power-law or broken power-law distribution. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We will present our

  5. Theoretical considerations for black hole formation in supernova ejecta

    NASA Astrophysics Data System (ADS)

    Hayes, Andrew Paul

    2012-01-01

    This work hypothesizes that supernovae and other extreme astrophysical phenomena, recently recognized as much more inhomogeneous and turbulent than previously supposed, give rise to and then eject substellar-mass or Dwarf Black Holes (DBHs), along with their other ejecta. Two independent methods for detecting regions within a data set from a simulation of a high energy astrophysical event, such as a supernova, that are unstable to gravitational collapse. These methods can be used where the resolution, spatial domain, time span, and/or treatment of general relativity of the simulation may not be sufficient to evolve the region to gravitational collapse natively. The first method seeks acoustic instability against gravitational collapse. That is, some hypothetical bodies exhibit perturbative eigenmodes that grow in amplitude, rather than oscillate, and Subrahmanyan Chandrasekhar derived a theorem to prove whether such modes exist for a given distribution of matter. The Chandrasekhar (acoustic) stability theorem is adapted for use within a hot, dense medium. The accuracy of this method is demonstrated by applying it to various spherical mass distributions whose stability is known through other means. This method has already been used in the analysis of data sets from three simulations, with negative results. The adaptation is limited to DBHs of masses above a minimum threshold, however, prompting the division of DBH progenitors into Type I, the more massive subclass that can be treated fully within the acoustic stability framework, and Type II, which range in mass from the bottom of the Type I mass range down to arbitrarily small. The second method for detecting instability against gravitational collapse seeks gravitational collapse induced by inward-propagating, spherically symmetric shocks in the Groah and Temple [1, 2] (GST) theoretical prescription. Using the only extant general-relativistic shockwave simulator, written by Zeke Vogler, it is revealed that all

  6. The r-process and neutrino-heated supernova ejecta

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Wilson, J. R.; Mathews, G. J.; Hoffman, R. D.; Meyer, B. S.

    1994-01-01

    As a neutron star is formed by the collapse of the iron core of a massive star, its Kelvin-Helmholtz evolution is characterized by the release of gravitational binding energy as neutrinos. The interaction of these neutrinos with heated material above the neutron star generates a hot bubble in an atmosphere that is nearly in hydrostatic equilibrium and heated, after approximately 10 s, to an entropy of S/N(sub AS)k greater than or approximately = 400. The neutron-to-proton ratio for material moving outward through this bubble is set by the balance between neutrino and antineutrino capture on nucleons. Because the electron antineutrino spectrum at this time is hotter than the electron neutrino spectrum, the bubble is neutron-rich (0.38 less than or approximately = Y(sub e) less than or approximately = 0.47). Previous work using a schematic model has shown that these conditions are well suited to the production of heavy elements by the r-process. In this paper we have advanced the numerical modeling of a 20 solar mass 'delayed' supernova explosion to the point that we can follow the detailed evolution of material moving through the bubble at the late times appropiate to r-process nucleosynthesis. The supernova model predicts a final kinetic energy for the ejecta of 1.5 x 10(exp 51) ergs and leaves behind a remnant with a baryon mass of 1.50 solar mass (and a gravitational mass of 1.445 solar mass). We follow the thermodynamic and compositional evolution of 40 trajectories in rho(t), T(t), Y(sub e)(t) for a logarithmic grid of mass elements for the last approximately = 0.03 solar mass to be ejected by the proto-neutron star down to the last less than 10(exp -6) solar mass of material expelled at up to approximately = 18 s after core collapse. We find that an excellent fit to the solar r-process abundance distribution is obtained with no adjustable parameters in the nucleosynthesis calculations. Moreover, the abundances are produced in the quantities required to account

  7. Characterization of the K-T and Chicxulub Ejecta Layers along the Brazos River, Texas: Correlation with NE Mexico and Yucatan.

    NASA Astrophysics Data System (ADS)

    Thierry, A.; Gerta, K.

    2005-05-01

    We report the results of preliminary investigations of four K-T boundary sections, which are located in small tributaries (Cottonmouth and Darting Minnow creeks) of the Brazos River. The study is based on high-resolution sampling, sedimentological observations, biostratigraphy, bulk rock and clay mineralogy, geochemistry and granulometry. The Cottonmouth Creek exposure is characterized by Late Maastrichtian dark grey fossiliferous claystone, interrupted by laterally variable channel fill storm deposits, which previously have been erroneously interpreted as impact tsunami deposits. These deposits consist of a basal shell hash (10cm), followed by glauconitic sand with altered impact spherules (10cm), laminated sandstones, and 4 to 5 hummocky cross-bedded sandstone layers separated by burrowed erosion surfaces that mark repeated colonization of the ocean floor between storm events. Above and below these storm events are dark grey fossiliferous claystones of the late Maastrichtian zone CF1, which spans the last 300,000 years of the Cretaceous. The K-T boundary is 40 cm above the storm deposits. Granulometric analyses of this interval reveal no size grading due to suspension settling from storm or tsunami waves, but rather indicate normal hemipelagic sedimentation. The Chicxulub spherule ejecta in the glauconitic sand near the base of the storm beds is reworked from an older original ejecta layer, as indicated by abundant reworked fossil shells. This is similar to the reworked spherule layers at the base of the siliclastic deposits throughout NE Mexico, where the original layer is within marls up to 5 m below (base of CF1) and predating the K-T by 300,000 years. We may have discovered the original ejecta layer in Cottonmouth Creek 60 cm below the basal unconformity of the storm beds and within claystones near the base of zone CF1. This layer consists of a prominent 3-4 cm thick yellow clay of pure and well-crystallized smectite (Cheto Mg-smectite) that possibly

  8. Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.

    2008-01-01

    We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.

  9. Comparing Run-Out Efficiency of Fluidized Ejecta on Mars with Terrestrial and Martian Mass Movements

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Baloga, S.

    2003-01-01

    We broadly characterize the rheology of fluidized ejecta on Mars as it flows during its final stages of emplacement by using the concept of run-out efficiency. Run-out efficiency for ejecta can be obtained through an energy balance between the kinetic energy of the excavated ejecta, and the total work lost during its deposition. Such an efficiency is directly comparable to run-out efficiency (i.e., L/H analyzes where L is the run-out distance and H is onset height) of terrestrial and extraterrestrial mass movements. Determination of the L/H ratio is commonly used in terrestrial geology to broadly determine the type and rheology of mass movements

  10. LATE SPECTRAL EVOLUTION OF THE EJECTA AND REVERSE SHOCK IN SN 1987A

    SciTech Connect

    Fransson, Claes; Groeningsson, Per; Jerkstrand, Anders; Lundqvist, Peter; Sollerman, Jesper; Larsson, Josefin; Spyromilio, Jason; Leibundgut, Bruno; Kjaer, Karina; Chevalier, Roger; McCray, Richard; Challis, Peter; Kirshner, Robert P.

    2013-05-01

    We present observations with the Very Large Telescope and Hubble Space Telescope (HST) of the broad emission lines from the inner ejecta and reverse shock of SN 1987A from 1999 February until 2012 January (days 4381-9100 after explosion). We detect broad lines from H{alpha}, H{beta}, Mg I], Na I, [O I], [Ca II], and a feature at {approx}9220 A. We identify the latter line with Mg II {lambda}{lambda}9218, 9244, which is most likely pumped by Ly{alpha} fluorescence. H{alpha} and H{beta} both have a centrally peaked component extending to {approx}4500 km s{sup -1} and a very broad component extending to {approx}> 11, 000 km s{sup -1}, while the other lines have only the central component. The low-velocity component comes from unshocked ejecta, heated mainly by X-rays from the circumstellar environment, whereas the very broad component comes from faster ejecta passing through the reverse shock, created by the collision with the circumstellar ring. The flux in H{alpha} from the reverse shock has increased by a factor of four to six from 2000 to 2007. After that there is a tendency of flattening of the light curve, similar to what may be seen in the optical lines from the shocked ring. The core component seen in H{alpha}, [Ca II], and Mg II has experienced a similar increase, which is consistent with that found from HST photometry. The energy deposition of the external X-rays is calculated using explosion models for SN 1987A and we predict that the outer parts of the unshocked ejecta will continue to brighten because of this. The external X-ray illumination also explains the edge-brightened morphology of the ejecta seen in the HST images. We finally discuss evidence for dust in the ejecta from line asymmetries.

  11. NON-EQUIPARTITION OF ENERGY, MASSES OF NOVA EJECTA, AND TYPE Ia SUPERNOVAE

    SciTech Connect

    Shara, Michael M.; Yaron, Ofer; Prialnik, Dina; Kovetz, Attay

    2010-04-01

    The total masses ejected during classical nova (CN) eruptions are needed to answer two questions with broad astrophysical implications: can accreting white dwarfs be 'pushed over' the Chandrasekhar mass limit to yield type Ia supernovae? Are ultra-luminous red variables a new kind of astrophysical phenomenon, or merely extreme classical novae? We review the methods used to determine nova ejecta masses. Except for the unique case of BT Mon (nova 1939), all nova ejecta mass determinations depend on untested assumptions and multi-parameter modeling. The remarkably simple assumption of equipartition between kinetic and radiated energy (E {sub kin} and E {sub rad}, respectively) in nova ejecta has been invoked as a way around this conundrum for the ultra-luminous red variable in M31. The deduced mass is far larger than that produced by any CN model. Our nova eruption simulations show that radiation and kinetic energy in nova ejecta are very far from being in energy equipartition, with variations of 4 orders of magnitude in the ratio E {sub kin}/E {sub rad} being commonplace. The assumption of equipartition must not be used to deduce nova ejecta masses; any such 'determinations' can be overestimates by a factor of up to 10,000. We data-mined our extensive series of nova simulations to search for correlations that could yield nova ejecta masses. Remarkably, the mass ejected during a nova eruption is dependent only on (and is directly proportional to) E {sub rad}. If we measure the distance to an erupting nova and its bolometric light curve, then E {sub rad} and hence the mass ejected can be directly measured.

  12. Effects of Moderate Size Meteorite Impact in Unconsolidated Sediments — Interdisciplinary Project on "Morasko" Meteorite Impact

    NASA Astrophysics Data System (ADS)

    Szczuciński, W.; Makohonienko, M.; Muszyński, A.; Wünneman, K.; Project scientific party

    2015-09-01

    We present interdisciplinary approach to study a meteorite impact of moderate size including studies of the meteorites, craters and ejecta, sedimentary record in lake sediments as well as numerical modeling to reconstruct its environmental effects.

  13. Venus impact craters: Implications for atmospheric and resurfacing processes from Magellan observations

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1991-01-01

    Observations of impact craters on Venus by Magellan yield important insights into: (1) atmospheric effects on the formation of impact craters and their attendant ejecta deposits and (2) the resurfacing history of the planet. Most craters smaller than 15 km are classified as irregular; they possess irregularly shaped rims, and multiple hummocky floors. The irregular nature of these craters is interpreted to be the consequence of breakup and dispersion of incoming meteoroids by the dense atmosphere. Two major ejecta facies of venusian impact craters are hummocky ejecta and outer ejecta. A number of craters documented in the Magellan images possess often non-radial, flow-like ejecta indicative of a low viscosity materials. Approximately half of the impact craters observed with the Magellan radar are partially or wholly surrounded by areas with low radar backscatter cross sections.

  14. Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury

    NASA Technical Reports Server (NTRS)

    Buczkowski, Debra L.; Seelos, K. S.

    2010-01-01

    The Caloris basin on Mercury is floored by light-toned plains and surrounded by an annulus of dark-toned material interpreted to be ejecta blocks and smooth, dark, ridged plains. Strangely, preliminary crater counts indicate that these intra-ejecta dark plains are younger than the light-toned plains within the Caloris basin. This would imply a second, younger plains emplacement event, possibly involving lower albedo material volcanics, which resurfaced the original ejecta deposit. On the other hand, the dark plains may be pre-Caloris light plains covered by a thin layer of dark ejecta. Another alternative to the hypothesis of young, dark volcanism is the possibility that previous crater counts have not thoroughly distinguished between superposed craters (fresh) and partly-buried craters (old) and therefore have not accurately determined the ages of the Caloris units. This abstract outlines the tasks associated with a new mapping project of the Caloris basin, intended to improve our knowledge of the geology and geologic history of the basin, and thus facilitate an understanding of the thermal evolution of this region of Mercury.

  15. Ejecta source model based on the nonlinear Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Dimonte, Guy; Terrones, Guillermo; Cherne, F. J.; Ramaprabhu, P.

    2013-01-01

    We describe a simple algebraic model for the particulate spray that is ejected from a shocked metal surface based on the nonlinear evolution of the Richtmyer-Meshkov instability (RMI). The RMI is a shock-driven hydrodynamic instability at a material interface in which the dense and tenuous fluids penetrate each other as spikes and bubbles, respectively. In our model, the ejecta areal density is determined by the product of the post-shock metal density and the saturated bubble amplitude, which depends on both the amplitude and wavelength of the initial surface imperfections of the metal. The maximum ejecta velocity is determined by the ever-growing spikes, which are accelerated relative to the RMI growth rate by the spatial harmonics that sharpen them. The model is formulated to fit new hydrodynamics and molecular dynamics simulations of the RMI and validated by existing ejecta experiments over a wide range of material properties, shock strengths, and surface perturbations. The results are also contrasted with existing ejecta source models.

  16. Early ultraviolet signatures from the interaction of Type Ia supernova ejecta with a stellar companion

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Moriya, Takashi J.; Stancliffe, Richard J.

    2015-12-01

    The progenitors of Type Ia supernovae (SNe Ia) are not yet fully understood. The two leading progenitor scenarios are the single-degenerate (SD) scenario and the double-degenerate scenario. In the SD scenario, the collision of the SN Ia ejecta with its companion star is expected to produce detectable ultraviolet (UV) emission in the first few days after the SN explosion within certain viewing angles. A strong UV flash has recently been detected in an SN 2002es-like peculiar SN Ia iPTF14atg by Cao et al., which is interpreted as evidence of an early-time UV signature due to SN ejecta interacting with its companion star, supporting the SD scenario. In this paper, we present the expected luminosity distributions of early-time UV emission arising from SN Ia ejecta-companion interaction by performing binary population synthesis calculations for different progenitor systems in the SD scenario. Our theoretical predictions will be helpful for future early-time observations of SNe Ia to constrain their possible progenitors. Assuming the observed strong UV pulse of iPTF14atg was indeed produced by the SN ejecta-companion interaction, our population synthesis model suggests that the progenitor system of iPTF14atg is most likely a red-giant donor binary system, and it is unlikely to have been a main-sequence or helium-star donor system.

  17. Protrusions Beyond the Blast Waves of Young Type Ia Supernova Remnants: Hydrodynamic Instabilities or Ejecta Bullets?

    NASA Astrophysics Data System (ADS)

    Dyer, Ashton; Blondin, J. M.; Reynolds, S. P.

    2014-01-01

    High resolution imaging of two young Type Ia supernova remnants (SNRs), Tycho and SN 1006, has revealed several morphological features which have resisted explanation with numerical simulations. One such feature is the presence of shocked ejecta blobs protruding beyond the mean forward shock radius. Two current theories explain the presence of such ejecta: highly dense ejecta shrapnel produced in the explosion penetrating the forward shock, or plumes generated by hydrodynamic instabilities long after the initial explosion. We investigate the shrapnel theory through hydrodynamic simulations in 2D and 3D of the evolution of dense ejecta clumps embedded in an exponential density profile, appropriate for Type Ia supernovae. We use high-resolution 2D simulations to identify relevant clump parameters which we investigate further in 3D. In contradiction to some former work, we find that sufficiently resolved clumps in 2D models shatter upon collision with the forward shock, yielding new protrusion features. In both 2D and 3D, shrapnel is capable of penetrating the forward shock, but the resultant protrusions in 3D simulations vary significantly from those in similar 2D runs, implying 2D simulations may not be an accurate method of investigating the shrapnel theory. We compare the our simulations with Chandra observations of projections seen in Tycho and SN 1006. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  18. X-ray illumination of the ejecta of supernova 1987A.

    PubMed

    Larsson, J; Fransson, C; Ostlin, G; Gröningsson, P; Jerkstrand, A; Kozma, C; Sollerman, J; Challis, P; Kirshner, R P; Chevalier, R A; Heng, K; McCray, R; Suntzeff, N B; Bouchet, P; Crotts, A; Danziger, J; Dwek, E; France, K; Garnavich, P M; Lawrence, S S; Leibundgut, B; Lundqvist, P; Panagia, N; Pun, C S J; Smith, N; Sonneborn, G; Wang, L; Wheeler, J C

    2011-06-23

    When a massive star explodes as a supernova, substantial amounts of radioactive elements--primarily (56)Ni, (57)Ni and (44)Ti--are produced. After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of (44)Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star. PMID:21654749

  19. Ejecta of η Carinae: What We are Learning about Nitrogen-Rich Chemistry

    NASA Astrophysics Data System (ADS)

    Gull, T. R.

    2008-06-01

    At least one member of the binary system, η Carinae, is in late stages of CNO-cycle nuclear processing. The Homunculus, ejecta thrown out since the 1840's, is rich in nitrogen and helium, but poor in carbon and oxygen. A very different chemistry resulted as the available oxygen was quickly used by metals with the highest condensation temperatures to form initial dust grains. Hence metals such as titanium, strontium, vanadium and scandium, under abundant in the interstellar medium, are detected in abundance in the warm, partially ionized ejecta. Although the gas densities and column densities are high, few molecules have been detected in this gas that is very different from the normal ISM and indeed from the oxygen and carbon-rich ejecta seen around massive stars in their WC and WO stages. The observations indicate that most iron-peak metals remain in the gaseous phase suggesting that the canonical gas to dust ISM ratio applied to this ejecta underestimates the total mass. In this paper we summarize published and ongoing studies leading to characterizing this unusual gas.

  20. Size-frequency Statistics of Boulders on the Moon - Characterizing the Surface Roughness of Ejecta Fields

    NASA Astrophysics Data System (ADS)

    Matiella Novak, Alexandra; Patterson, Wes

    2014-11-01

    Analyzing the size-frequency of boulders on the Moon provides an opportunity to study the geologic processes related to cratering and ballistic sedimentation. We will be integrating results from a series of boulder-count studies with Mini-RF data to recognize Mini-RF’s ability to ascertain surface roughness and better understand how surface roughness information derived from radar data can provide insight into surface boulder distributions associated with km-scale fresh craters. Ultimately, Mini-RF could provide a resource to determining surface roughness characteristics and statistics without the need for manual boulder counting. This work will also provide valuable information in characterizing surface roughness for potential future landing sites. Here we attempt to characterize the surface roughness in areas surrounding three craters on the Moon: Kopff, Censorinus and Kirch E. Boulder size-frequency distributions for the craters used in this study were determined by analyzing LROC NAC data in ArcMap. Using a specialized script in ArcMap, we are able to count and measure each boulder in the LROC NAC image. Limitations related to this technique are that it misses boulders that are in shadowed areas and boulders that are smaller in diameter than the 0.5 m resolution of the LROC NAC imagery.Boulder counts were made in three areas surrounding each crater: immediately outside the crater wall, within the continuous ejecta, and within the discontinuous ejecta. We used estimates from Oberbeck et al. (1974) and Moore et al. (1974) to infer the likely distance from the crater where ejecta will be deposited. In general, ejecta deposits within 1-2 crater radii are considered continuous ejecta and beyond this they are considered discontinuous ejecta. Published geologic maps of these craters were also used to better constrain areas that were within the continuous and discontinuous regions of ejecta. Preliminary results of this study will be discussed, showing how the size

  1. THE MORPHOLOGY OF THE EJECTA IN SUPERNOVA 1987A: A STUDY OVER TIME AND WAVELENGTH

    SciTech Connect

    Larsson, Josefin; Fransson, Claes; Lundqvist, Peter; Sollerman, Jesper; Kjaer, Karina; Leibundgut, Bruno; Spyromilio, Jason; Jerkstrand, Anders; Kirshner, Robert P.; Mattila, Seppo; McCray, Richard; Wheeler, J. Craig

    2013-05-01

    We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the Hubble Space Telescope (HST) as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 and 2011 and primarily probe the outer H-rich zones of the ejecta. The SINFONI observations were obtained in 2005 and 2011 and instead probe the [Si I]+[Fe II] emission from the inner regions. We find a strong temporal evolution of the morphology in the HST images, from a roughly elliptical shape before {approx}5000 days, to a more irregular, edge-brightened morphology with a ''hole'' in the middle thereafter. This transition is a natural consequence of the change in the dominant energy source powering the ejecta, from radioactive decay before {approx}5000 days to X-ray input from the circumstellar interaction thereafter. The [Si I]+[Fe II] images display a more uniform morphology, which may be due to a remaining significant contribution from radioactivity in the inner ejecta and the higher abundance of these elements in the core. Both the H{alpha} and the [Si I]+[Fe II] line profiles show that the ejecta are distributed fairly close to the plane of the inner circumstellar ring, which is assumed to define the rotational axis of the progenitor star. The H{alpha} emission extends to higher velocities than [Si I]+[Fe II], as expected from theoretical models. There is no clear symmetry axis for all the emission. Instead, we find that the emission is concentrated to clumps and that the emission is distributed somewhat closer to the ring in the north than in the south. This north-south asymmetry may be partially explained by dust absorption. We compare our results with explosion models and find some qualitative agreement, but note that the observations show a higher degree of large-scale asymmetry.

  2. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2013-01-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.

  3. SUPERNOVA EJECTA IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3

    SciTech Connect

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert

    2013-07-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of {approx}1900, and most likely located near the Galactic center. Only the outermost ejecta layers with free-expansion velocities {approx}>18,000 km s{sup -1} have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs; Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K{alpha} emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including {sup 56}Ni) with velocities >18,000 km s{sup -1} were ejected by this SN. However, in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent three-dimensional delayed-detonation Type Ia models.

  4. The Density and Mass of Unshocked Ejecta in Cassiopeia A through Low Frequency Radio Absorption

    NASA Astrophysics Data System (ADS)

    DeLaney, Tracey; Kassim, Namir E.; Rudnick, Lawrence; Perley, R. A.

    2014-04-01

    Characterizing the ejecta in young supernova remnants is a requisite step toward a better understanding of stellar evolution. In Cassiopeia A the density and total mass remaining in the unshocked ejecta are important parameters for modeling its explosion and subsequent evolution. Low frequency (<100 MHz) radio observations of sufficient angular resolution offer a unique probe of unshocked ejecta revealed via free-free absorption against the synchrotron emitting shell. We have used the Very Large Array plus Pie Town Link extension to probe this cool, ionized absorber at 9'' and 18.''5 resolution at 74 MHz. Together with higher frequency data we estimate an electron density of 4.2 cm-3 and a total mass of 0.39 M ⊙ with uncertainties of a factor of ~2. This is a significant improvement over the 100 cm-3 upper limit offered by infrared [S III] line ratios from the Spitzer Space Telescope. Our estimates are sensitive to a number of factors including temperature and geometry. However using reasonable values for each, our unshocked mass estimate agrees with predictions from dynamical models. We also consider the presence, or absence, of cold iron- and carbon-rich ejecta and how these affect our calculations. Finally we reconcile the intrinsic absorption from unshocked ejecta with the turnover in Cas A's integrated spectrum documented decades ago at much lower frequencies. These and other recent observations below 100 MHz confirm that spatially resolved thermal absorption, when extended to lower frequencies and higher resolution, will offer a powerful new tool for low frequency astrophysics.

  5. A DETAILED KINEMATIC MAP OF CASSIOPEIA A'S OPTICAL MAIN SHELL AND OUTER HIGH-VELOCITY EJECTA

    SciTech Connect

    Milisavljevic, Dan; Fesen, Robert A.

    2013-08-01

    We present three-dimensional (3D) kinematic reconstructions of optically emitting material in the young Galactic supernova remnant Cassiopeia A (Cas A). These Doppler maps have the highest spectral and spatial resolutions of any previous survey of Cas A and represent the most complete catalog of its optically emitting material to date. We confirm that the bulk of Cas A's optically bright ejecta populate a torus-like geometry tilted approximately 30 Degree-Sign with respect to the plane of the sky with a -4000 to +6000 km s{sup -1} radial velocity asymmetry. Near-tangent viewing angle effects and an inhomogeneous surrounding circumstellar material/interstellar medium environment suggest that this geometry and velocity asymmetry may not be faithfully representative of the remnant's true 3D structure or the kinematic properties of the original explosion. The majority of the optical ejecta are arranged in several well-defined and nearly circular ring-like structures with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). These ejecta rings appear to be a common phenomenon of young core-collapse remnants and may be associated with post-explosion input of energy from plumes of radioactive {sup 56}Ni-rich ejecta that rise, expand, and compress non-radioactive material. Our optical survey encompasses Cas A's faint outlying ejecta knots and exceptionally high-velocity NE and SW streams of S-rich debris often referred to as ''jets''. These outer knots, which exhibit a chemical make-up suggestive of an origin deep within the progenitor star, appear to be arranged in opposing and wide-angle outflows with opening half-angles of Almost-Equal-To 40 Degree-Sign.

  6. Production of impact melt in craters on Venus, Earth, and the moon

    NASA Technical Reports Server (NTRS)

    Vickery, A. M.; Melosh, H. J.

    1991-01-01

    Impact craters imaged by Magellan clearly show large amounts of flow-like ejecta whose morphology suggests that the flows comprise low-viscosity material. It was suggested that this material may be either turbidity flows or very fine-grained ejecta, flows of ejecta plus magma, or impact melts. The last of these hypotheses is considered. If these flows are composed of impact melts, there is much more melt relative to the crater volume than is observed on the moon. The ANEOS equation of state program was used for dunite to estimate the shock pressures required for melting, with initial conditions appropriate for Venus, Earth, and the moon. A simple model was then developed, based on the Z-model for excavation flow and on crater scaling relations that allow to estimate the ratio of melt ejecta to total ejecta as a function of crater size on the three bodies.

  7. The size distributions of fragments ejected at a given velocity from impact craters

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1986-01-01

    The mass distribution of fragments that are ejected at a given velocity for impact craters is modeled to allow extrapolation of laboratory, field, and numerical results to large scale planetary events. The model is semi-empirical in nature and is derived from: (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter, (4) measurements and theory of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that or planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad, e.g., 68% of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. The broad distribution suggests that in impact processes, additional comminution of ejecta occurs after the upward initial shock has passed in the process of the ejecta velocity vector rotating from an initially downward orientation. This additional comminution produces the broader size distribution in impact ejecta as compared to that obtained in simple brittle failure experiments.

  8. Phobos: Low Velocity Impacts

    NASA Astrophysics Data System (ADS)

    Smith, Heather; Lee, Pascal; Hamilton, Douglas

    2014-11-01

    Mars’s inner moon, Phobos, is located deep in the planet’s gravity well and orbits far below the planet’s synchronous orbit. Images of the surface of Phobos, in particular from Viking Orbiter 1, MGS, MRO, and MEX, reveal a rich collisional history, including fresh-looking impact craters and subdued older ones, very large impact structures (compared to the size of Phobos), such as Stickney, and much smaller ones.Sources of impactors colliding with Phobos include a priori: A) Impactors from outside the martian system (asteroids, comets, and fragments thereof); B) Impactors from Mars itself (ejecta from large impacts on Mars); and C) Impactors from Mars orbit, including impact ejecta launched from Deimos and ejecta launched from, and reintercepted by, Phobos. In addition to individual craters on Phobos, the networks of grooves on this moon have also been attributed in part or in whole to impactors from some of these sources, particularly B. We report the preliminary results of a systematic survey of the distribution, morphology, albedo, and color characteristics of fresh impact craters and associated ejecta deposits on Phobos. Considering that the different potential impactor sources listed above are expected to display distinct dominant compositions and different characteristic impact velocity regimes, we identify specific craters on Phobos that are more likely the result of low velocity impacts by impactors derived from Mars orbit than from any alternative sources. Our finding supports the hypothesis that the spectrally “Redder Unit” on Phobos may be a superficial veneer of accreted ejecta from Deimos, and that Phobos’s bulk might be distinct in composition from Deimos.

  9. The NASA Lunar Impact Monitoring Program

    NASA Technical Reports Server (NTRS)

    Suggs, Rob

    2008-01-01

    We have a fruitful observing program underway which has significantly increased the number of lunar impacts observed. We have done initial test shots at the Ames Vertical Gun Range obtained preliminary luminous efficiency values. More shots and better diagnostics are needed to determine ejecta properties. We are working to have a more accurate ejecta. environment definition to support lunar lander, habitat, and EVA design. Data also useful for validation of sporadic model at large size range.

  10. Three-dimensional simulations of the interaction between Type Ia supernova ejecta and their main sequence companions

    NASA Astrophysics Data System (ADS)

    Liu, Z. W.; Pakmor, R.; Röpke, F. K.; Edelmann, P.; Wang, B.; Kromer, M.; Hillebrandt, W.; Han, Z. W.

    2012-12-01

    Context. The identity of the progenitor systems of Type Ia supernovae (SNe Ia) is still uncertain. In the single-degenerate scenario, the interaction between the supernova blast wave and the outer layers of a main sequence companion star strips off hydrogen-rich material which is then mixed into the ejecta. Strong contamination of the supernova ejecta with stripped material could lead to a conflict with observations of SNe Ia. This constrains the single-degenerate progenitor model. Aims: In this work, our previous simulations based on simplified progenitor donor stars have been updated by adopting more realistic progenitor-system models that result from fully detailed, state-of-the-art binary evolution calculations. Methods: We use Eggleton's stellar evolution code including the optically thick accretion wind model and taking into account the possibility of the effects of accretion disk instabilities to obtain realistic models of companion stars for different progenitor systems. The impact of the supernova blast wave on these companion stars is followed in three-dimensional hydrodynamic simulations employing the smoothed particle hydrodynamics code GADGET3. Results: For a suite of main sequence companions, we find that the mass of the material stripped from the companions range from 0.11 M⊙ to 0.18 M⊙. The kick velocity delivered by the impact is between 51 km s-1 and 105 km s-1. We find that the stripped mass and kick velocity depend on the ratio of the orbital separation to the radius of a companion, af/R. They can be fitted in good approximation by a power law for a given companion model. However, we do not find a single power law relation holding for different companion models. This implies that the structure of the companion star is also important for the amount of stripped material. Conclusions: With more realistic companion star models than those employed in previous studies, our simulations show that the hydrogen masses stripped from companions are

  11. Experimental Impact Cratering into Sandstone: A MEMIN-Progress Report

    NASA Astrophysics Data System (ADS)

    Poelchau, M. H.; Deutsch, A.; Kenkmann, T.; Hoerth, T.; Schäfer, F.; Thoma, K.; Memin Team

    2011-03-01

    The MEMIN Project is currently focused on impact experiments into sandstone. First results are presented here, including the evaluation of high-speed cameras, ejecta catchment devices, crater morphology, and chemical projectile-target interaction.

  12. Upland Impact

    NASA Technical Reports Server (NTRS)

    2006-01-01

    24 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a relatively fresh crater with dark, rayed ejecta on an upland plain above one of the many depressions in the eastern Labyrinthus Noctis region. The presence of the dark rays emanating from the crater suggests that the impact was a relatively recent event compared to other craters of similar diameter in the scene. Over time, the dark ejecta will fade and blend in with its surroundings, owing to settling of dust from the atmosphere.

    Location near: 9.7oS, 94.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  13. X-RAY EJECTA KINEMATICS OF THE GALACTIC CORE-COLLAPSE SUPERNOVA REMNANT G292.0+1.8

    SciTech Connect

    Bhalerao, Jayant; Park, Sangwook; Dewey, Daniel; Hughes, John P.; Mori, Koji; Lee, Jae-Joon

    2015-02-10

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of –2300 ≲ v{sub r}  ≲ 1400 km s{sup –1}. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ∼90'' (corresponding to ∼3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ∼4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10{sup 51} erg, we estimate the total ejecta mass to be ≲8 M {sub ☉}, and we propose an upper limit of ≲35 M {sub ☉} on the progenitor's mass.

  14. Distal Ejecta from the Ries Crater: Moldavites and Projectile

    NASA Technical Reports Server (NTRS)

    Artemieva, N. A.

    2003-01-01

    Using detailed geological, petrographic, geochemical, and geographical constraints we have performed numerical modeling studies that relate the Steinheim crater (Da = 3.8 km), the Ries crater (D(sub a) = 24 km) in Southern Germany, and the moldavite (tektite) strewn field. The known moldavite strewn field extends from about 200 to 450 km from the center of the Ries to the ENE forming a fan with an angle of about 57 deg. An oblique impact of a binary asteroid from a WSW direction appears to explain the locations of the craters and the formation and distribution of the moldavites. In a presented study we attempt to answer more questions concerning this particular strewn field as well as other questions common for all tektites. What is the maximum 'numerical' size of the moldavite strewn field? How is this size connected with the crater size and the impact conditions? How many tektites may be found theoretically without weathering and surface erosion? What is the size of tektites? Why they are not contaminated by projectile? Where is the projectile material?

  15. Earth-based radar and LRO Diviner constraints on the recent rate of lunar ejecta processing

    NASA Astrophysics Data System (ADS)

    Ghent, Rebecca R.; Hayne, Paul O.; Bandfield, Joshua L.; Campbell, Bruce A.; Carter, Lynn M.; Allen, Carlton

    2013-04-01

    Many large craters on the lunar nearside show radar circular polarization ratio (CPR) signatures consistent with the presence of blocky ejecta blankets, to distances of 0.5 to 1.5 crater radii. However, most of these surfaces show very low surface rock concentration values and only limited enhancements in regolith temperatures calculated from Diviner nighttime infrared observations. Because the radar signal is integrated over the radar penetration depth (up to several meters), but the Diviner signal is sensitive only to rocks within the upper meter of the surface, this indicates that ejecta blocks on the surface and in the shallow subsurface are quickly removed by continued bombardment. Deeper subsurface rocks, which are clearly evident in radar CPR maps but are covered by a sufficiently thick layer of thermally insulating regolith material to render them invisible to Diviner, persist for much longer. By matching the results of one-dimensional thermal models to Diviner nighttime temperatures, we can constrain the thermophysical properties of the upper 1 meter of regolith. We find that Diviner nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a mixture of rocks and regolith fines, with increasing rock content with depth. Using this density profile together with the surface rock abundance, we can estimate the excess rock mass represented by rocks on the surface and within the upper meter of regolith for individual craters. We find that for craters of known age younger than ~1.7Ga, a robust correlation exists between ejecta mass and crater age, which yields the first observational estimate of the rate of lunar ejecta processing. Our results show that crater ejecta are initially removed very quickly (perhaps up to ~1cm / m.y.), with the rate slowing over a short period of time to less than 1 mm / m.y., as the number of blocks on the surface decreases and the volume of protective regolith material increases

  16. Condensation of dust in the ejecta of Type II-P supernovae

    NASA Astrophysics Data System (ADS)

    Sarangi, Arkaprabha; Cherchneff, Isabelle

    2015-03-01

    Aims: We study the production of dust in Type II-P supernova ejecta by coupling the gas-phase chemistry to the dust nucleation and condensation phases. We consider two supernova progenitor masses with homogeneous and clumpy ejecta to assess the chemical type and quantity of dust that forms. Grain size distributions are derived for all dust components as a function of post-explosion time. Methods: The chemistry of the gas phase and the simultaneous formation of dust clusters are described by a chemical network that includes all possible processes that are efficient at high gas temperatures and densities. The formation of key bimolecular species (e.g., CO, SiO) and dust clusters of silicates, alumina, silica, metal carbides, metal sulphides, pure metals, and amorphous carbon is considered. A set of stiff, coupled, ordinary, differential equations is solved for the gas conditions pertaining to supernova explosions. These master equations are coupled to a dust condensation formalism based on Brownian coagulation. Results: We find that Type II-P supernovae produce dust grains of various chemical compositions and size distributions as a function of post-explosion time. The grain size distributions gain in complexity with time, are slewed towards large grains, and differ from the usual Mathis, Rumpl, & Nordsieck power-law distribution characterising interstellar dust. Gas density enhancements in the form of ejecta clumps strongly affect the chemical composition of dust and the grain size distributions. Some dust type, such as forsterite and pure metallic grains, are highly dependent on clumpiness. Specifically, a clumpy ejecta produces large grains over 0.1 μm, and the final dust mass for the 19 M⊙ progenitor reaches 0.14 M⊙. Clumps also favour the formation of specific molecules, such as CO2, in the oxygen-rich zones. Conversely, the carbon and alumina dust masses are primarily controlled by the mass yields of alumina and carbon in the ejecta zones where the dust is

  17. Ejecta of Eta Carinae: What We Learn about N-Rich Chemistry

    NASA Technical Reports Server (NTRS)

    Gull, Theodore

    2006-01-01

    At least one member of the binary system, Eta Carinae, is in the late stages of CNO-cycle. At least ten solar masses of ejecta make up the Homunculus, a neutral bi-polar shell ejected in the 1840s and the Little Homunculus, an internal, ionized bi-polar shell ejected in the 1890s. HST/STIS and VLTAJVES high dispersion spectroscopy revealed absorptions of multiple elements and diatomic molecules in these shells, some, such as V II and Sr II have not been seen previously in the ISM. The skirt region between the bi-lobes includes the very bright Weigelt blobs, within 0.1 to 0.3" of the central source, and the more distant, unusual Strontium Filament, a neutral emission nebula photoexcited by Balmer continuum, but shielded by Fe II from Lyman radiation. The 600+ emission lines are due to metals usually tied up in dust, but underabundances of C and O prevent precipitation as oxides onto the dust grains. Indications are that Ti/Ni is 100X solar, likely due not to nuclear processing, but the very different photo-excitation environments coupled with N-rich, C-, O-poor chemistry. In the Homunculus, level populations of the molecules indicate 60K gas; the metal absorption lines, 760K; that of the Little Homunculus 6400K during the broad spectroscopic maximum, relaxing to 5000K for the few month long minimum. Lyman radiation, including both continuum and Lyman lines, is trapped across periastron. leading to temporary relaxation of the ejecta. These ejecta are a treasure trove of information on material thrown out of massive stars in the CNO-cycle, well before the helium burning phase. Curiously, spectra of three very recent SWIFT GRBs indicate the presence of warm, photoexcited ejecta in the vicinity of the protoGRBs, but obviously of very different abundances. However, the ejecta of Eta Carinae promise to be a nearby example of massive ejecta, the study of which should lead to increased insight of earlier, very distant massive stars.

  18. No signature of ejecta interaction with a stellar companion in three type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Olling, Rob P.; Mushotzky, Richard; Shaya, Edward J.; Rest, Armin; Garnavich, Peter M.; Tucker, Brad E.; Kasen, Daniel; Margheim, Steve; Filippenko, Alexei V.

    2015-05-01

    Type Ia supernovae are thought to be the result of a thermonuclear runaway in carbon/oxygen white dwarfs, but it is uncertain whether the explosion is triggered by accretion from a non-degenerate companion star or by a merger with another white dwarf. Observations of a supernova immediately following the explosion provide unique information on the distribution of ejected material and the progenitor system. Models predict that the interaction of supernova ejecta with a companion star or circumstellar debris lead to a sudden brightening lasting from hours to days. Here we present data for three supernovae that are likely to be type Ia observed during the Kepler mission with a time resolution of 30 minutes. We find no signatures of the supernova ejecta interacting with nearby companions. The lack of observable interaction signatures is consistent with the idea that these three supernovae resulted from the merger of binary white dwarfs or other compact stars such as helium stars.

  19. No signature of ejecta interaction with a stellar companion in three type Ia supernovae.

    PubMed

    Olling, Rob P; Mushotzky, Richard; Shaya, Edward J; Rest, Armin; Garnavich, Peter M; Tucker, Brad E; Kasen, Daniel; Margheim, Steve; Filippenko, Alexei V

    2015-05-21

    Type Ia supernovae are thought to be the result of a thermonuclear runaway in carbon/oxygen white dwarfs, but it is uncertain whether the explosion is triggered by accretion from a non-degenerate companion star or by a merger with another white dwarf. Observations of a supernova immediately following the explosion provide unique information on the distribution of ejected material and the progenitor system. Models predict that the interaction of supernova ejecta with a companion star or circumstellar debris lead to a sudden brightening lasting from hours to days. Here we present data for three supernovae that are likely to be type Ia observed during the Kepler mission with a time resolution of 30 minutes. We find no signatures of the supernova ejecta interacting with nearby companions. The lack of observable interaction signatures is consistent with the idea that these three supernovae resulted from the merger of binary white dwarfs or other compact stars such as helium stars. PMID:25993963

  20. Emission-line profiles in SNe Ib/c - Probing the ejecta geometry

    SciTech Connect

    Taubenberger, S.; Valenti, S.

    2009-05-03

    To constrain the ejecta geometry of stripped-envelope core-collapse SNe, we investigate nearly 100 nebular spectra of 39 objects, several previously unpublished. We perform a Gauss-fitting of [O I]{lambda}{lambda}6300, 6364 in all spectra, and on the basis of the best-fit parameters organise the objects into morphological classes. We conclude that at least 40% of all SNe Ib/c must be aspherical. In some SNe, the [O I] line exhibits a variety of shifted secondary peaks or shoulders, interpreted as blobs of matter ejected at high velocity. The profile of Mg I]{lambda}4571 generally resembles that of [O I]{lambda}{lambda}6300, 6364, suggesting negligible contamination from other lines and confirming that O and Mg are similarly distributed within the ejecta.

  1. Detection of water in the LCROSS ejecta plume.

    PubMed

    Colaprete, Anthony; Schultz, Peter; Heldmann, Jennifer; Wooden, Diane; Shirley, Mark; Ennico, Kimberly; Hermalyn, Brendan; Marshall, William; Ricco, Antonio; Elphic, Richard C; Goldstein, David; Summy, Dustin; Bart, Gwendolyn D; Asphaug, Erik; Korycansky, Don; Landis, David; Sollitt, Luke

    2010-10-22

    Several remote observations have indicated that water ice may be presented in permanently shadowed craters of the Moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to provide direct evidence. On 9 October 2009, a spent Centaur rocket struck the persistently shadowed region within the lunar south pole crater Cabeus, ejecting debris, dust, and vapor. This material was observed by a second "shepherding" spacecraft, which carried nine instruments, including cameras, spectrometers, and a radiometer. Near-infrared absorbance attributed to water vapor and ice and ultraviolet emissions attributable to hydroxyl radicals support the presence of water in the debris. The maximum total water vapor and water ice within the instrument field of view was 155 ± 12 kilograms. Given the estimated total excavated mass of regolith that reached sunlight, and hence was observable, the concentration of water ice in the regolith at the LCROSS impact site is estimated to be 5.6 ± 2.9% by mass. In addition to water, spectral bands of a number of other volatile compounds were observed, including light hydrocarbons, sulfur-bearing species, and carbon dioxide. PMID:20966242

  2. Global Properties of the Ejecta Absorptions in the Spectrum of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Gull, T. R.; Vieira, G. L.; Danks, A. C.

    2002-12-01

    Between 2400A to 3160A, we have identified approximately 500 absorption line complexes, each with up to 20 velocity components. Lines of Fe I, Fe II, Ti II, V II, Ni II, Co II, Mn II, Mg I, Mg II and Na I have been identified. Surprisingly, most of the lines originate from energy levels significantly above the ground level. This is indicative of optical pumping from the Central Source. Line widths and population of various levels are non-thermal. The relative column densities change with velocity. For example, Fe II column densities for one transition arising from 0.1eV increase with ejecta velocity while Fe II column densities for another transition decreases with velocity. This may be due to softening of the ultraviolet radiation that pumps the various ions (neutrals) with velocity. If we assume that the distance of each system scales with distance from the Central Source, only a thirty percent change in distance is noted; yet the ratio of column densities for the Fe II examples given above changes by nearly thirty-fold. If the ejecta distance scales with distance from Eta Carinae, then it is likely that this ejecta originated at nearly the same time. The geometry of the Homunculus has been determined to be a double-lobed structure tilted out of the plane of the sky. We interpret the ejecta as being in the wall of the Southwest lobe, and that this wall just happens to be in line of sight from Eta Carinae to the observer. As Eta Carinae enters into the upcoming minimum, we are already seeing some evidence for changes in column densities due to changes in ultraviolet fluxes. This is reinforced by IUE observations that we have recently re-analyzed with respect to the 5.52 year (2020+/-10 days) spectroscopic period. Observations were done through STScI and funding was through the STIS GTO resources.

  3. Global Properties of the Ejecta Absorptions in the Spectrum of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, T. R.; Vieira, G.; Danks, A.

    2003-01-01

    Between 2400A to 3160A, we have identified approximately 500 absorption line complexes, each with up to 20 velocity components. Lines of Fe I, Fe II, Ti II, V II, Ni II, Co II, Mn II, Mg I, Mg II and Na I have been identified. Surprisingly, most of the lines originate from energy levels significantly above the ground level. This is indcative of optical pumping from the Central Source. Line widths and population of various levels are non-thermal. The relative column densities change with velocity. For example, Fe 11 column densities for one transition arising from approx. 0.l ev increase with ejecta velocity while Fe 11 column densities for another transition decreases with velocity. This may be due to softening of the ultraviolet radiation that pumps the various ions (neutrals) with velocity. If we assume that the distance of each system scales with distance from the Central Source, only a thirty percent change in distance is noted; yet the ratio of column densities for the Fe I1 examples given above changes by nearly thirty-fold. If the ejecta distance scales with distance from Eta Carinae, then it is likely that this ejecta originated at nearly the same time. The geometry of the Homunculus has been determined to be a double-lobed structure tilted out of the plane of the sky. We interpret the ejecta as being in the wall of the Southwest lobe, and that this wall just happens to be in line of sight from Eta Carinae to the observer. As Eta Carinae enters into the upcoming minimum, we are already seeing some evidence for changes in column densities due to changes in ultraviolet fluxes. This is reinforced by IUE observations that we have recently re-analyzed with respect to the 5.52 year (2020 +/- 10 days) spectroscopic period. Observations were done through STScI and funding was through the STIS GTO resources.

  4. X-Ray Illumination of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.; Heng, K.; McCray, R.; Suntzeff, N. B.; Bouchet, P.; Crotts, A.; Danziger, J.; Dwek, E.; France, K.; Garnavich, P. M.; Lawrence, S. S.; Leibundgut, B.; Lundqvist, P.; Panagia, N.; Pun, C. S. J.; Sonneborn, G.

    2011-01-01

    When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.

  5. The contribution of chemical abundances in nova ejecta to the interstellar medium

    NASA Astrophysics Data System (ADS)

    Li, Fanger; Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2016-06-01

    According to the nova model from Yaron et al. (2005, ApJ, 418, 794) and José and Hernanz (1998, ApJ, 494, 680), and using a Monte Carlo simulation method, we investigate the contribution of chemical abundances in nova ejecta to the interstellar medium (ISM) of the Galaxy. We find that the mass ejected from classical novae is about 2.7 × 10-3 M⊙ yr-1. In the nova ejecta, the isotopic ratios of C, N, and O, that is, 13C/12C, 15N/14N, and 17O/16O, are higher by about one order of magnitude than those in red giants. We estimate that about 10%, 5%, and 20% of 13C, 15N, and 17O in the ISM of the Galaxy come from nova ejecta, respectively. However, the chemical abundances of C, N, and O calculated by our model cannot cover all observational values. This means that there is still a long way to go to understand novae.

  6. The contribution of chemical abundances in nova ejecta to the interstellar medium

    NASA Astrophysics Data System (ADS)

    Li, Fanger; Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2016-04-01

    According to the nova model from Yaron et al. (2005, ApJ, 418, 794) and José and Hernanz (1998, ApJ, 494, 680), and using a Monte Carlo simulation method, we investigate the contribution of chemical abundances in nova ejecta to the interstellar medium (ISM) of the Galaxy. We find that the mass ejected from classical novae is about 2.7 × 10-3 M⊙ yr-1. In the nova ejecta, the isotopic ratios of C, N, and O, that is, 13C/12C, 15N/14N, and 17O/16O, are higher by about one order of magnitude than those in red giants. We estimate that about 10%, 5%, and 20% of 13C, 15N, and 17O in the ISM of the Galaxy come from nova ejecta, respectively. However, the chemical abundances of C, N, and O calculated by our model cannot cover all observational values. This means that there is still a long way to go to understand novae.

  7. Abundance anomalies in metal-poor stars from Population III supernova ejecta hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sluder, Alan; Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-02-01

    We present a simulation of the long-term evolution of a Population III supernova remnant in a cosmological minihalo. Employing passive Lagrangian tracer particles, we investigate how chemical stratification and anisotropy in the explosion can affect the abundances of the first low-mass, metal-enriched stars. We find that reverse shock heating can leave the inner mass shells at entropies too high to cool, leading to carbon enhancement in the recollapsing gas. This hydrodynamic selection effect could explain the observed incidence of carbon-enhanced metal-poor stars at low metallicity. We further explore how anisotropic ejecta distributions, recently seen in direct numerical simulations of core-collapse explosions, may translate to abundances in metal-poor stars. We find that some of the observed scatter in the Population II abundance ratios can be explained by an incomplete mixing of supernova ejecta, even in the case of only one contributing enrichment event. We demonstrate that the customary hypothesis of fully mixed ejecta clearly fails if post-explosion hydrodynamics prefers the recycling of some nucleosynthetic products over others. Furthermore, to fully exploit the stellar-archaeological programme of constraining the Pop III initial mass function from the observed Pop II abundances, considering these hydrodynamical transport effects is crucial. We discuss applications to the rich chemical structure of ultrafaint dwarf satellite galaxies, to be probed in unprecedented detail with upcoming spectroscopic surveys.

  8. X-Ray Emitting Ejecta in Puppis A Observed with Suzaku

    NASA Technical Reports Server (NTRS)

    Hwang, U.; Petre, R.; Flanagan, K.

    2008-01-01

    We report the detection and localization of X-ray emitting ejecta in the middle-aged Galactic supernova remnant Puppis A using five observations with the Suzaku X-ray Imaging Spectrometer to survey the eastern and middle portions of the remnant. A roughly 3' x 5', double-peaked region in the north center is found to be highly enriched in Si and other elements relative to the rest of the remnant. The X-ray fitted abundances are otherwise well below the solar values. While the ejecta-enhanced regions show some variation of relative element abundances, there is little evidence for a very strong enhancement of one element over the others in the imaged portion of the remnant, except possibly for a region of 0 and Ne enhancement in the remnant's south center. There is no spatial correlation between the compact [0 1111 emitting ejecta knots seen optically and the abundance enhancements seen in X-rays, although they are located in the same vicinity. The map of fitted column density shows strong variations across the remnant that echo earlier X-ray spectral hardness maps. The ionization age (as fitted for single temperature models) is sharply higher in a ridge behind the northeast-east boundary of the remnant, and is probably related to the strong molecular cloud interaction along that boundary. The temperature map, by comparison, shows relatively weak variations.

  9. The evolution of the composition of a young star cluster ejecta

    NASA Astrophysics Data System (ADS)

    Mollá, M.; Terlevich, R.

    2013-05-01

    We have computed with a fine time grid the evolution of the elemental abundances of He, C, N and O ejected by young (t < 20Myr) and massive (M = 10^{6} M_{⊙} coeval stellar cluster with a Salpeter initial mass function (IMF) over a wide range of initial abundances. Our computations incorporate the mass loss from massive stars (M ≥0 M_{⊙}) during their wind phase including the Wolf-Rayet phase and the ejecta from the core collapse supernovae. We find that during the Wolf-Rayet phase (t < 5 Myr) the cluster ejecta composition suddenly becomes vastly overabundant in N for all initial abundances and in He, C, and O for initial abundances higher than 1/5^{th} Solar. The C and O abundance in the cluster ejecta can reach over 50 times the solar value with important consequences for the chemical and hydro-dynamical evolution of the surrounding ISM. To see the whole tables and results see Moll{á} & Terlevich (2012, MNRAS, 425, 1696).

  10. The Circumstellar Medium of Cassiopeia A Inferred from the Outer Ejecta Knot Properties

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Laming, J. Martin

    2009-01-01

    We investigate the effect of the circumstellar medium density profile on the X-ray emission from outer ejecta knots in the Cassiopeia A supernova remnant using the 1 Ms Chandra observation. The spectra of a number of radial series of ejecta knots at various positions around the remnant are analyzed using techniques similar to those devised in previous papers. We can obtain a reasonable match to our data for a circumstellar density profile proportional to r(sup -2) as would arise from the steady dense wind of a red supergiant, but the agreement is improved if we introduce a central cavity around the progenitor into our models. Such a profile might arise if the progenitor emitted a, fast tenuous stellar wind for a short period immediately prior to explosion. We review other lines of evidence supporting this conclusion. The spectra also indicate the widespread presence of Fe-enriched plasma that was presumably formed by complete Si burning during the explosion, possibly via alpha-rich freezeout. This component is typically associated with hotter and more highly ionized gas than the bulk of the O- and Si-rich ejecta.

  11. THE CIRCUMSTELLAR MEDIUM OF CASSIOPEIA A INFERRED FROM THE OUTER EJECTA KNOT PROPERTIES

    SciTech Connect

    Hwang, Una

    2009-09-20

    We investigate the effect of the circumstellar medium density profile on the X-ray emission from outer ejecta knots in the Cassiopeia A supernova remnant using the 1 Ms Chandra observation. The spectra of a number of radial series of ejecta knots at various positions around the remnant are analyzed using techniques similar to those devised in previous papers. We can obtain a reasonable match to our data for a circumstellar density profile proportional to r {sup -2} as would arise from the steady dense wind of a red supergiant, but the agreement is improved if we introduce a small (0.2-0.3 pc) central cavity around the progenitor into our models. Such a profile might arise if the progenitor emitted a fast tenuous stellar wind for a short period immediately prior to explosion. We review other lines of evidence supporting this conclusion. The spectra also indicate the widespread presence of Fe-enriched plasma that was presumably formed by complete Si burning during the explosion, possibly via alpha-rich freezeout. This component is typically associated with hotter and more highly ionized gas than the bulk of the O- and Si-rich ejecta.

  12. The Circumstellar Medium of Cassiopeia a Inferred from the Outer Ejecta Knot Properties

    NASA Astrophysics Data System (ADS)

    Hwang, Una; Laming, J. Martin

    2009-09-01

    We investigate the effect of the circumstellar medium density profile on the X-ray emission from outer ejecta knots in the Cassiopeia A supernova remnant using the 1 Ms Chandra observation. The spectra of a number of radial series of ejecta knots at various positions around the remnant are analyzed using techniques similar to those devised in previous papers. We can obtain a reasonable match to our data for a circumstellar density profile proportional to r -2 as would arise from the steady dense wind of a red supergiant, but the agreement is improved if we introduce a small (0.2-0.3 pc) central cavity around the progenitor into our models. Such a profile might arise if the progenitor emitted a fast tenuous stellar wind for a short period immediately prior to explosion. We review other lines of evidence supporting this conclusion. The spectra also indicate the widespread presence of Fe-enriched plasma that was presumably formed by complete Si burning during the explosion, possibly via alpha-rich freezeout. This component is typically associated with hotter and more highly ionized gas than the bulk of the O- and Si-rich ejecta.

  13. SULFUR MOLECULE CHEMISTRY IN SUPERNOVA EJECTA RECORDED BY SILICON CARBIDE STARDUST

    SciTech Connect

    Hoppe, Peter; Fujiya, Wataru; Zinner, Ernst E-mail: fujiya@eps.s.u-tokyo.ac.jp

    2012-02-15

    We studied about 3400 presolar silicon carbide (SiC) grains from the Murchison CM2 meteorite for C- and Si-isotopic compositions. Among these grains we identified 7 unusual or type C SiC (U/C) grains, characterized by isotopically heavy Si, and 36 supernova type X SiC grains, characterized by isotopically light Si. Selected U/C and X grains were also measured for S-, Mg-Al-, and Ca-Ti-isotopic compositions. We show that the U/C grains incorporated radioactive {sup 44}Ti, which is evidence that they formed in the ejecta of Type II supernova (SNII) explosions. Abundances of radioactive {sup 26}Al and {sup 44}Ti are compatible with those observed in X grains. U/C and X grains carry light S with enrichments in {sup 32}S of up to a factor of 2.7. The combination of heavy Si and light S observed in U/C grains is not consistent with abundance predictions of simple supernova models. The isotope data suggest preferential trapping of S from the innermost supernova zones, the production site of radioactive {sup 44}Ti, by the growing silicon carbide particles. A way to achieve this is by sulfur molecule chemistry in the still unmixed ejecta. This confirms model predictions of molecule formation in SNII ejecta and shows that sulfur molecule chemistry operates in the harsh and hot environments of stellar explosions.

  14. Sulfur Molecule Chemistry in Supernova Ejecta Recorded by Silicon Carbide Stardust

    NASA Astrophysics Data System (ADS)

    Hoppe, Peter; Fujiya, Wataru; Zinner, Ernst

    2012-02-01

    We studied about 3400 presolar silicon carbide (SiC) grains from the Murchison CM2 meteorite for C- and Si-isotopic compositions. Among these grains we identified 7 unusual or type C SiC (U/C) grains, characterized by isotopically heavy Si, and 36 supernova type X SiC grains, characterized by isotopically light Si. Selected U/C and X grains were also measured for S-, Mg-Al-, and Ca-Ti-isotopic compositions. We show that the U/C grains incorporated radioactive 44Ti, which is evidence that they formed in the ejecta of Type II supernova (SNII) explosions. Abundances of radioactive 26Al and 44Ti are compatible with those observed in X grains. U/C and X grains carry light S with enrichments in 32S of up to a factor of 2.7. The combination of heavy Si and light S observed in U/C grains is not consistent with abundance predictions of simple supernova models. The isotope data suggest preferential trapping of S from the innermost supernova zones, the production site of radioactive 44Ti, by the growing silicon carbide particles. A way to achieve this is by sulfur molecule chemistry in the still unmixed ejecta. This confirms model predictions of molecule formation in SNII ejecta and shows that sulfur molecule chemistry operates in the harsh and hot environments of stellar explosions.

  15. Extreme luminosities in ejecta produced by intermittent outflows around rotating black holes

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2015-02-01

    Extreme sources in the Transient Universe show evidence of relativistic outflows from intermittent inner engines, such as cosmological gamma-ray bursts (GRBs). They probably derive from rotating back holes interacting with surrounding matter. We show that these interactions are enhanced inversely proportional to the duty cycle in advection of magnetic flux, as may apply at high accretion rates. We demonstrate the morphology and ballistic propagation of relativistic ejecta from burst outflows by numerical simulations in relativistic magnetohydrodynamics. Applied to stellar mass black holes in core-collapse of massive stars, it provides a robust explosion mechanism as a function of total energy output. At breakout, these ejecta may produce a low-luminosity GRB. A long GRB may ensue from an additional ultrarelativistic baryon-poor inner jet from a sufficiently long-lived intermittent inner engine. The simulations demonstrate a complex geometry in mergers of successive ejecta, whose mixing and shocks provide a pathway to broad-band high-energy emission from magnetic reconnection and shocks.

  16. Modeling post-explosion anisotropies of ejecta in SNR Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Pumo, M.; Bocchino, F.

    2016-06-01

    Supernova remnats (SNRs) show a complex morphology characterized by an inhomogeneous spatial distribution of ejecta, believed to reflect pristine structures and features of the progenitor supernova (SN) explosion. Filling the gap between SN explosions and their remnants is very important for a comprehension of the origin of present-day structure of ejecta in SNRs and to probe and constraint current models of SN explosions. The SNR Cassiopeia A (Cas A) is an attractive laboratory for studying the SNe-SNRs connection, being one of the best studied SNRs for which its 3D structure is known. We present a three-dimensional hydrodynamic model describing the evolution of Cas A from the immediate aftermath of the SN explosion to its expansion through the interstellar medium, taking into account the distribution of element abundances of the ejecta, the back reaction of accelerated cosmic rays at the shock front, and the deviations from equilibrium of ionizazion for the most important elements. We use the model to derive the physical parameters characterizing the SN explosion and reproducing the today morphology of Cas A.

  17. Understanding the Wind/Ejecta of ETA Carinae with the STIS

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2003-01-01

    The mysterious Luminous Blue Variable, Eta Carinae, and its ejecta, the Homunculus, are yielding much new and exciting information to the Space Telescope Imaging Spectrograph (STIS). With 0.05 in. pixels and R=5000, we have followed changes in the Central Source and the surrounding ejecta over the past 5.5 year period in the spectral region 1650-10300A. Neutral, partially-ionized and highly-excited nebular regions have been resolved. With 0.025 in., R=30000 and R=120000 between 1180 and 3160A, we are following the changes in the Central Source, the wind structure and at least 20 absorption components, thought to be within the wall of the Humunculus. The Central Source proves to be slightly extended at HST angular resolutions. Theoretical models of the nebular line fluxes are providing new insight to the sources of excitation. Photo-excitation, line and continuum pumping, plus shocks, all play a role. Laboratory measurements of Fe-like elements and improved atomic data bases prove necessary for proper interpretation. Increased angular resolution by larger-aperture space telescopes and improved optics and detectors will lead to new understanding of massive stars, their wind structures and history of ejecta.

  18. Ejecta from large craters on the moon - Comments on the geometric model of McGetchin et al

    NASA Technical Reports Server (NTRS)

    Pike, R. J.

    1974-01-01

    Amendments to a quantitative scheme developed by T. R. McGetchin et al. (1973) for predicting the distribution of ejecta from lunar basins yield substantially thicker estimates of ejecta, deposited at the basin rim-crest and at varying ranges beyond, than does the original model. Estimates of the total volume of material ejected from a basin, illustrated by Imbrium, also are much greater. Because many uncertainties affect any geometric model developed primarily from terrestrial analogs of lunar craters, predictions of ejecta thickness and volume on the moon may range within at least an order of magnitude. These problems are exemplified by the variability of T, thickness of ejecta at the rim-crest of terrestrial experimental craters. The proportion of T to crater rim-height depends critically upon scaled depth-of-burst and whether the explosive is nuclear or chemical.

  19. Ejecta from large craters on the Moon: Comments on the geometric model of McGetchin et al.

    USGS Publications Warehouse

    Pike, R.J.

    1974-01-01

    Amendments to a quantitative scheme developed by T.R. McGetchin et al. (1973) for predicting the distribution of ejecta from lunar basins yield substantially thicker estimates of ejecta, deposited at the basin rim-crest and at varying ranges byond, than does the original model. Estimates of the total volume of material ejected from a basin, illustrated by Imbrium, also are much greater. Because many uncertainties affect any geometric model developed primarily from terrestrial analogs of lunar craters, predictions of ejecta thickness and volume on the Moon may range within at least an order of magnitude. These problems are exemplified by the variability of T, thickness of ejecta at the rim-crest of terrestrial experimental craters. The proportion of T to crater rim-height depends critically upon scaled depth-of-burst and whether the explosive is nuclear or chemical. ?? 1974.

  20. Impact Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Today marks the 45th anniversary of the dawn of the Space Age (October 4, 1957). On this date the former Soviet Union launched the world's first satellite, Sputnik 1. Sputnik means fellow traveler. For comparison Sputnik 1 weighed only 83.6 kg (184 pounds) while Mars Odyssey weighs in at 758 kg (1,671 pounds).

    This scene shows several interesting geologic features associated with impact craters on Mars. The continuous lobes of material that make up the ejecta blanket of the large impact crater are evidence that the crater ejecta were fluidized upon impact of the meteor that formed the crater. Volatiles within the surface mixed with the ejecta upon impact thus creating the fluidized form. Several smaller impact craters are also observed within the ejecta blanket of the larger impact crater giving a relative timing of events. Layering of geologic units is also observed within the large impact crater walls and floor and may represent different compositional units that erode at variable rates. Cliff faces, dissected gullies, and heavily eroded impact craters are observed in the bottom half of the image at the terminus of a flat-topped plateau.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  1. The Deep Impact oblique impact cratering experiment

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Eberhardy, Clara A.; Ernst, Carolyn M.; A'Hearn, Michael F.; Sunshine, Jessica M.; Lisse, Carey M.

    The Deep Impact probe collided with 9P Tempel 1 at an angle of about 30° from the horizontal. This impact angle produced an evolving ejecta flow field very similar to much smaller scale oblique-impact experiments in porous particulate targets in the laboratory. Similar features and phenomena include a decoupled vapor/dust plume at the earliest times, a pronounced downrange bias of the ejecta, an uprange “zone of avoidance” (ZoA), heart-shaped ejecta ray system (cardioid pattern), and a conical (but asymmetric) ejecta curtain. Departures from nominal cratering evolution, however, provide clues on the nature of the impact target. These departures include: fainter than expected flash at first contact, delayed emergence of the self-luminous vapor/dust plume, uprange-directed plume, narrow early-time uprange ray followed by a late-stage uprange plume, persistence of ejecta asymmetries (and the uprange ZoA) throughout the approach sequence, emergence of a downrange ZoA at late times, detachment of uprange curved rays, very long lasting non-radial ejecta rays, and high-angle ejecta plume lasting over the entire encounter. The first second of crater formation most closely resembles the consequences of a highly porous target, while later evolution indicates that the target may be layered as well. Experiments also reveal that impacts into highly porous targets produce a vapor/dust plume directed back up the incoming trajectory. This uprange plume is attributed to cavitation within a narrow penetration funnel. The observed lateral expansion speed of the initial vapor plume downrange provides an estimate for the total vaporized mass equal to ˜5m (projectile masses) of water ice or 6m of CO2. The downrange plume speed is consistent with the gas expansion added to the downrange horizontal component of the DI probe. Based on high-speed spectroscopy of experimental impacts, the observed delay in brightening of the DI plume may be the result of delayed condensation of carbon

  2. The Deep Impact oblique impact cratering experiment

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Eberhardy, Clara A.; Ernst, Carolyn M.; A'Hearn, Michael F.; Sunshine, Jessica M.; Lisse, Carey M.

    2007-10-01

    The Deep Impact probe collided with 9P Tempel 1 at an angle of about 30° from the horizontal. This impact angle produced an evolving ejecta flow field very similar to much smaller scale oblique-impact experiments in porous particulate targets in the laboratory. Similar features and phenomena include a decoupled vapor/dust plume at the earliest times, a pronounced downrange bias of the ejecta, an uprange "zone of avoidance" (ZoA), heart-shaped ejecta ray system (cardioid pattern), and a conical (but asymmetric) ejecta curtain. Departures from nominal cratering evolution, however, provide clues on the nature of the impact target. These departures include: fainter than expected flash at first contact, delayed emergence of the self-luminous vapor/dust plume, uprange-directed plume, narrow early-time uprange ray followed by a late-stage uprange plume, persistence of ejecta asymmetries (and the uprange ZoA) throughout the approach sequence, emergence of a downrange ZoA at late times, detachment of uprange curved rays, very long lasting non-radial ejecta rays, and high-angle ejecta plume lasting over the entire encounter. The first second of crater formation most closely resembles the consequences of a highly porous target, while later evolution indicates that the target may be layered as well. Experiments also reveal that impacts into highly porous targets produce a vapor/dust plume directed back up the incoming trajectory. This uprange plume is attributed to cavitation within a narrow penetration funnel. The observed lateral expansion speed of the initial vapor plume downrange provides an estimate for the total vaporized mass equal to ˜5m (projectile masses) of water ice or 6m of CO 2. The downrange plume speed is consistent with the gas expansion added to the downrange horizontal component of the DI probe. Based on high-speed spectroscopy of experimental impacts, the observed delay in brightening of the DI plume may be the result of delayed condensation of carbon, in

  3. An HST Survey of the Highest-velocity Ejecta in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Milisavljevic, Dan

    2016-02-01

    We present Hubble Space Telescope WFC3/IR images of the Cassiopeia A supernova remnant that survey its high-velocity, S-rich debris in the NE jet and SW counterjet regions through [S iii] λλ9069, 9531 and [S ii] λλ10,287-10,370 line emissions. We identify nearly 3400 sulfur emitting knots concentrated in ˜120° wide opposing streams, almost triple the number previously known. The vast majority of these ejecta knots lie at projected distances well out ahead of the remnant’s forward blast wave and main shell ejecta, extending to angular distance of 320\\prime\\prime to the NE and 260\\prime\\prime to the SW from the center of expansion. Such angular distances imply undecelerated ejecta knot transverse velocities of 15,600 and 12,700 km s-1, respectively, assuming an explosion date ≈ 1670 AD and a distance of 3.4 kpc. Optical spectra of knots near the outermost tip of the NE ejecta stream show strong emission lines of S, Ca, and Ar. We estimate a total mass ˜0.1 {M}⊙ and a kinetic energy of at least ˜ 1× {10}50 erg for S-rich ejecta in the NE jet and SW counterjet. Although their broadness and kinetic energy argue against the Cas A SN being a jet-induced explosion, the jets are kinematically and chemically distinct from the rest of the remnant. This may reflect an origin in a jet-like mechanism that accelerated interior material from a Si-, S-, Ar-, and Ca-rich region near the progenitor’s core up through the mantle and H-, He-, N-, and O-rich outer layers with velocities that greatly exceeded that of the rapidly expanding photosphere. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc.

  4. North American tektite debris and impact ejecta from DSDP Site 612

    SciTech Connect

    Glass, B.P. )

    1989-12-01

    A layer of tektite glass and shock-metamorphosed grains found in an upper Eocene section of core 21 from DSDP Site 612 taken on the continental slope off New Jersey may belong to the North American tektite strewn field. In order to better define the layer, a series of samples was taken continuously through the layer at 1 cm intervals. Tektite fragments are in an 8 cm thick layer; microtektites are concentrated in the upper 4 cm, while spherules with crystalline textures (microkrystites) are concentrated in the lower half of the layer. Millimeter-size splash forms are mostly in the lower part of the tektite-bearing layer. Rock and mineral grains showing evidence of shock metamorphism are abundant in the upper half of the tektite-bearing layer. Coesite is abundant, and stishovite was found in one rock fragment. The size and abundance of the tektite glass and the abundance of shocked debris indicate that Site 612 is relatively close to the source crater, which may be to the north of Site 612 on the coastal plain or adjacent continental shelf. 40 refs.

  5. Lunar origin from impact on the Earth

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1984-01-01

    All theories of lunar origin involve events or processes which seemingly have low efficiencies or low probabilities or both. An impact-triggered fission lunar origin is presented. If the impact ejecta (a mixture of target and projectile) leave the impact site ballistically and are subsequently acted upon only by the gravity field of a spherical Earth, then the ejecta either reimpacts the Earth or escapes on a hyperbolic trajectory. Hence the need for a second burn. Three possible resolutions are considered: pressure gradient acceleration, non-central gravity, and viscous spreading.

  6. PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS

    SciTech Connect

    Wanajo, Shinya; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru; Nishimura, Nobuya; Kyutoku, Koutarou

    2014-07-10

    Recent studies suggest that binary neutron star (NS-NS) mergers robustly produce heavy r-process nuclei above the atomic mass number A ∼ 130 because their ejecta consist of almost pure neutrons (electron fraction of Y {sub e} < 0.1). However, the production of a small amount of the lighter r-process nuclei (A ≈ 90-120) conflicts with the spectroscopic results of r-process-enhanced Galactic halo stars. We present, for the first time, the result of nucleosynthesis calculations based on the fully general relativistic simulation of a NS-NS merger with approximate neutrino transport. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino processed, resulting in a wide range of Y {sub e} (≈0.09-0.45). The mass-averaged abundance distribution of calculated nucleosynthesis yields is in reasonable agreement with the full-mass range (A ≈ 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers could be the origin of the Galactic r-process nuclei. Our result also shows that radioactive heating after ∼1 day from the merging, which gives rise to r-process-powered transient emission, is dominated by the β-decays of several species close to stability with precisely measured half-lives. This implies that the total radioactive heating rate for such an event can be well constrained within about a factor of two if the ejected material has a solar-like r-process pattern.

  7. Target of Opportunity Observations of TOADS: Finding the Dust in Super-Outburst Ejecta

    NASA Astrophysics Data System (ADS)

    Hoard, Donald; Ciardi, David; Howell, Steve

    2008-03-01

    Tremendous Outburst Amplitude Dwarf novae (TOADs) consist of a white dwarf primary star and an extremely low mass main sequence or brown dwarf-like secondary star. The latter fills its Roche lobe and transfers matter to the white dwarf through the inner Lagrange point into an accretion disk. TOADs undergo non-thermonuclear (i.e., disk instability) super-outbursts on timescales of decades. During the decline from super-outburst peak they display a characteristic dip in light curves at visible wavelengths, reminiscent of what is observed in slow classical (i.e., thermonuclear runaway) novae. In classical novae, the visible light dip is attributed to the formation of dust in the nova ejecta but, until now, the cause of the dip in TOAD light curves has remained unclear. In 2004, a previously unknown TOAD was discovered as it went into super-outburst, and our team was granted a Spitzer DDT program with which we have detected the likely formation of dust in the outburst ejecta. We now propose a Target of Opportunity program with Spitzer to observe an additional super-outbursting TOAD, in order to address the following questions: 1) Do all TOADs produce dust during their outbursts?; 2) What is the timescale for dust formation and dissipation?; 3) How much dust is produced during a super-outburst?; and 4) How does the dust production scale with the outburst amplitude? Spitzer is uniquely capable of detecting and characterizing the dust formed in the ejecta during super-outbursts and fundamentally changing the understanding of TOADs, their super-outbursts, and their contribution to the recycling of the interstellar medium.

  8. The Evolution of Dust Mass in the Ejecta of SN1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard G.

    2015-09-01

    We present a new analysis of the infrared (IR) emission from the ejecta of SN 1987A covering days 615, 775, 1144, 8515, and 9090 after the explosion. We show that the observations are consistent with the rapid formation of about 0.4 {M}⊙ of dust, consisting of mostly silicates (MgSiO3), near day 615, and evolving to about 0.45 {M}⊙ of composite dust grains consisting of ˜0.4 {M}⊙ of silicates and ˜0.05 {M}⊙ of amorphous carbon after day ˜8500. The proposed scenario challenges previous claims that dust in supernova (SN) ejecta is predominantly carbon, and that it grew from an initial mass of ˜10-3 {M}⊙ , to over 0.5 {M}⊙ by cold accretion. It alleviates several problems with previous interpretations of the data: (1) it reconciles the abundances of silicon, magnesium, and carbon with the upper limits imposed by nucleosynthesis calculations, (2) it eliminates the requirement that most of the dust observed around day 9000 grew by cold accretion onto the ˜10-3 {M}⊙ of dust previously inferred for days 615 and 775 after the explosion, and (3) establishes the dominance of silicate over carbon dust in the SN ejecta. At early epochs, the IR luminosity of the dust is powered by the radioactive decay of 56Co, and at late times by at least (1.3-1.6) × 10-4 {M}⊙ of 44Ti.

  9. Impact into Coarse Grained Spheres

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M.; Crawford, D. A.

    2005-01-01

    Several experimental studies [1,2,3] indicate that differences in the grain size of the target relative to the projectile could influence the cratering process. Impacts into coarse sand grains of size comparable to the projectile show some discrepancies with existing relationships for crater growth [e.g. 4]. Similarly, targets of ne grained, uniform in diameter glass spheres show differences in crater depth, transient crater diameter, and volume of ejecta excavated as a function of grain size [2,3]. The purpose of this work is to continue investigating how the relative grain size may influence early time coupling between a projectile and target, with implications for subsequent ejecta excavation and crater growth. In previous efforts we used numerical techniques to focus on the propagation of shock waves in coarse, granular media emphasizing the influence of relative grain size on crater growth, ejecta production, cratering efficiency, target strength, and crater shape [5,6,7]. In this study, we use experimental techniques - in part as a reality check for the numerical studies - to report on how coarse grained targets might influence ejecta excavation and crater shape. This body of work possesses important implications for ejecta excavation and cratering efficiency on asteroids that may possess rubble pile-like structures, and on planets that may possess either pre-fractured surfaces or large-scale heterogeneities in shock impedance.

  10. Crustal and subcrustal nodules in ejecta from Kilbourne Hole Maar, New Mexico

    NASA Technical Reports Server (NTRS)

    Whitford-Stark, J. L.

    1987-01-01

    Nodules retrieved from the ejecta of volcanic craters serve as the source of two major items of information. The first is in providing details of the geochemistry and mineralogy of the Earth's interior by supplying samples of materials that cannot be obtained by existing drilling techniques. The other is in providing information regarding the process which led to their transport from the Earth's interior to the surface. The primary purpose of the present study was to examine the morphology of the nodules in an attempt to place some constraints on the process that brought them to the surface. This attempt is briefly discussed.

  11. The Morphology of the Post-Red Supergiant IRC+10420's Circumstellar Ejecta

    NASA Astrophysics Data System (ADS)

    Tiffany, Chelsea L.; Humphreys, R. M.; Jones, T. J.; Davidson, K.

    2009-05-01

    The extremely luminous post-red supergiant and powerful OH/IR source IRC +10420 is surrounded by a complex circumstellar nebula. Numerous small condensations, arcs, jet-like rays of knots, and intriguing semi-circular structures are easily visible in HST/WFPC2 images. These spatially recognizable features are evidence for episodic mass loss events possibly from localized active regions on the star's surface. We have obtained second epoch images with an 11 year baseline to measure the transverse motions of structures in the ejecta. We report the preliminary results of our measurements and the evidence for a complex mass loss history over several hundred years.

  12. Heavy-Element Ejecta in G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Reynolds, S. P.; Green, D.; Hwang, U.; Petre, R.; Krishnamurthy, K.; Willett, R.

    2013-04-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, most likely located near the Galactic center. Only the outermost ejecta layers with free-expansion velocities in excess of 18,000 km/s have been shocked so far in this dynamically-young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed for spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy, Raginsky, & Willett, and then used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si, S, Ar, and Ca) and by iron. The spatial distribution of both IMEs and Fe is extremely asymmetric and inhomogeneous, with the strongest ejecta emission in the northern limb. Fe K emission is particularly prominent there, and fits with a thermal plane-shock model indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern shell, IMEs are at least 5 times less abundant than Fe (by mass), indicating that undiluted Fe-group elements (including radioactive Ni) with velocities > 18,000 km/s were ejected by this SN. More modest (up to a factor of 2) Fe overabundances with respect to IMEs are present in other locations within the northern limb. There are several thousandths of a solar mass of shocked Fe in G1.9+0.3. In several locations within the remnant, including the (inner) west limb, we also find Si- and S-rich ejecta without any traces of Fe, so high-velocity, presumably undiluted products of O-burning were also ejected by the SN. If the underlying continuum is thermal, with plasma temperatures of 3-4 keV, then it must be produced by lighter elements such as O that comprise the bulk of the shocked gas. We discuss these findings in the context of Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. We also

  13. The Dusty Nova: An Examination of Dust Production and Processing in the Ejecta of Classical Novae

    NASA Astrophysics Data System (ADS)

    Helton, L. A.; Evans, A.; Woodward, C. E.; Gehrz, R. D.; Vacca, W.

    2014-12-01

    Classical novae (CNe) are known to frequently produce dust in their ejecta. Infrared observations have revealed that the dust produced can be of a variety of different species, including silicates, amorphous carbon, hydrocarbons, and silicon carbide. Due to their relatively rapid evolution, CNe provide unique laboratories for the examination of the processes of dust condensation, grain growth, and destruction. Here we present analysis of the near- to mid-IR spectra of a number of recent dust forming novae, including V2361 Cyg, V2362 Cyg, and V1280 Sco. We discuss the implications for our understanding of dust formation and processing with particular emphasis on the role of hydrocarbon species.

  14. Do oblique impacts produce Martian meteorites?

    NASA Astrophysics Data System (ADS)

    Nyquist, L. E.

    Geochronological and geochemical characteristics of several achondritic meteorites match those expected of Martian rocks. Several authors have suggested that these meteorites might have originated on Mars, but no satisfactory explanation has been given of how they may have been ejected from the Martian surface. It is suggested that the oblique impact of large meteoroids may produce ejecta which is entrained with the ricocheting projectile and accelerated to velocities in excess of Martian escape velocity. This suggestion is based on earlier experimental studies of oblique impacts and on the observation of several large Martian craters with the characteristic 'butterfly' ejecta pattern produced by low angle impacts. Several acceleration mechanisms may act on the Martian ejecta. The considerations suggest that a Martian origin of the shergottite meteorites is dynamically possible.

  15. DENSE IRON EJECTA AND CORE-COLLAPSE SUPERNOVA EXPLOSION IN THE YOUNG SUPERNOVA REMNANT G11.2-0.3

    SciTech Connect

    Moon, Dae-Sik; Koo, Bon-Chul; Seok, Ji Yeon; Lee, Ho-Gyu; Matthews, Keith; Lee, Jae-Joon; Pyo, Tae-Soo; Hayashi, Masahiko

    2009-09-20

    We present the results of near-infrared spectroscopic observations of dense ({approx}>10{sup 3} cm{sup -3}) iron ejecta in the young core-collapse supernova remnant G11.2-0.3. Five ejecta knots projected to be close to its center show a large dispersion in their Doppler shifts: two knots in the east are blueshifted by more than 1000 km s{sup -1}, while three western knots have relatively small blueshifts of 20-60 km s{sup -1}. This velocity discrepancy may indicate that the western knots have been significantly decelerated or that there exists a systematic velocity difference among the knots. One ejecta filament in the northwestern boundary, on the other hand, is redshifted by {approx}>200 km s{sup -1}, while opposite filament in the southeastern boundary shows a negligible radial motion. Some of the knots and filaments have secondary velocity components, and one knot shows a bow shock-like feature in the velocity structure. The iron ejecta appear to be devoid of strong emission from other heavy elements, such as S, which may attest to the alpha-rich freezeout process in the explosive nucleosynthesis of the core-collapse supernova explosion close to its center. The prominent bipolar distribution of the Fe ejecta in the northwestern and southeastern direction, along with the elongation of the central pulsar wind nebula in the perpendicular direction, is consistent with the interpretation that the supernova exploded primarily along the northwestern and southeastern direction.

  16. A first-order model for impact crater degradation on Venus

    NASA Technical Reports Server (NTRS)

    Izenberg, Noam R.; Arvidson, Raymond E.; Phillips, Roger J.

    1993-01-01

    A first-order impact crater aging model is presented based on observations of the global crater population of Venus. The total population consists of 879 craters found over the approximately 98 percent of the planet that has been mapped by the Magellan spacecraft during the first three cycles of its mission. The model is based upon three primary aspects of venusian impact craters: (1) extended ejecta deposits (EED's); (2) crater rims and continuous ejecta deposits; and (3) crater interiors and floors.

  17. The effect of ambient pressure on ejecta sheets from free-surface ablation

    NASA Astrophysics Data System (ADS)

    Marston, J. O.; Mansoor, M. M.; Thoroddsen, S. T.; Truscott, T. T.

    2016-05-01

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at 5 × 106 fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness.

  18. Geomorphic clues to the Martian volatile inventory. 1: Flow ejecta blankets

    NASA Technical Reports Server (NTRS)

    Pieri, D.; Baloga, S.; Norris, M.

    1984-01-01

    There are classes of landforms whose presence on Mars is strongly suggestive, if not confirmatory, of the participation of volatiles, presumably water, in its geomorphic development: (1) valley networks, (2) outflow channels, (3) landslides, and (4) flow-ejecta blankets. The first two may represent landforms generated by the movement of volatiles from sources, while the latter two probably represent the dissipation of energy generated by forcing inputs (e.g., kinetic energy and gravity) modulated by volatiles. In many areas on Mars, all four processes have acted on the same lithologic materials and were influenced by the composition of those units, and possibility by the climatic regime at the time of their formation. One of the approaches discussed to this specific problem of landform genesis, and to the general problem of the present and past states of martian volatiles, is to attempt to constrain the distribution, amount, and history of available volatiles by using possible evidence of volatile participation expressed in the morphology of other related landforms (e.g., flow-ejecta blankets and landslides) coupled with physical models for landform genesis.

  19. The Three-Dimensional Morphology of VY Canis Majoris. I. The Kinematics of the Ejecta

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Helton, L. Andrew; Jones, Terry J.

    2007-06-01

    Images of the complex circumstellar nebula associated with the famous red supergiant VY CMa show evidence for multiple and asymmetric mass-loss events over the past 1000 yr. Doppler velocities of the arcs and knots in the ejecta show that they are not only spatially distinct but also kinematically separate from the surrounding diffuse material. In this paper we describe second-epoch HST WFPC2 images to measure the transverse motions, which when combined with the radial motions provide a complete picture of the kinematics of the ejecta, including the total space motions and directions of the outflows. Our results show that the arcs and clumps of knots are moving at different velocities, in different directions, and at different angles relative to the plane of the sky and to the star, confirming their origin from eruptions at different times and from physically separate regions on the star. We conclude that the morphology and kinematics of the arcs and knots are consistent with a history of mass ejections not aligned with any presumed axis of symmetry. The arcs and clumps represent relatively massive outflows and ejections of gas very likely associated with large-scale convective activity and magnetic fields. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  20. A 3D kinematic study of the northern ejecta `jet' of the Crab nebula

    NASA Astrophysics Data System (ADS)

    Black, Christine S.; Fesen, Robert A.

    2015-03-01

    We present moderate resolution [O III] λλ4959, 5007 line emission spectra of the Crab nebula's northern ejecta jet. These data along with an [O III] image of the Crab nebula were used to build three-dimensional kinematic maps of the jet and adjacent remnant nebulosity to better understand the jet's properties and thus its likely origin. We find the jet's systemic velocity to be +170 ± 15 km s-1 with radial velocities ranging from -190 to +480 km s-1. Our data indicate that the jet consists of thin filamentary walls (Vexp ≃ 40-75 km s-1), is virtually hollow in [O III] emission, and elliptical and funnel-like in shape rather than a straight cylindrical tube as previously thought. Examination of the Crab's 3D filamentary structure along the jet's base reveals a large and nearly emission-free opening in the remnant's thick outer ejecta shell. The jet's blueshifted and redshifted sides are surprisingly well defined and, like the jet's sharp western limb, appear radially aligned with the remnant's centre of expansion. These alignments, along with the opening in the nebula at the jet's base and proper motions indicating an expansion age in line with the 1054 supernova event, suggest a direct connection between the jet's formation and the Crab's radial expansion. While our analysis supports the scenario that the jet may simply represent the highest velocity material of the remnant's N-S bipolar expansion, the nature of this expansion asymmetry remains unclear.

  1. Ionospheric Heating Rates Associated with Solar Wind Forcing: Ejecta flow, High Speed Flow and Slow Flow

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Kasprzak, B.; Richardson, I.; Paige, T.; Evans, D.

    2001-12-01

    We present estimates of global ionospheric Joule and particle heating as a function of solar wind flow types over solar cycles 21, 22 and the first half of solar cycle 23. Richardson et al., [JGR, 2000] used a variety of techniques to categorize the solar wind flow as ejecta, high-speed stream or slow flow. Their work provides the basis for our catigorization of heating by flow type. The estimates of Joule heating are based on output of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure, and fits to the Polar Cap Index [Chun et al., GRL, 1999]. Estimates of particle heating are derived from polar orbiting satellites. Although ejecta only account for 19% of the solar wind flow, they account for 27% of the Joule heating. High-speed stream flow accounts for 47% of the flow occurrence and 44% of the Joule heating. We will show similar comparisons for particle heating. Our solar cycle statistics indicate that Joule heating produces a yearly average hemispheric heating rate of 53 GW while particles produce a hemispheric heating rate of 38 GW. Joule heating exhibits more variability than particle heating. During solar cycle maximum years Joule heating accounts for twice the heating associated with particles heating.

  2. Suzaku study on the ejecta of the supernova remnant G272.2-3.2

    NASA Astrophysics Data System (ADS)

    Kamitsukasa, Fumiyoshi; Koyama, Katsuji; Nakajima, Hiroshi; Hayashida, Kiyoshi; Mori, Koji; Katsuda, Satoru; Uchida, Hiroyuki; Tsunemi, Hiroshi

    2016-06-01

    We report reanalyses of the Suzaku observations of the Galactic supernova remnant (SNR) G272.2-3.2, for which previous studies were limited below 3 keV. With careful data reduction and background subtraction, we discover the K-shell lines of Ar, Ca, and Fe above 3 keV. The X-ray spectrum of G272.2-3.2 consists of two components, a low-temperature collisional ionization equilibrium (CIE) plasma (kTe ˜ 0.2 keV) and a high-temperature non-equilibrium ionization (NEI) plasma (kTe = 0.6-3 keV). The CIE plasma has solar abundances over the entire area, hence it originates from the interstellar medium. On the other hand, the abundances of the NEI plasma increase toward the inner region, suggesting ejecta origin. The line center energy of the Fe K-shell emission (˜6.4 keV) suggests that the ejecta are recently heated by reverse shock, a common feature in Type Ia SNRs.

  3. AN EMERGING CLASS OF BRIGHT, FAST-EVOLVING SUPERNOVAE WITH LOW-MASS EJECTA

    SciTech Connect

    Perets, Hagai B.; Badenes, Carles; Arcavi, Iair; Gal-yam, Avishay; Simon, Joshua D.

    2011-04-01

    A recent analysis of supernova (SN) 2002bj revealed that it was an apparently unique type Ib SN. It showed a high peak luminosity, with absolute magnitude M{sub R} {approx} -18.5, but an extremely fast-evolving light curve. It had a rise time of <7 days followed by a decline of 0.25 mag day{sup -1} in B band and showed evidence for very low mass of ejecta (<0.15 M{sub sun}). Here we discuss two additional historical events, SN 1885A and SN 1939B, showing similarly fast light curves and low ejected masses. We discuss the low mass of ejecta inferred from our analysis of the SN 1885A remnant in M31 and present for the first time the spectrum of SN 1939B. The old environments of both SN 1885A (in the bulge of M31) and SN 1939B (in an elliptical galaxy with no traces of star formation activity) strongly support old white dwarf (WD) progenitors for these SNe. We find no clear evidence for helium in the spectrum of SN 1939B, as might be expected from a helium-shell detonation on a WD, suggested to be the origin of SN 2002bj. Finally, the discovery of all the observed fast-evolving SNe in nearby galaxies suggests that the rate of these peculiar SNe is at least 1%-2% of all SNe.

  4. Distribution of Gamma-ray Burst Ejecta Energy with Lorentz Factor

    SciTech Connect

    Granot, Jonathan; Kumar, Pawan; /Texas U., Astron. Dept.

    2005-10-07

    The early X-ray afterglow for a significant number of gamma-ray bursts detected by the Swift satellite is observed to have a phase of very slow flux decline with time (F{sub {nu}} {proportional_to} t{sup -{alpha}} with 0.2 {approx}< {alpha} {approx}< 0.8) for 10{sup 2.5} s{approx}< t {approx}< 10{sup 4} s, while the subsequent decline is the usual 1 {approx}< {alpha}{sub 3} {approx}< 1.5 behavior, that was seen in the pre-Swift era. We show that this behavior is a natural consequence of a small spread in the Lorentz factor of the ejecta, by a factor of {approx} 2-4, where the slower ejecta gradually catch-up with the shocked external medium, thus increasing the energy of forward shock and delaying its deceleration. The end of the ''shallow'' flux decay stage marks the beginning of the Blandford-McKee self similar external shock evolution. This suggests that most of the energy in the relativistic outflow is in material with a Lorentz factor of {approx} 30-50.

  5. On the possibility of dust condensation in the ejecta of supernova 1987a

    PubMed Central

    Gehrz, R. D.; Ney, E. P.

    1987-01-01

    We suggest that supernova 1987a may condense dust of substantial visual optical thickness as do many novae. The dust will act as a calorimeter of the photon luminosity of any central engine that is dominant at the time of dust formation. Observations of novae suggest that dust formation may occur when the expanding ejecta reach a temperature of 1000 K. The early luminosity of the supernova may be dominated by radioactivity that is unrelated to the central engine that determines the energy balance for the long-term development of the supernova. We discuss the possibility that a constant luminosity central power source such as a pulsar dominates the luminosity of the supernova ejecta by the time that dust can condense and argue that, if a shell mass of more than a few tenths of one solar mass was ejected, emission from dust may be observable in the thermal infrared spectral region. Maximum dust optical depth should occur by late 1987 or early 1988. If the dust becomes optically thick, the visual light from the supernova may drop precipitously. The characteristics of an optically thick dust shell as a calorimeter of the luminosity of the central engine are discussed and are related to previous observations of dust formation in type II supernovae. It is suggested that dust of several chemical compositions may form at different epochs. PMID:16593876

  6. Hot Precursor Ejecta and Other Peculiarities of the 2012 May 17 Ground Level Enhancement Event

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Xie, H.; Nitta, N. V.; Usoskin, I.; Davila, J. M.

    2012-12-01

    We report on the first Ground Level Enhancement (GLE) event of Solar Cycle 24, which occurred on May 17, 2012 from a well-connected region (NOAA AR 11476, N11W76) on the Sun. There has been a real dearth of GLE events during cycle 24: even though the Sun has reached its solar maximum phase, it has produced only this one GLE event. Over the first 4.5 years of solar cycle 23, there were 5 GLE events, which is roughly a third of all the events of that cycle. The recent GLE event was associated with a moderate flare with an X-ray size of only M5.1, well below the median flare size (X3.8) of cycle 23 GLE events. On the other hand, the associated CME was very fast (~2000 km/s), typical of GLE events. During cycle 23, the CME speeds in GLE events ranged from 1203 km/s to 3675 km/s with an average value of 2083 km/s (Gopalswamy et al., 2012). The speed of the cycle 24 GLE was measured accurately because it was a limb event in the SOHO coronagraphic field of view. The CME was also observed by the STEREO coronagraphs, which helped derive the initial acceleration as 1.5 km/s/s, which is also typical of GLE-producing CMEs. We were also able to directly determine the heliocentric distance of the CME (2.3 solar radii (Rs)) at the time of the release of GLE particles because there was a STEREO/COR1 image precisely at the time of the particle release. This result is consistent with what was obtained for the cycle 23 GLE events, including the distance of the CME at the time of metric type II burst onset (1.3 Rs), indicating shock formation very close to the Sun ( ~0.3 Rs above the solar surface). We infer that the shock had to travel an additional 1 Rs before the GLE particles were released. The CME had a precursor in the form of a hot ejecta some tens of minutes before the main eruption. The preceding ejecta is termed hot because it was observed only in the 94 A images obtained by the Solar Dynamics Observatory (SDO). The 94 A images correspond to coronal a temperature of ~6MK

  7. JET COLLIMATION IN THE EJECTA OF DOUBLE NEUTRON STAR MERGERS: A NEW CANONICAL PICTURE OF SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Nagakura, Hiroki; Sekiguchi, Yuichiro; Shibata, Masaru; Hotokezaka, Kenta; Ioka, Kunihito

    2014-04-01

    The observations of jet breaks in the afterglows of short gamma-ray bursts (SGRBs) indicate that the jet has a small opening angle of ≲ 10°. The collimation mechanism of the jet is a longstanding theoretical problem. We numerically analyze the jet propagation in the material ejected by a double neutron star (NS) merger, and demonstrate that if the ejecta mass is ≳ 10{sup –2} M {sub ☉}, the jet is well confined by the cocoon and emerges from the ejecta with the required collimation angle. Our results also suggest that there are some populations of choked (failed) SGRBs or new types of events with low luminosity. By constructing a model for SGRB 130603B, which is associated with the first kilonova/macronova candidate, we infer that the equation of state of NSs would be soft enough to provide sufficient ejecta to collimate the jet, if this event is associated with a double NS merger.

  8. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  9. Mapping X-Ray Ejecta Distribution in the Galactic Core-Collapse SNR G292.0+1.8

    NASA Astrophysics Data System (ADS)

    Park, Sangwook; Bhalerao, Jayant; Schenck, Andrew

    2015-08-01

    Based on our deep Chandra ACIS observation, we present the spatial distributions of individual elements of the shocked metal-rich ejecta in the textbook-type Galactic core-collapse supernova remnant G292.0+1.8 (G292). To separate the complex network of overabundant ejecta-dominated regions from low-abundant circumstellar regions, we apply our adaptive-mesh grid method to extract X-ray spectra from over 3000 sub-regions across G292, and perform various spectral model fits to individual regional spectra. Our initial results show highly asymmetric, differential spatial distributions for individual ejecta elements O, Ne, Mg, and Si. Gas temperature, pressure, and density also show substantially non-uniform distributions in G292. Implications from our initial results on the explosion asymmetry and the progenitor’s nature are briefly discussed.

  10. Ejecta patterns of Meteor Crater, Arizona derived from the linear un-mixing of TIMS data and laboratory thermal emission spectra

    NASA Technical Reports Server (NTRS)

    Ramsey, Michael S.; Christensen, Philip R.

    1992-01-01

    Accurate interpretation of thermal infrared data depends upon the understanding and removal of complicating effects. These effects may include physical mixing of various mineralogies and particle sizes, atmospheric absorption and emission, surficial coatings, geometry effects, and differential surface temperatures. The focus is the examination of the linear spectral mixing of individual mineral or endmember spectra. Linear addition of spectra, for particles larger than the wavelength, allows for a straight-forward method of deconvolving the observed spectra, predicting a volume percent of each endmember. The 'forward analysis' of linear mixing (comparing the spectra of physical mixtures to numerical mixtures) has received much attention. The reverse approach of un-mixing thermal emission spectra was examined with remotely sensed data, but no laboratory verification exists. Understanding of the effects of spectral mixing on high resolution laboratory spectra allows for the extrapolation to lower resolution, and often more complicated, remotely gathered data. Thermal Infrared Multispectral Scanner (TIMS) data for Meteor Crater, Arizona were acquired in Sep. 1987. The spectral un-mixing of these data gives a unique test of the laboratory results. Meteor Crater (1.2 km in diameter and 180 m deep) is located in north-central Arizona, west of Canyon Diablo. The arid environment, paucity of vegetation, and low relief make the region ideal for remote data acquisition. Within the horizontal sedimentary sequence that forms the upper Colorado Plateau, the oldest unit sampled by the impact crater was the Permian Coconino Sandstone. A thin bed of the Toroweap Formation, also of Permian age, conformably overlays the Coconino. Above the Toroweap lies the Permian Kiabab Limestone which, in turn, is covered by a thin veneer of the Moenkopi Formation. The Moenkopi is Triassic in age and has two distinct sub-units in the vicinity of the crater. The lower Wupatki member is a fine

  11. The 3-Dimensional Inner and Outer Structure of Ejecta Around Eta Carinae as Detected by the STIS

    NASA Technical Reports Server (NTRS)

    Ishibashi, Kazunori; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The HST/STIS instrument was used successfully to perform a complete mapping of the Homunculus nebula at two wavelength ranges including H-alpha and H-beta with a spectral resolving power of about 5000 and a spatial resolution of 0.1". The individual spectra were merged to synthesize three-dimensional data cubes that contain a set of images of Eta Car with spatial resolution of 0.10 to 0.251, sliced at velocity increment of 10 -- 30 km/s. For the first time this unique method allows us to diagnose the origin of intrinsic narrow emission structure of the nebula with high spatial and velocity resolution. Our initial analysis revealed the inner emission structure appeared to trace an elongated bipolar shell (possibly other shells as well) with a scale size of an arcsecond (i.e., "little homunculus in the Homunculus"). Furthermore, the mapping data cube revealed that the "fan" or "paddle" -- often referred as the source of peculiar blue-shifted intrinsic emissions including the Strontium cloud -- is not the source of intrinsic emissions. The fan is not even a part of the equatorial disk, but is spatially separated from the peculiar emission structure. Indeed we suggest that the fan is a surface of the Northwest lobe, possibly revealed by a blowout of the equatorial disk. We will use a number of visualization techniques (tomographic animations and simple 3-D models) to show these structures. These new results have strong impact upon future numerical modelings of the Homunculus nebula and of understanding of the evolution of the ejecta powered by the central source(s).

  12. Meteoritic Microfossils in Eltanin Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer; Kuhn, Gerhard

    2006-01-01

    We report the unique occurrence of microfossils composed largely of meteoritic ejecta particles from the late Pliocene (2.5 Ma) Eltanin impact event. These deposits are unique, recording the only known km-sized asteroid impact into a deep-ocean (5 km) basin. First discovered as in Ir anomaly in sediment cores that were collected in 1965, the deposits contain nun-sized shock-melted asteroidal material, unmelted meteorite fragments (named the Eltanin meteorite), and trace impact spherules. Two oceanographic expeditions by the FS Polarstern in 1995 and 2001 explored approximately 80,000 sq-km. of the impact region, mapping the distribution of meteoritic ejecta, disturbance of seafloor sediments by the impact, and collected 20 new cores with impact deposits in the vicinity of the Freeden Seamounts (57.3S, 90.5W). Analyses of sediment cores show that the impact disrupted sediments on the ocean floor, redepositing them as a chaotic jumble of sediment fragments overlain by a sequence of laminated sands, silts and clays deposited from the water column. Overprinted on this is a pulse of meteoritic ejecta, likely transported ballistically, then settled through the water column. At some localities, meteoritic ejecta was as much as 0.4 to 2.8 g/cm2. This is the most meteorite-rich locality known on Earth.

  13. Large meteorite impacts: The K/T model

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.

    1992-01-01

    The Cretaceous/Tertiary (K/T) boundary event represents probably the largest meteorite impact known on Earth. It is the only impact event conclusively linked to a worldwide mass extinction, a reflection of its gigantic scale and global influence. Until recently, the impact crater was not definitively located and only the distal ejecta of this impact was available for study. However, detailed investigations of this ejecta's mineralogy, geochemistry, microstratigraphy, and textures have allowed its modes of ejection and dispersal to be modeled without benefit of a source crater of known size and location.

  14. Lateral and Vertical Heterogeneity of Thorium in the Procellarum KREEP Terrane: As Reflected in the Ejecta Deposits of Post-Imbrium Craters

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.

    1999-01-01

    discussed above and their ejecta, with the goal of describing the materials they excavate. One interpretation for the origin of the high-Th material is that subsurface KREEPy materials have been excavated by impact craters. The material excavated may be either volcanic KREEP (e,g., Apennine Bench Formation), KREEPy impact-melt breccia formed by the Imbrium impact (e.g., Fra Mauro Formation), or other KREEP-rich crustal material. Determining which type of material is responsible for the elevated Th and its extent is important to understanding the premare and possibly the prebasin stratigraphy of the Imbrium-Procellarum Region. Merging the 5 deg. Th data with the shaded relief map, we observe that the highest Th concentrations are not related to pre-Imbrium upper crustal materials. The Apennines, Alpes, and Caucasus Mountains represent the pre-Imbrian highlands material and do not express concentrations of Th, FeO, and TiO2 as high as the most Th-fich materials exposed within the Procellarum KREEP Terrane. We observe that, in general, these massifs contain 10-14 wt% FeO and 4-7 ppm Th. Determining whether the Th signal is from KREEP basalts or KREEPy impact-melt breccias cannot be done with the Clementine data because the two rock types are compositionally and mineralogically too similar (e.g., the Th-rich, mafic impact-melt breccias in the Apollo sample collection are dominated by a KREEP-basalt like component. Mapping-the distribution and sizes of craters and whether they display elevated Th concentrations or not, should reveal the depth and thickness of the KREEP-rich materials, and whether they are ubiquitous (i.e., impact-melt breccia) or more randomly distributed; this might be taken as an indicator of localized KREEP-basalt flows. Within the southeastern region of the Imbrium basin, there are two Th hot spots. The first is associated with the crater Aristillus, and the latter with the Apennine Bench Formation. Adjacent to these two hot spots are craters with a lower Th

  15. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2002-01-01

    Many Martian craters are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with crater size and terrain. In addition, the minimum diameter of craters with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven craters. Collapse features found in large scale craters require that the rock strength weaken as a result of the shock processing of rock and the later cratering shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final crater profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).

  16. Recent Radar Imaging Observations of the Moon: New Views of Pyrocastics, Mare Basalts, Impact Crater Deposits, and the Lunar Subsurface

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Campbell, B. A.; Morgan, G. A.; Ghent, R. R.; Neish, C. D.

    2016-05-01

    In the last decade, radars with different wavelengths have provided polarimetric imaging of the lunar surface. These data sets have yielded new information about topics such as pyroclastics, mare basalts, cryptomare, and impact ejecta and melt flows.

  17. Dependence of CME Propagation on Parameters of the Ejecta and Ambient Solar Wind

    NASA Astrophysics Data System (ADS)

    Li, Y.; Lynch, B. J.; Luhmann, J. G.; Krauss-Varban, D.; Thernisien, A.; Vourlidas, A.; MacNeice, P. J.

    2009-12-01

    CME propagation through the heliosphere has been one of the most uncertain problems, due to its complex nature and sparse observations in the vast space. CME travel time, speed and trajectory have been often unpredictable, because they may be modified going through ambient solar wind streams and IMF structure. All of these parameters are important for understanding CMEs and their space weather consequences. Direct observations of CME propagation through to 1AU have only become a reality since the recent STEREO Heliospheric Imager (HI) observations. Based on a few strategically selected CMEs that vary in parameter space and situated in different solar wind/IMF conditions, we perform several CCMC ENLIL with cone model simulations to study the propagation. Comparisons between modeling results including CME driven shock properties, travel time, 3D trajectory, and distortion of the ejecta (limited to the model approximation) will be made. Comparisons are also made between modeling, HI imaging results, and observed in-situ parameters when available.

  18. The Morphology of the Post-Red Supergiant IRC+10420's Circumstellar Ejecta

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta

    2007-07-01

    The extremely luminous post-red supergiant and powerful OH/IR source IRC +10420 is surrounded by a complex circumstellar nebula. Numerous small condensations, arcs, jet-like rays of knots, and intriguing semi-circular structures are easily visible in our previous WFPC2 images. We have suggested that these spatially recognizable features may be evidence for episodic mass loss events possibly from localized active regions. We now propose to obtain second epoch WFPC2 images with the Planetary Camera to measure the transverse motions of these ejecta. Spatially resolved spectra from STIS showed that the embedded arcs are kinematically distinct from the spherically expanding diffuse nebulosity.The transverse motions in combination with radial velocities from the STIS spectra, will let us determine the morphology of IRC +10420's nebula and the structures embedded in it, its mass loss history, and provide clues to the mass loss mechanism responsible for the discrete ejections.

  19. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    SciTech Connect

    Helton, L. Andrew; Vacca, William D.; Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P.; Wagner, R. Mark; Evans, Aneurin; Krautter, Joachim; Schwarz, Greg J.; Starrfield, Sumner

    2012-08-10

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  20. Overlapping Ballistic Ejecta Fields: Separating Distinct Blasts at Kings Bowl, Idaho

    NASA Astrophysics Data System (ADS)

    Borg, C.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Heldmann, J. L.; Lim, D. S. S.; Haberle, C. W.; Sears, H.; Elphic, R. C.; Kobayashi, L.; Garry, W. B.; Neish, C.; Karunatillake, S.; Button, N.; Purcell, S.; Mallonee, H.; Ostler, B.

    2015-12-01

    Kings Bowl is a ~2200ka pit crater created by a phreatic blast along a volcanic fissure in the eastern Snake River Plain (ESRP), Idaho. The main crater measures approximately 80m in length, 30m in width, and 30m in depth, with smaller pits located nearby on the Great Rift fissure, and has been targeted by the FINESSE team as a possible analogue for Cyane Fossae, Mars. The phreatic eruption is believed to have occurred due to the interaction of groundwater with lava draining back into the fissure following a lava lake high stand, erupting already solidified basalt from this and previous ERSP lava flows. The contemporaneous draw back of the lava with the explosions may conceal some smaller possible blast pits as more lava drained into the newly formed pits. Ballistic ejecta from the blasts occur on both sides of the fissure. To the east, the ballistic blocks are mantled by fine tephra mixed with eolian dust, the result of a westerly wind during the explosions. We use differential GPS to map the distribution of ballistic blocks on the west side of the fissure, recording position, percent vesiculation, and the length of 3 mutually perpendicular axes for each block >20cm along multiple transects parallel to the fissure. From the several hundred blocks recorded, we have been able to separate the ballistic field into several distinct blast deposits on the basis of size distributions and block concentration. The smaller pits identified from the ballistic fields correspond broadly to the northern and southern limits of the tephra/dust field east of the fissure. Soil formation and bioturbation of the tephra by sagebrush have obliterated any tephrostratigraphy that could have been linked to individual blasts. The ballistic block patterns at Kings Bowl may be used to identify distinct ejecta groups in high-resolution imagery of Mars or other planetary bodies.

  1. Radioactive decay products in neutron star merger ejecta: heating efficiency and γ-ray emission

    NASA Astrophysics Data System (ADS)

    Hotokezaka, K.; Wanajo, S.; Tanaka, M.; Bamba, A.; Terada, Y.; Piran, T.

    2016-06-01

    The radioactive decay of the freshly synthesized r-process nuclei ejected in compact binary mergers powers optical/infrared macronovae (kilonovae) that follow these events. The light curves depend critically on the energy partition among the different decay products and it plays an important role in estimates of the amount of ejected r-process elements from a given observed signal. We show that 20-50 per cent of the total radioactive energy is released in γ-rays on time-scales from hours to a month. The number of emitted γ-rays per unit energy interval has roughly a flat spectrum between a few dozen keV and 1 MeV so that most of the energy is carried by ˜1 MeV γ-rays. However, at the peak of macronova emission the optical depth of the γ-rays is ˜0.02 and most of the γ-rays escape. The loss of these γ-rays reduces the heat deposition into the ejecta and hence reduces the expected macronova signals if those are lanthanides dominated. This implies that the ejected mass is larger by a factor of 2-3 than what was previously estimated. Spontaneous fission heats up the ejecta and the heating rate can increase if a sufficient amount of transuranic nuclei are synthesized. Direct measurements of these escaping γ-rays may provide the ultimate proof for the macronova mechanisms and an identification of the r-process nucleosynthesis sites. However, the chances to detect these signals are slim with current X-ray and γ-ray missions. New detectors, more sensitive by at least a factor of 10, are needed for a realistic detection rate.

  2. Observations and Modeling of the Pulse-driven Cool Plasma Ejecta in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhishek K.; Murawski, . Kris; Kayshap, Pradeep

    2012-07-01

    The cool plasma ejecta are ubiquitous in the solar atmosphere, and have significant implications on its mass and energy transport. We present two case studies of the SDO/AIA observations of (i) cool jet at north polar region, and (ii) the cool surge ejecta at the active region boundary. The common nature between these two different class of plasma dynamics is that both do not reveal any signature of strong heating during course of their life-times. The surge shows some evidence of heating at its footpoint, however, mostly not visible in the SDO/AIA filters sensitive to the higher coronal temperatures. Similarly, the polar jet is also only evident in the SDO/AIA 304 Å channel that is sensitive to the plasma maintained around 0.1 MK, and does not show any signature of heating. We model these cool jets by launching reconnection generated pulses in the VAL-III C model of the solar temperature as an initial condition. For the case of cool polar jet, we launch reconnection generated velocity pulse in the more realistic solar atmosphere, which steepens into a shock at higher altitudes and triggers plasma perturbations exhibiting the observed features of the jet. However, the footpoint of the surge shows small heating episode in the second case study, therefore, we consider the excitation of reconnection generated thermal pulse which triggers plasma perturbations approximately exhibiting the observed features of the surge, e.g., average velocity, height, width, life-time, and fine structures at its base. We also compare our new results with the existing models and observations of such jets, and plasma flows especially reported in the SDO era.

  3. The host galaxies of fast-ejecta core-collapse supernovae

    SciTech Connect

    Kelly, Patrick L.; Filippenko, Alexei V.; Modjaz, Maryam; Kocevski, Daniel

    2014-07-01

    Spectra of broad-lined Type Ic supernovae (SNe Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities (∼0.1c). We study the host galaxies of a sample of 245 low-redshift (z < 0.2) core-collapse SNe, including 17 SNe Ic-BL, discovered by galaxy-untargeted searches, and 15 optically luminous and dust-obscured z < 1.2 LGRBs. We show that, in comparison with Sloan Digital Sky Survey galaxies having similar stellar masses, the hosts of low-redshift SNe Ic-BL and z < 1.2 LGRBs have high stellar mass and star formation rate densities. Core-collapse SNe having typical ejecta velocities, in contrast, show no preference for such galaxies. Moreover, we find that the hosts of SNe Ic-BL, unlike those of SNe Ib/Ic and SNe II, exhibit high gas velocity dispersions for their stellar masses. The patterns likely reflect variations among star-forming environments and suggest that LGRBs can be used as probes of conditions in high-redshift galaxies. They may be caused by efficient formation of massive binary progenitor systems in densely star-forming regions, or, less probably, a higher fraction of stars created with the initial masses required for an SN Ic-BL or LGRB. Finally, we show that the preference of SNe Ic-BL and LGRBs for galaxies with high stellar mass and star formation rate densities cannot be attributed to a preference for low metal abundances but must reflect the influence of a separate environmental factor.

  4. The Host Galaxies of Fast-Ejecta Core-Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Filippenko, Alexei V.; Modjaz, Maryam; Kocevski, Daniel

    2014-01-01

    Spectra of broad-lined Type Ic supernovae (SN Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities ((is) approximately 0.1c). We study the host galaxies of a sample of 245 low-redshift (z (is) less than 0.2) core-collapse SN, including 17 SN Ic-BL, discovered by galaxy-untargeted searches, and 15 optically luminous and dust-obscured z (is) less than 1.2 LGRBs. We show that, in comparison with SDSS galaxies having similar stellar masses, the hosts of low-redshift SN Ic- BL and z (is) is less than 1.2 LGRBs have high stellar-mass and star-formation-rate densities. Core-collapse SN having typical ejecta velocities, in contrast, show no preference for such galaxies. Moreover, we find that the hosts of SN Ic-BL, unlike those of SN Ib/Ic and SN II, exhibit high gas velocity dispersions for their stellar masses. The patterns likely reflect variations among star-forming environments, and suggest that LGRBs can be used as probes of conditions in high-redshift galaxies. They may be caused by efficient formation of massive binary progenitors systems in densely star-forming regions, or, less probably, a higher fraction of stars created with the initial masses required for a SN Ic-BL or LGRB. Finally, we show that the preference of SN Ic-BL and LGRBs for galaxies with high stellar-mass and star-formation-rate densities cannot be attributed to a preference for low metal abundances but must reflect the influence of a separate environmental factor.

  5. Discovery of X-Ray-Emitting O-Ne-Mg-Rich Ejecta in the Galactic Supernova Remnant Puppis A

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Hwang, Una; Petre, Robert; Park, Sangwook; Mori, Koji; Tsunemi, Hiroshi

    2010-01-01

    We report on the discovery of X-ray-emitting O-Ne-Mg-rich ejecta in the middle-aged Galactic O-rich supernova remnant Puppis A with Chandra and XMM-Newton. We use line ratios to identify a low-ionization filament running parallel to the northeastern edge of the remnant that requires super-solar abundances, particularly for O, Ne, and Mg, which we interpret to be from O-Ne-Mg-rich ejecta. Abundance ratios of Ne/O, Mg/O, and Fe/O are measured to be [approx]2, [approx]2, and <0.3 times the solar values. Our spatially resolved spectral analysis from the northeastern rim to the western rim otherwise reveals sub-solar abundances consistent with those in the interstellar medium. The filament is coincident with several optically emitting O-rich knots with high velocities. If these are physically related, the filament would be a peculiar fragment of ejecta. On the other hand, the morphology of the filament suggests that it may trace ejecta heated by a shock reflected strongly off the dense ambient clouds near the northeastern rim.

  6. DISCOVERY OF X-RAY-EMITTING O-Ne-Mg-RICH EJECTA IN THE GALACTIC SUPERNOVA REMNANT PUPPIS A

    SciTech Connect

    Katsuda, Satoru; Hwang, Una; Petre, Robert; Park, Sangwook; Mori, Koji; Tsunemi, Hiroshi

    2010-05-10

    We report on the discovery of X-ray-emitting O-Ne-Mg-rich ejecta in the middle-aged Galactic O-rich supernova remnant Puppis A with Chandra and XMM-Newton. We use line ratios to identify a low-ionization filament running parallel to the northeastern edge of the remnant that requires super-solar abundances, particularly for O, Ne, and Mg, which we interpret to be from O-Ne-Mg-rich ejecta. Abundance ratios of Ne/O, Mg/O, and Fe/O are measured to be {approx}2, {approx}2, and <0.3 times the solar values. Our spatially resolved spectral analysis from the northeastern rim to the western rim otherwise reveals sub-solar abundances consistent with those in the interstellar medium. The filament is coincident with several optically emitting O-rich knots with high velocities. If these are physically related, the filament would be a peculiar fragment of ejecta. On the other hand, the morphology of the filament suggests that it may trace ejecta heated by a shock reflected strongly off the dense ambient clouds near the northeastern rim.

  7. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    SciTech Connect

    Sorenson, Danny S.; Pazuchanics, Peter; Johnson, Randall P.; Malone, R. M.; Kaufman, M. I.; Tibbitts, A.; Tunnell, T.; Marks, D.; Capelle, G. A.; Grover, M.; Marshall, B.; Stevens, G. D.; Turley, W. D.; LaLone, B.

    2014-06-25

    An Ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μsec. This report will discuss the development of the diagnostic including the high-powered laser system and high-resolution optical relay system. In addition, the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles will also be described. Finally, results from six high-explosive (HE), shock-driven Sn ejecta experiments will be presented. Particle size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double pulsed experiment will be described.

  8. On the Determination of Ejecta Structure and Explosion Asymmetry from the X-ray Knots of Cassiopeia A

    NASA Technical Reports Server (NTRS)

    Laming, J. Martin; Hwang, Una

    2003-01-01

    We present a detailed analysis of Chandra X-ray spectra from individual ejecta knots in the supernova remnant Cassiopeia A. The spectra are fitted to give the electron temperature T(sub e), and (single) ionization age n(sub e)t. These quantities are compared with the predictions of self similar hydrodynamic models incorporating time dependent ionization and radiation losses, and Coulomb electron-ion equilibration behind the reverse shock, for a variety of different ejecta density profiles described by a uniform density core and a power law envelope. We find that the ejecta close to the 'jet' region in the NE, but not actually in the jet itself, have a systematically shallower outer envelope than ejecta elsewhere in the remnant, and we interpret this as being due to more energy of the initial explosion being directed in this polar direction as opposed to equatorially. The degree of asymmetry we infer is at the low end of that generally modelled in asymmetric core-collapse simulations, and may be used to rule out highly asymmetric explosion models.

  9. Discovery of Fast-Moving X-Ray-Emitting Ejecta Knots in the Oxygen-Rich Supernova Remnant Puppis A

    NASA Astrophysics Data System (ADS)

    Katsuda, S.; Mori, K.; Tsunemi, H.; Park, S.; Hwang, U.; Burrows, D. N.; Hughes, J. P.; Slane, P. O.

    2008-05-01

    We report on the discovery of fast-moving X-ray-emitting ejecta knots in the Galactic oxygen-rich supernova remnant Puppis A from XMM-Newton observations. We find an X-ray knotty feature positionally coincident with an O-rich fast-moving optical filament with blueshifted line emission located in the northeast of Puppis A. We extract spectra from northern and southern regions of the feature. Applying a one-component nonequilibrium ionization model for the two spectra, we find high metal abundances relative to the solar values in both spectra. This fact clearly shows that the feature originates from metal-rich ejecta. In addition, we find that line emission in the two regions is blueshifted. The Doppler velocities derived in the two regions are different with each other, suggesting that the knotty feature consists of two knots that are close to each other along the line of sight. Since fast-moving O-rich optical knots/filaments are believed to be recoiled metal-rich ejecta, expelled to the opposite direction against the high-velocity central compact object, we propose that the ejecta knots disclosed here are also part of the recoiled material.

  10. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    SciTech Connect

    Sorenson, D. S.; Pazuchanics, P.; Johnson, R.; Malone, R. M.; Kaufman, M. I.; Tibbitts, A.; Tunnell, T.; Marks, D.; Capelle, G. A.; Grover, M.; Marshall, B.; Stevens, G. D.; Turley, W. D.; LaLone, B.

    2014-06-30

    An ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μsec. This report will discuss the development of the diagnostic, including the high-powered laser system and high-resolution optical relay system. In addition, we will also describe the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles. Finally, we will present results from six high-explosive (HE), shock-driven Sn-ejecta experiments. Particle-size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double-pulsed experiment will be described.

  11. The 2011 outburst of recurrent nova T PYX: Radio observations reveal the ejecta mass and hint at complex mass loss

    SciTech Connect

    Nelson, Thomas; Chomiuk, Laura; Roy, Nirupam; Krauss, Miriam I.; Mioduszewski, Amy J.; Rupen, Michael P.; Sokoloski, J. L.; Weston, Jennifer; Mukai, Koji

    2014-04-10

    Despite being the prototype of its class, T Pyx is arguably the most unusual and poorly understood recurrent nova. Here, we use radio observations from the Karl G. Jansky Very Large Array to trace the evolution of the ejecta over the course of the 2011 outburst of T Pyx. The radio emission is broadly consistent with thermal emission from the nova ejecta. However, the radio flux began rising surprisingly late in the outburst, indicating that the bulk of the radio-emitting material was either very cold, or expanding very slowly, for the first ∼50 days of the outburst. Considering a plausible range of volume filling factors and geometries for the ejecta, we find that the high peak flux densities of the radio emission require a massive ejection of (1-30) × 10{sup –5} M {sub ☉}. This ejecta mass is much higher than the values normally associated with recurrent novae, and is more consistent with a nova on a white dwarf well below the Chandrasekhar limit.

  12. The 2011 Outburst of Recurrent Nova T Pyx: Radio Observations Reveal the Ejecta Mass and Hint at Complex Mass Loss

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas; Chomiuk, Laura; Roy, Nirupam; Sokoloski, J. L.; Mukai, Koji; Krauss, Miriam I.; Mioduszewski, Amy J.; Rupen, Michael P.; Weston, Jennifer

    2014-04-01

    Despite being the prototype of its class, T Pyx is arguably the most unusual and poorly understood recurrent nova. Here, we use radio observations from the Karl G. Jansky Very Large Array to trace the evolution of the ejecta over the course of the 2011 outburst of T Pyx. The radio emission is broadly consistent with thermal emission from the nova ejecta. However, the radio flux began rising surprisingly late in the outburst, indicating that the bulk of the radio-emitting material was either very cold, or expanding very slowly, for the first ~50 days of the outburst. Considering a plausible range of volume filling factors and geometries for the ejecta, we find that the high peak flux densities of the radio emission require a massive ejection of (1-30) × 10-5 M ⊙. This ejecta mass is much higher than the values normally associated with recurrent novae, and is more consistent with a nova on a white dwarf well below the Chandrasekhar limit.

  13. Impact jetting of geological materials.

    NASA Astrophysics Data System (ADS)

    Yang, Wenbo; Ahrens, Thomas J.

    1995-08-01

    To understand jetting of earth materials, gabbro slabs (5 mm thick) were accelerated to 1.5-2 km sec -1 and impacted gabbro (5-10 mm thick), novaculite (10 mm thick), and porous sandstone (12 mm thick) targets at inclination angles of 30°-60°. The ejecta were collected using a catcher box filled with styrofoam and the particles are extracted using chloroform. Jetting angles are determined by the relative positions of the target and the crater produced by the ejecta. The mass of the ejected particles per unit area (˜50 mg cm -2) of the impactor remains almost independent of the impact velocity, inclination angle, thickness of the target and sample mineralogy, and density. Hydrodynamic models are used to calculate the jetting mass, angle, and velocity. Theoretical models predict ˜6 times more ejecta than the experimentally measured as the inclination angle increases. X-ray diffraction of the recovered ejecta shows that it is still in crystalline form, which agrees with thermodynamic calculations. Because the experimental results indicate that the theoretical jetting model for thin metal plates provides a poor description of the experiments, the application of metal plate theory to planet-sized objects appears to be questionable.

  14. Dense Iron Ejecta and Core-Collapse Supernova Explosion in the Young Supernova Remnant G11.2-0.3

    NASA Astrophysics Data System (ADS)

    Moon, Dae-Sik; Koo, Bon-Chul; Lee, Ho-Gyu; Matthews, Keith; Lee, Jae-Joon; Pyo, Tae-Soo; Seok, Ji Yeon; Hayashi, Masahiko

    2009-09-01

    We present the results of near-infrared spectroscopic observations of dense (gsim103 cm-3) iron ejecta in the young core-collapse supernova remnant G11.2-0.3. Five ejecta knots projected to be close to its center show a large dispersion in their Doppler shifts: two knots in the east are blueshifted by more than 1000 km s-1, while three western knots have relatively small blueshifts of 20-60 km s-1. This velocity discrepancy may indicate that the western knots have been significantly decelerated or that there exists a systematic velocity difference among the knots. One ejecta filament in the northwestern boundary, on the other hand, is redshifted by gsim200 km s-1, while opposite filament in the southeastern boundary shows a negligible radial motion. Some of the knots and filaments have secondary velocity components, and one knot shows a bow shock-like feature in the velocity structure. The iron ejecta appear to be devoid of strong emission from other heavy elements, such as S, which may attest to the α-rich freezeout process in the explosive nucleosynthesis of the core-collapse supernova explosion close to its center. The prominent bipolar distribution of the Fe ejecta in the northwestern and southeastern direction, along with the elongation of the central pulsar wind nebula in the perpendicular direction, is consistent with the interpretation that the supernova exploded primarily along the northwestern and southeastern direction. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  15. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Estimated thickness of ejecta deposits compared to to crater rim heights. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The area of the continuous ejecta deposits on mercury was calculated to vary from 2.24 to 0.64 times the crater's area for those of diameter 40 km to 300 km. Because crater boundaries on the geologic map include the detectable continuous ejecta blanket, plains exterior to these deposits must consist of farther-flung ejecta (of that or other craters), or volcanic deposits flooding the intervening areas. Ejecta models are explored.

  16. Impact vaporization: Late time phenomena from experiments

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1987-01-01

    While simple airflow produced by the outward movement of the ejecta curtain can be scaled to large dimensions, the interaction between an impact-vaporized component and the ejecta curtain is more complicated. The goal of these experiments was to examine such interaction in a real system involving crater growth, ejection of material, two phased mixtures of gas and dust, and strong pressure gradients. The results will be complemented by theoretical studies at laboratory scales in order to separate the various parameters for planetary scale processes. These experiments prompt, however, the following conclusions that may have relevance at broader scales. First, under near vacuum or low atmospheric pressures, an expanding vapor cloud scours the surrounding surface in advance of arriving ejecta. Second, the effect of early-time vaporization is relatively unimportant at late-times. Third, the overpressure created within the crater cavity by significant vaporization results in increased cratering efficiency and larger aspect ratios.

  17. NASA's Lunar Impact Monitoring Program

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.; Cooke, William; Swift, Wesley; Hollon, Nicholas

    2007-01-01

    NASA's Meteoroid Environment Office nas implemented a program to monitor the Moon for meteoroid impacts from the Marshall Space Flight Center. Using off-the-shelf telescopes and video equipment, the moon is monitored for as many as 10 nights per month, depending on weather. Custom software automatically detects flashes which are confirmed by a second telescope, photometrically calibrated using background stars, and published on a website for correlation with other observations, Hypervelocity impact tests at the Ames Vertical Gun Facility have been performed to determine the luminous efficiency ana ejecta characteristics. The purpose of this research is to define the impact ejecta environment for use by lunar spacecraft designers of the Constellation (manned lunar) Program. The observational techniques and preliminary results will be discussed.

  18. LCROSS Impact Simulations and Predictions

    NASA Astrophysics Data System (ADS)

    Asphaug, E.; Korycansky, D.; Jutzi, M.; Plesko, C.; Colaprete, A.

    2008-12-01

    The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) is to confirm the presence or absence of water ice that might have trapped out over time from the lunar exosphere into permanently shadowed inter-crater regolith near the lunar poles. It will provide a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory and to provide significant insight into the processes that delivered hydrogen to the polar regions. Non-detection of water could lead to significant changes in the architecture of lunar operations and settlement. Ong and Asphaug (LPSC 2008) study the fraction of volatile material that remains bound to the Moon and Mars during comet and asteroid impacts and calculate a mass of water retained over the past 2 Ga of order 1E10-1E11 tons, a few times the water ice inferred by Feldman et al. (Science 1998) on the basis of Lunar Prospector neutron detection. This flux includes small contemporary events but is dominated by major discrete contributions in the past. Whatever the mechanism for the delivery and possible retention of lunar water, interest in the possible presence of water ice has both scientific and operational foundations. If water is present in the upper meters to the few percent level, LCROSS will find it by using a 2000 kg kinetic impactor -- the empty Atlas V Centaur upper stage -- to excavate more than 250 metric tons of regolith. The thermal and spectral signature of the impact flash and the crater ejecta that gets launched into sunlight will be studied in detail, and the results transmitted to Earth before the 700 kg shepherding spacecraft also impacts the Moon. These two impact experiments and their aftermaths will also be observed from a number of Lunar-orbital and Earth-based assets. For the purpose of mission planning, asset security, and scientific prediction, we have conducted a variety of calculations based upon several models

  19. High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios

    NASA Astrophysics Data System (ADS)

    Taubenberger, S.; Benetti, S.; Childress, M.; Pakmor, R.; Hachinger, S.; Mazzali, P. A.; Stanishev, V.; Elias-Rosa, N.; Agnoletto, I.; Bufano, F.; Ergon, M.; Harutyunyan, A.; Inserra, C.; Kankare, E.; Kromer, M.; Navasardyan, H.; Nicolas, J.; Pastorello, A.; Prosperi, E.; Salgado, F.; Sollerman, J.; Stritzinger, M.; Turatto, M.; Valenti, S.; Hillebrandt, W.

    2011-04-01

    Extended optical and near-IR observations reveal that SN 2009dc shares a number of similarities with normal Type Ia supernovae (SNe Ia), but is clearly overluminous, with a (pseudo-bolometric) peak luminosity of log (L) = 43.47 (erg s-1). Its light curves decline slowly over half a year after maximum light [Δm15(B)true= 0.71], and the early-time near-IR light curves show secondary maxima, although the minima between the first and the second peaks are not very pronounced. The bluer bands exhibit an enhanced fading after ˜200 d, which might be caused by dust formation or an unexpectedly early IR catastrophe. The spectra of SN 2009dc are dominated by intermediate-mass elements and unburned material at early times, and by iron-group elements at late phases. Strong C II lines are present until ˜2 weeks past maximum, which is unprecedented in thermonuclear SNe. The ejecta velocities are significantly lower than in normal and even subluminous SNe Ia. No signatures of interaction with a circumstellar medium (CSM) are found in the spectra. Assuming that the light curves are powered by radioactive decay, analytic modelling suggests that SN 2009dc produced ˜1.8 M⊙ of 56Ni assuming the smallest possible rise time of 22 d. Together with a derived total ejecta mass of ˜2.8 M⊙, this confirms that SN 2009dc is a member of the class of possible super-Chandrasekhar-mass SNe Ia similar to SNe 2003fg, 2006gz and 2007if. A study of the hosts of SN 2009dc and other superluminous SNe Ia reveals a tendency of these SNe to explode in low-mass galaxies. A low metallicity of the progenitor may therefore be an important prerequisite for producing superluminous SNe Ia. We discuss a number of possible explosion scenarios, ranging from super-Chandrasekhar-mass white-dwarf progenitors over dynamical white-dwarf mergers and Type I? SNe to a core-collapse origin of the explosion. None of the models seems capable of explaining all properties of SN 2009dc, so that the true nature of this SN

  20. Arrival time of solar eruptive CMEs associated with ICMEs of magnetic cloud and ejecta

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Syed Ibrahim, M.; Moon, Y.-J.; Kasro Lourdhina, K.; Dharanya, M.

    2015-05-01

    The Coronal Mass Ejection (CME) is an eruptive event in which magnetic plasma is ejected from the Sun into space through the solar corona. We considered a set of 51 Interplanetary Coronal Mass Ejections (ICMEs) listed by Kim et al. (Solar Phys. 184:77, 2013) from Coordinated Data Analysis Workshop (CDAW, Gopalswamy et al. in Astrophys. J. 710:1111, 2010). Among the 51 events, 22 events are classified as Magnetic Clouds (MC) and 29 events are classified as Ejecta (EJ) where the MC and EJ are subsets of ICMEs. We have analyzed the physical properties of CMEs and ICMEs associated with MC and EJ, and correlated them with the CME's transit time/arrival time from the Sun to the Earth. Main aims of the present study are to examine (a) dependence of transit time on the properties of CMEs and ICMEs, and (b) differences between MC and EJ. It is found that CME's initial speed decides the transit time which is in support of the known results in literature. Apart from this, some important results from the present study are: (i) transit time predicted using an empirical relation obtained in the present work is found comparable with the observations (correlation coefficient=0.70). (ii) The transit time of MC and EJ-associated CMEs ranges from 20 to 120 hours and IP acceleration lies between -10 m/s2 to 5 m/s2. (iii) There are certain differences between MC and EJ such as: (a) Ejecta takes slightly more time to travel and only 30 % of them are accelerated in the interplanetary medium. Whereas, MC takes less time to travel and nearly 50 % of them are accelerated, (b) The correlations of IP acceleration and speed with transit time are higher for MC than that of EJ, (c) A weak relationship between the deflection and transit time is found for MC, but it is absent in the case of EJ and (d) Only EJ-type CMEs have wider range of direction parameter and acceleration. Further, we checked the solar wind speed as another parameter has any influence on CME acceleration and it shows that there

  1. X-Ray Synchrotron-emitting Fe-rich Ejecta in Supernova Remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Dyer, Kristy K.; Borkowski, Kazimierz J.; Reynolds, Stephen P.

    2002-12-01

    Supernova remnants may exhibit both thermal and nonthermal X-ray emission. In a previous study with ASCA data, we found that the middle-aged supernova remnant RCW 86 showed evidence for both processes, and we predicted that observations with much higher spatial resolution would distinguish harder X-rays, which we proposed were primarily synchrotron emission, from softer, thermal X-rays. Here we describe Chandra observations that amply confirm our predictions. Striking differences in the morphology of X-rays below 1 keV and above 2 keV point to a different physical origin. Hard X-ray emission is correlated fairly well with the edges of regions of radio emission, suggesting that these are the locations of shock waves at which both short-lived X-ray-emitting electrons and longer lived radio-emitting electrons are accelerated. Soft X-rays are spatially well correlated with optical emission from nonradiative shocks, which are almost certainly portions of the outer blast wave. These soft X-rays are well fitted with simple thermal plane-shock models. Harder X-rays show Fe Kα emission and are well described with a similar soft thermal component, but a much stronger synchrotron continuum dominating above 2 keV, and a strong Fe Kα line. Quantitative analysis of this line and the surrounding continuum shows that it cannot be produced by thermal emission from a cosmic-abundance plasma; the ionization time is too short, as shown by both the low centroid energy (6.4 keV) and the absence of oxygen lines below 1 keV. Instead, a model of a plane shock in Fe-rich ejecta, with a synchrotron continuum, provides a natural explanation. This requires that reverse shocks in ejecta be accelerating electrons to energies of order 50 TeV. We show that maximum energies of this order can be produced by radiation-limited diffusive shock acceleration at the reverse shocks. In the Appendix, we demonstrate that an explanation of the continuum as being due to nonthermal bremsstrahlung is unlikely.

  2. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Michel, P.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, P.; Richardson, D. C.

    2016-02-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor to deflect an asteroid. AIDA is an international cooperation, consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the ESA Asteroid Impact Mission (AIM) rendezvous mission. The primary goals of AIDA are (i) to test our ability to perform a spacecraft impact on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary near-Earth asteroid (65803) Didymos, with the deflection experiment to occur in late September, 2022. The DART impact on the secondary member of the binary at ~7 km/s is expected to alter the binary orbit period by about 4 minutes, assuming a simple transfer of momentum to the target, and this period change will be measured by Earth-based observatories. The AIM spacecraft will characterize the asteroid target and monitor results of the impact in situ at Didymos. The DART mission is a full-scale kinetic impact to deflect a 150 m diameter asteroid, with known impactor conditions and with target physical properties characterized by the AIM mission. Predictions for the momentum transfer efficiency of kinetic impacts are given for several possible target types of different porosities, using Housen and Holsapple (2011) crater scaling model for impact ejecta mass and velocity distributions. Results are compared to numerical simulation results using the Smoothed Particle Hydrodynamics code of Jutzi and Michel (2014) with good agreement. The model also predicts that the ejecta from the DART impact may make Didymos into an active asteroid, forming an ejecta coma that may be observable from Earth-based telescopes. The measurements from AIDA of the momentum transfer from the DART impact, the crater size and morphology, and the evolution of an ejecta coma will

  3. Relativistic mass ejecta from phase-transition-induced collapse of neutron stars

    SciTech Connect

    Cheng, K.S.; Harko, T.; Tian, X.L.; Huang, Y.F.; Lin, L.M.; Suen, W.M. E-mail: harko@hkucc.hku.hk E-mail: lmlin@phy.cuhk.edu.hk E-mail: tianxiaolei@gmail.com

    2009-09-01

    We study the dynamical evolution of a phase-transition-induced collapse neutron star to a hybrid star, which consists of a mixture of hadronic matter and strange quark matter. The collapse is triggered by a sudden change of equation of state, which result in a large amplitude stellar oscillation. The evolution of the system is simulated by using a 3D Newtonian hydrodynamic code with a high resolution shock capture scheme. We find that both the temperature and the density at the neutrinosphere are oscillating with acoustic frequency. However, they are nearly 180° out of phase. Consequently, extremely intense, pulsating neutrino/antineutrino fluxes will be emitted periodically. Since the energy and density of neutrinos at the peaks of the pulsating fluxes are much higher than the non-oscillating case, the electron/positron pair creation rate can be enhanced dramatically. Some mass layers on the stellar surface can be ejected by absorbing energy of neutrinos and pairs. These mass ejecta can be further accelerated to relativistic speeds by absorbing electron/positron pairs, created by the neutrino and antineutrino annihilation outside the stellar surface. The possible connection between this process and the cosmological Gamma-ray Bursts is discussed.

  4. A STUBBORNLY LARGE MASS OF COLD DUST IN THE EJECTA OF SUPERNOVA 1987A

    SciTech Connect

    Matsuura, M.; Barlow, M. J.; Dwek, E.; Babler, B.; Baes, M.; Fritz, Jacopo; Meixner, M.; Cernicharo, José; Clayton, Geoff C.; Dunne, L.; Fransson, C.; Lundqvist, P.; Gear, Walter; Gomez, H. L.; Groenewegen, M. A. T.; Indebetouw, R.; Ivison, R. J.; Jerkstrand, A.; Lebouteiller, V.; and others

    2015-02-10

    We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 μm data and improved imaging quality at 100 and 160 μm compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 μm [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 μm flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 ± 0.1 M {sub ☉} of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 M {sub ☉} of amorphous carbon and 0.5 M {sub ☉} of silicates, totalling 0.8 M {sub ☉} of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.

  5. Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations

    NASA Astrophysics Data System (ADS)

    Ren, Guo-Wu; Zhang, Shi-Wen; Hong, Ren-Kai; Tang, Tie-Gang; Chen, Yong-Tao

    2016-08-01

    We conduct molecular dynamics simulations of the ejection process from a grooved Pb surface subjected to supported and unsupported shock waves with various shock-breakout pressures (P SB) inducing a solid–liquid phase transition upon shock or release. It is found that the total ejecta mass changing with P SB under a supported shock reveals a similar trend with that under an unsupported shock and the former is always less than the latter at the same P SB. The origin of such a discrepancy could be unraveled that for an unsupported shock, a larger velocity difference between the jet tip and its bottom at an early stage of jet formation results in more serious damage, and therefore a greater amount of ejected particles are produced. The cumulative areal density distributions also display the discrepancy. In addition, we discuss the difference of these simulated results compared to the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472254 and 11272006).

  6. Mapping the Kinematic Structure of Radioactive Ejecta in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Gerardy, Christopher L.; Parrent, Jerod; Fesen, Robert A.; Hoflich, Peter

    2009-02-01

    Late-time (t ~ 300 d) observation of near-infrared (NIR) [Fe II] lines has proven to be a very powerful tool for probing the physics of Type Ia supernova (SN Ia) explosions. The few available examples have revealed that at least some SNe Ia exhibit a layered ejecta structure which persists down to the innermost regions of the SN envelope, in contradiction to all of the currently popular models of SNe Ia which predict that the innermost regions (at least) should exhibit large-scale turbulent mixing. Thus a key piece of physics is missing from our understanding of these events. NIR spectroscopy of Type Ia supernovae at these epochs tests the limits of 8 m class telescopes for even the brightest SNe Ia, and so these phenomena remain poorly observed. However, it may be possible to use the strong [Fe II] emission line at 7155 Ato similar effect. Unfortunately this line is usually partly blended with [Ca II] emission which complicates the extraction of the true [Fe II] line profile. We propose to use concurrent NIR and optical spectra of two recent nearby Type Ia supernovae, both to increase the still anemic data set of late- time SN Ia spectra, and to act as a pilot study to test whether the dramatic success obtained at great effort in the NIR can be reproduced much more cheaply through optical spectroscopy.

  7. Type Ib SN 1999dn as an example of the thoroughly mixed ejecta of Ib supernovae

    NASA Astrophysics Data System (ADS)

    Cano, Zach; Maeda, Keiichi; Schulze, Steve

    2014-03-01

    We present the results of modelling archival observations of Type Ib SN 1999dn. In the spectra, two He I absorption features are seen: a slower component with larger opacity, and a more rapid He I component with smaller opacity. Complementary results are obtained from modelling the bolometric light curve of SN 1999dn, where a two-zone model (dense inner region, and less dense outer region) provides a much better fit than a one-zone model. A key result we find is that roughly equal amounts of radioactive material are found in both regions. The two-zone analytical model provides a more realistic representation of the structure of the ejecta, including mixing and asymmetries, which offers a physical explanation for how the radioactive material is propelled to, and mixed within, the outer regions. Our result supports the theoretical expectation that the radioactive content in the outflow of a Type Ib supernova (SN) is thoroughly mixed. We fit our model to six additional SNe Ibc, of which the majority of the SNe Ib are best described by the two-zone model, and the majority of the SNe Ic by the one-zone model. Of the SNe Ic, only SN 2007gr was best fitted by the two-zone model, indicating that the lack of helium spectral features for this event cannot be attributed to poor mixing.

  8. Shock-produced ejecta from tin: Comparative study by molecular dynamics and smoothed particle hydrodynamics methods

    NASA Astrophysics Data System (ADS)

    Dyachkov, S. A.; Parshikov, A. N.; Zhakhovsky, V. V.

    2015-11-01

    Experimental methods of observation of early stage of shock-induced ejecta from metal surface with micrometer-sized perturbations are still limited in terms of following a complete sequence of processes having microscale dimensions and nanoscale times. Therefore, simulations by the smoothed particle hydrodynamics (SPH) and molecular dynamics (MD) methods can shed of light on details of micro-jet evolution. The size of simulated sample is too restricted in MD, but the simulations with large enough number of atoms can be scaled well to the sizes of realistic samples. To validate such scaling the comparative MD and SPH simulations of tin samples are performed. SPH simulation takes the realistic experimental sizes, while MD uses the proportionally scaled sizes of samples. It is shown that the velocity and mass distributions along the jets simulated by MD and SPH are in a good agreement. The observed difference in velocity of spikes between MD and experiments can be partially explained by a profound effect of surface tension on jets ejected from the small-scale samples.

  9. The Interplay between Chemistry and Nucleation in the Formation of Carbonaceous Dust in Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide; Heger, Alexander

    2016-02-01

    Core-collapse supernovae (CCSNe) are considered to be important contributors to the primitive dust enrichment of the interstellar medium in the high-redshift universe. Theoretical models of dust formation in stellar explosions have so far provided controversial results and a generally poor fit to the observations of dust formation in local supernovae. We present a new methodology for the calculation of carbonaceous dust formation in young supernova remnants. Our new technique uses both the nucleation theory and a chemical reaction network to allow us to compute the dust growth beyond the molecular level as well as consider the chemical erosion of the forming grains. We find that carbonaceous dust forms efficiently in the core of the ejecta, but takes several years to condensate, longer than previously estimated. It forms unevenly and remains concentrated in the inner part of the remnant. These results support the role of CCSNe as dust factories and provide new insight into the observations of SN 1987A, in which large amounts of dust have been detected to form on a timescale of years after core-collapse.

  10. Modeling of the H2 Fluorescence spectrum in Eta Car's ejecta

    NASA Astrophysics Data System (ADS)

    Nielsen, Krister

    2010-09-01

    Molecular hydrogen is the most abundant species in the interstellar medium and is observed in emission and absorption towards a wide range of astronomical objects. The presence of H2 is fundamental for the formation of complex molecules and dust. The H2 Lyman bands long-ward of 1200 A are usually not detected in a cold gaseous environment but, surprisingly, appears strongly in the spectrum of Eta Car's cold Homunculus. More than 800 H2 transitions have been identified in the mid-UV. The H2 absorption spectrum changes with Eta Car's 5.54 year spectroscopic period. These changes in H2 absorption strengths can provide information regarding the radiative flux variability caused by the companion star. We propose to use HST/STIS data recorded with the E140M grating between 1990.0 to 2004.3 to model the H2 spectrum and derive H2 column densities in the Eta Car Homunculus and how the column densities vary with phase. This will provide necessary input for accurate modeling of the Homunculus, which is an important step in the analysis of this unusual ejecta, and can be used for future studies of other massive stars.

  11. Confirmation of dust condensation in the ejecta of supernova 1987a.

    PubMed Central

    Gehrz, R D; Ney, E P

    1990-01-01

    Shortly after its outburst, we suggested that supernova 1987a might condense a dust shell of substantial visual optical thickness as many classical novae do and predicted that dust might form within a year after the explosion. A critical examination of recent optical and infrared observations reported by others confirms that dust grains had begun to grow at a temperature of 1000 K after 300 days and that the dust shell had become optically thick by day 600. After day 600, the infrared luminosity closely followed the intrinsic luminosity expected for thermalized 56Co gamma rays, demonstrating that the luminosity is powered by radioactivity and that the dust is outside the radioactivity zone. The infrared luminosity sets an upper limit to the soft intrinsic bolometric luminosity of a pulsar central engine. This upper limit for the pulsar in supernova 1987a is the same luminosity as the Crab pulsar has today 936 years after its formation. It is unlikely that the rotation rate for a pulsar in supernova 1987a can be much higher than approximately 30 revolutions per sec. The relatively long time required for the shell to grow to maximum optical depth as compared with the dust in nova shells may be related to the relatively low outflow velocity of the condensible ejecta. PMID:11607082

  12. FIRST EVIDENCE OF GLOBULAR CLUSTER FORMATION FROM THE EJECTA OF PROMPT TYPE Ia SUPERNOVAE

    SciTech Connect

    Tsujimoto, Takuji; Bekki, Kenji

    2012-06-01

    Recent spectroscopic observations of globular clusters (GCs) in the Large Magellanic Cloud (LMC) have discovered that one of the intermediate-age GCs, NGC 1718, with [Fe/H] = -0.7 has an extremely low [Mg/Fe] ratio of {approx}-0.9. We propose that NGC 1718 was formed from the ejecta of Type Ia supernovae mixed with very metal-poor ([Fe/H] <-1.3) gas about {approx}2 Gyr ago. The proposed scenario is shown to be consistent with the observed abundances of Fe-group elements such as Cr, Mn, and Ni. In addition, compelling evidence for asymptotic giant branch stars playing a role in chemical enrichment during this GC formation is found. We suggest that the origin of the metal-poor gas is closely associated with efficient gas transfer from the outer gas disk of the Small Magellanic Cloud to the LMC disk. We anticipate that the outer part of the LMC disk contains field stars exhibiting significantly low [Mg/Fe] ratios, formed through the same process as NGC 1718.

  13. Fe-rich ejecta in the supernova remnant G352.7–0.1 with Suzaku

    SciTech Connect

    Sezer, A.; Gök, F.

    2014-07-20

    In this work, we present results from a ∼201.6 ks observation of G352.7–0.1 using the X-ray Imaging Spectrometer on board Suzaku X-ray Observatory. The X-ray emission from the remnant is well described by two-temperature thermal models of non-equilibrium ionization with variable abundances with a column density of N{sub H} ∼ 3.3 × 10{sup 22} cm{sup –2}. The soft component is characterized by an electron temperature of kT{sub e} ∼ 0.6 keV, an ionization timescale of τ ∼ 3.4 × 10{sup 11} cm{sup –3} s, and enhanced Si, S, Ar, and Ca abundances. The hard component has kT{sub e} ∼ 4.3 keV, τ ∼ 8.8 × 10{sup 9} cm{sup –3} s, and enhanced Fe abundance. The elemental abundances of Si, S, Ar, Ca, and Fe are found to be significantly higher than the solar values that confirm the presence of ejecta. We detected strong Fe K-shell emission and determined its origin to be the ejecta for the first time. The detection of Fe ejecta with a lower ionization timescale favors a Type Ia origin for this remnant.

  14. Spontaneous magnetic field generation in hypervelocity impacts. [of meteoroids onto lunar and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1977-01-01

    Hypervelocity impacts of meteoroids onto early planetary surfaces may have generated short-lived magnetic fields. The high specific power densities of the impacts, plasma production in the ejecta clouds, and the chemically layered targets of the meteoroids are analyzed in describing the evolution of the magnetic fields. Durations from about one millionth of a minute to one minute, as well as strengths up to 100 tesla, are posited for the impact-generated magnetic fields. The analogy of magnetic-field generation in laser-target experiments is also mentioned. The acquisition of shock remanence and thermoremanence by the ejecta and nearby rock following impact is discussed.

  15. ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA SUPERNOVA REMNANT G299.2–2.9

    SciTech Connect

    Post, Seth; Park, Sangwook; Badenes, Carles; Burrows, David N.; Hughes, John P.; Lee, Jae-Joon; Mori, Koji; Slane, Patrick O. E-mail: badenes@pitt.edu E-mail: jph@physics.rutgers.edu E-mail: slane@cfa.harvard.edu

    2014-09-01

    We have performed a deep Chandra observation of the Galactic Type Ia supernova remnant G299.2–2.9. Here we report the initial results from our imaging and spectral analysis. The observed abundance ratios of the central ejecta are in good agreement with those predicted by delayed-detonation Type Ia supernovae models. We reveal inhomogeneous spatial and spectral structures of metal-rich ejecta in G299.2–2.9. The Fe/Si abundance ratio in the northern part of the central ejecta region is higher than that in the southern part. A significant continuous elongation of ejecta material extends out to the western outermost boundary of the remnant. In this western elongation, both the Si and Fe are enriched with a similar abundance ratio to that in the southern part of the central ejecta region. These structured distributions of metal-rich ejecta material suggest that this Type Ia supernova might have undergone a significantly asymmetric explosion and/or has been expanding into a structured medium.

  16. Composition of the Innermost Core Collapse Supernova Ejecta and the νp-Process

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Liebendörfer, M.; Martínez-Pinedo, G.; Thielemann, F.-K.; Bravo, E.; Zinner, N. T.; Hix, W. R.; Langanke, K.; Mezzacappa, A.; Nomoto, K.

    2006-07-01

    With presently known input physics and computer simulations in 1D, a self-consistent treatment of core collapse supernovae does not lead to explosions, while 2D models show some promise. Thus, there are strong indications that the delayed neutrino mechanism works combined with a multi-D convection treatment for unstable layers. On the other hand there is a need to provide correct nucleosynthesis abundances for the progressing field of galactic evolution and observations of low metallicity stars. The innermost ejecta is directly affected by the explosion mechanism, i.e. most strongly the yields of Fe-group nuclei for which an induced piston or thermal bomb treatment will not provide the correct yields because the effect of neutrino interactions is not included. We apply parameterized variations to the neutrino scattering cross sections and alternatively, parameterized variations to the neutrino absorption cross sections on nucleons in the ``gain region''. We find that both measures lead to similar results, causing explosions and a Ye larger than 0.5 in the innermost ejected layers, due to the combined effect of a short weak interaction time scale and a negligible electron degeneracy, unveiling the proton-neutron mass difference. The proton-rich environment results in enhanced abundances of 45Sc, 49Ti, and 64Zn as requested by chemical evolution studies and observations of low metallicity stars. Moreover, antineutrino capture on the free protons allows for an appreciable production of nuclei in the mass range up to A = 80 by the νp-process.

  17. Properties of the -513 km/s Ejecta in the Spectrum of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Danks, Anthony; Gull, Theodore; Vieira, G.; Johansson, S.

    2002-01-01

    In the spectral region 2400-3160A of Eta Carinae, we have identified approximately 500 absorption lines each with up to twenty velocity components. The -512 kilometers per second component is truely unique as 1) the typical line width is less than 3 kilometers per second, 2) the identified lines are in Fe I, Fe II, V II and Ti II, and 3) the lines originate from lower levels up to 2000 cm-1 above the ground level. We have measured the velocity centers, full width at half maximum and equivalent widths for approximately 100 absorption lines. Initial results were very confusing as we found more variation in central velocities than would be expected from known STIS echelle wavelength standards. Upon further review, we found that the reporteded wavelengths in the NIST and Kurucz databases were not sufficiently accurate. S. Johansson searched FTS laboratory measurements performed at Lund for V II and Ti II and provided much improved wavelength measures. Likewise, we find more variation in column density than expected statistically from the accuracy of the equivalent widths for lines originating from the same energy level. We are reviewing the published gf values and our measurements to improve the measured column densities. Some spectroscopy of the ejecta has already been accomplished at two different epochs. Preliminary measures of equivalent widths indicate there may be some variation with time, but we await measurements planned for July 2003 during the upcoming spectroscopic minimum of Eta Carinae. These observations were accomplished through STScI and funding was from STIS GTO resources.

  18. Properties of the -513 km/s Ejecta in the Spectrum of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Danks, A.; Gull, T. R.; Vieira, G.; Johansson, S.

    2003-01-01

    In the spectral region 2400-3160A of Eta Carinae, we have identified approximately 500 absorption lines each with up to twenty velocity components. The -512 kilometers per second component is truly unique as 1) the typical line width is less than 3 kilometers per second, 2) the identified lines are in Fe I, Fe II, VII and Ti II, and 3) the lines originate from lower levels up to 2000 cm-1 above the ground level. We have measured the velocity centers, full width at half maximum and equivalent widths for approximately 100 absorption lines. Initial results were very confusing as we found bore variation in central velocities than would be expected from known STIS echelle wavelength standards. Upon further review, we found that the reported wavelengths in the NIST and Kurucz databases were not sufficiently accurate. S. Johansson searched FTS laboratory measurements performed at Lund for V II and Ti II and provided much improved wavelength measures. Likewise, we find more variation in column density than expected statistically from the accuracy of the equivalent widths for lines originating from the same energy level. We are reviewing the published gf values and our measurements to improve the measured column densities. Some spectroscopy of the ejecta has already been accomplished at two different epochs. Preliminary measures of equivalent widths indicate there may be some variation with time, but we await measurements planned for July 2003 during the upcoming spectroscopic minimum of Eta Carinae. The observations were accomplished through STScI and funding was from STIS GTO resources.

  19. Multibillion-atom Molecular Dynamics Simulations of Plasticity, Spall, and Ejecta

    NASA Astrophysics Data System (ADS)

    Germann, Timothy C.

    2007-06-01

    Modern supercomputing platforms, such as the IBM BlueGene/L at Lawrence Livermore National Laboratory and the Roadrunner hybrid supercomputer being built at Los Alamos National Laboratory, are enabling large-scale classical molecular dynamics simulations of phenomena that were unthinkable just a few years ago. Using either the embedded atom method (EAM) description of simple (close-packed) metals, or modified EAM (MEAM) models of more complex solids and alloys with mixed covalent and metallic character, simulations containing billions to trillions of atoms are now practical, reaching volumes in excess of a cubic micron. In order to obtain any new physical insights, however, it is equally important that the analysis of such systems be tractable. This is in fact possible, in large part due to our highly efficient parallel visualization code, which enables the rendering of atomic spheres, Eulerian cells, and other geometric objects in a matter of minutes, even for tens of thousands of processors and billions of atoms. After briefly describing the BlueGene/L and Roadrunner architectures, and the code optimization strategies that were employed, results obtained thus far on BlueGene/L will be reviewed, including: (1) shock compression and release of a defective EAM Cu sample, illustrating the plastic deformation accompanying void collapse as well as the subsequent void growth and linkup upon release; (2) solid-solid martensitic phase transition in shock-compressed MEAM Ga; and (3) Rayleigh-Taylor fluid instability modeled using large-scale direct simulation Monte Carlo (DSMC) simulations. I will also describe our initial experiences utilizing Cell Broadband Engine processors (developed for the Sony PlayStation 3), and planned simulation studies of ejecta and spall failure in polycrystalline metals that will be carried out when the full Petaflop Opteron/Cell Roadrunner supercomputer is assembled in mid-2008.

  20. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    SciTech Connect

    Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J.

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  1. Properties of the -513 km/s Ejecta in the Spectrum of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Danks, A. C.; Gull, T. R.; Vieira, G. L.; Johansson, S.

    2002-12-01

    In the spectral region 2400-3160A of Eta Carinae, we have identified approximately 500 absorption lines each with up to twenty velocity components.The -512 km/s component is truely unique as 1) the typical line width is <3 km/s, 2) the identified lines are in Fe I, Fe II, V II and Ti II, and 3) the lines originate from lower levels up to 2000 cm-1 above the ground level. We have measured the velocity centers, full width at half maximum and equivalent widths for approximately 100 absorption lines. Initial results were very confusing as we found more variation in central velocities than would be expected from known STIS echelle wavelength standards. Upon further review, we found that the reporteded wavelengths in the NIST and Kurucz databases were not sufficiently accurate. S. Johansson searched FTS laboratory measurements performed at Lund for V II and Ti II and provided much improved wavelength measures. Likewise, we find more variation in column density than expected statistically from the accuracy of the equivalent widths for lines originating from the same energy level. We are reviewing the published gf values and our measurements to improve the measured column densities. Some spectroscopy of the ejecta has already been accomplished at two different epochs. Preliminary measures of equivalent widths indicate there may be some variation with time, but we await measurements planned for July 2003 during the upcoming spectroscopic minimum of Eta Carinae. These observations were accomplished through STScI and funding was from STIS GTO resources.

  2. Elemental and Molecular Relative Abundances in the Ejecta of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Kober, G. V.; Gull, T. R.; Nielsen, K.; Bruhweiler, F.; Verner, K.; Stahl, O.; Weis, K.; Bomans, D.

    2005-12-01

    We are measuring relative elemental abundances for the ejecta in the line of sight from Eta Carinae using high dispersion spectroscopy with the HST/STIS and the VLT/UVES. While multiple velocity components have been identified, we focus on the -513 and -146 km/s components originating from the Homunculus and the Little Homunculus. Complicating factors are the complex nebular structures in the immediate vicinity of the bright, massive star: the very bright emission structures, Weigelt blobs B, C and D, the broad, clumpy structures of the extended wind apparently not photoionized by Eta Car B, and general scattered starlight from the extended wind and the dusty core of the circumstellar material. We have used the 3050 to 3160A region of overlap between STIS and UVES to intercompare equivalent widths of absorption lines to estimate the 'contributing factor', namely the amount of light originating from the star compared to nebular structures. While the extracted STIS spectra are from 0.1" wide aperture, the UVES spectra are limited by the 1" seeing conditions. Curiously we find that the scattering contribution in the UVES spectra changes with time, apparently with orbital phase of the 5.54-year period. This indicates that the dust may be modified by changes in the central source with phase. The noticeable drop in scattered light appears to occur about 1.7 years (phase 0.35) after the spectroscopic minimum. Relative abundances of iron peak elements and some molecules will be estimated. Observations in this study were accomplished with HST through STScI and with VLT through ESO and funded under STIS GTO resources.

  3. Elemental and Molecular Relative Abundances in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Kober, G. V.; Gull, T. R.; Nielsen, K.; Bruhweiler, F.; Verner, K.; Stahl, O.; Weis, K.; Bomans, D.

    2006-01-01

    We are measuring relative elemental abundances for the ejecta in the line of sight from Eta Carinae using high dispersion spectroscopy with the HST/STIS and the VLT/UVES. While multiple velocity components have been identified, we focus on the -513 and -146 km/s components originating from the Homunculus and the Little Homunculus. Complicating factors are the complex nebular structures in the immediate vicinity of the bright, massive star: the very bright emission structures, Weigelt blobs B, C and D, the broad, clumpy structures of the extended wind apparently not photoionized by Eta Car B, and general scattered starlight from the extended wind and the dusty core of the circumstellar material. We have used the 3050 to 3160A region of overlap between STIS and UVES to intercompare equivalent widths of absorption lines to estimate the 'contributing factor', namely the amount of light originating from the star compared to nebular structures. While the extracted STIS spectra are from 0.1" wide aperture, the UVES spectra are limited by the 1" seeing conditions. Curiously we find that the scattering contribution in the UVES spectra changes with time, apparently with orbital phase of the 5.54-year period. This indicates that the dust may be modified by changes in the central source with phase. The noticeable drop in scattered light appears to occur about 1.7 years (phase 0.35) after the spectroscopic minimum. Relative abundances of iron peak elements and some molecules will be estimated. Observations in this study were accomplished with HST through STSci and with VLT through ESO and funded under STIS GTO resources.

  4. Exploring and Modeling High-excitation Emission in the Ejecta and the Wind of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Mehner, Andrea

    Eta Carinae is the most massive, most luminous star in our region of the Galaxy. It is an evolved massive star and therefore provides many clues to the fate of the most massive stars. In the 1840s its unstable nature culminated in the Great Eruption when it briefly became the second brightest star in the sky and ejected more than ten solar masses, which today enshroud the surviving star as a bipolar nebula. Every 5.54 years Eta Car's photometry and spectra show dramatic changes which last for several months. Combining data from HST/STIS, Gemini-S/GMOS, and VLT/UVES from 1998 to 2010, I analyzed two spectroscopic cycles. Observations with a variety of different slit position angles made it possible to map the emission across the nebula and the complex outer ejecta of Eta Car permit to observe the star at different stellar latitudes via reflected light. The spectroscopic cycles are thought to be regulated by a hot companion star and therefore give us information to the nature and orbit of the stars hidden behind Eta Car's opaque wind. The observations, covering more than 10 years, made it also possible to observe the ongoing long-term recovery from the Great Eruption. Topics covered in this thesis include: 1) spatial and temporal behavior of the high-excitation emission lines, 2) parameters of the secondary star, 3) He II 4687 emission during the 2009 "Event," 4) changing wind structure during the 2009 "Event," 5) origin of the He I lines, and 6) major changes in the broad-line wind spectrum indicating a decrease in Eta Car's wind density.

  5. Ultraviolet Changes of the Central Source and the Very Nearby Ejecta

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Nielsen, Krister; Vierira, Gladys; Hillier, John; Walborn, Nolan; Davidson, Kris

    2004-01-01

    We utilized the high spatial and high spectral resolution of the HST/STIS MAMA echelle modes in the ultraviolet (0.025 inch spatial resolution and 30,000 to 120,000 spectral resolving power) to view changes in and around Eta Carinae before and after the X-Ray drop which occurred on June 29, 2003 (M. Corcoran, IAUC 8160). Major changes in the spectra of the Central Source and nearby nebulosities occurred between June 22 and July 5. Visibility of the Central Source dropped, especially between 1175 and 1350 Angstroms, but not uniformly throughout the ultraviolet. This fading is likely due to multiple line absorptions both in the source and in the intervening ejecta. Nebular emission of Si III] and Fe III, located 0.09 sec. to the west, disappeared. By July 29, a bright feature extending up to 0.071 sec. east of the Central Source became prominent in broad emission lines near 2500 Angstroms, but was not noticeable longward of 2900 Angstroms. ACS/HRC imagery and STIS CCD spectra taken concurrently are being examined for larger scale changes. Numerous narrow velocity components between -146 and -585 kilometers per second were identified in spectra before the minimum. New components appeared primarily in Fe II absorption lines with velocities between -170 and -380 kilometers per second. While the lines of the -513 kilometers per second component did not change, most lines of the -146 kilometers per second component changed considerably. Lines originating from high energy levels diminished or disappeared, while lines originating from lower energy levels strengthened. Strong absorption lines of Ti II, not present before the X-Ray drop, appeared within seven days, but disappeared by July 29. Further analysis of these unprecedented data will provide significant new information about the structure of Eta Carinae and its periodic variations.

  6. Survivability of bacteria ejected from icy surfaces after hypervelocity impact.

    PubMed

    Burchell, Mark J; Galloway, James A; Bunch, Alan W; Brandão, Pedro F B

    2003-02-01

    Both the Saturnian and Jovian systems contain satellites with icy surfaces. If life exists on any of these icy bodies (in putative subsurface oceans for example) then the possibility exists for transfer of life from icy body to icy body. This is an application of the idea of Panspermia, wherein life migrates naturally through space. A possible mechanism would be that life, here taken as bacteria, could become frozen in the icy surface of one body. If a high-speed impact occurred on that surface, ejecta containing the bacteria could be thrown into space. It could then migrate around the local region of space until it arrived at a second icy body in another high-speed impact. In this paper we consider some of the necessary steps for such a process to occur, concentrating on the ejection of ice bearing bacteria in the initial impact, and on what happens when bacteria laden projectiles hit an icy surface. Laboratory experiments using high-speed impacts with a light gas gun show that obtaining icy ejecta with viable bacterial loads is straightforward. In addition to demonstrating the viability of the bacteria carried on the ejecta, we have also measured the angular and size distribution of the ejecta produced in hypervelocity impacts on ice. We have however been unsuccessful at transferring viable bacteria to icy surfaces from bacteria laden projectiles impacting at hypervelocities. PMID:12967273

  7. Impact fragmentation of Lonar Crater, India: Implications for impact cratering processes in basalt

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, P.; Prasanna Lakshmi, K. J.; Krishna, N.; Menon, R.; Sruthi, U.; Keerthi, V.; Senthil Kumar, A.; Mysaiah, D.; Seshunarayana, T.; Sen, M. K.

    2014-09-01

    Impact fragmentation is an energetic process that has affected all planetary bodies. To understand its effects in basalt, we studied Lonar Crater, which is a rare terrestrial simple impact crater in basalt and analogues to kilometer-scale simple craters on Mars. The Lonar ejecta consists of basaltic fragments with sizes ranging from silt to boulder. The cumulative size and mass frequency distributions of these fragments show variation of power index for different size ranges, suggesting simple and complex fragmentation. The general shape of the fragments is compact, platy, bladed, and elongated with an average edge angle of 100°. The size distribution of cobble- to boulder-sized fragments is similar to the fracture spacing distribution in the upper crater wall, indicating the provenance of those large fragments. Its consistency with a theoretical spallation model suggests that the large fragments were ejected from near surface of the target, whereas the small fragments from deeper level. The petrophysical properties of the ejecta fragments reflect the geophysical heterogeneity in the target basalt that significantly reduced the original size of spall fragments. The presence of Fe/Mg phyllosilicates (smectites) both in the ejecta and wall indicates the role of impact in excavating the phyllosilicates from the interior of basaltic target affected by aqueous alteration. The seismic images reveal a thickness variation in the ejecta blanket, segregation of boulders, fractures, and faults in the bedrock beneath the crater rim. The fracturing, fragmentation, and fluvial degradation of Lonar Crater have important implications for Mars.

  8. Geomorphic analysis of small rayed craters on Mars: Examining primary versus secondary impacts

    NASA Astrophysics Data System (ADS)

    Calef, Fred J.; Herrick, Robert R.; Sharpton, Virgil L.

    2009-10-01

    Twenty confirmed impacts over a 7-year time period on Mars were qualitatively and statistically compared to 287 secondary craters believed to originate from Zunil, an ˜500 ka, 10-km diameter, primary crater. Our goal was to establish criteria to distinguish secondaries from primaries in the general crater population on the basis of their horizontal planforms. Recent primary impacts have extensive “air blast” zones, distal ray systems (>100 crater radii, R), and ephemeral ejecta. Recent primaries formed clusters of craters from atmospheric fragmentation of the meteoroid body. Secondary craters have ejecta blankets with shorter rays that are consistent with emplacement by low-impact velocities (near 1 km/s). The mean extent of the continuous ejecta blankets was less distal for secondaries (5.38 ± 1.57R) versus primaries (18.07 ± 7.01R), though primary ejecta were less fractal (Fractal Dimension Index (FD I ) < 1.30) and more circular on average (Circularity Ratio (C R ) = 0.55 ± 0.25 versus 0.27 ± 0.13 for secondaries). Crater rims were remarkably circular (primaries C R = 0.97 ± 0.02, secondaries at 0.94 ± 0.05), though secondaries have the lowest values (C R < 0.9). Secondary crater rims were elongated toward or orthogonal to their primary of origin. Uprange source directions for most secondaries, determined by ejecta planform and crater rim ellipticity, point toward Zunil, although contamination from other primaries is considered in some areas. Ejecta blanket discrepancies between recent primaries and Zunil secondaries are attributable to differences in impact velocity and retention age. After removal of the ejecta blanket, crater rims are generally not diagnostic for determining crater origin. Fragmentation of primaries may play some role in steepening the size-frequency distribution of crater diameters in the 5 m < D < 30 m range.

  9. A Stubbornly Large Mass of Cold Dust in the Ejecta of Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Matsuura, M.; Dwek, E.; Barlow, M. J.; Babler, B.; Baes, M.; Meixner, M.; Cernicharo, José; Clayton, Geoff C.; Dunne, L.; Fransson, C.; Fritz, Jacopo; Gear, Walter; Gomez, H. L.; Groenewegen, M. A. T.; Indebetouw, R.; Ivison, R. J.; Jerkstrand, A.; Lebouteiller, V.; Lim, T. L.; Lundqvist, P.; Pearson, C. P.; Roman-Duval, J.; Royer, P.; Staveley-Smith, Lister; Swinyard, B. M.; van Hoof, P. A. M.; van Loon, J. Th.; Verstappen, Joris; Wesson, Roger; Zanardo, Giovanna; Blommaert, Joris A. D. L.; Decin, Leen; Reach, W. T.; Sonneborn, George; Van de Steene, Griet C.; Yates, Jeremy A.

    2015-02-01

    We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 μm data and improved imaging quality at 100 and 160 μm compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 μm [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 μm flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 ± 0.1 M ⊙ of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 M ⊙ of amorphous carbon and 0.5 M ⊙ of silicates, totalling 0.8 M ⊙ of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and

  10. Astrophysical lasers operating in optical Fe II lines in stellar ejecta of η Carinae

    NASA Astrophysics Data System (ADS)

    Johansson, S.; Letokhov, V. S.

    2004-12-01

    After the discovery of space masers based on OH radicals (Weaver et al. \\cite{Wea65}) and H2O (Cheung et al. \\cite{Che69}) such microwave lasers have been found to work in more than 100 molecular species (Elitzur \\cite{Eli92}; Townes \\cite{Tow97}), as well as in highly excited H atoms (Strelnitski et al. \\cite{Str96}). In the IR region (10 \\mum), the effect of stimulated emission of radiation in the CO2 molecule has been discovered in the Martian and Venus' atmospheres (Betz et al. \\cite{Bet76}; Mumma et al. \\cite{Mum81}). We report here on the discovery of laser action in the range 0.9-2 μm in several spectral lines of Fe II, which are associated with transitions from ``pseudo-metastable'' states populated by spontaneous transitions from Lyα pumped Fe II levels. The intense Lyα radiation is formed in the HII region of gas condensations close to the star η Car. The laser transitions form together with spontaneous transitions closed radiative cycles, one of which includes the extremely bright 2507/09 Å lines. Closed radiative cycles, together with an accidental mixing of energy levels, may provide an explanation of the abnormal intensities of these UV non-lasing lines. Using the complicated energy level diagram of Fe II we present those peculiar features, which are essential for the inverted population and laser effect: the pumping, the level mixing, and the ``bottle neck'' for spontaneous decay. The laser action is a new indicator of non-equilibrium and spatially non-homogeneous physical conditions as well as a high brightness temperature of Lyα in ejecta from eruptive stars. Such conditions are very difficult to probe by existing methods, and we propose some future experiments. The fact, that the lasing near-IR lines appear in the spectrum with about the same intensity as non-lasing lines is discussed and compared with the situation in masers.

  11. Neutron-star Merger Ejecta as Obstacles to Neutrino-powered Jets of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Just, O.; Obergaulinger, M.; Janka, H.-T.; Bauswein, A.; Schwarz, N.

    2016-01-01

    We present the first special relativistic, axisymmetric hydrodynamic simulations of black hole-torus systems (approximating general relativistic gravity) as remnants of binary-neutron star (NS-NS) and neutron star-black hole (NS-BH) mergers, in which the viscously driven evolution of the accretion torus is followed with self-consistent energy-dependent neutrino transport and the interaction with the cloud of dynamical ejecta expelled during the NS-NS merging is taken into account. The modeled torus masses, BH masses and spins, and the ejecta masses, velocities, and spatial distributions are adopted from relativistic merger simulations. We find that energy deposition by neutrino annihilation can accelerate outflows with initially high Lorentz factors along polar low-density funnels, but only in mergers with extremely low baryon pollution in the polar regions. NS-BH mergers, where polar mass ejection during the merging phase is absent, provide sufficiently baryon-poor environments to enable neutrino-powered, ultrarelativistic jets with terminal Lorentz factors above 100 and considerable dynamical collimation, favoring short gamma-ray bursts (sGRBs), although their typical energies and durations might be too small to explain the majority of events. In the case of NS-NS mergers, however, neutrino emission of the accreting and viscously spreading torus is too short and too weak to yield enough energy for the outflows to break out from the surrounding ejecta shell as highly relativistic jets. We conclude that neutrino annihilation alone cannot power sGRBs from NS-NS mergers.

  12. Recycled stellar ejecta as fuel for star formation and implications for the origin of the galaxy mass-metallicity relation

    NASA Astrophysics Data System (ADS)

    Segers, Marijke C.; Crain, Robert A.; Schaye, Joop; Bower, Richard G.; Furlong, Michelle; Schaller, Matthieu; Theuns, Tom

    2016-02-01

    We use cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments and OverWhelmingly Large Simulations projects to assess the significance of recycled stellar ejecta as fuel for star formation. The fractional contributions of stellar mass-loss to the cosmic star formation rate (SFR) and stellar mass densities increase with time, reaching 35 and 19 per cent, respectively, at z = 0. The importance of recycling increases steeply with galaxy stellar mass for M* < 1010.5 M⊙, and decreases mildly at higher mass. This trend arises from the mass dependence of feedback associated with star formation and AGN, which preferentially suppresses star formation fuelled by recycling. Recycling is more important for satellites than centrals and its contribution decreases with galactocentric radius. The relative contribution of asymptotic giant branch (AGB) stars increases with time and towards galaxy centres. This is a consequence of the more gradual release of AGB ejecta compared to that of massive stars, and the preferential removal of the latter by star formation-driven outflows and by lock up in stellar remnants. Recycling-fuelled star formation exhibits a tight, positive correlation with galaxy metallicity, with a secondary dependence on the relative abundance of alpha elements (which are predominantly synthesized in massive stars), that is insensitive to the subgrid models for feedback. Hence, our conclusions are directly relevant for the origin of the mass-metallicity relation and metallicity gradients. Applying the relation between recycling and metallicity to the observed mass-metallicity relation yields our best estimate of the mass-dependent contribution of recycling. For centrals with a mass similar to that of the Milky Way, we infer the contributions of recycled stellar ejecta to the SFR and stellar mass to be 35 and 20 per cent, respectively.

  13. The interplay of disc wind and dynamical ejecta in the aftermath of neutron star-black hole mergers

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Quataert, Eliot; Schwab, Josiah; Kasen, Daniel; Rosswog, Stephan

    2015-05-01

    We explore the evolution of the different ejecta components generated during the merger of a neutron star and a black hole. Our focus is the interplay between material ejected dynamically during the merger, and the wind launched on a viscous time-scale by the remnant accretion disc. These components are expected to contribute to an electromagnetic transient and to produce r-process elements, each with a different signature when considered separately. Here we introduce a two-step approach to investigate their combined evolution, using two- and three-dimensional hydrodynamic simulations. Starting from the output of a merger simulation, we identify each component in the initial condition based on its phase-space distribution, and evolve the accretion disc in axisymmetry. The wind blown from this disc is injected into a three-dimensional computational domain where the dynamical ejecta is evolved. We find that the wind can suppress fallback accretion on time-scales longer than ˜100 ms. Because of self-similar viscous evolution, the disc accretion at late times nevertheless approaches a power-law time dependence ∝t-2.2. This can power some late-time gamma-ray burst engine activity, although the available energy is significantly less than in traditional fallback models. Inclusion of radioactive heating due to the r-process does not significantly affect the fallback accretion rate or the disc wind. We do not find any significant modification to the wind properties at large radius due to interaction with the dynamical ejecta. This is a consequence of the different expansion velocities of the two components.

  14. Predicting CME Ejecta and Sheath Front Arrival at L1 with a Data-constrained Physical Model

    NASA Astrophysics Data System (ADS)

    Hess, Phillip; Zhang, Jie

    2015-10-01

    We present a method for predicting the arrival of a coronal mass ejection (CME) flux rope in situ, as well as the sheath of solar wind plasma accumulated ahead of the driver. For faster CMEs, the front of this sheath will be a shock. The method is based upon geometrical separate measurement of the CME ejecta and sheath. These measurements are used to constrain a drag-based model, improved by including both a height dependence and accurate de-projected velocities. We also constrain the geometry of the model to determine the error introduced as a function of the deviation of the CME nose from the Sun-Earth line. The CME standoff-distance in the heliosphere fit is also calculated, fit, and combined with the ejecta model to determine sheath arrival. Combining these factors allows us to create predictions for both fronts at the L1 point and compare them against observations. We demonstrate an ability to predict the sheath arrival with an average error of under 3.5 hr, with an rms error of about 1.58 hr. For the ejecta the error is less than 1.5 hr, with an rms error within 0.76 hr. We also discuss the physical implications of our model for CME expansion and density evolution. We show the power of our method with ideal data and demonstrate the practical implications of having a permanent L5 observer with space weather forecasting capabilities, while also discussing the limitations of the method that will have to be addressed in order to create a real-time forecasting tool.

  15. Inferring supernova IIb/Ib/Ic ejecta properties from light curves and spectra: correlations from radiative-transfer models

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Hillier, D. John; Woosley, Stan; Livne, Eli; Waldman, Roni; Yoon, Sung-Chul; Langer, Norbert

    2016-05-01

    We present 1D non-local thermodynamic equilibrium time-dependent radiative-transfer simulations for a large grid of supernovae (SNe) IIb/Ib/Ic that result from the terminal explosion of the mass donor in a close-binary system. Our sample covers ejecta masses Me of 1.7-5.2 M⊙, kinetic energies Ekin of 0.6-5.0 × 1051 erg, and 56Ni masses of 0.05-0.30 M⊙. We find a strong correlation between the 56Ni mass and the photometric properties at maximum, and between the rise time to bolometric maximum and the post-maximum decline rate. We confirm the small scatter in (V - R) at 10 d past R-band maximum. The quantity V_m ≡ √{2E_kin/M_e} is comparable to the Doppler velocity measured from He I 5875 Å at maximum in SNe IIb/Ib, although some scatter arises from the uncertain level of chemical mixing. The O I 7772 Å line may be used for SNe Ic, but the correspondence deteriorates with higher ejecta mass/energy. We identify a temporal reversal of the Doppler velocity at maximum absorption in the ˜1.05 μm feature in all models. The reversal is due to He I alone and could serve as a test for the presence of helium in SNe Ic. Because of variations in composition and ionization, the ejecta opacity shows substantial variations with both velocity and time. This is in part the origin of the offset between our model light curves and the predictions from the Arnett model.

  16. Fractal dimensions of rampart impact craters on Mars

    NASA Technical Reports Server (NTRS)

    Ching, Delwyn; Taylor, G. Jeffrey; Mouginis-Mark, Peter; Bruno, Barbara C.

    1993-01-01

    Ejecta blanket morphologies of Martian rampart craters may yield important clues to the atmospheric densities during impact, and the nature of target materials (e.g., hard rock, fine-grained sediments, presence of volatiles). In general, the morphologies of such craters suggest emplacement by a fluidized, ground hugging flow instead of ballistic emplacement by dry ejecta. We have quantitatively characterized the shape of the margins of the ejecta blankets of 15 rampart craters using fractal geometry. Our preliminary results suggest that the craters are fractals and are self-similar over scales of approximately 0.1 km to 30 km. Fractal dimensions (a measure of the extent to which a line fills a plane) range from 1.06 to 1.31. No correlations of fractal dimension with target type, elevation, or crater size were observed, though the data base is small. The range in fractal dimension and lack of correlation may be due to a complex interplay of target properties (grain size, volatile content), atmospheric pressure, and crater size. The mere fact that the ejecta margins are fractals, however, indicates that viscosity and yield strength of the ejecta were at least as low as those of basalts, because silicic lava flows are not generally fractals.

  17. Lateral and Vertical Heterogeneity of Thorium in the Procellarum KREEP Terrane: As Reflected in the Ejecta Deposits of Post-Imbrium Craters

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.

    1999-01-01

    discussed above and their ejecta, with the goal of describing the materials they excavate. One interpretation for the origin of the high-Th material is that subsurface KREEPy materials have been excavated by impact craters. The material excavated may be either volcanic KREEP (e,g., Apennine Bench Formation), KREEPy impact-melt breccia formed by the Imbrium impact (e.g., Fra Mauro Formation), or other KREEP-rich crustal material. Determining which type of material is responsible for the elevated Th and its extent is important to understanding the premare and possibly the prebasin stratigraphy of the Imbrium-Procellarum Region. Merging the 5 deg. Th data with the shaded relief map, we observe that the highest Th concentrations are not related to pre-Imbrium upper crustal materials. The Apennines, Alpes, and Caucasus Mountains represent the pre-Imbrian highlands material and do not express concentrations of Th, FeO, and TiO2 as high as the most Th-fich materials exposed within the Procellarum KREEP Terrane. We observe that, in general, these massifs contain 10-14 wt% FeO and 4-7 ppm Th. Determining whether the Th signal is from KREEP basalts or KREEPy impact-melt breccias cannot be done with the Clementine data because the two rock types are compositionally and mineralogically too similar (e.g., the Th-rich, mafic impact-melt breccias in the Apollo sample collection are dominated by a KREEP-basalt like component. Mapping-the distribution and sizes of craters and whether they display elevated Th concentrations or not, should reveal the depth and thickness of the KREEP-rich materials, and whether they are ubiquitous (i.e., impact-melt breccia) or more randomly distributed; this might be taken as an indicator of localized KREEP-basalt flows. Within the southeastern region of the Imbrium basin, there are two Th hot spots. The first is associated with the crater Aristillus, and the latter with the Apennine Bench Formation. Adjacent to these two hot spots are craters with a lower Th

  18. Environmental effects of large impacts on Mars.

    PubMed

    Segura, Teresa L; Toon, Owen B; Colaprete, Anthony; Zahnle, Kevin

    2002-12-01

    The martian valley networks formed near the end of the period of heavy bombardment of the inner solar system, about 3.5 billion years ago. The largest impacts produced global blankets of very hot ejecta, ranging in thickness from meters to hundreds of meters. Our simulations indicated that the ejecta warmed the surface, keeping it above the freezing point of water for periods ranging from decades to millennia, depending on impactor size, and caused shallow subsurface or polar ice to evaporate or melt. Large impacts also injected steam into the atmosphere from the craters or from water innate to the impactors. From all sources, a typical 100-, 200-, or 250-kilometers asteroid injected about 2, 9, or 16 meters, respectively, of precipitable water into the atmosphere, which eventually rained out at a rate of about 2 meters per year. The rains from a large impact formed rivers and contributed to recharging aquifers. PMID:12471254

  19. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  20. Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.

    2005-01-01

    The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.

  1. Observation of explosion pits and test results of ejecta above a rock avalanche triggered by the Wenchuan earthquake, China

    NASA Astrophysics Data System (ADS)

    Shang, Y. J.; Liu, J. Q.; Liu, D. A.; Zhang, L. Q.; Xia, Y. Q.; Lei, T. Z.

    2015-02-01

    The 12 May 2008 Wenchuan earthquake in China triggered many rock avalanches that disrupted the transportation system and thereby caused additional fatalities. In this paper, several lines of evidence were forwarded to show that the rock avalanches, distributed along some highly destructed areas, i.e., the main seismic fault (F2), had been enhanced by natural explosions and fires immediately after the main earthquake. Burned rock samples from the explosion pits near the highly destructed parts of Shuijingyan (SJY), north of Beichuan County, were collected and analyzed in the laboratory. The brown porous ejecta were featured by intensive thermophili degradation because they had high content of polycyclic aromatic hydrocarbons. Microstructure and composition analyses indicated that four samples, a mixture of reef limestone and manganese ore, were carbonate manganese and carbonaceous rock, which generally is buried at 500-2000 m depth. With high content of polycyclic aromatic hydrocarbons, the brown porous ejecta were believed to have reached a highly thermal degradation process compared with surrounding and intact counterpart rocks.

  2. Analyses of sweep-up, ejecta, and fallback material from the 4250 metric ton high explosive test ''MISTY PICTURE'

    SciTech Connect

    Wohletz, K.H.; Raymond, R. Jr.; Rawson, G.; Mazzola, T.

    1988-01-01

    The MISTY PICTURE surface burst was detonated at the White Sands Missle range in May of 1987. The Los Alamos National Laboratory dust characterization program was expanded to help correlate and interrelate aspects of the overall MISTY PICTURE dust and ejecta characterization program. Pre-shot sampling of the test bed included composite samples from 15 to 75 m distance from Surface Ground Zero (SGZ) representing depths down to 2.5 m, interval samples from 15 to 25 m from SGZ representing depths down to 3m, and samples of surface material (top 0.5 cm) out to distances of 190 m from SGZ. Sweep-up samples were collected in GREG/SNOB gages located within the DPR. All samples were dry-sieved between 8.0 mm and 0.045 mm (16 size fractures); selected samples were analyzed for fines by a contrifugal settling technique. The size distributions were analyzed using spectral decomposition based upon a sequential fragmentation model. Results suggest that the same particle size subpopulations are present in the ejecta, fallout, and sweep-up samples as are present in the pre-shot test bed. The particle size distribution in post-shot environments apparently can be modelled taking into account heterogeneities in the pre-shot test bed and dominant wind direction during and following the shot. 13 refs., 12 figs., 2 tabs.

  3. Explosively driven two-shockwave tools with application to ejecta formation at the Los Alamos National Laboratory Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Buttler, William

    2013-06-01

    We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to a subsequent shockwave event separated by a time interval on the order of a few microseconds. We explore the possibility of varying the amplitude of both the first and second shockwaves, and we apply the tool in experimental geometries on Sn with a surface roughness of Ra = 0 . 8 μ m. We then evaluate the tool further at the Los Alamos National Laboratory Proton Radiography (pRad) Facility in an application to Sn with larger scale perturbations of wavelength 550 μ m, and various amplitudes that gave wave-number amplitude products of η0 2 π / λ = { 3 / 4 , 1 / 2 , 1 / 4 , 1 / 8 } , where the perturbation amplitude is η0, and the wave-number k = 2 π / λ . The pRad data and velocimetry imply it should be possible to develop a second shock ejecta model based on unstable Richtmyer-Meshkov physics. In collaboration with David Oro, Fesseha Mariam, Alexander Saunders, Malcolm Andrews, Frank Cherne, James Hammerberg. Robert Hixson, Christopher Morris, Russell Olson, Dean Preston, Joseph Stone, Dale Tupa, and Wendy Vogan-McNeil, Los Alamos National Laboratory,

  4. Exploring a Detonation Nature of Mesoscopic Perturbations and Ejecta Formation from the Mesoscale Probing of the PBX-driven Liners

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Guiruis, Raafat; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; Fernandes, Eduardo; Ferreira, Claudia

    2015-06-01

    Ejecting debris from free surface of liner is of considerable interest at optimization of explosive devices, in which the PBX-driven liner effects shock compression of gaseous matter. Following factors were historically considered as main drivers of material ejection: granular microstructure of liner material, roughness and surface defects of liner, and shock pressure time history in PBX-driven liner. In contrast to existing models, we are considering the small scale fluctuations of detonation flow as probable dominating factor of surface jetting in the PBX-driven collapsing liners. Obtained experimental evidence is indicative that jetting from the liners is caused by meso-scale perturbations of PBX detonations, which are identified as (1) ejecta of overdriven detonation products through detonation front, (2) ejecta-driven detonation cells, and (3) galloping detonation front motion. Spatially resolved scenarios of each of phenomena (1-3) were obtained in experiments with copper-liners and HMX-based PBXs fabricated on maximum packing density of crystalline constituents. Both the DRZ-induced perturbations translated to a PBX-driven liner and the ejected debris were recorded and quantitatively measured in the mesoscale range with application of the 96-channel optical analyzer MCOA-UC. Work was supported by the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and John Zimmerman Program Managers.

  5. ESTIMATING THE SIZE OF LATE VENEER IMPACTORS FROM IMPACT-INDUCED MIXING ON MERCURY

    SciTech Connect

    Rivera-Valentin, E. G.; Barr, A. C.

    2014-02-10

    Late accreti