Science.gov

Sample records for impaired glycogen synthase

  1. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments

    PubMed Central

    King, Margaret K.; Pardo, Marta; Cheng, Yuyan; Downey, Kimberlee; Jope, Richard S.; Beurel, Eléonore

    2013-01-01

    Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions. PMID:23916593

  2. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice

    PubMed Central

    Xirouchaki, Chrysovalantou E.; Mangiafico, Salvatore P.; Bate, Katherine; Ruan, Zheng; Huang, Amy M.; Tedjosiswoyo, Bing Wilari; Lamont, Benjamin; Pong, Wynne; Favaloro, Jenny; Blair, Amy R.; Zajac, Jeffrey D.; Proietto, Joseph; Andrikopoulos, Sofianos

    2016-01-01

    Objective Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. Methods Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. Results gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. Conclusions Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. In brief This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity. PMID:26977394

  3. Hypoxia Promotes Glycogen Accumulation through Hypoxia Inducible Factor (HIF)-Mediated Induction of Glycogen Synthase 1

    PubMed Central

    Pescador, Nuria; Garcia-Rocha, Mar; Ortiz-Barahona, Amaya; Vazquez, Silvia; Ordoñez, Angel; Cuevas, Yolanda; Saez-Morales, David; Garcia-Bermejo, Maria Laura; Landazuri, Manuel O.; Guinovart, Joan; del Peso, Luis

    2010-01-01

    When oxygen becomes limiting, cells reduce mitochondrial respiration and increase ATP production through anaerobic fermentation of glucose. The Hypoxia Inducible Factors (HIFs) play a key role in this metabolic shift by regulating the transcription of key enzymes of glucose metabolism. Here we show that oxygen regulates the expression of the muscle glycogen synthase (GYS1). Hypoxic GYS1 induction requires HIF activity and a Hypoxia Response Element within its promoter. GYS1 gene induction correlated with a significant increase in glycogen synthase activity and glycogen accumulation in cells exposed to hypoxia. Significantly, knockdown of either HIF1α or GYS1 attenuated hypoxia-induced glycogen accumulation, while GYS1 overexpression was sufficient to mimic this effect. Altogether, these results indicate that GYS1 regulation by HIF plays a central role in the hypoxic accumulation of glycogen. Importantly, we found that hypoxia also upregulates the expression of UTP:glucose-1-phosphate urydylyltransferase (UGP2) and 1,4-α glucan branching enzyme (GBE1), two enzymes involved in the biosynthesis of glycogen. Therefore, hypoxia regulates almost all the enzymes involved in glycogen metabolism in a coordinated fashion, leading to its accumulation. Finally, we demonstrated that abrogation of glycogen synthesis, by knock-down of GYS1 expression, impairs hypoxic preconditioning, suggesting a physiological role for the glycogen accumulated during chronic hypoxia. In summary, our results uncover a novel effect of hypoxia on glucose metabolism, further supporting the central importance of metabolic reprogramming in the cellular adaptation to hypoxia. PMID:20300197

  4. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  5. Assignment of the gene encoding glycogen synthase (GYS) to human chromosome 19, band q13,3

    SciTech Connect

    Lehto, M. Helsinki Univ. ); Stoffel, M.; Espinosa, R. III; Beau, M.M. le; Bell, G.I. ); Groop, L. )

    1993-02-01

    The enzyme glycogen synthase (UDP glocose:glycogen 4-[alpha]-D-glucosyltransferase, EC 2.4.1.11) catalyzes the formation of glycogen from uridine diphosphate glucose (UPDG). Impaired activation of muscle glycogen synthase by insulin has been noted in patients with genetic risk of developing non-insulin-dependent diabets mellitus (NIDDM) and this may represent an early defect in the pathogenesis of this disorder. As such, glycogen synthase represents a candidate gene for contributing to genetic susceptibility. As a first step in studying the role of glycogen synthase in the genetics of NIDDM, we have isolated a cosmid encoding the human glycogen synthase gene (gene symbol GYS) and determined its chromosomal localization by fluorescence in situ hybridization. 4 refs., 1 fig.

  6. Altered Wnt Signaling Pathway in Cognitive Impairment Caused by Chronic Intermittent Hypoxia: Focus on Glycogen Synthase Kinase-3β and β-catenin

    PubMed Central

    Pan, Yue-Ying; Deng, Yan; Xie, Sheng; Wang, Zhi-Hua; Wang, Yu; Ren, Jie; Liu, Hui-Guo

    2016-01-01

    Background: Cognitive impairment is a severe complication caused by obstructive sleep apnea (OSA). The mechanisms of causation are still unclear. The Wnt/β-catenin signaling pathway is involved in cognition, and abnormalities in it are implicated in neurological disorders. Here, we explored the Wnt/β-catenin signaling pathway abnormalities caused by chronic intermittent hypoxia (CIH), the most characteristic pathophysiological component of OSA. Methods: We divided 32 4-week-old male C57/BL mice into four groups of eight each: a CIH + normal saline (NS) group, CIH + LiCl group, sham CIH + NS group, and a sham CIH + LiCl group. The spatial learning performance of each group was assessed by using the Morris water maze (MWM). Protein expressions of glycogen synthase kinase-3β (GSK-3β) and β-catenin in the hippocampus were examined using the Western blotting test. EdU labeling and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining methods were used, respectively, to determine the proliferation and apoptosis of neurons in the hippocampal dentate gyrus region. Results: Mice exposed to CIH showed impaired spatial learning performance in the MWM, including increased mean escape latencies to reach the target platform, decreased mean times passing through the target platform and mean duration in the target quadrant. The GSK-3β activity increased, and expression of β-catenin decreased significantly in the hippocampus of the CIH-exposed mice. Besides, CIH significantly increased hippocampal neuronal apoptosis, with an elevated apoptosis index. Meanwhile, LiCl decreased the activity of GSK-3β and increased the expression of β-catenin and partially reversed the spatial memory deficits in MWM and the apoptosis caused by CIH. Conclusions: Wnt/β-catenin signaling pathway abnormalities possibly play an important role in the development of cognitive deficits among mice exposed to CIH and that LiCl might attenuate CIH-induced cognitive

  7. Multiple Glycogen-binding Sites in Eukaryotic Glycogen Synthase Are Required for High Catalytic Efficiency toward Glycogen

    SciTech Connect

    Baskaran, Sulochanadevi; Chikwana, Vimbai M.; Contreras, Christopher J.; Davis, Keri D.; Wilson, Wayne A.; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D.

    2012-12-10

    Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V{sub max}/S{sub 0.5} for glycogen by 40- and 70-fold, respectively. Combined mutation of site-1 and site-2 decreased the V{sub max}/S{sub 0.5} for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells ({Delta}gsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a 'toehold mechanism,' keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.

  8. Hexokinase 2, Glycogen Synthase and Phosphorylase Play a Key Role in Muscle Glycogen Supercompensation

    PubMed Central

    Irimia, José M.; Rovira, Jordi; Nielsen, Jakob N.; Guerrero, Mario; Wojtaszewski, Jørgen F. P.; Cussó, Roser

    2012-01-01

    Background Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood. Methods Using chronic low-frequency stimulation (CLFS) as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest. Results In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 5′-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels. Conclusions Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches. PMID:22860128

  9. Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia

    PubMed Central

    Hossain, Mohammed Iqbal; Roulston, Carli Lorraine; Stapleton, David Ian

    2014-01-01

    Background Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain's ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke. Results Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; P<0.05). Glycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (P<0.01) in the ipsilateral hemisphere (24 hours post-stroke), which corresponded with a 48% reduction in cAMP-dependent protein kinase A (PKA) activity (P<0.01). In addition, glycogen debranching enzyme expression 24 hours post-stroke was 77% (P<0.01) and 72% lower (P<0.01) at the protein and mRNA level, respectively. In cultured rat primary cerebellar astrocytes, hypoxia and inhibition of PKA activity significantly reduced glycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia. Conclusion Our study has

  10. Immunohistochemical localization of glycogen synthase and GSK3β: control of glycogen content in retina.

    PubMed

    Pérezleón, Jorge Alberto; Osorio-Paz, Ixchel; Francois, Liliana; Salceda, Rocío

    2013-05-01

    Glycogen has an important role in energy handling in several brain regions. In the brain, glycogen is localized in astrocytes and its role in several normal and pathological processes has been described, whereas in the retina, glycogen metabolism has been scarcely investigated. The enzyme glycogen phosphorylase has been located in retinal Müller cells; however the cellular location of glycogen synthase (GS) and its regulatory partner, glycogen synthase kinase 3β (GSK3β), has not been investigated. Our aim was to localize these enzymes in the rat retina by immunofluorescence techniques. We found both GS and GSK3β in Müller cells in the synaptic layers, and within the inner segments of photoreceptor cells. The presence of these enzymes in Müller cells suggests that glycogen could be regulated within the retina as in other tissues. Indeed, we showed that glycogen content in the whole retina in vitro was increased by high glucose concentrations, glutamate, and insulin. In contrast, retina glycogen levels were not modified by norepinephrine nor by depolarization with high KCl concentrations. Insulin also induced an increase in glycogen content in cultured Müller cells. The effect of insulin in both, whole retina and cultured Müller cells was blocked by inhibitors of phosphatidyl-inositol 3-kinase, strongly suggesting that glycogen content in retina is modulated by the insulin signaling pathway. The expression of GS and GSK3β in the synaptic layers and photoreceptor cells suggests an important role of GSK3β regulating glycogen synthase in neurons, which opens multiple feasible roles of insulin within the retina. PMID:23512644

  11. Structural basis for the recruitment of glycogen synthase by glycogenin

    PubMed Central

    Zeqiraj, Elton; Tang, Xiaojing; Hunter, Roger W.; García-Rocha, Mar; Judd, Andrew; Deak, Maria; von Wilamowitz-Moellendorff, Alexander; Kurinov, Igor; Guinovart, Joan J.; Tyers, Mike; Sakamoto, Kei; Sicheri, Frank

    2014-01-01

    Glycogen is a primary form of energy storage in eukaryotes that is essential for glucose homeostasis. The glycogen polymer is synthesized from glucose through the cooperative action of glycogen synthase (GS), glycogenin (GN), and glycogen branching enzyme and forms particles that range in size from 10 to 290 nm. GS is regulated by allosteric activation upon glucose-6-phosphate binding and inactivation by phosphorylation on its N- and C-terminal regulatory tails. GS alone is incapable of starting synthesis of a glycogen particle de novo, but instead it extends preexisting chains initiated by glycogenin. The molecular determinants by which GS recognizes self-glucosylated GN, the first step in glycogenesis, are unknown. We describe the crystal structure of Caenorhabditis elegans GS in complex with a minimal GS targeting sequence in GN and show that a 34-residue region of GN binds to a conserved surface on GS that is distinct from previously characterized allosteric and binding surfaces on the enzyme. The interaction identified in the GS-GN costructure is required for GS–GN interaction and for glycogen synthesis in a cell-free system and in intact cells. The interaction of full-length GS-GN proteins is enhanced by an avidity effect imparted by a dimeric state of GN and a tetrameric state of GS. Finally, the structure of the N- and C-terminal regulatory tails of GS provide a basis for understanding phosphoregulation of glycogen synthesis. These results uncover a central molecular mechanism that governs glycogen metabolism. PMID:24982189

  12. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model.

    PubMed

    Qi, Liqin; Ke, Linfang; Liu, Xiaohong; Liao, Lianming; Ke, Sujie; Liu, Xiaoying; Wang, Yanping; Lin, Xiaowei; Zhou, Yu; Wu, Lijuan; Chen, Zhou; Liu, Libin

    2016-07-15

    Type 2 diabetes mellitus is a risk factor for Alzheimer's disease (AD). The glucagon-like peptide-1 analog liraglutide, a novel long-lasting incretin hormone, has been used to treat type 2 diabetes mellitus. In addition, liraglutide has been shown to be neurotrophic and neuroprotective. Here, we investigated the effects of liraglutide on amyloid β protein (Aβ)-induced AD in mice and explored its mechanism of action. The results showed that subcutaneous administration of liraglutide (25nmol/day), once daily for 8 weeks, prevented memory impairments in the Y Maze and Morris Water Maze following Aβ1-42 intracerebroventricular injection, and alleviated the ultra-structural changes of pyramidal neurons and chemical synapses in the hippocampal CA1 region. Furthermore, liraglutide reduced Aβ1-42-induced tau phosphorylation via the protein kinase B and glycogen synthase kinase-3β pathways. Thus liraglutide may alleviate cognitive impairment in AD by at least decreasing the phosphorylation of tau. PMID:27131827

  13. Enhanced Symbiotic Performance by Rhizobium tropici Glycogen Synthase Mutants

    PubMed Central

    Marroquí, Silvia; Zorreguieta, Angeles; Santamaría, Carmen; Temprano, Francisco; Soberón, Mario; Megías, Manuel; Downie, J. Allan

    2001-01-01

    We isolated a Tn5-induced Rhizobium tropici mutant that has enhanced capacity to oxidize N,N-dimethyl-p-phenylendiamine (DMPD) and therefore has enhanced respiration via cytochrome oxidase. The mutant had increased levels of the cytochromes c1 and CycM and a small increase in the amount of cytochrome aa3. In plant tests, the mutant increased the dry weight of Phaseolus vulgaris plants by 20 to 38% compared with the control strain, thus showing significantly enhanced symbiotic performance. The predicted product of the mutated gene is homologous to glycogen synthases from several bacteria, and the mutant lacked glycogen. The DNA sequence of the adjacent gene region revealed six genes predicted to encode products homologous to the following gene products from Escherichia coli: glycogen phosphorylase (glgP), glycogen branching enzyme (glgB), ADP glucose pyrophosphorylase (glgC), glycogen synthase (glgA), phosphoglucomutase (pgm), and glycogen debranching enzyme (glgX). All six genes are transcribed in the same direction, and analysis with lacZ gene fusions suggests that the first five genes are organized in one operon, although pgm appears to have an additional promoter; glgX is transcribed independently. Surprisingly, the glgA mutant had decreased levels of high-molecular-weight exopolysaccharide after growth on glucose, but levels were normal after growth on galactose. A deletion mutant was constructed in order to generate a nonpolar mutation in glgA. This mutant had a phenotype similar to that of the Tn5 mutant, indicating that the enhanced respiration and symbiotic nitrogen fixation and decreased exopolysaccharide were due to mutation of glgA and not to a polar effect on a downstream gene. PMID:11208782

  14. Dietary whey protein hydrolysates increase skeletal muscle glycogen levels via activation of glycogen synthase in mice.

    PubMed

    Kanda, Atsushi; Morifuji, Masashi; Fukasawa, Tomoyuki; Koga, Jinichiro; Kanegae, Minoru; Kawanaka, Kentaro; Higuchi, Mitsuru

    2012-11-14

    Previously, we have shown that consuming carbohydrate plus whey protein hydrolysates (WPHs) replenished muscle glycogen after exercise more effectively than consuming intact whey protein or branched-chain amino acids (BCAAs). The mechanism leading to superior glycogen replenishment after consuming WPH is unclear. In this 5 week intervention, ddY mice were fed experimental diets containing WPH, a mixture of whey amino acids (WAAs), or casein (control). After the intervention, gastrocnemius muscle glycogen levels were significantly higher in the WPH group (4.35 mg/g) than in the WAA (3.15 mg/g) or control (2.51 mg/g) groups. In addition, total glycogen synthase (GS) protein levels were significantly higher in the WPH group (153%) than in the WAA (89.2%) or control groups, and phosphorylated GS levels were significantly decreased in the WPH group (51.4%). These results indicate that dietary WPH may increase the muscle glycogen content through increased GS activity. PMID:23113736

  15. Inhibition of Glycogen Synthase Kinase-3ß Enhances Cognitive Recovery after Stroke: The Role of TAK1

    ERIC Educational Resources Information Center

    Venna, Venugopal Reddy; Benashski, Sharon E.; Chauhan, Anjali; McCullough, Louise D.

    2015-01-01

    Memory deficits are common among stroke survivors. Identifying neuroprotective agents that can prevent memory impairment or improve memory recovery is a vital area of research. Glycogen synthase kinase-3ß (GSK-3ß) is involved in several essential intracellular signaling pathways. Unlike many other kinases, GSK-3ß is active only when…

  16. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  17. Inhibition of Glycogen Synthase Kinase-3β Improves Tolerance to Ischemia in Hypertrophied Hearts

    PubMed Central

    Barillas, Rodrigo; Friehs, Ingeborg; Cao-Danh, Hung; Martinez, Joseph F.; del Nido, Pedro J.

    2012-01-01

    Background Hypertrophied myocardium is more susceptible to ischemia/reperfusion injury, in part owing to impaired insulin-mediated glucose uptake. Glycogen synthase kinase-3β (GSK-3β) is a key regulatory enzyme in glucose metabolism that, when activated, phosphorylates/inactivates target enzymes of the insulin signaling pathway. Glycogen synthase kinase-3β is regulated upstream by Akt-1. We sought to determine whether GSK-3β is activated in ischemic hypertrophied myocardium owing to impaired Akt-1 function, and whether inhibition with lithium (Li) or indirubin-3′-monoxime,5-iodo- (IMI), a specific inhibitor, improves post-ischemic myocardial recovery by improving glucose metabolism. Methods Pressure-overload hypertrophy was achieved by aortic banding in neonatal rabbits. At 6 weeks, isolated hypertrophied hearts underwent 30 minutes of normothermic ischemia and reperfusion with or without GSK-3β inhibitor (0.1 mM Li; 1 µM IMI) as cardioplegic additives. Cardiac function was measured before and after ischemia. Expression, activity of Akt-1 and GSK-3β, and lactate were determined at end-ischemia. Results Contractile function after ischemia was better preserved in hypertrophied hearts treated with GSK-3β inhibitors. Activity of Akt-1 was significantly impaired in hypertrophied myocardium at end-ischemia. Glycogen synthase kinase-3β enzymatic activity at end-ischemia was increased in hypertrophied hearts and was blocked by Li or IMI concomitant with significantly increased lactate production, indicating increased glycolysis. Conclusions Regulatory inhibition of GSK-3β by Akt-1 in hypertrophied hearts is impaired, leading to activation during ischemia. Inhibition of GSK-3β by Li or IMI improves tolerance to ischemia/reperfusion injury in hypertrophied myocardium. The likely protective mechanism is an increase in insulin-mediated glucose uptake, resulting in greater substrate availability for glycolysis during ischemia and early reperfusion. PMID:17588398

  18. Glycogen synthase activation in human skeletal muscle: effects of diet and exercise.

    PubMed

    Kochan, R G; Lamb, D R; Lutz, S A; Perrill, C V; Reimann, E M; Schlender, K K

    1979-06-01

    We investigated the role of glycogen synthase in supranormal resynthesis (supercompensation) of skeletal muscle glycogen after exhaustive exercise. Six healthy men exercised 60 min by cycling with one leg at 75% VO2max, recovered 3 days on a low-carbohydrate diet, exercised again, and recovered 4 days on high-carbohydrate diet. Glycogen and glycogen synthase activities at several glucose-6-phosphate (G6P) concentrations were measured in biopsy samples of m. vastus lateralis. Dietary alterations alone did not affect glycogen, whereas exercise depleted glycogen stores. After the second exercise bout, glycogen returned to normal within 24 h and reached supercompensated levels by 48 h of recovery. Glycogen synthase activation state strikingly increased after exercise in exercised muscle and remained somewhat elevated for the first 48 h of recovery in both muscles. We suggest that 1) forms of glycogen synthase intermediate to I (G6P-independent) and D (G6P-dependent) forms are present in vivo, and 2) glycogen supercompensation can in part be explained by the formation of intermediate forms of glycogen synthase that exhibit relatively low activity ratios, but an increased sensitivity to activation by G6P. PMID:109015

  19. Regulation of glycogen synthase and phosphorylase during recovery from high-intensity exercise in the rat.

    PubMed Central

    Bräu, L; Ferreira, L D; Nikolovski, S; Raja, G; Palmer, T N; Fournier, P A

    1997-01-01

    The aim of this study was to determine the role of the phosphorylation state of glycogen synthase and glycogen phosphorylase in the regulation of muscle glycogen repletion in fasted animals recovering from high-intensity exercise. Groups of rats were swum to exhaustion and allowed to recover for up to 120 min without access to food. Swimming to exhaustion caused substantial glycogen breakdown and lactate accumulation in the red, white and mixed gastrocnemius muscles, whereas the glycogen content in the soleus muscle remained stable. During the first 40 min of recovery, significant repletion of glycogen occurred in all muscles examined except the soleus muscle. At the onset of recovery, the activity ratios and fractional velocities of glycogen synthase in the red, white and mixed gastrocnemius muscles were higher than basal, but returned to pre-exercise levels within 20 min after exercise. In contrast, after exercise the activity ratios of glycogen phosphorylase in the same muscles were lower than basal, and increased to pre-exercise levels within 20 min. This pattern of changes in glycogen synthase and phosphorylase activities, never reported before, suggests that the integrated regulation of the phosphorylation state of both glycogen synthase and phosphorylase might be involved in the control of glycogen deposition after high-intensity exercise. PMID:9078277

  20. Transient down-regulation and restoration of glycogen synthase levels in axotomized rat facial motoneurons.

    PubMed

    Takezawa, Yosuke; Kohsaka, Shinichi; Nakajima, Kazuyuki

    2014-10-24

    In adult rats, transection of the facial nerve causes a functional down-regulation of motoneurons and glial activation/proliferation. It has not been clear how energy-supplying systems are regulated in an axotomized facial nucleus. Here we investigated the regulation of molecules involved in glycogen degradation/synthesis in axotomized facial nuclei in rats. Immunoblotting revealed that the amounts of glycogen phosphorylase in the contralateral and ipsilateral nuclei were unchanged for the first 14 days, whereas the amount of glycogen synthase in the axotomized facial nuclei was significantly decreased from days 7-14 post-insult. A quantitative analysis estimated that the glycogen synthase levels in the transected nucleus were reduced to approx. 50% at 14 days post-injury. An immunohistochemical study showed that the injured motoneurons had decreased expressions of glycogen synthase proteins. The glycogen synthase levels in the axotomized facial nucleus had returned to control levels by 5 weeks post-insult, as had the cholinergic markers. The immunohistochemical study also revealed the recovery of glycogen synthase levels at the later stage. The glycogen phosphorylase levels in the injured nucleus were not significantly changed during weeks 3-5 post-insult. Taken together, these results demonstrated that the injured facial motoneurons transiently reduced glycogen synthase levels at around 1-2 weeks post-insult, but restored the levels at 4-5 weeks post-insult. PMID:25152465

  1. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging.

    PubMed

    Pandey, Mukesh K; DeGrado, Timothy R

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  2. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging

    PubMed Central

    Pandey, Mukesh K.; DeGrado, Timothy R.

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  3. Glycogen synthase kinase 3 in Wnt signaling pathway and cancer.

    PubMed

    Tejeda-Muñoz, Nydia; Robles-Flores, Martha

    2015-12-01

    Glycogen synthase kinase 3 (GSK-3) was first discovered in 1980 as one of the key enzymes of glycogen metabolism. Since then, GSK-3 has been revealed as one of the master regulators of a diverse range of signaling pathways, including those activated by Wnts, participating in the regulation of numerous cellular functions, suggesting that its activity is tightly regulated. Numerous studies have pointed to an association of GSK-3 dysregulation with the onset and progression of human diseases, including diabetes mellitus, obesity, inflammation, neurological illnesses, and cancer. Therefore, GSK-3 is recognized as an attractive therapeutic target in multiple disorders. However, the great number of substrates that are phosphorylated by GSK-3 has raised the question of whether this limits its feasibility as a therapeutic target because of the potential disruption of many cellular processes and also by the fear that inhibition of GSK-3 may stimulate or aid in malignant transformation, as GSK-3 can phosphorylate pro-oncogenic factors. This mini review focuses on the role played by GSK-3 in Wnt signaling pathway and cancer using as model colon cancer. PMID:26600003

  4. The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers.

    PubMed

    François, J; Villanueva, M E; Hers, H G

    1988-06-15

    The addition of glucose to a suspension of yeast initiated glycogen synthesis and ethanol formation. Other effects of the glucose addition were a transient rise in the concentration of cyclic AMP and a more prolonged increase in the concentration of hexose 6-monophosphate and of fructose 2,6-bisphosphate. The activity of glycogen synthase increased about 4-fold and that of glycogen phosphorylase decreased 3-5-fold. These changes could be reversed by the removal of glucose from the medium and induced again by a new addition of the sugar. These effects of glucose were also obtained with glucose derivatives known to form the corresponding 6-phosphoester. Similar changes in glycogen synthase and glycogen phosphorylase activity were induced by glucose in a thermosensitive mutant deficient in adenylate cyclase (cdc35) when incubated at the permissive temperature of 26 degrees C, but were much more pronounced at the nonpermissive temperature of 35 degrees C. Under the latter condition, glycogen synthase was nearly fully activated and glycogen phosphorylase fully inactivated. Such large effects of glucose were, however, not seen in another adenylate-cyclase-deficient mutant (cyr1), able to incorporate exogenous cyclic AMP. When a nitrogen source or uncouplers were added to the incubation medium after glucose, they had effects on glycogen metabolism and on the activity of glycogen synthase and glycogen phosphorylase which were directly opposite to those of glucose. By contrast, like glucose, these agents also caused, under most experimental conditions, a detectable rise in cyclic AMP concentration and a series of cyclic-AMP-dependent effects such as an activation of phosphofructokinase 2 and of trehalase and an increase in the concentration of fructose 2,6-bisphosphate and in the rate of glycolysis. Under all experimental conditions, the rate of glycolysis was proportional to the concentration of fructose 2,6-bisphosphate. Uncouplers, but not a nitrogen source, also induced

  5. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site. PMID:17062013

  6. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases

    PubMed Central

    Beurel, Eleonore; Grieco, Steven F.; Jope, Richard S.

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders. PMID:25435019

  7. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  8. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    SciTech Connect

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-05-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio ((activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)). Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of /sup 125/I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms.

  9. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer's disease.

    PubMed

    Maqbool, Mudasir; Mobashir, Mohammad; Hoda, Nasimul

    2016-01-01

    Neurodegenerative diseases are among the most challenging diseases with poorly known mechanism of cause and paucity of complete cure. Out of all the neurodegenerative diseases, Alzheimer's disease is the most devastating and loosening of thinking and judging ability disease that occurs in the old age people. Many hypotheses came forth in order to explain its causes. In this review, we have enlightened Glycogen Synthase Kinase-3 which has been considered as a concrete cause for Alzheimer's disease. Plaques and Tangles (abnormal structures) are the basic suspects in damaging and killing of nerve cells wherein Glycogen Synthase Kinase-3 has a key role in the formation of these fatal accumulations. Various Glycogen Synthase Kinase-3 inhibitors have been reported to reduce the amount of amyloid-beta as well as the tau hyperphosphorylation in both neuronal and nonneuronal cells. Additionally, Glycogen Synthase Kinase-3 inhibitors have been reported to enhance the adult hippocampal neurogenesis in vivo as well as in vitro. Keeping the chemotype of the reported Glycogen Synthase Kinase-3 inhibitors in consideration, they may be grouped into natural inhibitors, inorganic metal ions, organo-synthetic, and peptide like inhibitors. On the basis of their mode of binding to the constituent enzyme, they may also be grouped as ATP, nonATP, and allosteric binding sites competitive inhibitors. ATP competitive inhibitors were known earlier inhibitors but they lack efficient selectivity. This led to find the new ways for the enzyme inhibition. PMID:26562543

  10. Identification of glycogen synthase as a new substrate for stress-activated protein kinase 2b/p38beta.

    PubMed

    Kuma, Yvonne; Campbell, David G; Cuenda, Ana

    2004-04-01

    The endogenous glycogen synthase in extracts from mouse skeletal muscle, liver and brain bound specifically to SAPK2b (stress-activated protein kinase 2b)/p38b, but not to other members of the group of SAPK/p38 kinases. Glycogen synthase was phosphorylated in vitro more efficiently by SAPK2b/p38b than by SAPK2a/p38a, SAPK3/p38g or SAPK4/p38d. SAPK2b/p38b phosphorylated glycogen synthase in vitro at residues Ser644, Ser652, Thr718 and Ser724, two of which (Ser644 and Ser652) are also phosphorylated by glycogen synthase kinase 3. Thr718 and Ser724 are novel sites not known to be phosphorylated by other protein kinases. Glycogen synthase becomes phosphorylated at Ser644 in response to osmotic shock; this phosphorylation is prevented by pretreatment of the cells with SB 203580, which inhibits SAPK2a/p38a and SAPK2b/p38b activity. In vitro, phosphorylation of glycogen synthase by SAPK2b/p38b alone had no significant effect on its activity, indicating that phosphorylation at residue Ser644 itself is insufficient to decrease glycogen synthase activity. However, after phosphorylation by SAPK2b/p38b, subsequent phosphorylation at Ser640 by glycogen synthase kinase 3 decreased the activity of glycogen synthase. This decrease was not observed when SAPK2b/p38b activity was blocked with SB 203580. These results suggest that SAPK2b/p38b may be a priming kinase that allows glycogen synthase kinase 3 to phosphorylate Ser640 and thereby inhibit glycogen synthase activity. PMID:14680475

  11. [The regulation of glucose-6-phosphate dehydrogenase and glycogen synthase activities by insulin superfamily peptides in myometrium of pregnant women and its impairments under different types of diabetes mellitus].

    PubMed

    Kuznetsova, L A; Chistiakova, O V

    2009-01-01

    The regulatory effects of insulin, insulin-like growth factor 1 (IGF-1), and relaxin on glucose-6-phosphate dehydrogenase (G6PDH) and glycogen synthase (GS) activities have been studied in myometrium of pregnant women of control group and with diabetes mellitus of different etiology. In patients with type 1 diabetes G6PDH activity did not differ from the control group, but the enzyme activity was sharply decreased in pregnant women with type 2 diabetes and gestational diabetes. In the control group maximal stimulation of G6PDH activity was observed at 10(-9) M of peptides and their stimulating effect decreased in the following order: insulin > relaxin > IGF-1. In pregnant women with types 1 diabetes insulin effect on the enzyme activity was lower than in the control, and the effects of IGF-1 and relaxin were absent. In the group of pregnant women with type 2 diabetes and gestational diabetes the effects of insulin and IGF-1 were decreased, but the effect of relaxin was somewhat higher thus giving the following order in their efficiency relaxin > IGF-1 = insulin. At 10(-9) M peptides exhibited similar stimulating effects on the active form of GS-I, but had no influence on the total enzyme activity in the control group of pregnant women. In patients with type 1 diabetes GS activity remained unchanged (versus control), and peptides did not stimulate the enzyme activity. In patients with type 2 diabetes a significant decrease in GS activity was accompanied by the decrease in the effect of peptides, giving the following order of their efficiency: insulin = IGF-1 > relaxin. In myometrium of pregnant women with gestational (treated and untreated) diabetes GS activity decreased, the effect of insulin was weaker, whereas the effects of relaxin and IGF-1 increased thus giving the following order of their efficiency: relaxin > IGF-1 > insulin. Insulin therapy of type 1 diabetes incompletely restored sensitivity of the enzymes to the peptide actions. At the same time, in women

  12. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis

    PubMed Central

    McCue, Molly E; Valberg, Stephanie J; Miller, Michael B; Wade, Claire; DiMauro, Salvatore; Akman, Hasan O; Mickelson, James R

    2008-01-01

    Summary We describe a gain of function mutation in the skeletal muscle glycogen synthase gene that is responsible for a novel myopathy, and is highly prevalent in multiple breeds of horses because it arose before the founding of many modern breeds. Polysaccharide Storage Myopathy (PSSM) is a novel glycogenosis in horses characterized by abnormal glycogen accumulation in skeletal muscle and muscle damage with exertion. It is unlike glycogen storage diseases resulting from known defects in glycogenolysis, glycolysis and glycogen synthesis that have been described in humans and domestic animals. A genome wide association identified GYS1, encoding skeletal muscle glycogen synthase (GS), as a candidate gene for PSSM. DNA sequence analysis revealed a mutation resulting in an arginine to histidine substitution in a highly conserved region of GS. Functional analysis demonstrated an elevated GS activity in PSSM horses and haplotype analysis and allele age estimation demonstrated that this mutation is identical by descent among horse breeds. This is the first report of a gain of function mutation in GYS1 resulting in a glycogenosis. PMID:18358695

  13. Hepatic Glycogen Supercompensation Activates AMP-Activated Protein Kinase, Impairs Insulin Signaling, and Reduces Glycogen Deposition in the Liver

    PubMed Central

    Winnick, Jason J.; An, Zhibo; Ramnanan, Christopher J.; Smith, Marta; Irimia, Jose M.; Neal, Doss W.; Moore, Mary Courtney; Roach, Peter J.; Cherrington, Alan D.

    2011-01-01

    OBJECTIVE The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver’s ability to take up and metabolize glucose. RESEARCH DESIGN AND METHODS During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experimental period in which net hepatic glucose uptake (NHGU) and disposition (glycogen, lactate, and CO2) were measured in the absence of fructose but in the presence of a hyperglycemic-hyperinsulinemic challenge including portal vein glucose infusion. RESULTS Fructose infusion increased net hepatic glycogen synthesis (0.7 ± 0.5 vs. 6.4 ± 0.4 mg/kg/min; P < 0.001), causing a large difference in hepatic glycogen content (62 ± 9 vs. 100 ± 3 mg/g; P < 0.001). Hepatic glycogen supercompensation (fructose infusion group) did not alter NHGU, but it reduced the percent of NHGU directed to glycogen (79 ± 4 vs. 55 ± 6; P < 0.01) and increased the percent directed to lactate (12 ± 3 vs. 29 ± 5; P = 0.01) and oxidation (9 ± 3 vs. 16 ± 3; P = NS). This change was associated with increased AMP-activated protein kinase phosphorylation, diminished insulin signaling, and a shift in glycogenic enzyme activity toward a state discouraging glycogen accumulation. CONCLUSIONS These data indicate that increases in hepatic glycogen can generate a state of hepatic insulin resistance, which is characterized by impaired glycogen synthesis despite preserved NHGU. PMID:21270252

  14. A protein kinase screen of Neurospora crassa mutant strains reveals that the SNF1 protein kinase promotes glycogen synthase phosphorylation.

    PubMed

    Candido, Thiago De Souza; Gonçalves, Rodrigo Duarte; Felício, Ana Paula; Freitas, Fernanda Zanolli; Cupertino, Fernanda Barbosa; De Carvalho, Ana Carolina Gomes Vieira; Bertolini, Maria Célia

    2014-12-15

    Glycogen functions as a carbohydrate reserve in a variety of organisms and its metabolism is highly regulated. The activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of the synthesis and degradation processes, respectively, are regulated by allosteric modulation and reversible phosphorylation. To identify the protein kinases affecting glycogen metabolism in Neurospora crassa, we performed a screen of 84 serine/threonine kinase knockout strains. We identified multiple kinases that have already been described as controlling glycogen metabolism in different organisms, such as NcSNF1, NcPHO85, NcGSK3, NcPKA, PSK2 homologue and NcATG1. In addition, many hypothetical kinases have been implicated in the control of glycogen metabolism. Two kinases, NcIME-2 and NcNIMA, already functionally characterized but with no functions related to glycogen metabolism regulation, were also identified. Among the kinases identified, it is important to mention the role of NcSNF1. We showed in the present study that this kinase was implicated in glycogen synthase phosphorylation, as demonstrated by the higher levels of glycogen accumulated during growth, along with a higher glycogen synthase (GSN) ±glucose 6-phosphate activity ratio and a lesser set of phosphorylated GSN isoforms in strain Ncsnf1KO, when compared with the wild-type strain. The results led us to conclude that, in N. crassa, this kinase promotes phosphorylation of glycogen synthase either directly or indirectly, which is the opposite of what is described for Saccharomyces cerevisiae. The kinases also play a role in gene expression regulation, in that gdn, the gene encoding the debranching enzyme, was down-regulated by the proteins identified in the screen. Some kinases affected growth and development, suggesting a connection linking glycogen metabolism with cell growth and development. PMID:25253091

  15. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    PubMed

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  16. Properties of a glycogen like polysaccharide produced by a mutant of Escherichia coli lacking glycogen synthase and maltodextrin phosphorylase.

    PubMed

    Kwak, Ji-Yun; Kim, Min-Gyu; Kim, Young-Wan; Ban, Hyun-Seung; Won, Mi-Sun; Park, Jong-Tae; Park, Kwan-Hwa

    2016-01-20

    Escherichia coli mutant TBP38 lacks glycogen synthase (GlgA) and maltodextrin phosphorylase (MalP). When grown on maltose in fed-batch fermentation TBP38 accumulated more than 50-fold higher glycogen-type polysaccharide than its parental strain. The polysaccharides were extracted at different growth stages and migrated as one peak in size-exclusion chromatography. TBP38 produced polysaccharides ranging 2.6 × 10(6)-4.6 × 10(6)Da. A ratio of short side-chains (DP ≦ 12) in the polysaccharides was greater than 50%, and number-average degree of polymerization varied from 9.8 to 8.4. The polysaccharides showed 70-290 times greater water-solubility than amylopectin. Km values using porcine and human pancreatic α-amylases with polysaccharides were 2- to 4-fold larger than that of amylopectin. kcat values were similar for both α-amylases. The TBP38 polysaccharides had 40-60% lower digestibility to amyloglucosidase than amylopectin. Intriguingly, the polysaccharides showed strong immunostimulating effects on mouse macrophage cell comparable to lipopolysaccharides. The lipopolysaccharide contamination levels were too low to account for this effect. PMID:26572397

  17. Glycogen Synthase Kinase-3 in the Etiology and Treatment of Mood Disorders

    PubMed Central

    Jope, Richard Scott

    2011-01-01

    The mood disorders major depressive disorder and bipolar disorder are prevalent, are inadequately treated, and little is known about their etiologies. A better understanding of the causes of mood disorders would benefit from improved animal models of mood disorders, which now rely on behavioral measurements. This review considers the limitations in relating measures of rodent behaviors to mood disorders, and the evidence from behavioral assessments indicating that glycogen synthase kinase-3 (GSK3) dysregulation promotes mood disorders and is a potential target for treating mood disorders. The classical mood stabilizer lithium was identified by studying animal behaviors and later was discovered to be an inhibitor of GSK3. Several mood-relevant behavioral effects of lithium in rodents have been identified, and most have now been shown to be due to its inhibition of GSK3. An extensive variety of pharmacological and molecular approaches for manipulating GSK3 are discussed, the results of which strongly support the proposal that inhibition of GSK3 reduces both depression-like and manic-like behaviors. Studies in human postmortem brain and peripheral cells also have identified correlations between alterations in GSK3 and mood disorders. Evidence is reviewed that depression may be associated with impaired inhibitory control of GSK3, and mania by hyper-stimulation of GSK3. Taken together, these studies provide substantial support for the hypothesis that inhibition of GSK3 activity is therapeutic for mood disorders. Future research should identify the causes of dysregulated GSK3 in mood disorders and the actions of GSK3 that contribute to these diseases. PMID:21886606

  18. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum.

    PubMed

    Qin, Jun; Wang, Guanghui; Jiang, Cong; Xu, Jin-Rong; Wang, Chenfang

    2015-01-01

    Wheat scab caused by Fusarium graminearum is an important disease. In a previous study, the FGK3 glycogen synthase kinase gene orthologous to mammalian GSK3 was identified as an important virulence factor. Although GSK3 orthologs are well-conserved, none of them have been functionally characterized in fungal pathogens. In this study, we further characterized the roles of FGK3 gene. The Δfgk3 mutant had pleiotropic defects in growth rate, conidium morphology, germination, and perithecium formation. It was non-pathogenic in infection assays and blocked in DON production. Glycogen accumulation was increased in the Δfgk3 mutant, confirming the inhibitory role of Fgk3 on glycogen synthase. In FGK3-GFP transformants, GFP signals mainly localized to the cytoplasm in conidia but to the cytoplasm and nucleus in hyphae. Moreover, the expression level of FGK3 increased in response to cold, H2O2, and SDS stresses. In the Δfgk3 mutant, cold, heat, and salt stresses failed to induce the expression of the stress response-related genes FgGRE2, FgGPD1, FgCTT1, and FgMSN2. In the presence of 80 mM LiCl, a GSK3 kinase inhibitor, the wild type displayed similar defects to the Δfgk3 mutant. Overall, our results indicate that FGK3 is important for growth, conidiogenesis, DON production, pathogenicity, and stress responses in F. graminearum. PMID:25703795

  19. The Crystal Structures of the Open and Catalytically Competent Closed Conformation of Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Jia, Xiaofei; Yep, Alejandra; Preiss, Jack; Geiger, James H.

    2009-07-06

    Escherichia coli glycogen synthase (EcGS, EC 2.4.1.21) is a retaining glycosyltransferase (GT) that transfers glucose from adenosine diphosphate glucose to a glucan chain acceptor with retention of configuration at the anomeric carbon. EcGS belongs to the GT-B structural superfamily. Here we report several EcGS x-ray structures that together shed considerable light on the structure and function of these enzymes. The structure of the wild-type enzyme bound to ADP and glucose revealed a 15.2 degrees overall domain-domain closure and provided for the first time the structure of the catalytically active, closed conformation of a glycogen synthase. The main chain carbonyl group of His-161, Arg-300, and Lys-305 are suggested by the structure to act as critical catalytic residues in the transglycosylation. Glu-377, previously thought to be catalytic is found on the alpha-face of the glucose and plays an electrostatic role in the active site and as a glucose ring locator. This is also consistent with the structure of the EcGS(E377A)-ADP-HEPPSO complex where the glucose moiety is either absent or disordered in the active site

  20. Glycogen Synthase Kinase 3β Interaction Protein Functions as an A-kinase Anchoring Protein*

    PubMed Central

    Hundsrucker, Christian; Skroblin, Philipp; Christian, Frank; Zenn, Hans-Michael; Popara, Viola; Joshi, Mangesh; Eichhorst, Jenny; Wiesner, Burkhard; Herberg, Friedrich W.; Reif, Bernd; Rosenthal, Walter; Klussmann, Enno

    2010-01-01

    A-kinase anchoring proteins (AKAPs) include a family of scaffolding proteins that target protein kinase A (PKA) and other signaling proteins to cellular compartments and thereby confine the activities of the associated proteins to distinct regions within cells. AKAPs bind PKA directly. The interaction is mediated by the dimerization and docking domain of regulatory subunits of PKA and the PKA-binding domain of AKAPs. Analysis of the interactions between the dimerization and docking domain and various PKA-binding domains yielded a generalized motif allowing the identification of AKAPs. Our bioinformatics and peptide array screening approaches based on this signature motif identified GSKIP (glycogen synthase kinase 3β interaction protein) as an AKAP. GSKIP directly interacts with PKA and GSK3β (glycogen synthase kinase 3β). It is widely expressed and facilitates phosphorylation and thus inactivation of GSK3β by PKA. GSKIP contains the evolutionarily conserved domain of unknown function 727. We show here that this domain of GSKIP and its vertebrate orthologues binds both PKA and GSK3β and thereby provides a mechanism for the integration of PKA and GSK3β signaling pathways. PMID:20007971

  1. Critical role of glycogen synthase kinase-3ß in regulating the avian heterophil response to Salmonella enterica serovar Enteritidis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microarray-assisted gene expression screen of chicken heterophils revealed glycogen synthase kinase-3ß (GSK-3ß), a multifunctional Ser/Thr kinase, to be consistently up-regulated 30-180 min following stimulation with Salmonella enterica serovar Enteritidis (S. Enteritidis). The present study was ...

  2. Ambient pH Controls Glycogen Levels by Regulating Glycogen Synthase Gene Expression in Neurospora crassa. New Insights into the pH Signaling Pathway

    PubMed Central

    Cupertino, Fernanda Barbosa; Freitas, Fernanda Zanolli; de Paula, Renato Magalhães; Bertolini, Maria Célia

    2012-01-01

    Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational levels. The existence of a DNA motif for the Aspergillus nidulans pH responsive transcription factor PacC in the promoter of the gene encoding glycogen synthase (gsn) in Neurospora crassa prompted us to investigate whether this transcription factor regulates glycogen accumulation. Transcription factors such as PacC in A. nidulans and Rim101p in Saccharomyces cerevisiae play a role in the signaling pathway that mediates adaptation to ambient pH by inducing the expression of alkaline genes and repressing acidic genes. We showed here that at pH 7.8 pacC was over-expressed and gsn was down-regulated in wild-type N. crassa coinciding with low glycogen accumulation. In the pacCKO strain the glycogen levels and gsn expression at alkaline pH were, respectively, similar to and higher than the wild-type strain at normal pH (5.8). These results characterize gsn as an acidic gene and suggest a regulatory role for PACC in gsn expression. The truncated recombinant protein, containing the DNA-binding domain specifically bound to a gsn DNA fragment containing the PacC motif. DNA-protein complexes were observed with extracts from cells grown at normal and alkaline pH and confirmed by ChIP-PCR analysis. The PACC present in these extracts showed equal molecular mass, indicating that the protein is already processed at normal pH, in contrast to A. nidulans. Together, these results show that the pH signaling pathway controls glycogen accumulation by regulating gsn expression and suggest the existence of a different mechanism for PACC activation in N. crassa. PMID:22952943

  3. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens

    PubMed Central

    2012-01-01

    Glycogen synthase kinase 3β (GSK3β) plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB) activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection. PMID:22691598

  4. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility

    NASA Technical Reports Server (NTRS)

    Morfini, Gerardo; Szebenyi, Gyorgyi; Elluru, Ravindhra; Ratner, Nancy; Brady, Scott T.

    2002-01-01

    Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.

  5. Glycogen synthase kinase-3 is involved in regulation of ribosome biogenesis in yeast.

    PubMed

    Yabuki, Yukari; Kodama, Yushi; Katayama, Masako; Sakamoto, Akiko; Kanemaru, Hirofumi; Wan, Kun; Mizuta, Keiko

    2014-01-01

    Secretory defects cause transcriptional repression of both ribosomal proteins and ribosomal RNA genes in Saccharomyces cerevisiae. Rrs1, a trans-acting factor that participates in ribosome biogenesis, is involved in the signaling pathway induced by secretory defects. Here, we found that Rrs1 interacts with two homologs of the glycogen synthase kinase-3 (GSK-3), Rim11, and Mrk1. Rrs1 possesses a repetitive consensus amino acid sequence for phosphorylation by GSK-3, and mutation of this sequence abolished the interaction of Rrs1 with Rim11 and Mrk1. Although this mutation did not affect vegetative cell growth or secretory response, disruption of all four genes encoding GSK-3 homologs, especially Mck1, diminished the transcriptional repression of ribosomal protein genes in response to secretory defects. Among the four GSK-3 kinases, Mck1 appears to be the primary mediator of this response, while the other GSK-3 kinases contribute redundantly. PMID:25035982

  6. Seasonal, tissue-specific regulation of Akt/protein kinase B and glycogen synthase in hibernators.

    PubMed

    Hoehn, Kyle L; Hudachek, Susan F; Summers, Scott A; Florant, Gregory L

    2004-03-01

    Yellow-bellied marmots (Marmota flaviventris) exhibit a circannual cycle of hyperphagia and nutrient storage in the summer followed by hibernation in the winter. This annual cycle of body mass gain and loss is primarily due to large-scale accumulation of lipid in the summer, which is then mobilized and oxidized for energy during winter. The rapid and predictable change in body mass makes these animals ideal for studies investigating the molecular basis for body weight regulation. In the study described herein, we monitored seasonal changes in the protein levels and activity of a central regulator of anabolic metabolism, the serine-threonine kinase Akt-protein kinase B (Akt/PKB), during the months accompanying maximal weight gain and entry into hibernation (June-November). Interestingly, under fasting conditions, Akt/PKB demonstrated a tissue-specific seasonal activation. Specifically, although Akt/PKB levels did not change, the activity of Akt/PKB (isoforms 1/alpha and 2/beta) in white adipose tissue (WAT) increased significantly in July. Moreover, glycogen synthase, which lies downstream of Akt/PKB on a linear pathway linking the enzyme to the stimulation of glycogen synthesis, demonstrated a similar pattern of seasonal activation. By contrast, Akt/PKB activity in skeletal muscle peaked much later (i.e., September). These data suggest the existence of a novel, tissue-specific mechanism regulating Akt/PKB activation during periods of marked anabolism. PMID:14656767

  7. Expression and purification of functional human glycogen synthase-1:glycogenin-1 complex in insect cells

    PubMed Central

    Hunter, Roger W.; Zeqiraj, Elton; Morrice, Nicholas; Sicheri, Frank; Sakamoto, Kei

    2015-01-01

    We report the successful expression and purification of functional human muscle glycogen synthase (GYS1) in complex with human glycogenin-1 (GN1). Stoichiometric GYS1:GN1 complex was produced by co-expression of GYS1 and GN1 using a bicistronic pFastBac™-Dual expression vector, followed by affinity purification and subsequent size-exclusion chromatography. Mass spectrometry analysis identified that GYS1 is phosphorylated at several well-characterised and uncharacterised Ser/Thr residues. Biochemical analysis, including activity ratio (in the absence relative to that in the presence of glucose-6-phosphate) measurement, covalently attached phosphate estimation as well as phosphatase treatment, revealed that recombinant GYS1 is substantially more heavily phosphorylated than would be observed in intact human or rodent muscle tissues. A large quantity of highly-pure stoichiometric GYS1:GN1 complex will be useful to study its structural and biochemical properties in the future, which would reveal mechanistic insights into its functional role in glycogen biosynthesis. PMID:25527037

  8. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    SciTech Connect

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.

    1985-10-05

    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and)2numberSPO4/mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the TUPO4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro.

  9. Insulin induces an increase in cytosolic glucose levels in 3T3-L1 cells with inhibited glycogen synthase activation.

    PubMed

    Chowdhury, Helena H; Kreft, Marko; Jensen, Jørgen; Zorec, Robert

    2014-01-01

    Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ) to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway. PMID:25279585

  10. Phosphorylation of inhibitor-2 and activation of MgATP-dependent protein phosphatase by rat skeletal muscle glycogen synthase kinase

    SciTech Connect

    Hegazy, M.G.; Reimann, E.M.; Thysseril, T.J.; Schlender, K.K.

    1986-05-01

    Rat skeletal muscle contains a glycogen synthase kinase (GSK-M) which is not stimulated by Ca/sup 2 +/ or cAMP. This kinase has an apparent Mr of 62,000 and uses ATP but not GTP as a phosphoryl donor. GSK-M phosphorylated glycogen synthase at sites 2 and 3. It phosphorylated ATP-citrate lyase and activated MgATP-dependent phosphatase in the presence of ATP but not GTP. As expected, the kinase also phosphorylated phosphatase inhibitor 2 (I-2). Phosphatase incorporation reached approximately 0.3 mol/mol of I-2. Phosphopeptide maps were obtained by digesting /sup 32/P-labeled I-2 with trypsin and separating the peptides by reversed phase HPLC. Two partially separated /sup 32/P-labeled peaks were obtained when I-2 was phosphorylated with either GSK-M or glycogen synthase kinase 3 (GSK-3) and these peptides were different from those obtained when I-2 was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase (CSU) or casein kinase II (CK-II). When I-2 was phosphorylated with GSK-M or GSK-3 and cleaved by CNBr, a single radioactive peak was obtained. Phosphoamino acid analysis showed that I-2 was phosphorylated by GSK-M or GSK-3 predominately in Thr whereas CSU and CK-II phosphorylated I-2 exclusively in Ser. These results indicate that GSK-M is similar to GSK-3 and to ATP-citrate lyase kinase. However, it appears to differ in Mr from ATP-citrate lyase kinase and it differs from GSK-3 in that it phosphorylates glycogen synthase at site 2 and it does not use GTP as a phosphoryl donor.

  11. Role of glycogen synthase kinase-3β inhibitor AZD1080 in ovarian cancer

    PubMed Central

    Chen, Shuo; Sun, Kai-Xuan; Feng, Miao-Xiao; Sang, Xiu-Bo; Liu, Bo-Liang; Zhao, Yang

    2016-01-01

    Background Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays an important role in cancer tumorigenesis and progression. We investigated the role of the GSK-3β inhibitor AZD1080 in ovarian cancer cell lines. Methods A2780 and OVCAR3 ovarian cancer cell lines were exposed to AZD1080, after which cell proliferation, cell cycle, invasion, and migration assays were performed. Phalloidin staining was used to observe lamellipodia formation. Reverse transcription polymerase chain reaction and Western blot were used to assess the respective mRNA and protein expression levels of GSK-3β, CDK2, CDK1, cyclin D1, matrix metalloproteinase-9 (MMP9), and Bcl-xL. Results AZD1080 exposure suppressed ovarian cancer cell proliferation, invasion, migration, and lamellipodia formation, and induced G1 arrest, which was concentration dependent. AZD1080 also significantly downregulated GSK-3β, CDK2, CDK1, cyclin D1, MMP9, and Bcl-xL expression at both mRNA and protein levels. Conclusion Taken together, our results demonstrate that the GSK-3β inhibitor AZD1080 suppresses ovarian cancer development and therefore may indicate a new direction for ovarian cancer treatment. PMID:27051274

  12. Glycogen synthase kinase 3 phosphorylates RBL2/p130 during quiescence.

    PubMed

    Litovchick, Larisa; Chestukhin, Anton; DeCaprio, James A

    2004-10-01

    Phosphorylation of the retinoblastoma-related or pocket proteins RB1/pRb, RBL1/p107, and RBL2/p130 regulates cell cycle progression and exit. While all pocket proteins are phosphorylated by cyclin-dependent kinases (CDKs) during the G1/S-phase transition, p130 is also specifically phosphorylated in G0-arrested cells. We have previously identified several phosphorylated residues that match the consensus site for glycogen synthase kinase 3 (GSK3) in the G0 form of p130. Using small-molecule inhibitors of GSK3, site-specific mutants of p130, and phospho-specific antibodies, we demonstrate here that GSK3 phosphorylates p130 during G0. Phosphorylation of p130 by GSK3 contributes to the stability of p130 but does not affect its ability to interact with E2F4 or cyclins. Regulation of p130 by GSK3 provides a novel link between growth factor signaling and regulation of the cell cycle progression and exit. PMID:15456871

  13. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    PubMed Central

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  14. Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity

    PubMed Central

    Lee, Eunju; Ryu, Hye Guk; Kim, Sangjune; Lee, Dohyun; Jeong, Young-Hun; Kim, Kyong-Tai

    2016-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the N-terminal of huntingtin. The amount of aggregate-prone protein is controlled by various mechanisms, including molecular chaperones. Vaccinia-related kinase 2 (VRK2) is known to negatively regulate chaperonin TRiC, and VRK2-facilitated degradation of TRiC increases polyQ protein aggregation, which is involved in HD. We found that VRK2 activity was negatively controlled by glycogen synthase kinase 3β (GSK3β). GSK3β directly bound to VRK2 and inhibited the catalytic activity of VRK2 in a kinase activity-independent manner. Furthermore, GSK3β increased the stability of TRiC and decreased the formation of HttQ103-GFP aggregates by inhibiting VRK2. These results indicate that GSK3β signaling may be a regulatory mechanism of HD progression and suggest targets for further therapeutic trials for HD. PMID:27377031

  15. Aberrant glycogen synthase kinase 3β in the development of pancreatic cancer

    PubMed Central

    Shimasaki, Takeo; Kitano, Ayako; Motoo, Yoshiharu; Minamoto, Toshinari

    2012-01-01

    Development and progression of pancreatic cancer involves general metabolic disorder, local chronic inflammation, and multistep activation of distinct oncogenic molecular pathways. These pathologic processes result in a highly invasive and metastatic tumor phenotype that is a major obstacle to curative surgical intervention, infusional gemcitabine-based chemotherapy, and radiation therapy. Many clinical trials with chemical compounds and therapeutic antibodies targeting growth factors, angiogenic factors, and matrix metalloproteinases have failed to demonstrate definitive therapeutic benefits to refractory pancreatic cancer patients. Glycogen synthase kinase 3β (GSK3β), a serine/threonine protein kinase, has emerged as a therapeutic target in common chronic and progressive diseases, including cancer. Here we review accumulating evidence for a pathologic role of GSK3β in promoting tumor cell survival, proliferation, invasion, and resistance to chemotherapy and radiation in pancreatic cancer. We also discuss the putative involvement of GSK3β in mediating metabolic disorder, local inflammation, and molecular alteration leading to pancreatic cancer development. Taken together, we highlight potential therapeutic as well as preventive effects of GSK3β inhibition in pancreatic cancer. PMID:23230392

  16. Glycogen Synthase Kinase-3 promotes cell survival, growth and PAX3 levels in human melanoma cells

    PubMed Central

    Kubic, Jennifer D.; Mascarenhas, Joseph B.; Iizuka, Takumi; Wolfgeher, Don; Lang, Deborah

    2012-01-01

    Glycogen Synthase Kinase-3 (GSK-3) is a serine/threonine kinase involved in a diverse range of cellular processes. GSK-3 exists in two isoforms, GSK-3α and GSK-3β, which possess some functional redundancy but also play distinct roles depending on developmental and cellular context. In this report we found that GSK-3 actively promoted cell growth and survival in melanoma cells, and blocking this activity with small molecule inhibitor SB216763 or gene-specific siRNA decreased proliferation, increased apoptosis and altered cellular morphology. These alterations coincided with loss of PAX3, a transcription factor implicated in proliferation, survival and migration of developing melanoblasts. We further found that PAX3 directly interacted with and was phosphorylated in vitro on a number of residues by GSK-3β. In melanoma cells, direct inhibition of PAX3 lead to cellular changes that paralleled the response to GSK-3 inhibition. Maintenance of PAX3 expression protected melanoma cells from the anti-tumor effects of SB216763. These data support a model wherein GSK-3 regulates proliferation and morphology of melanoma through phosphorylation and increased levels of PAX3. PMID:22679108

  17. The Role of Glycogen Synthase Kinase 3 Beta in Neuroinflammation and Pain

    PubMed Central

    Maixner, Dylan Warren; Weng, Han-Rong

    2013-01-01

    Neuroinflammation is a crucial mechanism related to many neurological diseases. Extensive studies in recent years have indicated that dysregulation of Glycogen Synthase Kinase 3 Beta (GSK3β) contributes to the development and progression of these disorders through regulating the neuroinflammation processes. Inhibitors of GSK3β have been shown to be beneficial in many neuroinflammatory disease models including Alzheimer's disease, multiple sclerosis and AIDS dem entia complex. Glial activation and elevated pro-inflammation cytokines (signs of neuroinflammation) in the spinal cord have been widely recognized as a pivotal mechanism underlying the development and maintenance of many types of pathological pain. The role of GSK3β in the pathogenesis of pain has recently emerged. In this review, we will first review the GSK3β structure, regulation, and mechanisms by which GSK3βregulates inflammation. We will then describe neuroinflammationin general and in specific types of neurological diseases and the potential beneficial effects induced by inhibiting GSK3β. Finally, we will provide new evidence linking aberrant levels of GSK3β in the development of pathological pain. PMID:25309941

  18. Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3

    PubMed Central

    Nowicki, Michal O.; Dmitrieva, Nina; Stein, Andrew M.; Cutter, Jennifer L.; Godlewski, Jakub; Saeki, Yoshinaga; Nita, Masayuki; Berens, Michael E.; Sander, Leonard M.; Newton, Herbert B.; Chiocca, E. Antonio; Lawler, Sean

    2008-01-01

    Therapies targeting glioma cells that diffusely infiltrate normal brain are highly sought after. Our aim was to identify novel approaches to this problem using glioma spheroid migration assays. Lithium, a currently approved drug for the treatment of bipolar illnesses, has not been previously examined in the context of glioma migration. We found that lithium treatment potently blocked glioma cell migration in spheroid, wound-healing, and brain slice assays. The effects observed were dose dependent and reversible, and worked using every glioma cell line tested. In addition, there was little effect on cell viability at lithium concentrations that inhibit migration, showing that this is a specific effect. Lithium treatment was associated with a marked change in cell morphology, with cells retracting the long extensions at their leading edge. Examination of known targets of lithium showed that inositol monophosphatase inhibition had no effect on glioma migration, whereas inhibition of glycogen synthase kinase-3 (GSK-3) did. This suggested that the effects of lithium on glioma cell migration could possibly be mediated through GSK-3. Specific pharmacologic GSK-3 inhibitors and siRNA knockdown of GSK-3α or GSK-3β isoforms both reduced cell motility. These data outline previously unidentified pathways and inhibitors that may be useful for the development of novel anti-invasive therapeutics for the treatment of brain tumors. PMID:18715951

  19. Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects.

    PubMed

    Wagner, Florence F; Bishop, Joshua A; Gale, Jennifer P; Shi, Xi; Walk, Michelle; Ketterman, Joshua; Patnaik, Debasis; Barker, Doug; Walpita, Deepika; Campbell, Arthur J; Nguyen, Shannon; Lewis, Michael; Ross, Linda; Weïwer, Michel; An, W Frank; Germain, Andrew R; Nag, Partha P; Metkar, Shailesh; Kaya, Taner; Dandapani, Sivaraman; Olson, David E; Barbe, Anne-Laure; Lazzaro, Fanny; Sacher, Joshua R; Cheah, Jaime H; Fei, David; Perez, Jose; Munoz, Benito; Palmer, Michelle; Stegmaier, Kimberly; Schreiber, Stuart L; Scolnick, Edward; Zhang, Yan-Ling; Haggarty, Stephen J; Holson, Edward B; Pan, Jen Q

    2016-07-15

    The mood stabilizer lithium, the first-line treatment for bipolar disorder, is hypothesized to exert its effects through direct inhibition of glycogen synthase kinase 3 (GSK3) and indirectly by increasing GSK3's inhibitory serine phosphorylation. GSK3 comprises two highly similar paralogs, GSK3α and GSK3β, which are key regulatory kinases in the canonical Wnt pathway. GSK3 stands as a nodal target within this pathway and is an attractive therapeutic target for multiple indications. Despite being an active field of research for the past 20 years, many GSK3 inhibitors demonstrate either poor to moderate selectivity versus the broader human kinome or physicochemical properties unsuitable for use in in vitro systems or in vivo models. A nonconventional analysis of data from a GSK3β inhibitor high-throughput screening campaign, which excluded known GSK3 inhibitor chemotypes, led to the discovery of a novel pyrazolo-tetrahydroquinolinone scaffold with unparalleled kinome-wide selectivity for the GSK3 kinases. Taking advantage of an uncommon tridentate interaction with the hinge region of GSK3, we developed highly selective and potent GSK3 inhibitors, BRD1652 and BRD0209, which demonstrated in vivo efficacy in a dopaminergic signaling paradigm modeling mood-related disorders. These new chemical probes open the way for exclusive analyses of the function of GSK3 kinases in multiple signaling pathways involved in many prevalent disorders. PMID:27128528

  20. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis.

    PubMed

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  1. Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity.

    PubMed

    Lee, Eunju; Ryu, Hye Guk; Kim, Sangjune; Lee, Dohyun; Jeong, Young-Hun; Kim, Kyong-Tai

    2016-01-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the N-terminal of huntingtin. The amount of aggregate-prone protein is controlled by various mechanisms, including molecular chaperones. Vaccinia-related kinase 2 (VRK2) is known to negatively regulate chaperonin TRiC, and VRK2-facilitated degradation of TRiC increases polyQ protein aggregation, which is involved in HD. We found that VRK2 activity was negatively controlled by glycogen synthase kinase 3β (GSK3β). GSK3β directly bound to VRK2 and inhibited the catalytic activity of VRK2 in a kinase activity-independent manner. Furthermore, GSK3β increased the stability of TRiC and decreased the formation of HttQ103-GFP aggregates by inhibiting VRK2. These results indicate that GSK3β signaling may be a regulatory mechanism of HD progression and suggest targets for further therapeutic trials for HD. PMID:27377031

  2. Parallel evolution of the glycogen synthase 1 (muscle) gene Gys1 between Old World and New World fruit bats (Order: Chiroptera).

    PubMed

    Fang, Lu; Shen, Bin; Irwin, David M; Zhang, Shuyi

    2014-10-01

    Glycogen synthase, which catalyzes the synthesis of glycogen, is especially important for Old World (Pteropodidae) and New World (Phyllostomidae) fruit bats that ingest high-carbohydrate diets. Glycogen synthase 1, encoded by the Gys1 gene, is the glycogen synthase isozyme that functions in muscles. To determine whether Gys1 has undergone adaptive evolution in bats with carbohydrate-rich diets, in comparison to insect-eating sister bat taxa, we sequenced the coding region of the Gys1 gene from 10 species of bats, including two Old World fruit bats (Pteropodidae) and a New World fruit bat (Phyllostomidae). Our results show no evidence for positive selection in the Gys1 coding sequence on the ancestral Old World and the New World Artibeus lituratus branches. Tests for convergent evolution indicated convergence of the sequences and one parallel amino acid substitution (T395A) was detected on these branches, which was likely driven by natural selection. PMID:25001420

  3. Beyond the brain: disrupted in schizophrenia 1 regulates pancreatic β-cell function via glycogen synthase kinase-3β.

    PubMed

    Jurczyk, Agata; Nowosielska, Anetta; Przewozniak, Natalia; Aryee, Ken-Edwin; DiIorio, Philip; Blodgett, David; Yang, Chaoxing; Campbell-Thompson, Martha; Atkinson, Mark; Shultz, Leonard; Rittenhouse, Ann; Harlan, David; Greiner, Dale; Bortell, Rita

    2016-02-01

    Individuals with schizophrenia and their first-degree relatives have higher rates of type 2 diabetes (T2D) than the general population (18-30 vs. 1.2-6.3%), independent of body mass index and antipsychotic medication, suggesting shared genetic components may contribute to both diseases. The cause of this association remains unknown. Mutations in disrupted in schizophrenia 1 (DISC1) increase the risk of developing psychiatric disorders [logarithm (base 10) of odds = 7.1]. Here, we identified DISC1 as a major player controlling pancreatic β-cell proliferation and insulin secretion via regulation of glycogen synthase kinase-3β (GSK3β). DISC1 expression was enriched in developing mouse and human pancreas and adult β- and ductal cells. Loss of DISC1 function, through siRNA-mediated depletion or expression of a dominant-negative truncation that models the chromosomal translocation of human DISC1 in schizophrenia, resulted in decreased β-cell proliferation (3 vs. 1%; P < 0.01), increased apoptosis (0.1 vs. 0.6%; P < 0.01), and glucose intolerance in transgenic mice. Insulin secretion was reduced (0.5 vs. 0.1 ng/ml; P < 0.05), and critical β-cell transcription factors Pdx1 and Nkx6.1 were significantly decreased. Impaired DISC1 allowed inappropriate activation of GSK3β in β cells, and antagonizing GSK3β (SB216763; IC50 = 34.3 nM) rescued the β-cell defects. These results uncover an unexpected role for DISC1 in normal β-cell physiology and suggest that DISC1 dysregulation contributes to T2D independently of its importance for cognition. PMID:26546129

  4. Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs).

    PubMed

    Martín, Mariana; Wayllace, Nahuel Z; Valdez, Hugo A; Gomez-Casati, Diego F; Busi, María V

    2013-10-01

    Glycogen and starch, the major storage carbohydrate in most living organisms, result mainly from the action of starch or glycogen synthases (SS or GS, respectively, EC 2.4.1.21). SSIII from Arabidopsis thaliana is an SS isoform with a particular modular organization: the C-terminal highly conserved glycosyltransferase domain is preceded by a unique specific region (SSIII-SD) which contains three in tandem starch binding domains (SBDs, named D1, D2 and D3) characteristic of polysaccharide degrading enzymes. N-terminal SBDs have a probed regulatory role in SSIII activity, showing starch binding ability and modulating the catalytic properties of the enzyme. On the other hand, GS from Agrobacterium tumefaciens has a simple primary structure organization, characterized only by the highly conserved glycosyltransferase domain and lacking SBDs. To further investigate the functional role of A. thaliana SSIII-SD, three chimeric proteins were constructed combining the SBDs from A. thaliana with the GS from A. tumefaciens. Recombinant proteins were expressed in and purified to homogeneity from Escherichia coli cells in order to be kinetically characterized. Furthermore, we tested the ability to restore in vivo glycogen biosynthesis in transformed E. coli glgA(-) cells, deficient in GS. Results show that the D3-GS chimeric enzyme showed increased capacity of glycogen synthesis in vivo with minor changes in its kinetics parameters compared to GS. PMID:23796574

  5. Progranulin enhances neural progenitor cell proliferation through glycogen synthase kinase 3β phosphorylation.

    PubMed

    Nedachi, T; Kawai, T; Matsuwaki, T; Yamanouchi, K; Nishihara, M

    2011-06-30

    Progranulin (PGRN) is an estrogen-inducible growth factor thought to affect multiple processes in the CNS, including brain sexual differentiation, adult neurogenesis in the hippocampus, and development of neurodegenerative diseases. However, the precise physiological functions of PGRN in individual nerve cells are not fully understood. The aim of the present study was to enhance the understanding of PGRN function in the CNS by investigating the effects of PGRN on neural progenitor cells (NPCs). We found that significant amounts of endogenous PGRN were secreted from isolated NPCs in cultures. To assess the bioactivities of endogenous and exogenous PGRN, we studied NPCs derived from wild-type mice (WT-NPCs) and PGRN-deficient mice (KO-NPCs). We found that proliferation of KO-NPCs was significantly enhanced by PGRN treatment; however, PGRN treatment apparently did not affect proliferation of WT-NPCs perhaps because of the high levels of endogenous PGRN expression. NPC death and asymmetric cellular division of KO-NPCs and WT-NPCs, which results in production of neural stem cells, astrocytes, or oligodendrocytes, were not affected by PGRN treatment. We also investigated the signaling mechanism(s) that mediate PGRN-induced NPC proliferation and found that phosphorylation of serine 9 (S9) of glycogen synthase kinase 3-beta (GSK3β), which was dependent on phosphatidylinositol 3-kinase (PI3K) activity, was induced by PGRN treatment. In addition, a GSK3β-specific inhibitor enhanced NPC proliferation. Taken together, our observations indicate that PGRN enhanced NPC proliferation, at least in part, via inducing GSK3β phosphorylation. PMID:21540081

  6. Identification and regulation of glycogen synthase kinase-3 during bovine embryo development.

    PubMed

    Aparicio, I M; Garcia-Herreros, M; Fair, T; Lonergan, P

    2010-07-01

    The aim of this study was to examine the presence and regulation of glycogen synthase kinase-3alpha (GSK3A) and GSK-3beta (GSK3B) in bovine embryos and their possible roles in embryo development. Our results show that GSK3A and GSK3B are present in bovine embryos at the two-cell stage to the hatched blastocyst stage. Bovine embryo development was associated with an increase in the phosphorylation of both isoforms, being statistically significant at blastocyst and hatched blastocyst stages, compared with earlier stages. Inhibition of GSK3 with CT99021 (3 microM) resulted in a significant increase in the percentage and quality of blastocysts, while inhibition of GSK3 with lithium chloride (LiCl; 20 mM) significantly reduced at the proportion of eight-cell embryos on day 3 and inhibited blastocyst formation. The use of LY294002 (10 microM), a specific inhibitor of phosphatidylinositol-3 kinase, also produced a significant decrease in embryo development. In addition, treatment with LiCl and LY294002 produced a significant decrease in the serine phosphorylation of both isoforms of GSK3. Finally, CT99021 and LiCl reduced the phosphorylation of beta-catenin on Ser45 in two-cell embryos, while LY294002 increased it. Despite the fact that LiCl inhibited GSK3 activity, as demonstrated by beta-catenin phosphorylation, its effects on the bovine embryo could be mediated through other signaling pathways leading finally to a decrease in the phosphorylation of GSK3 and a reduction in embryo development. Therefore, in conclusion, GSK3A/B serine phosphorylation was positively correlated with embryo development, indicating the importance of an accurate regulation of GSK3 activity during developmental stages to achieve normal bovine embryo development. PMID:20427566

  7. Identification of a Glycogen Synthase Kinase-3[beta] Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice

    SciTech Connect

    Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara

    2012-05-02

    Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called 'mood-stabilizing drugs', such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3{beta} (GSK-3{beta}) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3{beta}. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC{sub 50} values in the range of 4 to 680 nM against human GSK-3{beta}. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mg kg{sup -1} resulted in the attenuation of hyperactivity in amphetamine/chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mg kg{sup -1}) and the antipsychotic haloperidol (1 mg kg{sup -1}). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3{beta} in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3{beta} as a relevant therapeutic target in the identification of new therapies for bipolar patients.

  8. Identification of a Glycogen Synthase Kinase-3β Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice

    PubMed Central

    Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara

    2012-01-01

    Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called “mood-stabilizing drugs”, such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3β (GSK-3β) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3β. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC50 values in the range of 4 to 680 nm against human GSK-3β. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mgkg−1 resulted in the attenuation of hyperactivity in amphetamine/ chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mgkg−1) and the antipsychotic haloperidol (1 mgkg−1). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3β in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3β as a relevant therapeutic target in the identification of new therapies for bipolar patients. PMID:21732538

  9. Glycogen synthase kinase-3β modulation of glucocorticoid responsiveness in COPD.

    PubMed

    Ngkelo, Anta; Hoffmann, Roland F; Durham, Andrew L; Marwick, John A; Brandenburg, Simone M; de Bruin, Harold G; Jonker, Marnix R; Rossios, Christos; Tsitsiou, Eleni; Caramori, Gaetano; Contoli, Marco; Casolari, Paolo; Monaco, Francesco; Andò, Filippo; Speciale, Giuseppe; Kilty, Iain; Chung, Kian F; Papi, Alberto; Lindsay, Mark A; Ten Hacken, Nick H T; van den Berge, Maarten; Timens, Wim; Barnes, Peter J; van Oosterhout, Antoon J; Adcock, Ian M; Kirkham, Paul A; Heijink, Irene H

    2015-11-15

    In chronic obstructive pulmonary disease (COPD), oxidative stress regulates the inflammatory response of bronchial epithelium and monocytes/macrophages through kinase modulation and has been linked to glucocorticoid unresponsiveness. Glycogen synthase-3β (GSK3β) inactivation plays a key role in mediating signaling processes upon reactive oxygen species (ROS) exposure. We hypothesized that GSK3β is involved in oxidative stress-induced glucocorticoid insensitivity in COPD. We studied levels of phospho-GSK3β-Ser9, a marker of GSK3β inactivation, in lung sections and cultured monocytes and bronchial epithelial cells of COPD patients, control smokers, and nonsmokers. We observed increased levels of phospho-GSK3β-Ser9 in monocytes, alveolar macrophages, and bronchial epithelial cells from COPD patients and control smokers compared with nonsmokers. Pharmacological inactivation of GSK3β did not affect CXCL8 or granulocyte-macrophage colony-stimulating factor (GM-CSF) expression but resulted in glucocorticoid insensitivity in vitro in both inflammatory and structural cells. Further mechanistic studies in monocyte and bronchial epithelial cell lines showed that GSK3β inactivation is a common effector of oxidative stress-induced activation of the MEK/ERK-1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways leading to glucocorticoid unresponsiveness. In primary monocytes, the mechanism involved modulation of histone deacetylase 2 (HDAC2) activity in response to GSK3β inactivation. In conclusion, we demonstrate for the first time that ROS-induced glucocorticoid unresponsiveness in COPD is mediated through GSK3β, acting as a ROS-sensitive hub. PMID:26320152

  10. Glycogen synthase kinase-3β modulation of glucocorticoid responsiveness in COPD

    PubMed Central

    Hoffmann, Roland F.; Durham, Andrew L.; Marwick, John A.; Brandenburg, Simone M.; de Bruin, Harold G.; Jonker, Marnix R.; Rossios, Christos; Tsitsiou, Eleni; Caramori, Gaetano; Contoli, Marco; Casolari, Paolo; Monaco, Francesco; Andò, Filippo; Speciale, Giuseppe; Kilty, Iain; Chung, Kian F.; Papi, Alberto; Lindsay, Mark A.; ten Hacken, Nick H. T.; van den Berge, Maarten; Timens, Wim; Barnes, Peter J.; van Oosterhout, Antoon J.; Kirkham, Paul A.; Heijink, Irene H.

    2015-01-01

    In chronic obstructive pulmonary disease (COPD), oxidative stress regulates the inflammatory response of bronchial epithelium and monocytes/macrophages through kinase modulation and has been linked to glucocorticoid unresponsiveness. Glycogen synthase-3β (GSK3β) inactivation plays a key role in mediating signaling processes upon reactive oxygen species (ROS) exposure. We hypothesized that GSK3β is involved in oxidative stress-induced glucocorticoid insensitivity in COPD. We studied levels of phospho-GSK3β-Ser9, a marker of GSK3β inactivation, in lung sections and cultured monocytes and bronchial epithelial cells of COPD patients, control smokers, and nonsmokers. We observed increased levels of phospho-GSK3β-Ser9 in monocytes, alveolar macrophages, and bronchial epithelial cells from COPD patients and control smokers compared with nonsmokers. Pharmacological inactivation of GSK3β did not affect CXCL8 or granulocyte-macrophage colony-stimulating factor (GM-CSF) expression but resulted in glucocorticoid insensitivity in vitro in both inflammatory and structural cells. Further mechanistic studies in monocyte and bronchial epithelial cell lines showed that GSK3β inactivation is a common effector of oxidative stress-induced activation of the MEK/ERK-1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways leading to glucocorticoid unresponsiveness. In primary monocytes, the mechanism involved modulation of histone deacetylase 2 (HDAC2) activity in response to GSK3β inactivation. In conclusion, we demonstrate for the first time that ROS-induced glucocorticoid unresponsiveness in COPD is mediated through GSK3β, acting as a ROS-sensitive hub. PMID:26320152

  11. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease.

    PubMed

    Fernández-Nogales, Marta; Hernández, Félix; Miguez, Andrés; Alberch, Jordi; Ginés, Silvia; Pérez-Navarro, Esther; Lucas, José J

    2015-09-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease. PMID:26082469

  12. Apolipoprotein E and beta-amyloid (1-42) regulation of glycogen synthase kinase-3beta.

    PubMed

    Cedazo-Mínguez, A; Popescu, B O; Blanco-Millán, J M; Akterin, S; Pei, J-J; Winblad, B; Cowburn, R F

    2003-12-01

    Glycogen synthase kinase-3beta (GSK-3beta) is implicated in regulating apoptosis and tau protein hyperphosphorylation in Alzheimer's disease (AD). We investigated the effects of two key AD molecules, namely apoE (E3 and E4 isoforms) and beta-amyloid (Abeta) 1-42 on GSK-3beta and its major upstream regulators, intracellular calcium and protein kinases C and B (PKC and PKB) in human SH-SY5Y neuroblastoma cells. ApoE3 induced a mild, transient, Ca2+-independent and early activation of GSK-3beta. ApoE4 effects were biphasic, with an early strong GSK-3beta activation that was partially dependent on extracellular Ca2+, followed by a GSK-3beta inactivation. ApoE4 also activated PKC-alpha and PKB possibly giving the subsequent GSK-3beta inhibition. Abeta(1-42) effects were also biphasic with a strong activation dependent partially on extracellular Ca2+ followed by an inactivation. Abeta(1-42) induced an early and potent activation of PKC-alpha and a late decrease of PKB activity. ApoE4 and Abeta(1-42) were more toxic than apoE3 as shown by MTT reduction assays and generation of activated caspase-3. ApoE4 and Abeta(1-42)-induced early activation of GSK-3beta could lead to apoptosis and tau hyperphosphorylation. A late inhibition of GSK-3beta through activation of upstream kinases likely compensates the effects of apoE4 and Abeta(1-42) on GSK-3beta, the unbalanced regulation of which may contribute to AD pathology. PMID:14622095

  13. Mechanisms underlying impaired GLUT-4 translocation in glycogen-supercompensated muscles of exercised rats.

    PubMed

    Kawanaka, K; Nolte, L A; Han, D H; Hansen, P A; Holloszy, J O

    2000-12-01

    Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determine whether insulin signaling is impaired. Maximally insulin-stimulated phosphatidylinositol (PI) 3-kinase activity was not significantly reduced, whereas protein kinase B (PKB) phosphorylation was approximately 50% lower (P < 0.01) in muscles of chow-fed, than in those of fasted, exercise-trained rats. Our second purpose was to determine whether contraction-stimulated glucose transport is also impaired. The stimulation of glucose transport and the increase in cell surface GLUT-4 induced by contractions were both decreased by approximately 65% in glycogen-supercompensated muscles of trained rats. The contraction-stimulated increase in AMP kinase activity, which has been implicated in the activation of glucose transport by contractions, was approximately 80% lower in the muscles of the fed compared with the fasted rats 18 h after exercise. These results show that both the insulin- and contraction-stimulated pathways for muscle glucose transport activation are impaired in glycogen-supercompensated muscles and provide insight regarding possible mechanisms. PMID:11093919

  14. Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death.

    PubMed

    Chen, Gang; Bower, Kimberly A; Ma, Cuiling; Fang, Shengyun; Thiele, Carol J; Luo, Jia

    2004-07-01

    The causes of sporadic Parkinson's disease (PD) are poorly understood. 6-Hydroxydopamine (6-OHDA), a PD mimetic, is widely used to model this neurodegenerative disorder in vitro and in vivo; however, the underlying mechanisms remain incompletely elucidated. We demonstrate here that 6-OHDA evoked endoplasmic reticulum (ER) stress, which was characterized by an up-regulation in the expression of GRP78 and GADD153 (Chop), cleavage of procaspase-12, and phosphorylation of eukaryotic initiation factor-2 alpha in a human dopaminergic neuronal cell line (SH-SY5Y) and cultured rat cerebellar granule neurons (CGNs). Glycogen synthase kinase-3 beta (GSK3beta) responds to ER stress, and its activity is regulated by phosphorylation. 6-OHDA significantly inhibited phosphorylation of GSK3beta at Ser9, whereas it induced hyperphosphorylation of Tyr216 with little effect on GSK3beta expression in SH-SY5Y cells and PC12 cells (a rat dopamine cell line), as well as CGNs. Furthermore, 6-OHDA decreased the expression of cyclin D1, a substrate of GSK3beta, and dephosphorylated Akt, the upstream signaling component of GSK3beta. Protein phosphatase 2A (PP2A), an ER stress-responsive phosphatase, was involved in 6-OHDA-induced GSK3beta dephosphorylation (Ser9). Blocking GSK3beta activity by selective inhibitors (lithium, TDZD-8, and L803-mts) prevented 6-OHDA-induced cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP), DNA fragmentations and cell death. With a tetracycline (Tet)-controlled TrkB inducible system, we demonstrated that activation of TrkB in SH-SY5Y cells alleviated 6-OHDA-induced GSK3beta dephosphorylation (Ser9) and ameliorated 6-OHDA neurotoxicity. TrkB activation also protected CGNs against 6-OHDA-induced damage. Although antioxidants also offered neuroprotection, they had little effect on 6-OHDA-induced GSK3beta activation. These results suggest that GSK3beta is a critical intermediate in pro-apoptotic signaling cascades that are associated with

  15. The Effects of Glycogen Synthase Kinase-3beta in Serotonin Neurons

    PubMed Central

    Zhou, Wenjun; Chen, Ligong; Paul, Jodi; Yang, Sufen; Li, Fuzeng; Sampson, Karen; Woodgett, Jim R.; Beaulieu, Jean Martin; Gamble, Karen L.; Li, Xiaohua

    2012-01-01

    Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors. PMID:22912839

  16. Aldose reductase modulates cardiac glycogen synthase kinase-3β phosphorylation during ischemia-reperfusion

    PubMed Central

    Abdillahi, Mariane; Ananthakrishnan, Radha; Vedantham, Srinivasan; Shang, Linshan; Zhu, Zhengbin; Rosario, Rosa; Zirpoli, Hylde; Bohren, Kurt M.; Gabbay, Kenneth H.

    2012-01-01

    Earlier studies have demonstrated that aldose reductase (AR) plays a key role in mediating ischemia-reperfusion (I/R) injury. Our objective was to investigate if AR mediates I/R injury by influencing phosphorylation of glycogen synthase kinase-3β (p-GSK3β). To investigate this issue, we used three separate models to study the effects of stress injury on the heart. Hearts isolated from wild-type (WT), human expressing AR transgenic (ARTg), and AR knockout (ARKO) mice were perfused with/without GSK3β inhibitors (SB-216763 and LiCl) and subjected to I/R. Ad-human AR (Ad-hAR)-expressing HL-1 cardiac cells were exposed to hypoxia (0.5% O2) and reoxygenation (20.9% O2) conditions. I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD) was used to study if p-GSK3β was affected through increased AR flux. Lactate dehydrogenase (LDH) release and left ventricular developed pressure (LVDP) were measured. LVDP was decreased in hearts from ARTg mice compared with WT and ARKO after I/R, whereas LDH release and apoptotic markers were increased (P < 0.05). p-GSK3β was decreased in ARTg hearts compared with WT and ARKO (P < 0.05). In ARKO, p-GSK3β and apoptotic markers were decreased compared with WT (P < 0.05). WT and ARTg hearts perfused with GSK3β inhibitors improved p-GSK3β expression and LVDP and exhibited decreased LDH release, apoptosis, and mitochondrial pore opening (P < 0.05). Ad-hAR-expressing HL-1 cardiac cells, exposed to hypoxia (0.5% O2) and reoxygenation (20.9% O2), had greater LDH release compared with control HL-1 cells (P < 0.05). p-GSK3β was decreased and correlated with increased apoptotic markers in Ad-hAR HL-1 cells (P < 0.05). Treatment with phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) inhibitor increased injury demonstrated by increased LDH release in ARTg, WT, and ARKO hearts and in Ad-hAR-expressing HL-1 cells. Cells treated with protein kinase C (PKC) α/β inhibitor

  17. Aldose reductase modulates cardiac glycogen synthase kinase-3β phosphorylation during ischemia-reperfusion.

    PubMed

    Abdillahi, Mariane; Ananthakrishnan, Radha; Vedantham, Srinivasan; Shang, Linshan; Zhu, Zhengbin; Rosario, Rosa; Zirpoli, Hylde; Bohren, Kurt M; Gabbay, Kenneth H; Ramasamy, Ravichandran

    2012-08-01

    Earlier studies have demonstrated that aldose reductase (AR) plays a key role in mediating ischemia-reperfusion (I/R) injury. Our objective was to investigate if AR mediates I/R injury by influencing phosphorylation of glycogen synthase kinase-3β (p-GSK3β). To investigate this issue, we used three separate models to study the effects of stress injury on the heart. Hearts isolated from wild-type (WT), human expressing AR transgenic (ARTg), and AR knockout (ARKO) mice were perfused with/without GSK3β inhibitors (SB-216763 and LiCl) and subjected to I/R. Ad-human AR (Ad-hAR)-expressing HL-1 cardiac cells were exposed to hypoxia (0.5% O(2)) and reoxygenation (20.9% O(2)) conditions. I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD) was used to study if p-GSK3β was affected through increased AR flux. Lactate dehydrogenase (LDH) release and left ventricular developed pressure (LVDP) were measured. LVDP was decreased in hearts from ARTg mice compared with WT and ARKO after I/R, whereas LDH release and apoptotic markers were increased (P < 0.05). p-GSK3β was decreased in ARTg hearts compared with WT and ARKO (P < 0.05). In ARKO, p-GSK3β and apoptotic markers were decreased compared with WT (P < 0.05). WT and ARTg hearts perfused with GSK3β inhibitors improved p-GSK3β expression and LVDP and exhibited decreased LDH release, apoptosis, and mitochondrial pore opening (P < 0.05). Ad-hAR-expressing HL-1 cardiac cells, exposed to hypoxia (0.5% O(2)) and reoxygenation (20.9% O(2)), had greater LDH release compared with control HL-1 cells (P < 0.05). p-GSK3β was decreased and correlated with increased apoptotic markers in Ad-hAR HL-1 cells (P < 0.05). Treatment with phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) inhibitor increased injury demonstrated by increased LDH release in ARTg, WT, and ARKO hearts and in Ad-hAR-expressing HL-1 cells. Cells treated with protein kinase C (PKC)

  18. Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity.

    PubMed

    Valvezan, Alexander J; Zhang, Fang; Diehl, J Alan; Klein, Peter S

    2012-02-01

    Glycogen synthase kinase-3 (GSK-3) is essential for many signaling pathways and cellular processes. As Adenomatous Polyposis Coli (APC) functions in many of the same processes, we investigated a role for APC in the regulation of GSK-3-dependent signaling. We find that APC directly enhances GSK-3 activity. Furthermore, knockdown of APC mimics inhibition of GSK-3 by reducing phosphorylation of glycogen synthase and by activating mTOR, revealing novel roles for APC in the regulation of these enzymes. Wnt signaling inhibits GSK-3 through an unknown mechanism, and this results in both stabilization of β-catenin and activation of mTOR. We therefore hypothesized that Wnts may regulate GSK-3 by disrupting the interaction between APC and the Axin-GSK-3 complex. We find that Wnts rapidly induce APC dissociation from Axin, correlating with β-catenin stabilization. Furthermore, Axin interaction with the Wnt co-receptor LRP6 causes APC dissociation from Axin. We propose that APC regulates multiple signaling pathways by enhancing GSK-3 activity, and that Wnts induce APC dissociation from Axin to reduce GSK-3 activity and activate downstream signaling. APC regulation of GSK-3 also provides a novel mechanism for Wnt regulation of multiple downstream effectors, including β-catenin and mTOR. PMID:22184111

  19. ADIPOCYTES FROM WOMEN WITH POLYCYSTIC OVARY SYNDROME DEMONSTRATE ALTERED PHOSPHORYLATION AND ACTIVITY OF GLYCOGEN SYNTHASE KINASE 3

    PubMed Central

    Chang, Wendy; Goodarzi, Mark O.; Williams, Heith; Magoffin, Denis A.; Pall, Marita; Azziz, Ricardo

    2009-01-01

    Objective To test the hypothesis that an abnormality in glycogen synthase kinase-3 (GSK3) is a pathogenic factor in PCOS. Design Prospective experimental study (adipocytes). Setting Tertiary care academic medical center and teaching hospital Patients Patients with PCOS and healthy controls. Interventions Blood sampling, physical exam, biopsy of subcutaneous lower abdominal fat. Main Outcome Measure(s) Glucose transport and protein levels and phosphorylation state of GSK3α and GSK3β in adipocytes, assessment of GSK3β activity. Results Basal protein levels of glycogen synthase kinase (GSK3α and GSK3β) did not differ between controls and women with PCOS, nor did basal or insulin-stimulated levels of serine phosphorylated GSK3α. However, in adipocytes of PCOS women insulin stimulation was not associated with increased serine phosphorylation of GSK3β, in contrast to controls. Tyrosine phosphorylation of GSK3β was also higher in PCOS compared to controls. Consistent with the phosphorylation data, GSK3β activity was elevated in PCOS adipocytes. Conclusions These data suggest GSK3β is hyperactivated and resistant to downregulation by insulin in PCOS. Using physiologic approaches, we demonstrated that abnormal GSK3β regulation is a potential mechanism for the insulin resistance seen in some women with PCOS, which may contribute to their development of the syndrome. PMID:18178198

  20. Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling

    SciTech Connect

    Gupta, Vivek; Chitranshi, Nitin; You, Yuyi; Gupta, Veer; Klistorner, Alexander; Graham, Stuart

    2014-11-21

    Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling in the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF{sup +/−} animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling.

  1. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  2. Antisense Oligonucleotide-mediated Suppression of Muscle Glycogen Synthase 1 Synthesis as an Approach for Substrate Reduction Therapy of Pompe Disease.

    PubMed

    Clayton, Nicholas P; Nelson, Carol A; Weeden, Timothy; Taylor, Kristin M; Moreland, Rodney J; Scheule, Ronald K; Phillips, Lucy; Leger, Andrew J; Cheng, Seng H; Wentworth, Bruce M

    2014-01-01

    Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA; EC 3.2.1.20) and the resultant progressive lysosomal accumulation of glycogen in skeletal and cardiac muscles. Enzyme replacement therapy using recombinant human GAA (rhGAA) has proven beneficial in addressing several aspects of the disease such as cardiomyopathy and aberrant motor function. However, residual muscle weakness, hearing loss, and the risks of arrhythmias and osteopenia persist despite enzyme therapy. Here, we evaluated the relative merits of substrate reduction therapy (by inhibiting glycogen synthesis) as a potential adjuvant strategy. A phosphorodiamidate morpholino oligonucleotide (PMO) designed to invoke exon skipping and premature stop codon usage in the transcript for muscle specific glycogen synthase (Gys1) was identified and conjugated to a cell penetrating peptide (GS-PPMO) to facilitate PMO delivery to muscle. GS-PPMO systemic administration to Pompe mice led to a dose-dependent decrease in glycogen synthase transcripts in the quadriceps, and the diaphragm but not the liver. An mRNA response in the heart was seen only at the higher dose tested. Associated with these decreases in transcript levels were correspondingly lower tissue levels of muscle specific glycogen synthase and activity. Importantly, these reductions resulted in significant decreases in the aberrant accumulation of lysosomal glycogen in the quadriceps, diaphragm, and heart of Pompe mice. Treatment was without any overt toxicity, supporting the notion that substrate reduction by GS-PPMO-mediated inhibition of muscle specific glycogen synthase represents a viable therapeutic strategy for Pompe disease after further development. PMID:25350581

  3. Synthesis of benzimidazole based thiadiazole and carbohydrazide conjugates as glycogen synthase kinase-3β inhibitors with anti-depressant activity.

    PubMed

    Khan, Imran; Tantray, Mushtaq A; Hamid, Hinna; Alam, Mohammad Sarwar; Kalam, Abul; Dhulap, Abhijeet

    2016-08-15

    A series of benzimidazole based thiadiazole and carbohydrazide conjugates have been synthesized and evaluated for inhibition of glycogen synthase kinase-3β and anti-depressant effect. Compounds 4f, 4j, 5b, 5g and 5i were found to be the most potent inhibitors of GSK-3β in vitro amongst the twenty-five benzimidazole based thiadiazole and carbohydrazide conjugates synthesized. Compound 5i was also found to exhibit significant antidepressant activity in vivo at 50mg/kg, when compared to fluoxetine, a known antidepressant drug. The molecular docking studies revealed multiple hydrogen bond interactions by the synthesized compounds with various amino acid residues, viz, ASP-133, LYS-183, PRO-136, VAL-135, TYR-134, or LYS-60 at the GSK-3β receptor site. PMID:27406796

  4. Insulin alters cAMP-activated lipolysis but not cAMP-inhibited glycogen synthase in permeabilized adipocytes

    SciTech Connect

    Mooney, R.A.; Wisniewski, J.L.

    1986-05-01

    Lipolysis and, to a lesser extent, glycogen synthase activity are regulated in adipocytes by cellular cAMP and counter-regulated by insulin. These activities were measured in situ in digitonin (20 ..mu..g/ml) permeabilized rat adipocytes. Incorporation of /sup 3/H UDP-glucose into endogenous glycogen in the presence of KF, EDTA and 10mM glucose-6-phosphate was the basis of the G.S. assay. Cellular GS activity determined by this technique was 1.4 +/- 0.2 fold greater than that of matched homogenates. Insulin treatment of intact cells prior to permeabilization increased GS activity ratio (-/+ G-6-P) 2.5 fold when subsequently measured by the in situ assay. Following digitonin permeabilization, addition of cAMP to the suspension medium increased lipolysis 7 fold and decreased GS activity ratio to 0.38 +/- 0.01 from a basal value of 0.44 +/- 0.06. ATP had a negligible effect on lipolysis but decreased GS to 0.16 +/- 0.04. ATP plus cAMP was only slightly more effective on GS than ATP alone. Insulin at 10/sup -9/M inhibited cAMP-dependent lipolysis by 27% but had no effect on the cAMP- or ATP-dependent decrease in GS. These results suggest that insulin's counter-regulatory mechanisms on these two cAMP-dependent processes may be different.

  5. The glycogen synthase 2 gene (Gys2) displays parallel evolution between Old World and New World fruit bats.

    PubMed

    Qian, Yamin; Fang, Tao; Shen, Bin; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats rely largely on hepatic glycogenesis and glycogenolysis for postprandial blood glucose disposal and maintenance of glucose homeostasis during short time starvation, respectively. The glycogen synthase 2 encoded by the Gys2 gene plays a critical role in liver glycogen synthesis. To test whether the Gys2 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Gys2 gene in a number of bat species, including three Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our results showed that the Gys2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to OWFBs and NWFBs. Our explicit convergence test showed that posterior probabilities of convergence between several branches of OWFBs, and the NWFBs were markedly higher than that of divergence. Three parallel amino acid substitutions (Q72H, K371Q, and E666D) were detected among branches of OWFBs and NWFBs. Tests for parallel evolution showed that two parallel substitutions (Q72H and E666D) were driven by natural selection, while the K371Q was more likely to be fixed randomly. Thus, our results suggested that the Gys2 gene has undergone parallel evolution on amino acid level between OWFBs and NWFBs in relation to their carbohydrate metabolism. PMID:24258790

  6. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling

    PubMed Central

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2014-01-01

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. ST2L, the receptor for IL-33, is expressed on immune effector cells and lung epithelia, and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system, however its upstream internalization has not been studied. Here, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2LS446A) and phosphorylation site mutant (ST2LS442A) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Further, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation. PMID:25472995

  7. Glycogen synthase kinase-3β regulates tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis via the NF-κB pathway in hepatocellular carcinoma

    PubMed Central

    FU, KAI; PAN, HUAZHENG; LIU, SHIHAI; LV, JING; WAN, ZHAOJUN; LI, JIAO; SUN, QING; LIANG, JUN

    2015-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known for its ability to selectively induce apoptosis in malignant cells. However, human hepatocellular carcinoma (HCC) cells display resistance to TRAIL-induced cell death. The present study investigated whether TRAIL-induced apoptosis in HCC cells was enhanced by the administration of an inhibitor of glycogen synthase kinase-3β (GSK-3β) or by short hairpin RNA-mediated inhibition of GSK-3β. The results of the current study demonstrated that inhibition of GSK-3β significantly impairs the expression of the nuclear factor-κB (NF-κB) target genes Bcl-xL and clAP2 in HCC cells (P<0.05). This indicates that GSK-3β may regulate NF-κB target genes involved in cell survival. Furthermore, knockdown of Bcl-xL significantly enhanced the sensitizing effect of GSK-3β inhibitor on TRAIL-induced apoptosis (P<0.05). Overall, the present study provides a rationale for further exploration of GSK-3β inhibition combined with TRAIL as a novel treatment for HCC. PMID:26788169

  8. Potential Role of Glycogen Synthase Kinase-3β in Regulation of Myocardin Activity in Human Vascular Smooth Muscle Cells.

    PubMed

    Zhou, Yi-Xia; Shi, Zhan; Singh, Pavneet; Yin, Hao; Yu, Yan-Ni; Li, Long; Walsh, Michael P; Gui, Yu; Zheng, Xi-Long

    2016-02-01

    Glycogen synthase kinase (GSK)-3β, a serine/threonine kinase with an inhibitory role in glycogen synthesis in hepatocytes and skeletal muscle, is also expressed in cardiac and smooth muscles. Inhibition of GSK-3β results in cardiac hypertrophy through reducing phosphorylation and increasing transcriptional activity of myocardin, a transcriptional co-activator for serum response factor. Myocardin plays critical roles in differentiation of smooth muscle cells (SMCs). This study, therefore, aimed to examine whether and how inhibition of GSK-3β regulates myocardin activity in human vascular SMCs. Treatment of SMCs with the GSK-3β inhibitors AR-A014418 and TWS 119 significantly reduced endogenous myocardin activity, as indicated by lower expression of myocardin target genes (and gene products), CNN1 (calponin), TAGLN1 (SM22), and ACTA2 (SM α-actin). In human SMCs overexpressing myocardin through the T-REx system, treatment with either GSK-3β inhibitor also inhibited the expression of CNN1, TAGLN1, and ACTA2. These effects of GSK-3β inhibitors were mimicked by transfection with GSK-3β siRNA. Notably, both AR-A014418 and TWS 119 decreased the serine/threonine phosphorylation of myocardin. The chromatin immunoprecipitation assay showed that AR-A014418 treatment reduced myocardin occupancy of the promoter of the myocardin target gene ACTA2. Overexpression of a dominant-negative GSK-3β mutant in myocardin-overexpressing SMCs reduced the expression of calponin, SM22, and SM α-actin. As expected, overexpression of constitutively active or wild-type GSK-3β in SMCs without myocardin overexpression increased expression of these proteins. In summary, our results indicate that inhibition of GSK-3β reduces myocardin transcriptional activity, suggesting a role for GSK-3β in myocardin transcriptional activity and smooth muscle differentiation. PMID:26129946

  9. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila

    PubMed Central

    Érdi, Balázs; Nagy, Péter; Zvara, Ágnes; Varga, Ágnes; Pircs, Karolina; Ménesi, Dalma; Puskás, László G.; Juhász, Gábor

    2012-01-01

    Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis. PMID:22562043

  10. Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells.

    PubMed

    Ajmone-Cat, Maria Antonietta; D'Urso, Maria Cristina; di Blasio, Giorgia; Brignone, Maria Stefania; De Simone, Roberta; Minghetti, Luisa

    2016-07-01

    Repeated stimulation of TLR4 signaling by lipopolysaccharide (LPS) in microglia induces a state of tolerance/sensitization consisting in the reprogramming of the expression of pro-inflammatory genes in favor of anti-inflammatory ones. The molecular mechanisms underlying this adaptive response are far to be elucidated. Glycogen synthase kinase 3 (GSK3) has emerged as crucial regulator of TLR signaling, mediating the balance between pro- and anti-inflammatory functions in both periphery and central nervous system. The present study extends this notion identifying GSK3 as part of the molecular machinery regulating the LPS-adaptive response in microglial cells, by using primary microglial cultures and organotypic hippocampal slices (OHSCs). We found that lithium chloride (LiCl), a widely used GSK3 inhibitor and the mainstay treatment for bipolar disorder, reinforced the LPS adaptive response by enhancing both downregulation of pro-inflammatory genes (inducible nitric oxide synthase, interleukin 1β, interleukin 6, tumor necrosis factor α), and upregulation of genes typically associated to anti-inflammatory functions (interleukin 10 and MRC1). The effects of GSK3 inhibition were mimicked by Wnt3a, added exogenously, and reversed by Inhibitor of Wnt-Response-1-endo, a pharmacological disruptor of the canonical Wnt/β-catenin pathway, and GW9662, a selective peroxisome proliferator activated receptor γ antagonist, suggesting that these two pathways are involved in the regulation of LPS-tolerance/sensitization by GSK. Finally, LiCl treatment of OHSCs enhanced the protective functional consequences of the microglial adaptive response to LPS on oligodendrocyte maturation, as indicated by MBP mRNA upregulation. These results further indicate GSK3 as key component in the orchestration of neuroinflammation and target for neuroprotective strategies. PMID:26593276

  11. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    SciTech Connect

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  12. Lithium Regulates Keratinocyte Proliferation Via Glycogen Synthase Kinase 3 and NFAT2 (Nuclear Factor of Activated T Cells 2)

    PubMed Central

    Hampton, Philip J; Jans, Ralph; Flockhart, Ross J; Parker, Graeme; Reynolds, Nick J

    2012-01-01

    Certain environmental factors including drugs exacerbate or precipitate psoriasis. Lithium is the commonest cause of drug-induced psoriasis but underlying mechanisms are currently unknown. Lithium inhibits glycogen synthase kinase 3 (GSK-3). As lithium does not exacerbate other T-cell-mediated chronic inflammatory diseases, we investigated whether lithium may be acting directly on epidermal keratinocytes by inhibiting GSK-3. We report that lithium-induced keratinocyte proliferation at therapeutically relevant doses (1–2 mM) and increased the proportion of cells in S phase of the cell cycle. Inhibition of GSK-3 in keratinocytes by retroviral transduction of GSK-binding protein (an endogenous inhibitory protein) or through a highly selective pharmacological inhibitor also resulted in increased keratinocyte proliferation. Nuclear factor of activated T cells (NFAT) is an important substrate for GSK-3 and for cyclosporin, an effective treatment for psoriasis that inhibits NFAT activation in keratinocytes as well as in lymphocytes. Both lithium and genetic/pharmacological inhibition of GSK-3 resulted in increased nuclear localization of NFAT2 (NFATc1) and increased NFAT transcriptional activation. Finally, retroviral transduction of NFAT2 increased keratinocyte proliferation whereas siRNA-mediated knockdown of NFAT2 reduced keratinocyte proliferation and decreased epidermal thickness in an organotypic skin equivalent model. Taken together, these data identify GSK-3 and NFAT2 as key regulators of keratinocyte proliferation and as potential molecular targets relevant to lithium-provoked psoriasis. J. Cell. Physiol. 227: 1529–1537, 2012. © 2011 Wiley Periodicals, Inc. PMID:21678407

  13. TNF-α expression in neutrophils and its regulation by glycogen synthase kinase-3: a potentiating role for lithium.

    PubMed

    Giambelluca, Miriam S; Bertheau-Mailhot, Geneviève; Laflamme, Cynthia; Rollet-Labelle, Emmanuelle; Servant, Marc J; Pouliot, Marc

    2014-08-01

    Glycogen synthase kinase 3 (GSK-3) is associated with several cellular systems, including immune response. Lithium, a widely used pharmacological treatment for bipolar disorder, is a GSK-3 inhibitor. GSK-3α is the predominant isoform in human neutrophils. In this study, we examined the effect of GSK-3 inhibition on the production of TNF-α by neutrophils. In the murine air pouch model of inflammation, lithium chloride (LiCl) amplified TNF-α release. In lipopolysaccharide-stimulated human neutrophils, GSK-3 inhibitors mimicked the effect of LiCl, each potentiating TNF-α release after 4 h, in a concentration-dependent fashion, by up to a 3-fold increase (ED50 of 1 mM for lithium). LiCl had no significant effect on cell viability. A positive association was revealed between GSK-3 inhibition and prolonged activation of the p38/MNK1/eIF4E pathway of mRNA translation. Using lysine and arginine labeled with stable heavy isotopes followed by quantitative mass spectrometry, we determined that GSK-3 inhibition markedly increases (by more than 3-fold) de novo TNF-α protein synthesis. Our findings shed light on a novel mechanism of control of TNF-α expression in neutrophils with GSK-3 regulating mRNA translation and raise the possibility that lithium could be having a hitherto unforeseen effect on inflammatory diseases. PMID:24803542

  14. Interaction of yeast repressor-activator protein Ume6p with glycogen synthase kinase 3 homolog Rim11p.

    PubMed Central

    Malathi, K; Xiao, Y; Mitchell, A P

    1997-01-01

    Meiosis and expression of early meiotic genes in the budding yeast Saccharomyces cerevisiae depend upon Rim11p, Ume6p, and Ime1p. Rim11p (also called Mds1p and ScGSK3) is a protein kinase related to glycogen synthase kinase 3 (GSK3); Ume6p is an architectural transcription factor; and Imelp is a Ume6p-binding protein that provides a transcriptional activation domain. Rim11p is required for Ime1p-Ume6p interaction, and prior studies have shown that Rim11p binds to and phosphorylates Ime1p. We show here that Rim11p binds to and phosphorylates Ume6p, as well. Amino acid substitutions in Ume6p that alter a consensus GSK3 site reduce or abolish Rim11p-Ume6p interaction and Rim11p-dependent phosphorylation, and they cause defects in interaction between Ume6p and Ime1p and in meiotic gene expression. Therefore, interaction between Rim11p and Ume6p, resulting in phosphorylation of Ume6p, is required for Ime1p-Ume6p complex formation. Rim11p, like metazoan GSK3beta, phosphorylates both interacting subunits of a target protein complex. PMID:9372955

  15. The Canonical Wnt Signal Restricts the Glycogen Synthase Kinase 3/Fbw7-Dependent Ubiquitination and Degradation of Eya1 Phosphatase

    PubMed Central

    Sun, Ye

    2014-01-01

    Haploinsufficiency of Eya1 causes the branchio-oto-renal (BOR) syndrome, and abnormally high levels of Eya1 are linked to breast cancer progression and poor prognosis. Therefore, regulation of Eya1 activity is key to its tissue-specific functions and oncogenic activities. Here, we show that Eya1 is posttranslationally modified by ubiquitin and that its ubiquitination level is self-limited to prevent premature degradation. Eya1 has an evolutionarily conserved CDC4 phosphodegron (CPD) signal, a target site of glycogen synthase kinase 3 (GSK3) kinase and Fbw7 ubiquitin ligase, which is required for Eya1 ubiquitination. Genetic deletion of Fbw7 and pharmacological inhibition of GSK3 significantly decrease Eya1 ubiquitination. Conversely, activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the canonical Wnt signal suppresses Eya1 ubiquitination. Compound Eya1+/−; Wnt9b+/− mutants exhibit an increased penetrance of renal defect, indicating that they function in the same genetic pathway in vivo. Together, these findings reveal that the canonical Wnt and PI3K/Akt signal pathways restrain the GSK3/Fbw7-dependent Eya1 ubiquitination, and they further suggest that dysregulation of this novel axis contributes to tumorigenesis. PMID:24752894

  16. 5-imino-1,2,4-thiadiazoles: first small molecules as substrate competitive inhibitors of glycogen synthase kinase 3.

    PubMed

    Palomo, Valle; Perez, Daniel I; Perez, Concepcion; Morales-Garcia, Jose A; Soteras, Ignacio; Alonso-Gil, Sandra; Encinas, Arantxa; Castro, Ana; Campillo, Nuria E; Perez-Castillo, Ana; Gil, Carmen; Martinez, Ana

    2012-02-23

    Cumulative evidence strongly supports that glycogen synthase kinase-3 (GSK-3) is a pathogenic molecule when it is up-dysregulated, emerging as an important therapeutic target in severe unmet human diseases. GSK-3 specific inhibitors might be promising effective drugs for the treatment of devastating pathologies such as neurodegenerative diseases, stroke, and mood disorders. As GSK-3 has the ability to phosphorylate primed substrates, small molecules able to bind to this site should be perfect drug candidates, able to partially block the activity of the enzyme over some specific substrates. Here, we report substituted 5-imino-1,2,4-thiadiazoles as the first small molecules able to inhibit GSK-3 in a substrate competitive manner. These compounds are cell permeable, able to decrease inflammatory activation and to selectively differentiate neural stem cells. Overall, 5-imino-1,2,4-thiadiazoles are presented here as new molecules able to decrease neuronal cell death and to increase endogenous neurogenesis blocking the GSK-3 substrate site. PMID:22257026

  17. Cocaine regulates protein kinase B and glycogen synthase kinase-3 activity in selective regions of rat brain

    PubMed Central

    SA, Perrine; JS, Miller; EM, Unterwald

    2008-01-01

    Protein kinase B (Akt) signaling regulates dopamine-mediated locomotor behaviors. Here the ability of cocaine to regulate Akt and glycogen synthase kinase-3 (GSK3) was studied. Rats were injected with cocaine or saline in a binge-pattern, which consisted of 3 daily injections of 15 mg/kg cocaine or 1 ml/kg saline spaced one hour apart for 1, 3 or 14 days. Amygdala, nucleus accumbens, caudate putamen and hippocampus tissues were dissected 30 minutes following the last injection and analyzed for phosphorylated and total Akt and GSK3(α & β) protein levels using Western blot analysis. Phosphorylation of Akt on the threonine-308 residue was significantly reduced in the nucleus accumbens and increased in the amygdala after 1 day of cocaine treatment; however, these effects were not accompanied by a significant decrease in GSK3 phosphorylation. Phosphorylation of Akt and GSK3 were significantly reduced after 14 days of cocaine administration, an effect that was only observed in the amygdala. Cocaine did not alter Akt or GSK3 phosphorylation in the caudate putamen or hippocampus. The findings in nucleus accumbens may reflect dopaminergic motor-stimulant activity caused by acute cocaine, whereas the effects in amygdala may be associated with changes in emotional state that occur after acute and chronic cocaine exposure. PMID:18717814

  18. Endoplasmic Reticulum Stress Accelerates p53 Degradation by the Cooperative Actions of Hdm2 and Glycogen Synthase Kinase 3β

    PubMed Central

    Pluquet, Olivier; Qu, Li-Ke; Baltzis, Dionissios; Koromilas, Antonis E.

    2005-01-01

    Inactivation of the tumor suppressor p53 by degradation is a mechanism utilized by cells to adapt to endoplasmic reticulum (ER) stress. However, the mechanisms of p53 destabilization by ER stress are not known. We demonstrate here that the E3 ubiquitin-ligase Hdm2 is essential for the nucleocytoplasmic transport and proteasome-dependent degradation of p53 in ER-stressed cells. We also demonstrate that p53 phosphorylation at S315 and S376 is required for its nuclear export and degradation by Hdm2 without interfering with the ubiquitylation process. Furthermore, we show that p53 destabilization in unstressed cells utilizes the cooperative action of Hdm2 and glycogen synthase kinase 3β, a process that is enhanced in cells exposed to ER stress. In contrast to other stress pathways that stabilize p53, our findings further substantiate a negative role of ER stress in p53 activation with important implications for the function of the tumor suppressor in cells with a dysfunctional ER. PMID:16227590

  19. Glycogen synthase kinase-3--a promising therapeutic target: Dr Hagit Eldar-Finkelman interviewed by Emma Quigley.

    PubMed

    Eldar-Finkelman, Hagit

    2006-04-01

    Dr Hagit Eldar-Finkelman (Sackler School of Medicine, Israel) was interviewed by Emma Quigley (Commissioning Editor, Expert Opinion on Therapeutic Targets) on 16th February 2006. Born in Jerusalem, Dr Eldar-Finkelman received her BSc in Chemistry in 1984 and both her MSc in Physical Chemistry (1986) and PhD in Life Science (1993) from the Weizmann Institute of Science. She was a recipient of the British Council Award, which allowed her to conduct research in biological nuclear magnetic resonance at the University of Oxford in the laboratory of Professor George K Radda. Following postdoctoral work at the School of Medicine of the University of Washington with Nobel Laureate Professor Edwin G Krebs, she became an Assistant Professor in the Department of Medicine at Harvard Medical School. Dr Eldar-Finkelman joined the Sackler School of Medicine at Tel Aviv University in 1999. Dr Eldar-Finkelman's research focuses on the molecular mechanisms regulating the protein kinase glycogen synthase kinase-3 (GSK-3), and their implications in negative regulation of signalling pathways. In particular, her work aims to develop specific inhibitors for GSK-3 and to test their functions in vitro and in vivo, considering the concept that such inhibitors may be useful in insulin resistance and Type 2 diabetes. These studies provide a conceptual basis for development of GSK-3 inhibitors and may lead to design of small molecules for treatment of diabetes and or neurodegenerative disorders. PMID:16548769

  20. Insulin Receptor Substrate 2-mediated Phosphatidylinositol 3-kinase Signaling Selectively Inhibits Glycogen Synthase Kinase 3β to Regulate Aerobic Glycolysis*

    PubMed Central

    Landis, Justine; Shaw, Leslie M.

    2014-01-01

    Insulin receptor substrate 1 (IRS-1) and IRS-2 are cytoplasmic adaptor proteins that mediate the activation of signaling pathways in response to ligand stimulation of upstream cell surface receptors. Despite sharing a high level of homology and the ability to activate PI3K, only Irs-2 positively regulates aerobic glycolysis in mammary tumor cells. To determine the contribution of Irs-2-dependent PI3K signaling to this selective regulation, we generated an Irs-2 mutant deficient in the recruitment of PI3K. We identified four tyrosine residues (Tyr-649, Tyr-671, Tyr-734, and Tyr-814) that are essential for the association of PI3K with Irs-2 and demonstrate that combined mutation of these tyrosines inhibits glucose uptake and lactate production, two measures of aerobic glycolysis. Irs-2-dependent activation of PI3K regulates the phosphorylation of specific Akt substrates, most notably glycogen synthase kinase 3β (Gsk-3β). Inhibition of Gsk-3β by Irs-2-dependent PI3K signaling promotes glucose uptake and aerobic glycolysis. The regulation of unique subsets of Akt substrates by Irs-1 and Irs-2 may explain their non-redundant roles in mammary tumor biology. Taken together, our study reveals a novel mechanism by which Irs-2 signaling preferentially regulates tumor cell metabolism and adds to our understanding of how this adaptor protein contributes to breast cancer progression. PMID:24811175

  1. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    SciTech Connect

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  2. Progesterone Receptor A Stability Is Mediated by Glycogen Synthase Kinase-3β in the Brca1-deficient Mammary Gland*

    PubMed Central

    Wang, Shaohui; Li, Ying; Hsu, Pang-Hung; Lee, Sou-Ying; Kim, Yoon; Lee, Eva Y.-H. P.

    2013-01-01

    Germ line mutations of the BRCA1 gene increase the risk of breast and ovarian cancer, but the basis of this tissue-specific tumor predisposition is not fully understood. Previously, we reported that the progesterone receptors are stabilized in Brca1-deficient mammary epithelial cells, and treating with anti-progesterone delays mammary tumorigenesis in Brca1/p53 conditional knock-out mice, suggesting that the progesterone has a critical role in breast carcinogenesis. To further explore how the stability of progesterone receptor is modulated, here, we have found that glycogen synthase kinase (GSK)-3β phosphorylation of progesterone receptor-A (PR-A) facilitates its ubiquitination. GSK-3β-mediated phosphorylation of serine 390 in PR-A regulates its subsequent ubiquitination and protein stability. Expression of PR-AS390A mutant in the human breast epithelial cells, MCF-10A, results in enhanced proliferation and formation of aberrant acini structure in the three-dimensional culture. Consistently, reduction of phosphorylation of serine 390 of PR-A and GSK-3β activity is observed in the Brca1-deficient mammary gland. Taken together, these results provide important aspects of tissue specificity of BRCA1-mediated suppression of breast carcinogenesis. PMID:23880761

  3. Glycogen Synthase Kinase 3β Is Positively Regulated by Protein Kinase Cζ-Mediated Phosphorylation Induced by Wnt Agonists

    PubMed Central

    Tejeda-Muñoz, Nydia; González-Aguilar, Héctor; Santoyo-Ramos, Paula; Castañeda-Patlán, M. Cristina

    2015-01-01

    The molecular events that drive Wnt-induced regulation of glycogen synthase kinase 3β (GSK-3β) activity are poorly defined. In this study, we found that protein kinase Cζ (PKCζ) and GSK-3β interact mainly in colon cancer cells. Wnt stimulation induced a rapid GSK-3β redistribution from the cytoplasm to the nuclei in malignant cells and a transient PKC-mediated phosphorylation of GSK-3β at a different site from serine 9. In addition, while Wnt treatment induced a decrease in PKC-mediated phosphorylation of GSK-3β in nonmalignant cells, in malignant cells, this phosphorylation was increased. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of PKCζ abolished all of these effects, but unexpectedly, it also abolished the constitutive basal activity of GSK-3β. In vitro activity assays demonstrated that GSK-3β phosphorylation mediated by PKCζ enhanced GSK-3β activity. We mapped Ser147 of GSK-3β as the site phosphorylated by PKCζ, i.e., its mutation into alanine abolished GSK-3β activity, resulting in β-catenin stabilization and increased transcriptional activity, whereas phosphomimetic replacement of Ser147 by glutamic acid maintained GSK-3β basal activity. Thus, we found that PKCζ phosphorylates GSK-3β at Ser147 to maintain its constitutive activity in resting cells and that Wnt stimulation modifies the phosphorylation of Ser147 to regulate GSK-3β activity in opposite manners in normal and malignant colon cells. PMID:26711256

  4. Phosphorylation and activation of calcineurin by glycogen synthase (casein) kinase-1 and cyclic AMP-dependent protein kinase

    SciTech Connect

    Singh, T.J.; Wang, J.H.

    1986-05-01

    Calcineurin is a phosphoprotein phosphatase that is activated by divalent cations and further stimulated by calmodulin. In this study calcineurin is shown to be a substrate for both glycogen synthase (casein) kinase-1 (CK-1) and cyclic AMP-dependent protein kinase (A-kinase). Either kinase can catalyze the incorporation of 1.0-1.4 mol /sup 32/P/mol calcineurin. Analysis by SDS-PAGE revealed that only the ..cap alpha.. subunit is phosphorylated. Phosphorylation of calcineurin by either kinase leads to its activation. Using p-nitrophenyl phosphate as a substrate the authors observed a 2-3 fold activation of calcineurin by either Mn/sup 2 +/ or Ni/sup 2 +/ (in the presence or absence of calmodulin) after phosphorylation of calcineurin by either CK-1 or A-kinase. In the absence of Mn/sup 2 +/ or Ni/sup 2 +/ phosphorylated calcineurin, like the nonphosphorylated enzyme, showed very little activity. Ni/sup 2 +/ was a more potent activator of phosphorylated calcineurin compared to Mn/sup 2 +/. Higher levels of activation (5-8 fold) of calcineurin by calmodulin was observed when phosphorylated calcineurin was pretreated with Ni/sup 2 +/ before measurement of phosphatase activity. These results indicate that phosphorylation may be an important mechanism by which calcineurin activity is regulated by Ca/sup 2 +/.

  5. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3β

    PubMed Central

    Sundaresan, Nagalingam R.; Bindu, Samik; Pillai, Vinodkumar B.; Samant, Sadhana; Pan, Yong; Huang, Jing-Yi; Gupta, Madhu; Nagalingam, Raghu S.; Wolfgeher, Donald

    2015-01-01

    Tissue fibrosis is a major cause of organ dysfunction during chronic diseases and aging. A critical step in this process is transforming growth factor β1 (TGF-β1)-mediated transformation of fibroblasts into myofibroblasts, cells capable of synthesizing extracellular matrix. Here, we show that SIRT3 controls transformation of fibroblasts into myofibroblasts via suppressing the profibrotic TGF-β1 signaling. We found that Sirt3 knockout (KO) mice with age develop tissue fibrosis of multiple organs, including heart, liver, kidney, and lungs but not whole-body SIRT3-overexpressing mice. SIRT3 deficiency caused induction of TGF-β1 expression and hyperacetylation of glycogen synthase kinase 3β (GSK3β) at residue K15, which negatively regulated GSK3β activity to phosphorylate the substrates Smad3 and β-catenin. Reduced phosphorylation led to stabilization and activation of these transcription factors regulating expression of the profibrotic genes. SIRT3 deacetylated and activated GSK3β and thereby blocked TGF-β1 signaling and tissue fibrosis. These data reveal a new role of SIRT3 to negatively regulate aging-associated tissue fibrosis and discloses a novel phosphorylation-independent mechanism controlling the catalytic activity of GSK3β. PMID:26667039

  6. New applications for known drugs: Human glycogen synthase kinase 3 inhibitors as modulators of Aspergillus fumigatus growth.

    PubMed

    Sebastián, Víctor; Manoli, Maria-Tsampika; Pérez, Daniel I; Gil, Carmen; Mellado, Emilia; Martínez, Ana; Espeso, Eduardo A; Campillo, Nuria E

    2016-06-30

    Invasive aspergillosis (IA) is one of the most severe forms of fungi infection. IA disease is mainly due to Aspergillus fumigatus, an air-borne opportunistic pathogen. Mortality rate caused by IA is still very high (50-95%), because of difficulty in early diagnostics and reduced antifungal treatment options, thus new and efficient drugs are necessary. The aim of this work is, using Aspergillus nidulans as non-pathogen model, to develop efficient drugs to treat IA. The recent discovered role of glycogen synthase kinase-3 homologue, GskA, in A. fumigatus human infection and our previous experience on human GSK-3 inhibitors focus our attention on this kinase as a target for the development of antifungal drugs. With the aim to identify effective inhibitors of colonial growth of A. fumigatus we use A. nidulans as an accurate model for in vivo and in silico studies. Several well-known human GSK-3β inhibitors were tested for inhibition of A. nidulans colony growth. Computational tools as docking studies and binding site prediction was used to explain the different biological profile of the tested inhibitors. Three of the five tested hGSK3β inhibitors are able to reduce completely the colonial growth by covalent bind to the enzyme. Therefore these compounds may be useful in different applications to eradicate IA. PMID:27131621

  7. Inhibition of glycogen synthase kinase-3 beta induces apoptosis and mitotic catastrophe by disrupting centrosome regulation in cancer cells

    PubMed Central

    Yoshino, Yuki; Ishioka, Chikashi

    2015-01-01

    Glycogen synthase kinase-3 beta (GSK-3β) has been investigated as a therapeutic target for numerous human diseases including cancer because of their diverse cellular functions. Although GSK-3β inhibitors have been investigated as anticancer reagents, precise biological mechanisms remain to be determined. In this study, we investigated the anticancer effects of GSK-3β inhibitors on cancer cell lines and observed centrosome dysregulation which resulted in abnormal mitosis. Mitotic checkpoints sensed the mitotic abnormalities and induced apoptosis. For cells that were inherently resistant to apoptosis, cell death distinct from apoptosis was induced. After GSK-3β inhibitor treatment, these cells exhibited characteristic features of mitotic catastrophe, including distended and multivesiculated nuclei and inappropriate reductions in cyclin B1 expression. This suggested that mitotic catastrophe was an alternative mechanism in cells resistant to apoptosis. Although the role of GSK-3β in centrosomes has not yet been clarified, phosphorylated GSK-3β was localised in centrosomes. From these data, GSK-3β seems to regulate centrosome function. Thus, we propose that centrosome dysregulation is an important mechanism for the anticancer effects of GSK-3β inhibitors and that mitotic catastrophe serves as a safe-guard system to remove cells with any mitotic abnormalities induced by GSK-3β inhibition. PMID:26292722

  8. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3β.

    PubMed

    Sundaresan, Nagalingam R; Bindu, Samik; Pillai, Vinodkumar B; Samant, Sadhana; Pan, Yong; Huang, Jing-Yi; Gupta, Madhu; Nagalingam, Raghu S; Wolfgeher, Donald; Verdin, Eric; Gupta, Mahesh P

    2016-03-01

    Tissue fibrosis is a major cause of organ dysfunction during chronic diseases and aging. A critical step in this process is transforming growth factor β1 (TGF-β1)-mediated transformation of fibroblasts into myofibroblasts, cells capable of synthesizing extracellular matrix. Here, we show that SIRT3 controls transformation of fibroblasts into myofibroblasts via suppressing the profibrotic TGF-β1 signaling. We found that Sirt3 knockout (KO) mice with age develop tissue fibrosis of multiple organs, including heart, liver, kidney, and lungs but not whole-body SIRT3-overexpressing mice. SIRT3 deficiency caused induction of TGF-β1 expression and hyperacetylation of glycogen synthase kinase 3β (GSK3β) at residue K15, which negatively regulated GSK3β activity to phosphorylate the substrates Smad3 and β-catenin. Reduced phosphorylation led to stabilization and activation of these transcription factors regulating expression of the profibrotic genes. SIRT3 deacetylated and activated GSK3β and thereby blocked TGF-β1 signaling and tissue fibrosis. These data reveal a new role of SIRT3 to negatively regulate aging-associated tissue fibrosis and discloses a novel phosphorylation-independent mechanism controlling the catalytic activity of GSK3β. PMID:26667039

  9. Structural and Functional Characterization of Nrf2 Degradation by the Glycogen Synthase Kinase 3/β-TrCP Axis

    PubMed Central

    Rada, Patricia; Rojo, Ana I.; Evrard-Todeschi, Nathalie; Innamorato, Nadia G.; Cotte, Axelle; Jaworski, Tomasz; Tobón-Velasco, Julio C.; Devijver, Herman; García-Mayoral, María Flor; Van Leuven, Fred; Hayes, John D.

    2012-01-01

    The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of a genetic program, termed the phase 2 response, that controls redox homeostasis and participates in multiple aspects of physiology and pathology. Nrf2 protein stability is regulated by two E3 ubiquitin ligase adaptors, Keap1 and β-TrCP, the latter of which was only recently reported. Here, two-dimensional (2D) gel electrophoresis and site-directed mutagenesis allowed us to identify two serines of Nrf2 that are phosphorylated by glycogen synthase kinase 3β (GSK-3β) in the sequence DSGISL. Nuclear magnetic resonance studies defined key residues of this phosphosequence involved in docking to the WD40 propeller of β-TrCP, through electrostatic and hydrophobic interactions. We also identified three arginine residues of β-TrCP that participate in Nrf2 docking. Intraperitoneal injection of the GSK-3 inhibitor SB216763 led to increased Nrf2 and heme oxygenase-1 levels in liver and hippocampus. Moreover, mice with hippocampal absence of GSK-3β exhibited increased levels of Nrf2 and phase 2 gene products, reduced glutathione, and decreased levels of carbonylated proteins and malondialdehyde. This study establishes the structural parameters of the interaction of Nrf2 with the GSK-3/β-TrCP axis and its functional relevance in the regulation of Nrf2 by the signaling pathways that impinge on GSK-3. PMID:22751928

  10. Glycogen synthase kinase 3 regulates PAX3-FKHR-mediated cell proliferation in human alveolar rhabdomyosarcoma cells

    SciTech Connect

    Zeng, Fu-Yue; Dong, Hanqing; Cui, Jimmy; Liu, Lingling; Chen, Taosheng

    2010-01-01

    Patients with alveolar rhabdomyosarcoma (ARMS) have poorer response to conventional chemotherapy and lower survival rates than those with embryonal RMS (ERMS). To identify compounds that preferentially block the growth of ARMS, we conducted a small-scale screen of 160 kinase inhibitors against the ARMS cell line Rh30 and ERMS cell line RD and identified inhibitors of glycogen synthase kinase 3 (GSK3), including TWS119 as ARMS-selective inhibitors. GSK3 inhibitors inhibited cell proliferation and induced apoptosis more effectively in Rh30 than RD cells. Ectopic expression of fusion protein PAX3-FKHR in RD cells significantly increased their sensitivity to TWS119. Down-regulation of GSK3 by GSK3 inhibitors or siRNA significantly reduced the transcriptional activity of PAX3-FKHR. These results suggest that GSK3 is directly involved in regulating the transcriptional activity of PAX3-FKHR. Also, GSK3 phosphorylated PAX3-FKHR in vitro, suggesting that GSK3 might regulate PAX3-FKHR activity via phosphorylation. These findings support a novel mechanism of PAX3-FKHR regulation by GSK3 and provide a novel strategy to develop GSK inhibitors as anti-ARMS therapies.

  11. Glycogen synthase kinase 3 regulates PAX3-FKHR-mediated cell proliferation in human alveolar rhabdomyosarcoma cells.

    PubMed

    Zeng, Fu-Yue; Dong, Hanqing; Cui, Jimmy; Liu, Lingling; Chen, Taosheng

    2010-01-01

    Patients with alveolar rhabdomyosarcoma (ARMS) have poorer response to conventional chemotherapy and lower survival rates than those with embryonal RMS (ERMS). To identify compounds that preferentially block the growth of ARMS, we conducted a small-scale screen of 160 kinase inhibitors against the ARMS cell line Rh30 and ERMS cell line RD and identified inhibitors of glycogen synthase kinase 3 (GSK3), including TWS119 as ARMS-selective inhibitors. GSK3 inhibitors inhibited cell proliferation and induced apoptosis more effectively in Rh30 than RD cells. Ectopic expression of fusion protein PAX3-FKHR in RD cells significantly increased their sensitivity to TWS119. Down-regulation of GSK3 by GSK3 inhibitors or siRNA significantly reduced the transcriptional activity of PAX3-FKHR. These results suggest that GSK3 is directly involved in regulating the transcriptional activity of PAX3-FKHR. Also, GSK3 phosphorylated PAX3-FKHR in vitro, suggesting that GSK3 might regulate PAX3-FKHR activity via phosphorylation. These findings support a novel mechanism of PAX3-FKHR regulation by GSK3 and provide a novel strategy to develop GSK inhibitors as anti-ARMS therapies. PMID:19995556

  12. Glycogen synthase kinase-3β inhibition depletes the population of prostate cancer stem/progenitor-like cells and attenuates metastatic growth

    PubMed Central

    Kroon, Jan; in 't Veld, Lars S.; Buijs, Jeroen T.; Cheung, Henry; van der Horst, Geertje; van der Pluijm, Gabri

    2014-01-01

    Cancer cells with stem or progenitor properties play a pivotal role in the initiation, recurrence and metastatic potential of solid tumors, including those of the human prostate. Cancer stem cells are generally more resistant to conventional therapies thus requiring the characterization of key pathways involved in the formation and/or maintenance of this malignant cellular subpopulation. To this end, we identified Glycogen Synthase Kinase-3β (GSK-3β) as a crucial kinase for the maintenance of prostate cancer stem/progenitor-like cells and pharmacologic inhibition of GSK-3β dramatically decreased the size of this cellular subpopulation. This was paralleled by impaired clonogenicity, decreased migratory potential and dramatic morphological changes. In line with our in vitro observations, treatment with a GSK-3β inhibitor leads to a complete loss of tumorigenicity and a decrease in metastatic potential in preclinical in vivo models. These observed anti-tumor effects appear to be largely Wnt-independent as simultaneous Wnt inhibition does not reverse the observed antitumor effects of GSK-3β blockage. We found that GSK-3β activity is linked to cytoskeletal protein F-actin and inhibition of GSK-3β leads to disturbance of F-actin polymerization. This may underlie the dramatic effects of GSK-3β inhibition on prostate cancer migration. Furthermore, GSK-3β inhibition led to strongly decreased expression of several integrin types including the cancer stem cell-associated α2β1 integrin. Taken together, our mechanistic observations highlight the importance of GSK-3β activity in prostate cancer stemness and may facilitate the development of novel therapy for advanced prostate cancer. PMID:25344861

  13. Deficiency of sphingomyelin synthase-1 but not sphingomyelin synthase-2 causes hearing impairments in mice.

    PubMed

    Lu, Mei-Hong; Takemoto, Makoto; Watanabe, Ken; Luo, Huan; Nishimura, Masataka; Yano, Masato; Tomimoto, Hidekazu; Okazaki, Toshiro; Oike, Yuichi; Song, Wen-Jie

    2012-08-15

    Sphingomyelin (SM) is a sphingolipid reported to function as a structural component of plasma membranes and to participate in signal transduction. The role of SM metabolism in the process of hearing remains controversial. Here, we examined the role of SM synthase (SMS), which is subcategorized into the family members SMS1 and SMS2, in auditory function. Measurements of auditory brainstem response (ABR) revealed hearing impairment in SMS1−/− mice in a low frequency range (4–16 kHz). As a possible mechanism of this impairment, we found that the stria vascularis (SV) in these mice exhibited atrophy and disorganized marginal cells. Consequently, SMS1−/− mice exhibited significantly smaller endocochlear potentials (EPs). As a possible mechanism for EP reduction, we found altered expression patterns and a reduced level of KCNQ1 channel protein in the SV of SMS1−/− mice. These mice also exhibited reduced levels of distortion product otoacoustic emissions. Quantitative comparison of the SV atrophy, KCNQ1 expression, and outer hair cell density at the cochlear apical and basal turns revealed no location dependence, but more macrophage invasion into the SV was observed in the apical region than the basal region, suggesting a role of cochlear location-dependent oxidative stress in producing the frequency dependence of hearing loss in SMS1−/− mice. Elevated ABR thresholds, decreased EPs, and abnormal KCNQ1 expression patterns in SMS1−/− mice were all found to be progressive with age. Mice lacking SMS2, however, exhibited neither detectable hearing loss nor changes in their EPs. Taken together, our results suggest that hearing impairments occur in SMS1−/− but not SMS2−/− mice. Defects in the SV with subsequent reductions in EPs together with hair cell dysfunction may account, at least partially, for hearing impairments in SMS1−/− mice. PMID:22641779

  14. Impairment of calcium mobilization in phagocytic cells in glycogen storage disease type 1b.

    PubMed

    Korchak, H M; Garty, B Z; Stanley, C A; Baker, L; Douglas, S D; Kilpatrick, L

    1993-01-01

    Patients with glycogen storage disease (GSD) type 1b, in contrast to patients with GSD 1a, are susceptible to recurrent bacterial infections suggesting defective phagocytic function. We have demonstrated a selective defect in respiratory burst activity but not in degranulation by phagocytic cells in GSD 1b but not in GSD 1a. The respiratory burst abnormality in phagocytic cells from GSD 1b patients was associated with impaired calcium mobilization, whereas these processes were normal in GSD 1a patients. Therefore, the alteration in calcium mobilization was an indication of a signalling defect in phagocytic cells from GSD 1b. However, calcium mobilization was normal in lymphocytes, indicating that defective calcium mobilization was not a global finding in circulating leukocytes, but was specific to phagocytic cells. Calcium mobilization in response to ionomycin was reduced suggesting decreased calcium stores in GSD 1b neutrophils. Therefore, altered phagocytic cell function in GSD 1b patients appears to be associated with diminished calcium mobilization and defective calcium stores. This defective calcium signalling was associated with a selective defect in respiratory burst activity but not degranulation. PMID:8319725

  15. Impaired clearance of accumulated lysosomal glycogen in advanced Pompe disease despite high-level vector-mediated transgene expression

    PubMed Central

    Sun, Baodong; Zhang, Haoyue; Bird, Andrew; Li, Songtao; Young, Sarah P.; Koeberl, Dwight D.

    2013-01-01

    Background Infantile-onset glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) causes death early in childhood from cardiorespiratory failure in absence of effective treatment, whereas late-onset Pompe disease causes a progressive skeletal myopathy. The limitations of enzyme replacement therapy could potentially be addressed with adeno-associated virus (AAV) vector-mediated gene therapy. Methods AAV vectors containing tissue-specific regulatory cassettes, either liver-specific or muscle-specific, were administered to 12 and 17 month old Pompe disease mice to evaluate the efficacy of gene therapy in advanced Pompe disease. Biochemical correction was evaluated through GAA activity and glycogen content analyses of the heart and skeletal muscle. Western blotting, urinary biomarker, and Rotarod performance were evaluated following vector administration. Results The AAV vector containing the liver-specific regulatory cassette secreted high-level hGAA into the blood and corrected glycogen storage in the heart and diaphragm. The biochemical correction of the heart and diaphragm was associated with efficacy, as reflected by increased Rotarod performance; however, the clearance of glycogen from skeletal muscles was relatively impaired, in comparison with younger Pompe disease mice. An alternative vector containing a muscle-specific regulatory cassette transduced skeletal muscle with high efficiency, but also failed to achieve complete clearance of accumulated glycogen. Decreased transduction of the heart and liver in older mice, especially in females, was implicated as a cause for reduced efficacy in advanced Pompe disease. Conclusion The impaired efficacy of AAV vector-mediated gene therapy in old Pompe disease mice emphasized the need for early treatment to achieve full efficacy. PMID:19621331

  16. Decreased glycogen synthase kinase 3-beta levels and related physiological changes in Bacillus anthracis lethal toxin-treated macrophages.

    PubMed

    Tucker, Amy E; Salles, Isabelle I; Voth, Daniel E; Ortiz-Leduc, William; Wang, Han; Dozmorov, Igor; Centola, Michael; Ballard, Jimmy D

    2003-08-01

    The lethal factor (LF) component of Bacillus anthracis lethal toxin (LeTx) cleaves mitogen activated protein kinase kinases (MAPKKs) in a variety of different cell types, yet only macrophages are rapidly killed by this toxin. The reason for this selective killing is unclear, but suggests other factors may also be involved in LeTx intoxication. In the current study, DNA membrane arrays were used to identify broad changes in macrophage physiology after treatment with LeTx. Expression of genes regulated by MAPKK activity did not change significantly, yet a series of genes under glycogen synthase kinase-3-beta (GSK-3beta) regulation changed expression following LeTx treatment. Correlating with these transcriptional changes GSK-3beta was found to be below detectable levels in toxin-treated cells and an inhibitor of GSK-3beta, LiCl, sensitized resistant IC-21 macrophages to LeTx. In addition, zebrafish embryos treated with LeTx showed signs of delayed pigmentation and cardiac hypertrophy; both processes are subject to regulation by GSK-3beta. A putative compensatory response to loss of GSK-3beta was indicated by differential expression of three motor proteins following toxin treatment and Kif1C, a motor protein involved in sensitivity to LeTx, increased expression in toxin-sensitive cells yet decreased in resistant cells following toxin treatment. Differential expression of microtubule-associating proteins and a decrease in the level of cellular tubulin were detected in LeTx-treated cells, both of which can result from loss of GSK-3beta activity. These data provide new information on LeTx's overall influence on macrophage physiology and suggest loss of GSK-3beta contributes to cytotoxicity. PMID:12864812

  17. Genetic and Pharmacologic Targeting of Glycogen Synthase Kinase 3β Reinforces the Nrf2 Antioxidant Defense against Podocytopathy.

    PubMed

    Zhou, Sijie; Wang, Pei; Qiao, Yingjin; Ge, Yan; Wang, Yingzi; Quan, Songxia; Yao, Ricky; Zhuang, Shougang; Wang, Li Juan; Du, Yong; Liu, Zhangsuo; Gong, Rujun

    2016-08-01

    Evidence suggests that the glycogen synthase kinase 3 (GSK3)-dictated nuclear exclusion and degradation of Nrf2 is pivotal in switching off the self-protective antioxidant stress response after injury. Here, we examined the mechanisms underlying this regulation in glomerular disease. In primary podocytes, doxorubicin elicited cell death and actin cytoskeleton disorganization, concomitant with overactivation of GSK3β (the predominant GSK3 isoform expressed in glomerular podocytes) and minimal Nrf2 activation. SB216763, a highly selective small molecule inhibitor of GSK3, exerted a protective effect that depended on the potentiated Nrf2 antioxidant response, marked by increased Nrf2 expression and nuclear accumulation and augmented production of the Nrf2 target heme oxygenase-1. Ectopic expression of the kinase-dead mutant of GSK3β in cultured podocytes reinforced the doxorubicin-induced Nrf2 activation and prevented podocyte injury. Conversely, a constitutively active GSK3β mutant blunted the doxorubicin-induced Nrf2 response and exacerbated podocyte injury, which could be abolished by treatment with SB216763. In murine models of doxorubicin nephropathy or nephrotoxic serum nephritis, genetic targeting of GSK3β by doxycycline-inducible podocyte-specific knockout or pharmacologic targeting by SB216763 significantly attenuated albuminuria and ameliorated histologic signs of podocyte injury, including podocytopenia, loss of podocyte markers, podocyte de novo expression of desmin, and ultrastructural lesions of podocytopathy (such as foot process effacement). This beneficial outcome was likely attributable to an enhanced Nrf2 antioxidant response in glomerular podocytes because the selective Nrf2 antagonist trigonelline abolished the proteinuria-reducing and podocyte-protective effect. Collectively, our results suggest the GSK3β-regulated Nrf2 antioxidant response as a novel therapeutic target for protecting podocytes and treating proteinuric glomerulopathies. PMID

  18. OP33GLYCOGEN SYNTHASE KINASE INHIBITORS REDUCE 3D MIGRATION OF PATIENT DERIVED GLIOBLASTOMA MULTIFORME STEM CELLS

    PubMed Central

    Tams, Daniel M.; Murray, Clare; Barry, Simon T.; Lawler, Sean; Bruning-Richardson, Anke; Short, Susan

    2014-01-01

    INTRODUCTION: Glioblastoma multiforme (GBM) is a fast growing, highly invasive malignant brain tumour. Inhibition of tumour cell migration into normal brain tissue represents a major target for treatment. Glycogen synthase kinase (GSK-3) inhibition has been associated with reduced GBM invasion in in vitro and in vivo models. Targeting this pathway with established and/or novel drugs may elucidate more effective treatment combinations. METHOD: The effect of GSK-3 inhibitors BIO, AZD2858, AZ1293 and AZ1080 on GBM migration was assessed in patient derived GBM stem cells (GBM-1) and two established cell lines (U251 and U87) using a 3D collagen based assay. Multiple drug concentrations were investigated with up to 72 hours exposure. A migration index was determined using aggregate core size and cell migration area. Immunohistochemistry and immunocytochemistry were used to assess cell morphology and cytoskeletal changes. RESULTS: All compounds inhibit migration in this model. AZD2858 was the most potent, causing significant effects at 1 micro molar. All compounds were cytotoxic at between 10 and 20 micro molar. Cytoskeletal and nuclear abnormalities were noted following drug exposure in all cell lines. These data suggest that possible mechanisms for the anti-migratory effect of these compounds include effects on F-actin localization and microtubule polarity. Inhibition of migration and cell architecture changes occurred at non-toxic doses. CONCLUSION: Inhibition of GSK3 significantly reduced migration of this highly invasive tumour. It is evident from these data that inhibiting the complex biological mechanisms driven by GSK3 may aid treatment of GBM through a number of different mechanisms.

  19. Lovastatin modulates glycogen synthase kinase-3β pathway and inhibits mossy fiber sprouting after pilocarpine-induced status epilepticus.

    PubMed

    Lee, Chun-Yao; Jaw, Thomas; Tseng, Huan-Chin; Chen, I-Chun; Liou, Horng-Huei

    2012-01-01

    This study was undertaken to assay the effect of lovastatin on the glycogen synthase kinase-3 beta (GSK-3β) and collapsin responsive mediator protein-2 (CRMP-2) signaling pathway and mossy fiber sprouting (MFS) in epileptic rats. MFS in the dentate gyrus (DG) is an important feature of temporal lobe epilepsy (TLE) and is highly related to the severity and the frequency of spontaneous recurrent seizures. However, the molecular mechanism of MFS is mostly unknown. GSK-3β and CRMP-2 are the genes responsible for axonal growth and neuronal polarity in the hippocampus, therefore this pathway is a potential target to investigate MFS. Pilocarpine-induced status epilepticus animal model was taken as our researching material. Western blot, histological and electrophysiological techniques were used as the studying tools. The results showed that the expression level of GSK-3β and CRMP-2 were elevated after seizure induction, and the administration of lovastatin reversed this effect and significantly reduced the extent of MFS in both DG and CA3 region in the hippocampus. The alteration of expression level of GSK-3β and CRMP-2 after seizure induction proposes that GSK-3β and CRMP-2 are crucial for MFS and epiletogenesis. The fact that lovastatin reversed the expression level of GSK-3β and CRMP-2 indicated that GSK-3β and CRMP-2 are possible to be a novel mechanism of lovatstain to suppress MFS and revealed a new therapeutic target and researching direction for studying the mechanism of MFS and epileptogenesis. PMID:22761705

  20. Selective enhancement of the uptake and bioactivity of a TAT-conjugated peptide inhibitor of glycogen synthase kinase-3.

    PubMed

    Manceur, Aziza P; Driscoll, Brandon D; Sun, Wei; Audet, Julie

    2009-03-01

    The use of cell-penetrating peptides as transduction vectors is a promising approach to deliver peptides and proteins into cells. However, the uptake and bioavailability of trans-activating transcriptor (TAT)-conjugated molecules vary depending on the cell type and the cargo. This study aimed to determine whether a low-voltage electrical pulse can enhance the TAT-mediated delivery of peptide cargoes in different cell types. In TF-1 and mouse embryonic stem cells, the uptake of a novel detachable TAT-conjugated glycogen synthase kinase-3 (GSK-3) peptide inhibitor was enhanced by an order of magnitude without affecting the cell viability. A similar increase in uptake was achieved in primary mouse bone marrow cells while maintaining >80% of their viability. Interestingly, under these low-voltage conditions, the uptake of a control peptide not conjugated to TAT was not significantly increased. A T-cell factor/lymphoid enhancer factor (TCF/LEF) luciferase reporter assay was also used to assess the bioactivity of the TAT construct. The results indicated that cells loaded with a low-voltage electrical pulse had a twofold increase in TCF/LEF activity, which was equivalent to a level of GSK-3 inhibition similar to that of cells treated with 20 mmol/l lithium or 500 nmol/l (2'Z,3'E)-6-bromoindirubin-3'-oxime. These results demonstrate the usefulness of low-voltage electrical pulses to enhance the uptake and bioactivity of TAT-conjugated molecules in different cell types. PMID:19107119

  1. Valproate Inhibits Methamphetamine Induced Hyperactivity via Glycogen Synthase Kinase 3β Signaling in the Nucleus Accumbens Core

    PubMed Central

    Xing, Bo; Liang, Xiao-ping; Liu, Peng; Zhao, Yan; Chu, Zheng; Dang, Yong-hui

    2015-01-01

    Valproate (VPA) has recently been shown to influence the behavioral effects of psycho-stimulants. Although glycogen synthase kinase 3β (GSK3β) signaling in the nucleus accumbens (NAc) plays a key role in mediating dopamine (DA)-dependent behaviors, there is less direct evidence that how VPA acts on the GSK3β signaling in the functionally distinct sub-regions of the NAc, the NAc core (NAcC) and the NAc shell (NAcSh), during psycho-stimulant-induced hyperactivity. In the present study, we applied locomotion test after acute methamphetamine (MA) (2 mg/kg) injection to identify the locomotor activity of rats received repeated VPA (300 mg/kg) pretreatment. We next measured phosphor-GSK3β at serine 9 and total GSK3β levels in NAcC and NAcSh respectively to determine the relationship between the effect of VPA on MA-induced hyperlocomotor and changes in GSK3β activity. We further investigated whether microinjection of VPA (300 μg/0.5 μl/side, once daily for 7 consecutive days) into NAcC or NAcSh could affect hyperactivity induced by MA. Our data indicated that repeated VPA treatment attenuated MA-induced hyperlocomotor, and the effect was associated with decreased levels of phosphorylated GSK3β at Ser 9 in the NAcC. Moreover, repeated bilateral intra-NAcC, but not intra-NAcSh VPA treatment, significantly attenuated MA-induced hyperactivity. Our results suggested that GSK3β activity in NAcC contributes to the inhibitory effects of VPA on MA-induced hyperactivity. PMID:26030405

  2. Glycogen Synthase Kinase-3β (GSK3β) Binds to and Promotes the Actions of p53*

    PubMed Central

    Watcharasit, Piyajit; Bijur, Gautam N.; Song, Ling; Zhu, Jianhui; Chen, Xinbin; Jope, Richard S.

    2006-01-01

    The recent discovery of direct interactions between two important regulators of cell fate, the tumor suppressor p53 and glycogen synthase kinase-3β (GSK3β), led us to examine the mechanism and outcomes of this interaction. Two regions of p53 were identified that regulate its binding to GSK3β. Deletion of the p53 activation domain-1 (AD1), but not mutations that prevent MDM2 binding through the AD1 domain, enhanced GSK3β binding to p53, indicating that the AD1 domain interferes with p53 binding to GSK3β. Deletion of the p53 basic domain (BD) abrogated GSK3β binding, and a ten amino acid region within the C-terminal BD domain was identified as necessary for binding to GSK3β. GSK3β activity was not required for p53 binding, but inhibition of GSK3β stabilized the association, suggesting a transient interaction during which active GSK3β promotes actions of p53. This regulatory role of GSK3β was demonstrated by large reductions of p53-induced increases in the levels of MDM2, p21, and Bax when GSK3β was inhibited. Besides promoting p53-mediated transcription, GSK3β also contributed to mitochondrial p53 apoptotic signaling. After DNA damage, mitochondrial GSK3β co-immunoprecipitated with p53 and was activated, and inhibition of GSK3β blocked cytochrome c release and caspase-3 activation. Thus, GSK3β interacts with p53 in both the nucleus and mitochondria and promotes its actions at both sites. PMID:14523002

  3. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice

    PubMed Central

    Singh, Shailendra P.; Tao, Shixin; Fields, Timothy A.; Webb, Sydney; Harris, Raymond C.; Rao, Reena

    2015-01-01

    ABSTRACT Glycogen synthase kinase-3β (GSK3β) is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA) expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury. PMID:26092126

  4. Glycogen Synthase Kinase 3 Regulates Cell Death and Survival Signaling in Tumor Cells under Redox Stress1

    PubMed Central

    Venè, Roberta; Cardinali, Barbara; Arena, Giuseppe; Ferrari, Nicoletta; Benelli, Roberto; Minghelli, Simona; Poggi, Alessandro; Noonan, Douglas M.; Albini, Adriana; Tosetti, Francesca

    2014-01-01

    Targeting tumor-specific metabolic adaptations is a promising anticancer strategy when tumor defense mechanisms are restrained. Here, we show that redox-modulating drugs including the retinoid N-(4-hydroxyphenyl)retinamide (4HPR), the synthetic triterpenoid bardoxolone (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester), arsenic trioxide (As2O3), and phenylethyl isothiocyanate (PEITC), while affecting tumor cell viability, induce sustained Ser9 phosphorylation of the multifunctional kinase glycogen synthase kinase 3β (GSK3β). The antioxidant N-acetylcysteine decreased GSK3β phosphorylation and poly(ADP-ribose) polymerase cleavage induced by 4HPR, As2O3, and PEITC, implicating oxidative stress in these effects. GSK3β phosphorylation was associated with up-regulation of antioxidant enzymes, in particular heme oxygenase-1 (HO-1), and transient elevation of intracellular glutathione (GSH) in cells surviving acute stress, before occurrence of irreversible damage and death. Genetic inactivation of GSK3β or transfection with the non-phosphorylatable GSK3β-S9A mutant inhibited HO-1 induction under redox stress, while tumor cells resistant to 4HPR exhibited increased GSK3β phosphorylation, HO-1 expression, and GSH levels. The above-listed findings are consistent with a role for sustained GSK3β phosphorylation in a signaling network activating antioxidant effector mechanisms during oxidoreductive stress. These data underlie the importance of combination regimens of antitumor redox drugs with inhibitors of survival signaling to improve control of tumor development and progression and overcome chemoresistance. PMID:25246272

  5. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway

    PubMed Central

    GE, NING; LIU, CHAO; LI, GUOFENG; XIE, LIJUN; ZHANG, QINZENG; LI, LIPING; HAO, NA; ZHANG, JIANXIN

    2016-01-01

    The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling. For this purpose, we utilized an in vivo rat model of AMI by occluding the left anterior descending coronary artery. NaHS (0.39, 0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide (2 ml/kg, intravenously) were administered to the rats. The results demonstrated that the administration of medium- and high-dose NaHS and SB216763 significantly improved rat cardiac function, as evidenced by an increase in the mean arterial pressure, left ventricular developed pressure, contraction and relaxation rates, as well as a decrease in left ventricular end-diastolic pressure. In addition, the administration of NaHS and SB216763 attenuated myocardial injury as reflected by a decrease in apoptotic cell death and in the serum lactate dehydrogenase concentrations, and prevented myocardial structural changes. The administration of NaHS and SB216763 increased the concentrations of phosphorylated (p-)GSK-3β, the p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. Moreover, western blot and immunohistochemical analyses of apoptotic signaling pathway proteins further established the cardioprotective potential of NaHS, as reflected by the upregulation of Bcl-2 expression, the downregulation of Bax expression, and a decrease in the number of TUNEL-positive stained cells. These findings suggest that hydrosulfide exerts cardioprotective effects against AMI-induced apoptosis through the GSK-3β/β-catenin signaling pathway. PMID:27035393

  6. Phosphorylation of tau by glycogen synthase kinase 3beta affects the ability of tau to promote microtubule self-assembly.

    PubMed Central

    Utton, M A; Vandecandelaere, A; Wagner, U; Reynolds, C H; Gibb, G M; Miller, C C; Bayley, P M; Anderton, B H

    1997-01-01

    To study the effects of phosphorylation by glycogen synthase kinase-3beta (GSK-3beta) on the ability of the microtubule-associated protein tau to promote microtubule self-assembly, tau isoform 1 (foetal tau) and three mutant forms of this tau isoform were investigated. The three mutant forms of tau had the following serine residues, known to be phosphorylated by GSK-3, replaced with alanine residues so as to preclude their phosphorylation: (1) Ser-199 and Ser-202 (Ser-199/202-->Ala), (2) Ser-235 (Ser-235-->Ala) and (3) Ser-396 and Ser-404 (Ser-396/404-->Ala). Wild-type tau and the mutant forms of tau were phosphorylated with GSK-3beta, and their ability to promote microtubule self-assembly was compared with the corresponding non-phosphorylated tau species. In the non-phosphorylated form, wild-type tau and all of the mutants affected the mean microtubule length and number concentrations of assembled microtubules in a manner consistant with enhanced microtubule nucleation. Phosphorylation of these tau species with GSK-3beta consistently reduced the ability of a given tau species to promote microtubule self-assembly, although the affinity of the tau for the microtubules was not greatly affected by phosphorylation since the tau species remained largely associated with the microtubules. This suggests that the regulation of microtubule assembly can be controlled by phosphorylation of tau at sites accessible to GSK-3beta by a mechanism that does not necessarily involve the dissociation of tau from the microtubules. PMID:9169608

  7. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation

    PubMed Central

    Selenica, M-L; Jensen, H S; Larsen, A K; Pedersen, M L; Helboe, L; Leist, M; Lotharius, J

    2007-01-01

    Background and purpose: Glycogen synthase kinase-3 (GSK-3) affects neuropathological events associated with Alzheimeŕs disease (AD) such as hyperphosphorylation of the protein, tau. GSK-3β expression, enzyme activity and tau phosphorylated at AD-relevant epitopes are elevated in juvenile rodent brains. Here, we assess five GSK-3β inhibitors and lithium in lowering phosphorylated tau (p-tau) and GSK-3β enzyme activity levels in 12-day old postnatal rats. Experimental approach: Brain levels of inhibitors following treatment in vivo were optimized based on pharmacokinetic data. At optimal doses, p-tau (Ser396) levels in brain tissue was measured by immunoblotting and correlated with GSK-3β enzyme activities in the same tissues. Effects of GSK inhibitors on p-tau, GSK-3β activities and cell death were measured in a human neuronal cell line (LUHMES). Key results: Lithium and CHIR98014 reduced tau phosphorylation (Ser396) in the cortex and hippocampus of postnatal rats, while Alsterpaullone and SB216763 were effective only in hippocampus. AR-A014418 and Indirubin-3′-monoxime were ineffective in either brain region. Inhibition of p-tau in brain required several-fold higher levels of GSK inhibitors than the IC50 values obtained in recombinant or cell-based GSK-3β enzyme activity assays. The inhibitory effect on GSK-3β activity ex vivo correlated with protection against cell death and decrease of p-tau- in LUHMES cells, using low μM inhibitor concentrations. Conclusions and Implications: Selective small-molecule inhibitors of GSK-3 reduce tau phosphorylation in vivo. These findings corroborate earlier suggestions that GSK-3β may be an attractive target for disease-modification in AD and related conditions where tau phosphorylation is believed to contribute to disease pathogenesis. PMID:17906685

  8. RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease.

    PubMed

    Bian, Hong; Bian, Wei; Lin, Xiaoying; Ma, Zhaoyin; Chen, Wen; Pu, Ying

    2016-09-01

    To explore the effect of glycogen synthase kinase 3β (GSK-3β) silencing on Tau-5 phosphorylation in mice suffering Alzheimer disease (AD). GSK-3β was firstly silenced in human neuroblastoma SH-SY5Y cells using special lentivirus (LV) and the content of Tau (A-12), p-Tau (Ser396) and p-Tau (PHF-6) proteins. GSK-3β was also silenced in APP/PS1 mouse model of AD mice, which were divided into three groups (n = 10): AD, vehicle, and LV group. Ten C57 mice were used as control. The memory ability of mice was tested by square water maze, and the morphological changes of hippocampus and neuron death were analyzed by haematoxylin-eosin staining. Moreover, the levels of Tau and phosphorylated Tau (p-Tau) were detected by western blotting and immunohistochemistry, respectively. The lentivirus-mediated GSK-3β silencing system was successfully developed and silencing GSK-3β at the cellular level reduced Tau phosphorylation obviously. Moreover, GSK-3β silence significantly improved the memory ability of AD mice in LV group compared with AD group (P < 0.05) according to the latency periods and error numbers. As for the hippocampus morphology and neuron death, no significant change was observed between LV group and normal control. Immunohistochemical detection and western blotting revealed that the levels of Tau and p-Tau were significantly down-regulated after GSK-3β silence. Silencing GSK-3β may have a positive effect on inhibiting the pathologic progression of AD through down-regulating the level of p-Tau. PMID:27255602

  9. Glycogen metabolism in humans.

    PubMed

    Adeva-Andany, María M; González-Lucán, Manuel; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Ameneiros-Rodríguez, Eva

    2016-06-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through transporters, phosphorylation of glucose to glucose 6-phosphate, isomerization to glucose 1-phosphate, and formation of uridine 5'-diphosphate-glucose, which is the direct glucose donor for glycogen synthesis. Glycogenin catalyzes the formation of a short glucose polymer that is extended by the action of glycogen synthase. Glycogen branching enzyme introduces branch points in the glycogen particle at even intervals. Laforin and malin are proteins involved in glycogen assembly but their specific function remains elusive in humans. Glycogen is accumulated in the liver primarily during the postprandial period and in the skeletal muscle predominantly after exercise. In the cytosol, glycogen breakdown or glycogenolysis is carried out by two enzymes, glycogen phosphorylase which releases glucose 1-phosphate from the linear chains of glycogen, and glycogen debranching enzyme which untangles the branch points. In the lysosomes, glycogen degradation is catalyzed by α-glucosidase. The glucose 6-phosphatase system catalyzes the dephosphorylation of glucose 6-phosphate to glucose, a necessary step for free glucose to leave the cell. Mutations in the genes encoding the enzymes involved in glycogen metabolism cause glycogen storage diseases. PMID:27051594

  10. The Design and Synthesis of Potent and Selective Inhibitors of Trypanosoma brucei Glycogen Synthase Kinase 3 for the Treatment of Human African Trypanosomiasis

    PubMed Central

    2014-01-01

    Glycogen synthase kinase 3 (GSK3) is a genetically validated drug target for human African trypanosomiasis (HAT), also called African sleeping sickness. We report the synthesis and biological evaluation of aminopyrazole derivatives as Trypanosoma brucei GSK3 short inhibitors. Low nanomolar inhibitors, which had high selectivity over the off-target human CDK2 and good selectivity over human GSK3β enzyme, have been prepared. These potent kinase inhibitors demonstrated low micromolar levels of inhibition of the Trypanosoma brucei brucei parasite grown in culture. PMID:25198388

  11. Investigation and management of the hepatic glycogen storage diseases.

    PubMed

    Bhattacharya, Kaustuv

    2015-07-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease. PMID:26835382

  12. Investigation and management of the hepatic glycogen storage diseases

    PubMed Central

    2015-01-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease. PMID:26835382

  13. A Negative Feedback Control of Transforming Growth Factor-β Signaling by Glycogen Synthase Kinase 3-mediated Smad3 Linker Phosphorylation at Ser-204*

    PubMed Central

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D.; Zhang, Ying E.

    2009-01-01

    Through the action of its membrane-bound type I receptor, transforming growth factor-β (TGF-β) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo pto sis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-β and its related factors. Here, we show that TGF-β induces phos pho ryl a tion at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phos pho ryl a tion at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phos pho ryl a tion may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-β. PMID:19458083

  14. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta. PMID:19458083

  15. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis

    PubMed Central

    Rato, L.; Alves, M. G.; Dias, T. R.; Cavaco, J. E.; Oliveira, Pedro F.

    2015-01-01

    Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by 1H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters. PMID:26064993

  16. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis.

    PubMed

    Rato, L; Alves, M G; Dias, T R; Cavaco, J E; Oliveira, Pedro F

    2015-01-01

    Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by (1)H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters. PMID:26064993

  17. Inhibition of invasion by glycogen synthase kinase-3 beta inhibitors through dysregulation of actin re-organisation via down-regulation of WAVE2.

    PubMed

    Yoshino, Yuki; Suzuki, Manami; Takahashi, Hidekazu; Ishioka, Chikashi

    2015-08-14

    Cancer cell invasion is a critical phenomenon in cancer pathogenesis. Glycogen synthase kinase-3β (GSK-3β) has been reported to regulate cancer cell invasion both negatively and positively. Thus, the net effect of GSK-3β on invasion is unclear. In this report, we showed that GSK-3β inhibitors induced dysregulation of the actin cytoskeleton and functional insufficiency of focal adhesion, which resulted in suppressed invasion. In addition, WAVE2, an essential molecule for actin fibre branching, was down-regulated after GSK-3β inhibition. Collectively, we propose that the WAVE2-actin cytoskeleton axis is an important target of GSK-3β inhibitors in cancer cell invasion. PMID:26116771

  18. Discovery of a Highly Selective Glycogen Synthase Kinase-3 Inhibitor (PF-04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging.

    PubMed

    Liang, Steven H; Chen, Jinshan Michael; Normandin, Marc D; Chang, Jeanne S; Chang, George C; Taylor, Christine K; Trapa, Patrick; Plummer, Mark S; Para, Kimberly S; Conn, Edward L; Lopresti-Morrow, Lori; Lanyon, Lorraine F; Cook, James M; Richter, Karl E G; Nolan, Charlie E; Schachter, Joel B; Janat, Fouad; Che, Ye; Shanmugasundaram, Veerabahu; Lefker, Bruce A; Enerson, Bradley E; Livni, Elijahu; Wang, Lu; Guehl, Nicolas J; Patnaik, Debasis; Wagner, Florence F; Perlis, Roy; Holson, Edward B; Haggarty, Stephen J; El Fakhri, Georges; Kurumbail, Ravi G; Vasdev, Neil

    2016-08-01

    Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology, and neurology. N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) has been identified as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. Its efficacy was demonstrated in modulation of tau phosphorylation in vitro and in vivo. Whereas the kinetics of PF-367 binding in brain tissues are too fast for an effective therapeutic agent, the pharmacokinetic profile of PF-367 is ideal for discovery of radiopharmaceuticals for GSK-3 in the central nervous system. A (11) C-isotopologue of PF-367 was synthesized and preliminary PET imaging studies in non-human primates confirmed that we have overcome the two major obstacles for imaging GSK-3, namely, reasonable brain permeability and displaceable binding. PMID:27355874

  19. Silencing Glycogen Synthase Kinase-3β Inhibits Acetaminophen Hepatotoxicity and Attenuates JNK Activation and Loss of Glutamate Cysteine Ligase and Myeloid Cell Leukemia Sequence 1*

    PubMed Central

    Shinohara, Mie; Ybanez, Maria D.; Win, Sanda; Than, Tin Aung; Jain, Shilpa; Gaarde, William A.; Han, Derick; Kaplowitz, Neil

    2010-01-01

    Previously we demonstrated that c-Jun N-terminal kinase (JNK) plays a central role in acetaminophen (APAP)-induced liver injury. In the current work, we examined other possible signaling pathways that may also contribute to APAP hepatotoxicity. APAP treatment to mice caused glycogen synthase kinase-3β (GSK-3β) activation and translocation to mitochondria during the initial phase of APAP-induced liver injury (∼1 h). The silencing of GSK-3β, but not Akt-2 (protein kinase B) or glycogen synthase kinase-3α (GSK-3α), using antisense significantly protected mice from APAP-induced liver injury. The silencing of GSK-3β affected several key pathways important in conferring protection against APAP-induced liver injury. APAP treatment was observed to promote the loss of glutamate cysteine ligase (GCL, rate-limiting enzyme in GSH synthesis) in liver. The silencing of GSK-3β decreased the loss of hepatic GCL, and promoted greater GSH recovery in liver following APAP treatment. Silencing JNK1 and -2 also prevented the loss of GCL. APAP treatment also resulted in GSK-3β translocation to mitochondria and the degradation of myeloid cell leukemia sequence 1 (Mcl-1) in mitochondrial membranes in liver. The silencing of GSK-3β reduced Mcl-1 degradation caused by APAP treatment. The silencing of GSK-3β also resulted in an inhibition of the early phase (0–2 h), and blunted the late phase (after 4 h) of JNK activation and translocation to mitochondria in liver following APAP treatment. Taken together our results suggest that activation of GSK-3β is a key mediator of the initial phase of APAP-induced liver injury through modulating GCL and Mcl-1 degradation, as well as JNK activation in liver. PMID:20061376

  20. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus.

    PubMed Central

    Vestergaard, H; Lund, S; Larsen, F S; Bjerrum, O J; Pedersen, O

    1993-01-01

    In patients with non-insulin-dependent diabetes mellitus (NIDDM) and matched control subjects we examined the interrelationships between in vivo nonoxidative glucose metabolism and glucose oxidation and the muscle activities, as well as the immunoreactive protein and mRNA levels of the rate-limiting enzymes in glycogen synthesis and glycolysis, glycogen synthase (GS) and phosphofructokinase (PFK), respectively. Analysis of biopsies of quadriceps muscle from 19 NIDDM patients and 19 control subjects showed in the basal state a 30% decrease (P < 0.005) in total GS activity and a 38% decrease (P < 0.001) in GS mRNA/microgram DNA in NIDDM patients, whereas the GS protein level was normal. The enzymatic activity and protein and mRNA levels of PFK were all normal in diabetic patients. In subgroups of NIDDM patients and control subjects an insulin-glucose clamp in combination with indirect calorimetry was performed. The rate of insulin-stimulated nonoxidative glucose metabolism was decreased by 47% (P < 0.005) in NIDDM patients, whereas the glucose oxidation rate was normal. The PFK activity, protein level, and mRNA/microgram DNA remained unchanged. The relative activation of GS by glucose-6-phosphate was 33% lower (P < 0.02), whereas GS mRNA/micrograms DNA was 37% lower (P < 0.05) in the diabetic patients after 4 h of hyperinsulinemia. Total GS immunoreactive mass remained normal. In conclusion, qualitative but not quantitative posttranslational abnormalities of the GS protein in muscle determine the reduced insulin-stimulated nonoxidative glucose metabolism in NIDDM. Images PMID:8514849

  1. Inhibition of glycogen synthase kinase-3β attenuates organ injury and dysfunction associated with liver ischemia-reperfusion and thermal injury in the rat.

    PubMed

    Rocha, Joao; Figueira, Maria-Eduardo; Barateiro, Andreia; Fernandes, Adelaide; Brites, Dora; Pinto, Rui; Freitas, Marisa; Fernandes, Eduarda; Mota-Filipe, Helder; Sepodes, Bruno

    2015-04-01

    Glycogen synthase kinase 3 (GSK-3) is a serine-threonine kinase discovered decades ago to have an important role in glycogen metabolism. Today, we know that this kinase is involved in the regulation of many cell functions, including insulin signaling, specification of cell fate during embryonic development, and the control of cell division and apoptosis. Insulin and TDZD-8 (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione) are inhibitors of GSK-3β that have been shown to possess organ-protective effects in inflammatory-mediated organ injury models. We aimed to evaluate the cytoprotective effect of GSK-3β inhibition on rat models of liver ischemia-reperfusion and thermal injury. In the liver ischemia-reperfusion model, TDZD-8 and insulin were administered at 5 mg/kg (i.v.) and 1.4 IU/kg (i.v.), respectively, 30 min before induction of ischemia and led to the significant reduction of the serum concentration of aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase, and lactate dehydrogenase. Beneficial effects were found to be independent from blood glucose levels. In the thermal injury model, TDZD-8 was administered at 5 mg/kg (i.v.) 5 min before induction of injury and significantly reduced multiple organ dysfunction markers (liver, neuromuscular, and lung). In the lung, TDZD-8 reduced the histological signs of tissue injury, inflammatory markers (cytokines), and neutrophil chemotaxis/infiltration; reduced GSK-3β, nuclear factor-κB, and Akt activation; reduced caspase-3 and metalloproteinase-9 activation. Our study provides a new insight on the beneficial effects of GSK-3β inhibition on systemic inflammation and further elucidates the mechanism and pathway crosstalks by which TDZD-8 reduces the multiple organ injury elicited by thermal injury. PMID:25394244

  2. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH2-terminal (sites 2 + 2a) phosphorylation

    PubMed Central

    Birk, Jesper B.; Richter, Erik A.; Ribel-Madsen, Rasmus; Pehmøller, Christian; Hansen, Bo Falck; Beck-Nielsen, Henning; Hirshman, Michael F.; Goodyear, Laurie J.; Vaag, Allan; Poulsen, Pernille; Wojtaszewski, Jørgen F. P.

    2013-01-01

    Type 2 diabetes is characterized by reduced muscle glycogen synthesis. The key enzyme in this process, glycogen synthase (GS), is activated via proximal insulin signaling, but the exact molecular events remain unknown. Previously, we demonstrated that phosphorylation of Thr308 on Akt (p-Akt-Thr308), Akt2 activity, and GS activity in muscle were positively associated with insulin sensitivity. Here, in the same study population, we determined the influence of several upstream elements in the canonical PI3K signaling on muscle GS activation. One-hundred eighty-one nondiabetic twins were examined with the euglycemic hyperinsulinemic clamp combined with excision of muscle biopsies. Insulin signaling was evaluated at the levels of the insulin receptor, IRS-1-associated PI3K (IRS-1-PI3K), Akt, and GS employing activity assays and phosphospecific Western blotting. The insulin-stimulated GS activity was positively associated with p-Akt-Thr308 (P = 0.01) and Akt2 activity (P = 0.04) but not p-Akt-Ser473 or IRS-1-PI3K activity. Furthermore, p-Akt-Thr308 and Akt2 activity were negatively associated with NH2-terminal GS phosphorylation (P = 0.001 for both), which in turn was negatively associated with insulin-stimulated GS activity (P < 0.001). We found no association between COOH-terminal GS phosphorylation and Akt or GS activity. Employing whole body Akt2-knockout mice, we validated the necessity for Akt2 in insulin-mediated GS activation. However, since insulin did not affect NH2-terminal phosphorylation in mice, we could not use this model to validate the observed association between GS NH2-terminal phosphorylation and Akt activity in humans. In conclusion, our study suggests that although COOH-terminal dephosphorylation is likely necessary for GS activation, Akt2-dependent NH2-terminal dephosphorylation may be the site for “fine-tuning” insulin-mediated GS activation in humans. PMID:23321478

  3. Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer's disease.

    PubMed

    Cha, Moon-Yong; Cho, Hyun Jin; Kim, Chaeyoung; Jung, Yang Ouk; Kang, Min Jueng; Murray, Melissa E; Hong, Hyun Seok; Choi, Young-Joo; Choi, Heesun; Kim, Dong Kyu; Choi, Hyunjung; Kim, Jisoo; Dickson, Dennis W; Song, Hyun Kyu; Cho, Jin Won; Yi, Eugene C; Kim, Jungsu; Jin, Seok Min; Mook-Jung, Inhee

    2015-11-15

    Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) is one of the protein glycosylations affecting various intracellular events. However, the role of O-GlcNAcylation in neurodegenerative diseases such as Alzheimer's disease (AD) is poorly understood. Mitochondrial adenosine 5'-triphosphate (ATP) synthase is a multiprotein complex that synthesizes ATP from ADP and Pi. Here, we found that ATP synthase subunit α (ATP5A) was O-GlcNAcylated at Thr432 and ATP5A O-GlcNAcylation was decreased in the brains of AD patients and transgenic mouse model, as well as Aβ-treated cells. Indeed, Aβ bound to ATP synthase directly and reduced the O-GlcNAcylation of ATP5A by inhibition of direct interaction between ATP5A and mitochondrial O-GlcNAc transferase, resulting in decreased ATP production and ATPase activity. Furthermore, treatment of O-GlcNAcase inhibitor rescued the Aβ-induced impairment in ATP production and ATPase activity. These results indicate that Aβ-mediated reduction of ATP synthase activity in AD pathology results from direct binding between Aβ and ATP synthase and inhibition of O-GlcNAcylation of Thr432 residue on ATP5A. PMID:26358770

  4. Nimbolide, a neem limonoid inhibits Phosphatidyl Inositol-3 Kinase to activate Glycogen Synthase Kinase-3β in a hamster model of oral oncogenesis

    PubMed Central

    Sophia, Josephraj; Kiran Kishore T., Kranthi; Kowshik, Jaganathan; Mishra, Rajakishore; Nagini, Siddavaram

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase is frequently inactivated by the oncogenic signalling kinases PI3K/Akt and MAPK/ERK in diverse malignancies. The present study was designed to investigate GSK-3β signalling circuits in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model and the therapeutic potential of the neem limonoid nimbolide. Inactivation of GSK-3β by phosphorylation at serine 9 and activation of PI3K/Akt, MAPK/ERK and β-catenin was associated with increased cell proliferation and apoptosis evasion during stepwise evolution of HBP carcinomas. Administration of nimbolide inhibited PI3K/Akt signalling with consequent activation of GSK-3β thereby inducing trafficking of β-catenin away from the nucleus and enhancing the expression of miR-126 and let-7. Molecular docking studies confirmed interaction of nimbolide with PI3K, Akt, ERK and GSK-3β. Furthermore, nimbolide attenuated cell proliferation and induced apoptosis as evidenced by increased p-cyclin D1Thr286 and pro-apoptotic proteins. The present study has unravelled aberrant phosphorylation as a key determinant for oncogenic signalling and acquisition of cancer hallmarks in the HBP model. The study has also provided mechanistic insights into the chemotherapeutic potential of nimbolide that may be a useful addition to the armamentarium of natural compounds targeting PI3K for oral cancer treatment. PMID:26902162

  5. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    SciTech Connect

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  6. Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation

    PubMed Central

    Noh, Kyung Tae; Cha, Gil Sun; Kang, Tae Heung; Cho, Joon; Jung, In Duk; Kim, Kwang-Youn; Ahn, Soon-Cheol; You, Ji Chang; Park, Yeong-Min

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine protein kinase that is known to mediate cancer cell death. Here, we show that B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is regulated by GSK-3β and that GSK-3β-mediated regulation of Bcl-2 is crucial for mitochondrial-dependent cell death in paclitaxel-stimulated cells. We demonstrate that MCF7 GSK-3β siRNA cells are more sensitive to cell death than MCF7 GFP control cells and that in the absence of GSK-3β, Bcl-2 levels are reduced, a result enhanced by paclitaxel. Paclitaxel-induced JNK (c-Jun N-terminal kinase) activation is critical for Bcl-2 modulation. In the absence of GSK-3β, Bcl-2 was unstable in an ubiquitination-dependent manner in both basal- and paclitaxel-treated cells. Furthermore, we demonstrate that GSK-3β-mediated regulation of Bcl-2 influences cytochrome C release and mitochondrial membrane potential. Taken together, our data suggest that GSK-3β-dependent regulation of Bcl-2 is crucial for mitochondria-dependent cell death in paclitaxel-mediated breast cancer therapy. [BMB Reports 2016; 49(1): 51-56] PMID:26246283

  7. Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation.

    PubMed

    Noh, Kyung Tae; Cha, Gil Sun; Kang, Tae Heung; Cho, Joon; Jung, In Duk; Kim, Kwang-Youn; Ahn, Soon-Cheol; You, Ji Chang; Park, Yeong-Min

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine protein kinase that is known to mediate cancer cell death. Here, we show that B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is regulated by GSK-3β and that GSK-3β-mediated regulation of Bcl-2 is crucial for mitochondrial-dependent cell death in paclitaxel-stimulated cells. We demonstrate that MCF7 GSK-3β siRNA cells are more sensitive to cell death than MCF7 GFP control cells and that in the absence of GSK-3β, Bcl-2 levels are reduced, a result enhanced by paclitaxel. Paclitaxel-induced JNK (c-Jun N-terminal kinase) activation is critical for Bcl-2 modulation. In the absence of GSK-3β, Bcl-2 was unstable in an ubiquitination-dependent manner in both basal- and paclitaxeltreated cells. Furthermore, we demonstrate that GSK-3β-mediated regulation of Bcl-2 influences cytochrome C release and mitochondrial membrane potential. Taken together, our data suggest that GSK-3β-dependent regulation of Bcl-2 is crucial for mitochondria-dependent cell death in paclitaxel-mediated breast cancer therapy. PMID:26246283

  8. Glycogen Synthase Kinase 3 Inactivation Drives T-bet-Mediated Downregulation of Co-receptor PD-1 to Enhance CD8(+) Cytolytic T Cell Responses.

    PubMed

    Taylor, Alison; Harker, James A; Chanthong, Kittiphat; Stevenson, Philip G; Zuniga, Elina I; Rudd, Christopher E

    2016-02-16

    Despite the importance of the co-receptor PD-1 in T cell immunity, the upstream signaling pathway that regulates PD-1 expression has not been defined. Glycogen synthase kinase 3 (GSK-3, isoforms α and β) is a serine-threonine kinase implicated in cellular processes. Here, we identified GSK-3 as a key upstream kinase that regulated PD-1 expression in CD8(+) T cells. GSK-3 siRNA downregulation, or inhibition by small molecules, blocked PD-1 expression, resulting in increased CD8(+) cytotoxic T lymphocyte (CTL) function. Mechanistically, GSK-3 inactivation increased Tbx21 transcription, promoting enhanced T-bet expression and subsequent suppression of Pdcd1 (encodes PD-1) transcription in CD8(+) CTLs. Injection of GSK-3 inhibitors in mice increased in vivo CD8(+) OT-I CTL function and the clearance of murine gamma-herpesvirus 68 and lymphocytic choriomeningitis clone 13 and reversed T cell exhaustion. Our findings identify GSK-3 as a regulator of PD-1 expression and demonstrate the applicability of GSK-3 inhibitors in the modulation of PD-1 in immunotherapy. PMID:26885856

  9. Glycogen Synthase Kinase 3 Inactivation Drives T-bet-Mediated Downregulation of Co-receptor PD-1 to Enhance CD8+ Cytolytic T Cell Responses

    PubMed Central

    Taylor, Alison; Harker, James A.; Chanthong, Kittiphat; Stevenson, Philip G.; Zuniga, Elina I.; Rudd, Christopher E.

    2016-01-01

    Summary Despite the importance of the co-receptor PD-1 in T cell immunity, the upstream signaling pathway that regulates PD-1 expression has not been defined. Glycogen synthase kinase 3 (GSK-3, isoforms α and β) is a serine-threonine kinase implicated in cellular processes. Here, we identified GSK-3 as a key upstream kinase that regulated PD-1 expression in CD8+ T cells. GSK-3 siRNA downregulation, or inhibition by small molecules, blocked PD-1 expression, resulting in increased CD8+ cytotoxic T lymphocyte (CTL) function. Mechanistically, GSK-3 inactivation increased Tbx21 transcription, promoting enhanced T-bet expression and subsequent suppression of Pdcd1 (encodes PD-1) transcription in CD8+ CTLs. Injection of GSK-3 inhibitors in mice increased in vivo CD8+ OT-I CTL function and the clearance of murine gamma-herpesvirus 68 and lymphocytic choriomeningitis clone 13 and reversed T cell exhaustion. Our findings identify GSK-3 as a regulator of PD-1 expression and demonstrate the applicability of GSK-3 inhibitors in the modulation of PD-1 in immunotherapy. PMID:26885856

  10. Glycogen synthase kinase-3β antagonizes ROS-induced hepatocellular carcinoma cell death through suppression of the apoptosis signal-regulating kinase 1.

    PubMed

    Zhang, Na; Liu, Lu; Dou, Yueying; Song, Danqing; Deng, Hongbin

    2016-07-01

    Glycogen synthase kinase-3β (GSK-3β), a multifunctional kinase, is an important regulator of cancer cell survival. Apoptosis signal-regulating kinase 1 (ASK1) is also a key factor for controlling several cellular events including the cell cycle, senescence, and apoptosis, in response to reactive oxygen species (ROS). The role of GSK-3β regulating the activity and protein level of ASK1 in the cancer cells remains largely unexplored. In this study, we showed that GSK-3β inhibits ROS-induced hepatocellular carcinoma cell death by suppressing ASK1. We first found that ectopic expression of GSK-3β suppressed hydrogen peroxide (H2O2)-induced cell death in HepG2 cells and knockdown of endogenous GSK-3β expression exhibited opposite effects. Moreover, GSK-3β expression clearly inhibited H2O2-induced phosphorylation of ASK1 in HepG2 cells, in association with a decrease in ASK1 protein level. Further exploration revealed that GSK-3β induced ubiquitination and proteasome-dependent degradation of ASK1 via inhibition of ubiquitin-specific protease USP9X. Our results thus suggest that GSK-3β is a key factor involved in ASK1 activation and ROS-induced cell death. PMID:27221474

  11. Overexpression of interleukin-18 protein reduces viability and induces apoptosis of tongue squamous cell carcinoma cells by activation of glycogen synthase kinase-3β signaling

    PubMed Central

    LIU, WEIWEI; HU, MIN; WANG, YUMEI; SUN, BAOZHEN; GUO, YU; XU, ZHIMIN; LI, JIA; HAN, BING

    2015-01-01

    The aim of this study was to investigate the effects of interleukin-18 (IL-18) expression on regulating the viability and apoptosis of tongue squamous cell carcinoma (TSCC) cells in vitro and examine the underlying molecular events. Human IL-18 cDNA was cloned into the vector pcDNA3.1 (+) and transfected into CRL-1623™ cells. Quantitative reverse transcription-PCR (RT-qPCR), western blot analysis, immunofluorescence, cell viability MTT assay, flow cytometric Annexin V/propidium iodide (PI), Giemsa staining, and caspase-3 activity assay were performed. The data showed that overexpression of IL-18 protein reduced TSCC cell viability by inducing apoptosis. Compared with cells transfected with the control vector, IL-18 expression activated caspase-3, -7, and -9 by inducing their cleavage and increased the expression of interferon (IFN)-γ and cytochrome c mRNA, but reduced cyclin D1 and A1 expression in TSCC cells. IL-18 expression upregulated the expression and phosphorylation of glycogen synthase kinase (GSK)-3β protein in CRL1623 cells, whereas the selective GSK-3β inhibitor kenpaullone antagonized the effects of IL-18 protein on TSCC cells in vitro. The results indicated that IL-18 played an important role in the inhibition of TSCC cell growth and may be further investigated as a novel therapeutic target against TSCC. PMID:25591548

  12. Screening of inhibitors of glycogen synthase kinase-3β from traditional Chinese medicines using enzyme-immobilized magnetic beads combined with high-performance liquid chromatography.

    PubMed

    Li, Yunfang; Xu, Jia; Chen, Yu; Mei, Zhinan; Xiao, Yuxiu

    2015-12-18

    Glycogen synthase kinase-3β (GSK-3β) was immobilized on magnetic beads (MBs) by affinity method for the first time. The enzyme-immobilized MBs were coupled with high-performance liquid chromatography-ultraviolet (HPLC-UV) technique to establish a cost-effective and reliable method for screening of inhibitors of GSK-3β. A peptide substrate of GSK-3β containing a tyrosine residue was employed since it can be sensitively detected by UV detector at 214nm. The substrate and its phosphorylated product were separated by baseline within 10min. The enzyme activity was determined by the quantification of peak area of the product. Parameters including enzyme immobilization, enzyme reaction and the performance of immobilized-enzyme were investigated. The immobilized enzyme can be reused for 10 times and remain stable for 4 days at 4°C. The inhibitory activities of extracts of 15 traditional Chinese medicines (TCMs) were screened. As a result, three of them including Euonymus fortunei, Amygdalus communis and Garcinia xanthochymus were found possessing high inhibitory activities (inhibition rate >90%). From G. xanthochymus, a new inhibitor of GSK-3β, fukugetin, was discovered with an IC50 value of 3.18±0.07μM. Enzyme kinetics and molecular docking experiments further revealed the inhibitory mechanism, indicating fukugetin was a non-ATP competitive inhibitor interacting with the phosphate recognizing substrate binding site of GSK-3β. PMID:26610618

  13. Glycogen Synthase Kinase-3β and Caspase-2 Mediate Ceramide- and Etoposide-Induced Apoptosis by Regulating the Lysosomal-Mitochondrial Axis

    PubMed Central

    Lin, Chiou-Feng; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Yu-Chih; Tseng, Po-Chun; Tsai, Tsung-Ting; Chen, Chia-Ling

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) regulates the sequential activation of caspase-2 and caspase-8 before mitochondrial apoptosis. Here, we report the regulation of Mcl-1 destabilization and cathepsin D-regulated caspase-8 activation by GSK-3β and caspase-2. Treatment with either the ceramide analogue C2-ceramide or the topoisomerase II inhibitor etoposide sequentially induced lysosomal membrane permeabilization (LMP), the reduction of mitochondrial transmembrane potential, and apoptosis. Following LMP, cathepsin D translocated from lysosomes to the cytoplasm, whereas inhibiting cathepsin D blocked mitochondrial apoptosis. Furthermore, cathepsin D caused the activation of caspase-8 but not caspase-2. Inhibiting GSK-3β and caspase-2 blocked Mcl-1 destabilization, LMP, cathepsin D re-localization, caspase-8 activation, and mitochondrial apoptosis. Expression of Mcl-1 was localized to the lysosomes, and forced expression of Mcl-1 prevented apoptotic signaling via the lysosomal-mitochondrial pathway. These results demonstrate the importance of GSK-3β and caspase-2 in ceramide- and etoposide-induced apoptosis through mechanisms involving Mcl-1 destabilization and the lysosomal-mitochondrial axis. PMID:26727221

  14. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    SciTech Connect

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y.

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  15. Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β

    PubMed Central

    Zhou, Mingjie; Ren, Huanhuan; Han, Jichun; Wang, Wenjuan; Zheng, Qiusheng; Wang, Dong

    2015-01-01

    Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R) injury in rats. Method. Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dtmax) were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL). The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined using enzyme linked immunosorbent assay (ELISA). Moreover, total glycogen synthase kinase-3β (GSK-3β), phospho-GSK-3β (P-GSK-3β), precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis. Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and ±dp/dtmax, as well as increased the levels of SOD and P-GSK-3β and GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α. Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3β activity in rats with I/R. PMID:26265983

  16. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220.

    PubMed

    Whiting, Jennifer L; Nygren, Patrick J; Tunquist, Brian J; Langeberg, Lorene K; Seternes, Ole-Morten; Scott, John D

    2015-08-01

    The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β. PMID:26088133

  17. Glycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma

    PubMed Central

    Chen, Eleanor Y.; DeRan, Michael T.; Ignatius, Myron S.; Grandinetti, Kathryn Brooke; Clagg, Ryan; McCarthy, Karin M.; Lobbardi, Riadh M.; Brockmann, Jillian; Keller, Charles; Wu, Xu; Langenau, David M.

    2014-01-01

    Embryonal rhabdomyosarcoma (ERMS) is a common pediatric malignancy of muscle, with relapse being the major clinical challenge. Self-renewing tumor-propagating cells (TPCs) drive cancer relapse and are confined to a molecularly definable subset of ERMS cells. To identify drugs that suppress ERMS self-renewal and induce differentiation of TPCs, a large-scale chemical screen was completed. Glycogen synthase kinase 3 (GSK3) inhibitors were identified as potent suppressors of ERMS growth through inhibiting proliferation and inducing terminal differentiation of TPCs into myosin-expressing cells. In support of GSK3 inhibitors functioning through activation of the canonical WNT/β-catenin pathway, recombinant WNT3A and stabilized β-catenin also enhanced terminal differentiation of human ERMS cells. Treatment of ERMS-bearing zebrafish with GSK3 inhibitors activated the WNT/β-catenin pathway, resulting in suppressed ERMS growth, depleted TPCs, and diminished self-renewal capacity in vivo. Activation of the canonical WNT/β-catenin pathway also significantly reduced self-renewal of human ERMS, indicating a conserved function for this pathway in modulating ERMS self-renewal. In total, we have identified an unconventional tumor suppressive role for the canonical WNT/β-catenin pathway in regulating self-renewal of ERMS and revealed therapeutic strategies to target differentiation of TPCs in ERMS. PMID:24706870

  18. Hypoxic inactivation of glycogen synthase kinase-3β promotes gastric tumor growth and angiogenesis by facilitating hypoxia-inducible factor-1 signaling.

    PubMed

    Ko, Young San; Cho, Sung Jin; Park, Jinju; Choi, Yiseul; Lee, Jae-Seon; Youn, Hong-Duk; Kim, Woo Ho; Kim, Min A; Park, Jong-Wan; Lee, Byung Lan

    2016-09-01

    Since the molecular mechanism of hypoxic adaptation in cancer cells is cell-type specific, we investigated whether glycogen synthase kinase-3β (GSK-3β) activation is involved in hypoxia-induced gastric tumor promotion. Stable gastric cancer cell lines (SNU-638, SNU-484, MKN1, and MKN45) were cultured under hypoxic conditions. Cells overexpressing wild-type GSK-3β (WT-GSK-3β) or kinase-dead mutant of GSK-3β (KD-GSK-3β) were generated and used for cell culture and animal studies. In cell culture experiments, hypoxia decreased GSK-3β activation in gastric cancer cells. Cell viability and the expressions of HIF-1α protein and VEGF mRNA in gastric cancer cells were higher in KD-GSK-3β transfectants than in WT-GSK-3β transfectants under hypoxic conditions, but not under normoxic conditions. Gastric cancer xenografts showed that tumor growth, microvessel area, HIF-1α activation, and VEGF expression were higher in KD-GSK-3β tumors than in WT-GSK-3β tumors in vivo. In addition, the expression of hypoxia-induced HIF-1α protein was regulated by GSK-3β at the translational level. Our data suggest that GSK-3β is involved in hypoxic adaptation of gastric cancer cells as an inhibitory upstream regulator of the HIF-1α/VEGF signaling pathway. PMID:27365055

  19. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.

    PubMed

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo

    2016-08-01

    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. PMID:27097102

  20. Glycogen synthase kinase-3 controls IL-10 expression in CD4+ effector T-cell subsets through epigenetic modification of the IL-10 promoter

    PubMed Central

    Hill, Elaine V; Ng, T H Sky; Burton, Bronwen R; Oakley, Charly M; Malik, Karim; Wraith, David C

    2015-01-01

    The serine/threonine kinase glycogen synthase kinase-3 (GSK3) plays an important role in balancing pro- and anti-inflammatory cytokines. We have examined the role of GSK3 in production of IL-10 by subsets of CD4+ T helper cells. Treatment of naive murine CD4+ T cells with GSK3 inhibitors did not affect their production of IL-10. However, treatment of Th1 and Th2 cells with GSK3 inhibitors dramatically increased production of IL-10. GSK3 inhibition also led to upregulation of IL-10 among Th1, Th2, and Th17 subsets isolated from human blood. The encephalitogenic potential of GSK3 inhibitor treated murine Th1 cells was significantly reduced in adoptive transfer experiments by an IL-10-dependent mechanism. Analysis of the murine IL-10 promoter in response to inhibition of GSK3 in Th1 cells showed modification to a transcriptionally active state indicated by changes in histone H3 acetylation and methylation. Additionally, GSK3 inhibition increased expression of the transcription factors c-Maf, Nfil3, and GATA3, correlating with the increase in IL-10. These findings are important in the context of autoimmune disease since they show that it is possible to reprogram disease-causing cells through GSK3 inhibition. PMID:25627813

  1. Glycogen synthase kinase-3-mediated phosphorylation of serine 73 targets sterol response element binding protein-1c (SREBP-1c) for proteasomal degradation.

    PubMed

    Dong, Qingming; Giorgianni, Francesco; Beranova-Giorgianni, Sarka; Deng, Xiong; O'Meally, Robert N; Bridges, Dave; Park, Edwards A; Cole, Robert N; Elam, Marshall B; Raghow, Rajendra

    2016-01-01

    Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that regulates genes involved in the de novo lipid synthesis and glycolysis pathways. The structure, turnover and transactivation potential of SREBP-1c are regulated by macronutrients and hormones via a cascade of signalling kinases. Using MS, we have identified serine 73 as a novel glycogen synthase kinase-3 (GSK-3) phosphorylation site in the rat SREBP-1c purified from McA-RH7777 hepatoma cells. Our site-specific mutagenesis strategy revealed that the turnover of SREBP-1c, containing wild type, phospho-null (serine to alanine) or phospho-mimetic (serine to aspartic acid) substitutions, was differentially regulated. We show that the S73D mutant of pSREBP-1c, that mimicked a state of constitutive phosphorylation, dissociated from the SREBP-1c-SCAP complex more readily and underwent GSK-3-dependent proteasomal degradation via SCF(Fbw7) ubiquitin ligase pathway. Pharmacologic inhibition of GSK-3 or knockdown of GSK-3 by siRNA prevented accelerated degradation of SREBP-1c. As demonstrated by MS, SREBP-1c was phosphorylated in vitro by GSK-3β at serine 73. Phosphorylation of serine 73 also occurs in the intact liver. We propose that GSK-3-mediated phosphorylation of serine 73 in the rat SREBP-1c and its concomitant destabilization represents a novel mechanism involved in the inhibition of de novo lipid synthesis in the liver. PMID:26589965

  2. Nimbolide, a neem limonoid inhibits Phosphatidyl Inositol-3 Kinase to activate Glycogen Synthase Kinase-3β in a hamster model of oral oncogenesis.

    PubMed

    Sophia, Josephraj; Kiran Kishore T, Kranthi; Kowshik, Jaganathan; Mishra, Rajakishore; Nagini, Siddavaram

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase is frequently inactivated by the oncogenic signalling kinases PI3K/Akt and MAPK/ERK in diverse malignancies. The present study was designed to investigate GSK-3β signalling circuits in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model and the therapeutic potential of the neem limonoid nimbolide. Inactivation of GSK-3β by phosphorylation at serine 9 and activation of PI3K/Akt, MAPK/ERK and β-catenin was associated with increased cell proliferation and apoptosis evasion during stepwise evolution of HBP carcinomas. Administration of nimbolide inhibited PI3K/Akt signalling with consequent activation of GSK-3β thereby inducing trafficking of β-catenin away from the nucleus and enhancing the expression of miR-126 and let-7. Molecular docking studies confirmed interaction of nimbolide with PI3K, Akt, ERK and GSK-3β. Furthermore, nimbolide attenuated cell proliferation and induced apoptosis as evidenced by increased p-cyclin D1(Thr286) and pro-apoptotic proteins. The present study has unravelled aberrant phosphorylation as a key determinant for oncogenic signalling and acquisition of cancer hallmarks in the HBP model. The study has also provided mechanistic insights into the chemotherapeutic potential of nimbolide that may be a useful addition to the armamentarium of natural compounds targeting PI3K for oral cancer treatment. PMID:26902162

  3. Glycogen synthase kinase-3-mediated phosphorylation of serine 73 targets sterol response element binding protein-1c (SREBP-1c) for proteasomal degradation

    PubMed Central

    Dong, Qingming; Giorgianni, Francesco; Beranova-Giorgianni, Sarka; Deng, Xiong; O'Meally, Robert N.; Bridges, Dave; Park, Edwards A.; Cole, Robert N.; Elam, Marshall B.; Raghow, Rajendra

    2015-01-01

    Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that regulates genes involved in the de novo lipid synthesis and glycolysis pathways. The structure, turnover and transactivation potential of SREBP-1c are regulated by macronutrients and hormones via a cascade of signalling kinases. Using MS, we have identified serine 73 as a novel glycogen synthase kinase-3 (GSK-3) phosphorylation site in the rat SREBP-1c purified from McA-RH7777 hepatoma cells. Our site-specific mutagenesis strategy revealed that the turnover of SREBP-1c, containing wild type, phospho-null (serine to alanine) or phospho-mimetic (serine to aspartic acid) substitutions, was differentially regulated. We show that the S73D mutant of pSREBP-1c, that mimicked a state of constitutive phosphorylation, dissociated from the SREBP-1c–SCAP complex more readily and underwent GSK-3-dependent proteasomal degradation via SCFFbw7 ubiquitin ligase pathway. Pharmacologic inhibition of GSK-3 or knockdown of GSK-3 by siRNA prevented accelerated degradation of SREBP-1c. As demonstrated by MS, SREBP-1c was phosphorylated in vitro by GSK-3β at serine 73. Phosphorylation of serine 73 also occurs in the intact liver. We propose that GSK-3-mediated phosphorylation of serine 73 in the rat SREBP-1c and its concomitant destabilization represents a novel mechanism involved in the inhibition of de novo lipid synthesis in the liver. PMID:26589965

  4. Inhibition of Glycogen Synthase Kinase-3β (GSK-3β) as potent therapeutic strategy to ameliorates L-dopa-induced dyskinesia in 6-OHDA parkinsonian rats

    PubMed Central

    Xie, Cheng-long; Lin, Jing-Ya; Wang, Mei-Hua; Zhang, Yu; Zhang, Su-fang; Wang, Xi-Jin; Liu, Zhen-Guo

    2016-01-01

    Levodopa (L-dopa) is the dominating therapy drug for exogenous dopaminergic substitution and can alleviate most of the manifestations of Parkinson’s disease (PD), but long-term therapy is associated with the emergence of L-dopa-induced dyskinesia (LID). Evidence points towards an involvement of Glycogen Synthase Kinase-3β (GSK-3β) in development of LID. In the present study, we found that animals rendered dyskinetic by L-dopa treatment, administration of TDZD8 (2mg/kg) obviously prevented the severity of AIM score, as well as improvement in motor function (P < 0.05). Moreover, the TDZD8-induced reduction in dyskinetic behavior correlated with a reduction in molecular correlates of LID. TDZD8 reduced the phosphorylation levels of tau, DARPP32, ERK and PKA protein, which represent molecular markers of LID, as well as reduced L-dopa-induced FosB mRNA and PPEB mRNA levels in the lesioned striatum. In addition, we found that TDZD8 antidyskinetic properties were overcome by D1 receptor, as pretreatment with SKF38393 (5 mg/kg, 10 mg/kg, reapectively), a D1 receptor agonist, blocked TDZD8 antidyskinetic actions. This study supported the hypothesis that GSK-3β played an important role in the development and expression of LID. Inhibition of GSK-3β with TDZD8 reduced the development of ALO AIM score and associated molecular changes in 6-OHDA-lesioned rats. PMID:26997328

  5. Selective deletion of forebrain glycogen synthase kinase 3β reveals a central role in serotonin-sensitive anxiety and social behaviour

    PubMed Central

    Latapy, Camille; Rioux, Véronique; Guitton, Matthieu J.; Beaulieu, Jean-Martin

    2012-01-01

    Serotonin (5-HT) neurotransmission is thought to underlie mental illnesses, such as bipolar disorder, depression, autism and schizophrenia. Independent studies have indicated that 5-HT or drugs acting on 5-HT neurotransmission regulate the serine/threonine kinase glycogen synthase kinase 3β (GSK3β). Furthermore, GSK3β inhibition rescues behavioural abnormalities in 5-HT-deficient mice with a loss-of-function mutation equivalent to the human variant (R441H) of tryptophan hydroxylase 2. In an effort to define neuroanatomical correlates of GSK3β activity in the regulation of behaviour, we generated CamKIIcre-floxGSK3β mice in which the gsk3b gene is postnatally inactivated in forebrain pyramidal neurons. Behavioural characterization showed that suppression of GSK3β in these brain areas has anxiolytic and pro-social effects. However, while a global reduction of GSK2β expression reduced responsiveness to amphetamine and increased resilience to social defeat, these behavioural effects were not found in CamKIIcre-floxGSK3β mice. These findings demonstrate a dissociation of behavioural effects related to GSK3 inhibition, with forebrain GSK3β being involved in the regulation of anxiety and sociability while social preference, resilience and responsiveness to psychostimulants would involve a function of this kinase in subcortical areas such as the hippocampus and striatum. PMID:22826345

  6. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor

    PubMed Central

    Chen, Chong; Ge, Dongxia; Qu, Yine; Chen, Rongyi; Fan, Yi-Ming; Li, Nan; Tang, Wendell W.; Zhang, Wensheng; Zhang, Kun; Wang, Alun R.; Rowan, Brian G.; Hill, Steven M.; Sartor, Oliver; Abdel, Asim B.; Myers, Leann; Lin, Qishan; You, Zongbing

    2016-01-01

    Interleukin-17 (IL-17) plays important roles in inflammation, autoimmune diseases, and some cancers. Obese people are in a chronic inflammatory state with increased serum levels of IL-17, insulin, and insulin-like growth factor 1 (IGF1). How these factors contribute to the chronic inflammatory status that promotes development of aggressive prostate cancer in obese men is largely unknown. We found that, in obese mice, hyperinsulinemia enhanced IL-17-induced expression of downstream proinflammatory genes with increased levels of IL-17 receptor A (IL-17RA), resulting in development of more invasive prostate cancer. Glycogen synthase kinase 3 (GSK3) constitutively bound to and phosphorylated IL-17RA at T780, leading to ubiquitination and proteasome-mediated degradation of IL-17RA, thus inhibiting IL-17-mediated inflammation. IL-17RA phosphorylation was reduced, while the IL-17RA levels were increased in the proliferative human prostate cancer cells compared to the normal cells. Insulin and IGF1 enhanced IL-17-induced inflammatory responses through suppressing GSK3, which was shown in the cultured cell lines in vitro and obese mouse models of prostate cancer in vivo. These findings reveal a mechanism underlying the intensified inflammation in obesity and obesity-associated development of aggressive prostate cancer, suggesting that targeting GSK3 may be a potential therapeutic approach to suppress IL-17-mediated inflammation in the prevention and treatment of prostate cancer, particularly in obese men. PMID:26871944

  7. Shaggy/glycogen synthase kinase 3β and phosphorylation of Sarah/regulator of calcineurin are essential for completion of Drosophila female meiosis

    PubMed Central

    Takeo, Satomi; Swanson, Selene K.; Nandanan, Kavyasree; Nakai, Yasuhiro; Aigaki, Toshiro; Washburn, Michael P.; Florens, Laurence; Hawley, R. Scott

    2012-01-01

    The Ca2+/Calmodulin-dependent phosphatase calcineurin is essential for exit from meiotic arrest at metaphases I and II in Drosophila and Xenopus oocytes. We previously found that Sarah, the Drosophila homolog of regulator of calcineurin, acts as a positive regulator of calcineurin and is required to complete anaphase I of female meiosis. Here, we undertook biochemical approaches, including MS and posttranslational modification analyses, to better understand the mechanism by which Sarah regulates calcineurin. A search for phosphorylated residues revealed that Sarah is highly phosphorylated at Ser100, Thr102, and Ser219 in both ovaries and activated eggs and that Ser215 is phosphorylated only in activated eggs. Functional analyses using mutant forms of Sarah showed that phosphorylation at Ser215, a consensus phosphorylation site for glycogen synthase kinase 3β (GSK-3β) and its priming kinase site Ser219, are essential for Sarah function. Furthermore, germ-line clones homozygous for a null allele of shaggy (Drosophila GSK-3β) both fail to complete meiosis and lack phosphorylation of Sarah at Ser215, suggesting that the phosphorylation of Sarah by Shaggy/GSK-3β is required to complete meiosis. Our findings suggest a mechanism in which Shaggy/GSK-3β activates calcineurin through Sarah phosphorylation on egg activation in Drosophila. PMID:22421435

  8. Protein kinase R-like endoplasmic reticulum kinase and glycogen synthase kinase-3α/β regulate foam cell formation[S

    PubMed Central

    McAlpine, Cameron S.; Werstuck, Geoff H.

    2014-01-01

    Evidence suggests a causative role for endoplasmic reticulum (ER) stress in the development of atherosclerosis. This study investigated the potential role of glycogen synthase kinase (GSK)-3α/β in proatherogenic ER stress signaling. Thp1-derived macrophages were treated with the ER stress-inducing agents, glucosamine, thapsigargin, or palmitate. Using small-molecule inhibitors of specific unfolded protein response (UPR) signaling pathways, we found that protein kinase R-like ER kinase (PERK), but not inositol requiring enzyme 1 or activating transcription factor 6, is required for the activation of GSK3α/β by ER stress. GSK3α/β inhibition or siRNA-directed knockdown attenuated ER stress-induced expression of distal components of the PERK pathway. Macrophage foam cells within atherosclerotic plaques and isolated macrophages from ApoE−/− mice fed a diet supplemented with the GSK3α/β inhibitor valproate had reduced levels of C/EBP homologous protein (CHOP). GSK3α/β inhibition blocked ER stress-induced lipid accumulation and the upregulation of genes associated with lipid metabolism. In primary mouse macrophages, PERK inhibition blocked ER stress-induced lipid accumulation, whereas constitutively active S9A-GSK3β promoted foam cell formation and CHOP expression, even in cells treated with a PERK inhibitor. These findings suggest that ER stress-PERK-GSK3α/β signaling promotes proatherogenic macrophage lipid accumulation. PMID:25183803

  9. Post-Exercise Muscle Glycogen Repletion in the Extreme: Effect of Food Absence and Active Recovery

    PubMed Central

    Fournier, Paul A.; Fairchild, Timothy J.; Ferreira, Luis D.; Bräu, Lambert

    2004-01-01

    Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one’s ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses. Key Points Even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. During active recovery from exercise, skeletal muscles rich in type II fibers replenish part of their glycogen stores even in the absence of food intake. Post-exercise muscle glycogen synthesis in the

  10. Hyperhomocysteinaemia in rats is associated with erectile dysfunction by impairing endothelial nitric oxide synthase activity.

    PubMed

    Jiang, Weijun; Xiong, Lei; Bin Yang; Li, Weiwei; Zhang, Jing; Zhou, Qing; Wu, Qiuyue; Li, Tianfu; Zhang, Cui; Zhang, Mingchao; Xia, Xinyi

    2016-01-01

    To investigate the effect of hyperhomocysteinaemia (HHCy) on penile erectile function in a rat model, a methionine-rich diet was used in which erectile function, the reproductive system, and nitric oxide synthase were characterized. The intracavernous pressure, apomorphine experiments, measurement of oxidative stress, hematoxylin and eosin staining, immunohistochemistry analysis, reverse transcription-polymerase chain reactions and measurement of endothelial nitric oxide synthase activity were utilized. Our results showed that erections in the middle-dose, high-dose, and interference (INF) groups were significantly lower than the control (P < 0.05). INF group, being fed with vitamins B and folic acid, demonstrated markedly improved penile erections compared with the middle-dose group (P < 0.05). HHCy-induced eNOS and phospho-eNOS protein expression was reduced and the antioxidant effect was markedly impaired. The data of the present data provide evidence that HHCy is a vascular risk factor for erectile dysfunction by impairing cavernosa endothelial nitric oxide synthase activity. Intake of vitamins B can alleviate this abnormality. PMID:27221552

  11. Hyperhomocysteinaemia in rats is associated with erectile dysfunction by impairing endothelial nitric oxide synthase activity

    PubMed Central

    Jiang, Weijun; Xiong, Lei; Bin Yang; Li, Weiwei; Zhang, Jing; Zhou, Qing; Wu, Qiuyue; Li, Tianfu; Zhang, Cui; Zhang, Mingchao; Xia, Xinyi

    2016-01-01

    To investigate the effect of hyperhomocysteinaemia (HHCy) on penile erectile function in a rat model, a methionine-rich diet was used in which erectile function, the reproductive system, and nitric oxide synthase were characterized. The intracavernous pressure, apomorphine experiments, measurement of oxidative stress, hematoxylin and eosin staining, immunohistochemistry analysis, reverse transcription-polymerase chain reactions and measurement of endothelial nitric oxide synthase activity were utilized. Our results showed that erections in the middle-dose, high-dose, and interference (INF) groups were significantly lower than the control (P < 0.05). INF group, being fed with vitamins B and folic acid, demonstrated markedly improved penile erections compared with the middle-dose group (P < 0.05). HHCy-induced eNOS and phospho-eNOS protein expression was reduced and the antioxidant effect was markedly impaired. The data of the present data provide evidence that HHCy is a vascular risk factor for erectile dysfunction by impairing cavernosa endothelial nitric oxide synthase activity. Intake of vitamins B can alleviate this abnormality. PMID:27221552

  12. AMP-Activated Protein Kinase and Glycogen Synthase Kinase 3β Modulate the Severity of Sepsis-Induced Lung Injury

    PubMed Central

    Liu, Zhongyu; Bone, Nathaniel; Jiang, Shaoning; Park, Dae Won; Tadie, Jean-Marc; Deshane, Jessy; Rodriguez, Cilina Ann; Pittet, Jean-Francois; Abraham, Edward; Zmijewski, Jaroslaw W

    2015-01-01

    Alterations in metabolic and bioenergetic homeostasis contribute to sepsis-mediated organ injury. However, how AMP-activated protein kinase (AMPK), a major sensor and regulator of energy expenditure and production, affects development of organ injury and loss of innate capacity during polymicrobial sepsis remains unclear. In the present experiments, we found that cross-talk between the AMPK and GSK3β signaling pathways controls chemotaxis and the ability of neutrophils and macrophages to kill bacteria ex vivo. In mice with polymicrobial abdominal sepsis or more severe sepsis induced by the combination of hemorrhage and intraabdominal infection, administration of the AMPK activator metformin or the GSK3β inhibitor SB216763 reduced the severity of acute lung injury (ALI). Improved survival in metformin-treated septic mice was correlated with preservation of mitochondrial complex V (ATP synthase) function and increased amounts of ETC complex III and IV. Although immunosuppression is a consequence of sepsis, metformin effectively increased innate immune capacity to eradicate P. aeruginosa in the lungs of septic mice. We also found that AMPK activation diminished accumulation of the immunosuppressive transcriptional factor HIF-1α as well as the development of endotoxin tolerance in LPS-treated macrophages. Furthermore, AMPK-dependent preservation of mitochondrial membrane potential also prevented LPS-mediated dysfunction of neutrophil chemotaxis. These results indicate that AMPK activation reduces the severity of polymicrobial sepsis-induced lung injury and prevents the development of sepsis-associated immunosuppression. PMID:26650187

  13. Glycogen synthase kinase-3β inhibition in the medial prefrontal cortex mediates paradoxical amphetamine action in a mouse model of ADHD

    PubMed Central

    Yen, Yi-Chun; Gassen, Nils C.; Zellner, Andreas; Rein, Theo; Landgraf, Rainer; Wotjak, Carsten T.; Anderzhanova, Elmira

    2015-01-01

    Psychostimulants show therapeutic efficacy in the treatment of attention-deficit hyperactivity disorder (ADHD). It is generally assumed that they ameliorate ADHD symptoms via interfering with monoaminergic signaling. We combined behavioral pharmacology, neurochemistry and molecular analyses to identify mechanisms underlying the paradoxical calming effect of amphetamine in low trait anxiety behavior (LAB) mice, a novel multigenetic animal model of ADHD. Amphetamine (1 mg/kg) and methylphenidate (10 mg/kg) elicited similar dopamine and norepinephrine release in the medial prefrontal cortex (mPFC) and in the striatum of LAB mice. In contrast, amphetamine decreased, while methylphenidate increased locomotor activity. This argues against changes in dopamine and/or norepinephrine release as mediators of amphetamine paradoxical effects. Instead, the calming activity of amphetamine corresponded to the inhibition of glycogen synthase kinase 3β (GSK3β) activity, specifically in the mPFC. Accordingly, not only systemic administration of the GSK3β inhibitor TDZD-8 (20 mg/kg), but also local microinjections of TDZD-8 and amphetamine into the mPFC, but not into the striatum, decreased locomotor activity in LAB mice. Amphetamine effects seem to depend on NMDA receptor signaling, since pre- or co-treatment with MK-801 (0.3 mg/kg) abolished the effects of amphetamine (1 mg/kg) on the locomotion and on the phosphorylation of GSK3β at the level of the mPFC. Taken together, the paradoxical calming effect of amphetamine in hyperactive LAB mice concurs with a decreased GSK3β activity in the mPFC. This effect appears to be independent of dopamine or norepinephrine release, but contingent on NMDA receptor signaling. PMID:25852508

  14. Inhibition of glycogen synthase kinase 3β promotes autophagy to protect mice from acute liver failure mediated by peroxisome proliferator-activated receptor α

    PubMed Central

    Ren, F; Zhang, L; Zhang, X; Shi, H; Wen, T; Bai, L; Zheng, S; Chen, Y; Chen, D; Li, L; Duan, Z

    2016-01-01

    Our previous studies have demonstrated that inhibition of glycogen synthase kinase 3β (GSK3β) activity protects mice from acute liver failure (ALF), whereas its protective and regulatory mechanism remains elusive. Autophagy is a recently recognized rudimentary cellular response to inflammation and injury. The aim of the present study was to test the hypothesis that inhibition of GSK3β mediates autophagy to inhibit liver inflammation and protect against ALF. In ALF mice model induced by d-galactosamine (d-GalN) and lipopolysaccharide (LPS), autophagy was repressed compared with normal control, and d-GalN/LPS can directly induce autophagic flux in the progression of ALF mice. Autophagy activation by rapamycin protected against liver injury and its inhibition by 3-methyladenine (3-MA) or autophagy gene 7 (Atg7) small interfering RNA (siRNA) exacerbated liver injury. The protective effect of GSK3β inhibition on ALF mice model depending on the induction of autophagy, because that inhibition of GSK3β promoted autophagy in vitro and in vivo, and inhibition of autophagy reversed liver protection and inflammation of GSK3β inhibition. Furthermore, inhibition of GSK3β increased the expression of peroxisome proliferator-activated receptor α (PPARα), and the downregulated PPARα by siRNA decreased autophagy induced by GSK3β inhibition. More importantly, the expressions of autophagy-related gene and PPARα are significantly downregulated and the activity of GSK3β is significantly upregulated in liver of ALF patients with hepatitis B virus. Thus, we have demonstrated the new pathological mechanism of ALF that the increased GSK3β activity suppresses autophagy to promote the occurrence and development of ALF by inhibiting PPARα pathway. PMID:27010852

  15. Glycogen synthase kinase 3{beta} regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury

    SciTech Connect

    Chow Winsion; Hou Guangpei; Bendeck, Michelle P.

    2008-10-01

    The migration and proliferation of vascular smooth muscle cells (vSMCs) are critical events in neointima formation during atherosclerosis and restenosis. The transcription factor nuclear factor of activated T-cells-isoform c1 (NFATc1) is regulated by atherogenic cytokines, and has been implicated in the migratory and proliferative responses of vSMCs through the regulation of gene expression. In T-cells, calcineurin de-phosphorylates NFATc1, leading to its nuclear import, while glycogen synthase kinase 3 {beta} (GSK3{beta}) phosphorylates NFATc1 and promotes its nuclear export. However, the relationship between NFATc1 and GSK3{beta} has not been studied during SMC migration and proliferation. We investigated this by scrape wounding vSMCs in vitro, and studying wound repair. NFATc1 protein was transiently increased, reaching a peak at 8 h after wounding. Cell fractionation and immunocytochemistry revealed that NFATc1 accumulation in the nucleus was maximal at 4 h after injury, and this was coincident with a significant 9 fold increase in transcriptional activity. Silencing NFATc1 expression with siRNA or inhibition of NFAT with cyclosporin A (CsA) attenuated wound closure by vSMCs. Phospho-GSK3{beta} (inactive) increased to a peak at 30 min after injury, preceding the nuclear accumulation of NFATc1. Overexpression of a constitutively active mutant of GSK3{beta} delayed the nuclear accumulation of NFATc1, caused a 50% decrease in NFAT transcriptional activity, and attenuated vSMC wound repair. We conclude that NFATc1 promotes the vSMC response to injury, and that inhibition of GSK3{beta} is required for the activation of NFAT during wound repair.

  16. Involvement of Glycogen Synthase Kinase-3β and Oxidation Status in the Loss of Cardioprotection by Postconditioning in Chronic Diabetic Male Rats

    PubMed Central

    Badalzadeh, Reza; Mohammadi, Mustafa; Yousefi, Bahman; Farajnia, Safar; Najafi, Moslem; Mohammadi, Shima

    2015-01-01

    Purpose: Diabetes mellitus as a main risk-factor of ischemic heart disease may interfere with postconditioning’scardioprotective effects. This study aimed to investigate the involvement of glycogen synthase kinase-3β (GSK-3β) and oxidation status in chronic diabetes-induced loss of cardioprotective effect of ischemic-postconditioning (IPostC) in Wistar rats. Methods: After 8 weeks of induction of diabetes by streptozotocin (50mg/kg), hearts of control and diabetic rats were isolated and mounted on a constant-pressure Langendorff system. All hearts were subjected to 30min regional ischemia followed by 60min reperfusion (by occluding and re-opening of left anterior descending coronary artery, respectively). IPostC was applied immediately at the onset of reperfusion. At the end of reperfusion, the infarct size of myocardium was measured via computerized planimetry. Myocardial contents of malondealdehyde and glutathione as indices of oxidative status were assayed spectrophotometrically and the total and phosphorylated forms of myocardial GSK-3β were quantified through western blotting. Results: IPostC reduced the infarct size of control hearts from 41±2.9% to 28±1.9% (P<0.05), whereas it could not induce significant changes in infarct size of diabetic animals (35±1.8% vs. 39±3.1%). IPostC-induced reduction in malondealdehyde and elevation in glutathione contents were significant only in control not in diabetic hearts. The total forms of GSK-3β were similar in all groups; however, the phosphorylation of GSK-3β (at Ser9) by IPostC was greater in control hearts than diabetics (P<0.01). Conclusion: The failure of cardioprotection by IPostC in diabetic hearts may be attributed to the loss of phosphorylation of GSK-3β and thereby increase in oxidative stress in diabetic states. PMID:26504753

  17. Tanshinone I Enhances Neurogenesis in the Mouse Hippocampal Dentate Gyrus via Increasing Wnt-3, Phosphorylated Glycogen Synthase Kinase-3β and β-Catenin Immunoreactivities.

    PubMed

    Chen, Bai Hui; Park, Joon Ha; Cho, Jeong Hwi; Kim, In Hye; Lee, Jae Chul; Lee, Tae-Kyeong; Ahn, Ji Hyeon; Tae, Hyun Jin; Shin, Bich Na; Kim, Jong-Dai; Kang, Il Jun; Won, Moo-Ho; Lee, Yun Lyul

    2016-08-01

    Tanshinone I (TsI), a lipophilic diterpene extracted from Danshan (Radix Salvia miltiorrhizae), exerts neuroprotection in cerebrovascular diseases including transient ischemic attack. In this study, we examined effects of TsI on cell proliferation and neuronal differentiation in the subgranular zone (SGZ) of the mouse dentate gyrus (DG) using Ki-67, BrdU and doublecortin (DCX) immunohistochemistry. Mice were treated with 1 and 2 mg/kg TsI for 28 days. In the 1 mg/kg TsI-treated-group, distribution patterns of BrdU, Ki-67 and DCX positive ((+)) cells in the SGZ were similar to those in the vehicle-treated-group. However, in the 2 mg/kg TsI-treated-group, double labeled BrdU(+)/NeuN(+) cells, which are mature neurons, as well as Ki-67(+), DCX(+) and BrdU(+) cells were significantly increased compared with those in the vehicle-treated-group. On the other hand, immunoreactivities and protein levels of Wnt-3, β-catenin and serine-9-glycogen synthase kinase-3β (p-GSK-3β), which are related with morphogenesis, were significantly increased in the granule cell layer of the DG only in the 2 mg/kg TsI-treated-group. Therefore, these findings indicate that TsI can promote neurogenesis in the mouse DG and that the neurogenesis is related with increases of Wnt-3, p-GSK-3β and β-catenin immunoreactivities. PMID:27053301

  18. Glycogen synthase kinase-3β (GSK3β) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice

    PubMed Central

    Zhang, Ping; Katz, Jenny; Michalek, Suzanne M.

    2011-01-01

    Francisella tularensis, the causative agent of tularemia, is currently considered a category A bioterrorism agent due to its high virulence. Infection with F. tularensis results in an inflammatory response that plays an important role in the pathogenesis of the disease; however, the cellular mechanisms regulating this response are poorly understood. Glycogen synthase kinase-3β (GSK3β) is a serine/threonine protein kinase that has recently emerged as a key regulatory switch in the modulation of the inflammatory response. In this study, we investigated the effect of GSK3β inhibition in regulating F. tularensis LVS-induced inflammatory responses. F. tularensis LVS infection of murine peritoneal macrophages induced a TLR2 dependent phosphorylation of GSK3β. Inhibition of GSK3β resulted in a significant decrease in the production of pro-inflammatory cytokine IL-6, IL-12p40 and TNF-α, as well as a significant increase in the production of the anti-inflammatory cytokine IL-10. GSK3β regulated the F. tularensis LVS-induced cytokine response by differentially affecting the activation of transcription factors NF-κB and CREB. Inhibition of GSK3β by lithium in vivo suppressed the inflammatory response in mice infected with F. tularensis LVS and conferred a survival advantage. In addition, we show that the production of IFN-γ contributed to the development of tularemia and to the fatal outcome of the infected animals, depending on the timing and the relative level of the IFN-γ produced. IFN-γ potentiated F. tularensis LVS-induced cytokine production by increasing GSK3β activity and the nuclear translocation of NF-κB. Taken together, these results demonstrate a regulatory function of GSK3β in modulating inflammatory responses that can be detrimental to the host during an F. tularensis LVS infection, and suggest that inhibition of GSK3β may represent a novel therapeutic approach in the treatment of tularemia. PMID:18929413

  19. Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β

    PubMed Central

    Jiang, Jun; Wang, Zhi-Hao; Qu, Min; Gao, Di; Liu, Xiu-Ping; Zhu, Ling-Qiang; Wang, Jian-Zhi

    2015-01-01

    Abnormal tau hyperphosphorylation is an early pathological marker of Alzheimer’s disease (AD), however, the upstream factors that regulate tau phosphorylation are not illustrated and there is no efficient strategy to arrest tau hyperphosphorylation. Here, we find that activation of endogenous EphB2 receptor by ligand stimulation (ephrinB1/Fc) or by ectopic expression of EphB2 plus the ligand stimulation induces a remarkable tau dephosphorylation at multiple AD-associated sites in SK-N-SH cells and human embryonic kidney cells that stably express human tau (HEK293-tau). In cultured hippocampal neurons and the hippocampus of human tau transgenic mice, dephosphorylation of tau proteins was also detected by stimulation of EphB2 receptor. EphB2 activation inhibits glycogen synthase kinase-3β (GSK-3β), a crucial tau kinase, and activates phosphatidylinositol-3-kinase (PI3K)/Akt both in vitro and in vivo, whereas simultaneous inhibition of PI3K or upregulation of GSK-3β abolishes the EphB2 stimulation-induced tau dephosphorylation. Finally, we confirm that ephrinB1/Fc treatment induces tyrosine phosphorylation (activation) of EphB2, while deletion of the tyrosine kinase domain (VM) of EphB2 eliminates the receptor stimulation-induced GSK-3β inhibition and tau dephosphorylation. We conclude that activation of EphB2 receptor kinase arrests tau hyperphosphorylation through PI3K-/Akt-mediated GSK-3β inhibition. Our data provide a novel membranous target to antagonize AD-like tau pathology. PMID:26119563

  20. Foscarnet, an inhibitor of the sodium-phosphate cotransporter NaPi-IIa, inhibits phosphorylation of glycogen synthase kinase-3β by lithium in the rat kidney cortex.

    PubMed

    Uwai, Yuichi; Kawasaki, Tatsuya; Nabekura, Tomohiro

    2016-06-01

    Lithium, which is used in the treatment of and prophylaxis for bipolar disease, inhibits glycogen synthase kinase-3β (GSK3β) by producing its phosphorylated form (p-GSK3β). GSK3β plays a role in apoptosis and some kinds of acute kidney injuries, and the formation of p-GSK3β is considered to contribute to protection against acute kidney injury. We previously reported that the sodium-phosphate cotransporter NaPi-IIa (SLC34A1) mediated the reabsorption of lithium in the rat kidney. In the present study, the phosphorylation status of GSK3β in the kidney cortex of rats administered lithium chloride and foscarnet, a typical inhibitor of NaPi-IIa, was examined using Western blotting. Under a 2-h infusion of lithium chloride, the plasma concentration of lithium was 1.06 mEq/l, and its renal clearance was calculated as 1.18 ml/min/kg, which was 29.6% of creatinine clearance. The abundance of p-GSK3β in the kidney cortex was augmented by the administration of lithium. The simultaneous infusion of foscarnet increased the renal clearance of lithium and its ratio to creatinine clearance as well as the urinary excretion of phosphate. Foscarnet also inhibited the lithium-induced phosphorylation of GSK3β. These results suggest that the reabsorption of lithium by NaPi-IIa triggers the phosphorylation of GSK3β in the rat kidney cortex. PMID:27238574

  1. Melatonin attenuated adipogenesis through reduction of the CCAAT/enhancer binding protein beta by regulating the glycogen synthase 3 beta in human mesenchymal stem cells.

    PubMed

    Rhee, Yun-Hee; Ahn, Jin-Chul

    2016-06-01

    Adipogenic differentiation is characterized by an increase in two major transcription factors: peroxisome proliferator-activated receptor gamma (PPARγ) and the CCAAT/enhancer binding protein alpha (C/EBPα). These two signals are influenced by C/EBPβ and C/EBPδ and cross-regulate each other's expression during the initial stages of adipogenesis. Melatonin has been known to act as not only a direct scavenger of free radicals but also an inhibitor of glycogen synthase kinase 3β (GSK-3β). Here, we report that melatonin inhibits the adipogenic differentiation of human mesenchymal stem cells (hMSCs) which is due to the regulations of C/EBPβ in the early stage of adipogenic differentiation. Melatonin reduced the lipid accumulation, adiponectin, and lipoprotein lipase (LPL) during the adipogenic differentiation of hMSCs. Since C/EBPβ has been associated with the activation of PPARγ and the consensus site of ERK/GSK-3β, PPARγ and β-catenin were detected by immunofluorescence staining after pretreatment of melatonin. Melatonin blocked the activation of PPARγ which induced the degradation of β-catenin. Melatonin also decreased the levels of cyclic adenosine-3,5-monophosphate (cAMP) and reactive oxygen species (ROS). The cAMP triggered the activity of C/EBPβ which is a critical inducer of PPARγ and C/EBPα activation in the early stage of adipogenic differentiation, and this is further affected by ROS production. The adipogenic marker proteins such as PPARγ, C/EBPα, C/EBPβ, and pERK were also decreased by melatonin. In summary, melatonin inhibited the cAMP synthesis through ROS reduction and the phosphorylation of the ERK/GSK-3β site which is known to be responsible for C/EBPβ activation for adipogenic differentiation in hMSCs. PMID:26797706

  2. STRE- and cAMP-independent transcriptional induction of Saccharomyces cerevisiae GSY2 encoding glycogen synthase during diauxic growth on glucose.

    PubMed

    Parrou, J L; Enjalbert, B; François, J

    1999-10-01

    It has been shown that the so-called stationary phase GSY2 gene encoding glycogen synthase was induced as the cells left the exponential phase of growth, while glucose and all other nutrients were still plentiful in the medium (Parrou et al., 1999). Since this effect was essentially controlled at the transcriptional level, we looked for the cis- and trans-acting elements required for this specific growth-related genetic event. We demonstrated that mutations of the HAP2/3/4 binding site and of the two STress-Responsive cis-Elements (STRE) did not abolish the early induction of GSY2, although the latter mutation led to a 20-fold drop in the transcriptional activity of the promoter, as determined from lacZ gene fusions. Insertion of a DNA fragment (from -390 to -167 bp, relative to the ATG) of the promoter lacking the two STREs, upstream to the TATA box of a CYC1-lacZ fusion gene, allowed this reporter gene to be induced with a kinetic similar to that of GSY2-lacZ. Mutations in BCY1, which results in a hyperactive protein kinase A, did not alleviate the early induction, while causing a five- to 10-fold reduction in the transcriptional activity of GSY2. In addition, the repressive effect of protein kinase A was quantitatively conserved when both STREs were mutated in GSY2 promoter, indicating that the negative control of gene expression by the RAS-cAMP signalling pathway does not act solely through STREs. Taken together, these results are indicative of an active process that couples growth control to dynamic glucose consumption. PMID:10514565

  3. Glycogen synthase kinase 3β sustains invasion of glioblastoma via the focal adhesion kinase, Rac1, and c-Jun N-terminal kinase-mediated pathway.

    PubMed

    Chikano, Yuri; Domoto, Takahiro; Furuta, Takuya; Sabit, Hemragul; Kitano-Tamura, Ayako; Pyko, Ilya V; Takino, Takahisa; Sai, Yoshimichi; Hayashi, Yutaka; Sato, Hiroshi; Miyamoto, Ken-ichi; Nakada, Mitsutoshi; Minamoto, Toshinari

    2015-02-01

    The failure of current treatment options for glioblastoma stems from their inability to control tumor cell proliferation and invasion. Biologically targeted therapies offer great hope and one promising target is glycogen synthase kinase-3β (GSK3β), implicated in various diseases, including cancer. We previously reported that inhibition of GSK3β compromises the survival and proliferation of glioblastoma cells, induces their apoptosis, and sensitizes them to temozolomide and radiation. Here, we explore whether GSK3β also contributes to the highly invasive nature of glioblastoma. The effects of GSK3β inhibition on migration and invasion of glioblastoma cells were examined by wound-healing and Transwell assays, as well as in a mouse model of glioblastoma. We also investigated changes in cellular microarchitectures, cytoskeletal components, and proteins responsible for cell motility and invasion. Inhibition of GSK3β attenuated the migration and invasion of glioblastoma cells in vitro and that of tumor cells in a mouse model of glioblastoma. These effects were associated with suppression of the molecular axis involving focal adhesion kinase, guanine nucleotide exchange factors/Rac1 and c-Jun N-terminal kinase. Changes in cellular phenotypes responsible for cell motility and invasion were also observed, including decreased formation of lamellipodia and invadopodium-like microstructures and alterations in the subcellular localization, and activity of Rac1 and F-actin. These changes coincided with decreased expression of matrix metalloproteinases. Our results confirm the potential of GSK3β as an attractive therapeutic target against glioblastoma invasion, thus highlighting a second role in this tumor type in addition to its involvement in chemo- and radioresistance. PMID:25504636

  4. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    SciTech Connect

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  5. Effect of diabetes on glycogen metabolism in rat retina.

    PubMed

    Sánchez-Chávez, Gustavo; Hernández-Berrones, Jethro; Luna-Ulloa, Luis Bernardo; Coffe, Víctor; Salceda, Rocío

    2008-07-01

    Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation. PMID:18274898

  6. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    SciTech Connect

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  7. A Screen for Extracellular Signal-Regulated Kinase-Primed Glycogen Synthase Kinase 3 Substrates Identifies the p53 Inhibitor iASPP

    PubMed Central

    Woodard, Crystal; Liao, Gangling; Goodwin, C. Rory; Hu, Jianfei; Xie, Zhi; dos Reis, Thaila F.; Newman, Rob; Rho, Heesool; Qian, Jiang

    2015-01-01

    ABSTRACT The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein is essential for the replication and maintenance of virus genomes in latently KSHV-infected cells. LANA also drives dysregulated cell growth through a multiplicity of mechanisms that include altering the activity of the cellular kinases extracellular signal-regulated kinase (ERK) and glycogen synthase kinase 3 (GSK-3). To investigate the potential impact of these changes in enzyme activity, we used protein microarrays to identify cell proteins that were phosphorylated by the combination of ERK and GSK-3. The assays identified 58 potential ERK-primed GSK-3 substrates, of which 23 had evidence for in vivo phosphorylation in mass spectrometry databases. Two of these, SMAD4 and iASPP, were selected for further analysis and were confirmed as ERK-primed GSK-3 substrates. Cotransfection experiments revealed that iASPP, but not SMAD4, was targeted for degradation in the presence of GSK-3. iASPP interferes with apoptosis induced by p53 family members. To determine the importance of iASPP to KSHV-infected-cell growth, primary effusion lymphoma (PEL) cells were treated with an iASPP inhibitor in the presence or absence of the MDM2 inhibitor Nutlin-3. Drug inhibition of iASPP activity induced apoptosis in BC3 and BCBL1 PEL cells but did not induce poly(ADP-ribose) polymerase (PARP) cleavage in virus-negative BJAB cells. The effect of iASPP inhibition was additive with that of Nutlin-3. Interfering with iASPP function is therefore another mechanism that can sensitize KSHV-positive PEL cells to cell death. IMPORTANCE KSHV is associated with several malignancies, including primary effusion lymphoma (PEL). The KSHV-encoded LANA protein is multifunctional and promotes both cell growth and resistance to cell death. LANA is known to activate ERK and limit the activity of another kinase, GSK-3. To discover ways in which LANA manipulation of these two kinases might impact PEL cell survival, we screened a human

  8. Lupus Nephritis: Glycogen Synthase Kinase 3β Promotion of Renal Damage Through Activation of the NLRP3 Inflammasome in Lupus-Prone Mice

    PubMed Central

    Zhao, Jijun; Wang, Hongyue; Huang, Yuefang; Zhang, Hui; Wang, Shuang; Gaskin, Felicia; Yang, Niansheng; Fu, Shu Man

    2015-01-01

    Objective Glycogen synthase kinase 3β (GSK-3β) has been demonstrated to be involved in immune and inflammatory responses via multiple signaling pathways, leading to the production of proinflammatory cytokines. The purpose of this study was to investigate the role of GSK-3β in the pathogenesis of lupus nephritis in 2 mouse models. Methods Thiadiazolidinone 8 (TDZD-8), a selective inhibitor of GSK-3β, was administered intraperitoneally to 12-week-old MRL/lpr mice for 8 weeks or to 22-week-old (NZB × NZW)F1 mice for 12 weeks. The expression of GSK-3β and NLRP3 inflammasome components was analyzed. Proteinuria, biochemical parameters, proinflammatory cytokines, anti–double-stranded DNA (anti-dsDNA) antibody levels, and renal pathology were examined. In vitro, the effect of GSK-3β–directed small interfering RNA (siRNA) on NLRP3 inflammasome activation was evaluated in bone marrow–derived macrophages (BMMs) from the mice and in the J774A.1 macrophage cell line. Results The incidence of severe proteinuria and renal inflammation was significantly attenuated in both models, with a significant reduction in anti-dsDNA antibody production, immune complex deposition in the kidney, and circulating proinflammatory cytokine levels. TDZD-8 inhibited the activation of GSK-3β and caspase 1, with a concomitant decrease in interleukin-1β (IL-1β) synthesis. In vitro, GSK-3β siRNA transfection of mouse BMMs and the J774A.1 cell line with GSK-3β siRNA inhibited the expression of GSK-3β, the activation of caspase 1, and the production of IL-1β. Conclusion These results show that GSK-3β promotes lupus nephritis at least partly by activating the NLRP3/IL-1β pathway. The linking of GSK-3β to the NLRP3/IL-1β pathway is a novel observation in our study. Our results suggest that the GSK-3β/NLRP3/IL-1β pathway may be a potential therapeutic target for lupus in humans. PMID:25512114

  9. ER stress-mediated apoptosis induced by celastrol in cancer cells and important role of glycogen synthase kinase-3β in the signal network.

    PubMed

    Feng, L; Zhang, D; Fan, C; Ma, C; Yang, W; Meng, Y; Wu, W; Guan, S; Jiang, B; Yang, M; Liu, X; Guo, D

    2013-01-01

    HeLa cells treated with celastrol, a natural compound with inhibitive effect on proteasome, exhibited increase in apoptotic rate and characteristics of apoptosis. To clarify the signal network activated by celastrol to induce apoptosis, both the direct target proteins and undirect target proteins of celastrol were searched in the present study. Proteasome catalytic subunit β1 was predicted by computational analysis to be a possible direct target of celastrol and confirmed by checking direct effect of celastrol on the activity of recombinant human proteasome subunit β1 in vitro. Undirect target-related proteins of celastrol were searched using proteomic studies including two-dimensional electrophoresis (2-DE) analysis and iTRAQ-based LC-MS analysis. Possible target-related proteins of celastrol such as endoplasmic reticulum protein 29 (ERP29) and mitochondrial import receptor Tom22 (TOM22) were found by 2-DE analysis of total cellular protein expression profiles. Further study showed that celastrol induced ER stress and ER stress inhibitor could ameliorate cell death induced by celastrol. Celastrol induced translocation of Bax into the mitochondria, which might be related to the upregulation of BH-3-only proteins such as BIM and the increase in the expression level of TOM22. To further search possible target-related proteins of celastrol in ER and ER-related fractions, iTRAQ-based LC-MS method was use to analyze protein expression profiles of ER/microsomal vesicles-riched fraction of cells with or without celastrol treatment. Based on possible target-related proteins found in both 2-DE analysis and iTRAQ-based LC-MS analysis, protein-protein interaction (PPI) network was established using bioinformatic analysis. The important role of glycogen synthase kinase-3β (GSK3β) in the signal cascades of celastrol was suggested. Pretreatment of LiCL, an inhibitor of GSK3β, could significantly ameliorate apoptosis induced by celastrol. On the basis of the results of the

  10. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus

    PubMed Central

    Huante-Mendoza, Alejandro; Bravo-Patiño, Alejandro; Valdez-Alarcón, Juan J.; Finlay, B. Brett; Baizabal-Aguirre, Víctor M.

    2015-01-01

    Glycogen synthase kinase 3 (GSK3) is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN), one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC) regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65) at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor). Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus. PMID:26200352

  11. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle

    PubMed Central

    Vendelbo, M. H.; Clasen, B. F. F.; Treebak, J. T.; Møller, L.; Krusenstjerna-Hafstrøm, T.; Madsen, M.; Nielsen, T. S.; Stødkilde-Jørgensen, H.; Pedersen, S. B.; Jørgensen, J. O. L.; Goodyear, L. J.; Wojtaszewski, J. F. P.; Møller, N.

    2012-01-01

    During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast. PMID:22028408

  12. Glycogen metabolism in humans☆☆☆

    PubMed Central

    Adeva-Andany, María M.; González-Lucán, Manuel; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Ameneiros-Rodríguez, Eva

    2016-01-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through transporters, phosphorylation of glucose to glucose 6-phosphate, isomerization to glucose 1-phosphate, and formation of uridine 5ʹ-diphosphate-glucose, which is the direct glucose donor for glycogen synthesis. Glycogenin catalyzes the formation of a short glucose polymer that is extended by the action of glycogen synthase. Glycogen branching enzyme introduces branch points in the glycogen particle at even intervals. Laforin and malin are proteins involved in glycogen assembly but their specific function remains elusive in humans. Glycogen is accumulated in the liver primarily during the postprandial period and in the skeletal muscle predominantly after exercise. In the cytosol, glycogen breakdown or glycogenolysis is carried out by two enzymes, glycogen phosphorylase which releases glucose 1-phosphate from the linear chains of glycogen, and glycogen debranching enzyme which untangles the branch points. In the lysosomes, glycogen degradation is catalyzed by α-glucosidase. The glucose 6-phosphatase system catalyzes the dephosphorylation of glucose 6-phosphate to glucose, a necessary step for free glucose to leave the cell. Mutations in the genes encoding the enzymes involved in glycogen metabolism cause glycogen storage diseases. PMID:27051594

  13. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    SciTech Connect

    Choi, Cheol-Hee; Lee, Byung-Hoon; Ahn, Sang-Gun; Oh, Seon-Hee

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  14. Regulation of glucose and glycogen metabolism during and after exercise.

    PubMed

    Jensen, Thomas E; Richter, Erik A

    2012-03-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  15. Regulation of glucose and glycogen metabolism during and after exercise

    PubMed Central

    Jensen, Thomas E; Richter, Erik A

    2012-01-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  16. Radiosynthesis and preliminary PET evaluation of glycogen synthase kinase 3β (GSK-3β) inhibitors containing [(11)C]methylsulfanyl, [(11)C]methylsulfinyl or [(11)C]methylsulfonyl groups.

    PubMed

    Kumata, Katsushi; Yui, Joji; Xie, Lin; Zhang, Yiding; Nengaki, Nobuki; Fujinaga, Masayuki; Yamasaki, Tomoteru; Shimoda, Yoko; Zhang, Ming-Rong

    2015-08-15

    Three compounds 1-3 containing methyl-sufanyl, sufinyl, or sulfonyl groups are strong inhibitors of glycogen synthase kinase 3β (GSK-3β), an enzyme associated with Alzheimer's disease. We labeled 1-3 with (11)C for a positron emission tomography (PET) brain imaging study. A novel thiophenol precursor 4 for radiosynthesis was prepared by reacting sulfoxide 2 with trifluoroacetic anhydride. [(11)C]1 was synthesized by reacting 4 with [(11)C]methyl iodide in 52 ± 5% radiochemical yield (n = 5, based on [(11)C]CO2, corrected for decay). Oxidation of [(11)C]1 with Oxone® produced [(11)C]2 and [(11)C]3, respectively. PET with [(11)C]1 and [(11)C]3 showed 2 fold higher brain uptake of radioactivity in a mouse model of cold water stress in which GSK-3β expression was increased, than in the controls. PMID:26067173

  17. Cross-talk between glycogen synthase kinase 3β (GSK3β) and p38MAPK regulates myocyte enhancer factor 2 (MEF2) activity in skeletal and cardiac muscle.

    PubMed

    Dionyssiou, M G; Nowacki, N B; Hashemi, S; Zhao, J; Kerr, A; Tsushima, R G; McDermott, J C

    2013-01-01

    Characterizing the signaling network that controls MEF2 transcription factors is crucial for understanding skeletal and cardiac muscle gene expression. Glycogen synthase kinase 3β (GSK3β) regulates MEF2 activity indirectly through reciprocal regulation of p38MAPK. Cross-talk between GSK3β and p38MAPK regulates MEF2 activity in skeletal and cardiac muscle. Understanding cross-talk in the signaling network converging at MEF2 control has therapeutic implications in cardiac and skeletal muscle pathology. Glycogen synthase kinase 3β (GSK3β) is a known regulator of striated muscle gene expression suppressing both myogenesis and cardiomyocyte hypertrophy. Since myocyte enhancer factor 2 (MEF2) proteins are key transcriptional regulators in both systems, we assessed whether MEF2 is a target for GSK3β. Pharmacological inhibition of GSK3β resulted in enhanced MEF2A/D expression and transcriptional activity in skeletal myoblasts and cardiac myocytes. Even though in silico analysis revealed GSK3β consensus (S/T)XXX(S/T) sites on MEF2A, a subsequent in vitro kinase assay revealed that MEF2A is only a weak substrate. However, we did observe a posttranslational modification in MEF2A in skeletal myoblasts treated with a GSK3β inhibitor which coincided with increased p38MAPK phosphorylation, a potent MEF2A activator, indicating that GSK3β inhibition may de-repress p38MAPK. Heart specific excision of GSK3β in mice also resulted in up-regulation of p38MAPK activity. Interestingly, upon pharmacological p38MAPK inhibition (SB203580), GSK3β inhibition loses its effect on MEF2 transcriptional activity suggesting potent cross-talk between the two pathways. Thus we have documented that cross-talk between p38MAPK and GSK3β signaling converges on MEF2 activity having potential consequences for therapeutic modulation of cardiac and skeletal muscle gene expression. PMID:23137781

  18. Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in Arabidopsis.

    PubMed

    Landrein, Benoît; Lathe, Rahul; Bringmann, Martin; Vouillot, Cyril; Ivakov, Alexander; Boudaoud, Arezki; Persson, Staffan; Hamant, Olivier

    2013-05-20

    The parallel alignment of stiff cellulose microfibrils in plant-cell walls mediates anisotropic growth. This is largely controlled by cortical microtubules, which drive the insertion and trajectory of the cellulose synthase (CESA) complex at the plasma membrane. The CESA interactive protein 1 (CSI1) acts as a physical linker between CESA and cortical microtubules. Here we show that the inflorescence stems of csi1 mutants exhibit subtle right-handed torsion. Because cellulose deposition is largely uncoupled from cortical microtubules in csi1, we hypothesize that strictly transverse deposition of microfibrils in the wild-type is replaced by a helical orientation of uniform handedness in the mutant and that the helical microfibril alignment generates torsion. Interestingly, both elastic and viscous models for an expanding cell predict that a net helical orientation of microfibrils gives rise to a torque. We indeed observed tilted microfibrils in csi1 cells, and the torsion was almost absent in a csi1 prc1 background with impaired cellulose synthesis. In addition, the stem torsion led to a novel bimodal and robust phyllotactic pattern in the csi1 mutant, illustrating how growth perturbations can replace one robust mathematical pattern with a different, equally robust pattern. PMID:23623553

  19. Glycogen and its metabolism: some new developments and old themes

    PubMed Central

    Roach, Peter J.; Depaoli-Roach, Anna A.; Hurley, Thomas D.; Tagliabracci, Vincent S.

    2016-01-01

    Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease. PMID:22248338

  20. Biomarker for Glycogen Storage Diseases

    ClinicalTrials.gov

    2016-08-25

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  1. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing.

    PubMed

    Henriksen, E J; Kirby, C R; Tischler, M E

    1989-06-01

    The time course of glycogen changes in soleus muscle recovering from 3 days of nonweight bearing by hindlimb suspension was investigated. Within 15 min and up to 2 h, muscle glycogen decreased. Coincidentally, muscle glucose 6-phosphate and the fractional activity of glycogen phosphorylase, measured at the fresh muscle concentrations of AMP, increased. Increased fractional activity of glycogen synthase during this time was likely the result of greater glucose 6-phosphate and decreased glycogen. From 2 to 4 h, when the synthase activity remained elevated and the phosphorylase activity declined, glycogen levels increased (glycogen supercompensation). A further increase of glycogen up to 24 h did not correlate with the enzyme activities. Between 24 and 72 h, glycogen decreased to control values, possibly initiated by high phosphorylase activity at 24 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that reloading transiently uncoupled glycogen control of this enzyme. These data suggest that the activities of glycogen synthase and phosphorylase, when measured at physiological effector levels, likely provide the closest approximation to the actual enzyme activities in vivo. Measurements made in this way effectively explained the majority of the changes in the soleus glycogen content during recovery from nonweight bearing. PMID:2501291

  2. Anti-dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated glycogen synthase kinase-3β and NF-κB activation.

    PubMed

    Chen, Chia-Ling; Lin, Chiou-Feng; Wan, Shu-Wen; Wei, Li-Shiung; Chen, Mei-Chun; Yeh, Trai-Ming; Liu, Hsiao-Sheng; Anderson, Robert; Lin, Yee-Shin

    2013-08-15

    Immunopathogenetic mechanisms of dengue virus (DENV) infection are involved in hemorrhagic syndrome resulting from thrombocytopenia, coagulopathy, and vasculopathy. We have proposed a mechanism of molecular mimicry in which Abs against DENV nonstructural protein 1 (NS1) cross-react with human endothelial cells and cause NF-κB-regulated immune activation and NO-mediated apoptosis. However, the signaling pathway leading to NF-κB activation after the binding of anti-DENV NS1 Abs to endothelial cells is unresolved. In this study, we found that anti-DENV NS1 Abs caused the formation of lipid raftlike structures, and that disrupting lipid raft formation by methyl-β-cyclodextrin decreased NO production and apoptosis. Treatment with anti-DENV NS1 Abs elevated ceramide generation in lipid rafts. Pharmacological inhibition of acid sphingomyelinase (aSMase) decreased anti-DENV NS1 Ab-mediated ceramide and NO production, as well as apoptosis. Exogenous ceramide treatment induced biogenesis of inducible NO synthase (iNOS)/NO and apoptosis through an NF-κB-regulated manner. Furthermore, activation of glycogen synthase kinase-3β (GSK-3β) was required for ceramide-induced NF-κB activation and iNOS expression. Notably, anti-DENV NS1 Abs caused GSK-3β-mediated NF-κB activation and iNOS expression, which were regulated by aSMase. Moreover, pharmacological inhibition of GSK-3β reduced hepatic endothelial cell apoptosis in mice passively administered anti-DENV NS1 Abs. These results suggest that anti-DENV NS1 Abs bind to the endothelial cell membrane and cause NO production and apoptosis via a mechanism involving the aSMase/ceramide/GSK-3β/NF-κB/iNOS/NO signaling pathway. PMID:23851680

  3. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine

    PubMed Central

    Hey, Fiona; Giblett, Susan; Forrest, Stephanie; Herbert, Chelsea; Pritchard, Catrin

    2016-01-01

    The WNT signalling pathway controls many developmental processes and plays a key role in maintenance of intestine renewal and homeostasis. Glycogen Synthase Kinase 3 (GSK3) is an important component of the WNT pathway and is involved in regulating β-catenin stability and expression of WNT target genes. The mechanisms underpinning GSK3 regulation in this context are not completely understood, with some evidence suggesting this occurs through inhibitory N-terminal serine phosphorylation in a similar way to GSK3 inactivation in insulin signaling. To investigate this in a physiologically relevant context, we have analysed the intestinal phenotype of GSK3 knockin mice in which N-terminal serines 21/9 of GSK3α/β have been mutated to non-phosphorylatable alanine residues. We show that these knockin mutations have very little effect on overall intestinal integrity, cell lineage commitment, β-catenin localization or WNT target gene expression although a small increase in apoptosis at villi tips is observed. Our results provide in vivo evidence that GSK3 is regulated through mechanisms independent of N-terminal serine phosphorylation in order for β-catenin to be stabilised. PMID:27284979

  4. Identification of a Maleimide-Based Glycogen Synthase Kinase-3 (GSK-3) Inhibitor, BIP-135, That Prolongs the Median Survival Time of Δ7 SMA KO Mouse Model of Spinal Muscular Atrophy

    PubMed Central

    2011-01-01

    The discovery of upregulated glycogen synthase kinase-3 (GSK-3) in various pathological conditions has led to the development of a host of chemically diverse small molecule GSK-3 inhibitors, such as BIP-135. GSK-3 inhibition emerged as an alternative therapeutic target for treating spinal muscular atrophy (SMA) when a number of GSK-3 inhibitors were shown to elevate survival motor neuron (SMN) levels in vitro and to rescue motor neurons when their intrinsic SMN level was diminished by SMN-specific short hairpin RNA (shRNA). Despite their cellular potency, the in vivo efficacy of GSK-3 inhibitors has yet to be evaluated in an animal model of SMA. Herein, we disclose that a potent and reasonably selective GSK-3 inhibitor, namely BIP-135, was tested in a transgenic Δ7 SMA KO mouse model of SMA and found to prolong the median survival of these animals. In addition, this compound was shown to elevate the SMN protein level in SMA patient-derived fibroblast cells as determined by Western blot, and was neuroprotective in a cell-based, SMA-related model of oxidative stress-induced neurodegeneration. PMID:22348181

  5. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells.

    PubMed

    Gaisina, Irina N; Gallier, Franck; Ougolkov, Andrei V; Kim, Ki H; Kurome, Toru; Guo, Songpo; Holzle, Denise; Luchini, Doris N; Blond, Sylvie Y; Billadeau, Daniel D; Kozikowski, Alan P

    2009-04-01

    Recent studies have demonstrated that glycogen synthase kinase 3beta (GSK-3beta) is overexpressed in human colon and pancreatic carcinomas, contributing to cancer cell proliferation and survival. Here, we report the design, synthesis, and biological evaluation of benzofuran-3-yl-(indol-3-yl)maleimides, potent GSK-3beta inhibitors. Some of these compounds show picomolar inhibitory activity toward GSK-3beta and an enhanced selectivity against cyclin-dependent kinase 2 (CDK-2). Selected GSK-3beta inhibitors were tested in the pancreatic cancer cell lines MiaPaCa-2, BXPC-3, and HupT3. We determined that some of these compounds, namely compounds 5, 6, 11, 20, and 26, demonstrate antiproliferative activity against some or all of the pancreatic cancer cells at low micromolar to nanomolar concentrations. We found that the treatment of pancreatic cancer cells with GSK-3beta inhibitors 5 and 26 resulted in suppression of GSK-3beta activity and a distinct decrease of the X-linked inhibitor of apoptosis (XIAP) expression, leading to significant apoptosis. The present data suggest a possible role for GSK-3beta inhibitors in cancer therapy, in addition to their more prominent applications in CNS disorders. PMID:19338355

  6. Glycogen synthase kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells.

    PubMed

    Sarshad, Aishe A; Corcoran, Martin; Al-Muzzaini, Bader; Borgonovo-Brandter, Laura; Von Euler, Anne; Lamont, Douglas; Visa, Neus; Percipalle, Piergiorgio

    2014-06-01

    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation. PMID:24901984

  7. Galangin suppresses the proliferation of β-catenin response transcription-positive cancer cells by promoting adenomatous polyposis coli/Axin/glycogen synthase kinase-3β-independent β-catenin degradation.

    PubMed

    Gwak, Jungsug; Oh, Jingyo; Cho, Munju; Bae, Soo Kyung; Song, Im-Sook; Liu, Kwang-Hyeon; Jeong, Yongsu; Kim, Dong-Eun; Chung, Young-Hwa; Oh, Sangtaek

    2011-06-01

    Galangin is a naturally occurring bioflavonoid with anticancer activity against certain human cancers, yet little is known about its mechanism of action. Here, we used a chemical biology approach to reveal that galangin suppresses β-catenin response transcription (CRT), which is aberrantly up-regulated in colorectal and liver cancers, by promoting the degradation of intracellular β-catenin. Inhibition of glycogen synthase kinase-3β (GSK-3β) activity or mutation of the GSK-3β-targeted sequence from β-catenin was unable to abrogate the galangin-mediated degradation of β-catenin. In addition, galangin down-regulated the intracellular β-catenin levels in cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or Axin, which are components of the β-catenin destruction complex. Galangin repressed the expression of β-catenin/T-cell factor-dependent genes, such as cyclin D1 and c-myc, and thus inhibited the proliferation of CRT-positive cancer cells. Structure-activity data indicated that the major structural requirements for galangin-mediated β-catenin degradation are hydroxyl groups at positions 3, 5, and 7. Our findings suggest that galangin exerts its anticancer activity by promoting APC/Axin/GSK-3β-independent proteasomal degradation of β-catenin. PMID:21406604

  8. Mutational Analysis of Glycogen Synthase Kinase 3β Protein Kinase Together with Kinome-Wide Binding and Stability Studies Suggests Context-Dependent Recognition of Kinases by the Chaperone Heat Shock Protein 90

    PubMed Central

    Pasculescu, Adrian; Dai, Anna Yue; Williton, Kelly; Taylor, Lorne; Savitski, Mikhail M.; Bantscheff, Marcus; Woodgett, James R.; Pawson, Tony; Colwill, Karen

    2016-01-01

    The heat shock protein 90 (HSP90) and cell division cycle 37 (CDC37) chaperones are key regulators of protein kinase folding and maturation. Recent evidence suggests that thermodynamic properties of kinases, rather than primary sequences, are recognized by the chaperones. In concordance, we observed a striking difference in HSP90 binding between wild-type (WT) and kinase-dead (KD) glycogen synthase kinase 3β (GSK3β) forms. Using model cell lines stably expressing these two GSK3β forms, we observed no interaction between WT GSK3β and HSP90, in stark contrast to KD GSK3β forming a stable complex with HSP90 at a 1:1 ratio. In a survey of 91 ectopically expressed kinases in DLD-1 cells, we compared two parameters to measure HSP90 dependency: static binding and kinase stability following HSP90 inhibition. We observed no correlation between HSP90 binding and reduced stability of a kinase after pharmacological inhibition of HSP90. We expanded our stability study to >50 endogenous kinases across four cell lines and demonstrated that HSP90 dependency is context dependent. These observations suggest that HSP90 binds to its kinase client in a particular conformation that we hypothesize to be associated with the nucleotide-processing cycle. Lastly, we performed proteomics profiling of kinases and phosphopeptides in DLD-1 cells to globally define the impact of HSP90 inhibition on the kinome. PMID:26755559

  9. Synthesis and preliminary characterization of radioiodinated benzofuran-3-yl-(indol-3-yl)maleimide derivatives as potential SPECT imaging probes for the detection of glycogen synthase kinase-3β (GSK-3β) in the brain.

    PubMed

    Ono, Masahiro; Kitada, Ayane; Watanabe, Hiroyuki; Miyazaki, Anna; Kimura, Hiroyuki; Saji, Hideo

    2016-06-30

    We report on the synthesis and preliminary characterization of two radioiodinated benzofuran-3-yl-(indol-3-yl)maleimides, 3-(benzofuran-3-yl)-4-(5-[(125) I]iodo-1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione ([(125) I]5), and 3-(5-[(125) I]iodo-1-methyl-1H-indol-3-yl)-4-(6-methoxybenzofuran-3-yl)-1H-pyrrole-2,5-dione ([(125) I]6), as the first potential SPECT imaging probes targeting glycogen synthase kinase-3β (GSK-3β). In this study, we used (125) I as a surrogate of (123) I because of its ease of use. The radioiodinated ligands were prepared from the corresponding tributyltin precursors through an iododestannylation reaction using hydrogen peroxide as an oxidant with a radiochemical yield of 10-30%. In vitro binding experiments suggested that both compounds show high affinity for GSK-3β at a level similar to a known GSK-3β inhibitor. Biodistribution studies with normal mice revealed that the radioiodinated compounds display sufficient uptake into (1.8%ID/g at 10 min postinjection) and clearance from the brain (1.0%ID/g at 60 min postinjection). These preliminary results suggest that the further optimization of radioiodinated benzofuran-3-yl-(indol-3-yl)maleimide derivatives may facilitate the development of clinically useful SPECT imaging probes for the in vivo detection of GSK-3β. PMID:27126914

  10. Hit Optimization of 5-Substituted-N-(piperidin-4-ylmethyl)-1H-indazole-3-carboxamides: Potent Glycogen Synthase Kinase-3 (GSK-3) Inhibitors with in Vivo Activity in Model of Mood Disorders.

    PubMed

    Furlotti, Guido; Alisi, Maria Alessandra; Cazzolla, Nicola; Dragone, Patrizia; Durando, Lucia; Magarò, Gabriele; Mancini, Francesca; Mangano, Giorgina; Ombrato, Rosella; Vitiello, Marco; Armirotti, Andrea; Capurro, Valeria; Lanfranco, Massimiliano; Ottonello, Giuliana; Summa, Maria; Reggiani, Angelo

    2015-11-25

    Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3β (GSK-3β) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3β inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3β. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3β inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3β inhibitors as new tools in the development of new treatments for mood disorders. PMID:26486317

  11. Exercise Training-Induced Adaptations Associated with Increases in Skeletal Muscle Glycogen Content

    PubMed Central

    Manabe, Yasuko; Gollisch, Katja S.C.; Holton, Laura; Kim, Young–Bum; Brandauer, Josef; Fujii, Nobuharu L.; Hirshman, Michael F.; Goodyear, Laurie J.

    2012-01-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism for increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4, or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. Compared to sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase 3 (GSK3). Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of RGL(GM), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1, GSK3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks and may function as a negative feedback to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase and PP1activity. PMID:23206309

  12. Glycogen metabolism in rat heart muscle cultures after hypoxia.

    PubMed

    Vigoda, Ayelet; Mamedova, Liaman K; Shneyvays, Vladimir; Katz, Abram; Shainberg, Asher

    2003-12-01

    Elevated glycogen levels in heart have been shown to have cardioprotective effects against ischemic injury. We have therefore established a model for elevating glycogen content in primary rat cardiac cells grown in culture and examined potential mechanisms for the elevation (glycogen supercompensation). Glycogen was depleted by exposing the cells to hypoxia for 2 h in the absence of glucose in the medium. This was followed by incubating the cells with 28 mM glucose in normoxia for up to 120 h. Hypoxia decreased glycogen content to about 15% of control, oxygenated cells. This was followed by a continuous increase in glycogen in the hypoxia treated cells during the 120 h recovery period in normoxia. By 48 h after termination of hypoxia, the glycogen content had returned to baseline levels and by 120 h glycogen was about 150% of control. The increase in glycogen at 120 h was associated with comparable relative increases in glucose uptake (approximately 180% of control) and the protein level of the glut-1 transporter (approximately 170% of control), whereas the protein level of the glut-4 transporter was decreased to < 10% of control. By 120 h, the hypoxia-treated cells also exhibited marked increases in the total (approximately 170% of control) and fractional activity of glycogen synthase (control, approximately 15%; hypoxia-treated, approximately 30%). Concomitantly, the hypoxia-treated cells also exhibited marked decreases in the total (approximately 50% of control) and fractional activity of glycogen phosphorylase (control, approximately 50%; hypoxia-treated, approximately 25%). Thus, we have established a model of glycogen supercompensation in cultures of cardiac cells that is explained by concerted increases in glucose uptake and glycogen synthase activity and decreases in phosphorylase activity. This model should prove useful in studying the cardioprotective effects of glycogen. PMID:14674711

  13. Glycogen: the forgotten cerebral energy store.

    PubMed

    Gruetter, Rolf

    2003-10-15

    The brain contains a significant amount of glycogen that is an order of magnitude smaller than that in muscle, but several-fold higher than the cerebral glucose content. Although the precise role of brain glycogen to date is unknown, it seems affected by focal activation, neurotransmitters, and overall electrical activity and hormones. Based on its relatively low concentration, the role of brain glycogen as a significant energy store has been discounted. This work reviews recent experimental evidence that brain glycogen is an important reserve of glucose equivalents: (1) glial glycogen can provide the majority of the glucose supply deficit during hypoglycemia for more than 100 min, consistent with the proposal that glial lactate is a fuel for neurons; (2) glycogen concentrations may be as high as 10 micromol/g, substantially higher than was thought previously; (3) glucose cycling in and out of glycogen amounts to approximately 1% of the cerebral metabolic rate of glucose (CMRglc) in human and rat brain, amounting to an effective stability of glycogen in the resting awake brain during euglycemia and hyperglycemia, (4) brain glycogen metabolism/concentrations are insulin/glucose sensitive; and (5) after a single episode of hypoglycemia, brain glycogen levels rebound to levels that exceed the pre-hypoglycemic concentrations (supercompensation). This experimental evidence supports the proposal that brain glycogen may be involved in the development of diabetes complications, specifically impaired glucose sensing (hypoglycemia unawareness) observed clinically in some diabetes patients under insulin treatment. It is proposed further that brain glycogen becomes important in any metabolic state where supply transiently cannot meet demand, such conditions that could occur during prolonged focal activation, sleep deprivation, seizures, and mild hypoxia. PMID:14515346

  14. Impaired learning in rats in a 14-unit T-maze by 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, is attenuated by the nitric oxide donor, molsidomine.

    PubMed

    Meyer, R C; Spangler, E L; Patel, N; London, E D; Ingram, D K

    1998-01-01

    In previous experiments, it was demonstrated that systemic or central administration of the nitric oxide synthase (NO synthase) inhibitor, NG-nitro-L-arginine (N-Arg), produced dose-dependent learning impairments in rats in a 14-unit T-maze; and that sodium nitroprusside, a NO donor, could attenuate the impairment. Since N-Arg is not specific for neuronal NO synthase and produces hypertension, it is possible that effects on the cardiovasculature may have contributed to the impaired maze performance. In the present experiment, we have investigated the maze performance of 3-4 months old male Fischer-344 rats following treatment with 7-nitroindazole, a NO synthase inhibitor that is selective for neuronal NO synthase and does not produce hypertension. In addition, we examined the effects of the NO donor, molsidomine, which is much longer acting than sodium nitroprusside. Rats were pretrained to avoid footshock in a straight runway and received training in a 14-unit T-maze 24 h later. In an initial dose-response study, rats received intraperitoneal (i.p.) injections of either 7-nitroindazole (25, 50, or 65 mg/kg) or peanut oil 30 min prior to maze training. 7-nitroindazole produced significant, dose-dependent maze acquisition deficits, with 65 mg/kg producing the greatest learning impairment. This dose of 7-nitroindazole had no significant effect on systolic blood pressure. Following the dose-response study, rats were given i.p. injections of either 7-nitroindazole (70 mg/kg) plus saline, 7-nitroindazole (70 mg/kg) plus the NO donor, molsidomine (2 or 4 mg/kg), or peanut oil plus saline as controls. Both doses of molsidomine significantly attenuated the learning deficit induced by 7-nitroindazole relative to controls. These findings represent the first evidence that impaired learning produced by inhibition of neuronal NO synthase can be overcome by systemic administration of a NO donor. PMID:9489851

  15. Behavioral impairments and changes of nitric oxide and inducible nitric oxide synthase in the brains of molarless KM mice.

    PubMed

    Pang, Qian; Hu, Xingxue; Li, Xinya; Zhang, Jianjun; Jiang, Qingsong

    2015-02-01

    More studies showed that as a common disorder in senior population, loss of teeth could adversely affect human cognitive function, and nitric oxide (NO) might play an important role in the cognitive function. However, the underlying mechanism has not yet been well-established. The objectives of this study are to evaluate behavior changes of KM mice after loss of molars, and levels of NO and inducible nitric oxide synthase (iNOS) in the brain in molarless condition. It is hypothesized that loss of molars of the mice tested results in the cognitive impairments and that the process is mediated by NO in the brain through the signaling pathways. Morris water maze is used to test the behavioral changes after 8 weeks of the surgery. The changes of NO and iNOS are evaluated by using Griess assay, western blot, and immunohistochemistry method. The results show that 8 weeks after loss of molars, the spatial learning and memory of KM mice impair and the levels of NO and iNOS in mice hippocampus increase. These findings suggest that molar extraction is associated with the behavioral impairment, and that the changes of NO and iNOS in the hippocampus may be involved in the behavioral changes in the molarless condition. PMID:25447296

  16. Protective effects of Phyllanthus emblica against myocardial ischemia-reperfusion injury: the role of PI3-kinase/glycogen synthase kinase 3β/β-catenin pathway.

    PubMed

    Thirunavukkarasu, Mahesh; Selvaraju, Vaithinathan; Tapias, Leonidas; Sanchez, Juan A; Palesty, J Alexander; Maulik, Nilanjana

    2015-12-01

    Clinical studies of Phyllanthus emblica (P. emblica) have shown that it increases production of nitric oxide, glutathione, and high-density lipoprotein (HDL); decreases low-density lipoprotein (LDL), total cholesterol, triglycerides, and high-sensitivity C-reactive protein (hsCRP); and significantly inhibits platelet aggregation. The following study was designed to examine the effect of P. emblica treatment on myocardial ischemia-reperfusion (I/R) injury and identify the molecular targets and its underlying mechanism(s). Experimental animals were divided into four groups: control sham (CS), P. emblica sham (PS), control I/R (CIR), and P. emblica I/R (PIR). Rats in the P. emblica groups were gavaged with aqueous P. emblica solution (100 mg/kg body weight) for 30 days. After 30 days of gavaging, the I/R group underwent I/R surgery (45-min ischemia) followed by 4 or 30 days of reperfusion. Rats in the sham group underwent surgery without ligation. Left ventricular tissue samples, 4 and 30 days after I/R, were used for Western blot analysis and immunohistochemistry, respectively. Western blot analysis showed upregulation of phosphorylated Akt and GSK3-β and increased nuclear translocation of β-catenin in the PIR group versus CIR. PIR rats also indicated reduced 3-nitrotyrosine and Caspase-3 expression. Increased phosphorylation of endothelial nitric oxide synthase (p-eNOS) and upregulation of anti-apoptotic protein Bcl-2 were found in the PIR group. Echocardiography showed increased ejection fraction and fractional shortening and decreased left ventricular internal diameter in experimental subjects compared to controls. There was decreased fibrosis in P. emblica-treated rats compared to controls. The results of this study indicate that P. emblica is capable of upregulating the PI3K/Akt/GSK3β/β-catenin cardioprotective pathway, thereby preserving cardiac tissue during ischemia-reperfusion injury. PMID:26342597

  17. Convergence of 3′,5′-Cyclic Adenosine 5′-Monophosphate/Protein Kinase A and Glycogen Synthase Kinase-3β/β-Catenin Signaling in Corpus Luteum Progesterone Synthesis

    PubMed Central

    Roy, Lynn; McDonald, Claudia A.; Jiang, Chao; Maroni, Dulce; Zeleznik, Anthony J.; Wyatt, Todd A.; Hou, Xiaoying; Davis, John S.

    2009-01-01

    Progesterone secretion by the steroidogenic cells of the corpus luteum (CL) is essential for reproduction. Progesterone synthesis is under the control of LH, but the exact mechanism of this regulation is unknown. It is established that LH stimulates the LH receptor/choriogonadotropin receptor, a G-protein coupled receptor, to increase cAMP and activate cAMP-dependent protein kinase A (PKA). In the present study, we tested the hypothesis that cAMP/PKA-dependent regulation of the Wnt pathway components glycogen synthase kinase (GSK)-3β and β-catenin contributes to LH-dependent steroidogenesis in luteal cells. We observed that LH via a cAMP/PKA-dependent mechanism stimulated the phosphorylation of GSK3β at N-terminal Ser9 causing its inactivation and resulted in the accumulation of β-catenin. Overexpression of N-terminal truncated β-catenin (Δ90 β-catenin), which lacks the phosphorylation sites responsible for its destruction, significantly augmented LH-stimulated progesterone secretion. In contrast, overexpression of a constitutively active mutant of GSK3β (GSK-S9A) reduced β-catenin levels and inhibited LH-stimulated steroidogenesis. Chromatin immunoprecipitation assays demonstrated the association of β-catenin with the proximal promoter of the StAR gene, a gene that expresses the steroidogenic acute regulatory protein, which is a cholesterol transport protein that controls a rate-limiting step in steroidogenesis. Collectively these data suggest that cAMP/PKA regulation of GSK3β/β-catenin signaling may contribute to the acute increase in progesterone production in response to LH. PMID:19819952

  18. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation. PMID:27177932

  19. Mechanism of sphingosine-1-phosphate induced cardioprotection against I/R injury in diabetic rat heart: Possible involvement of glycogen synthase kinase 3β and mitochondrial permeability transition pore.

    PubMed

    Rana, Ajay; Sharma, Saurabh

    2016-02-01

    There is growing evidence that diabetes mellitus causes attenuation of the bioactive metabolite of membrane sphingolipids, sphingosine-1-phosphate, and this may be a key mechanism in the decreased cardioprotective effect of ischaemic preconditioning (IPC) in the diabetic heart. Thus, this study has been designed to investigate the role and pharmacological potential of sphingosine-1-phosphate in diabetic rat heart. Diabetes was produced in Wistar rats by administration of a low dose of streptozotocin (STZ) (35 mg/kg, i.p., once) and feeding a high fat diet (HFD) for 6 weeks. Isolated rat heart was subjected to 30 min ischaemia followed by 120 min of reperfusion (I/R). The heart was subjected to pre-ischaemic treatment (before ischaemia for 20 min) and pharmacological preconditioning with the S1P agonist FTY720 (0.6 μmol/L) with and without atractyloside (an mPTP opener; in the last episode of reperfusion before I/R). Myocardial infarction was assessed in terms of increase in lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), myeloperoxidase (MPO) level and infarct size (triphenyltetrazolium chloride staining). Immunohistochemistry analysis was done for assessment of tumour necrosis factor (TNF)-α and glycogen synthase kinase (GSK)-3β level in cardiac tissue. Pre-ischaemic treatment and pharmacological preconditioning with FTY720 significantly decreased I/R-induced myocardial infarction, TNF-alpha, GSK-3β level and release of LDH and CK-MB as compared to control group. The cardioprotective effect of S1P agonist was significantly attenuated by atractyloside. It may be concluded that S1P agonist FTY720 prevents the diabetic heart from ischaemic reperfusion injury, possibly through inhibition of GSK-3β and regulation of opening of mitochondrial permeability transition pore. PMID:26582369

  20. Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway

    PubMed Central

    Khan, Kashif Aziz; Dô, Florence; Marineau, Alexandre; Doyon, Priscilla; Clément, Jean-François; Woodgett, James R.; Doble, Bradley W.

    2015-01-01

    Induction of an antiviral innate immune response relies on pattern recognition receptors, including retinoic acid-inducible gene 1-like receptors (RLR), to detect invading pathogens, resulting in the activation of multiple latent transcription factors, including interferon regulatory factor 3 (IRF3). Upon sensing of viral RNA and DNA, IRF3 is phosphorylated and recruits coactivators to induce type I interferons (IFNs) and selected sets of IRF3-regulated IFN-stimulated genes (ISGs) such as those for ISG54 (Ifit2), ISG56 (Ifit1), and viperin (Rsad2). Here, we used wild-type, glycogen synthase kinase 3α knockout (GSK-3α−/−), GSK-3β−/−, and GSK-3α/β double-knockout (DKO) embryonic stem (ES) cells, as well as GSK-3β−/− mouse embryonic fibroblast cells in which GSK-3α was knocked down to demonstrate that both isoforms of GSK-3, GSK-3α and GSK-3β, are required for this antiviral immune response. Moreover, the use of two selective small-molecule GSK-3 inhibitors (CHIR99021 and BIO-acetoxime) or ES cells reconstituted with the catalytically inactive versions of GSK-3 isoforms showed that GSK-3 activity is required for optimal induction of antiviral innate immunity. Mechanistically, GSK-3 isoform activation following Sendai virus infection results in phosphorylation of β-catenin at S33/S37/T41, promoting IRF3 DNA binding and activation of IRF3-regulated ISGs. This study identifies the role of a GSK-3/β-catenin axis in antiviral innate immunity. PMID:26100021

  1. Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients

    PubMed Central

    Platano, Daniela; Cattini, Luca; Trisolino, Giovanni; Mariani, Erminia; Borzì, Rosa Maria

    2015-01-01

    functional impairment via induction of hypertrophy and senescence. Indeed, GSK3β inactivation is responsible for ROS production, triggering oxidative stress and DNA damage response. PMID:26618897

  2. Mechanism of glycogen supercompensation in rat skeletal muscle cultures.

    PubMed

    Mamedova, Liaman K; Shneyvays, Vladimir; Katz, Abram; Shainberg, Asher

    2003-08-01

    A model to study glycogen supercompensation (the significant increase in glycogen content above basal level) in primary rat skeletal muscle culture was established. Glycogen was completely depleted in differentiated myotubes by 2 h of electrical stimulation or exposure to hypoxia during incubation in medium devoid of glucose. Thereafter, cells were incubated in medium containing glucose, and glycogen supercompensation was clearly observed in treated myotubes after 72 h. Peak glycogen levels were obtained after 120 h, averaging 2.5 and 4 fold above control values in the stimulated- and hypoxia-treated cells, respectively. Glycogen synthase activity increased and phosphorylase activity decreased continuously during 120 h of recovery in the treated cells. Rates of 2-deoxyglucose uptake were significantly elevated in the treated cells at 96 and 120 h, averaging 1.4-2 fold above control values. Glycogenin content increased slightly in the treated cells after 48 h (1.2 fold vs. control) and then increased considerably, achieving peak values after 120 h (2 fold vs. control). The results demonstrate two phases of glycogen supercompensation: the first phase depends primarily on activation of glycogen synthase and inactivation of phosphorylase; the second phase includes increases in glucose uptake and glycogenin level. PMID:12962138

  3. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells.

    PubMed

    Villarroel-Espíndola, Franz; Tapia, Cynthia; González-Stegmaier, Roxana; Concha, Ilona I; Slebe, Juan Carlos

    2016-10-01

    Glycogen is the main storage form of glucose; however, the accumulation of glycogen-like glucose polymers can lead to degeneration and cellular death. Previously, we reported that the accumulation of glycogen in testis of transgenic animals overexpressing a constitutively active form of glycogen synthase enhances the apoptosis of pre-meiotic male germ cells and a complete disorganization of the seminiferous tubules. Here we sought to further identify the effects of glycogen storage in cells from the seminiferous tubules and the mechanism behind the pro-apoptotic activity induced by its accumulation. Using an in vitro culture of Sertoli cells (line 42GPA9) and spermatocyte-like cells (line GC-1) expressing a superactive form of glycogen synthase or the Protein Targeting to Glycogen (PTG), we found that glycogen synthesized in both cell lines is poorly branched. In addition, the immunodetection of key molecules of apoptotic events suggests that cellular death induced by polyglucosan molecules affects GC-1 cells, but not 42GPA9 cells by mitochondrial impairment and activation of an intrinsic apoptotic pathway. Furthermore, we analyzed the effects of glycogen deposition during the establishment of an in vitro blood-testis barrier. The results using a non-permeable fluorescent molecule showed that, in conditions of over-synthesis of glycogen, 42GPA9 cells do not lose their capacity to generate an impermeable barrier and the levels of connexin43, occludin, and ZO1 proteins were not affected. These results suggest that the accumulation of polyglucosan molecules has a selective effect-triggered by the intrinsic activation of the apoptotic pathway-in germ cells without directly affecting Sertoli cells. J. Cell. Physiol. 231: 2142-2152, 2016. © 2016 Wiley Periodicals, Inc. PMID:26790645

  4. Increased Oxidative Stress Impairs Adipose Tissue Function in Sphingomyelin Synthase 1 Null Mice

    PubMed Central

    Nishimura, Naotaka; Gotoh, Tomomi; Watanabe, Ken; Ikeda, Kazutaka; Garan, Yohei; Taguchi, Ryo; Node, Koichi; Okazaki, Toshiro; Oike, Yuichi

    2013-01-01

    Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vitro analysis using cultured cell revealed that SMS1 depletion reduced fatty acid uptake. Proteins extracted from WAT of mutant mice were severely modified by oxidative stress, and up-regulation of mRNAs related to apoptosis, redox adjustment, mitochondrial stress response and mitochondrial biogenesis was observed. ATP content of WAT was reduced in SMS1 null mice. Blue native gel analysis indicated that accumulation of mitochondrial respiratory chain complexes was reduced. These results suggest that WAT of SMS1 null mice is severely damaged by oxidative stress and barely functional. Indeed, mutant mice treated with the anti-oxidant N-acetyl cysteine (NAC) showed partial recovery of lipodystrophic phenotypes together with normalized plasma triglyceride concentrations. Altogether, our data suggest that SMS1 is crucial to control oxidative stress in order to maintain WAT function. PMID:23593476

  5. Increased oxidative stress impairs adipose tissue function in sphingomyelin synthase 1 null mice.

    PubMed

    Yano, Masato; Yamamoto, Tadashi; Nishimura, Naotaka; Gotoh, Tomomi; Watanabe, Ken; Ikeda, Kazutaka; Garan, Yohei; Taguchi, Ryo; Node, Koichi; Okazaki, Toshiro; Oike, Yuichi

    2013-01-01

    Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vitro analysis using cultured cell revealed that SMS1 depletion reduced fatty acid uptake. Proteins extracted from WAT of mutant mice were severely modified by oxidative stress, and up-regulation of mRNAs related to apoptosis, redox adjustment, mitochondrial stress response and mitochondrial biogenesis was observed. ATP content of WAT was reduced in SMS1 null mice. Blue native gel analysis indicated that accumulation of mitochondrial respiratory chain complexes was reduced. These results suggest that WAT of SMS1 null mice is severely damaged by oxidative stress and barely functional. Indeed, mutant mice treated with the anti-oxidant N-acetyl cysteine (NAC) showed partial recovery of lipodystrophic phenotypes together with normalized plasma triglyceride concentrations. Altogether, our data suggest that SMS1 is crucial to control oxidative stress in order to maintain WAT function. PMID:23593476

  6. Glycogen Synthase Kinase-3β Plays a Pro-Apoptotic Role in β-Adrenergic Receptor-Stimulated Apoptosis in Adult Rat Ventricular Myocytes: Role of β1 Integrins

    PubMed Central

    Menon, Bindu; Johnson, Jennifer N.; Ross, Robert S.; Singh, Mahipal; Singh, Krishna

    2007-01-01

    β-adrenergic receptor (β-AR) stimulation induces apoptosis in adult rat ventricular myocytes (ARVM). β1 integrin signaling plays a protective role in β-AR-stimulated apoptosis. Glycogen synthase kinase-3β (GSK-3β), a multifunctional serine/threonine kinase, negatively regulates cardiac hypertrophy. Here we show that β-AR stimulation (isoproterenol; 15 min) increases tyr216 phosphorylation and GSK-3β activity. Inclusion of LiCl, inhibitor of GSK-3β, in the reaction mix or expression of catalytically inactive GSK-3β (KM-GSK) inhibited β-AR-stimulated GSK-3β activity. Inhibition of tyrosine kinase using genistein or chelation of intracellular Ca2+ using BAPTA-AM inhibited β-AR-stimulated increases in tyr216 phosphorylation and GSK-3β activity. Inhibition of GSK-3β using pharmacological inhibitors or infection with KM-GSK decreased β-AR-stimulated cytosolic cytochrome C release and apoptosis. Expression of β1 integrins increased ser9 phosphorylation and inhibited β-AR-stimulated increase in GSK-3β activity. Wortmannin, inhibitor of PI3-kinase, reversed the effects of β1 integrins on GSK-3β activity and apoptosis. Purified active matrix metalloproteinase-2 (MMP-2), shown to interfere with β1 integrin signaling, increased GSK-3β activity, while inhibition of MMP-2 inhibited β-AR-stimulated increases in GSK-3β activity. β-AR stimulation induced nuclear accumulation of GSK-3β. β-AR stimulation (3 h) increased the expression of transcription factor Gadd153 (growth arrest- and DNA damage-inducible gene 153). These data suggest that β-AR stimulation increases GSK-3β activity. Activation of GSK-3β plays a pro-apoptotic role in β-AR stimulated apoptosis via the involvement of mitochondrial death pathway. β1 integrins inactivate GSK-3β and play an anti-apoptotic role via the involvement of PI3-kinase pathway. The apoptotic effects of GSK-3β may be mediated, at least in part, via its nuclear localization and induction of pro-apoptotic genes

  7. Protein ingestion does not impair exercise-induced AMPK signalling when in a glycogen-depleted state: implications for train-low compete-high.

    PubMed

    Taylor, Conor; Bartlett, Jonathan D; van de Graaf, Christian Soler; Louhelainen, Jari; Coyne, Vicki; Iqbal, Zafar; Maclaren, Don P M; Gregson, Warren; Close, Graeme L; Morton, James P

    2013-06-01

    The aim of the present study was to test the hypothesis that consuming protein does not attenuate AMPK signalling when exercise is commenced in a glycogen-depleted state. After performing a glycogen-depleting protocol the evening before, the subsequent morning ten active men performed 45 min steady-state cycling at 50 % of peak power output (PPO) followed by an exercise capacity test (1-min intervals at 80 % PPO interspersed with 1-min periods at 40 % PPO). In a repeated measures design, subjects consumed 20 g of a casein hydrolysate solution (PRO) 45 min before exercise, 10 g during and a further 20 g immediately post-exercise, or an equivalent volume of a non-calorie taste matched placebo (PLA). Resting (PRO = 134 ± 29; PLA = 136 ± 28 mmol kg(-1)) and post-exercise muscle glycogen (PRO = 43 ± 16; PLA = 47 ± 18 mmol kg(-1)) was not different (P > 0.05) between trials nor was exercise capacity (PRO = 26 ± 9; PLA = 25 ± 10 min, P > 0.05). Phosphorylation of AMPK(Thr172) increased threefold immediately post-exercise (P < 0.05) and PGC1-mRNA increased sixfold at 3 h post-exercise (P < 0.05), though there were no differences between conditions (P > 0.05). In contrast, there was a trend (P = 0.08) for a divergent response in eEF2(Thr56) phosphorylation such that 1.5 fold increases post- and 3 h post-exercise in PLA were blunted with PRO, thus indicative of greater eEF2 activation. We conclude that athletes who deliberately incorporate training phases with reduced muscle glycogen into their training programmes may consume protein before, during and after exercise without negating signalling through the AMPK cascade. PMID:23263742

  8. Chronic ethanol consumption disrupts diurnal rhythms of hepatic glycogen metabolism in mice

    PubMed Central

    Udoh, Uduak S.; Swain, Telisha M.; Filiano, Ashley N.; Gamble, Karen L.; Young, Martin E.

    2015-01-01

    Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease. PMID:25857999

  9. Phosphorylation of Leukotriene C4 Synthase at Serine 36 Impairs Catalytic Activity.

    PubMed

    Ahmad, Shabbir; Ytterberg, A Jimmy; Thulasingam, Madhuranayaki; Tholander, Fredrik; Bergman, Tomas; Zubarev, Roman; Wetterholm, Anders; Rinaldo-Matthis, Agnes; Haeggström, Jesper Z

    2016-08-26

    Leukotriene C4 synthase (LTC4S) catalyzes the formation of the proinflammatory lipid mediator leukotriene C4 (LTC4). LTC4 is the parent molecule of the cysteinyl leukotrienes, which are recognized for their pathogenic role in asthma and allergic diseases. Cellular LTC4S activity is suppressed by PKC-mediated phosphorylation, and recently a downstream p70S6k was shown to play an important role in this process. Here, we identified Ser(36) as the major p70S6k phosphorylation site, along with a low frequency site at Thr(40), using an in vitro phosphorylation assay combined with mass spectrometry. The functional consequences of p70S6k phosphorylation were tested with the phosphomimetic mutant S36E, which displayed only about 20% (20 μmol/min/mg) of the activity of WT enzyme (95 μmol/min/mg), whereas the enzyme activity of T40E was not significantly affected. The enzyme activity of S36E increased linearly with increasing LTA4 concentrations during the steady-state kinetics analysis, indicating poor lipid substrate binding. The Ser(36) is located in a loop region close to the entrance of the proposed substrate binding pocket. Comparative molecular dynamics indicated that Ser(36) upon phosphorylation will pull the first luminal loop of LTC4S toward the neighboring subunit of the functional homotrimer, thereby forming hydrogen bonds with Arg(104) in the adjacent subunit. Because Arg(104) is a key catalytic residue responsible for stabilization of the glutathione thiolate anion, this phosphorylation-induced interaction leads to a reduction of the catalytic activity. In addition, the positional shift of the loop and its interaction with the neighboring subunit affect active site access. Thus, our mutational and kinetic data, together with molecular simulations, suggest that phosphorylation of Ser(36) inhibits the catalytic function of LTC4S by interference with the catalytic machinery. PMID:27365393

  10. Mice Lacking Inducible Nitric Oxide Synthase Demonstrate Impaired Killing of Porphyromonas gingivalis

    PubMed Central

    Gyurko, Robert; Boustany, Gabriel; Huang, Paul L.; Kantarci, Alpdogan; Van Dyke, Thomas E.; Genco, Caroline A.; Gibson III, Frank C.

    2003-01-01

    Porphyromonas gingivalis is a primary etiological agent of generalized severe periodontitis, and emerging data suggest the importance of reactive oxygen and nitrogen species in periodontal tissue damage, as well as in microbial killing. Since nitric oxide (NO) released from inducible NO synthase (iNOS) has been shown to possess immunomodulatory, cytotoxic, and antibacterial effects in experimental models, we challenged iNOS-deficient (iNOS−/−) mice with P. gingivalis by using a subcutaneous chamber model to study the specific contribution of NO to host defense during P. gingivalis infection. iNOS−/− mice inoculated with P. gingivalis developed skin lesions and chamber rejection with higher frequency and to a greater degree than similarly challenged C57BL/6 wild-type (WT) mice. Chamber fluid from iNOS−/− mice possessed significantly more P. gingivalis than that of WT mice. The immunoglobulin G responses to P. gingivalis in serum was similar in WT and iNOS−/− mice, and the inductions of tumor necrosis factor alpha, interleukin-1β and interleukin-6, and prostaglandin E2 were comparable between the two mouse strains. Although no differences in total leukocyte counts in chamber fluids were observed between iNOS−/− and WT mice, the percentage of dead polymorphonuclear leukocytes (PMNs) was significantly greater in iNOS−/− mouse chamber fluids than that of WT samples. Interestingly, casein-elicited PMNs from iNOS−/− mice released more superoxide than did WT PMNs when stimulated with P. gingivalis. These results indicate that modulation of superoxide levels is a mechanism by which NO influences PMN function and that NO is an important element of the host defense against P. gingivalis. PMID:12933833

  11. Glucose uptake and glycogen synthesis in muscles from immobilized limbs

    NASA Technical Reports Server (NTRS)

    Nicholson, W. F.; Watson, P. A.; Booth, F. W.

    1984-01-01

    Defects in glucose metabolism in muscles of immobilized limbs of mice were related to alterations in insulin binding, insulin responsiveness, glucose supply, and insulin activation of glycogen synthase. These were tested by in vitro methodology. A significant lessening in the insulin-induced maximal response of 2-deoxyglucose uptake into the mouse soleus muscle occurred between the 3rd and 8th h of limb immobilization, suggesting a decreased insulin responsiveness. Lack of change in the specific binding of insulin to muscles of 24-h immobilized limbs indicates that a change in insulin receptor number did not play a role in the failure of insulin to stimulate glucose metabolism. Its inability to stimulate glycogen synthesis in muscle from immobilized limbs is due, in part, to a lack of glucose supply to glycogen synthesis and also to the ineffectiveness of insulin to increase the percentage of glycogen synthase in its active form in muscles from 24-h immobilized limbs.

  12. Liver Glycogen Loading Dampens Glycogen Synthesis Seen in Response to Either Hyperinsulinemia or Intraportal Glucose Infusion

    PubMed Central

    Winnick, Jason J.; An, Zhibo; Kraft, Guillaume; Ramnanan, Christopher J.; Irimia, Jose M.; Smith, Marta; Lautz, Margaret; Roach, Peter J.; Cherrington, Alan D.

    2013-01-01

    The purpose of this study was to determine the effect of liver glycogen loading on net hepatic glycogen synthesis during hyperinsulinemia or hepatic portal vein glucose infusion in vivo. Liver glycogen levels were supercompensated (SCGly) in two groups (using intraportal fructose infusion) but not in two others (Gly) during hyperglycemic-normoinsulinemia. Following a 2-h control period during which fructose infusion was stopped, there was a 2-h experimental period in which the response to hyperglycemia plus either 4× basal insulin (INS) or portal vein glucose infusion (PoG) was measured. Increased hepatic glycogen reduced the percent of glucose taken up by the liver that was deposited in glycogen (74 ± 3 vs. 53 ± 5% in Gly+INS and SCGly+INS, respectively, and 72 ± 3 vs. 50 ± 6% in Gly+PoG and SCGly+PoG, respectively). The reduction in liver glycogen synthesis in SCGly+INS was accompanied by a decrease in both insulin signaling and an increase in AMPK activation, whereas only the latter was observed in SCGly+PoG. These data indicate that liver glycogen loading impairs glycogen synthesis regardless of the signal used to stimulate it. PMID:22923473

  13. Glycogen depletion and resynthesis during 14 days of chronic low-frequency stimulation of rabbit muscle.

    PubMed

    Prats, C; Bernal, C; Cadefau, J A; Frias, J; Tibolla, M; Cussó, R

    2002-10-10

    Electro-stimulation alters muscle metabolism and the extent of this change depends on application intensity and duration. The effect of 14 days of chronic electro-stimulation on glycogen turnover and on the regulation of glycogen synthase in fast-twitch muscle was studied. The results showed that macro- and proglycogen degrade simultaneously during the first hour of stimulation. After 3 h, the muscle showed net synthesis, with an increase in the proglycogen fraction. The glycogen content peaked after 4 days of stimulation, macroglycogen being the predominant fraction at that time. Glycogen synthase was determined during electro-stimulation. The activity of this enzyme was measured at low UDPG concentration with either high or low Glu-6-P content. Western blots were performed against glycogen synthase over a range of stimulation periods. Activation of this enzyme was maximum before the net synthesis of glycogen, partial during net synthesis, and low during late synthesis. These observations suggest that the more active, dephosphorylated and very low phosphorylated forms of glycogen synthase may participate in the first steps of glycogen resynthesis before net synthesis is observed, while partially phosphorylated forms are most active during glycogen elongation. PMID:12383944

  14. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2006-05-30

    Compounds of formula 1: ##STR00001## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0 3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  15. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2000-01-01

    Compounds of formula 1: ##STR1## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0-3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amnino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  16. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    PubMed Central

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  17. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-09-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  18. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  19. Glutamate-induced activation of nitric oxide synthase is impaired in cerebral cortex in vivo in rats with chronic liver failure.

    PubMed

    Rodrigo, Regina; Erceg, Slaven; Rodriguez-Diaz, Jesus; Saez-Valero, Javier; Piedrafita, Blanca; Suarez, Isabel; Felipo, Vicente

    2007-07-01

    It has been proposed that impairment of the glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in brain contributes to cognitive impairment in hepatic encephalopathy. The aims of this work were to assess whether the function of this pathway and of nitric oxide synthase (NOS) are altered in cerebral cortex in vivo in rats with chronic liver failure due to portacaval shunt (PCS) and whether these alterations are due to hyperammonemia. The glutamate-nitric oxide-cGMP pathway function and NOS activation by NMDA was analysed by in vivo microdialysis in cerebral cortex of PCS and control rats and in rats with hyperammonemia without liver failure. Similar studies were done in cortical slices from these rats and in cultured cortical neurons exposed to ammonia. Basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These increases seem due to increased inducible nitric oxide synthase expression. NOS activation by NMDA is impaired in cerebral cortex in both animal models and in neurons exposed to ammonia. Chronic liver failure increases basal NOS activity, nitric oxide and cGMP but reduces activation of NOS induced by NMDA receptors activation. Hyperammonemia is responsible for both effects which will lead, independently, to alterations contributing to neurological alterations in hepatic encephalopathy. PMID:17286583

  20. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans

    PubMed Central

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Serena, Carolina; Duran, Xavier; Montori-Grau, Marta; Rodríguez, Miguel Angel; Yanes, Oscar; Núñez-Roa, Catalina; Roche, Kelly; Puthanveetil, Prasanth; Garrido-Sánchez, Lourdes; Saez, Enrique; Tinahones, Francisco J.; Garcia-Roves, Pablo M.; Gómez-Foix, Anna Ma; Saltiel, Alan R.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. Methods We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. Results We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated

  1. Are there errors in glycogen biosynthesis and is laforin a repair enzyme?

    PubMed Central

    Roach, Peter J.

    2016-01-01

    Glycogen, a branched polymer of glucose, is well known as a cellular reserve of metabolic energy and/or biosynthetic precursors. Besides glucose, however, glycogen contains small amounts of covalent phosphate, present as C2 and C3 phosphomonoesters. Current evidence suggests that the phosphate is introduced by the biosynthetic enzyme glycogen synthase as a rare alternative to its normal catalytic addition of glucose units. The phosphate can be removed by the laforin phosphatase, whose mutation causes a fatal myoclonus epilepsy called Lafora disease. The hypothesis is that glycogen phosphorylation can be considered a catalytic error and laforin a repair enzyme. PMID:21930129

  2. Glycogen catabolism, but not its biosynthesis, affects virulence of Fusarium oxysporum on the plant host.

    PubMed

    Corral-Ramos, Cristina; Roncero, M Isabel G

    2015-04-01

    The role of glycogen metabolism was investigated in the fungal pathogen Fusarium oxysporum. Targeted inactivation was performed of genes responsible for glycogen biosynthesis: gnn1 encoding glycogenin, gls1 encoding glycogen synthase, and gbe1 encoding glycogen branching enzyme. Moreover genes involved in glycogen catabolism were deleted: gph1 encoding glycogen phosphorylase and gdb1 encoding glycogen de-branching enzyme. Glycogen reserves increased steadily during growth of the wild type strain in axenic cultures, to reach up to 1500μg glucose equivalents mg(-1) protein after 14 days. Glycogen accumulation was abolished in mutants lacking biosynthesis genes, whereas it increased by 20-40% or 80%, respectively, in the single and double mutants affected in catabolic genes. Transcript levels of glycogen metabolism genes during tomato plant infection peaked at four days post inoculation, similar to the results observed during axenic culture. Significant differences were observed between gdb mutants and the wild type strain for vegetative hyphal fusion ability. The single mutants defective in glycogen metabolism showed similar levels of virulence in the invertebrate animal model Galleria mellonella. Interestingly, the deletion of gdb1 reduced virulence on the plant host up to 40% compared to the wild type in single and in double mutant backgrounds, whereas the other mutants showed the virulence at the wild-type level. PMID:25865793

  3. The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise

    PubMed Central

    Jensen, Jørgen; Rustad, Per Inge; Kolnes, Anders Jensen; Lai, Yu-Chiang

    2011-01-01

    Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (∼500 g) and the liver (∼100 g). Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic clamp, 70–90% of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen’s main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70% of maximal oxygen uptake (Vo2max⁡) and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favor glycogen repletion and preparation for new “fight or flight” events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channeled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type 2

  4. ANTISENSE INHIBITION OF NADH-GLUTAMATE SYNTHASE IMPAIRS CARBON/NITROGEN ASSIMILATION IN NODULES OF ALFALFA (MEDICAGO SATIVA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legumes acquire significant amounts of nitrogen for growth from symbiotic nitrogen fixation in root nodules. The glutamine synthetase (GS)/NADH-dependent glutamate synthase (NADH-GOGAT) cycle catalyzes initial nitrogen assimilation. This report describes the impacts of specific reduction on nodule N...

  5. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  6. RNA interference-based gene silencing of phytoene synthase impairs growth, carotenoids, and plastid phenotype in Oncidium hybrid orchid.

    PubMed

    Liu, Jian-Xin; Chiou, Chung-Yi; Shen, Chin-Hui; Chen, Peng-Jen; Liu, Yao-Chung; Jian, Chin-Der; Shen, Xiao-Lan; Shen, Fu-Quan; Yeh, Kai-Wun

    2014-01-01

    Phytoene synthase (PSY) is the first rate-limiting regulatory enzyme in the carotenoid biosynthesis pathway. In order to modify the floral color pattern by reducing carotenoid contents, a phytoene synthase-RNAi construct was delivered into protocorm-like body (PLB) of Oncidium hybrid orchid. The transgenic orchids show down-regulated level of PSY and geranyl synthase gene. They displayed semi-dwarf phenotype and brilliant green leaves. The microscopic anatomy revealed development-arrested plastids with rare grana. The total carotenoid content was decreased and the efficiency of the photosynthetic electron transport was declined. The chlorophyll level and the expression of chlorophyll biosynthetic genes, such as OgGLUTR and OgCS were dramatically reduced. HPLC analysis showed that the endogenous level of gibberellic acid and abscisic acid in the dwarf transformants are 4-fold lower than in wild type plants. In addition, chilling tolerance of the transgenic Oncidium plants was reduced. The data showed that down-regulation of PSY resulted in alterations of gene expression in enzymes involved in many metabolic pathways, such as carotenoid, gibberellic acid, abscisic acid and chlorophyll biosynthetic pathway as well as causes predominant defects in plant growth and development. PMID:25221736

  7. Diverse effects of two allosteric inhibitors on the phosphorylation state of glycogen phosphorylase in hepatocytes.

    PubMed Central

    Latsis, Theodore; Andersen, Birgitte; Agius, Loranne

    2002-01-01

    Two distinct allosteric inhibitors of glycogen phosphorylase, 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and CP-91149 (an indole-2-carboxamide), were investigated for their effects on the phosphorylation state of the enzyme in hepatocytes in vitro. CP-91149 induced inactivation (dephosphorylation) of phosphorylase in the absence of hormones and partially counteracted the phosphorylation caused by glucagon. Inhibition of glycogenolysis by CP-91149 can be explained by dephosphorylation of phosphorylase a. This was associated with activation of glycogen synthase and stimulation of glycogen synthesis. DAB, in contrast, induced a small degree of phosphorylation of phosphorylase. This was associated with inactivation of glycogen synthase and inhibition of glycogen synthesis. Despite causing phosphorylation (activation) of phosphorylase, DAB is a very potent inhibitor of glycogenolysis in both the absence and presence of glucagon. This is explained by allosteric inhibition of phosphorylase a, which overrides the increase in activation state. In conclusion, two potent phosphorylase inhibitors exert different effects on glycogen metabolism in intact hepatocytes as a result of opposite effects on the phosphorylation state of both phosphorylase and glycogen synthase. PMID:12186629

  8. Molecular Structure of Human-Liver Glycogen

    PubMed Central

    Deng, Bin; Sullivan, Mitchell A.; Chen, Cheng; Li, Jialun; Powell, Prudence O.; Hu, Zhenxia; Gilbert, Robert G.

    2016-01-01

    Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets. PMID:26934359

  9. Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1.

    PubMed Central

    Moon, Byoung; Duddy, Noreen; Ragolia, Louis; Begum, Najma

    2003-01-01

    Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1(G)) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1(G) in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1(G) or with PP-1(G) mutants in which site-1 (S1) Ser(48) and site-2 (S2) Ser(67) residues were substituted with Ala. Cells expressing wild-type and PP-1(G) mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60 min heat shock at 45 degrees C, followed by analysis of [(14)C]glucose incorporation into glycogen at 37 degrees C. PP-1(G) S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1(G) S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3 beta (GSK-3 beta) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3 beta phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1(G) S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1(G) S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3

  10. Glycogen Repletion in Brown Adipose Tissue upon Refeeding Is Primarily Driven by Phosphorylation-Independent Mechanisms

    PubMed Central

    Carmean, Christopher M.; Huang, Y. Hanna; Brady, Matthew J.

    2016-01-01

    Glycogen storage in brown adipose tissue (BAT) is generally thought to take place through passive, substrate-driven activation of glycogenesis rather than programmatic shifts favoring or opposing the storage and/or retention of glycogen. This perception exists despite a growing body of evidence suggesting that BAT glycogen storage is actively regulated by covalent modification of key glycogen-metabolic enzymes, protein turnover, and endocrine hormone signaling. Members of one such class of covalent-modification regulators, glycogen-binding Phosphoprotein Phosphatase-1 (PP1)-regulatory subunits (PPP1Rs), targeting PP1 to glycogen-metabolic enzymes, were dynamically regulated in response to 24 hr of starvation and/or 24 hr of starvation followed by ad libitum refeeding. Over-expression of the PPP1R Protein Targeting to Glycogen (PTG), under the control of the aP2 promoter in mice, inactivated glycogen phosphorylase (GP) and enhanced basal- and starvation-state glycogen storage. Total interscapular BAT glycogen synthase and the constitutive activity of GS were conditionally affected. During starvation, glucose-6-phosphate (G-6-P) levels and the relative phosphorylation of Akt (p-Ser-473-Akt) were both increased in PTG-overexpressing (Tg) mice, suggesting that elevated glycogen storage during starvation modifies broader cellular metabolic pathways. During refeeding, Tg and WT mice reaccumulated glycogen similarly despite altered GS and GP activities. All observations during refeeding suggest that the phosphorylation states of GS and GP are not physiologically rate-controlling, despite there being a clear balance of endogenous kinase- and phosphatase activities. The studies presented here reveal IBAT glycogen storage to be a tightly-regulated process at all levels, with potential effects on nutrient sensing in vivo. PMID:27213961

  11. Glucagon-like peptide 1: a potent glycogenic hormone.

    PubMed

    Valverde, I; Morales, M; Clemente, F; López-Delgado, M I; Delgado, E; Perea, A; Villanueva-Peñacarrillo, M L

    1994-08-01

    GLP-1(7-36)amide is an insulinotropic peptide derived from the intestinal post-translational proglucagon process, the release of which is increased mainly after a carbohydrate meal; also, its anti-diabetogenic effect in normal and diabetic states has been reported. In this study, GLP-1(7-36)amide stimulates the formation of glycogen from glucose in isolated rat hepatocytes, such a glycogenic effect being achieved with physiological concentrations of the peptide. The GLP-1(7-36)amide-induced glycogenesis is abolished by glucagon, and it is accompanied by stimulation of the glycogen synthase alpha activity and by a decrease in the basal and glucagon-stimulated cyclic AMP content. These findings could explain, at least in part, the GLP-1(7-36)amide insulin-independent plasma glucose lowering effect. PMID:8050588

  12. Stable expression of lipocalin-type prostaglandin D synthase in cultured preadipocytes impairs adipogenesis program independently of endogenous prostanoids

    SciTech Connect

    Hossain, Mohammad Salim; Chowdhury, Abu Asad; Rahman, Mohammad Sharifur; Nishimura, Kohji; Jisaka, Mitsuo; Nagaya, Tsutomu; Shono, Fumiaki; Yokota, Kazushige

    2012-02-15

    Lipocalin-type prostaglandin D synthase (L-PGDS) expressed preferentially in adipocytes is responsible for the synthesis of PGD{sub 2} and its non-enzymatic dehydration products, PGJ{sub 2} series, serving as pro-adipogenic factors. However, the role of L-PGDS in the regulation of adipogenesis is complex because of the occurrence of several derivatives from PGD{sub 2} and their distinct receptor subtypes as well as other functions such as a transporter of lipophilic molecules. To manipulate the expression levels of L-PGDS in cultured adipocytes, cultured preadipogenic 3T3-L1 cells were transfected stably with a mammalian expression vector having cDNA encoding murine L-PGDS oriented in the sense direction. The isolated cloned stable transfectants with L-PGDS expressed higher levels of the transcript and protein levels of L-PGDS, and synthesized PGD{sub 2} from exogenous arachidonic acid at significantly higher levels. By contrast, the synthesis of PGE{sub 2} remained unchanged, indicating no influence on the reactions of cyclooxygenase (COX) and PGE synthase. Furthermore, the ability of those transfectants to synthesize {Delta}{sup 12}-PGJ{sub 2} increased more greatly during the maturation phase. The sustained expression of L-PGDS in cultured stable transfectants hampered the storage of fats during the maturation phase of adipocytes, which was accompanied by the reduced gene expression of adipocyte-specific markers reflecting the down-regulation of the adipogenesis program. The suppressed adipogenesis was not rescued by either exogenous aspirin or peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists including troglitazone and {Delta}{sup 12}-PGJ{sub 2}. Taken together, the results indicate the negative regulation of the adipogenesis program by the enhanced expression of L-PGDS through a cellular mechanism involving the interference of the PPAR{gamma} signaling pathway without the contribution of endogenous pro-adipogenic prostanoids

  13. Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10.

    PubMed

    Huang, D; Moffat, J; Wilson, W A; Moore, L; Cheng, C; Roach, P J; Andrews, B

    1998-06-01

    In Saccharomyces cerevisiae, PHO85 encodes a cyclin-dependent protein kinase (Cdk) with multiple roles in cell cycle and metabolic controls. In association with the cyclin Pho80, Pho85 controls acid phosphatase gene expression through phosphorylation of the transcription factor Pho4. Pho85 has also been implicated as a kinase that phosphorylates and negatively regulates glycogen synthase (Gsy2), and deletion of PHO85 causes glycogen overaccumulation. We report that the Pcl8/Pcl10 subgroup of cyclins directs Pho85 to phosphorylate glycogen synthase both in vivo and in vitro. Disruption of PCL8 and PCL10 caused hyperaccumulation of glycogen, activation of glycogen synthase, and a reduction in glycogen synthase kinase activity in vivo. However, unlike pho85 mutants, pcl8 pcl10 cells had normal morphologies, grew on glycerol, and showed proper regulation of acid phosphatase gene expression. In vitro, Pho80-Pho85 complexes effectively phosphorylated Pho4 but had much lower activity toward Gsy2. In contrast, Pcl10-Pho85 complexes phosphorylated Gsy2 at Ser-654 and Thr-667, two physiologically relevant sites, but only poorly phosphorylated Pho4. Thus, both the in vitro and in vivo substrate specificity of Pho85 is determined by the cyclin partner. Mutation of PHO85 suppressed the glycogen storage deficiency of snf1 or glc7-1 mutants in which glycogen synthase is locked in an inactive state. Deletion of PCL8 and PCL10 corrected the deficit in glycogen synthase activity in both the snf1 and glc7-1 mutants, but glycogen synthesis was restored only in the glc7-1 mutant strain. This genetic result suggests an additional role for Pho85 in the negative regulation of glycogen accumulation that is independent of Pcl8 and Pcl10. PMID:9584169

  14. A Whole-Body Model for Glycogen Regulation Reveals a Critical Role for Substrate Cycling in Maintaining Blood Glucose Homeostasis

    PubMed Central

    Xu, Ke; Morgan, Kevin T.; Todd Gehris, Abby; Elston, Timothy C.; Gomez, Shawn M.

    2011-01-01

    Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active) and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile) cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into “whole-body” contextual models that mimic in vivo conditions. PMID:22163177

  15. Uterine glycogen metabolism in mink during estrus, embryonic diapause and pregnancy.

    PubMed

    Dean, Matthew; Hunt, Jason; McDougall, Lisa; Rose, Jack

    2014-01-01

    We have determined uterine glycogen content, metabolizing enzyme expression and activity in the mink, a species that exhibits obligatory embryonic diapause, resulting in delayed implantation. Gross uterine glycogen concentrations were highest in estrus, decreased 50% by diapause and 90% in pregnancy (P ≤ 0.05). Endometrial glycogen deposits, which localized primarily to glandular and luminal epithelia, decreased 99% between estrus and diapause (P ≤ 0.05) and were nearly undetectable in pregnancy. Glycogen synthase and phosphorylase proteins were most abundant in the glandular epithelia. Glycogen phosphorylase activity (total) in uterine homogenates was higher during estrus and diapause, than pregnancy. While glycogen phosphorylase protein was detected during estrus and diapause, glycogen synthase was almost undetectable after estrus, which probably contributed to a higher glycogenolysis/glycogenesis ratio during diapause. Uterine glucose-6-phosphatase 3 gene expression was greater during diapause, when compared to estrus (P ≤ 0.05) and supports the hypothesis that glucose-6-phosphate resulting from phosphorylase activity was dephosphorylated in preparation for export into the uterine lumen. The relatively high amount of hexokinase-1 protein detected in the luminal epithelia during estrus and diapause may have contributed to glucose trapping after endometrial glycogen reserves were depleted. Collectively, our findings suggest to us that endometrial glycogen reserves may be an important source of energy, supporting uterine and conceptus metabolism up to the diapausing blastocyst stage. As a result, the size of uterine glycogen reserves accumulated prior to mating may in part, determine the number of embryos that survive to the blastocyst stage, and ultimately litter size. PMID:25225159

  16. Insulin-independent glycogen supercompensation in isolated mouse skeletal muscle: role of phosphorylase inactivation.

    PubMed

    Sandström, Marie E; Abbate, Fabio; Andersson, Daniel C; Zhang, Shi-Jin; Westerblad, Håkan; Katz, Abram

    2004-08-01

    Glycogen supercompensation (increase in muscle glycogen content above basal) is an established phenomenon induced by unknown mechanisms. It consists of both insulin-dependent and -independent components. Here, we investigate insulin-independent glycogen supercompensation in isolated, intact extensor digitorum longus muscles from mice. Muscles were stimulated electrically, incubated in vitro with 5.5 mM glucose for up to 16 h and then analysed for glycogen, glucose uptake and enzyme activities. Basal glycogen was 84+/-6 micro mol glucosyl units/g dry muscle and was depleted by 80% after 10 min contraction. Glycogen increased after contraction, reaching a peak value of 113+/-9 micro mol glucosyl units/g dry muscle ( P<0.05 vs. basal) by 6 h, and returned to basal values by 16 h (84+/-8). Maximal activities of glycogen synthase, phosphorylase and alpha-glucosidase were not significantly altered by contraction or during the 6-h recovery period. Glycogen synthase fractional activity (0.17/7.2 mM glucose-6-P; inversely related to phosphorylation state of the enzyme) was increased about twofold early after contraction but then decreased and was slightly lower than baseline during the period of supercompensation (4-6 h). Phosphorylase fractional activity (+/-adenosine monophosphate; directly related to phosphorylation state of the enzyme) decreased to 60% of basal after contraction and decreased further during the initial 4 h of recovery to 40% of basal ( P<0.01 vs. basal). After 4 h recovery, glucose uptake was slightly (50%) higher in the stimulated than in the non-stimulated muscle ( P<0.01). Thus, insulin-independent glycogen supercompensation involves inactivation of phosphorylase and hence an inhibition of glycogen breakdown. PMID:15085341

  17. Lithium Induces Glycogen Accumulation in Salivary Glands of the Rat.

    PubMed

    Souza, D N; Mendes, F M; Nogueira, F N; Simões, A; Nicolau, J

    2016-02-01

    Lithium is administered for the treatment of mood and bipolar disorder. The aim of this study was to verify whether treatment with different concentrations of lithium may affect the glycogen metabolism in the salivary glands of the rats when compared with the liver. Mobilization of glycogen in salivary glands is important for the process of secretion. Two sets of experiments were carried out, that is, in the first, the rats received drinking water supplemented with LiCl (38,25 and 12 mM of LiCl for 15 days) and the second experiment was carried out by intraperitoneal injection of LiCl solution (12 mg/kg and 45 mg LiCl/kg body weight) for 3 days. The active form of glycogen phosphorylase was not affected by treatment with LiCl considering the two experiments. The active form of glycogen synthase presented higher activity in the submandibular glands of rats treated with 25 and 38 mM LiCl and in the liver, with 25 mM LiCl. Glycogen level was higher than that of control in the submandibular glands of rats receiving 38 and 12 mM LiCl, in the parotid of rats receiving 25 and 38 mM, and in the liver of rats receiving 12 mM LiCl. The absolute value of glycogen for the submandibular treated with 25 mM LiCl, and the liver treated with 38 mM LiCl, was higher than the control value, although not statistically significant for these tissues. No statistically significant difference was found in the submandibular and parotid salivary glands for protein concentration when comparing experimental and control groups. We concluded that LiCl administered to rats influences the metabolism of glycogen in salivary glands. PMID:26155966

  18. Disruption of the Candida albicans TPS1 Gene Encoding Trehalose-6-Phosphate Synthase Impairs Formation of Hyphae and Decreases Infectivity†

    PubMed Central

    Zaragoza, Oscar; Blazquez, Miguel A.; Gancedo, Carlos

    1998-01-01

    The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30°C was indistinguishable from that of the wild type. However, at 42°C it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37°C, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42°C, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 106 CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation. PMID:9683476

  19. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity.

    PubMed

    Zaragoza, O; Blazquez, M A; Gancedo, C

    1998-08-01

    The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30 degreesC was indistinguishable from that of the wild type. However, at 42 degreesC it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37 degreesC, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42 degreesC, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 10(6) CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation. PMID:9683476

  20. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses

    PubMed Central

    Ohol, Yamini M.; Wang, Zhaoti; Kemble, George; Duke, Gregory

    2015-01-01

    Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long)-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3), and human rhinovirus 16 (HRV16) progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity. PMID:26659560

  1. In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle.

    PubMed

    Sellman, Jeff E; DeRuisseau, Keith C; Betters, Jenna L; Lira, Vitor A; Soltow, Quinlyn A; Selsby, Joshua T; Criswell, David S

    2006-01-01

    Inhibition of nitric oxide synthase (NOS) activity in vivo impedes hypertrophy in the overloaded rat plantaris. We investigated the mechanism for this effect by examining early events leading to muscle growth following 5 or 12 days of functional overload. Male Sprague-Dawley rats (approximately 350 g) were randomly divided into three treatment groups: control, N(G)-nitro-L-arginine methyl ester (L-NAME; 90 mg.kg(-1).day(-1)), and 1-(2-trifluoromethyl-phenyl)-imidazole (TRIM; 10 mg.kg(-1).day(-1)). Unilateral removal of synergists induced chronic overload (OL) of the right plantaris. Sham surgery performed on the left hindlimb served as a normally loaded control. L-NAME and TRIM treatments prevented OL-induced skeletal alpha-actin and type I (slow) myosin heavy chain mRNA expression at 5 days. Conversely, neither L-NAME nor TRIM affected hepatocyte growth factor or VEGF mRNA responses to OL at 5 days. However, OL induction of IGF-I and mechanogrowth factor mRNA was greater (P < 0.05) in the TRIM group compared with the controls. Furthermore, the phosphorylated-to-total p70 S6 kinase ratio was higher in OL muscle from NOS-inhibited groups, compared with control OL. At 12 days of OL, the cumulative proliferation of plantaris satellite cells was assessed by subcutaneous implantation of time release 5'-bromo-2'-deoxyuridine pellets during the OL-inducing surgeries. Although OL caused a fivefold increase in the number of mitotically active (5'-bromo-2'-deoxyuridine positive) sublaminar nuclei, this was unaffected by concurrent NOS inhibition. Therefore, NOS activity may provide negative feedback control of IGF-I/p70 S6 kinase signaling during muscle growth. Moreover, NOS activity may be involved in transcriptional regulation of skeletal alpha-actin and type I (slow) myosin heavy chain during functional overload. PMID:16166235

  2. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    PubMed Central

    Tanda, Koichi; Nishi, Akinori; Matsuo, Naoki; Nakanishi, Kazuo; Yamasaki, Nobuyuki; Sugimoto, Tohru; Toyama, Keiko; Takao, Keizo; Miyakawa, Tsuyoshi

    2009-01-01

    Background Neuronal nitric oxide synthase (nNOS) is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO) mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders. PMID:19538708

  3. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    PubMed Central

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  4. A new non-degradative method to purify glycogen.

    PubMed

    Tan, Xinle; Sullivan, Mitchell A; Gao, Fei; Li, Shihan; Schulz, Benjamin L; Gilbert, Robert G

    2016-08-20

    Liver glycogen, a complex branched glucose polymer containing a small amount of protein, is important for maintaining glucose homeostasis (blood-sugar control) in humans. It has recently been found that glycogen molecular structure is impaired in diabetes. Isolating the carbohydrate polymer and any intrinsically-attached protein(s) is an essential prerequisite for studying this structural impairment. This requires an effective, non-degradative and efficient purification method to exclude the many other proteins present in liver. Proteins and glycogen have different ranges of molecular sizes. Despite the plethora of proteins that might still be present in significant abundance after other isolation techniques, SEC (size exclusion chromatography, also known as GPC), which separates by molecular size, should separate those extraneous to glycogen from glycogen with any intrinsically associated protein(s). A novel purification method is developed for this, based on preparative SEC following sucrose gradient centrifugation. Proteomics is used to show that the new method compares favourably with current methods in the literature. PMID:27178921

  5. Age-dependent acceleration of ischemic injury in endothelial nitric oxide synthase-deficient mice: potential role of impaired VEGF receptor 2 expression.

    PubMed

    Qian, Hu Sheng; de Resende, Micheline Monterio; Beausejour, Christian; Huw, Ling-Yuh; Liu, Perry; Rubanyi, Gabor M; Kauser, Katalin

    2006-04-01

    Morbidity and mortality of peripheral arterial occlusive disease significantly increases with age, often exhibiting more severe disease pathology and decreased treatment effectiveness. Therapeutic angiogenesis with angiogenic growth factors may represent a valuable treatment option for the severely ill, older adult patient population. Aging is considered an independent cardiovascular risk factor, but pathomechanistically it is not well understood. Diminished endothelial nitric oxide (EDNO) production has been considered as a major contributor to the aging process. To investigate the effect of age on postischemic revascularization independent of changes in EDNO, we used endothelial nitric oxide synthase-deficient (ecNOS-KO) mice. We found an age-dependent acceleration in ischemic injury following unilateral femoral artery ligation in these animals compared to C57BL/J6 mice. Postischemic revascularization, quantified by measuring von Willebrand factor expression, was significantly impaired, suggesting that factors other than progressive EDNO deterioration are also involved in the age-dependent severe disease phenotype. Ischemia led to an increase in the expression of vascular endothelial growth factor receptor-2, KDR, in younger ecNOS-KO; however, this increase in KDR expression was absent in the older animals. Lack of increased KDR expression may provide a mechanistic explanation for the severe ischemic injury and perhaps can be used as a clinical marker to identify severe, vascular endothelial growth factor refractory patient population. PMID:16680073

  6. Effect of endurance exercise training on muscle glycogen supercompensation in rats.

    PubMed

    Nakatani, A; Han, D H; Hansen, P A; Nolte, L A; Host, H H; Hickner, R C; Holloszy, J O

    1997-02-01

    The purpose of this study was to test the hypothesis that the rate and extent of glycogen supercompensation in skeletal muscle are increased by endurance exercise training. Rats were trained by using a 5-wk-long swimming program in which the duration of swimming was gradually increased to 6 h/day over 3 wk and then maintained at 6 h/day for an additional 2 wk. Glycogen repletion was measured in trained and untrained rats after a glycogen-depleting bout of exercise. The rats were given a rodent chow diet plus 5% sucrose in their drinking water and libitum during the recovery period. There were remarkable differences in both the rates of glycogen accumulation and the glycogen concentrations attained in the two groups. The concentration of glycogen in epitrochlearis muscle averaged 13.1 +/- 0.9 mg/g wet wt in the untrained group and 31.7 +/- 2.7 mg/g in the trained group (P < 0.001) 24 h after the exercise. This difference could not be explained by a training effect on glycogen synthase. The training induced approximately 50% increases in muscle GLUT-4 glucose transporter protein and in hexokinase activity in epitrochlearis muscles. We conclude that endurance exercise training results in increases in both the rate and magnitude of muscle glycogen supercompensation in rats. PMID:9049757

  7. Chronic overeating impairs hepatic glucose uptake and disposition.

    PubMed

    Coate, Katie C; Kraft, Guillaume; Shiota, Masakazu; Smith, Marta S; Farmer, Ben; Neal, Doss W; Williams, Phil; Cherrington, Alan D; Moore, Mary Courtney

    2015-05-15

    Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.0 ± 0.3 and 1.5 ± 0.5 kg, respectively, P < 0.05). They then underwent clamp studies with infusions of somatostatin and intraportal insulin (4× basal) and glucagon (basal). The hepatic glucose load was doubled with peripheral (Pe) glucose infusion for 90 min (P1) and intraportal glucose at 4 mg·kg(-1)·min(-1) plus Pe glucose for the final 90 min (P2). NHGU was blunted (P < 0.05) in Hkcal during both periods (mg·kg(-1)·min(-1); P1: 1.7 ± 0.2 vs. 0.3 ± 0.4; P2: 3.6 ± 0.3 vs. 2.3 ± 0.4, CTR vs. Hkcal, respectively). Terminal hepatic glucokinase catalytic activity was reduced nearly 50% in Hkcal vs. CTR (P < 0.05), although glucokinase protein did not differ between groups. In Hkcal vs. CTR, liver glycogen was reduced 27% (P < 0.05), with a 91% increase in glycogen phosphorylase activity (P < 0.05) but no significant difference in glycogen synthase activity. Thus, Hkcal impaired NHGU and glycogen synthesis compared with CTR, indicating that excessive energy intake, even if the diet is balanced and nutritious, negatively impacts hepatic glucose metabolism. PMID:25783892

  8. Deficiency in a Very-Long-Chain Fatty Acid β-Ketoacyl-Coenzyme A Synthase of Tomato Impairs Microgametogenesis and Causes Floral Organ Fusion1[W

    PubMed Central

    Smirnova, Anna; Leide, Jana; Riederer, Markus

    2013-01-01

    Previously, it was shown that β-ketoacyl-coenzyme A synthase ECERIFERUM6 (CER6) is necessary for the biosynthesis of very-long-chain fatty acids with chain lengths beyond C28 in tomato (Solanum lycopersicum) fruits and C26 in Arabidopsis (Arabidopsis thaliana) leaves and the pollen coat. CER6 loss of function in Arabidopsis resulted in conditional male sterility, since pollen coat lipids are responsible for contact-mediated pollen hydration. In tomato, on the contrary, pollen hydration does not rely on pollen coat lipids. Nevertheless, mutation in SlCER6 impairs fertility and floral morphology. Here, the contribution of SlCER6 to the sexual reproduction and flower development of tomato was addressed. Cytological analysis and cross-pollination experiments revealed that the slcer6 mutant has male sterility caused by (1) hampered pollen dispersal and (2) abnormal tapetum development. SlCER6 loss of function provokes a decrease of n- and iso-alkanes with chain lengths of C27 or greater and of anteiso-alkanes with chain lengths of C28 or greater in flower cuticular waxes, but it has no impact on flower cuticle ultrastructure and cutin content. Expression analysis confirmed high transcription levels of SlCER6 in the anther and the petal, preferentially in sites subject to epidermal fusion. Hence, wax deficiency was proposed to be the primary reason for the flower fusion phenomenon in tomato. The SlCER6 substrate specificity was revisited. It might be involved in elongation of not only linear but also branched very-long-chain fatty acids, leading to production of the corresponding alkanes. SlCER6 implements a function in the sexual reproduction of tomato that is different from the one in Arabidopsis: SlCER6 is essential for the regulation of timely tapetum degradation and, consequently, microgametogenesis. PMID:23144186

  9. Postexercise muscle glycogen resynthesis in obese insulin-resistant Zucker rats.

    PubMed

    Bruce, C R; Lee, J S; Hawley, J A

    2001-10-01

    We determined the effect of an acute bout of swimming (8 x 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 +/- 31 vs. 247 +/- 16 micromol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 +/- 0.05 and 0.32 +/- 0.04 to 0.63 +/- 0.08 vs. 0.57 +/- 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (approximately 45%) and CHO-supplemented (approximately 115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance. PMID:11568131

  10. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes.

    PubMed

    Santiago-Martínez, Michel Geovanni; Encalada, Rusely; Lira-Silva, Elizabeth; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Reyes-García, Marco Antonio; Saavedra, Emma; Moreno-Sánchez, Rafael; Marín-Hernández, Alvaro; Jasso-Chávez, Ricardo

    2016-05-01

    Gluconeogenesis is an essential pathway in methanogens because they are unable to use exogenous hexoses as carbon source for cell growth. With the aim of understanding the regulatory mechanisms of central carbon metabolism in Methanosarcina acetivorans, the present study investigated gene expression, the activities and metabolic regulation of key enzymes, metabolite contents and fluxes of gluconeogenesis, as well as glycolysis and glycogen synthesis/degradation pathways. Cells were grown with methanol as a carbon source. Key enzymes were kinetically characterized at physiological pH/temperature. Active consumption of methanol during exponential cell growth correlated with significant methanogenesis, gluconeogenic flux and steady glycogen synthesis. After methanol exhaustion, cells reached the stationary growth phase, which correlated with the rise in glycogen consumption and glycolytic flux, decreased methanogenesis, negligible acetate production and an absence of gluconeogenesis. Elevated activities of carbon monoxide dehydrogenase/acetyl-CoA synthetase complex and pyruvate: ferredoxin oxidoreductase suggested the generation of acetyl-CoA and pyruvate for glycogen synthesis. In the early stationary growth phase, the transcript contents and activities of pyruvate phosphate dikinase, fructose 1,6-bisphosphatase and glycogen synthase decreased, whereas those of glycogen phosphorylase, ADP-phosphofructokinase and pyruvate kinase increased. Therefore, glycogen and gluconeogenic metabolites were synthesized when an external carbon source was provided. Once such a carbon source became depleted, glycolysis and methanogenesis fed by glycogen degradation provided the ATP supply. Weak inhibition of key enzymes by metabolites suggested that the pathways evaluated were mainly transcriptionally regulated. Because glycogen metabolism and glycolysis/gluconeogenesis are not present in all methanogens, the overall data suggest that glycogen storage might represent an environmental

  11. Dysfunctional Glycogen Storage in a Mouse Model of α1-Antitrypsin Deficiency

    PubMed Central

    Hubner, Ralf H.; Leopold, Philip L.; Kiuru, Maija; De, Bishnu P.; Krause, Anja; Crystal, Ronald G.

    2009-01-01

    Autophagy is an intracellular pathway that contributes to the degradation and recycling of unfolded proteins. Based on the knowledge that autophagy affects glycogen metabolism and that α1-antitrypsin (AAT) deficiency is associated with an autophagic response in the liver, we hypothesized that the conformational abnormalities of the Z-AAT protein interfere with hepatocyte glycogen storage and/or metabolism. Compared with wild-type mice (WT), the Z-AAT mice had lower liver glycogen stores (P < 0.001) and abnormal activities of glycogen-related enzymes, including acid α-glucosidase (P < 0.05) and the total glycogen synthase (P < 0.05). As metabolic consequences, PiZ mice demonstrated lower blood glucose levels (P < 0.05), lower body weights (P < 0.001), and lower fat pad weights (P < 0.001) compared with WT. After the stress of fasting or partial hepatectomy, PiZ mice had further reduced liver glycogen and lower blood glucose levels (both P < 0.05 compared WT). Finally, PiZ mice exhibited decreased survival after partial hepatectomy (P < 0.01 compared with WT), but this was normalized with postoperative dextrose supplementation. In conclusion, these observations are consistent with the general concept that abnormal protein conformation and degradation affects other cellular functions, suggesting that diseases in the liver might benefit from metabolic compensation if glycogen metabolism is affected. PMID:18688041

  12. Glycogen storage disease type III: A novel Agl knockout mouse model.

    PubMed

    Pagliarani, Serena; Lucchiari, Sabrina; Ulzi, Gianna; Violano, Raffaella; Ripolone, Michela; Bordoni, Andreina; Nizzardo, Monica; Gatti, Stefano; Corti, Stefania; Moggio, Maurizio; Bresolin, Nereo; Comi, Giacomo P

    2014-11-01

    Glycogen storage disease type III is an autosomal recessive disease characterized by a deficiency in the glycogen debranching enzyme, encoded by AGL. Essential features of this disease are hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Progressive skeletal myopathy, neuropathy, and/or cardiomyopathy become prominent in adults. Currently, there is no available cure. We generated an Agl knockout mouse model by deletion of the carboxy terminus of the protein, including the carboxy end of the glucosidase domain and the glycogen-binding domain. Agl knockout mice presented serious hepatomegaly, but we did not observe signs of cirrhosis or adenomas. In affected tissues, glycogen storage was higher than in wild-type mice, even in the central nervous system which has never been tested in GSDIII patients. The biochemical findings were in accordance with histological data, which clearly documented tissue impairment due to glycogen accumulation. Indeed, electron microscopy revealed the disruption of contractile units due to glycogen infiltrations. Furthermore, adult Agl knockout animals appeared less prompt to move, and they exhibited kyphosis. Three-mo-old Agl knockout mice could not run, and adult mice showed exercise intolerance. In addition, older affected animals exhibited an accelerated respiratory rate even at basal conditions. This observation was correlated with severe glycogen accumulation in the diaphragm. Diffuse glycogen deposition was observed in the tongues of affected mice. Our results demonstrate that this Agl knockout mouse is a reliable model for human glycogenosis type III, as it recapitulates the essential phenotypic features of the disease. PMID:25092169

  13. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Hypertensive Patients With Primary Hyperaldosteronemia: Role of 5,6,7,8-Tetrahydrobiopterin Oxidation and Endothelial Nitric Oxide Synthase Uncoupling.

    PubMed

    Chen, Long; Ding, Mei-Lin; Wu, Fang; He, Wen; Li, Jin; Zhang, Xiao-Yu; Xie, Wen-Li; Duan, Sheng-Zhong; Xia, Wen-Hao; Tao, Jun

    2016-02-01

    Although hyperaldosteronemia exerts detrimental impacts on vascular endothelium in addition to elevating blood pressure, the effects and molecular mechanisms of hyperaldosteronemia on early endothelial progenitor cell (EPC)-mediated endothelial repair after arterial damage are yet to be determined. The aim of this study was to investigate the endothelial repair capacity of early EPCs from hypertensive patients with primary hyperaldosteronemia (PHA). In vivo endothelial repair capacity of early EPCs from PHAs (n=20), age- and blood pressure-matched essential hypertension patients (n=20), and age-matched healthy subjects (n=20) was evaluated by transplantation into a nude mouse carotid endothelial denudation model. Endothelial function was evaluated by flow-mediated dilation of brachial artery in human subjects. In vivo endothelial repair capacity of early EPCs and flow-mediated dilation were impaired both in PHAs and in essential hypertension patients when compared with age-matched healthy subjects; however, the early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs were impaired more severely than essential hypertension patients. Oral spironolactone improved early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs. Increased oxidative stress, oxidative 5,6,7,8-tetrahydrobiopterin degradation, endothelial nitric oxide synthase uncoupling and decreased nitric oxide production were found in early EPCs from PHAs. Nicotinamide adenine dinucleotide phosphate oxidase subunit p47(phox) knockdown or 5,6,7,8-tetrahydrobiopterin supplementation attenuated endothelial nitric oxide synthase uncoupling and enhanced in vivo endothelial repair capacity of early EPCs from PHAs. In conclusion, PHAs exhibited more impaired endothelial repair capacity of early EPCs than did essential hypertension patients independent of blood pressure, which was associated with mineralocorticoid receptor-dependent oxidative stress and subsequently 5

  14. Genetics Home Reference: glycogen storage disease type IV

    MedlinePlus

    ... gene provides instructions for making the glycogen branching enzyme. This enzyme is involved in the production of glycogen , which ... to a shortage (deficiency) of the glycogen branching enzyme. As a result, glycogen is not formed properly. ...

  15. Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy

    PubMed Central

    López-Ramos, Juan C.; Duran, Jordi; Gruart, Agnès; Guinovart, Joan J.; Delgado-García, José M.

    2015-01-01

    Although glycogen is the only carbohydrate reserve of the brain, its overall contribution to brain functions remains unclear. It has been proposed that glycogen participates in the preservation of such functions during hypoxia. Several reports also describe a relationship between brain glycogen and susceptibility to epilepsy. To address these issues, we used our brain-specific Glycogen Synthase knockout (GYS1Nestin-KO) mouse to study the functional consequences of glycogen depletion in the brain under hypoxic conditions and susceptibility to epilepsy. GYS1Nestin-KO mice presented significantly different power spectra of hippocampal local field potentials (LFPs) than controls under hypoxic conditions. In addition, they showed greater excitability than controls for paired-pulse facilitation evoked at the hippocampal CA3–CA1 synapse during experimentally induced hypoxia, thereby suggesting a compensatory switch to presynaptic mechanisms. Furthermore, GYS1Nestin-KO mice showed greater susceptibility to hippocampal seizures and myoclonus following the administration of kainate and/or a brief train stimulation of Schaffer collaterals. We conclude that brain glycogen could play a protective role both in hypoxic situations and in the prevention of brain seizures. PMID:26578889

  16. Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy.

    PubMed

    López-Ramos, Juan C; Duran, Jordi; Gruart, Agnès; Guinovart, Joan J; Delgado-García, José M

    2015-01-01

    Although glycogen is the only carbohydrate reserve of the brain, its overall contribution to brain functions remains unclear. It has been proposed that glycogen participates in the preservation of such functions during hypoxia. Several reports also describe a relationship between brain glycogen and susceptibility to epilepsy. To address these issues, we used our brain-specific Glycogen Synthase knockout (GYS1(Nestin-KO)) mouse to study the functional consequences of glycogen depletion in the brain under hypoxic conditions and susceptibility to epilepsy. GYS1(Nestin-KO) mice presented significantly different power spectra of hippocampal local field potentials (LFPs) than controls under hypoxic conditions. In addition, they showed greater excitability than controls for paired-pulse facilitation evoked at the hippocampal CA3-CA1 synapse during experimentally induced hypoxia, thereby suggesting a compensatory switch to presynaptic mechanisms. Furthermore, GYS1(Nestin-KO) mice showed greater susceptibility to hippocampal seizures and myoclonus following the administration of kainate and/or a brief train stimulation of Schaffer collaterals. We conclude that brain glycogen could play a protective role both in hypoxic situations and in the prevention of brain seizures. PMID:26578889

  17. Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes[W][OA

    PubMed Central

    Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C.

    2013-01-01

    The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches—factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans. PMID:23632447

  18. Glycogen storage diseases: New perspectives

    PubMed Central

    Özen, Hasan

    2007-01-01

    Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism. Different hormones, including insulin, glucagon, and cortisol regulate the relationship of glycolysis, gluconeogenesis and glycogen synthesis. The overall GSD incidence is estimated 1 case per 20000-43000 live births. There are over 12 types and they are classified based on the enzyme deficiency and the affected tissue. Disorders of glycogen degradation may affect primarily the liver, the muscle, or both. Type Ia involves the liver, kidney and intestine (and Ib also leukocytes), and the clinical manifestations are hepatomegaly, failure to thrive, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia. Type IIIa involves both the liver and muscle, and IIIb solely the liver. The liver symptoms generally improve with age. Type IV usually presents in the first year of life, with hepatomegaly and growth retardation. The disease in general is progressive to cirrhosis. Type VI and IX are a heterogeneous group of diseases caused by a deficiency of the liver phosphorylase and phosphorylase kinase system. There is no hyperuricemia or hyperlactatemia. Type XI is characterized by hepatic glycogenosis and renal Fanconi syndrome. Type II is a prototype of inborn lysosomal storage diseases and involves many organs but primarily the muscle. Types V and VII involve only the muscle. PMID:17552001

  19. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis

    PubMed Central

    Asención Diez, Matías D.; Demonte, Ana M.; Syson, Karl; Arias, Diego G.; Gorelik, Andrii; Guerrero, Sergio A.; Bornemann, Stephen; Iglesias, Alberto A.

    2015-01-01

    Background Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. Results In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. Conclusions Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. General significance This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen. PMID:25277548

  20. Hydrodynamic properties of 2-mercaptoethanol-modified glycogen.

    PubMed

    Geddes, R; Harvey, J D; Wills, P R

    1977-12-01

    Treatment of glycogen with 2-mercaptoethanol and iodoacetamide gives rise to a modified glycogen which resembles the original glycogen in its hydrodynamic behaviour but has a pronounced tendency to aggregate. The modified glycogen can be distinguished easily, by its diffusion coefficient, from glycogen degraded by more traditional methods of extraction. The 'fundamental' glycogen particle appears to be composed of two or three glycogen beta-particles linked by a single protein chain. PMID:598377

  1. Role of glucose transport in glycogen supercompensation in reweighted rat skeletal muscle.

    PubMed

    Henriksen, E J; Stump, C S; Trinh, T H; Beaty, S D

    1996-05-01

    Hindlimb weight bearing after a 3-day period of hindlimb suspension (reweighting) of juvenile rats results in a marked transient elevation in soleus glycogen concentration that cannot be explained on the basis of the activities of glycogen synthase and phosphorylase. We have hypothesized that enhanced glucose transport activity could underlie this response. We directly tested this hypothesis by assessing the response of insulin-dependent and insulin-independent glucose transport activity (in vitro 2-[1,2-3H]deoxy-D-glucose uptake) as well as glucose transporter (GLUT-4) protein levels during a 48-h reweighting period. After a net glycogen loss (from 29 +/- 2 to 16 +/- 1 nmol/mg muscle; P < 0.05) during the first 2 h of reweighting, glycogen accumulated at an average rate of 1.4 nmol.mg-1.h-1 up to 18 h, reaching an apex of 38 +/- 1 nmol/mg. During this same reweighting period, insulin-independent, but not insulin-dependent, glucose transport activity was significantly enhanced (P < 0.05 vs. weight-bearing control values) and was associated with an elevated level of GLUT-4 protein and the specific activity of total hexokinase. The specific activity of citrate synthase was also increased. By 24 h of reweighting, although insulin-independent glucose transport activity and GLUT-4 protein remained elevated, glycogen accumulation had ceased, likely due to enhanced phosphorylase activity at this time point. These results are consistent with the interpretation that the glycogen supercompensation seen during reweighting of the rat soleus may be regulated in part by an enhanced glucose flux arising from an increase in insulin-independent glucose transport activity and hexokinase activity. PMID:8727537

  2. Biocatalytic role of potato starch synthase III for α-glucan biosynthesis in Synechocystis sp. PCC6803 mutants.

    PubMed

    Yoo, Sang-Ho; Lee, Byung-Hoo; Li, Li; Perris, Shayani D N; Spalding, Martin H; Han, Sang Yun; Jane, Jay-lin

    2015-11-01

    A potato starch synthase III (PSSIII) was expressed in the Synechocystis mutants deficient in either glycogen synthase I (M1) or II (M2) to replenish α-(1,4) linkage synthesizing activity, resulting in new mutants, PM1 and PM2, respectively. These mutants were applied to study the role of exogenous plant starch synthase for starch/glycogen biosynthesis mechanism established in the cyanobacteria. The remaining glycogen synthase genes in PM1 and PM2 were further disrupted to make the mutants PM12 and PM21 which contained PSSIII as the sole glycogen/starch synthase. Among wild type and mutants, there were no significant differences in the amount of α-glucan produced. All the mutants harboring active PSSIII produced α-glucans with relatively much shorter and less longer α-1,4 chains than wild-type glycogen, which was exactly in accordance with the increase in glycogen branching enzyme activity. In fact, α-glucan structure of PM1 was very similar to those of PM12 and PM21, and PM2 had more intermediate chains than M2. This result suggests PSSIII may have distributive elongation property during α-glucan synthesis. In conclusion, the Synechocystis as an expression model system of plant enzymes can be applied to determine the role of starch synthesizing enzymes and their association during α-glucan synthesis. PMID:26358554

  3. Brain glycogen decreases during prolonged exercise

    PubMed Central

    Matsui, Takashi; Soya, Shingo; Okamoto, Masahiro; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2011-01-01

    Abstract Brain glycogen could be a critical energy source for brain activity when the glucose supply from the blood is inadequate (hypoglycaemia). Although untested, it is hypothesized that during prolonged exhaustive exercise that induces hypoglycaemia and muscular glycogen depletion, the resultant hypoglycaemia may cause a decrease in brain glycogen. Here, we tested this hypothesis and also investigated the possible involvement of brain monoamines with the reduced levels of brain glycogen. For this purpose, we exercised male Wistar rats on a treadmill for different durations (30–120 min) at moderate intensity (20 m min−1) and measured their brain glycogen levels using high-power microwave irradiation (10 kW). At the end of 30 and 60 min of running, the brain glycogen levels remained unchanged from resting levels, but liver and muscle glycogen decreased. After 120 min of running, the glycogen levels decreased significantly by ∼37–60% in five discrete brain loci (the cerebellum 60%, cortex 48%, hippocampus 43%, brainstem 37% and hypothalamus 34%) compared to those of the sedentary control. The brain glycogen levels in all five regions after running were positively correlated with the respective blood and brain glucose levels. Further, in the cortex, the levels of methoxyhydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), potential involved in degradation of the brain glycogen, increased during prolonged exercise and negatively correlated with the glycogen levels. These results support the hypothesis that brain glycogen could decrease with prolonged exhaustive exercise. Increased monoamines together with hypoglycaemia should be associated with the development of decreased brain glycogen, suggesting a new clue towards the understanding of central fatigue during prolonged exercise. PMID:21521757

  4. Revisiting Glycogen Content in the Human Brain.

    PubMed

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  5. Studies in tissue glycogen in acute stress.

    PubMed

    De, A K; Dey, C; Debnath, P K

    1978-01-01

    The glycogen was estimated in liver, cardiac and skeletal muscles during the recovery period after electro-shock. The supercompensation in the level of glycogen was observed in cardiac and skeletal muscles at 1 1/2 and 5 hrs respectively during the recovery period, after electro-shock. The liver glycogen level was lower than the control value after electro-shock at least upto 5 hrs of recovery period. Further, the glycogen level was observed to be minimum when the ventricular glycogen showed its supercompensation at 1 1/2 hr of recovery period. The glycogen level of those three tissues returned to control level after 24 hrs of electro-shock. PMID:567192

  6. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions.

    PubMed

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber's oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  7. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    PubMed Central

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  8. Genetics Home Reference: glycogen storage disease type VII

    MedlinePlus

    ... Health Conditions glycogen storage disease type VII glycogen storage disease type VII Enable Javascript to view the ... Download PDF Open All Close All Description Glycogen storage disease type VII (GSDVII) is an inherited disorder ...

  9. Impaired expression of neuronal nitric oxide synthase in the gracile nucleus is involved in neuropathic changes in Zucker Diabetic Fatty rats with and without 2,5-hexanedione intoxication.

    PubMed

    Ma, Sheng-Xing; Peterson, Richard G; Magee, Edward M; Lee, Paul; Lee, Wai-Nang Paul; Li, Xi-Yan

    2016-05-01

    These studies examined the influence of 2,5-hexanedione (2,5-HD) intoxication on expression of neuronal nitric oxide synthase (nNOS) in the brainstem nuclei in Zucker Diabetic Fatty (ZDF) vs. lean control (LC) rats. Functional neuropathic changes were also investigated following axonal damage and impaired axonal transport induced by the treatment. Animals were intoxicated by i.p. injection of 2,5-HD plus unilateral administration of 2,5-HD over the sciatic nerve. The mechanical thresholds and withdrawal latencies to heat and cold stimuli on the foot were measured at baseline and after intoxication. The medulla sections were examined by nNOS immunohistochemistry and NADPH-diaphorase histochemistry at the end of the treatments. The mechanical thresholds and withdrawal latencies were significantly decreased while nNOS immunostained neurons and NADPH-diaphorase positive cells were selectively reduced in the gracile nucleus at baseline in ZDF vs. LC rats. NADPH-diaphorase reactivity and nNOS positive neurons were increased in the ipsilateral gracile nucleus in LC rats following 2,5-HD intoxication, but its up-regulation was attenuated in ZDF rats. These results suggest that diabetic and chemical intoxication-induced nNOS expression is selectively reduced in the gracile nucleus in ZDF rats. Impaired axonal damage-induced nNOS expression in the gracile nucleus is involved in neuropathic pathophysiology in type II diabetic rats. PMID:26519861

  10. Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase.

    PubMed

    Stiburek, Lukas; Fornuskova, Daniela; Wenchich, Laszlo; Pejznochova, Martina; Hansikova, Hana; Zeman, Jiri

    2007-11-23

    The Oxa1 protein is a founding member of the evolutionarily conserved Oxa1/Alb3/YidC protein family, which is involved in the biogenesis of membrane proteins in mitochondria, chloroplasts and bacteria. The predicted human homologue, Oxa1l, was originally identified by partial functional complementation of the respiratory growth defect of the yeast oxa1 mutant. Here we demonstrate that both the endogenous human Oxa1l, with an apparent molecular mass of 42 kDa, and the Oxa1l-FLAG chimeric protein localize exclusively to mitochondria in HEK293 cells. Furthermore, human Oxa1l was found to be an integral membrane protein, and, using two-dimensional blue native/denaturing PAGE, the majority of the protein was identified as part of a 600-700 kDa complex. The stable short hairpin (sh)RNA-mediated knockdown of Oxa1l in HEK293 cells resulted in markedly decreased steady-state levels and ATP hydrolytic activity of the F(1)F(o)-ATP synthase and moderately reduced levels and activity of NADH:ubiquinone oxidoreductase (complex I). However, no significant accumulation of corresponding sub-complexes could be detected on blue native immunoblots. Intriguingly, the achieved depletion of Oxa1l protein did not adversely affect the assembly or activity of cytochrome c oxidase or the cytochrome bc(1) complex. Taken together, our results indicate that human Oxa1l represents a mitochondrial integral membrane protein required for the correct biogenesis of F(1)F(o)-ATP synthase and NADH:ubiquinone oxidoreductase. PMID:17936786

  11. Effect of proglycosyn and other phenolic compounds on glycogen metabolism in isolated hepatocytes. Potential role of glucuronidated metabolites.

    PubMed

    Van Schaftingen, E; de Hoffmann, E

    1993-12-01

    The mechanism by which proglycosyn (LY 177,507) stimulates glycogen synthesis in isolated hepatocytes [Harris, R. A., Yamanouchi, K., Roach, P. J., Yen, T. T., Dominiani, S. J. & Stephens, T. W. (1989) J. Biol. Chem. 264, 13674-13680] has been investigated. When incubated in the presence of hepatocytes, proglycosyn was metabolized to an O-demethylated glucuronidated derivative, as determined by fast-atom-bombardment mass spectrometry and enzymic analysis. This metabolite accumulated almost linearly inside the cells to reach a concentration of approximately 3 mumol/g protein after 50 min, without apparent release into the medium. In confirmation of previous work, proglycosyn decreased the level of phosphorylase a and increased that of synthase a in hepatocytes. Washing of cells incubated with proglycosyn for 30 min considerably decreased the concentration of the drug without significantly modifying the intracellular concentration of the metabolite and the activation state of glycogen synthase. Several compounds bearing structural analogy with proglycosyn were also tested for their effect on glycogen metabolism. At millimolar or submillimolar concentrations, resorcinol, m-anisidine, phenol, 3-hydroxyacetophenone, and 3-acetamidophenol, although not 4-acetamidophenol, stimulated the incorporation of [14C]glucose into glycogen, decreased the level of phosphorylase a and increased the level of synthase a. In the case of phenol, the effect on the glycogen enzymes paralleled the intracellular accumulation of phenylglucuronide. Furthermore, ethanol and D-galactosamine, which decreased the conversion of phenol to phenylglucuronide and the intracellular concentration of phenylglucuronide, counteracted the effect of phenol on the synthase and on the phosphorylase. From these results, it is suggested that the effect of proglycosyn and of simpler phenol derivatives is mediated by glucuronidated metabolites, which act on an intracellular target. PMID:8269965

  12. Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons

    PubMed Central

    2014-01-01

    Background Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission. PMID:24898526

  13. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms. PMID:25839341

  14. Glucose and glycogen metabolism in erythrocytes from normal and glycogen storage disease type III subjects

    PubMed Central

    Moses, Shimon W.; Chayoth, Reuben; Levin, Stanley; Lazarovitz, Ela; Rubinstein, David

    1968-01-01

    Active glycogen metabolism has been demonstrated in both normal and glycogen-rich erythrocytes taken from patients with type III glycogen storage disease. Activity of all enzymes catalyzing the reactions required for the synthesis and degradation of glycogen have been demonstrated in the mature erythrocytes. Uniformly labeled glucose-14C is incorporated into glycogen in intact cells of both types during incubation. Replacement of the glucose-14C by unlabeled glucose in the medium resulted in a significant loss of radioactivity from cellular glycogen. In the absence of the substrate a progressive shortening of outer branches occurred during incubation of intact glucogen-rich cells. Using cells from patients with type III glycogen storage disease, which have sufficient glycogen content to be analyzed by β-amylolysis, we demonstrated that the glucosyl units are first incorporated in the outer tiers, then transferred to the core where they tend to accumulate due to the absence of amylo-1,6-glucosidase. The glycogen-rich cells have a more rapid rate of glucose utilization upon incubation which is not reflected by a higher lactate production. The increased rate of glucose utilization did not result from an increased rate of glucose incorporation into glycogen in affected cells. The rate of 14CO2 production from glucose-1-14C during incubation was not significantly different in the two types of cells unless methylene blue was added as an electron acceptor, in which case the glycogen-rich cells oxidized glucose to CO2 more rapidly. PMID:5240360

  15. Brain glycogen supercompensation following exhaustive exercise.

    PubMed

    Matsui, Takashi; Ishikawa, Taro; Ito, Hitoshi; Okamoto, Masahiro; Inoue, Koshiro; Lee, Min-Chul; Fujikawa, Takahiko; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2012-02-01

    Brain glycogen localized in astrocytes, a critical energy source for neurons, decreases during prolonged exhaustive exercise with hypoglycaemia. However, it is uncertain whether exhaustive exercise induces glycogen supercompensation in the brain as in skeletal muscle. To explore this question, we exercised adult male rats to exhaustion at moderate intensity (20 m min(-1)) by treadmill, and quantified glycogen levels in several brain loci and skeletal muscles using a high-power (10 kW) microwave irradiation method as a gold standard. Skeletal muscle glycogen was depleted by 82-90% with exhaustive exercise, and supercompensated by 43-46% at 24 h after exercise. Brain glycogen levels decreased by 50-64% with exhaustive exercise, and supercompensated by 29-63% (whole brain 46%, cortex 60%, hippocampus 33%, hypothalamus 29%, cerebellum 63% and brainstem 49%) at 6 h after exercise. The brain glycogen supercompensation rates after exercise positively correlated with their decrease rates during exercise. We also observed that cortical and hippocampal glycogen supercompensation were sustained until 24 h after exercise (long-lasting supercompensation), and their basal glycogen levels increased with 4 weeks of exercise training (60 min day(-1) at 20 m min(-1)). These results support the hypothesis that, like the effect in skeletal muscles, glycogen supercompensation also occurs in the brain following exhaustive exercise, and the extent of supercompensation is dependent on that of glycogen decrease during exercise across brain regions. However, supercompensation in the brain preceded that of skeletal muscles. Further, the long-lasting supercompensation of the cortex and hippocampus is probably a prerequisite for their training adaptation (increased basal levels), probably to meet the increased energy demands of the brain in exercising animals. PMID:22063629

  16. Ameliorating of Memory Impairment and Apoptosis in Amyloid β-Injected Rats Via Inhibition of Nitric Oxide Synthase: Possible Participation of Autophagy

    PubMed Central

    Shariatpanahi, Marjan; Khodagholi, Fariba; Ashabi, Ghorbangol; Aghazadeh Khasraghi, Azar; Azimi, Leila; Abdollahi, Mohammad; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Noorbakhsh, Farshid; Sharifzadeh, Mohammad

    2015-01-01

    It has been proposed that appearance of amyloid beta (Aβ) in hippocampus is one of the characteristic features of Alzheimer’s disease (AD). The role of Nitric oxide (NO) in neurodegenerative disorders is controversy in different contexts. Here, we examined the effect of NO on spatial memory. For this purpose, we compared the effects of three different concentrations of L-NG-Nitroarginine Methyl Ester (L-NAME) as a nitric oxide synthase (NOS) inhibitor. We used Morris water maze (MWM) for evaluation of behavioral alterations. We also assessed the apoptosis and autophagy markers as two possible interfering pathways with NO signaling by western blot method. We found that in Aβ pretreated rats, intra-hippocampal injection of 1or 2 (μg/side) of L-NAME caused a significant reduction in escape latency and traveled distance comparing to Aβ-treatment group. Our molecular findings revealed that L-NAME could induce autophagy and attenuate apoptosis dose dependently. The protective role of autophagy and the deteriorative role of apoptosis is the hypothesis that can vindicate our findings. Thus using NOS inhibitors at low concentrations can be one of the therapeutic approaches in the future studies. PMID:26330869

  17. Impairment of Interleukin-17A Expression in Canine Visceral Leishmaniosis is Correlated with Reduced Interferon-γ and Inducible Nitric Oxide Synthase Expression.

    PubMed

    Nascimento, M S L; Albuquerque, T D R; Nascimento, A F S; Caldas, I S; Do-Valle-Matta, M A; Souto, J T; Talvani, A; Bahia, M T; Galvão, L M C; Câmara, A C J; Guedes, P M M

    2015-11-01

    Dogs are the primary urban reservoir of Leishmania infantum and play a crucial role in the transmission of this parasite to man via sandflies. The spleen and liver are the main target organs of L. infantum infection, but few studies have evaluated the immune response to this infection in the canine liver. To identify the immunological mediators involved in resistance and/or susceptibility to canine visceral leishmaniosis (CVL), we selected 21 dogs naturally infected by L. infantum and classified as asymptomatic or symptomatic. Immunological parameters were analysed and correlations with clinical signs were determined. Symptomatic dogs showed higher numbers of parasites and less leucocyte infiltration in the liver compared with asymptomatic dogs. The progression of this disease was characterized not only by the down regulation of T helper (Th) 1-related cytokines, such as interferon (IFN)-γ and tumour necrosis factor (TNF)-α, but also by the down regulation of genes encoding interleukin (IL)-17A, inducible nitric oxide synthase (iNOS) and IL-10 in the spleen and liver in symptomatic dogs compared with asymptomatic dogs. Importantly, IL-17A gene transcription level was positively correlated with mRNA expression for iNOS and IFN-γ. Th1- and Th17-related cytokines therefore appear to play a role in restricting parasite growth via iNOS activation and decrease susceptibility of dogs to CVL. PMID:26590047

  18. Glycogen metabolism in the rat retina.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2004-02-01

    It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid. PMID:14756809

  19. Targeting glycogen metabolism in bladder cancer

    PubMed Central

    Lew, Carolyn Ritterson; Guin, Sunny; Theodorescu, Dan

    2015-01-01

    Metabolism has been a heavily investigated topic in cancer research for the past decade. Although the role of aerobic glycolysis (the Warburg effect) in cancer has been extensively studied, abnormalities in other metabolic pathways are only just being understood in cancer. One such pathway is glycogen metabolism; its involvement in cancer development, particularly in urothelial malignancies, and possible ways of exploiting aberrations in this process for treatment are currently being studied. New research shows that the glycogen debranching enzyme amylo-α-1,6-glucosidase, 4-α-glucanotransferase (AGL) is a novel tumour suppressor in bladder cancer. Loss of AGL leads to rapid proliferation of bladder cancer cells. Another enzyme involved in glycogen debranching, glycogen phosphorylase, has been shown to be a tumour promoter in cancer, including in prostate cancer. Studies demonstrate that bladder cancer cells in which AGL expression is lost are more metabolically active than cells with intact AGL expression, and these cells are more sensitive to inhibition of both glycolysis and glycine synthesis—two targetable pathways. As a tumour promoter and enzyme, glycogen phosphorylase can be directly targeted, and preclinical inhibitor studies are promising. However, few of these glycogen phosphorylase inhibitors have been tested for cancer treatment in the clinical setting. Several possible limitations to the targeting of AGL and glycogen phosphorylase might also exist. PMID:26032551

  20. Biochemical Titration of Glycogen In vitro

    PubMed Central

    Pelletier, Joffrey; Bellot, Grégory; Pouysségur, Jacques; Mazure, Nathalie M.

    2013-01-01

    Glycogen is the main energetic polymer of glucose in vertebrate animals and plays a crucial role in whole body metabolism as well as in cellular metabolism. Many methods to detect glycogen already exist but only a few are quantitative. We describe here a method using the Abcam Glycogen assay kit, which is based on specific degradation of glycogen to glucose by glucoamylase. Glucose is then specifically oxidized to a product that reacts with the OxiRed probe to produce fluorescence. Titration is accurate, sensitive and can be achieved on cell extracts or tissue sections. However, in contrast to other techniques, it does not give information about the distribution of glycogen in the cell. As an example of this technique, we describe here the titration of glycogen in two cell lines, Chinese hamster lung fibroblast CCL39 and human colon carcinoma LS174, incubated in normoxia (21% O2) versus hypoxia (1% O2). We hypothesized that hypoxia is a signal that prepares cells to synthesize and store glycogen in order to survive1. PMID:24300406

  1. Impaired renal endothelial nitric oxide synthase and reticulocyte production as modulators of hypertension induced by rHuEPO in the rat.

    PubMed

    Ribeiro, Sandra; Garrido, Patrícia; Fernandes, João; Vala, Helena; Rocha-Pereira, Petronila; Costa, Elísio; Belo, Luís; Reis, Flávio; Santos-Silva, Alice

    2016-04-15

    Our aim was to study the effect of a broad range of recombinant human erythropoietin (rHuEPO) doses on hematological and biochemical parameters, blood pressure (BP), renal function and damage in the rat, focusing on endothelial nitric oxide synthase (eNOS) and hypoxia-inducible factors (HIFs). Male Wistar rats were divided in 5 groups receiving different doses of rHuEPO (100, 200, 400 and 600IU/kg body weight (BW)/week) and saline solution (control), during 3weeks. Blood and 24h urine were collected to perform hematological and biochemical analysis. BP was measured by the tail-cuff method. Kidney tissue was collected to mRNA and protein expression assays and to characterize renal lesions. A dose-dependent increase in red blood cells count, hematocrit and hemoglobin levels was found with rHuEPO therapy, in rHuEPO200, rHuEPO400 and rHuEPO600 groups. Increased reticulocyte count was found in rHuEPO400 and rHuEPO600 groups. BP raised in all groups receiving rHuEPO. The rHuEPO200 and rHuEPO600 groups presented increased kidney protein levels of HIF2α, a reduction in kidney protein levels of eNOS, and the highest grade of vascular and tubular renal lesions. Our study showed that rHuEPO-induced hypertension is present before significant hematological changes occur and, therefore, might involve direct (renal) and indirect (hematological) effects, which varies according to the dose used. The presence of renal hypoxia reduces eNOS activity. Excessive erythrocytosis increases blood hyperviscosity, which can be modulated by an increase in reticulocytes. Hypertension leads to early renal damage without alterations in traditional markers of renal function, thus underestimating the serious adverse effects and risks. PMID:26924494

  2. Expression of Genes Encoding the Enzymes for Glycogen and Trehalose Metabolism in L3 and L4 Larvae of Anisakis simplex

    PubMed Central

    Łopieńska-Biernat, E.; Zaobidna, E. A.; Dmitryjuk, M.

    2015-01-01

    Trehalose and glycogen metabolism plays an important role in supporting life processes in many nematodes, including Anisakis simplex. Nematodes, cosmopolitan helminths parasitizing sea mammals and humans, cause a disease known as anisakiasis. The aim of this study was to investigate the expression of genes encoding the enzymes involved in the metabolism of trehalose and glycogen—trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), glycogen synthase (GS), and glycogen phosphorylase (GP)—in stage L3 and stage L4 larvae of A. simplex. The expression of mRNA all four genes, tps, tpp, gs, and gp, was examined by real-time polymerase chain reaction. The A. simplex ribosomal gene (18S) was used as a reference gene. Enzymatic activity was determined. The expression of trehalose enzyme genes was higher in L3 than in L4 larvae, but an inverse relationship was noted for the expression of gs and gp genes. PMID:26783451

  3. Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Halseth, Amy E.

    1994-01-01

    Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.

  4. Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy?

    PubMed

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2015-02-01

    Epilepsy is a family of brain disorders with a largely unknown etiology and high percentage of pharmacoresistance. The clinical manifestations of epilepsy are seizures, which originate from aberrant neuronal synchronization and hyperexcitability. Reactive astrocytosis, a hallmark of the epileptic tissue, develops into loss-of-function of glutamine synthetase, impairment of glutamate-glutamine cycle and increase in extracellular and astrocytic glutamate concentration. Here, we argue that chronically elevated intracellular glutamate level in astrocytes is instrumental to alterations in the metabolism of glycogen and leads to the synthesis of polyglucosans. Unaccessibility of glycogen-degrading enzymes to these insoluble molecules compromises the glycogenolysis-dependent reuptake of extracellular K(+) by astrocytes, thereby leading to increased extracellular K(+) and associated membrane depolarization. Based on current knowledge, we propose that the deterioration in structural homogeneity of glycogen particles is relevant to disruption of brain K(+) homeostasis and increased susceptibility to seizures in epilepsy. PMID:24643875

  5. Glycogenic Hepatopathy in Type 1 Diabetes Mellitus.

    PubMed

    Atmaca, Murat; Ucler, Rifki; Kartal, Mehmet; Seven, Ismet; Alay, Murat; Bayram, Irfan; Olmez, Sehmus

    2015-01-01

    Glycogenic hepatopathy is a rare cause of high transaminase levels in type 1 diabetes mellitus. This condition, characterized by elevated liver enzymes and hepatomegaly, is caused by irreversible and excessive accumulation of glycogen in hepatocytes. This is a case report on a 19-year-old male case, diagnosed with glycogenic hepatopathy. After the diagnosis was documented by liver biopsy, the case was put on glycemic control which led to significant decline in hepatomegaly and liver enzymes. It was emphasized that, in type 1 diabetes mellitus cases, hepatopathy should also be considered in the differential diagnoses of elevated liver enzyme and hepatomegaly. PMID:26347835

  6. Glycogenic Hepatopathy in Type 1 Diabetes Mellitus

    PubMed Central

    Atmaca, Murat; Ucler, Rifki; Kartal, Mehmet; Seven, Ismet; Alay, Murat; Bayram, Irfan; Olmez, Sehmus

    2015-01-01

    Glycogenic hepatopathy is a rare cause of high transaminase levels in type 1 diabetes mellitus. This condition, characterized by elevated liver enzymes and hepatomegaly, is caused by irreversible and excessive accumulation of glycogen in hepatocytes. This is a case report on a 19-year-old male case, diagnosed with glycogenic hepatopathy. After the diagnosis was documented by liver biopsy, the case was put on glycemic control which led to significant decline in hepatomegaly and liver enzymes. It was emphasized that, in type 1 diabetes mellitus cases, hepatopathy should also be considered in the differential diagnoses of elevated liver enzyme and hepatomegaly. PMID:26347835

  7. Endothelin-1 Impairs Nitric Oxide Signaling in Endothelial Cells Through a Protein Kinase Cδ-Dependent Activation of STAT3 and Decreased Endothelial Nitric Oxide Synthase Expression

    PubMed Central

    Sud, Neetu

    2009-01-01

    In an ovine model of persistent pulmonary hypertension of the newborn (PPHN), endothelin-1 (ET-1) expression is increased, while endothelial nitric oxide synthase (eNOS) expression is decreased. However, the molecular mechanisms by which ET-1 attenuates eNOS expression in endothelial cells are not completely understood. Thus, the goal of this study was to determine if the overexpression of ET-1 decreases eNOS expression in pulmonary arterial endothelial cells isolated from fetal lambs. To increase the ET-1 expression, cells were transfected with a plasmid coding for Prepro-ET-1, a precursor of ET-1. After overexpression of Prepro-ET-1, ET-1 levels in the culture medium were significantly increased (control = 805.3 ± 69.8; Prepro-ET-1 overexpression = 1351 ± 127.9). eNOS promoter activity, protein levels, and NO generation were all significantly decreased by the overexpression of Prepro-ET-1. The decrease in transcription correlated with increased activity of protein kinase Cδ (PKCδ) and STAT3. Further, DNA binding activity of STAT3 was also increased by Prepro-ET-1 overexpression. The increase in STAT3 activity and decrease in eNOS promoter activity were inhibited by the overexpression of dominant negative mutants of PKCδ or STAT3. Further, a 2 bp mutation in the STAT3 binding site in the eNOS promoter inhibited STAT3 binding and led to enhanced promoter activity in the presence of Prepro-ET-1 overexpression. In conclusion, ET-1 secretion is increased by Prepro-ET-1 overexpression. This results in activation of PKCδ, which phosphorylates STAT3, increasing its binding to the eNOS promoter. This in turn decreases eNOS promoter activity, protein levels, and NO production. Thus, ET-1 can reduce eNOS expression and NO generation in fetal pulmonary artery endothelial cells through PKCδ-mediated activation of STAT3. PMID:19754268

  8. No effect of glycogen level on glycogen metabolism during high intensity exercise.

    PubMed

    Vandenberghe, K; Hespel, P; Vanden Eynde, B; Lysens, R; Richter, E A

    1995-09-01

    This study examined the effect of glycogen supercompensation on glycogen breakdown, muscle and blood lactate accumulation, blood-pH, and performance during short-term high-intensity exercise. Young healthy volunteers performed two supramaximal (125% of VO2max) exercise tests on a bicycle ergometer, either for 1 min 45 s (protocol 1; N = 18) or to exhaustion (protocol 2; N = 14). The exercise tests were preceded by either 5 d on a controlled normal (N) diet, or by 2 d of glycogen-depleting exercise accompanied by the normal diet followed by 3 d on a carbohydrate-rich (CHR) diet. In protocol 1, preexercise muscle glycogen concentrations were 364 +/- 23 and 568 +/- 35 mumol.g-1 d.w. in the N and CHR condition, respectively (P < 0.05). During the exertion, glycogen concentration in the M. quadriceps decreased to the same extent in both groups. Accordingly, the exercise-induced increases in muscle and blood-lactate, and the fall in blood-pH were similar during N and CHR. In protocol 2, time to exhaustion was identical for N and CHR. It is concluded that during short-term intense exercise during which muscle glycogen availability exceeds glycogen demand, rate of glycogen breakdown, lactate accumulation, and performance are regulated irrespective of the preexercise muscle glycogen level. PMID:8531626

  9. CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells.

    PubMed

    Wang, Shu-Ching Mary; Dowhan, Dennis H; Eriksson, Natalie A; Muscat, George E O

    2012-06-01

    CARM1 (co-activator-associated arginine methyltransferase 1)/PRMT4 (protein arginine methyltransferase 4), functions as a co-activator for transcription factors that are regulators of muscle fibre type and oxidative metabolism, including PGC (peroxisome-proliferator-activated receptor γ co-activator)-1α and MEF2 (myocyte enhancer factor 2). We observed significantly higher Prmt4 mRNA expression in comparison with Prmt1-Prmt6 mRNA expression in mouse muscle (in vitro and in vivo). Transfection of Prmt4 siRNA (small interfering RNA) into mouse skeletal muscle C2C12 cells attenuated PRMT4 mRNA and protein expression. We subsequently performed additional qPCR (quantitative PCR) analysis (in the context of metabolism) to examine the effect of Prmt4 siRNA expression on >200 critical genes that control (and are involved in) lipid, glucose and energy homoeostasis, and circadian rhythm. This analysis revealed a strikingly specific metabolic expression footprint, and revealed that PRMT4 is necessary for the expression of genes involved in glycogen metabolism in skeletal muscle cells. Prmt4 siRNA expression selectively suppressed the mRNAs encoding Gys1 (glycogen synthase 1), Pgam2 (muscle phosphoglycerate mutase 2) and Pygm (muscle glycogen phosphorylase). Significantly, PGAM, PYGM and GYS1 deficiency in humans causes glycogen storage diseases type X, type V/McArdle's disease and type 0 respectively. Attenuation of PRMT4 was also associated with decreased expression of the mRNAs encoding AMPK (AMP-activated protein kinase) α2/γ3 (Prkaa2 and Prkag3) and p38 MAPK (mitogen-activated protein kinase), previously implicated in Wolff-Parkinson-White syndrome and Pompe Disease (glycogen storage disease type II). Furthermore, stable transfection of two PRMT4-site-specific (methyltransferase deficient) mutants (CARM1/PRMT4 VLD and CARM1E267Q) significantly repressed the expression of Gys1, Pgam2 and AMPKγ3. Finally, in concordance, we observed increased and decreased glycogen

  10. Differences in glycogen, lipids, and enzymes in livers from rats flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Laroque, Regina; Mullins, Richard E.; Morgan, Edward T.; Hargrove, James L.; Bonkovsky, Herbert L.; Popova, Irina A.

    1992-01-01

    Livers from rats flown aboard Cosmos 2044 were analyzed for protein, carbohydrate (glycogen), and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. The major differences between the flight group and the synchronous control were elevations in microsomal protein, liver glycogen content, tyrosine aminotransferase, and tryptophan oxygenase and reductions in sphingolipids and the rate-limiting enzyme of heme biosynthesis delta-aminolevulinic acid synthase. These results provide further evidence that spaceflight has pronounced and diverse effects on liver function; however, some of the results with samples from Cosmos 2044 differed notably from those from previous spaceflights. This may be due to conditions of spaceflight and/or the postflight recovery period for Cosmos 2044.

  11. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    PubMed

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed. PMID:27107958

  12. High levels of interleukin-10 impair resistance to pulmonary coccidioidomycosis in mice in part through control of nitric oxide synthase 2 expression.

    PubMed

    Jimenez, Maria del Pilar; Walls, Lorraine; Fierer, Joshua

    2006-06-01

    We have shown previously that there is a direct correlation between IL-10 levels and susceptibility to Coccidioides immitis peritonitis in C57BL/6 (B6), DBA/2, and BXD recombinant inbred mice. We now show that B6 mice are also more susceptible to C. immitis pneumonia and that interleukin-10 (IL-10)-deficient (IL-10-/-) B6 mice are more resistant to C. immitis pneumonia. In addition, we established that high levels of IL-10 are sufficient to make genetically resistant mice susceptible to both C. immitis peritonitis and pneumonia by infecting h.IL-10 transgenic mice. Infected h.IL-10 transgenic mice express lower levels of gamma interferon, IL-12 p40, and inducible nitric oxide synthetase 2 (NOS2) mRNA in their lungs, implicating inducible NOS as a defense mechanism in this disease. We treated DBA/2 mice with aminoguanidine, and they became more susceptible to C. immitis peritonitis and pneumonia. We conclude that high levels of IL-10 are both necessary and sufficient to make mice susceptible to C. immitis, regardless of the genetic background of the mice, and that IL-10 impairs resistance to C. immitis in part by suppressing NO synthesis. PMID:16714569

  13. The Modulation of the Symbiont/Host Interaction between Wolbachia pipientis and Aedes fluviatilis Embryos by Glycogen Metabolism

    PubMed Central

    da Rocha Fernandes, Mariana; Martins, Renato; Pessoa Costa, Evenilton; Casagrande Pacidônio, Etiene; Araujo de Abreu, Leonardo; da Silva Vaz, Itabajara; Moreira, Luciano A.; da Fonseca, Rodrigo Nunes; Logullo, Carlos

    2014-01-01

    Wolbachia pipientis, a maternally transmitted bacterium that colonizes arthropods, may affect the general aspects of insect physiology, particularly reproduction. Wolbachia is a natural endosymbiont of Aedes fluviatilis, whose effects in embryogenesis and reproduction have not been addressed so far. In this context, we investigated the correlation between glucose metabolism and morphological alterations during A. fluviatilis embryo development in Wolbachia-positive (W+) and Wolbachia-negative (W−) mosquito strains. While both strains do not display significant morphological and larval hatching differences, larger differences were observed in hexokinase activity and glycogen contents during early and mid-stages of embryogenesis, respectively. To investigate if glycogen would be required for parasite-host interaction, we reduced Glycogen Synthase Kinase-3 (GSK-3) levels in adult females and their eggs by RNAi. GSK-3 knock-down leads to embryonic lethality, lower levels of glycogen and total protein and Wolbachia reduction. Therefore, our results suggest that the relationship between A. fluviatilis and Wolbachia may be modulated by glycogen metabolism. PMID:24926801

  14. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  15. Fructose effect to enhance liver glycogen deposition is due to inhibition of glycogenolysis

    SciTech Connect

    Youn, J.; Kaslow, H.; Bergman, R.

    1987-05-01

    The effect of fructose on glycogen degradation was examined by measuring flux of (/sup 14/C) from prelabeled glycogen in perfused rat livers. During 2 h refeeding of fasted rats hepatic glycogen was labeled by injection of (U /sup 14/C) galactose (0.1 mg and 0.02 ..mu..Ci/g of body weight). Refed livers were perfused for 30 min with glucose only (10 mM) and for 60 min with glucose (10 mM) without (n=5) or with fructose (1, 2, 10 mM; n=5 for each). With fructose, label production immediately declined and remained suppressed through the end of perfusion (P < 0.05). Suppression was dose-dependent: steady state label production was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose (P < 0.0001), without significant changes in glycogen synthase or phosphorylase. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (F1P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.6 ..mu..moles/g of liver with 1, 2, and 10 mM fructose. Maximum inhibition of phosphorylase was 82%; FIP concentration for half inhibition was 0.57 ..mu..moles/g of liver, well within the concentration of F1P attained in refeeding. Fructose enhances net glycogen synthesis in liver by suppressing glycogenolysis and the suppression is presumably caused by allosteric inhibition of phosphorylase by F1P.

  16. Pyruvate dehydrogenase kinase-4 contributes to the recirculation of gluconeogenic precursors during postexercise glycogen recovery

    PubMed Central

    Herbst, Eric A. F.; MacPherson, Rebecca E. K.; LeBlanc, Paul J.; Roy, Brian D.; Jeoung, Nam Ho; Harris, Robert A.

    2013-01-01

    During recovery from glycogen-depleting exercise, there is a shift from carbohydrate oxidation to glycogen resynthesis. The activity of the pyruvate dehydrogenase (PDH) complex may decrease to reduce oxidation of carbohydrates in favor of increasing gluconeogenic recycling of carbohydrate-derived substrates for this process. The precise mechanism behind this has yet to be elucidated; however, research examining mRNA content has suggested that the less-abundant pyruvate dehydrogenase kinase-4 (PDK4) may reduce PDH activation during exercise recovery. To investigate this, skeletal muscle and liver of wild-type (WT) and PDK4-knockout (PDK4-KO) mice were analyzed at rest (Rest), after exercise to exhaustion (Exh), and after 2 h of recovery with ad libitum feeding (Rec). Although there were no differences in exercise tolerance between genotypes, caloric consumption was doubled by PDK4-KO mice during Rec. Because of this, PDK4-KO mice at Rec supercompensated muscle glycogen to 120% of resting stores. Therefore, an extra group of PDK4-KO mice were pair-fed (PF) with WT mice during Rec for comparison. PF mice fully replenished muscle glycogen but recovered only 50% of liver glycogen stores. Concentrations of muscle lactate and alanine were also lower in PF than in WT mice, indicating that this decrease may lead to a potential reduction of recycled gluconeogenic substrates, due to oxidation of their carbohydrate precursors in skeletal muscle, leading to observed reductions in hepatic glucose and glycogen concentrations. Because of the impairments seen in PF PDK4-KO mice, these results suggest a role for PDK4 in regulating the PDH complex in muscle and promoting gluconeogenic precursor recirculation during recovery from exhaustive exercise. PMID:24305065

  17. Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer.

    PubMed

    Pal, Krishnendu; Cao, Ying; Gaisina, Irina N; Bhattacharya, Santanu; Dutta, Shamit K; Wang, Enfeng; Gunosewoyo, Hendra; Kozikowski, Alan P; Billadeau, Daniel D; Mukhopadhyay, Debabrata

    2014-02-01

    Glycogen synthase kinase-3 (GSK-3), a constitutively active serine/threonine kinase, is a key regulator of numerous cellular processes ranging from glycogen metabolism to cell-cycle regulation and proliferation. Consistent with its involvement in many pathways, it has also been implicated in the pathogenesis of various human diseases, including type II diabetes, Alzheimer disease, bipolar disorder, inflammation, and cancer. Consequently, it is recognized as an attractive target for the development of new drugs. In the present study, we investigated the effect of both pharmacologic and genetic inhibition of GSK-3 in two different renal cancer cell lines. We have shown potent antiproliferative activity of 9-ING-41, a maleimide-based GSK-3 inhibitor. The antiproliferative activity is most likely caused by G(0)-G(1) and G(2)-M phase arrest as evident from cell-cycle analysis. We have established that inhibition of GSK-3 imparted a differentiated phenotype in renal cancer cells. We have also shown that GSK-3 inhibition induced autophagy, likely as a result of imbalanced energy homeostasis caused by impaired glucose metabolism. In addition, we have demonstrated the antitumor activity of 9-ING-41 in two different subcutaneous xenograft renal cell carcinoma tumor models. To our knowledge, this is the first report describing autophagy induction due to GSK-3 inhibition in renal cancer cells. PMID:24327518

  18. Genetics Home Reference: glycogen storage disease type I

    MedlinePlus

    ... Orphanet: Glycogen storage disease due to glucose-6-phosphatase deficiency Patient Support and Advocacy Resources (7 links) ... JY, Mansfield BC. Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen ...

  19. Iminosugars as potential inhibitors of glycogenolysis: structural insights into the molecular basis of glycogen phosphorylase inhibition.

    PubMed

    Oikonomakos, Nikos G; Tiraidis, Costas; Leonidas, Demetres D; Zographos, Spyros E; Kristiansen, Marit; Jessen, Claus U; Nørskov-Lauritsen, Leif; Agius, Loranne

    2006-09-21

    Iminosugars DAB (5), isofagomine (9), and several N-substituted derivatives have been identified as potent inhibitors of liver glycogen phosphorylase a (IC(50) = 0.4-1.2 microM) and of basal and glucagon-stimulated glycogenolysis (IC(50) = 1-3 microM). The X-ray structures of 5, 9, and its N-3-phenylpropyl analogue 8 in complex with rabbit muscle glycogen phosphorylase (GPb) shows that iminosugars bind tightly at the catalytic site in the presence of the substrate phosphate and induce conformational changes that characterize the R-state conformation of the enzyme. Charged nitrogen N1 is within hydrogen-bonding distance with the carbonyl oxygen of His377 (5) and in ionic contact with the substrate phosphate oxygen (8 and 9). Our findings suggest that the inhibitors function as oxocarbenium ion transition-state analogues. The conformational change to the R state provides an explanation for previous findings that 5, unlike inhibitors that favor the T state, promotes phosphorylation of GPb in hepatocytes with sequential inactivation of glycogen synthase. PMID:16970395

  20. Genetics Home Reference: glycogen storage disease type VI

    MedlinePlus

    ... a result, liver cells cannot use glycogen for energy. Since glycogen cannot be broken down, it accumulates within liver cells, causing these cells to become enlarged and dysfunctional. Learn more about the gene associated with glycogen storage disease type VI PYGL Related Information What is ...

  1. Genetics Home Reference: glycogen storage disease type IX

    MedlinePlus

    ... cellular energy is a simple sugar called glucose. Glucose is stored in muscle and liver cells in a form called glycogen. Glycogen can ... result, glycogen accumulates in and damages cells, and glucose is not available for ... in the liver leads to hepatomegaly, and the liver's inability to ...

  2. Gain of function AMP-activated protein kinase γ3 mutation (AMPKγ3R200Q) in pig muscle increases glycogen storage regardless of AMPK activation.

    PubMed

    Scheffler, Tracy L; Park, Sungkwon; Roach, Peter J; Gerrard, David E

    2016-06-01

    Chronic activation of AMP-activated protein kinase (AMPK) increases glycogen content in skeletal muscle. Previously, we demonstrated that a mutation in the ryanodine receptor (RyR1(R615C)) blunts AMPK phosphorylation in longissimus muscle of pigs with a gain of function mutation in the AMPKγ3 subunit (AMPKγ3(R200Q)); this may decrease the glycogen storage capacity of AMPKγ3(R200Q) + RyR1(R615C) muscle. Therefore, our aim in this study was to utilize our pig model to understand how AMPKγ3(R200Q) and AMPK activation contribute to glycogen storage and metabolism in muscle. We selected and bred pigs in order to generate offspring with naturally occurring AMPKγ3(R200Q), RyR1(R615C), and AMPKγ3(R200Q) + RyR1(R615C) mutations, and also retained wild-type littermates (control). We assessed glycogen content and parameters of glycogen metabolism in longissimus muscle. Regardless of RyR1(R615C), AMPKγ3(R200Q) increased the glycogen content by approximately 70%. Activity of glycogen synthase (GS) without the allosteric activator glucose 6-phosphate (G6P) was decreased in AMPKγ3(R200Q) relative to all other genotypes, whereas both AMPKγ3(R200Q) and AMPKγ3(R200Q) + RyR1(R615C) muscle exhibited increased GS activity with G6P. Increased activity of GS with G6P was not associated with increased abundance of GS or hexokinase 2. However, AMPKγ3(R200Q) enhanced UDP-glucose pyrophosphorylase 2 (UGP2) expression approximately threefold. Although UGP2 is not generally considered a rate-limiting enzyme for glycogen synthesis, our model suggests that UGP2 plays an important role in increasing flux to glycogen synthase. Moreover, we have shown that the capacity for glycogen storage is more closely related to the AMPKγ3(R200Q) mutation than activity. PMID:27302990

  3. Glycogen contains phosphodiester groups that can be introduced by UDPglucose: glycogen glucose 1-phosphotransferase.

    PubMed

    Lomako, J; Lomako, W M; Whelan, W J; Marchase, R B

    1993-08-30

    Rabbit-muscle glycogen contains covalently bound phosphorus, equivalent to 1 phosphate group per 208 glucose residues. This often disputed, minor component was previously thought to represent a phosphomonoester group at C-6 of a glucose residue. Here we show that more than half the phosphorus is present as a phosphodiester, the remainder being monoester. A novel enzyme activity has been found in muscle that can account for the presence of the phosphodiester in glycogen. This is a UDPglucose: glycogen glucose 1-phosphotransferase that positions glucose 1-phosphate on C-6 of glucose residues in glycogen, forming a diester. The phosphomonoester groups present may arise by removal of the glucose residue originally transferred as glucose 1-phosphate. PMID:8396041

  4. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  5. A fermented soy permeate improves the skeletal muscle glucose level without restoring the glycogen content in streptozotocin-induced diabetic rats.

    PubMed

    Malardé, Ludivine; Vincent, Sophie; Lefeuvre-Orfila, Luz; Efstathiou, Théo; Groussard, Carole; Gratas-Delamarche, Arlette

    2013-02-01

    Exercise is essential into the therapeutic management of diabetic patients, but their level of exercise tolerance is lowered due to alterations of glucose metabolism. As soy isoflavones have been shown to improve glucose metabolism, this study aimed to assess the effects of a dietary supplement containing soy isoflavones and alpha-galactooligosaccharides on muscular glucose, glycogen synthase (GSase), and glycogen content in a type 1 diabetic animal model. The dietary supplement tested was a patented compound, Fermented Soy Permeate (FSP), developed by the French Company Sojasun Technologies. Forty male Wistar rats were randomly assigned to control or diabetic groups (streptozotocin, 45 mg/kg). Each group was then divided into placebo or FSP-supplemented groups. Both groups received by oral gavage, respectively, water or diluted FSP (0.1 g/day), daily for a period of 3 weeks. At the end of the protocol, glycemia was noticed after a 24-h fasting period. Glucose, total GSase, and the glycogen content were determined in the skeletal muscle (gastrocnemius). Diabetic animals showed a higher blood glucose concentration, but a lower glucose and glycogen muscle content than controls. Three weeks of FSP consumption allowed to restore the muscle glucose concentration, but failed to reduce glycemia and to normalize the glycogen content in diabetic rats. Furthermore, the glycogen content was increased in FSP-supplemented controls compared to placebo controls. Our results demonstrated that diabetic rats exhibited a depleted muscle glycogen content (-25%). FSP-supplementation normalized the muscle glucose level without restoring the glycogen content in diabetic rats. However, it succeeded to increase it in the control group (+20%). PMID:23356441

  6. Regulation of glycogen metabolism by the CRE-1, RCO-1 and RCM-1 proteins in Neurospora crassa. The role of CRE-1 as the central transcriptional regulator.

    PubMed

    Cupertino, Fernanda Barbosa; Virgilio, Stela; Freitas, Fernanda Zanolli; Candido, Thiago de Souza; Bertolini, Maria Célia

    2015-04-01

    The transcription factor CreA/Mig1/CRE-1 is a repressor protein that regulates the use of alternative carbon sources via a mechanism known as Carbon Catabolite Repression (CCR). In Saccharomyces cerevisiae, Mig1 recruits the complex Ssn6-Tup1, the Neurospora crassa RCM-1 and RCO-1 orthologous proteins, respectively, to bind to promoters of glucose-repressible genes. We have been studying the regulation of glycogen metabolism in N. crassa and the identification of the RCO-1 corepressor as a regulator led us to investigate the regulatory role of CRE-1 in this process. Glycogen content is misregulated in the rco-1(KO), rcm-1(RIP) and cre-1(KO) strains, and the glycogen synthase phosphorylation is decreased in all strains, showing that CRE-1, RCO-1 and RCM-1 proteins are involved in glycogen accumulation and in the regulation of GSN activity by phosphorylation. We also confirmed the regulatory role of CRE-1 in CCR and its nuclear localization under repressing condition in N. crassa. The expression of all glycogenic genes is misregulated in the cre-1(KO) strain, suggesting that CRE-1 also controls glycogen metabolism by regulating gene expression. The existence of a high number of the Aspergillus nidulans CreA motif (5'-SYGGRG-3') in the glycogenic gene promoters led us to analyze the binding of CRE-1 to some DNA motifs both in vitro by DNA gel shift and in vivo by ChIP-qPCR analysis. CRE-1 bound in vivo to all motifs analyzed demonstrating that it down-regulates glycogen metabolism by controlling gene expression and GSN phosphorylation. PMID:25889113

  7. Glycogen with short average chain length enhances bacterial durability

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  8. Radiometric assays for glycerol, glucose, and glycogen.

    PubMed

    Bradley, D C; Kaslow, H R

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus (1971, J. Biol. Chem. 246, 3885-3894) for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays. PMID:2817333

  9. Radiometric assays for glycerol, glucose, and glycogen

    SciTech Connect

    Bradley, D.C.; Kaslow, H.R. )

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with (32P)ATP and glycerokinase, residual (32P)ATP is hydrolyzed by heating in acid, and free (32P)phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays.

  10. Effects of diabetes on brain metabolism--is brain glycogen a significant player?

    PubMed

    Sickmann, Helle M; Waagepetersen, Helle S

    2015-02-01

    Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may be associated with brain impairments e.g. cognitive decline and dementia. It is however, not clear how these impairments on brain function are linked to alterations in brain energy and neurotransmitter metabolism. In this review, we will illuminate how rodent diabetes models have contributed to a better understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes. PMID:24771109

  11. Stilbene Synthase and Chalcone Synthase 1

    PubMed Central

    Rolfs, Claus-Henning; Kindl, Helmut

    1984-01-01

    Cultured cells of Picea excelsa capable of forming stilbenes and flavanoids have been established. Unlike needles of intact plants containing piceatannol (3,3′,4′,5-tetrahydroxystilbene) and stilbene glycosides the cultured cells converted phenylalanine and p-coumaric acid primarily into resveratrol monomethyl ether (3,4′-dihydroxy-5-methoxystilbene) and naringenin. Partially purified enzyme preparations were assayed for chalcone synthase as well as for stilbene synthase activity converting malonyl-CoA plus p-coumaroyl-CoA into 3,4′,5-trihydroxystilbene (resveratrol). Although stilbene synthase and chalcone synthase use the same substrates and exhibit similar molecular properties, i.e. molecular weight and subunit molecular weight, they are two different proteins. This difference was demonstrated by gel electrophoresis and by means of monospecific antibodies. PMID:16663649

  12. An intermittent exhaustion of the pool of glycogen in the human organism as a simple universal health promoting mechanism.

    PubMed

    Cherkas, Andriy; Golota, Sergii

    2014-03-01

    Glycogen storage in human organism is providing reserve source of glucose which is critical for normal functioning of the nervous system during periods between meals and is also important for many other tissues. Overwhelming excessive consumption of carbohydrates and decreasing physical activity among the world population lead to dramatic increase in incidence and mortality related to cardiovascular diseases, metabolic syndrome and diabetes mellitus type 2. There is an observation that many interventions with proved clinical efficiency like physical activity, intermittent fasting, caloric restriction and some pharmacological treatments have in common the ability to decrease content of glycogen in the liver and skeletal muscles. This effect leads to increased ability of these organs to uptake the next dose of glucose and store it in the form of glycogen. Moreover these interventions lead to significant life span extension, provide better body fitness and prevent development of multiple age-related diseases. In contrast excessive glucose load and saturation of tissues with glycogen provide a metabolic shift toward synthesis of fatty acids by liver. In advanced stages decreased glucose tolerance, insulin resistance, hyperinsulinemia, fatty liver disease, impairment of liver function and derangements of cholesterol metabolism are observed. It is suggested that noninvasive measurement of glycogen content in tissues could serve as important diagnostic and follow-up parameter for clinical practice and healthy lifestyle in wide population groups. PMID:24495563

  13. In vivo effects of diabetes, insulin and oleanolic acid on enzymes of glycogen metabolism in the skin of streptozotocin-induced diabetic male Sprague-Dawley rats.

    PubMed

    Mukundwa, Andrew; Langa, Silvana O; Mukaratirwa, Samson; Masola, Bubuya

    2016-03-01

    The skin is the largest organ in the body and diabetes induces pathologic changes on the skin that affect glucose homeostasis. Changes in skin glycogen and glucose levels can mirror serum glucose levels and thus the skin might contribute to whole body glucose metabolism. This study investigated the in vivo effects of diabetes, insulin and oleanolic acid (OA) on enzymes of glycogen metabolism in skin of type 1 diabetic rats. Diabetic and non-diabetic adult male Sprague-Dawley rats were treated with a single daily dose of insulin (4 IU/kg body weight), OA (80 mg/kg body weight) and a combination of OA + insulin for 14 days. Glycogen phosphorylase (GP) expression; and GP, glycogen synthase (GS) and hexokinase activities as well glycogen levels were evaluated. The results suggest that diabetes lowers hexokinase activity, GP activity and GP expression with no change in GS activity whilst the treatments increased GP expression and the activities of hexokinase, GP and GS except for the GS activity in OA treated rats. Glycogen levels were increased slightly by diabetes as well as OA treatment. In conclusion diabetes, OA and insulin can lead to changes in GS and GP activities in skin without significantly altering the glycogen content. We suggest that the skin may contribute to whole body glucose homeostasis particularly in disease states. PMID:26869513

  14. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells.

    PubMed

    Yan, Fujie; Zhang, Ji; Zhang, Lingxia; Zheng, Xiaodong

    2016-01-01

    Mulberry has been demonstrated to possess important biological activities such as antioxidation and antiinflammation. However, research on the ability of mulberry for diabetes improvement mainly focuses on the leaves and less on the fruit. This study showed that a mulberry anthocyanin extract (MAE) had a significant effect on increasing the glucose consumption in HepG2 cells. The MAE enhanced the glycogen content and suppressed levels of glucose production. The enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased in HepG2 cells after MAE treatment due to PPARγ coactivator 1α (PGC-1α) and forkhead box protein O1 (FOXO1) inhibition. Moreover, the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) was increased by the MAE, leading to an expression enhancement of glycogen synthase 2 (GYS2). And this effect was blocked by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. In summary, our results suggested that the MAE regulates glucose metabolism by activating the PI3K/AKT pathway that relates to glycogen synthesis as well as through the inhibition of key molecules that promote gluconeogenesis. PMID:26467565

  15. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  16. Non-invasive quantification of brain glycogen absolute concentration

    PubMed Central

    van Heeswijk, Ruud B.; Xin, Lijing; Laus, Sabrina; Frenkel, Hanne; Lei, Hongxia; Gruetter, Rolf

    2009-01-01

    The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 ± 0.1 fold that of N-acetyl-aspartate (n = 11, R2 = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean ± SD: 5.8 ± 0.7 μmol/g) was in excellent agreement with that in vitro (6.4 ± 0.6 μmol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover. PMID:19013831

  17. Cellulose synthase interacting protein

    PubMed Central

    Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities. PMID:21150290

  18. The design of potential antidiabetic drugs: experimental investigation of a number of beta-D-glucose analogue inhibitors of glycogen phosphorylase.

    PubMed

    Oikonomakos, N G; Kontou, M; Zographos, S E; Tsitoura, H S; Johnson, L N; Watson, K A; Mitchell, E P; Fleet, G W; Son, J C; Bichard, C J

    1994-01-01

    alpha-D-glucose is a weak inhibitor (Ki = 1.7 mM) of glycogen phosphorylase (GP) and acts as physiological regulator of hepatic glycogen metabolism; it binds to GP at the catalytic site and stabilizes the inactive T state of the enzyme promoting the action of protein phosphatase 1 and stimulating glycogen synthase. The three-dimensional structures of T state rabbit muscle GPb and the GPb-alpha-D-glucose complex have been exploited in the design of better regulators of GP that could shift the balance between glycogen synthesis and glycogen degradation in favour of the former. Close examination of the catalytic site with alpha-D-glucose bound shows that there is an empty pocket adjacent to the beta-1-C position. beta-D-glucose is a poorer inhibitor (Ki = 7.4 mM) than alpha-D-glucose, but mutarotation has prevented the binding of beta-D-glucose in T state GP crystals. A series of beta-D-glucose analogues has been designed and tested in kinetic and crystallographic experiments. Several compounds have been discovered that have an increased affinity for GP than the parent compound. PMID:7867660

  19. Specific features of glycogen metabolism in the liver.

    PubMed Central

    Bollen, M; Keppens, S; Stalmans, W

    1998-01-01

    Although the general pathways of glycogen synthesis and glycogenolysis are identical in all tissues, the enzymes involved are uniquely adapted to the specific role of glycogen in different cell types. In liver, where glycogen is stored as a reserve of glucose for extrahepatic tissues, the glycogen-metabolizing enzymes have properties that enable the liver to act as a sensor of blood glucose and to store or mobilize glycogen according to the peripheral needs. The prime effector of hepatic glycogen deposition is glucose, which blocks glycogenolysis and promotes glycogen synthesis in various ways. Other glycogenic stimuli for the liver are insulin, glucocorticoids, parasympathetic (vagus) nerve impulses and gluconeogenic precursors such as fructose and amino acids. The phosphorolysis of glycogen is mainly mediated by glucagon and by the orthosympathetic neurotransmitters noradrenaline and ATP. Many glycogenolytic stimuli, e.g. adenosine, nucleotides and NO, also act indirectly, via secretion of eicosanoids from non-parenchymal cells. Effectors often initiate glycogenolysis cooperatively through different mechanisms. PMID:9806880

  20. Muscle glycogen loading with a liquid carbohydrate supplement.

    PubMed

    Lamb, D R; Snyder, A C; Baur, T S

    1991-03-01

    This study compared two high carbohydrate (CHO) diets in 14 male runners for effects on muscle glycogen deposition, endurance, and sensations of gastrointestinal discomfort. Muscle glycogen was measured in the vastus lateralis at rest and run time to exhaustion at 75% VO2max was measured following 3-1/2 days on a 50% CHO diet. After 14 days the subjects consumed a 20% CHO diet and continued training to reduce glycogen. During the next 3-1/2 days, subjects ran less and consumed a 90% CHO diet emphasizing pasta and rice (Pasta, n = 7) or lesser amounts of pasta and rice supplemented by a maltodextrin beverage (Supplement, n = 7). Glycogen was again measured, followed by a second run to exhaustion. Compared to the 50% CHO diet, Pasta increased muscle glycogen by 27.1 +/- 12.2 mmoles/kg muscle (M +/- SE; P < 0.05) and run time by 15.7 +/- 5.9 min; Supplement increased glycogen by 43.2 +/- 13.5 mmoles/kg (P < 0.05) and run time by 29.0 +/- 7.4 min (P < 0.05). Total glycogen concentrations and run times were not significantly different for Pasta versus Supplement. Subjects reported less gastrointestinal discomfort and greater overall preference for Supplement than for Pasta. Thus, glycogen loading can be accomplished at least as effectively and more comfortably by substituting a maltodextrin drink for some of the pasta and rice in a glycogen loading diet. PMID:1844402

  1. Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence.

    PubMed

    Gibbs, Marie E; Lloyd, Hilary G E; Santa, Thomas; Hertz, Leif

    2007-11-15

    Bead discrimination training in chicks sets in motion a tightly timed series of biochemical events, including glutamate release, increase in forebrain level of glutamate and utilization of glycogen and glucose. Inhibition of glycogen breakdown by the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) around the time of training abolishes the increase in glutamate 5 min posttraining in the left hemisphere, in spite of uninhibited glucose metabolism. It also reduces the contents of glutamate, glutamine, and aspartate in the right hemisphere. Behavioral evidence supports the conclusion that glucose breakdown serves to provide energy, whereas glycogen acts as a substrate for glutamate, glutamine, and aspartate formation, requiring both pyruvate dehydrogenation to acetyl coenzyme A and pyruvate carboxylation in astrocytes. Inhibition of memory consolidation caused by DAB or 2-deoxyglucose (2-DG), an inhibitor of glucose phosphorylation without effect on glycogen metabolism, was challenged by intracerebral administration of acetate, aspartate, glutamine, lactate or glucose. DAB-mediated memory inhibition was successfully challenged by administration at 0 or 20 min posttraining of acetate (an astrocyte-specific acetyl CoA precursor) together with aspartate, substituting for pyruvate carboxylation, or of glutamine at 0-2.5 or 30 min posttraining. 2-DG-mediated memory impairment was not challenged by acetate with or without aspartate at 0 time but was challenged by acetate without aspartate at 20 min. Lactate, a substrate for both dehydrogenation and pyruvate carboxylation challenged both DAB and 2-DG. Doses of DAB and 2-DG which, on their own were subeffective, were not additive, further supporting the existence of one pathway using glucose and another using glycogen. PMID:17455305

  2. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways.

    PubMed

    Greenberg, Cynthia C; Jurczak, Michael J; Danos, Arpad M; Brady, Matthew J

    2006-07-01

    Glycogen is the storage form of carbohydrate for virtually every organism from yeast to primates. Most mammalian tissues store glucose as glycogen, with the major depots located in muscle and liver. The French physiologist Claude Bernard first identified a starch-like substance in liver and muscle and coined the term glycogen, or "sugar former," in the 1850s. During the 150 years since its identification, researchers in the field of glycogen metabolism have made numerous discoveries that are now recognized as significant milestones in biochemistry and cell signaling. Even so, more questions remain, and studies continue to demonstrate the complexity of the regulation of glycogen metabolism. Under classical definitions, the functions of glycogen seem clear: muscle glycogen is degraded to generate ATP during increased energy demand, whereas hepatic glycogen is broken down for release of glucose into the bloodstream to supply other tissues. However, recent findings demonstrate that the roles of glycogen metabolism in energy sensing, integration of metabolic pathways, and coordination of cellular responses to hormonal stimuli are far more complex. PMID:16478770

  3. Oral conjugated linoleic acid supplementation enhanced glycogen resynthesis in exercised human skeletal muscle.

    PubMed

    Tsao, Jung-Piao; Liao, Su-Fen; Korivi, Mallikarjuna; Hou, Chien-Wen; Kuo, Chia-Hua; Wang, Hsueh-Fang; Cheng, I-Shiung

    2015-01-01

    Present study examined the effects of conjugated linoleic acid (CLA) supplementation on glycogen resynthesis in exercised human skeletal muscle. Twelve male participants completed a cross-over trial with CLA (3.8 g/day for 8 week) or placebo supplements by separation of 8 weeks. CLA is a mixture of trans-10 cis-12 and cis-9 trans-11 isomers (50:50). On experiment day, all participants performed 60-min cycling exercise at 75% VO2 max, then consumed a carbohydrate meal immediately after exercise and recovered for 3 h. Biopsied muscle samples from vastus lateralis were obtained immediately (0 h) and 3 h following exercise. Simultaneously, blood and gaseous samples were collected for every 30 min during 3-h recovery. Results showed significantly increased muscle glycogen content with CLA after a single bout of exercise (P < 0.05). Muscle glucose transporter type 4 expression was significantly elevated immediately after exercise, and this elevation was continued until 3 h after exercise in CLA trial. However, P-Akt/Akt ratio was not significantly altered, while glucose tolerance was impaired with CLA. Gaseous exchange data showed no beneficial effect of CLA on fat oxidation, instead lower non-esterified fatty acid and glycerol levels were found at 0 h. Our findings conclude that CLA supplementation can enhance the glycogen resynthesis rate in exercised human skeletal muscle. PMID:25385360

  4. Formaldehyde as a trigger for protein aggregation and potential target for mitigation of age-related, progressive cognitive impairment.

    PubMed

    Su, Tao; Monte, Woodrow C; Hu, Xintian; He, Yingge; He, Rongqiao

    2016-01-01

    Recently, formaldehyde (FA), existing in a number of different cells including neural cells, was found to affect age-related cognitive impairment. Oral administration of methanol (the metabolic precursor of FA) triggers formation of senile plaques (SPs) and Tau hyperphosphorylation in the brains of monkeys with memory decline. Intraperitoneal injection of FA leads to hyperphosphorylation of Tau in wild-type mouse brains and N2a cells through activation of glycogen synthase kinase-3β (GSK-3β). Furthermore, formaldehyde at low concentrations can directly induce Tau aggregation and amyloid β (Aβ) peptide deposits in vitro. Formaldehyde-induced Tau aggregation is implicated in cytotoxicity and neural cell apoptosis. Clarifying how FA triggers Aβ deposits and Tau hyperphosphorlyation will not only improve our understanding of the molecular and cellular mechanisms of age-related cognitive impairment but will also contribute to the ongoing investigation of alternate targets for new drugs. Here, we review the role of FA, particularly that of endogenous origin, in protein aggregation and as a potential drug intervention in the development of agerelated cognitive impairment. PMID:26268337

  5. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    PubMed Central

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  6. Scintigraphic abnormalities in glycogen storage disease.

    PubMed

    Miller, J H; Gates, G F; Landing, B H; Kogut, M D; Roe, T F

    1978-04-01

    Fifteen patients with glycogen-storage disease type 1 (von Gierke's disease) were evaluated by serial scintigraphy, with a clearly recognizable pattern of an enlarged liver with diminished radionuclide accumulation, splenomegaly with considerably increased uptake and renomegaly. In seven of these patients with GSD-1 scintigraphy demonstrated focal defects of varying size. Small or stable defects suggest benign hepatic adenomata, whereas malignant change occurred in growing large lesions. The potential malignant end-point of hepatic-cell carcinoma in GSD-1 warrants careful serial liver scintigraphy with scintiangiography on a routine basis. PMID:204758

  7. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats.

    PubMed

    Li, C; Huang, P; Lu, Q; Zhou, M; Guo, L; Xu, X

    2014-11-01

    Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences. PMID:25234320

  8. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    PubMed Central

    Lavoie, Suzie; Steullet, Pascal; Kulak, Anita; Preitner, Frederic; Do, Kim Q.; Magistretti, Pierre J.

    2016-01-01

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage. PMID:27148080

  9. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice.

    PubMed

    Serrano, Felipe G; Tapia-Rojas, Cheril; Carvajal, Francisco J; Hancke, Juan; Cerpa, Waldo; Inestrosa, Nibaldo C

    2014-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) oligomers are a key factor in synaptic impairment and in spatial memory decline associated with neuronal dysfunction. This impairment includes synaptic failure associated with the loss of synaptic proteins that contribute to AD progression. Interestingly, the use of natural compounds is an emergent conceptual strategy in the search for drugs with therapeutic potentials for treating neurodegenerative disorders. In the present study, we report that andrographolide (ANDRO), which is a labdane diterpene extracted from Andrographis paniculata, increases slope of field excitatory postsynaptic potentials (fEPSP) in the CA1 region of hippocampal slices and inhibits long-term depression (LTD), protecting the long-term potentiation (LTP) against the damage induced by Aβ oligomers in vitro, most likely by inhibiting glycogen synthase kinase-3β (GSK-3β). Additionally, ANDRO prevents changes in neuropathology in two different age groups (7- and 12-month-old mice) of an AβPPswe/PS-1 Alzheimer's model. ANDRO reduces the Aβ levels, changing the ontogeny of amyloid plaques in hippocampi and cortices in 7-month-old mice, and reduces tau phosphorylation around the Aβ oligomeric species in both age groups. Additionally, we observed that ANDRO recovers spatial memory functions that correlate with protecting synaptic plasticity and synaptic proteins in two different age groups. Our results suggest that ANDRO could be used in a potential preventive therapy during AD progression. PMID:25524173

  10. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

    PubMed

    Liu, Tong-Yan; Shi, Chang-Xiang; Gao, Run; Sun, Hai-Jian; Xiong, Xiao-Qing; Ding, Lei; Chen, Qi; Li, Yue-Hua; Wang, Jue-Jin; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-11-01

    Increased glucose production and reduced hepatic glycogen storage contribute to metabolic abnormalities in diabetes. Irisin, a newly identified myokine, induces the browning of white adipose tissue, but its effects on gluconeogenesis and glycogenesis are unknown. In the present study, we investigated the effects and underlying mechanisms of irisin on gluconeogenesis and glycogenesis in hepatocytes with insulin resistance, and its therapeutic role in type 2 diabetic mice. Insulin resistance was induced by glucosamine (GlcN) or palmitate in human hepatocellular carcinoma (HepG2) cells and mouse primary hepatocytes. Type 2 diabetes was induced by streptozotocin/high-fat diet (STZ/HFD) in mice. In HepG2 cells, irisin ameliorated the GlcN-induced increases in glucose production, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, and glycogen synthase (GS) phosphorylation; it prevented GlcN-induced decreases in glycogen content and the phosphoinositide 3-kinase (PI3K) p110α subunit level, and the phosphorylation of Akt/protein kinase B, forkhead box transcription factor O1 (FOXO1) and glycogen synthase kinase-3 (GSK3). These effects of irisin were abolished by the inhibition of PI3K or Akt. The effects of irisin were confirmed in mouse primary hepatocytes with GlcN-induced insulin resistance and in human HepG2 cells with palmitate-induced insulin resistance. In diabetic mice, persistent subcutaneous perfusion of irisin improved the insulin sensitivity, reduced fasting blood glucose, increased GSK3 and Akt phosphorylation, glycogen content and irisin level, and suppressed GS phosphorylation and PEPCK and G6Pase expression in the liver. Irisin improves glucose homoeostasis by reducing gluconeogenesis via PI3K/Akt/FOXO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via PI3K/Akt/GSK3-mediated GS activation. Irisin may be regarded as a novel therapeutic strategy for insulin resistance and type 2 diabetes. PMID

  11. Muscle glycogen and cell function--Location, location, location.

    PubMed

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. PMID:26589115

  12. Genetics Home Reference: glycogen storage disease type 0

    MedlinePlus

    ... the expand/collapse boxes. Download PDF Open All Close All Description Glycogen storage disease type 0 (also known as GSD 0) is a condition caused by the body's inability to form a complex sugar called glycogen , which is a major source of stored energy in the body. GSD 0 ...

  13. Supercompensated glycogen loads persist 5 days in resting trained cyclists.

    PubMed

    Arnall, David A; Nelson, Arnold G; Quigley, Jack; Lex, Stephen; Dehart, Tom; Fortune, Peggy

    2007-02-01

    Research data indicates a persistence of elevated muscle glycogen concentration 3 days post-supercompensation in resting athletes. This study expands our earlier findings by determining whether muscle glycogen remains elevated 3, 5, or 7 days post-supercompensation. Seventeen trained male cyclists underwent one bout of exhaustive exercise to deplete muscle glycogen. This was followed by a 3-day consumption of a high carbohydrate/low protein/low fat diet (85:08:07%). Three post-loading phases followed with subjects randomly assigned to either a 3-day, 5-day, or 7-day post-loading maintenance diet of 60% carbohydrate and limited physical activity. Biopsies (50-150 mg) of the vastus lateralis were obtained pre-load (BASELINE), at peak-load (PEAK), and either at 3-day, 5-day, or 7-day post-load (POST). On average, PEAK to POST muscle glycogen concentrations decreased 34, 20 and 46% respectively for the 3-, 5-, and 7-day POST groups. Only the 7-day post-load group's PEAK to POST mean muscle glycogen concentration decreased significantly. In addition, multi-regression analysis indicated that the PEAK glycogen level was the main determinant of the number of days that glycogen levels remained significantly greater than BASELINE. Thus, trained athletes' supercompensated glycogen levels can remain higher than normal for up to 5 days post-loading. The amount of carbohydrate consumed, the level of physical activity, and the magnitude of the glycogen supercompensation determine the interval for which the glycogen levels are elevated. PMID:17120016

  14. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism.

    PubMed

    Galbo, Thomas; Olsen, Grith Skytte; Quistorff, Bjørn; Nishimura, Erica

    2011-01-01

    In type 2 Diabetes (T2D) free fatty acids (FFAs) in plasma are increased and hepatic insulin resistance is "selective", in the sense that the insulin-mediated decrease of glucose production is blunted while insulin's effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours. To establish the physiological relevance of the in vitro findings, we also studied insulin-resistant Zucker Diabetic Fatty (ZDF) rats. While insulin-receptor phosphorylation was unaffected, activation of Akt and inactivation of the downstream targets Glycogen synthase kinase 3α (Gsk3α and Forkhead box O1 (FoxO1) was inhibited in palmitate-exposed cells. Accordingly, dose-response curves for insulin-mediated suppression of the FoxO1-induced gluconeogenic genes and for de novo glucose production were right shifted, and insulin-stimulated glucose oxidation and glycogen synthesis were impaired. In contrast, similar to findings in human T2D, the ability of insulin to induce triglyceride (TG) accumulation and transcription of the enzymes that catalyze de novo lipogenesis and TG assembly was unaffected. Insulin-induction of these genes could, however, be blocked by inhibition of the atypical PKCs (aPKCs). The activity of the Akt-inactivating Protein Phosphatase 2A (PP2A) was increased in the insulin-resistant cells. Furthermore, inhibition of PP2A by specific inhibitors increased insulin-stimulated activation of Akt and phosphorylation of FoxO1 and Gsk3α. Finally, PP2A mRNA levels were increased in liver, muscle and adipose tissue, while PP2A activity was increased in liver and muscle tissue in insulin-resistant ZDF rats. In conclusion, our findings indicate that FFAs may cause a selective impairment of insulin action upon hepatic glucose metabolism by increasing PP2A activity. PMID:22087313

  15. Mono-(2-ethylhexyl) phthalate targets glycogen debranching enzyme and affects glycogen metabolism in rat testis.

    PubMed

    Kuramori, Chikanori; Hase, Yasuyoshi; Hoshikawa, Koichi; Watanabe, Keiko; Nishi, Takeyuki; Hishiki, Takako; Soga, Tomoyoshi; Nashimoto, Akihiro; Kabe, Yasuaki; Yamaguchi, Yuki; Watanabe, Hajime; Kataoka, Kohsuke; Suematsu, Makoto; Handa, Hiroshi

    2009-05-01

    Phthalate esters are commonly used plasticizers; however, some are suspected to cause reproductive toxicity. Administration of high doses of di-(2-ethylhexyl) phthalate (DEHP) induces germ cell death in male rodents. Mono-(2-ethylhexyl) phthalate (MEHP), a hydrolyzed metabolite of DEHP, appears to be responsible for this testicular toxicity; however, the underlying mechanism of this chemical's action remains unknown. Here, using a one-step affinity purification procedure, we identified glycogen debranching enzyme (GDE) as a phthalate-binding protein. GDE has oligo-1,4-1,4-glucanotransferase and amylo-1,6-glucosidase activities, which are responsible for the complete degradation of glycogen to glucose. Our findings demonstrate that MEHP inhibits the activity of oligo-1,4-1,4-glucanotransferase, but not of amylo-1,6-glucosidase. Among various phthalate esters tested, MEHP specifically binds to and inhibits GDE. We also show that DEHP administration affects glycogen metabolism in rat testis. Thus, inhibition of GDE by MEHP may play a role in germ cell apoptosis in the testis. PMID:19240039

  16. Glycogen repletion following continuous and intermittent exercise to exhaustion.

    PubMed

    Gaesser, G A; Brooks, G A

    1980-10-01

    Patterns of postexercise glycogen repletion in heart, skeletal muscle, and liver in the absence of exogenously supplied substrates during the first 4 h of recovery were assessed. Female Wistar rats were run to exhaustion using continuous (1.0 mph, 15% grade) and intermittent (alternate 1-min intervals at 0.5 and 1.5 mph, 15% grade) exercise protocols. Rats at exhaustion were characterized by marked depletion of glycogen in heart (55%), skeletal muscle (94%), and liver (97%). Blood glucose levels at exhaustion (1.33 mumol/g) were only 37% of preexercise levels. There were no significant differences between continuous and intermittent exercise groups for any of the tissue glycogen or blood glucose values. Cardiac muscle was the only tissue capable of complete restoration of glycogen levels while relying exclusively upon endogenous substrates. Concentrations of endogenous substrates present at the end of exercise were insufficient to support restoration of blood glucose levels to preexercise values nor support glycogen repletion in skeletal muscle and liver during the initial 4-h food-restricted postexercise period. With subsequent feeding, skeletal muscle demonstrated a glycogen supercompensation effect at 24 h (181.1 and 191.8% of preexercise levels for continuous and intermittent exercise, respectively). Lactate concentration in all tissues at the point exhaustion (1.5--2.5 times resting levels) were only moderately elevated and returned to preexercise levels within 15 min. It was concluded that lactate removal after exercise contributed only minimally to the repletion of muscle glycogen. PMID:7440286

  17. N-Acetyl-beta-D-glucopyranosylamine 6-phosphate is a specific inhibitor of glycogen-bound protein phosphatase 1.

    PubMed Central

    Board, M

    1997-01-01

    Previous work has shown that the C-1-substituted glucose-analogue N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc) is a competitive inhibitor of glycogen phosphorylase (GP) and stimulates the inactivation of this enzyme by GP phosphatase. In addition to its effects on GP, 1-GlcNAc also prevents the glucose-led activation of glycogen synthase (GS) in whole hepatocytes. Such an effect on GS was thought to be due to the formation of 1-GlcNAc-6-P by the action of glucokinase within the hepatocyte [Board, Bollen, Stalmans, Kim, Fleet and Johnson (1995) Biochem. J. 311, 845-852]. To investigate this possibility further, a pure preparation of 1-GlcNAc-6-P was synthesized. The effects of the phosphorylated glucose analogue on the activity of protein phosphatase 1 (PP1), the enzyme responsible for dephosphorylation and activation of GS, are reported. During the present study, 1-GlcNAc-6-P inhibited the activity of the glycogen-bound form of PP1, affecting both the GSb phosphatase and GPa phosphatase activities. A level of 50% inhibition of GSb phosphatase activity was achieved with 85 microM 1-GlcNAc-6-P in the absence of Glc-6-P and with 135 microM in the presence of 10 mM Glc-6-P. At either Glc-6-P concentration, 500 microM 1-GlcNAc-6-P completely inhibited activity. The Glc-6-P stimulation of the GPa phosphatase activity of PP1 was negated by 1-GlcNAc-6-P but there was no inhibition of the basal rate in the absence of Glc-6-P. 1-GlcNAc-6-P inhibition was specific for the glycogen-bound form of PP1 and did not inhibit the GSb phosphatase activity of the cytosolic form of the enzyme. The present work explains our previous observations on the inactivating effects on GS of incubating whole hepatocytes with 1-GlcNAc. These observations have their basis in the inhibition of glycogen-bound PP1 by 1-GlcNAc-6-P. A novel inhibitor of PP1, specific for the glycogen-bound form of the enzyme, is presented. PMID:9371733

  18. The Transcriptional Profiling of Glycogenes Associated with Hepatocellular Carcinoma Metastasis

    PubMed Central

    Liu, Tianhua; Zhang, Shu; Chen, Jie; Jiang, Kai; Zhang, Qinle; Guo, Kun; Liu, Yinkun

    2014-01-01

    Background and objective Metastasis is one of the important reasons for the poor prognosis of hepatocellular carcinoma (HCC), abnormal glycosylation plays a pivotal role in HCC metastasis. The goal of this study was to screen and validate the transcriptional profiling of glycogenes associated with HCC metastasis. Methodology The differentially transcribed glycogenes were screened out by the Human Glycosylation RT2 Profiler PCR Array, and were identified by qRT-PCR in human HCC cell lines and their orthotopic xenograft tumors. Further analyses were performed with K-mean clustering, Gene Ontology (GO) and ingenuity pathways analysis (IPA). Four differentially transcribed glycogenes were validated in clinical cancer specimens by qRT-PCR. Results A total of thirty-three differentially transcribed glycogenes were obtained by comparison the transcription in the metastatic human HCC cell lines (MHCC97L, MHCC97H and HCCLM3) with the transcription in the non-metastatic HCC cell line Hep3B. Seven differentially transcribed glycogenes were selected to further identification in human HCC cell lines and their orthotopic xenograft tumors. According to their trends by K-mean clustering, all of the differentially transcribed glycogenes were classified in six clusters. GO analysis of the differentially transcribed glycogenes described them in biological process, subcellular location and molecular function. Furthermore, the partial regulatory network of the differentially transcribed glycogenes was acquired through the IPA. The transcription levels of galnt3, gcnt3, man1a1, mgat5b in non-metastatic and metastatic HCC clinical cancer specimens showed the same changing trends with the results in human HCC cell lines and their orthotopic xenograft tumors, and the divergent transcription levels of gcnt3 and mgat5b were statistically significant. Conclusions The transcriptional profiling of glycogenes associated with HCC metastasis was obtained and validated in this study and it might

  19. A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity.

    PubMed

    Hu, Sophia; Ueda, Masumi; Stetson, Lindsay; Ignatz-Hoover, James; Moreton, Stephen; Chakrabarti, Amit; Xia, Zhiqiang; Karan, Goutam; de Lima, Marcos; Agrawal, Mukesh K; Wald, David N

    2016-07-01

    Standard therapies used for the treatment of acute myeloid leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, acute promyelocytic leukemia, can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has been previously identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here, we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared with other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared with other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. Mol Cancer Ther; 15(7); 1485-94. ©2016 AACR. PMID:27196775

  20. Lithium Enhances Axonal Regeneration in Peripheral Nerve by Inhibiting Glycogen Synthase Kinase 3β Activation

    PubMed Central

    Su, Huanxing; Yuan, Qiuju; Qin, Dajiang; Yang, Xiaoying; So, Kwok-Fai; Wu, Wutian

    2014-01-01

    Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN) is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to investigate potential inhibitory signals which influence axonal regeneration after root avulsion injury. The results of the study showed that root avulsion triggered GSK-3β activation in the injured motoneurons and remaining axons in the ventral funiculus. Systemic application of a clinical dose of lithium suppressed activated GSK-3β in the lesioned spinal cord to the normal level and induced extensive axonal regeneration into replanted ventral roots. Our study suggests that GSK-3β activity is involved in negative regulation for axonal elongation and regeneration and lithium, the specific GSK-3β inhibitor, enhances motoneuron regeneration from CNS to PNS. PMID:24967390

  1. Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors.

    PubMed

    Luo, Guanglin; Chen, Ling; Burton, Catherine R; Xiao, Hong; Sivaprakasam, Prasanna; Krause, Carol M; Cao, Yang; Liu, Nengyin; Lippy, Jonathan; Clarke, Wendy J; Snow, Kimberly; Raybon, Joseph; Arora, Vinod; Pokross, Matt; Kish, Kevin; Lewis, Hal A; Langley, David R; Macor, John E; Dubowchik, Gene M

    2016-02-11

    GSK-3 is a serine/threonine kinase that has numerous substrates. Many of these proteins are involved in the regulation of diverse cellular functions, including metabolism, differentiation, proliferation, and apoptosis. Inhibition of GSK-3 may be useful in treating a number of diseases including Alzheimer's disease (AD), type II diabetes, mood disorders, and some cancers, but the approach poses significant challenges. Here, we present a class of isonicotinamides that are potent, highly kinase-selective GSK-3 inhibitors, the members of which demonstrated oral activity in a triple-transgenic mouse model of AD. The remarkably high kinase selectivity and straightforward synthesis of these compounds bode well for their further exploration as tool compounds and therapeutics. PMID:26751161

  2. Hepatic glycogen synthesis in the fetal mouse: An ultrastructural, morphometric, and autoradiographic investigation of the relationship between the smooth endoplasmic reticulum and glycogen

    SciTech Connect

    Breslin, J.S.

    1989-01-01

    Fetal rodent hepatocytes undergo a rapid and significant accumulation of glycogen prior to birth. The distinct association of the smooth endoplasmic reticulum (SER) with glycogen during glycogen synthesis documented in the adult hepatocyte has not been clearly demonstrated in the fetus. The experiments described in this dissertation tested the hypothesis that SER is present and functions in the synthesis of fetal hepatic glycogen. Biochemical analysis, light microscopic (LM) histochemistry and electron microscope (EM) morphometry demonstrated that fetal hepatic glycogen synthesis began on day 15, with maximum accumulation occurring between days 17-19. Glycogen accumulation began in a small population of cells. Both the number of cells containing glycogen and the quantity of glycogen per cell increased as glycogen accumulated. Smooth endoplasmic reticulum (SER) was observed on day 14 of gestation and throughout fetal hepatic glycogen synthesis, primarily as dilated ribosome-free terminal extensions of rough endoplasmic reticulum (RER), frequently associated with glycogen. SER was in close proximity to isolated particles of glycogen and at the periphery of large compact glycogen deposits. Morphometry demonstrated that the membrane surface of SER in the average fetal hepatocyte increased as glycogen accumulated through day 18 and dropped significantly as glycogen levels peaked on day 19. Parallel alterations in RER membrane surface, indicated overall increases in ER membrane surface. Autoradiography following administration of {sup 3}H-galactose demonstrated that newly synthesized glycogen was deposited near profiles of SER at day 16 and at day 18; however, at day 18 the majority of label was uniformly distributed over glycogen remote from profiles of SER.

  3. An Arabidopsis callose synthase.

    PubMed

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole; Mundy, John

    2002-08-01

    Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast beta-1,3-glucan synthase whose expression partially complements a yeast beta-1,3-glucan synthase mutant. AtGsl5 is developmentally expressed at highest levels in flowers, consistent with flowers having high beta-1,3-glucan synthase activities for deposition of callose in pollen. A role for AtGsl5 in callose synthesis is also indicated by AtGsl5 expression in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant. PMID:12081364

  4. Genetics Home Reference: glycogen storage disease type III

    MedlinePlus

    ... blood (hyperlipidemia), and elevated blood levels of liver enzymes. As they get older, children with this condition ... gene provides instructions for making the glycogen debranching enzyme. This enzyme is involved in the breakdown of ...

  5. Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity.

    PubMed

    Chew, Benjamin; Ryu, Jae Ryun; Ng, Teclise; Ma, Dongliang; Dasgupta, Ananya; Neo, Sin Hui; Zhao, Jing; Zhong, Zhong; Bichler, Zoë; Sajikumar, Sreedharan; Goh, Eyleen L K

    2015-01-01

    Attempts have been made to use glycogen synthase kinase-3 beta (GSK3β) inhibitors for prophylactic treatment of neurocognitive conditions. However the use of lithium, a non-specific inhibitor of GSK3β results in mild cognitive impairment in humans. The effects of global GSK3β inhibition or knockout on learning and memory in healthy adult mice are also inconclusive. Our study aims to better understand the role of GSK3β in learning and memory through a more regionally, targeted approach, specifically performing lentiviral-mediated knockdown of GSK3β within the dentate gyrus (DG). DG-GSK3β-silenced mice showed impaired contextual fear memory retrieval. However, cue fear memory, spatial memory, locomotor activity and anxiety levels were similar to control. These GSK3β-silenced mice also showed increased induction and maintenance of DG long-term potentiation (DG-LTP) compared to control animals. Thus, this region-specific, targeted knockdown of GSK3β in the DG provides better understanding on the role of GSK3β in learning and memory. PMID:26157370

  6. Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity

    PubMed Central

    Chew, Benjamin; Ryu, Jae Ryun; Ng, Teclise; Ma, Dongliang; Dasgupta, Ananya; Neo, Sin Hui; Zhao, Jing; Zhong, Zhong; Bichler, Zoë; Sajikumar, Sreedharan; Goh, Eyleen L. K.

    2015-01-01

    Attempts have been made to use glycogen synthase kinase-3 beta (GSK3β) inhibitors for prophylactic treatment of neurocognitive conditions. However the use of lithium, a non-specific inhibitor of GSK3β results in mild cognitive impairment in humans. The effects of global GSK3β inhibition or knockout on learning and memory in healthy adult mice are also inconclusive. Our study aims to better understand the role of GSK3β in learning and memory through a more regionally, targeted approach, specifically performing lentiviral-mediated knockdown of GSK3β within the dentate gyrus (DG). DG-GSK3β-silenced mice showed impaired contextual fear memory retrieval. However, cue fear memory, spatial memory, locomotor activity and anxiety levels were similar to control. These GSK3β-silenced mice also showed increased induction and maintenance of DG long-term potentiation (DG-LTP) compared to control animals. Thus, this region-specific, targeted knockdown of GSK3β in the DG provides better understanding on the role of GSK3β in learning and memory. PMID:26157370

  7. Human Brain Glycogen Metabolism During and After Hypoglycemia

    PubMed Central

    Öz, Gülin; Kumar, Anjali; Rao, Jyothi P.; Kodl, Christopher T.; Chow, Lisa; Eberly, Lynn E.; Seaquist, Elizabeth R.

    2009-01-01

    OBJECTIVE We tested the hypotheses that human brain glycogen is mobilized during hypoglycemia and its content increases above normal levels (“supercompensates”) after hypoglycemia. RESEARCH DESIGN AND METHODS We utilized in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with intravenous infusions of [13C]glucose in healthy volunteers to measure brain glycogen metabolism during and after euglycemic and hypoglycemic clamps. RESULTS After an overnight intravenous infusion of 99% enriched [1-13C]glucose to prelabel glycogen, the rate of label wash-out from [1-13C]glycogen was higher (0.12 ± 0.05 vs. 0.03 ± 0.06 μmol · g−1 · h−1, means ± SD, P < 0.02, n = 5) during a 2-h hyperinsulinemic-hypoglycemic clamp (glucose concentration 57.2 ± 9.7 mg/dl) than during a hyperinsulinemic-euglycemic clamp (95.3 ± 3.3 mg/dl), indicating mobilization of glucose units from glycogen during moderate hypoglycemia. Five additional healthy volunteers received intravenous 25–50% enriched [1-13C]glucose over 22–54 h after undergoing hyperinsulinemic-euglycemic (glucose concentration 92.4 ± 2.3 mg/dl) and hyperinsulinemic-hypoglycemic (52.9 ± 4.8 mg/dl) clamps separated by at least 1 month. Levels of newly synthesized glycogen measured from 4 to 80 h were higher after hypoglycemia than after euglycemia (P ≤ 0.01 for each subject), indicating increased brain glycogen synthesis after moderate hypoglycemia. CONCLUSIONS These data indicate that brain glycogen supports energy metabolism when glucose supply from the blood is inadequate and that its levels rebound to levels higher than normal after a single episode of moderate hypoglycemia in humans. PMID:19502412

  8. Geranyl diphosphate synthase from mint

    SciTech Connect

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  9. Geranyl diphosphate synthase from mint

    SciTech Connect

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  10. Structure and solution properties of enzymatically synthesized glycogen.

    PubMed

    Kajiura, Hideki; Takata, Hiroki; Kuriki, Takashi; Kitamura, Shinichi

    2010-04-19

    Recently, a new enzymatic process for glycogen production was developed. In this process, short-chain amylose is used as a substrate for branching enzymes (BE, EC 2.4.1.18). The molecular weight of the enzymatically synthesized glycogen (ESG) depends on the size and concentration of the substrate. Structural and physicochemical properties of ESG were compared to those of natural source glycogen (NSG). The average chain length, interior chain length, and exterior chain length of ESG were 8.2-11.6, 2.0-3.3, and 4.2-7.6, respectively. These values were within the range of variation of NSG. The appearances of both ESG and NSG in solution were opalescent (milky white and slightly bluish). Furthermore, transmission electron microscopy and atomic force microscopy showed that ESG molecules formed spherical particles, and that there were no differences between ESG and NSG. Viscometric analyses also showed the spherical nature of both glycogens. When ESG and NSG were treated with pullulanase, a glucan-hydrolyzing enzyme known to degrade glycogen only on its surface portion, both glycogens were similarly degraded. These analyses revealed that ESG shares similar molecular shapes and surface properties with NSG. PMID:20153852

  11. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    PubMed Central

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the CesA complex and microtubules, and that we named COMPANIONS OF CELLULOSE SYNTHASE (CC). The CC proteins protect the cellulose synthesising capacity of Arabidopsis seedlings during exposure to adverse environmental conditions by enhancing microtubule dynamics. In this paper we provide cell biology and genetic evidence that the CSI1 and the CC proteins fulfil distinct functions during cellulose synthesis. We also show that the CC proteins are necessary to aid cellulose synthesis when components of the CesA complex are impaired. These data indicate that the CC proteins have a broad role in aiding cellulose synthesis during environmental changes and when core complex components are non-functional. PMID:26829351

  12. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    PubMed Central

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  13. Memantine Attenuates Alzheimer’s Disease-Like Pathology and Cognitive Impairment

    PubMed Central

    Wang, Xiaochuan; Blanchard, Julie; Iqbal, Khalid

    2015-01-01

    Deficiency of protein phosphatase-2A is a key event in Alzheimer’s disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer’s disease brain. In the present study, we overexpressed I1PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1PP2A in Wistar rats. The I1PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer’s disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer’s disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer’s disease patients. PMID:26697860

  14. Digestion of glycogen by a glucosidase released by Trichomonas vaginalis.

    PubMed

    Huffman, Ryan D; Nawrocki, Lauren D; Wilson, Wayne A; Brittingham, Andrew

    2015-12-01

    Trichomonas vaginalis is a protozoan parasite that is the causative agent of trichomoniasis, a widespread sexually transmitted disease. In vitro culture of T. vaginalis typically employs a medium supplemented with either maltose or glucose and carbohydrates are considered essential for growth. Although the nature of the carbohydrates utilized by T. vaginalis in vivo is undefined, the vaginal epithelium is rich in glycogen, which appears to provide a source of carbon for the vaginal microbiota. Here, we show that T. vaginalis grows equally well in growth media supplemented with simple sugars or with glycogen. Analysis of conditioned growth medium by thin layer chromatography indicates that growth on glycogen is accompanied by glycogen breakdown to a mixture of products including maltose, glucose, and oligosaccharides. Enzymatic assays with conditioned growth medium show that glycogen breakdown is accomplished via the release of a glucosidase activity having the properties of an α-amylase into the growth medium. Furthermore, we find that released glucosidase activity increases upon removal of carbohydrate from the growth medium, indicating regulation of synthesis and/or secretion in response to environmental cues. Lastly, we show that addition of T. vaginalis glucosidase activity to a growth medium containing glycogen generates sufficient simple sugar to support the growth of lactobacilli which, themselves, are unable to degrade glycogen. Thus, not only does the glucosidase activity likely play an important role in allowing T. vaginalis to secure simple sugars for its own use, it has the potential to impact the growth of other members of the vaginal microbiome. PMID:26420465

  15. Impaired ILK Function Is Associated with Deficits in Hippocampal Based Memory and Synaptic Plasticity in a FASD Rat Model.

    PubMed

    Bhattacharya, D; Dunaway, E P; Bhattacharya, S; Bloemer, J; Buabeid, M; Escobar, M; Suppiramaniam, V; Dhanasekaran, M

    2015-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is an umbrella term that encompasses a wide range of anatomical and behavioral problems in children who are exposed to alcohol during the prenatal period. There is no effective treatment for FASD, because of lack of complete characterization of the cellular and molecular mechanisms underlying this condition. Alcohol has been previously characterized to affect integrins and growth factor signaling receptors. Integrin Linked Kinase (ILK) is an effector of integrin and growth-factor signaling which regulates various signaling processes. In FASD, a downstream effector of ILK, Glycogen Synthase Kinase 3β (GSK3β) remains highly active (reduced Ser9 phosphorylation). GSK3β has been known to modulate glutamate receptor trafficking and channel properties. Therefore, we hypothesize that the cognitive deficits accompanying FASD are associated with impairments in the ILK signaling pathway. Pregnant Sprague Dawley rats consumed a "moderate" amount of alcohol throughout gestation, or a calorie-equivalent sucrose solution. Contextual fear conditioning was used to evaluate memory performance in 32-33-day-old pups. Synaptic plasticity was assessed in the Schaffer Collateral pathway, and hippocampal protein lysates were used to evaluate ILK signaling. Alcohol exposed pups showed impaired contextual fear conditioning, as compared to control pups. This reduced memory performance was consistent with decrease in LTP as compared to controls. Hippocampal ILK activity and GSK3β Ser21/9 phosphorylation were significantly lower in alcohol-exposed pups than controls. Increased synaptic expression of GluR2 AMPA receptors was observed with immunoprecipitation of post-synaptic density protein 95 (PSD95). Furthermore, immunoprecipitation of ILK revealed a decreased interaction with GluR2. The ILK pathway appears to play a significant role in memory and synaptic plasticity impairments in FASD rats. These impairments appear to be mediated by reduced GSK3

  16. Impaired ILK Function Is Associated with Deficits in Hippocampal Based Memory and Synaptic Plasticity in a FASD Rat Model

    PubMed Central

    Bhattacharya, D.; Dunaway, E. P.; Bhattacharya, S.; Bloemer, J.; Buabeid, M.; Escobar, M.

    2015-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is an umbrella term that encompasses a wide range of anatomical and behavioral problems in children who are exposed to alcohol during the prenatal period. There is no effective treatment for FASD, because of lack of complete characterization of the cellular and molecular mechanisms underlying this condition. Alcohol has been previously characterized to affect integrins and growth factor signaling receptors. Integrin Linked Kinase (ILK) is an effector of integrin and growth-factor signaling which regulates various signaling processes. In FASD, a downstream effector of ILK, Glycogen Synthase Kinase 3β (GSK3β) remains highly active (reduced Ser9 phosphorylation). GSK3β has been known to modulate glutamate receptor trafficking and channel properties. Therefore, we hypothesize that the cognitive deficits accompanying FASD are associated with impairments in the ILK signaling pathway. Pregnant Sprague Dawley rats consumed a “moderate” amount of alcohol throughout gestation, or a calorie-equivalent sucrose solution. Contextual fear conditioning was used to evaluate memory performance in 32–33-day-old pups. Synaptic plasticity was assessed in the Schaffer Collateral pathway, and hippocampal protein lysates were used to evaluate ILK signaling. Alcohol exposed pups showed impaired contextual fear conditioning, as compared to control pups. This reduced memory performance was consistent with decrease in LTP as compared to controls. Hippocampal ILK activity and GSK3β Ser21/9 phosphorylation were significantly lower in alcohol-exposed pups than controls. Increased synaptic expression of GluR2 AMPA receptors was observed with immunoprecipitation of post-synaptic density protein 95 (PSD95). Furthermore, immunoprecipitation of ILK revealed a decreased interaction with GluR2. The ILK pathway appears to play a significant role in memory and synaptic plasticity impairments in FASD rats. These impairments appear to be mediated by reduced

  17. Continuous glucose monitoring in the treatment of obesity in patients with glycogen storage disease type Ia

    PubMed Central

    Korljan Jelaska, Betty; Ostojić, Sanja Baršić; Berović, Nina; Kokić, Višnja

    2013-01-01

    Summary Glycogen storage disease (GSD) type I is characterized by impaired production of glucose from glycogenolysis and gluconeogenesis resulting in severe hypoglycaemia and increased production of lactic acid, triglyceride and uric acid. The most common type, glycogenosis type Ia, demands a balanced, sufficient carbohydrate intake to preserve normal 24-h glycaemia. Insufficient intake of carbohydrates can cause hypoglycaemia, as the missing glucose-6-phosphatase enzyme cannot free the glucose stored as liver glycogen and nor is gluconeogenesis possible. The principle means of handling this disorder is to avoid starving by taking regular meals during the day and night. Such a dietary regimen could lead to obesity. Herein, we present the case of an adult patient with glycogenosis type Ia suffering from hyperuricaemia, dyslipidaemia and arterial hypertension. The accumulation of these cardiovascular risk factors could lead to the early onset of atherosclerosis, which should be postponed by contemporary methods of surveillance and treatment. Learning points Continuous subcutaneous glucose monitoring may be of value in every adult patient with GSD type I to evaluate the actual prevalence of eventual hypoglycaemic and hyperglycaemic episodes.Good dietary management minimizes the metabolic abnormalities of the disease and decreases the risk of long-term complications.Treatment of obesity in patients with GSD reduces the risk of earlier atherosclerosis and cardiovascular disease. PMID:24683476

  18. Acoustically accessible window determination for ultrasound mediated treatment of glycogen storage disease type Ia patients

    NASA Astrophysics Data System (ADS)

    Wang, Shutao; Raju, Balasundar I.; Leyvi, Evgeniy; Weinstein, David A.; Seip, Ralf

    2012-10-01

    Glycogen storage disease type Ia (GSDIa) is caused by an inherited single-gene defect resulting in an impaired glycogen to glucose conversion pathway. Targeted ultrasound mediated delivery (USMD) of plasmid DNA (pDNA) to liver in conjunction with microbubbles may provide a potential treatment for GSDIa patients. As the success of USMD treatments is largely dependent on the accessibility of the targeted tissue by the focused ultrasound beam, this study presents a quantitative approach to determine the acoustically accessible liver volume in GSDIa patients. Models of focused ultrasound beam profiles for transducers of varying aperture and focal lengths were applied to abdomen models reconstructed from suitable CT and MRI images. Transducer manipulations (simulating USMD treatment procedures) were implemented via transducer translations and rotations with the intent of targeting and exposing the entire liver to ultrasound. Results indicate that acoustically accessible liver volumes can be as large as 50% of the entire liver volume for GSDIa patients and on average 3 times larger compared to a healthy adult group due to GSDIa patients' increased liver size. Detailed descriptions of the evaluation algorithm, transducer-and abdomen models are presented, together with implications for USMD treatments of GSDIa patients and transducer designs for USMD applications.

  19. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  20. Influence of stevioside on hepatic glycogen levels in fasted rats.

    PubMed

    Hübler, M O; Bracht, A; Kelmer-Bracht, A M

    1994-04-01

    The influence of stevioside, the sweet glycoside of Stevia rebaudiana leaves, on the glycogen levels of fasted rats was investigated. In one set of experiments, single doses of stevioside (200 mumol) or steviol (200 mumol) were given orally to 24-hours fasted rats, either alone or simultaneously with fructose. Under these conditions both stevioside and steviol increased the initial glycogen deposition in the liver. In another set of experiments, stevioside was given to the rats in the drinking water at the beginning of the fasting periods (5:00 p.m.) of 24 and 48 hours. Two different concentrations were given, 1.0 and 2.0 mM. Increased hepatic glycogen levels were found at 48 hours with stevioside (1.0 mM) and at 24 hours with stevioside (2.0 mM). Steviol had no effect on hepatic glycogen levels when given in the drinking water. It can be concluded that stevioside exerts a stimulatory action on hepatic glycogen synthesis under gluconeogenic conditions. PMID:8042003

  1. Molecular dynamics simulation of paracetamol molecules ordering around glycogen

    NASA Astrophysics Data System (ADS)

    Lim, Wilber; Feng, Yuan Ping; Liu, X. Y.

    2005-05-01

    By the use of classical atomistic molecular dynamics simulations, we demonstrate that paracetamol molecules exist in a highly ordered phase in the presence of a glycogen substrate at 317K whereas the paracetamol fluid exists in an isotropic phase in the absence of the glycogen substrate at the same temperature. This result further validates the studies made on polysaccharide regarding its abilities to promote nucleation of paracetamol via liquid preordering. As little is known regarding liquid ordering induced by a polymeric substrate, we seek to explore the ordering mechanism from an energy perspective. This is accomplished using conformation mappings. Our analysis shows that the conformation space accessible to the paracetamol molecule at 317K in the vicinity of glycogen is smaller than the one in the absence of glycogen. An investigation on the orientation of the dipole moments of the glycogen monomers and paracetamol molecules were carried out as well. From the investigations, we show that dipolar interactions play an important role in the ordering process. These studies bear significance to the understanding of the ordering process as well as the promotion and effective control of the nucleation rate.

  2. Modified glycogen as construction material for functional biomimetic microfibers.

    PubMed

    Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr

    2016-11-01

    We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. PMID:27516273

  3. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    DOE PAGESBeta

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; et al

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less

  4. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    PubMed Central

    Li, Xiaodan; Wang, Lili; Zhou, X Edward; Ke, Jiyuan; de Waal, Parker W; Gu, Xin; Tan, M H Eileen; Wang, Dongye; Wu, Donghai; Xu, H Eric; Melcher, Karsten

    2015-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Together, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions. PMID:25412657

  5. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    SciTech Connect

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; Melcher, Karsten

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.

  6. Familial nephropathy associated with hepatic type of glycogen storage disease.

    PubMed

    Sonobe, H; Ogawa, K; Takahashi, I

    1976-11-01

    The female patient was diagnosed as having Von Gierke's disease at 14 years of age, based on clinical manifestations, laboratory examination and liver biopsy. At 19 years of age she had uremia and died from its deterioration at 24 years of age. The parents were consanguineous, and a 27-year-old sister is presently hospitalized for renal insufficiency with hepatomegaly. On autopsy, the patient's kidneys were highly contracted and contained a number of small cysts, mainly in the medulla. Histological examination indicated periglomerular fibrosis, glomerular hyalinization, tubular atrophy or cystic dilatation and intersitial fibrosis with round cell infiltration. These findings correspond to Fanconi's familial juvenile nephronophthisis, except for age. The liver was markedly enlarged and indicated severe, glycogen deposits, but the kidney did not contain glycogen deposits. It can, therefore, be presumed that the renal lesions were not a secondary consequence of long-term glycogen deposits but that renal and hepatic lesions were associated with each other. PMID:1070908

  7. Role in Tumor Growth of a Glycogen Debranching Enzyme Lost in Glycogen Storage Disease

    PubMed Central

    Guin, Sunny; Pollard, Courtney; Ru, Yuanbin; Ritterson Lew, Carolyn; Duex, Jason E.; Dancik, Garrett; Owens, Charles; Spencer, Andrea; Knight, Scott; Holemon, Heather; Gupta, Sounak; Hansel, Donna; Hellerstein, Marc; Lorkiewicz, Pawel; Lane, Andrew N.; Fan, Teresa W.-M.

    2014-01-01

    Background Bladder cancer is the most common malignancy of the urinary system, yet our molecular understanding of this disease is incomplete, hampering therapeutic advances. Methods Here we used a genome-wide functional short-hairpin RNA (shRNA) screen to identify suppressors of in vivo bladder tumor xenograft growth (n = 50) using bladder cancer UMUC3 cells. Next-generation sequencing was used to identify the most frequently occurring shRNAs in tumors. Genes so identified were studied in 561 patients with bladder cancer for their association with stratification of clinical outcome by Kaplan-Meier analysis. The best prognostic marker was studied to determine its mechanism in tumor suppression using anchorage-dependent and -independent growth, xenograft (n = 20), and metabolomic assays. Statistical significance was determined using two-sided Student t test and repeated-measures statistical analysis. Results We identified the glycogen debranching enzyme AGL as a prognostic indicator of patient survival (P = .04) and as a novel regulator of bladder cancer anchorage-dependent (P < .001), anchorage-independent (mean ± standard deviation, 180 ± 23.1 colonies vs 20±9.5 in control, P < .001), and xenograft growth (P < .001). Rescue experiments using catalytically dead AGL variants revealed that this effect is independent of AGL enzymatic functions. We demonstrated that reduced AGL enhances tumor growth by increasing glycine synthesis through increased expression of serine hydroxymethyltransferase 2. Conclusions Using an in vivo RNA interference screen, we discovered that AGL, a glycogen debranching enzyme, has a biologically and statistically significant role in suppressing human cancer growth. PMID:24700805

  8. Structural Mechanism of Laforin Function in Glycogen Dephosphorylation and Lafora Disease

    PubMed Central

    Raththagala, Madushi; Brewer, M. Kathryn; Parker, Matthew W.; Sherwood, Amanda R.; Wong, Brian K.; Hsu, Simon; Bridges, Travis M.; Paasch, Bradley C.; Hellman, Lance M.; Husodo, Satrio; Meekins, David A.; Taylor, Adam O.; Turner, Benjamin D.; Auger, Kyle D.; Dukhande, Vikas V.; Chakravarthy, Srinivas; Sanz, Pascual; Woods, Virgil V.; Li, Sheng; Vander Kooi, Craig W.; Gentry, Matthew S.

    2015-01-01

    SUMMARY Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled, due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease. PMID:25544560

  9. Platelet-Derived Growth Factor-BB Restores HIV Tat-Mediated Impairment of Neurogenesis: Role of GSK-3β/β-Catenin

    PubMed Central

    Chao, Jie; Yang, Lu

    2014-01-01

    Our previous study demonstrated that platelet-derived growth factor-BB (PDGF-BB) increased the cell proliferation of primary rat neuronal progenitor cells (NPCs). However, whether PDGF-BB regulates neurogenesis in HIV-associated neurological disorder (HAND) remains largely unknown. In this study we demonstrated that pre-treatment of NPCs with PDGF-BB restored Tat-mediated impairment of cell proliferation via activation of p38 and JNK MAPK pathways. Moreover, treatment with PDGF-BB induced inactivation of glycogen synthase kinase-3β (GSK-3β), evidenced by its phosphorylation at Ser9, this effect was significantly inhibited by the p38 and JNK inhibitors. Level of nuclear β-catenin, the primary substrate of GSK-3β, was also concomitantly increased following PDGF-BB treatment, suggesting that PDGF-BB stimulates NPC proliferation via acting on GSK-3β to promote nuclear accumulation of β-catenin. This was further validated by gain and loss of function studies using cells transfected with either the wild type or mutant GSK-3β constructs. Together these data underpin the role of GSK-3β/β-catenin as a novel target that regulates NPC proliferation mediated by PDGF-BB with implications for therapeutic intervention for reversal of impaired neurogenesis inflicted by Tat. PMID:24248537

  10. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  11. The molecular size and shape of liver glycogen.

    PubMed

    Geddes, R; Harvey, J D; Wills, P R

    1977-05-01

    The molecular-weight distribution of liver glycogen has been established from the analysis of sedimentation rates of fractions separated on sucrose density gradients and from the direct measurement of the diffusion coefficients of these fractions by laser-intensity-fluctuation spectroscopy. Hydrodynamic studies indicated that all fractions of glycogen of mol.wt.exceeding 25x10(6) had about 1.1 g of water per g of polysaccharide associated with them. The hydration and hydrodynamic behaviour of all fractions of mol.wt. exceeding 25x10(6) was similar, whereas smaller fractions behaved anomalously, indicating a substantially different overall structure. PMID:869923

  12. The molecular size and shape of liver glycogen.

    PubMed Central

    Geddes, R; Harvey, J D; Wills, P R

    1977-01-01

    The molecular-weight distribution of liver glycogen has been established from the analysis of sedimentation rates of fractions separated on sucrose density gradients and from the direct measurement of the diffusion coefficients of these fractions by laser-intensity-fluctuation spectroscopy. Hydrodynamic studies indicated that all fractions of glycogen of mol.wt.exceeding 25x10(6) had about 1.1 g of water per g of polysaccharide associated with them. The hydration and hydrodynamic behaviour of all fractions of mol.wt. exceeding 25x10(6) was similar, whereas smaller fractions behaved anomalously, indicating a substantially different overall structure. PMID:869923

  13. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  14. Insulin-driven translational capacity is impaired in primary fibroblasts of Prader Willi.

    PubMed

    Meneghello, Cristiana; Segat, Daniela; Fortunati, Elisabetta

    2016-02-01

    Prader-Willi (PW) syndrome is a rare genetic disorder characterized by hypothalamic-pituitary abnormalities and severe hypotonia, hyperphagia, behavioural and psychiatric problems. Absence of satiety leads to severe obesity and frequently to diabetes. Furthermore, adult patients suffer from a severe loss of muscle mass, which severely impacts their quality of life. The mechanisms underlying alterations in muscle growth in PW remain to be clarified. In this study we explored the hypothesis that, in PW cells, alterations of protein synthesis are determined by dysfunctions in the promotion of cell growth. In order to study the molecular changes leading to dysfunction in protein translation, primary fibroblasts derived from four PW patients and five control subjects were used to study the insulin-mediated signaling pathway implicated in the control of protein synthesis by immunoblotting. Here we present, for the first time, evidences that the protein translation response to insulin is impaired in PW fibroblasts. Insulin alone has a major upregulatory effect on protein kinase B (AKT), glycogen synthase kinase (GSK3beta), while phosphorylation of p70S6K1 protein elongation factor controlled by mammalian target of rapamycin complex I (mTORC1) is reduced. In addition, we provide data that the response to insulin in PW cells can be restored by previous treatment with the amino acid L-Leucine (L-Leu). Our experiments in primary cell cultures demonstrate an impairment of insulin signaling that can be rescued by supplementation with the branched aminoacid L-Leu, indicating a possible therapeutic approach for alleviating muscle mass loss in PW patients. PMID:26989644

  15. Insulin-driven translational capacity is impaired in primary fibroblasts of Prader Willi

    PubMed Central

    Meneghello, Cristiana; Segat, Daniela; Fortunati, Elisabetta

    2016-01-01

    Summary Prader-Willi (PW) syndrome is a rare genetic disorder characterized by hypothalamic-pituitary abnormalities and severe hypotonia, hyperphagia, behavioural and psychiatric problems. Absence of satiety leads to severe obesity and frequently to diabetes. Furthermore, adult patients suffer from a severe loss of muscle mass, which severely impacts their quality of life. The mechanisms underlying alterations in muscle growth in PW remain to be clarified. In this study we explored the hypothesis that, in PW cells, alterations of protein synthesis are determined by dysfunctions in the promotion of cell growth. In order to study the molecular changes leading to dysfunction in protein translation, primary fibroblasts derived from four PW patients and five control subjects were used to study the insulin-mediated signaling pathway implicated in the control of protein synthesis by immunoblotting. Here we present, for the first time, evidences that the protein translation response to insulin is impaired in PW fibroblasts. Insulin alone has a major upregulatory effect on protein kinase B (AKT), glycogen synthase kinase (GSK3beta), while phosphorylation of p70S6K1 protein elongation factor controlled by mammalian target of rapamycin complex I (mTORC1) is reduced. In addition, we provide data that the response to insulin in PW cells can be restored by previous treatment with the amino acid L-Leucine (L-Leu). Our experiments in primary cell cultures demonstrate an impairment of insulin signaling that can be rescued by supplementation with the branched aminoacid L-Leu, indicating a possible therapeutic approach for alleviating muscle mass loss in PW patients. PMID:26989644

  16. Natural Progression of Canine Glycogen Storage Disease Type IIIa

    PubMed Central

    Brooks, Elizabeth D; Yi, Haiqing; Austin, Stephanie L; Thurberg, Beth L; Young, Sarah P; Fyfe, John C; Kishnani, Priya S; Sun, Baodong

    2016-01-01

    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies. PMID:26884409

  17. Glycogen storage disease type Ia in two littermate Maltese puppies.

    PubMed

    Brix, A E; Howerth, E W; McConkie-Rosell, A; Peterson, D; Egnor, D; Wells, M R; Chen, Y T

    1995-09-01

    Glycogen storage disease type Ia (GSD-Ia) (von Gierke's disease) was identified in two 47-day-old littermate Maltese puppies. The puppies were presented for necropsy with a history of failure to thrive, mental depression, and poor body condition. Gross findings included small body size and emaciation (212 and 246 g versus 595 g for normal littermate), severely enlarged pale livers (48 and 61 g), and pale kidneys. Histologically, there was marked diffuse vacuolation of hepatocytes with large amounts of glycogen and small amounts of lipid. Renal tubular epithelium was mildly to moderately vacuolated. Soft tissue mineralization was present in renal tubules and pulmonary alveolar septa. Biochemical analysis showed that levels of glucose-6-phosphatase were markedly reduced in liver (0.3 and 0.4 microM/minute/g tissue versus 4.7 +/- 1.5 microM/minute/g tissue for controls) and kidney (0.45 and 0.4 microM/minute/g tissue versus 4.1 microM/minute/g tissue for controls) and that glycogen content was increased in liver (9.4% and 9.4% versus 1.3% +/- 1.4% for controls). This is the first confirmed report of animals with glycogen storage disease type Ia. PMID:8578635

  18. Muscle glycogen supercompensation: absence of a gender-related difference.

    PubMed

    James, A P; Lorraine, M; Cullen, D; Goodman, C; Dawson, B; Palmer, T N; Fournier, P A

    2001-10-01

    Recently it has been reported that women do not have the capacity to accumulate supranormal levels of muscle glycogen when subjected to a carbohydrate (CHO) loading regimen [Tarnopolsky et al. (1995) J Appl Physiol 78:1360-1368]. Since, in this study, CHO intake relative to body mass in the female subjects was much lower than that in males, our primary aim was to re-examine this issue using subjects fed comparable amounts of CHO. Endurance-trained female and male subjects ingested 12 g CHO x kg(-1) lean body mass day(-1) in conjunction with the cessation of their daily physical training. A 3-day exposure to this diet resulted in a marked rise in muscle glycogen levels from [mean (SD)] 108 (15) mmol x kg(-1) wet weight to 193 (14) mmol x kg(-1) wet weight and 111 (16) m mol x kg(-1) wet weight to 202 (20) mmol x kg(-1) wet weight in the female participants during the post-menstrual and pre-menstrual phases of their menstrual cycle, respectively, and from 109 (27) mmol x kg(-1) wet weight to 183 (25) mmol x kg(-1) wet weight in males. We conclude that (1) female athletes have the capacity to accumulate supranormal levels of muscle glycogen, and (2) when exercise-trained males and females are fed comparable amounts of CHO relative to lean body mass, there is no gender-related difference in their ability to accumulate supranormal levels of muscle glycogen. PMID:11718281

  19. Gestational diabetes mellitus impairs Nrf2-mediated adaptive antioxidant defenses and redox signaling in fetal endothelial cells in utero.

    PubMed

    Cheng, Xinghua; Chapple, Sarah J; Patel, Bijal; Puszyk, William; Sugden, David; Yin, Xiaoke; Mayr, Manuel; Siow, Richard C M; Mann, Giovanni E

    2013-12-01

    In utero exposure to gestational diabetes mellitus (GDM) is associated with an increased risk of type 2 diabetes and cardiovascular disease in later life, yet the underlying mechanisms remain to be elucidated. We examined the effects of GDM on the proteome, redox status, and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene expression in human fetal endothelial cells. Proteomic analysis revealed that proteins involved in redox homeostasis were significantly altered in GDM and associated with increased mitochondrial superoxide generation, protein oxidation, DNA damage, and diminished glutathione (GSH) synthesis. In GDM cells, the lipid peroxidation product 4-hydroxynonenal (HNE) failed to induce nuclear Nrf2 accumulation and mRNA and/or protein expression of Nrf2 and its target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), Bach1, cystine/glutamate transporter, and glutamate cysteine ligase. Although methylation of CpG islands in Nrf2 or NQO1 promoters was unaltered by GDM, decreased DJ-1 and increased phosphorylated glycogen synthase kinase 3β levels may account for impaired Nrf2 signaling. HNE-induced increases in GSH and NQO1 levels were abrogated by Nrf2 small interfering RNA in normal cells, and overexpression of Nrf2 in GDM cells partially restored NQO1 induction. Dysregulation of Nrf2 in fetal endothelium may contribute to the increased risk of type 2 diabetes and cardiovascular disease in offspring. PMID:23974919

  20. Gestational Diabetes Mellitus Impairs Nrf2-Mediated Adaptive Antioxidant Defenses and Redox Signaling in Fetal Endothelial Cells In Utero

    PubMed Central

    Cheng, Xinghua; Chapple, Sarah J.; Patel, Bijal; Puszyk, William; Sugden, David; Yin, Xiaoke; Mayr, Manuel; Siow, Richard C.M.; Mann, Giovanni E.

    2013-01-01

    In utero exposure to gestational diabetes mellitus (GDM) is associated with an increased risk of type 2 diabetes and cardiovascular disease in later life, yet the underlying mechanisms remain to be elucidated. We examined the effects of GDM on the proteome, redox status, and nuclear factor erythroid 2–related factor 2 (Nrf2)-mediated antioxidant gene expression in human fetal endothelial cells. Proteomic analysis revealed that proteins involved in redox homeostasis were significantly altered in GDM and associated with increased mitochondrial superoxide generation, protein oxidation, DNA damage, and diminished glutathione (GSH) synthesis. In GDM cells, the lipid peroxidation product 4-hydroxynonenal (HNE) failed to induce nuclear Nrf2 accumulation and mRNA and/or protein expression of Nrf2 and its target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), Bach1, cystine/glutamate transporter, and glutamate cysteine ligase. Although methylation of CpG islands in Nrf2 or NQO1 promoters was unaltered by GDM, decreased DJ-1 and increased phosphorylated glycogen synthase kinase 3β levels may account for impaired Nrf2 signaling. HNE-induced increases in GSH and NQO1 levels were abrogated by Nrf2 small interfering RNA in normal cells, and overexpression of Nrf2 in GDM cells partially restored NQO1 induction. Dysregulation of Nrf2 in fetal endothelium may contribute to the increased risk of type 2 diabetes and cardiovascular disease in offspring. PMID:23974919

  1. Nrf2-Mediated Regulation of Skeletal Muscle Glycogen Metabolism.

    PubMed

    Uruno, Akira; Yagishita, Yoko; Katsuoka, Fumiki; Kitajima, Yasuo; Nunomiya, Aki; Nagatomi, Ryoichi; Pi, Jingbo; Biswal, Shyam S; Yamamoto, Masayuki

    2016-06-01

    Nrf2 (NF-E2-related factor 2) contributes to the maintenance of glucose homeostasis in vivo Nrf2 suppresses blood glucose levels by protecting pancreatic β cells from oxidative stress and improving peripheral tissue glucose utilization. To elucidate the molecular mechanisms by which Nrf2 contributes to the maintenance of glucose homeostasis, we generated skeletal muscle (SkM)-specific Keap1 knockout (Keap1MuKO) mice that express abundant Nrf2 in their SkM and then examined Nrf2 target gene expression in that tissue. In Keap1MuKO mice, blood glucose levels were significantly downregulated and the levels of the glycogen branching enzyme (Gbe1) and muscle-type PhKα subunit (Phka1) mRNAs, along with those of the glycogen branching enzyme (GBE) and the phosphorylase b kinase α subunit (PhKα) protein, were significantly upregulated in mouse SkM. Consistent with this result, chemical Nrf2 inducers promoted Gbe1 and Phka1 mRNA expression in both mouse SkM and C2C12 myotubes. Chromatin immunoprecipitation analysis demonstrated that Nrf2 binds the Gbe1 and Phka1 upstream promoter regions. In Keap1MuKO mice, muscle glycogen content was strongly reduced and forced GBE expression in C2C12 myotubes promoted glucose uptake. Therefore, our results demonstrate that Nrf2 induction in SkM increases GBE and PhKα expression and reduces muscle glycogen content, resulting in improved glucose tolerance. Our results also indicate that Nrf2 differentially regulates glycogen metabolism in SkM and the liver. PMID:27044864

  2. Supercompensation of muscle glycogen in trained and untrained subjects.

    PubMed

    Roedde, S; MacDougall, J D; Sutton, J R; Green, H J

    1986-03-01

    The purpose of this study was to determine whether or not trained athletes have the same capacity for supercompensation of muscle glycogen as untrained subjects. Muscle glycogen was measured in 4 highly trained cyclists and 4 untrained controls over a 6 day period of exercise and dietary manipulation. During the week prior to the investigation the trained group tapered their training load but maintained a high carbohydrate intake as they would in preparation for a major competition. Needle biopsies were taken from the vastus lateralis before and after exhaustive cycle ergometry at 73% VO2 max followed by several sprint intervals, after 3 days on a carbohydrate-restricted diet and after 2 and 3 days on a high carbohydrate diet. All food intake was quantified and plasma insulin and glucose were monitored daily. The mean initial glycogen concentration for the trained group was 115 mmol X kg-1 wet muscle weight and 92 mmol X kg-1 for the untrained group. Both groups showed similar post exercise depletion and recovery patterns when expressed as a % of their initial values. Following 3 days of high carbohydrate diet, the glycogen concentration for the trained cyclists reached 174 mmol X kg-1 or 152% of its initial value while the untrained-group reached 143 mmol X kg-1 or 155% of its initial value. It was concluded that a regimen of exhaustive exercise, followed by a period of carbohydrate restriction and a period of high carbohydrate intake, results in substantially higher muscle glycogen storage than can be achieved by a reduction in training in combination with high carbohydrate intake.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3698159

  3. Caspase-3 is Involved in Aluminum-Induced Impairment of Long-Term Potentiation in Rats Through the Akt/GSK-3β Pathway.

    PubMed

    Zhang, Huifang; Yang, Xiaojuan; Qin, Xiujun; Niu, Qiao

    2016-05-01

    A number of studies have indicated that aluminum (Al) exposure can impair learning and memory function. The ability of Al to inhibit hippocampal long-term potentiation (LTP) suggests the possibility of Al impairing synaptic plasticity. LTP is dependent on the externalization of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPAR). The protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β) signaling pathway has been demonstrated to mediate AMPAR delivery. A mechanism by which caspase-3 cleaves Akt is involved in synaptic plasticity, but the underlying molecular mechanism involved has still not been elucidated. The purpose of this study was to investigate the mechanism of LTP impairment and the related signaling pathway disturbance induced by Al exposure. Our results reveal that Al treatment produces a dose-dependent suppression of LTP and decreases in the AMPAR subunits GluR1 and GluR2, in both membrane and total cell extracts. Al caused increased accumulation of active caspase-3 and a gradual decrease in Akt and pGSK-3β. Interestingly, Al depressed LTP and AMPAR protein concentration. N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone (a caspase-3 inhibitor) reversed the Al-induced LTP inhibition, increased levels of active caspase-3, and decreased AMPAR levels in both total and membrane-enriched extracts. It also decreased Akt and pGSK-3β. The molecular mechanism of Al-induced LTP impairment might be related to the activation of caspase-3, cleavage of Akt, activation of GSK-3β, and inhibition of the externalization of AMPAR. PMID:26787483

  4. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns.

    PubMed

    Oe, Yuki; Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C; Hirase, Hajime

    2016-09-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545. PMID:27353480

  5. Temporary accumulation of glycogen in the epithelial cells of the developing mouse submandibular gland.

    PubMed

    Matsuura, Sachiko; Koyama, Noriko; Kashimata, Masanori; Hayashi, Haruki; Kikuta, Akio

    2007-09-01

    Temporary accumulation of glycogen in the epithelial cells of the developing mouse submandibular gland was examined under light microscopic histochemistry and electron microscopy. To avoid loss of water-soluble glycogen during histological tissue preparation, fixation with ethanol and embedding in hydrophilic glycol methacrylate resin was used for light microscopy, and high-pressure freezing/freeze substitution for electron microscopy. Glycogen was detected on periodic acid-Schiff stain, periodic acid-thiosemicarbazide-silver proteinate reaction, and the digestion test with alpha-amylase. On embryonic day 14, glycogen began to accumulate in the proximal portions of the developing epithelial cords. On embryonic day 17, marked glycogen particles were seen at the basal portion of the ductal epithelial cells and an abrupt increase of glycogen accumulation occurred in the secretory cells in the terminal bulbs. Ultrastructural observation indicated large clumps of glycogen particles localized in the basal portion of the terminal bulb cells. The initiation of glycogen accumulation preceded the formation of lumens in the ducts and terminal bulbs. Furthermore, proliferation analysis by bromodeoxyuridine labeling showed that this glycogen accumulation followed the cessation of the epithelial cell proliferation. Postnatally, glycogen accumulation in the terminal bulbs became gradually inconspicuous and completely disappeared by postnatal day 3, but that in the ducts was retained until around postnatal day 12. Temporary glycogen accumulation after the cell proliferation and before/during the lumen formation and secretory granule formation suggests significant involvement of the carbohydrate metabolism in the organogenesis of the submandibular gland. PMID:17867343

  6. Glycogen in the Nervous System. I; Methods for Light and Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Estable, Rosita F. De; Estable-Puig, J. F.; Miquel, J.

    1964-01-01

    'l'he relative value of different methods for combined light and electron microscopical studies of glycogen in the nervous tissue was investigated. Picroalcoholic fixatives preserve glycogen in a considerable amount but give an inadequate morphological image of glycogen distribution and are unsuitable for ultrastructural studies. Fixation by perfusion, with Dalton's chromeosmic fluid seems adequate for ultrastructural cytochemistry of glycogen. Furthermore it permits routine paraffin embedding of brain slices adjacent to those used for electron microscopy. Dimedone blocking is a necessary step for a selective staining of glycogen with PAS after osmic fixation. Enzymatic removal of glycogen in osmic fixed nervous tissue can be done In paraffin-embedded tissue. It can also be performed in glycolmethacrylate-embedded tissue without removal of the embedding medium. Paraphenylenediamine stains glycogen following periodic acid oxidation.

  7. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp ( Carassius carassius L.)

    NASA Astrophysics Data System (ADS)

    Vornanen, Matti; Asikainen, Juha; Haverinen, Jaakko

    2011-03-01

    Glycogen is a vital energy substrate for anaerobic organisms, and the size of glycogen stores can be a limiting factor for anoxia tolerance of animals. To this end, glycogen stores in 12 different tissues of the crucian carp ( Carassius carassius L.), an anoxia-tolerant fish species, were examined. Glycogen content of different tissues was 2-10 times higher in winter (0.68-18.20% of tissue wet weight) than in summer (0.12-4.23%). In scale, bone and brain glycogen stores were strongly dependent on body mass (range between 0.6 and 785 g), small fish having significantly more glycogen than large fish ( p < 0.05). In fin and skin, size dependence was evident in winter, but not in summer, while in other tissues (ventricle, atrium, intestine, liver, muscle, and spleen), no size dependence was found. The liver was much bigger in small than large fish ( p < 0.001), and there was a prominent enlargement of the liver in winter irrespective of fish size. As a consequence, the whole body glycogen reserves, measured as a sum of glycogen from different tissues, varied from 6.1% of the body mass in the 1-g fish to 2.0% in the 800-g fish. Since anaerobic metabolic rate scales down with body size, the whole body glycogen reserves could provide energy for approximately 79 and 88 days of anoxia in small and large fish, respectively. There was, however, a drastic difference in tissue distribution of glycogen between large and small fish: in the small fish, the liver was the major glycogen store (68% of the stores), while in the large fish, the white myotomal muscle was the principal deposit of glycogen (57%). Since muscle glycogen is considered to be unavailable for blood glucose regulation, its usefulness in anoxia tolerance of the large crucian carp might be limited, although not excluded. Therefore, mobilization of muscle glycogen under anoxia needs to be rigorously tested.

  8. Loss of LRPPRC causes ATP synthase deficiency.

    PubMed

    Mourier, Arnaud; Ruzzenente, Benedetta; Brandt, Tobias; Kühlbrandt, Werner; Larsson, Nils-Göran

    2014-05-15

    Defects of the oxidative phosphorylation system, in particular of cytochrome-c oxidase (COX, respiratory chain complex IV), are common causes of Leigh syndrome (LS), which is a rare neurodegenerative disorder with severe progressive neurological symptoms that usually present during infancy or early childhood. The COX-deficient form of LS is commonly caused by mutations in genes encoding COX assembly factors, e.g. SURF1, SCO1, SCO2 or COX10. However, other mutations affecting genes that encode proteins not directly involved in COX assembly can also cause LS. The leucine-rich pentatricopeptide repeat containing protein (LRPPRC) regulates mRNA stability, polyadenylation and coordinates mitochondrial translation. In humans, mutations in Lrpprc cause the French Canadian type of LS. Despite the finding that LRPPRC deficiency affects the stability of most mitochondrial mRNAs, its pathophysiological effect has mainly been attributed to COX deficiency. Surprisingly, we show here that the impaired mitochondrial respiration and reduced ATP production observed in Lrpprc conditional knockout mouse hearts is caused by an ATP synthase deficiency. Furthermore, the appearance of inactive subassembled ATP synthase complexes causes hyperpolarization and increases mitochondrial reactive oxygen species production. Our findings shed important new light on the bioenergetic consequences of the loss of LRPPRC in cardiac mitochondria. PMID:24399447

  9. Aroclor 1254 disrupts liver glycogen metabolism and enhances acute stressor-mediated glycogenolysis in rainbow trout.

    PubMed

    Wiseman, Steve; Vijayan, Mathilakath M

    2011-09-01

    The objective of this study was to investigate the impact of short-term exposure to polychlorinated biphenyls on the acute stress response in rainbow trout. Fish were exposed to dietary Aroclor1254 (10mg kg(-1) body mass/day) for 3 days and then subjected to a 3-min handling disturbance and sampled over a 24h recovery after the stressor exposure. In the pre-stress fish, PCB exposure significantly elevated aryl hydrocarbon receptor (AhR) and cytochrome P4501A1 (Cyp1A1) mRNA abundance and Cyp1A protein expression confirming AhR activation. There was no significant effect of PCB on plasma cortisol and glucose levels, while plasma lactate levels were significantly elevated compared to the sham group. PCB exposure significantly elevated liver glycogen content and hexokinase activity, whereas lactate dehydrogenase activity was depressed. Short-term PCB exposure did not modify the acute stressor-induced plasma cortisol, glucose and lactate responses. Liver glycogen content dropped significantly after stressor exposure in the PCB group but not in the sham group. This was matched by a significantly higher liver LDH activity and a lower HK activity during recovery in the PCB group suggesting enhanced glycolytic capacity to fuel hepatic metabolism. Liver AhR, but not Cyp1A1, transcript levels were significantly reduced during recovery from handling stressor in the Aroclor fed fish. Collectively, this study demonstrates that short-term PCB exposure may impair the liver metabolic performance that is critical to cope with the enhanced energy demand associated with additional stressor exposure in rainbow trout. PMID:21745595

  10. AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia.

    PubMed

    Koeberl, Dwight D; Pinto, Carlos; Sun, Baodong; Li, Songtao; Kozink, Daniel M; Benjamin, Daniel K; Demaster, Amanda K; Kruse, Meghan A; Vaughn, Valerie; Hillman, Steven; Bird, Andrew; Jackson, Mark; Brown, Talmage; Kishnani, Priya S; Chen, Yuan-Tsong

    2008-04-01

    Glycogen storage disease type Ia (GSD-Ia) profoundly impairs glucose release by the liver due to glucose-6-phosphatase (G6Pase) deficiency. An adeno-associated virus (AAV) containing a small human G6Pase transgene was pseudotyped with AAV8 (AAV2/8) to optimize liver tropism. Survival was prolonged in 2-week-old G6Pase (-/-) mice by 600-fold fewer AAV2/8 vector particles (vp), in comparison to previous experiments involving this model (2 x 10(9) vp; 3 x 10(11) vp/kg). When the vector was pseudotyped with AAV1, survival was prolonged only at a higher dose (3 x 10(13) vp/kg). The AAV2/8 vector uniquely prevented hypoglycemia during fasting and fully corrected liver G6Pase deficiency in GSD-Ia mice and dogs. The AAV2/8 vector has prolonged survival in three GSD-Ia dogs to >11 months, which validated this strategy in the large animal model for GSD-Ia. Urinary biomarkers, including lactate and 3-hydroxybutyrate, were corrected by G6Pase expression solely in the liver. Glycogen accumulation in the liver was reduced almost to the normal level in vector-treated GSD-Ia mice and dogs, as was the hepatocyte growth factor (HGF) in GSD-Ia mice. These preclinical data demonstrated the efficacy of correcting hepatic G6Pase deficiency, and support the further preclinical development of AAV vector-mediated gene therapy for GSD-Ia. PMID:18362924

  11. Quantitative cytochemistry of glycogen in blood cells. Methods and clinical application.

    PubMed

    Gahrton, G; Yataganas, X

    1976-01-01

    Quantitative glycogen determinations can be made in single blood and bone marrow cells, using microspectrophotometry or microfluorometry after staining with variants of the periodic acid--Schiff (PAS) reaction. These PAS variant reactions generally do not indicate the presence of non-glycogen PAS-positive substances, known to be prevalent in various hematopoietic cells, possibly due to masking of reactive groups. The specificity of the reaction in blood cells was ascertained by alpha-amylase digestion, which removed more than 95% of the PAS-positive material. Calibration of the PAS reaction was undertaken with a microdroplet model of pure leukocyte glycogen. The glycogen amounts in the droplets were determined by microinterferometry, the droplets were stained with a variant PAS reaction, and the total extinction of the reaction product in the stained droplets was determined by microspectrophotometry. The extinction coefficient (k) was obtained from the equation k equals Etot divided by M where (Etot) is the total extinction as determined by microspectrophotometry and (M) the dry glycogen amount as determined by microinterferometry. The microinterferometric dry mass determinations were calibrated by X-ray absorption in order to obtain the absolute amounts of glycogen. For practical purposes a reference system was made of normal neutrophil leukocytes. The glycogen content in the reference neutrophils was first determined with the micromodel. These neutrophils, now with a known glycogen amount, were stained with the PAS reagents and measured microspectrophotometrically in parallel with cells containing an unknown glycogen amount. Alternatively, the staining was made with a fluorescent PAS reaction, and the glycogen content determined by microfluorometry. Both methods appeared suitable for determining the glycogen content of blood cells from patients with various diseases, though the microfluorometric method was preferable for measurements of small amounts of

  12. Glycogen storage disease types I and II: treatment updates.

    PubMed

    Koeberl, D D; Kishnani, P S; Chen, Y T

    2007-04-01

    Prior to 2006 therapy for glycogen storage diseases consisted primarily of dietary interventions, which in the case of glycogen storage disease (GSD) type II (GSD II; Pompe disease) remained essentially palliative. Despite improved survival and growth, long-term complications of GSD type I (GSD I) have not responded to dietary therapy with uncooked cornstarch or continuous gastric feeding. The recognized significant risk of renal disease and liver malignancy in GSD I has prompted efforts towards curative therapy, including organ transplantation, in those deemed at risk. Results of clinical trials in infantile Pompe disease with alglucosidase alfa (Myozyme) showed prolonged survival reversal of cardiomyopathy, and motor gains. This resulted in broad label approval of Myozyme for Pompe disease in 2006. Furthermore, the development of experimental therapies, such as adeno-associated virus (AAV) vector-mediated gene therapy, holds promise for the availability of curative therapy in GSD I and GSD II/Pompe disease in the future. PMID:17308886

  13. Glycogen storage disease types I and II: Treatment updates

    PubMed Central

    Kishnani, P. S.; Chen, Y. T.

    2009-01-01

    Summary Prior to 2006 therapy for glycogen storage diseases consisted primarily of dietary interventions, which in the case of glycogen storage disease (GSD) type II (GSD II; Pompe disease) remained essentially palliative. Despite improved survival and growth, long-term complications of GSD type I (GSD I) have not responded to dietary therapy with uncooked cornstarch or continuous gastric feeding. The recognized significant risk of renal disease and liver malignancy in GSD I has prompted efforts towards curative therapy, including organ transplantation, in those deemed at risk. Results of clinical trials in infantile Pompe disease with alglucosidase alfa (Myozyme) showed prolonged survival reversal of cardiomyopathy, and motor gains. This resulted in broad label approval of Myozyme for Pompe disease in 2006. Furthermore, the development of experimental therapies, such as adeno-associated virus (AAV) vector-mediated gene therapy, holds promise for the availability of curative therapy in GSD I and GSD II/Pompe disease in the future. PMID:17308886

  14. Identification of mutations in Type IV glycogen storage disease

    SciTech Connect

    Bao, Y.; Kishnani, P.; Chen, Y.T.

    1994-09-01

    Type IV glycogen storage disease (GSD IV, Andersen disease) is caused by a deficiency of glycogen branching enzyme (GBE) activity, which results in the accumulation of glycogen with unbranched, long, outer chains in the tissues. The molecular basis of the disease is not known. We studied four patients with the disease; three with typical presentation of progressive liver cirrhosis and failure, and one with severe and fatal neonatal hypotonia and cardiomyopathy. Southern blot analysis with EcoRI or MspI did not detect gross DNA rearrangement, deletion or duplication in patients` glycogen branching enzyme genes. Northern analysis with total cellular RNAs isolated from skin fibroblast MI strains of three patients with typical clinical presentation showed a normal level and size (2.95 kb) of GBE mRNA hybridization band in two and absent mRNA hybridization band in the remaining one. The patient with atypical severe neonatal hypotonia demonstrated a less intense and smaller size (2.75 kb) of mRNA hybridization band. A 210 hp deletion from nucleotide sequence 873 to 1082 which causes 70 amino acids missing from amino acid sequence 262 to 331 was detected in all 17 clones sequenced from the fatal hypotonia patient. This deletion is located in the region which is highly conserved between prokaryotic, yeast and human GBE polypeptide sequences, and also includes the first of the four regions which constitute the catalytic active sites of most of amylolytic enzymes. A point mutation C-T (1633) which changes the amino acid from Arginine to Cystine was found in 19 of 20 cDNA clones from a patient with classical clinical presentation. This point mutation was unique to this patient and was not observed in three other patients or normal controls. This is the first report on the molecular basis of GSD IV and our data indicated the presence of extensive genetic heterogeneity in the disease.

  15. Hypertension in a child with type IA glycogen storage disease.

    PubMed

    Jonas, A J; Verani, R R; Howell, R R; Conley, S B

    1988-03-01

    Hypertension and proteinuria were observed in a 2-year-old child with type IA (von Gierke's) glycogen storage disease (GSD). She had evidence of hyperfiltration and had elevated selective renal vein renins. On renal biopsy, increased mesangial cell matrix and cellularity were observed with focal thickening and irregularity of the basement membrane. This case may be representative of the early renal findings in type IA GSD. PMID:3422787

  16. A glycogene mutation map for discovery of diseases of glycosylation

    PubMed Central

    Hansen, Lars; Lind-Thomsen, Allan; Joshi, Hiren J; Pedersen, Nis Borbye; Have, Christian Theil; Kong, Yun; Wang, Shengjun; Sparso, Thomas; Grarup, Niels; Vester-Christensen, Malene Bech; Schjoldager, Katrine; Freeze, Hudson H; Hansen, Torben; Pedersen, Oluf; Henrissat, Bernard; Mandel, Ulla; Clausen, Henrik; Wandall, Hans H; Bennett, Eric P

    2015-01-01

    Glycosylation of proteins and lipids involves over 200 known glycosyltransferases (GTs), and deleterious defects in many of the genes encoding these enzymes cause disorders collectively classified as congenital disorders of glycosylation (CDGs). Most known CDGs are caused by defects in glycogenes that affect glycosylation globally. Many GTs are members of homologous isoenzyme families and deficiencies in individual isoenzymes may not affect glycosylation globally. In line with this, there appears to be an underrepresentation of disease-causing glycogenes among these larger isoenzyme homologous families. However, genome-wide association studies have identified such isoenzyme genes as candidates for different diseases, but validation is not straightforward without biomarkers. Large-scale whole-exome sequencing (WES) provides access to mutations in, for example, GT genes in populations, which can be used to predict and/or analyze functional deleterious mutations. Here, we constructed a draft of a functional mutational map of glycogenes, GlyMAP, from WES of a rather homogenous population of 2000 Danes. We cataloged all missense mutations and used prediction algorithms, manual inspection and in case of carbohydrate-active enzymes family GT27 experimental analysis of mutations to map deleterious mutations. GlyMAP (http://glymap.glycomics.ku.dk) provides a first global view of the genetic stability of the glycogenome and should serve as a tool for discovery of novel CDGs. PMID:25267602

  17. New inhibitors of glycogen phosphorylase as potential antidiabetic agents.

    PubMed

    Somsák, L; Czifrák, K; Tóth, M; Bokor, E; Chrysina, E D; Alexacou, K-M; Hayes, J M; Tiraidis, C; Lazoura, E; Leonidas, D D; Zographos, S E; Oikonomakos, N G

    2008-01-01

    The protein glycogen phosphorylase has been linked to type 2 diabetes, indicating the importance of this target to human health. Hence, the search for potent and selective inhibitors of this enzyme, which may lead to antihyperglycaemic drugs, has received particular attention. Glycogen phosphorylase is a typical allosteric protein with five different ligand binding sites, thus offering multiple opportunities for modulation of enzyme activity. The present survey is focused on recent new molecules, potential inhibitors of the enzyme. The biological activity can be modified by these molecules through direct binding, allosteric effects or other structural changes. Progress in our understanding of the mechanism of action of these inhibitors has been made by the determination of high-resolution enzyme inhibitor structures (both muscle and liver). The knowledge of the three-dimensional structures of protein-ligand complexes allows analysis of how the ligands interact with the target and has the potential to facilitate structure-based drug design. In this review, the synthesis, structure determination and computational studies of the most recent inhibitors of glycogen phosphorylase at the different binding sites are presented and analyzed. PMID:19075645

  18. Thymidylate synthase inhibitors.

    PubMed

    Danenberg, P V; Malli, H; Swenson, S

    1999-12-01

    Thymidylate synthase (TS) is a critical enzyme for DNA replication and cell growth because it is the only de novo source of thymine nucleotide precursors for DNA synthesis. TS is the primary target of 5-fluorouracil (5-FU), which has been used for cancer treatment for more than 40 years. However, dissatisfaction with the overall activity of 5-FU against the major cancers, and the recognition that TS still remains an attractive target for anticancer drugs because of its central position in the pathway of DNA synthesis, led to a search for new inhibitors of TS structurally analogous to 5,10-methylenetetrahydrofolate, the second substrate of TS. TS inhibitory antifolates developed to date that are in various stages of clinical evaluation are ZD 1694 and ZD9331 (Astra-Zeneca, London, UK), (Eli Lilly, Indianapolis, IN), LY231514 (BW1843U89 (Glaxo-Wellcome, Research Triangle Park, NC), and AG337 and AG331 (Agouron, La Jolla, CA). Although each of these compounds has TS as its major intracellular site of action, they differ in propensity for polyglutamylation and for transport by the reduced folate carrier. LY231514 also has secondary target enzymes. As a result, each compound is likely to have a different spectrum of antitumor activity and toxicity. This review will summarize the development and properties of this new class of TS inhibitors. PMID:10606255

  19. Labeling of hepatic glycogen after short- and long-term stimulation of glycogen synthesis in rats injected with 3H-galactose

    SciTech Connect

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr. )

    1990-08-01

    The effects of short- and long-term stimulation of glycogen synthesis elicited by dexamethasone were studied by light (LM) and electron (EM) microscopic radioautography (RAG) and biochemical analysis. Adrenalectomized rats were fasted overnight and pretreated for short- (3 hr) or long-term (14 hr) periods with dexamethasone prior to intravenous injection of tracer doses of 3H-galactose. Analysis of LM-RAGs from short-term rats revealed that about equal percentages (44%) of hepatocytes became heavily or lightly labeled 1 hr after labeling. The percentage of heavily labeled cells increased slightly 6 hr after labeling, and unlabeled glycogen became apparent in some hepatocytes. The percentage of heavily labeled cells had decreased somewhat 12 hr after labeling, and more unlabeled glycogen was evident. In the long-term rats 1 hr after labeling, a higher percentage of heavily labeled cells (76%) was observed compared to short-term rats, and most glycogen was labeled. In spite of the high amount of labeling seen initially, the percentage of heavily labeled hepatocytes had decreased considerably to 55% by 12 hr after injection; and sparsely labeled and unlabeled glycogen was prevalent. The EM-RAGs of both short- and long-term rats were similar. Silver grains were associated with glycogen patches 1 hr after labeling; 12 hr after labeling, the glycogen patches had enlarged; and label, where present, was dispersed over the enlarged glycogen clumps. Analysis of DPM/mg tissue corroborated the observed decrease in label 12 hr after administration in the long-term animals. The loss of label observed 12 hr after injection in the long-term pretreated rats suggests that turnover of glycogen occurred during this interval despite the net accumulation of glycogen that was visible morphologically and evident from biochemical measurement.

  20. Phylogenomic analysis of glycogen branching and debranching enzymatic duo

    PubMed Central

    2014-01-01

    Background Branched polymers of glucose are universally used for energy storage in cells, taking the form of glycogen in animals, fungi, Bacteria, and Archaea, and of amylopectin in plants. Some enzymes involved in glycogen and amylopectin metabolism are similarly conserved in all forms of life, but some, interestingly, are not. In this paper we focus on the phylogeny of glycogen branching and debranching enzymes, respectively involved in introducing and removing of the α(1–6) bonds in glucose polymers, bonds that provide the unique branching structure to glucose polymers. Results We performed a large-scale phylogenomic analysis of branching and debranching enzymes in over 400 completely sequenced genomes, including more than 200 from eukaryotes. We show that branching and debranching enzymes can be found in all kingdoms of life, including all major groups of eukaryotes, and thus were likely to have been present in the last universal common ancestor (LUCA) but have been lost in seemingly random fashion in numerous single-celled eukaryotes. We also show how animal branching and debranching enzymes evolved from their LUCA ancestors by acquiring additional domains. Furthermore, we show that enzymes commonly perceived as orthologous, such as human branching enzyme GBE1 and E. coli branching enzyme GlgB, are in fact related by a gene duplication and consequently paralogous. Conclusions Despite being usually associated with animal liver glycogen and plant starch, energy storage in the form of branched glucose polymers is clearly an ancient process and has probably been present in the last universal common ancestor of all present life. The evolution of the enzymes enabling this form of energy storage is more complex than previously thought and illustrates the need for explicit phylogenomic analysis in the study of even seemingly “simple” metabolic enzymes. Patterns of conservation in the evolution of the glycogen/starch branching and debranching enzymes hint at

  1. Effects of genetic and environmental factors on muscle glycogen content in Japanese Black cattle

    PubMed Central

    Komatsu, Tomohiko; Shoji, Noriaki; Saito, Kunihiko; Suzuki, Keiichi

    2014-01-01

    Monosaccharides such as glucose contribute to the development of meat flavor upon heating via the Maillard reaction; therefore, monosaccharide content is related to beef palatability. Here, we analyzed the effects of genetic and environmental factors on the content of glycogen, one of the precursors of monosaccharides, in the muscles of 958 fattened Japanese Black cattle from Yamagata Prefecture. Analysis of variance showed that muscle glycogen content was affected by the farm and postmortem periods, but not by sex, slaughter age, slaughter month or number of days detained at the slaughter yard. Additionally, consumption of digestible brown rice feed elevated muscle glycogen levels. Glycogen heritability was estimated to be 0.34, and genetic correlations between glycogen and carcass weight (CW) or beef marbling standard (BMS) were weak. The predicted breeding values varied among paternal lines. These results demonstrated that genetic factors might improve muscle glycogen content and therefore beef palatability, but do not influence CW or BMS. PMID:24716455

  2. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations

    PubMed Central

    Zhai, Liting; Feng, Lingling; Xia, Lin; Yin, Huiyong; Xiang, Song

    2016-01-01

    Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII. PMID:27088557

  3. Substrate-induced Nuclear Export and Peripheral Compartmentalization of Hepatic Glucokinase Correlates with Glycogen Deposition

    PubMed Central

    Shiota, Masa; Knobel, Susan M.; Piston, David W.; Cherrington, Alan D.; Magnuson, Mark A.

    2001-01-01

    Hepatic glucokinase (GK) is acutely regulated by binding to its nuclear-anchored regulatory protein (GKRP). Although GK release by GKRP is tightly coupled to the rate of glycogen synthesis, the nature of this association is obscure. To gain insight into this coupling mechanism under physiological stimulating conditions in primary rat hepatocytes, we analyzed the subcellular distribution of GK and GKRP with immunofluorescence, and glycogen deposition with glycogen cytochemical fluorescence, using confocal microscopyand quantitative image analysis. Following stimulation, a fraction of the GK signal translocated from the nucleus to the cytoplasm. The reduction in the nuclear to cytoplasmic ratio of GK, an index of nuclear export, correlated with a >50% increase in glycogen cytochemical fluorescence over a 60min stimulation period. Furthermore, glycogen accumulation was initially deposited in a peripheral pattern in hepatocytes similar to that of GK. These data suggest that a compartmentalization exists of both active GK and the initial sites of glycogen deposition at the hepatocyte surface. PMID:12369705

  4. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations.

    PubMed

    Zhai, Liting; Feng, Lingling; Xia, Lin; Yin, Huiyong; Xiang, Song

    2016-01-01

    Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII. PMID:27088557

  5. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  6. Effect of stress stimuli on glycogen level in the rat uterus.

    PubMed

    Górski, J; Stankiewicz-Chorószucha, B

    1978-11-30

    Effect of prolonged exercise, acute cold exposure, and 24-h fasting on the glycogen level in the uterus of rats spayed and than treated with peanut oil or estradiol was investigated. It has been found that exercise increases significantly though transitorily the glycogen level in the uterus of the oil-treated group. Cold exposure resulted in significant reduction of the uterine glycogen level only in the oil-treated group. Fasting did not change the glycogen level in the uterus in the both groups. Five hours of swimming and fasting decreased significantly the blood glucose level. PMID:736623

  7. Link between Phosphate Starvation and Glycogen Metabolism in Corynebacterium glutamicum, Revealed by Metabolomics▿ †

    PubMed Central

    Woo, Han Min; Noack, Stephan; Seibold, Gerd M.; Willbold, Sabine; Eikmanns, Bernhard J.; Bott, Michael

    2010-01-01

    In this study, we analyzed the influence of phosphate (Pi) limitation on the metabolism of Corynebacterium glutamicum. Metabolite analysis by gas chromatography-time-of-flight (GC-TOF) mass spectrometry of cells cultivated in glucose minimal medium revealed a greatly increased maltose level under Pi limitation. As maltose formation could be linked to glycogen metabolism, the cellular glycogen content was determined. Unlike in cells grown under Pi excess, the glycogen level in Pi-limited cells remained high in the stationary phase. Surprisingly, even acetate-grown cells, which do not form glycogen under Pi excess, did so under Pi limitation and also retained it in stationary phase. Expression of pgm and glgC, encoding the first two enzymes of glycogen synthesis, phosphoglucomutase and ADP-glucose pyrophosphorylase, was found to be increased 6- and 3-fold under Pi limitation, respectively. Increased glycogen synthesis together with a decreased glycogen degradation might be responsible for the altered glycogen metabolism. Independent from these experimental results, flux balance analysis suggested that an increased carbon flux to glycogen is a solution for C. glutamicum to adapt carbon metabolism to limited Pi concentrations. PMID:20802079

  8. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis.

    PubMed

    Winnick, Jason J; Kraft, Guillaume; Gregory, Justin M; Edgerton, Dale S; Williams, Phillip; Hajizadeh, Ian A; Kamal, Maahum Z; Smith, Marta; Farmer, Ben; Scott, Melanie; Neal, Doss; Donahue, E Patrick; Allen, Eric; Cherrington, Alan D

    2016-06-01

    Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion. PMID:27140398

  9. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis

    PubMed Central

    Kraft, Guillaume; Williams, Phillip; Hajizadeh, Ian A.; Kamal, Maahum Z.; Smith, Marta; Farmer, Ben; Scott, Melanie; Neal, Doss; Donahue, E. Patrick; Allen, Eric; Cherrington, Alan D.

    2016-01-01

    Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion. PMID:27140398

  10. Computed tomography of the liver and kidneys in glycogen storage disease.

    PubMed

    Doppman, J L; Cornblath, M; Dwyer, A J; Adams, A J; Girton, M E; Sidbury, J

    1982-02-01

    Glycogen, in concentrations encountered in von Gierke's disease, has computed tomography (CT) attenuation coefficients in the 50 to 70 Hounsfield unit (HU: 1,000 scale) range and accounts for the increased density of the liver. However, in eight patients with Type I glycogen storage disease, simultaneous hepatic infiltration with fat and glycogen led to a range of liver CT densities from 13 to 80 HU. Fatty infiltration may facilitate the demonstration of hepatic tumors in older patients with this disease. Half the patients showed increased attenuation coefficients of the renal cortex, indicating glycogen deposition in the kidneys. PMID:6950959

  11. Differential response of rat cardiac and skeletal muscle glycogen to glucocorticoids.

    PubMed

    Poland, J L; Poland, J W; Honey, R N

    1982-05-01

    Though glucocorticoids were previously implicated in the support of myocardial glycogen supercompensation after exercise, it was unclear why skeletal muscle glycogen did not simultaneously supercompensate since it was also exposed to the exercise-induced glucocorticoid increases. The current study shows that glucocorticoids differentially affect cardiac and skeletal muscle glycogen. Following dexamethasone administration (400 micrograms i.p.) myocardial glycogen peaked at 6 h while glycogen in the soleus, red vastus lateralis, and white vastus lateralis increased more slowly and reached the highest values 17 h postinjection. Concurrently, blood glucose, insulin, and glucagon remained at control levels. Liver glycogen increased within 2 h and continued to rise with a peak value at 17 h. Plasma free fatty acid (FFA) levels increased and remained high throughout the 26-h experimental period. High FFA levels inhibit glycogenolysis and thus could be partially responsible for glucocorticoid-induced glycogen increases. It is postulated that glycogen supercompensation does not readily occur in skeletal muscles after exercise because of the brevity of the corticosterone and FFA increases and the slowness of the skeletal muscle glycogen response to glucocorticoids. PMID:7104851

  12. Dynamics of Photosynthesis in a Glycogen-Deficient glgC Mutant of Synechococcus sp. Strain PCC 7002

    PubMed Central

    Jackson, Simon A.; Eaton-Rye, Julian J.; Bryant, Donald A.; Posewitz, Matthew C.

    2015-01-01

    Cyanobacterial glycogen-deficient mutants display impaired degradation of light-harvesting phycobilisomes under nitrogen-limiting growth conditions and secrete a suite of organic acids as a putative reductant-spilling mechanism. This genetic background, therefore, represents an important platform to better understand the complex relationships between light harvesting, photosynthetic electron transport, carbon fixation, and carbon/nitrogen metabolisms. In this study, we conducted a comprehensive analysis of the dynamics of photosynthesis as a function of reductant sink manipulation in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. The glgC mutant showed increased susceptibility to photoinhibition during the initial phase of nitrogen deprivation. However, after extended periods of nitrogen deprivation, glgC mutant cells maintained higher levels of photosynthetic activity than the wild type, supporting continuous organic acid secretion in the absence of biomass accumulation. In contrast to the wild type, the glgC mutant maintained efficient energy transfer from phycobilisomes to photosystem II (PSII) reaction centers, had an elevated PSII/PSI ratio as a result of reduced PSII degradation, and retained a nitrogen-replete-type ultrastructure, including an extensive thylakoid membrane network, after prolonged nitrogen deprivation. Together, these results suggest that multiple global signals for nitrogen deprivation are not activated in the glgC mutant, allowing the maintenance of active photosynthetic complexes under conditions where photosynthesis would normally be abolished. PMID:26150450

  13. Asymmetric dimethylarginine (ADMA) and L-arginine levels in children with glycogen storage disease type I.

    PubMed

    Kasapkara, Çiğdem Seher; Tümer, Leyla; Biberoglu, Gursel; Kasapkara, Ahmet; Hasanoğlu, Alev

    2013-01-01

    Patients with glycogen storage disease type I (GSD-I) often have marked hyperlipidemia with abnormal lipoprotein profiles. This metabolic abnormality improves, but is not fully corrected, with dietary therapy; therefore, these patients may be at high risk for the development of atherosclerosis. A recently discussed cardiovascular risk factor, asymmetric dimethylarginine (ADMA), a naturally occuring product of asymmetric methylation of proteins, is an endogenous inhibitor of endothelial nitric oxide synthase. ADMA causes endothelial dysfunction, vasoconstriction, blood pressure elevation, atherosclerosis, and kidney disease progression. A high prevalence of elevated plasma ADMA levels is observed in adults with hypercholesterolemia, hypertension, chronic kidney disease, diabetes mellitus, peripheral arterial disease, coronary artery disease, preeclampsia, heart failure, liver disease, stroke, and many other clinical disorders. Therefore, we aimed to evaluate the endothelial function in patients with GSD-I by using ADMA levels. High-performance liquid chromatography - based method was used for measuring ADMA and L-arginine levels in plasma. The ADMA level was similar between children with GSD-I and the age-matched healthy control group (0.9±0.28 vs. 1.1±0.45 μmol/L; p=0.18). The L-arginine plasma levels in patients with GSD-I were found to be 55.7±41.3 and 91.6±50.2 μmol/L in healthy controls. The preservation of normal endothelial function may result from diminished platelet aggregation, increased levels of apolipoprotein E, decreased susceptibility of low-density lipoprotein to oxidation (possibly related to the altered lipoprotein fatty acid profile in GSD-I), and increased antioxidative defenses in plasma protecting against lipid peroxidation. PMID:23412857

  14. The Crystal Structure of Nitrosomonas europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into Sucrose Metabolism in Prokaryotes

    PubMed Central

    Wu, Rui; Asención Diez, Matías D.; Figueroa, Carlos M.; Machtey, Matías; Iglesias, Alberto A.; Ballicora, Miguel A.

    2015-01-01

    ABSTRACT In this paper we report the first crystal structure of a prokaryotic sucrose synthase from the nonphotosynthetic bacterium Nitrosomonas europaea. The obtained structure was in an open form, whereas the only other available structure, from the plant Arabidopsis thaliana, was in a closed conformation. Comparative structural analysis revealed a “hinge-latch” combination, which is critical to transition between the open and closed forms of the enzyme. The N. europaea sucrose synthase shares the same fold as the GT-B family of the retaining glycosyltransferases. In addition, a triad of conserved homologous catalytic residues in the family was shown to be functionally critical in the N. europaea sucrose synthase (Arg567, Lys572, and Glu663). This implies that sucrose synthase shares not only a common origin with the GT-B family but also a similar catalytic mechanism. The enzyme preferred transferring glucose from ADP-glucose rather than UDP-glucose like the eukaryotic counterparts. This predicts that these prokaryotic organisms have a different sucrose metabolic scenario from plants. Nucleotide preference determines where the glucose moiety is targeted after sucrose is degraded. IMPORTANCE We obtained biochemical and structural evidence of sucrose metabolism in nonphotosynthetic bacteria. Until now, only sucrose synthases from photosynthetic organisms have been characterized. Here, we provide the crystal structure of the sucrose synthase from the chemolithoautotroph N. europaea. The structure supported that the enzyme functions with an open/close induced fit mechanism. The enzyme prefers as the substrate adenine-based nucleotides rather than uridine-based like the eukaryotic counterparts, implying a strong connection between sucrose and glycogen metabolism in these bacteria. Mutagenesis data showed that the catalytic mechanism must be conserved not only in sucrose synthases but also in all other retaining GT-B glycosyltransferases. PMID:26013491

  15. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    PubMed Central

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt; Holmberg, Hans-Christer

    2011-01-01

    Little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. The aim of the present study was to examine the effect of glycogen on sarcoplasmic reticulum (SR) function in the arm and leg muscles of elite cross-country skiers (n= 10, 72 ± 2 ml kg−1 min−1) before, immediately after, and 4 h and 22 h after a fatiguing 1 h ski race. During the first 4 h recovery, skiers received either water or carbohydrate (CHO) and thereafter all received CHO-enriched food. Immediately after the race, arm glycogen was reduced to 31 ± 4% and SR Ca2+ release rate decreased to 85 ± 2% of initial levels. Glycogen noticeably recovered after 4 h recovery with CHO (59 ± 5% initial) and the SR Ca2+ release rate returned to pre-exercise levels. However, in the absence of CHO during the first 4 h recovery, glycogen and the SR Ca2+ release rate remained unchanged (29 ± 2% and 77 ± 8%, respectively), with both parameters becoming normal after the remaining 18 h recovery with CHO. Leg muscle glycogen decreased to a lesser extent (71 ± 10% initial), with no effects on the SR Ca2+ release rate. Interestingly, transmission electron microscopy (TEM) analysis revealed that the specific pool of intramyofibrillar glycogen, representing 10–15% of total glycogen, was highly significantly correlated with the SR Ca2+ release rate. These observations strongly indicate that low glycogen and especially intramyofibrillar glycogen, as suggested by TEM, modulate the SR Ca2+ release rate in highly trained subjects. Thus, low glycogen during exercise may contribute to fatigue by causing a decreased SR Ca2+ release rate. PMID:21135051

  16. Influence of circadian rhythms on rat muscle glycogen metabolism during and after exercise.

    PubMed

    Garetto, L P; Armstrong, R B

    1983-01-01

    Marked circadian fluctuations in skeletal muscle glycogen concentrations have previously been reported. The purpose of the present study was to estimate the influence of these rhythms on muscle glycogen metabolism during and after high-intensity treadmill exercise. Male Sprague-Dawley rats ran five 1-min sprints at 75 m min-1 interspersed by 1-3 min rest intervals either at 08.00 h (morning) or at 20.00 h (night). All muscles sampled lost significant amounts of glycogen during exercise at both time periods. There were no differences in rates of loss between morning and night, even though glycogen levels in several muscles (high-oxidative muscles) were significantly higher before exercise in the morning. Following exercise, glycogen restoration in muscle samples primarily composed of fast-twitch fibres was more rapid in the morning than at night. There was no difference in glycogen restoration rates between the two time periods in the muscle primarily composed of slow-twitch fibres. Although liver glycogen was lower after exercise at night than in the morning, there were no differences in post-exercise blood glucose levels between the two time periods. In conclusion, circadian rhythms do not appear to influence rates of glycogen loss during high-speed running. However, since glycogen loss is the same at all times of day, one would predict that circadian changes in pre-exercise muscle glycogen concentrations would affect muscular endurance. Muscle glycogen restoration after exercise does appear to be affected by circadian rhythms, although interpretation of these data is complicated by possible changes in patterns of muscle fibre contraction at different times of the day. These circadian influences should be considered in the design of exercise studies using laboratory rodents. PMID:6833943

  17. Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration.

    PubMed

    Herzog, Raimund I; Chan, Owen; Yu, Sunkyung; Dziura, James; McNay, Ewan C; Sherwin, Robert S

    2008-04-01

    Our objective was to evaluate whether excessive brain glycogen deposition might follow episodes of acute hypoglycemia (AH) and thus play a role in the hypoglycemia-associated autonomic failure seen in diabetic patients receiving intensive insulin treatment. We determined brain glucose and glycogen recovery kinetics after AH and recurrent hypoglycemia (RH), an established animal model of counterregulatory failure. A single bout of insulin-induced AH or RH for 3 consecutive days was used to deplete brain glucose and glycogen stores in rats. After microwave fixation and glycogen extraction, regional recovery kinetics in the brain was determined using a biochemical assay. Both AH and RH treatments reduced glycogen levels in the cerebellum, cortex, and hypothalamus from control levels of 7.78 +/- 0.55, 5.4 +/- 0.38, and 4.45 +/- 0.37 micromol/g, respectively, to approximately 50% corresponding to a net glycogen utilization rate between 0.6 and 1.2 micromol/g.h. After hypoglycemia, glycogen levels returned to baseline within 6 h in both the AH and the RH group. However, recovery of brain glycogen tended to be faster in rats exposed to RH. This effect followed more rapid recovery of brain glucose levels in the RH group, despite similar blood glucose levels in both groups. There was no statistically significant increase above baseline glycogen levels in either group. In particular, brain glycogen was not increased 24 h after the last of recurrent episodes of hypoglycemia, when a significant counterregulatory defect could be documented during a hyperinsulinemic hypoglycemic clamp study. We conclude that glycogen supercompensation is not a major contributory factor to the pathogenesis of hypoglycemia-associated autonomic failure. PMID:18187548

  18. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... diagnosis or management of GM3 synthase deficiency: American Epilepsy Society: Find a Doctor Clinic for Special Children ( ...

  19. Carbohydrate supplementation spares muscle glycogen during variable-intensity exercise.

    PubMed

    Yaspelkis, B B; Patterson, J G; Anderla, P A; Ding, Z; Ivy, J L

    1993-10-01

    Effects of carbohydrate (CHO) supplementation on muscle glycogen utilization and endurance were evaluated in seven well-trained male cyclists during continuous cycling exercise that varied between low [45% maximal O2 uptake (VO2 max)] and moderate intensity (75% VO2 max). During each exercise bout the subjects received either artificially flavored placebo (P), 10% liquid CHO supplement (L; 3 x 18 g CHO/h), or solid CHO supplement (S; 2 x 25 g CHO/h). Muscle biopsies were taken from vastus lateralis during P and L trials immediately before exercise and after first (124 min) and second set (190 min) of intervals. Subjects then rode to fatigue at 80% VO2 max. Plasma glucose and insulin responses during L treatment reached levels of 6.7 +/- 0.7 mM and 70.6 +/- 17.2 microU/ml, respectively, and were significantly greater than those of P treatment (4.4 +/- 0.1 mM and 17.7 +/- 1.6 microU/ml) throughout the exercise bout. Plasma glucose and insulin responses of S treatment were intermediate to those of L and P treatments. Times to fatigue for S (223.9 +/- 3.5 min) and L (233.4 +/- 7.5 min) treatments did not differ but were significantly greater than that of P treatment (202.4 +/- 9.8 min). After the first 190 min of exercise, muscle glycogen was significantly greater during L (79 +/- 3.5 mumol/g wet wt) than during P treatment (58.5 +/- 7.2 mumol/g wet wt). Furthermore, differences in muscle glycogen concentrations between L and P treatments after 190 min of exercise and in time to fatigue for these treatments were positively related (r = 0.76, P < 0.05). These results suggest that CHO supplementation can enhance prolonged continuous variable-intensity exercise by reducing dependency on muscle glycogen as a fuel source. PMID:8282593

  20. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs. PMID:26976449

  1. Recombinant AAV-directed gene therapy for type I glycogen storage diseases

    PubMed Central

    Chou, JY; Mansfield, BC

    2011-01-01

    Introduction Glycogen storage disease (GSD) type Ia and Ib are disorders of impaired glucose homeostasis affecting the liver and kidney. GSD-Ib also affects neutrophils. Current dietary therapies cannot prevent long-term complications. In animal studies, recombinant adeno-associated virus (rAAV) vector-mediated gene therapy can correct or minimize multiple aspects of the disorders, offering hope for human gene therapy. Areas covered A summary of recent progress in rAAV-mediated gene therapy for GSD-I; strategies to improve rAAV-mediated gene delivery, transduction efficiency and immune avoidance; and vector refinements that improve expression. Expert opinion rAAV-mediated gene delivery to the liver can restore glucose homeostasis in preclinical models of GSD-I, but some long-term complications of the liver and kidney remain. Gene therapy for GSD-Ib is less advanced than for GSD-Ia and only transient correction of myeloid dysfunction has been achieved. A question remains whether a single rAAV vector can meet the expression efficiency and tropism required to treat all aspects of GSD-I, or if a multi-prong approach is needed. An understanding of the strengths and weaknesses of rAAV vectors in the context of strategies to achieve efficient transduction of the liver, kidney, and hematopoietic stem cells is required for treating GSD-I. PMID:21504389

  2. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease

    PubMed Central

    Farah, Benjamin L.; Madden, Lauran; Li, Songtao; Nance, Sierra; Bird, Andrew; Bursac, Nenad; Yen, Paul M.; Young, Sarah P.; Koeberl, Dwight D.

    2014-01-01

    Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.—Farah, B. L., Madden, L., Li, S., Nance, S., Bird, A., Bursac, N., Yen, P. M., Young, S. P., Koeberl, D. D. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with

  3. Deficient activity of dephosphophosphorylase kinase and accumulation of glycogen in the liver

    PubMed Central

    Hug, George; Schubert, William K.; Chuck, Gail

    1969-01-01

    Low activity of phosphorylase and increased concentration of glycogen were found in liver tissue from five children with asymptomatic hepatomegaly. In vitro activation of liver phosphorylase in these patients occurred at the rate of 10% or less of normal. Elimination of the defect by the addition of kinase that activates phosphorylase demonstrated the integrity of the phosphorylase enzyme and the deficient activity of dephophophosphorylase kinase. On the average, 60% of the phosphorylase enzyme of normal human liver was in the active form. Phosphorylase kinase of rabbit muscle activated phosphorylase of normal human liver to a final value that was significantly higher than the one obtained in the absence of muscle phosphorylase kinase. The ultrastructural examination of hepatic tissue from the five patients revealed increased amounts of glycogen. There was scarcity of endoplasmic reticulum. There was intercellular glycogen in continuity with the glycogen of the hepatocytes through breaks in their circumference. Lipid droplets with lucid areas in the form of needles and plates contained aggregates of glycogen. There were numerous lysosomes, some containing glycogen. Large vacuoles filled with glycogen and surrounded by a membrane were seen occasionally. The vacuoles might reflect the lysosomal pathway of glycogen degradation, since there was apparent fusion of such autophagic vacuoles with small vesicles resembling primary lysosomes. Images PMID:5774108

  4. Cinnamon increases liver glycogen in an animal model of insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamon, and aqueous polyphenol extracts of cinnamon, improve insulin sensitivity in vitro, and in animal and human studies. Given the relationship between the glucose/insulin system and glycogen metabolism, the objective of this study was to determine the effects of cinnamon on glycogen synthesis...

  5. Technical note: A method for isolating glycogen granules from ruminal protozoa for further characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of physical, compositional, and digestion characteristics of protozoal glycogen is best performed on a pure substrate in order to avoid interference from other cell components. A method for isolating protozoal glycogen without use of detergents was developed. Rumen inoculum was incubated ...

  6. Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia.

    PubMed

    Canada, Sarah E; Weaver, Staci A; Sharpe, Shannon N; Pederson, Bartholomew A

    2011-04-01

    Brain glycogen is proposed to function under both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed "supercompensation." We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/liter for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. After these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hr. After 6 hr, blood and brain glucose levels were restored but brain glycogen levels were elevated by 25% in mice that had been subjected to either acute or recurrent hypoglycemia compared with saline-treated controls. After a 27-hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice, but its functional significance remains to be established. PMID:21259334

  7. Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness.

    PubMed

    Öz, Gülin; Tesfaye, Nolawit; Kumar, Anjali; Deelchand, Dinesh K; Eberly, Lynn E; Seaquist, Elizabeth R

    2012-02-01

    Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo (13)C nuclear magnetic resonance spectroscopy in conjunction with [1-(13)C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. (13)C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes. PMID:21971353

  8. Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness

    PubMed Central

    Öz, Gülin; Tesfaye, Nolawit; Kumar, Anjali; Deelchand, Dinesh K; Eberly, Lynn E; Seaquist, Elizabeth R

    2012-01-01

    Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. 13C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes. PMID:21971353

  9. BRAIN GLYCOGEN SUPERCOMPENSATION IN THE MOUSE AFTER RECOVERY FROM INSULIN-INDUCED HYPOGLYCEMIA

    PubMed Central

    Canada, Sarah E.; Weaver, Staci A.; Sharpe, Shannon N.; Pederson, Bartholomew A.

    2010-01-01

    Brain glycogen is proposed to function in both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed “supercompensation”. We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/L for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. Following these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hrs. After 6 hrs, blood and brain glucose levels were restored while brain glycogen levels were elevated 25% in mice that were previously subjected to either acute or recurrent hypoglycemia as compared with saline-treated controls. Following a 27 hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice but its functional significance remains to be established. PMID:21259334

  10. Sucrose Synthase: Expanding Protein Function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase (SUS: EC 2.4.1.13), a key enzyme in plant sucrose catabolism, is uniquely able to mobilize sucrose into multiple pathways involved in metabolic, structural, and storage functions. Our research indicates that the biological function of SUS may extend beyond its catalytic activity. Th...

  11. Adenovirus-mediated delivery into myocytes of muscle glycogen phosphorylase, the enzyme deficient in patients with glycogen-storage disease type V.

    PubMed Central

    Baqué, S; Newgard, C B; Gerard, R D; Guinovart, J J; Gómez-Foix, A M

    1994-01-01

    The feasibility of using adenovirus as a vector for the introduction of glycogen phosphorylase activity into myocytes has been examined. We used the C2C12 myoblast cell line to assay the impact of phosphorylase gene transfer on myocyte glycogen metabolism and to reproduce in vitro the two strategies proposed for the treatment of muscle genetic diseases, myoblast transplantation and direct DNA delivery. In this study, a recombinant adenovirus containing the muscle glycogen phosphorylase cDNA transcribed from the cytomegalovirus promoter (AdCMV-MGP) was used to transduce both differentiating myoblasts and nondividing mature myotube cells. Muscle glycogen phosphorylase mRNA levels and total phosphorylase activity were increased in both cell types after viral treatment although more efficiently in the differentiated myotubes. The increase in phosphorylase activity was transient (15 days) in myoblasts whereas in myotubes higher levels of phosphorylase gene expression and activity were reached, which remained above control levels for the duration of the study (20 days). The introduction of muscle phosphorylase into myotubes enhanced their glycogenolytic capacity. AdCMV MGP-transduced myotubes had lower glycogen levels under basal conditions. In addition, these engineered cells showed more extensive glycogenolysis in response to both adrenaline, which stimulates glycogen phosphorylase phosphorylation, and carbonyl cyanide m-chlorophenylhydrazone, a metabolic uncoupler. In conclusion, transfer of the muscle glycogen phosphorylase cDNA into myotubes confers an enhanced and regulatable glycogenolytic capacity. Thus this system might be useful for delivery of muscle glycogen phosphorylase and restoration of glycogenolysis in muscle cells from patients with muscle phosphorylase deficiency (McArdle's disease). Images Figure 1 Figure 2 Figure 5 PMID:7818463

  12. Glycogen: A must have storage to survive stressful emergencies.

    PubMed

    Possik, Elite; Pause, Arnim

    2016-01-01

    Mechanisms of adaptation to acute changes in osmolarity are fundamental for life. When exposed to hyperosmotic stress, cells and organisms utilize conserved strategies to prevent water loss and maintain cellular integrity and viability. The production of glycerol is a common strategy utilized by the nematode Caenorhabditis elegans (C. elegans) and many other organisms to survive hyperosmotic stress. Specifically, the transcriptional upregulation of glycerol-3-phosphate dehydrogenase, a rate-limiting enzyme in the production of glycerol, has been previously implicated in many model organisms. However, what fuels this massive and rapid production of glycerol upon hyperosmotic stress has not been clearly elucidated. We have recently discovered an AMPK-dependent pathway that mediates hyperosmotic stress resistance in C. elegans. Specifically, we demonstrated that the chronic activation of AMPK leads to glycogen accumulation, which under hyperosmotic stress exposure, is rapidly degraded to mediate glycerol production. Importantly, we demonstrate that this strategy is utilized by flcn-1 mutant C. elegans nematodes in an AMPK-dependent manner. FLCN-1 is the worm homolog of the human renal tumor suppressor Folliculin (FLCN) responsible for the Birt-Hogg-Dubé neoplastic syndrome. Here, we comment on the dual role for glycogen in stress resistance: it serves as an energy store and a fuel for osmolyte production. We further discuss the potential utilization of this mechanism by organisms in general and by human cancer cells in order to survive harsh environmental conditions and notably hyperosmotic stress. PMID:27383221

  13. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    SciTech Connect

    Ritchie, D.G. )

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with ({sup 14}C)glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant ({sup 14}C)glucose release) by either glucagon or norepinephrine. After the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, ({sup 14}C)glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6.

  14. Calcium kinetics in glycogen storage disease type 1a.

    PubMed

    Goans, R E; Weiss, G H; Vieira, N E; Sidbury, J B; Abrams, S A; Yergey, A L

    1996-12-01

    Glycogen storage disease type 1a (Von Gierke's disease) is one of the more common glycogen storage diseases (GSD). GSD 1a patients can have severe idiopathic osteopenia, often beginning at a young age. Since calcium tracer studies offer a sensitive probe of the bone microenvironment and of calcium deposition, kinetics might be disturbed in patients with GSD 1a. Plasma dilution kinetics obtained using the stable isotope 42Ca are shown in this paper to be quite different between GSD 1a patients and age-matched controls. Comparison of kinetic parameters in these two populations is made using a new binding site model for describing calcium dynamics at the plasma-bone interface. This model describes reversible binding of calcium ions to postulated short-term and long-term sites by a retention probability density function psi (t). Using this analysis, adult GSD subjects exhibited a significant decrease (P = 0.023) in the apparent half-life of a calcium ion on the longer-term site compared with controls. The general theory of calcium tracer dilution kinetics is then discussed in terms of a new model of short-term calcium homeostasis recently proposed by Bronner and Stein [5]. PMID:8939770

  15. An open-label phase 2 study of glycogen synthase kinase-3 inhibitor LY2090314 in patients with acute leukemia.

    PubMed

    Rizzieri, David A; Cooley, Sarah; Odenike, Olatoyosi; Moonan, Lisette; Chow, Kay Hoong; Jackson, Kimberley; Wang, Xuejing; Brail, Leslie; Borthakur, Gautam

    2016-08-01

    This open-label, Phase-2 study investigated the safety of LY2090314 (GSK-3 inhibitor) in AML p