Science.gov

Sample records for impairs high glucose-induced

  1. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts

    SciTech Connect

    Chao, Louis Kuoping; Chang, W.-T.; Shih, Y.-W.; Huang, J.-S.

    2010-04-15

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and alpha-smooth muscle actin (alpha-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.

  2. Fructose impairs glucose-induced hepatic triglyceride synthesis

    PubMed Central

    2011-01-01

    Obesity, type 2 diabetes and hyperlipidemia frequently coexist and are associated with significantly increased morbidity and mortality. Consumption of refined carbohydrate and particularly fructose has increased significantly in recent years and has paralled the increased incidence of obesity and diabetes. Human and animal studies have demonstrated that high dietary fructose intake positively correlates with increased dyslipidemia, insulin resistance, and hypertension. Metabolism of fructose occurs primarily in the liver and high fructose flux leads to enhanced hepatic triglyceride accumulation (hepatic steatosis). This results in impaired glucose and lipid metabolism and increased proinflammatory cytokine expression. Here we demonstrate that fructose alters glucose-stimulated expression of activated acetyl CoA carboxylase (ACC), pSer hormone sensitive lipase (pSerHSL) and adipose triglyceride lipase (ATGL) in hepatic HepG2 or primary hepatic cell cultures in vitro. This was associated with increased de novo triglyceride synthesis in vitro and hepatic steatosis in vivo in fructose- versus glucose-fed and standard-diet fed mice. These studies provide novel insight into the mechanisms involved in fructose-mediated hepatic hypertriglyceridemia and identify fructose-uptake as a new potential therapeutic target for lipid-associated diseases. PMID:21261970

  3. Blockade of chronic high glucose-induced endothelial apoptosis by Sasa borealis bamboo extract.

    PubMed

    Choi, Yean-Jung; Lim, Hyeon-Sook; Choi, Jung-Suk; Shin, Seung-Yong; Bae, Ji-Young; Kang, Sang-Wook; Kang, Il-Jun; Kang, Young-Hee

    2008-05-01

    Hyperglycemia is a causal factor in the development of diabetic vascular complications including impaired vascular smooth muscle contractility and increased cell proliferation. The present study was designed to investigate the effects of Sasa borealis water-extract (SBwE) on chronic hyperglycemia-induced oxidative stress and apoptosis in human umbilical endothelial cells (HUVEC). HUVEC were cultured in 5.5 mM low glucose, 5.5 mM glucose plus 27.5 mM mannitol as an osmotic control, or 33 mM high glucose for 5 days in the absence and presence of 1-30 microg/ ml SBwE. Caspase-3 activation and Annexin V staining revealed chronic high glucose-induced endothelial apoptotic toxicity with a generation of oxidants detected by DCF-fluorescence, and these effects were reversed by SBwE at > or =1 microg/ml in a dose-dependent manner. Cytoprotective SBwE substantially reduced the sustained high glucose-induced expression of endothelial nitric oxide synthase and attenuated the formation of peroxynitrite radicals. The suppressive effects of SBwE were most likely mediated through blunting activation of PKC beta 2 and NADPH oxidase promoted by high glucose. In addition, this bamboo extract modulated the high glucose-triggered mitogen-activated protein kinase-dependent upregulation of heat-shock proteins. Our results suggest that SBwE suppressed these detrimental effects caused by PKC-dependent peroxynitrite formation via activation of NADPH oxidase and induction of nitric oxide synthase and heat-shock protein family that may be essential mechanisms responsible for increased apoptotic oxidative stress in diabetic vascular complications. Moreover, the blockade of high glucose-elicited heat-shock protein induction appeared to be responsible for SBwE-alleviated endothelial apoptosis. Therefore, SBwE may be a therapeutic agent for the prevention and treatment of diabetic endothelial dysfunction and related complications. PMID:18375828

  4. Pyrroloquinoline quinone protects mouse brain endothelial cells from high glucose-induced damage in vitro

    PubMed Central

    Wang, Zhong; Chen, Guo-qiang; Yu, Gui-ping; Liu, Chang-jian

    2014-01-01

    Aim: To investigate the effects of pyrroloquinoline quinone (PQQ), an oxidoreductase cofactor, on high glucose-induced mouse endothelial cell damage in vitro. Methods: Mouse brain microvascular endothelial bEND.3 cells were exposed to different glucose concentrations (5.56, 25 and 40 mmol/L) for 24 or 48 h. The cell viability was examined using MTT assay. Flow cytometry was used to analyze the apoptosis and ROS levels in the cells. MitoTracker Green staining was used to examine the mitochondria numbers in the cells. Western blot analysis was used to analyze the expression of HIF-1α and the proteins in JNK pathway. Results: Treatment of bEND.3 cells with high glucose significantly decreased the cell viability, while addition of PQQ (1 and 10 μmol/L) reversed the high glucose-induced cell damage in a concentration-dependent manner. Furthermore, PQQ (100 μmol/L) significantly suppressed the high glucose-induced apoptosis and ROS production in the cells. PQQ significantly reversed the high glucose-induced reduction in both the mitochondrial membrane potential and mitochondria number in the cells. The high glucose treatment significantly increased the expression of HIF-1α and JNK phosphorylation in the cells, and addition of PQQ led to a further increase of HIF-1α level and a decrease of JNK phosphorylation. Addition of JNK inhibitor SP600125 (10 μmol/L) also significantly suppressed high glucose-induced apoptosis and JNK phosphorylation in bEND.3 cells. Conclusion: PQQ protects mouse brain endothelial cells from high glucose damage in vitro by suppressing intracellular ROS and apoptosis via inhibiting JNK signaling pathway. PMID:25283505

  5. Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects.

    PubMed

    Zhong, Jianxiang; Reece, E Albert; Yang, Peixin

    2015-11-13

    Maternal diabetes-induced birth defects remain a significant health problem. Studying the effect of natural compounds with antioxidant properties and minimal toxicities on diabetic embryopathy may lead to the development of new and safe dietary supplements. Punicalagin is a primary polyphenol found in pomegranate juice, which possesses antioxidant, anti-inflammatory and anti-tumorigenic properties, suggesting a protective effect of punicalagin on diabetic embryopathy. Here, we examined whether punicalagin could reduce high glucose-induced neural tube defects (NTDs), and if this rescue occurs through blockage of cellular stress and caspase activation. Embryonic day 8.5 (E8.5) mouse embryos were cultured for 24 or 36 h with normal (5 mM) glucose or high glucose (16.7 mM), in presence or absence of 10 or 20 μM punicalagin. 10 μM punicalagin slightly reduced NTD formation under high glucose conditions; however, 20 μM punicalagin significantly inhibited high glucose-induced NTD formation. Punicalagin suppressed high glucose-induced lipid peroxidation marker 4-hydroxynonenal, nitrotyrosine-modified proteins, and lipid peroxides. Moreover, punicalagin abrogated endoplasmic reticulum stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, punicalagin suppressed high glucose-induced caspase 3 and caspase 8 cleavage. Punicalagin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation. These observations suggest punicalagin supplements could mitigate the teratogenic effects of hyperglycemia in the developing embryo, and possibly prevent diabetes-induced NTDs. PMID:26453010

  6. Tetramethylpyrazine ameliorates high glucose-induced endothelial dysfunction by increasing mitochondrial biogenesis.

    PubMed

    Xu, Qiong; Xia, Pu; Li, Xi; Wang, Wei; Liu, Zhenqi; Gao, Xin

    2014-01-01

    Tetramethylpyrazine (TMP) is an active compound isolated from a Chinese herbal prescription that is widely used in traditional Chinese medicine for the treatment of inflammatory and cardiovascular diseases. We have previously reported that TMP acts as a potent antioxidant protecting endothelial cells against high glucose-induced damages. However, the molecular mechanism responsible for the antioxidant effect of TMP remains to be elucidated. In this study, we show that TMP increases nitric oxide production in endothelial cells and promotes endothelium-dependent relaxation in rate aortic rings. The antioxidant effect of TMP appears attributable to its ability to activate the mitochondrial biogenesis, as reflected in an up-regulation of complex III and amelioration of mitochondrial membrane potential. Furthermore, TMP is able to reverse high glucose-induced suppression of SIRT1 and the biogenesis-related factors, including PGC-1α, NRF1 and TFAM, suggesting a new molecular mechanism underlying the protective effect of TMP on the endothelium. PMID:24505445

  7. Tetramethylpyrazine Ameliorates High Glucose-Induced Endothelial Dysfunction by Increasing Mitochondrial Biogenesis

    PubMed Central

    Xu, Qiong; Xia, Pu; Li, Xi; Wang, Wei; Liu, Zhenqi; Gao, Xin

    2014-01-01

    Tetramethylpyrazine (TMP) is an active compound isolated from a Chinese herbal prescription that is widely used in traditional Chinese medicine for the treatment of inflammatory and cardiovascular diseases. We have previously reported that TMP acts as a potent antioxidant protecting endothelial cells against high glucose-induced damages. However, the molecular mechanism responsible for the antioxidant effect of TMP remains to be elucidated. In this study, we show that TMP increases nitric oxide production in endothelial cells and promotes endothelium-dependent relaxation in rate aortic rings. The antioxidant effect of TMP appears attributable to its ability to activate the mitochondrial biogenesis, as reflected in an up-regulation of complex III and amelioration of mitochondrial membrane potential. Furthermore, TMP is able to reverse high glucose-induced suppression of SIRT1 and the biogenesis-related factors, including PGC-1α, NRF1 and TFAM, suggesting a new molecular mechanism underlying the protective effect of TMP on the endothelium. PMID:24505445

  8. Myt3 suppression sensitizes islet cells to high glucose-induced cell death via Bim induction

    PubMed Central

    Tennant, B R; Vanderkruk, B; Dhillon, J; Dai, D; Verchere, C B; Hoffman, B G

    2016-01-01

    Diabetes is a chronic disease that results from the body's inability to properly control circulating blood glucose levels. The loss of glucose homoeostasis can arise from a loss of β-cell mass because of immune-cell-mediated attack, as in type 1 diabetes, and/or from dysfunction of individual β-cells (in conjunction with target organ insulin resistance), as in type 2 diabetes. A better understanding of the transcriptional pathways regulating islet-cell survival is of great importance for the development of therapeutic strategies that target β-cells for diabetes. To this end, we previously identified the transcription factor Myt3 as a pro-survival factor in islets following acute suppression of Myt3 in vitro. To determine the effects of Myt3 suppression on islet-cell survival in vivo, we used an adenovirus to express an shRNA targeting Myt3 in syngeneic optimal and marginal mass islet transplants, and demonstrate that suppression of Myt3 impairs the function of marginal mass grafts. Analysis of grafts 5 weeks post-transplant revealed that grafts transduced with the shMyt3 adenovirus contained ~20% the number of transduced cells as grafts transduced with a control adenovirus. In fact, increased apoptosis and significant cell loss in the shMyt3-transduced grafts was evident after only 5 days, suggesting that Myt3 suppression sensitizes islet cells to stresses present in the early post-transplant period. Specifically, we find that Myt3 suppression sensitizes islet cells to high glucose-induced cell death via upregulation of the pro-apoptotic Bcl2 family member Bim. Taken together these data suggest that Myt3 may be an important link between glucotoxic and immune signalling pathways. PMID:27195679

  9. Myt3 suppression sensitizes islet cells to high glucose-induced cell death via Bim induction.

    PubMed

    Tennant, B R; Vanderkruk, B; Dhillon, J; Dai, D; Verchere, C B; Hoffman, B G

    2016-01-01

    Diabetes is a chronic disease that results from the body's inability to properly control circulating blood glucose levels. The loss of glucose homoeostasis can arise from a loss of β-cell mass because of immune-cell-mediated attack, as in type 1 diabetes, and/or from dysfunction of individual β-cells (in conjunction with target organ insulin resistance), as in type 2 diabetes. A better understanding of the transcriptional pathways regulating islet-cell survival is of great importance for the development of therapeutic strategies that target β-cells for diabetes. To this end, we previously identified the transcription factor Myt3 as a pro-survival factor in islets following acute suppression of Myt3 in vitro. To determine the effects of Myt3 suppression on islet-cell survival in vivo, we used an adenovirus to express an shRNA targeting Myt3 in syngeneic optimal and marginal mass islet transplants, and demonstrate that suppression of Myt3 impairs the function of marginal mass grafts. Analysis of grafts 5 weeks post-transplant revealed that grafts transduced with the shMyt3 adenovirus contained ~20% the number of transduced cells as grafts transduced with a control adenovirus. In fact, increased apoptosis and significant cell loss in the shMyt3-transduced grafts was evident after only 5 days, suggesting that Myt3 suppression sensitizes islet cells to stresses present in the early post-transplant period. Specifically, we find that Myt3 suppression sensitizes islet cells to high glucose-induced cell death via upregulation of the pro-apoptotic Bcl2 family member Bim. Taken together these data suggest that Myt3 may be an important link between glucotoxic and immune signalling pathways. PMID:27195679

  10. Rice bran protein hydrolysates prevented interleukin-6- and high glucose-induced insulin resistance in HepG2 cells.

    PubMed

    Boonloh, Kampeebhorn; Kukongviriyapan, Upa; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Senggunprai, Laddawan; Prawan, Auemduan; Thawornchinsombut, Supawan; Kukongviriyapan, Veerapol

    2015-02-01

    Rice bran, which is a byproduct of rice milling process, contains various nutrients and biologically active compounds. Rice bran protein hydrolysates have various pharmacological activities such as antidiabetic and antidyslipidemic effects. However, there are limited studies about the mechanisms of rice bran protein hydrolysates (RBP) on insulin resistance and lipid metabolism. RBP used in this study were prepared from Thai Jasmine rice. When HepG2 cells were treated with IL-6, the IRS-1 expression and Akt phosphorylation were suppressed. This effect of IL-6 was prevented by RBP in association with inhibition of STAT3 phosphorylation and SOCS3 expression. RBP could increase the phospho-AMPK levels and inhibit IL-6- or high glucose-induced suppression of AMPK and Akt activation. High glucose-induced dysregulation of the expression of lipogenic genes, including SREBP-1c, FASN and CPT-1, was normalized by RBP treatment. Moreover, impaired glucose utilization in insulin resistant HepG2 cells was significantly alleviated by concurrent treatment with RBP. Our results suggested that RBP suppresses inflammatory cytokine signaling and activates AMPK, and thereby these effects may underlie the insulin sensitizing effect. PMID:25518891

  11. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    SciTech Connect

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  12. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    PubMed Central

    Yokogawa, Kumiko; Matsui-Yuasa, Isao; Tamura, Akiko; Terada, Masaki; Kojima-Yuasa, Akiko

    2011-01-01

    Nonalcoholic steatohepatitis (NASH) is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs), key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE) was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS) and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β) from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis. PMID:22363250

  13. Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo

    PubMed Central

    Tan, Rui-Rong; Zhang, Shi-Jie; Li, Yi-Fang; Tsoi, Bun; Huang, Wen-Shan; Yao, Nan; Hong, Mo; Zhai, Yu-Jia; Mao, Zhong-Fu; Tang, Lu-Ping; Kurihara, Hiroshi; Wang, Qi; He, Rong-Rong

    2015-01-01

    Gestational diabetes mellitus (GDM) is one of the leading causes of offspring malformations, in which eye malformation is an important disease. It has raised demand for therapy to improve fetal outcomes. In this study, we used chick embryo to establish a GDM model to study the protective effects of proanthocyanidins on eye development. Chick embryos were exposed to high glucose (0.2 mmol/egg) on embryo development day (EDD) 1. Proanthocyanidins (1 and 10 nmol/egg) were injected into the air sac on EDD 0. Results showed that both dosages of proanthocyanidins could prevent the eye malformation and rescue the high glucose-induced oxidative stress significantly, which the similar effects were showed in edaravone. However, proanthocyanidins could not decrease the glucose concentration of embryo eye. Moreover, the key genes regulating eye development, Pax6, was down-regulated by high glucose. Proanthocyanidins could restore the suppressed expression of Pax6. These results indicated proanthocyanidins might be a promising natural agent to prevent high glucose-induced eye malformation by restoring Pax6 expression. PMID:26262640

  14. Nanoceria Attenuated High Glucose-Induced Oxidative Damage in HepG2 Cells

    PubMed Central

    Shokrzadeh, Mohammad; Abdi, Hakimeh; Asadollah-Pour, Azin; Shaki, Fatemeh

    2016-01-01

    Objective Hyperglycemia, a common metabolic disorder in diabetes, can lead to oxidative damage. The use of antioxidants can benefit the control and prevention of diabetes side effects. This study aims to evaluate the effect of nanoceria particles, as an antioxidant, on glucose induced cytotoxicity, reactive oxygen species (ROS), lipid peroxidation (LPO) and glutathione (GSH) content in a human hepatocellular liver carcinoma cell line (HepG2) cell line. Materials and Methods In this experimental study, we divided HepG2 cells into these groups: i. Cells treated with 5 mM D-glucose (control), ii. Cells treated with 45 mM D- mannitol+5 mM D-glucose (osmotic control), iii. Cells treated with 50 mM D-glucose (high glucose), and iv. Cells treated with 50 mM D-glucose+nanoceria. Cell viability, ROS formation, LPO and GSH were measured and analyzed statistically. Results High glucose (50 mM) treatment caused significant cell death and increased oxidative stress markers in HepG2 cells. Interestingly, nanoceria at a concentration of 50 mM significantly decreased the high glucose-induced cytotoxicity, ROS formation and LPO. This concentration of nanoceria increased the GSH content in HepG2 cells (P<0.05). Conclusion The antioxidant feature of nanoceria particles makes it an attractive candidate for attenuation of hyperglycemia oxidative damage in different organs. PMID:27054124

  15. Curcumin ameliorates high glucose-induced neural tube defects by suppressing cellular stress and apoptosis

    PubMed Central

    Wu, Yanqing; Wang, Fang; Reece, E. Albert; Yang, Peixin

    2015-01-01

    Objectives Curcumin is a naturally occurring polyphenol present in the roots of the Curcuma longa plant (turmeric), which possesses antioxidant, anti-tumorigenic and anti-inflammatory properties. Here, we test whether curcumin treatment reduces high glucose-induced neural tube defects (NTDs), and if this occurs via blocking cellular stress and caspase activation. Study Design Embryonic day 8.5 mouse embryos were collected for use in whole embryo culture under normal glucose (100 mg/dl glucose) or high glucose (300 mg/dl glucose) conditions, with or without curcumin treatment. After 24 h in culture, protein levels of oxidative stress makers, nitrosative stress makers, endoplasmic reticulum (ER) stress makers, cleaved caspase 3 and 8 and the level of lipid peroxides (LPO) were determined in the embryos. After 36 h in culture, embryos were examined for evidence of NTD formation. Results Although 10 μM curcumin did not significantly reduce the rate of NTDs caused by high glucose, 20 μM curcumin significantly ameliorated high glucose-induced NTD formation. Curcumin suppressed oxidative stress in embryos cultured under high glucose conditions. Treatment reduced the levels of the lipid peroxidation marker, 4-hydroxynonenal(4-HNE), nitrotyrosine-modified protein, and LPO. Curcumin also blocked ER stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, curcumin abolished caspase 3 and caspase 8 cleavage in embryos cultured under high glucose conditions. Conclusions Curcumin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation, suggesting that curcumin supplements could reduce the negative effects of diabetes on the embryo. Further

  16. High glucose induces adipogenic differentiation of muscle-derived stem cells

    PubMed Central

    Aguiari, Paola; Leo, Sara; Zavan, Barbara; Vindigni, Vincenzo; Rimessi, Alessandro; Bianchi, Katiuscia; Franzin, Chiara; Cortivo, Roberta; Rossato, Marco; Vettor, Roberto; Abatangelo, Giovanni; Pozzan, Tullio; Pinton, Paolo; Rizzuto, Rosario

    2008-01-01

    Regeneration of mesenchymal tissues depends on a resident stem cell population, that in most cases remains elusive in terms of cellular identity and differentiation signals. We here show that primary cell cultures derived from adipose tissue or skeletal muscle differentiate into adipocytes when cultured in high glucose. High glucose induces ROS production and PKCβ activation. These two events appear crucial steps in this differentiation process that can be directly induced by oxidizing agents and inhibited by PKCβ siRNA silencing. The differentiated adipocytes, when implanted in vivo, form viable and vascularized adipose tissue. Overall, the data highlight a previously uncharacterized differentiation route triggered by high glucose that drives not only resident stem cells of the adipose tissue but also uncommitted precursors present in muscle cells to form adipose depots. This process may represent a feed-forward cycle between the regional increase in adiposity and insulin resistance that plays a key role in the pathogenesis of diabetes mellitus. PMID:18212116

  17. The Nrf2 Activator Vinylsulfone Reduces High Glucose-Induced Neural Tube Defects by Suppressing Cellular Stress and Apoptosis.

    PubMed

    Dong, Daoyin; Reece, E Albert; Yang, Peixin

    2016-08-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is one of the primary pathways responsible for the cellular defense system against oxidative stress. Oxidative stress-induced apoptosis is a causal event in diabetic embryopathy. Thus, the Nrf2 pathway may play an important role in the induction of diabetic embryopathy. In the present study, we investigated the potentially protective effect of the Nrf2 activator, vinylsulfone, on high glucose-induced cellular stress, apoptosis, and neural tube defects (NTDs). Embryonic day 8.5 (E8.5) whole mouse embryos were cultured in normal (5 mmol/L) or high (16.7 mmol/L) glucose conditions, with or without vinylsulfone. At a concentration of 10 μmol/L, vinylsulfone had an inhibitory effect on high glucose-induced NTD formation, but it was not significant. At a concentration of 20 μmol/L, vinylsulfone significantly reduced high glucose-induced NTDs. In addition, 20 μmol/L vinylsulfone abrogated the high glucose-induced oxidative stress markers lipid hydroperoxide (LPO), 4-hydroxynonenal (4-HNE), and nitrotyrosine-modified proteins. The high glucose-induced endoplasmic reticulum (ER) stress biomarkers were also suppressed by 20 μmol/L vinylsulfone through the inhibition of phosphorylated protein kinase RNA-like ER kinase (PERK), inositol requiring protein 1α (IRE1a), eukaryotic initiation factor 2α (eIF2a), upregulated C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP), and x-box binding protein 1 (XBP1) messenger RNA splicing. Furthermore, 20 μmol/L vinylsulfone abolished caspase 3 and caspase 8 cleavage, markers of apoptosis, in embryos cultured under high glucose conditions. The Nrf2 activator, vinylsulfone, is protective against high glucose-induced cellular stress, caspase activation, and subsequent NTD formation. Our data suggest that vinylsulfone supplementation is a potential therapy for diabetes-associated neurodevelopmental defects. PMID:26802109

  18. High glucose-induced cytoplasmic translocation of Dnmt3a contributes to CTGF hypo-methylation in mesangial cells.

    PubMed

    Zhang, Hao; Li, Aimei; Zhang, Wei; Huang, Zhijun; Wang, Jianwen; Yi, Bin

    2016-08-01

    Connective tissue growth factor (CTGF) plays an essential role in the pathogenesis of diabetic nephropathy and we have previously identified that high glucose induced the expression of CTGF by decreasing DNA methylation. The aim of the present study was to investigate the underlying mechanisms of the high glucose-induced CTGF hypo-methylation. Human glomerular mesangial cells (hMSCs) were treated with low glucose (5 mM), mannitol (30 mM) or high glucose (30 mM) respectively. Immunofluorescence staining, real-time quantitative PCR and western blotting were performed to determine the subcellular distribution and expression of CTGF and Dnmt3a. ChIP-PCR assay was applied to investigate the capability of Dnmt3a to bind the CpG island of CTGF. Our results showed that high glucose induced both mRNA and protein expressions of CTGF, and led to increased cytoplasmic translocation of Dnmt3a in cultured hMSCs. The nuclear Dnmt3a protein was significantly reduced after high glucose treatment, although the expression of total Dnmt3a protein was not altered. We further discovered that ERK/MAPK signalling contributed to the high glucose-induced cytoplasmic translocation of Dnmt3a. Consequently, less Dnmt3a protein was bound to the CpG island of CTGF promoter, which induced an increase in CTGF expression by epigenetic regulation in the presence of high glucose. In conclusion, high glucose induces cytoplasmic translocation of Dnmt3a, possibly through activating ERK/MAPK signalling pathway, which contributes to the decreased binding of Dnmt3a on CTGF promoter and the subsequent CTGF hypo-methylation in diabetic nephropathy. PMID:27364355

  19. High glucose-induced cytoplasmic translocation of Dnmt3a contributes to CTGF hypo-methylation in mesangial cells

    PubMed Central

    Zhang, Hao; Li, Aimei; Zhang, Wei; Huang, Zhijun; Wang, Jianwen; Yi, Bin

    2016-01-01

    Connective tissue growth factor (CTGF) plays an essential role in the pathogenesis of diabetic nephropathy and we have previously identified that high glucose induced the expression of CTGF by decreasing DNA methylation. The aim of the present study was to investigate the underlying mechanisms of the high glucose-induced CTGF hypo-methylation. Human glomerular mesangial cells (hMSCs) were treated with low glucose (5 mM), mannitol (30 mM) or high glucose (30 mM) respectively. Immunofluorescence staining, real-time quantitative PCR and western blotting were performed to determine the subcellular distribution and expression of CTGF and Dnmt3a. ChIP-PCR assay was applied to investigate the capability of Dnmt3a to bind the CpG island of CTGF. Our results showed that high glucose induced both mRNA and protein expressions of CTGF, and led to increased cytoplasmic translocation of Dnmt3a in cultured hMSCs. The nuclear Dnmt3a protein was significantly reduced after high glucose treatment, although the expression of total Dnmt3a protein was not altered. We further discovered that ERK/MAPK signalling contributed to the high glucose-induced cytoplasmic translocation of Dnmt3a. Consequently, less Dnmt3a protein was bound to the CpG island of CTGF promoter, which induced an increase in CTGF expression by epigenetic regulation in the presence of high glucose. In conclusion, high glucose induces cytoplasmic translocation of Dnmt3a, possibly through activating ERK/MAPK signalling pathway, which contributes to the decreased binding of Dnmt3a on CTGF promoter and the subsequent CTGF hypo-methylation in diabetic nephropathy. PMID:27364355

  20. Autophagy is involved in high glucose-induced heart tube malformation

    PubMed Central

    Wang, Guang; Huang, Wen-qing; Cui, Shu-dan; Li, Shuai; Wang, Xiao-yu; Li, Yan; Chuai, Manli; Cao, Liu; Li, Jiang-chao; Lu, Da-xiang; Yang, Xuesong

    2015-01-01

    Both pre-gestational and gestational diabetes have an adverse impact on heart development, but little is known about the influence on the early stage of heart tube formation. Using early gastrulating chick embryos, we investigated the influence of high glucose on the process of heart tube formation, specifically during the primary heart field phase. We demonstrated that high-glucose exposure resulted in 3 types of heart tube malformation: 1) ventricular hypertrophy, 2) ventricular hypertrophy with dextrocardia and 3) ventricular hypertrophy and dextrocardia with the fusion anomaly of a bilateral primary heart tube. Next, we found that these malformation phenotypes of heart tubes might mainly originate from the migratory anomaly of gastrulating precardiac mesoderm cells rather than cell proliferation in the developmental process of bilateral primary heart field primordia. The treatment of rapamycin (RAPA), an autophagy inducer, led to a similar heart tube malformation phenotype as high glucose. Additionally, high-glucose exposure promoted the expression of the key autophagy protein LC3B in early chick tissue. Atg7 is strongly expressed in the fusion site of bilateral primary heart tubes. All of these data imply that autophagy could be involved in the process of high-glucose-induced malformation of the heart tube. PMID:25738919

  1. Endoplasmic Reticulum Stress-Mediated Apoptosis Contributing to High Glucose-Induced Vascular Smooth Muscle Cell Calcification.

    PubMed

    Zhu, Qiang; Guo, Runmin; Liu, Chang; Fu, Duguan; Liu, Fuyuan; Hu, Jiefen; Jiang, Hong

    2015-01-01

    Vascular calcification (VC) is a common feature in patients with type 2 diabetes mellitus, a metabolic disorder that is characterized by hyperglycemia (high blood glucose) in the context of insulin resistance and a relative lack of insulin. Recently, a few studies have indicated that a high concentration of glucose amplifies the osteogenesis of vascular smooth muscle cells (VSMCs). Some previous reports state that endoplasmic reticulum (ER) stress-mediated apoptosis was activated in and contributed to VC. However, whether or not high glucose could induce ER stress-mediated apoptosis and then involve the pathogenesis of VC remains unclear. The purpose of the present study was to investigate whether high blood glucose-induced VC in diabetes mellitus is caused by the ER response and subsequent apoptosis. We examined the effects of high glucose on the ER stress response of VSMCs. High glucose treatment drastically increased the ER stress response in VSMCs. The high glucose-induced osteoblastic differentiation of VSMCs was significantly attenuated by pretreatment with 500 μM of 4-PBA (an ER stress inhibitor) prior to the exposure to high glucose, as evidenced by decreases in the expression of Runx2 and activity of alkaline phosphatase, as well as calcium nodules. These results suggest that high glucose induces the ER stress response and apoptosis, leading to high glucose-elicited VC. PMID:26890314

  2. High glucose-induced apoptosis in human coronary artery endothelial cells involves up-regulation of death receptors

    PubMed Central

    2011-01-01

    Background High glucose can induce apoptosis in vascular endothelial cells, which may contribute to the development of vascular complications in diabetes. We evaluated the role of the death receptor pathway of apoptotic signaling in high glucose-induced apoptosis in human coronary artery endothelial cells (HCAECs). Methods HCAECs were treated with media containing 5.6, 11.1, and 16.7 mM of glucose for 24 h in the presence or absence of tumor necrosis factor (TNF)-α. For detection of apoptosis, DNA fragmentation assay was used. HCAEC expression of death receptors were analyzed by the PCR and flow cytometry methods. Also, using immunohistochemical techniques, coronary expression of death receptors was assessed in streptozotocin-nicotinamide-induced type 2 diabetic mice. Results Exposure of HCAECs to high glucose resulted in a significant increase in TNF-R1 and Fas expression, compared with normal glucose. High glucose increased TNF-α production by HCAECs and exogenous TNF-α up-regulated TNF-R1 and Fas expression in HCAECs. High glucose-induced up-regulation of TNF-R1 and Fas expression was undetectable in the presence of TNF-α. Treatment with TNF-R1 neutralizing peptides significantly inhibited high glucose-induced endothelial cell apoptosis. Type 2 diabetic mice displayed appreciable expression of TNF-R1 and Fas in coronary vessels. Conclusions In association with increased TNF-α levels, the death receptors, TNF-R1 and Fas, are up-regulated in HCAECs under high glucose conditions, which could in turn play a role in high glucose-induced endothelial cell apoptosis. PMID:21816064

  3. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    SciTech Connect

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  4. DSePA Antagonizes High Glucose-Induced Neurotoxicity: Evidences for DNA Damage-Mediated p53 Phosphorylation and MAPKs and AKT Pathways.

    PubMed

    Wang, Kun; Fu, Xiao-Yan; Fu, Xiao-Ting; Hou, Ya-Jun; Fang, Jie; Zhang, Shuai; Yang, Ming-Feng; Li, Da-Wei; Mao, Lei-Lei; Sun, Jing-Yi; Yuan, Hui; Yang, Xiao-Yi; Fan, Cun-Dong; Zhang, Zong-Yong; Sun, Bao-Liang

    2016-09-01

    Hyperglycemia as the major hallmark of diabetic neuropathy severely limited its therapeutic efficiency. Evidences have revealed that selenium (Se) as an essential trace element could effectively reduce the risk of neurological diseases. In the present study, 3,3'-diselenodipropionic acid (DSePA), a derivative of selenocystine, was employed to investigate its protective effect against high glucose-induced neurotoxicity in PC12 cells and evaluate the underlying mechanism. The results suggested that high glucose showed significant cytotoxicity through launching mitochondria-mediated apoptosis in PC12 cells, accompanied by poly (ADP-ribose) polymerase (PARP) cleavage, caspase activation, and mitochondrial dysfunction. Moreover, high glucose also triggered DNA damage and dysregulation of MAPKs and AKT pathways through reactive oxygen species (ROS) overproduction. p53 RNA interference partially suppressed high glucose-induced cytotoxicity and apoptosis, indicating the role of p53 in high glucose-induced signal. However, DSePA pretreatment effectively attenuated high glucose-induced cytotoxicity, inhibited the mitochondrial dysfunction through regulation of Bcl-2 family, and ultimately reversed high glucose-induced apoptotic cell death in PC12 cells. Attenuation of caspase activation, PARP cleavage, DNA damage, and ROS accumulation all confirmed its protective effects. Moreover, DSePA markedly alleviated the dysregulation of AKT and MAPKs pathways induced by high glucose. Our findings revealed that the strategy of using DSePA to antagonize high glucose-induced neurotoxicity may be a highly effective strategy in combating high glucose-mediated neurological diseases. PMID:26232068

  5. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    SciTech Connect

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong; Lee, Sang Koo; Park, Su-Kil

    2012-09-10

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. High glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.

  6. Emodin attenuates high glucose-induced TGF-β1 and fibronectin expression in mesangial cells through inhibition of NF-κB pathway

    SciTech Connect

    Yang, Jie; Zeng, Zhi; Wu, Teng; Yang, Zhicheng; Liu, Bing; Lan, Tian

    2013-12-10

    The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF-β1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF-β1 and FN expression was significantly decreased by emodin. These results demonstrated that emodin suppressed TGF-β1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-induced IκB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF-β1 and FN.

  7. 6,6'-Bieckol protects insulinoma cells against high glucose-induced glucotoxicity by reducing oxidative stress and apoptosis.

    PubMed

    Park, Mi-Hwa; Heo, Soo-Jin; Kim, Kil-Nam; Ahn, Ginnae; Park, Pyo-Jam; Moon, Sang-Ho; Jeon, Byong-Tae; Lee, Seung-Hong

    2015-10-01

    Pancreatic β cells are highly sensitive to oxidative stress, which might play an important role in β cell death in diabetes. The protective effect of 6,6'-bieckol, a phlorotannin polyphenol compound purified from Ecklonia cava, against high glucose-induced glucotoxicity was investigated in rat insulinoma cells. High glucose (30 mM) treatment induced the death of rat insulinoma cells, but treatment with 10 or 50 μg/mL 6,6'-bieckol significantly inhibited the high glucose-induced glucotoxicity. Furthermore, treatment with 6,6'-bieckol dose-dependently reduced the level of thiobarbituric acid reactive substances, generation of intracellular reactive oxygen species, and the level of nitric oxide, all of which were increased by high glucose concentration. In addition, 6,6'-bieckol protected rat insulinoma cells from apoptosis under high-glucose conditions. These effects were associated with increased expression of the anti-apoptotic protein Bcl-2 and reduced expression of the pro-apoptotic protein Bax. These findings indicate that 6,6'-bieckol could be used as a potential nutraceutical agent offering protection against the glucotoxicity caused by hyperglycemia-induced oxidative stress associated with diabetes. PMID:26343533

  8. The protective effect of daidzein on high glucose-induced oxidative stress in human umbilical vein endothelial cells.

    PubMed

    Park, Mi Hwa; Ju, Jae-Won; Kim, Mihyang; Han, Ji-Sook

    2016-01-01

    Endothelial cell dysfunction is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of daidzein, a natural isoflavonoid, against high-glucose-induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced oxidative stress in the endothelial cells, against which daidzein protected the cells as demonstrated by significantly increased cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS) generation, and indirect nitric oxide levels induced by the high glucose treatment were significantly reduced in the presence of daidzein (0.02-0.1 mM) in a dose-dependent manner. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB proteins in HUVECs, which was suppressed by treatment with 0.04 mM daidzein. These findings indicate the potential of daidzein to reduce high glucose-induced oxidative stress. PMID:26756092

  9. ZLN005 protects cardiomyocytes against high glucose-induced cytotoxicity by promoting SIRT1 expression and autophagy.

    PubMed

    Li, Wenju; Li, Xiaoli; Wang, Bin; Chen, Yan; Xiao, Aiping; Zeng, Di; Ou, Dongbo; Yan, Song; Li, Wei; Zheng, Qiangsun

    2016-07-01

    Diabetic cardiomyopathy increases the risk for the development of heart failure independent of coronary artery disease and hypertension. Either type 1 or type 2 diabetes is often accompanied by varying degrees of hyperglycemia, which has been proven to induce myocardial apoptosis in animal models. Recently, a novel small molecule, ZLN005, has been reported to show antidiabetic efficacy in a mouse model, possibly by induction of PGC-1α expression. In this study, we investigated whether ZLN005 protects cardiomyocytes against high glucose-induced cytotoxicity and the mechanisms involved. Neonatal mouse cardiomyocytes were incubated with media containing 5.5 or 33mM glucose for 24h in the presence or absence of ZLN005. ZLN005 treatment led to ameliorated cardiomyocyte oxidative injury, enhanced cell viability, and reduced apoptosis in the high glucose environment. Western blot analysis revealed that high glucose suppressed cardiomyocyte autophagy, whereas ZLN005 increased the expression of autophagy marker proteins ATG5, beclin1, and LC3 II/LC3 I; this increase was accompanied by increased expression of SIRT1. Furthermore, EX527, a SIRT1-specific inhibitor, weakened the protective effects of ZLN005 on cardiomyocytes subjected to high glucose. Taken together, these results suggest that ZLN005 suppresses high glucose-induced cardiomyocyte injury by promoting SIRT1 expression and autophagy. PMID:27208585

  10. Saikosaponin-d protects renal tubular epithelial cell against high glucose induced injury through modulation of SIRT3

    PubMed Central

    Zhao, Lichang; Zhang, Hui; Bao, Jingfang; Liu, Jun; Ji, Zhongning

    2015-01-01

    Saikosaponin-d (Ssd) is one of the major pharmacologically active molecules present in Bupleurum falcatum L, a medical herb against inflammatory diseases in the traditional Chinese medicine. In the current study, we investigated the protective activity of Ssd on diabetic nephropathy along with the underlying mechanisms using renal tubular epithelial cell line (NRK-52E). Our study showed that high glucose stimulation significantly increased NRK-52E cell proliferation. Ssd administration dramatically inhibited high glucose-induced proliferation and DNA synthesis in NRK-52E cell. In addition, high glucose treatment resulted in oxidative stress as shown by increased production of ROS, higher concentration of MDA, and decreased activity of SOD. However, incubation with Ssd reversed such changes in NRK-52E cells. On the molecular level, Ssd also increased the mRNA levels of IDH2 and MnSOD. Moreover, Ssd-treated NRK-52E cells displayed a dramatic enhancement in SIRT3 expression both at mRNA and protein levels. Down-regulation of SIRT3 abolished the protective effects of Ssd on NRK-52E cells. These findings demonstrated that Ssd protected renal tubular epithelial cell against high glucose induced injury via upregulation of SIRT3. PMID:26131275

  11. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways.

    PubMed

    Hu, Yuanyuan; Hou, Zuoxu; Liu, Dongyang; Yang, Xingbin

    2016-03-01

    Oxidative stress plays a crucial role in chronic complication of diabetes. In this study, the protective effect of purified tartary buckwheat flavonoids (TBF) fraction against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser307)-IRS-1 expression, and glucose uptake were evaluated. Results suggest that treatment of HepG2 cells with TBF alone improved glucose uptake and antioxidant enzymes, and activated Nrf2, and attenuated the IRS-1 Ser307 phosphorylation, and enhanced total levels of IRS-1. Furthermore, the high glucose-induced changes in antioxidant defences, Nrf2, p-MAPKs, p-IRS1 Ser307, and IRS-1 levels, and glucose uptake were also significantly inhibited by pre-treatment with TBF. Interestingly, the selective MAPK inhibitors significantly enhanced the TBF-mediated protection by inducing changes in the redox status, glucose uptake, p-(Ser307) and total IRS-1 levels. This report firstly showed that TBF could recover the redox status of insulin-resistant HepG2 cells, suggesting that TBF significantly protected the cells against high glucose-induced oxidative stress, and these beneficial effects of TBF on redox balance and insulin resistance were mediated by targeting MAPKs. PMID:26899161

  12. Protective effects of andrographolide derivative AL-1 on high glucose-induced oxidative stress in RIN-m cells.

    PubMed

    Yan, Hui; Li, Yongmei; Yang, Yali; Zhang, Zaijun; Zhang, Gaoxiao; Sun, Yewei; Yu, Pei; Wang, Yuqiang; Xu, Lipeng

    2016-01-01

    AL-1 is a novel andrographolide derivative synthesized by conjugating andrographolide and alpha lipoic acid. AL-1 has been found to increase insulin secretion, decrease blood glucose level and protect β-cell mass and function in alloxan-induced diabetic mouse model. However, the protective mechanism of AL-1 on high glucose-induced pancreatic β-cell injury is still not clear. In the present study, we found that AL-1 reduced reactive oxygen species (ROS) and nitric oxide (NO) generation induced by high glucose in RIN-m cells, and which elevated the activities of superoxide dismutase (SOD) and catalase (CAT). In addition, AL-1 increased the expression of NF-E2-related factor 2 (Nrf2), thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO- 1) proteins in RIN-m cells. These results suggest that AL-1 prevented RIN-m cells from high glucose-induced oxidative damage via upregulation of Nrf2 signaling pathway. PMID:26391852

  13. Fyn Mediates High Glucose-Induced Actin Cytoskeleton Reorganization of Podocytes via Promoting ROCK Activation In Vitro.

    PubMed

    Lv, Zhimei; Hu, Mengsi; Ren, Xiaoxu; Fan, Minghua; Zhen, Junhui; Chen, Liqun; Lin, Jiangong; Ding, Nannan; Wang, Qun; Wang, Rong

    2016-01-01

    Fyn, a member of the Src family of tyrosine kinases, is a key regulator in cytoskeletal remodeling in a variety of cell types. Recent studies have demonstrated that Fyn is responsible for nephrin tyrosine phosphorylation, which will result in polymerization of actin filaments and podocyte damage. Thus detailed involvement of Fyn in podocytes is to be elucidated. In this study, we investigated the potential role of Fyn/ROCK signaling and its interactions with paxillin. Our results presented that high glucose led to filamentous actin (F-actin) rearrangement in podocytes, accompanied by paxillin phosphorylation and increased cell motility, during which Fyn and ROCK were markedly activated. Gene knockdown of Fyn by siRNA showed a reversal effect on high glucose-induced podocyte damage and ROCK activation; however, inhibition of ROCK had no significant effects on Fyn phosphorylation. These observations demonstrate that in vitro Fyn mediates high glucose-induced actin cytoskeleton remodeling of podocytes via promoting ROCK activation and paxillin phosphorylation. PMID:26881253

  14. Fyn Mediates High Glucose-Induced Actin Cytoskeleton Reorganization of Podocytes via Promoting ROCK Activation In Vitro

    PubMed Central

    Lv, Zhimei; Hu, Mengsi; Ren, Xiaoxu; Fan, Minghua; Zhen, Junhui; Chen, Liqun; Lin, Jiangong; Ding, Nannan; Wang, Qun; Wang, Rong

    2016-01-01

    Fyn, a member of the Src family of tyrosine kinases, is a key regulator in cytoskeletal remodeling in a variety of cell types. Recent studies have demonstrated that Fyn is responsible for nephrin tyrosine phosphorylation, which will result in polymerization of actin filaments and podocyte damage. Thus detailed involvement of Fyn in podocytes is to be elucidated. In this study, we investigated the potential role of Fyn/ROCK signaling and its interactions with paxillin. Our results presented that high glucose led to filamentous actin (F-actin) rearrangement in podocytes, accompanied by paxillin phosphorylation and increased cell motility, during which Fyn and ROCK were markedly activated. Gene knockdown of Fyn by siRNA showed a reversal effect on high glucose-induced podocyte damage and ROCK activation; however, inhibition of ROCK had no significant effects on Fyn phosphorylation. These observations demonstrate that in vitro Fyn mediates high glucose-induced actin cytoskeleton remodeling of podocytes via promoting ROCK activation and paxillin phosphorylation. PMID:26881253

  15. Anthocyanin inhibits high glucose-induced hepatic mtGPAT1 activation and prevents fatty acid synthesis through PKCζ.

    PubMed

    Guo, Honghui; Li, Dan; Ling, Wenhua; Feng, Xiang; Xia, Min

    2011-05-01

    Mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 (mtGPAT1) controls the first step of triacylglycerol (TAG) synthesis and is critical to the understanding of chronic metabolic disorders such as primary nonalcoholic fatty liver disease (NAFLD). Anthocyanin, a large group of polyphenols, was negatively correlated with hepatic lipid accumulation, but its impact on mtGPAT1 activity and NAFLD has yet to be determined. Hepatoma cell lines and KKAy mice were used to investigate the impact of anthocyanin on high glucose-induced mtGPAT1 activation and hepatic steatosis. Treatment with anthocyanin cyanidin-3-O-β-glucoside (Cy-3-g) reduced high glucose-induced GPAT1 activity through the prevention of mtGPAT1 translocation from the endoplasmic reticulum to the outer mitochondrial membrane (OMM), thereby suppressing intracellular de novo lipid synthesis. Cy-3-g treatment also increased protein kinase C ζ phosphorylation and membrane translocation in order to phosphorylate the mtF0F1-ATPase β-subunit, reducing its enzymatic activity and thus inhibiting mtGPAT1 activation. In vivo studies further showed that Cy-3-g treatment significantly decreases hepatic mtGPAT1 activity and its presence in OMM isolated from livers, thus ameliorating hepatic steatosis in diabetic KKAy mice. Our findings reveal a novel mechanism by which anthocyanin regulates lipogenesis and thereby inhibits hepatic steatosis, suggesting its potential therapeutic application in diabetes and related steatotic liver diseases. PMID:21343633

  16. Rosmarinic Acid suppressed high glucose-induced apoptosis in H9c2 cells by ameliorating the mitochondrial function and activating STAT3.

    PubMed

    Diao, Jiayu; Wei, Jin; Yan, Rui; Liu, Xin; Li, Qing; Lin, Lin; Zhu, Yanhe; Li, Hong

    2016-09-01

    Mitochondrial injury characterized by intracellular reactive oxygen species (ROS) accumulation plays a critical role in hyperglycemia-induced myocardium dysfunction. Previous studies have demonstrated that Rosmarinic Acid (RA) treatment and activating Signal transducer and activator of transcription 3 (STAT3) signaling pathway have protective effects on mitochondrial dysfunction in cardiomyocyte, but there is little data regarding cardiomyocyte under condition of high-glucose. The present study was undertaken to determine the relationship between RA and STAT3 activation, as well as their effects on high glucose-induced mitochondrial injury and apoptosis in H9c2 cardiomyocyte. Our results revealed that RA pretreatment suppressed high glucose-induced apoptosis in H9c2 cells. Moreover, the effect of RA on apoptosis was related with improved mitochondrial function, which was demonstrated by that RA attenuated high glucose-induced ROS generation, inhibited mitochondrial permeability transition pore (MPTP) activation, suppressed cytochrome c release and caspase-3 activation. In addition, the phosphorylation of STAT3 in H9c2 cells was inhibited under condition of high-glucose, but RA improved STAT3 phosphorylation. Importantly, inhibition of STAT3 expression by using STAT3-siRNA partly suppressed the effect of RA on high glucose-induced apoptosis. Taken together, pretreatment with RA suppressed high glucose-induced apoptosis in cardiomyocyte by ameliorating mitochondrial function and activating STAT3. PMID:27402269

  17. Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes*

    PubMed Central

    Lee, Hak Joo; Feliers, Denis; Mariappan, Meenalakshmi M.; Sataranatarajan, Kavithalakshmi; Choudhury, Goutam Ghosh; Gorin, Yves; Kasinath, Balakuntalam S.

    2015-01-01

    Diabetes-induced kidney cell injury involves an increase in matrix protein expression that is only partly alleviated by current treatment, prompting a search for new modalities. We have previously shown that hydrogen sulfide (H2S) inhibits high glucose-induced protein synthesis in kidney podocytes. We tested whether tadalafil, a phosphodiesterase 5 inhibitor used to treat erectile dysfunction, ameliorates high glucose stimulation of matrix proteins by generating H2S in podocytes. Tadalafil abrogated high glucose stimulation of global protein synthesis and matrix protein laminin γ1. Tadalafil inhibited high glucose-induced activation of mechanistic target of rapamycin complex 1 and laminin γ1 accumulation in an AMP-activated protein kinase (AMPK)-dependent manner. Tadalafil increased AMPK phosphorylation by stimulating calcium-calmodulin kinase kinase β. Tadalafil rapidly increased the expression and activity of the H2S-generating enzyme cystathionine γ-lyase (CSE) by promoting its translation. dl-Propargylglycine, a CSE inhibitor, and siRNA against CSE inhibited tadalafil-induced AMPK phosphorylation and abrogated the tadalafil effect on high glucose stimulation of laminin γ1. In tadalafil-treated podocytes, we examined the interaction between H2S and nitric oxide (NO). Nω-Nitro-l-arginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil induction of H2S and AMPK phosphorylation. Tadalafil rapidly augmented inducible NOS (iNOS) expression by increasing its mRNA, and siRNA for iNOS and 1400W, an iNOS blocker, inhibited tadalafil stimulation of CSE expression and AMPK phosphorylation. We conclude that tadalafil amelioration of high glucose stimulation of synthesis of proteins including matrix proteins in podocytes requires integration of the NO-H2S-AMPK axis leading to the inhibition of high glucose-induced mechanistic target of rapamycin complex 1

  18. Quercetin protects against high glucose-induced damage in bone marrow-derived endothelial progenitor cells.

    PubMed

    Zhao, Li-Rong; Du, Yu-Jun; Chen, Lei; Liu, Zhi-Gang; Pan, Yue-Hai; Liu, Jian-Feng; Liu, Bin

    2014-10-01

    Endothelial progenitor cells (EPCs), a group of bone marrow-derived pro-angiogenic cells, contribute to vascular repair after damage. EPC dysfunction exists in diabetes and results in poor wound healing in diabetic patients with trauma or surgery. The aim of the present study was to determine the effect of quercetin, a natural flavonoid on high glucose‑induced damage in EPCs. Treatment with high glucose (40 mM) decreased cell viability and migration, and increased oxidant stress, as was evidenced by the elevated levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase in bone marrow-derived EPCs. Moreover, high glucose reduced the levels of endothelial nitric oxide synthase (eNOS) phosphorylation, nitric oxide (NO) production and intracellular cyclic guanosine monophosphate (cGMP). Quercetin supplement protected against high glucose‑induced impairment in cell viability, migration, oxidant stress, eNOS phosphorylation, NO production and cGMP levels. Quercetin also increased Sirt1 expression in EPCs. Inhibition of Sirt1 by a chemical antagonist sirtinol abolished the protective effect of quercetin on eNOS phosphorylation, NO production and cGMP levels following high glucose stress. To the best of our knowledge, the results provide the first evidence that quercetin protects against high glucose‑induced damage by inducing Sirt1-dependent eNOS upregulation in EPCs, and suggest that quercetin is a promising therapeutic agent for diabetic patients undergoing surgery or other invasive procedures. PMID:25197782

  19. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    PubMed

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. PMID:27234048

  20. Effect of Baechu Kimchi Added Ecklonia cava Extracts on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Lee, Hyun-Ah; Song, Yeong-Ok; Jang, Mi-Soon; Han, Ji-Sook

    2014-01-01

    Endothelial cell dysfunction is considered to be a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of a baechu kimchi added Ecklonia cava extract (BKE) against high glucose induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced cytotoxicity, whereas treatment with BKE protected HUVECs from high glucose induced damage; by restoring cell viability. In addition, BKE reduced lipid peroxidation, intracellular reactive oxygen species and nitric oxide levels in a dose dependent manner. Treatment with high glucose concentrations also induced the overexpression of inducible nitric oxide synthase, cyclooxygenase-2 and NF-κB proteins in HUVECs, but BKE treatment significantly reduced the overexpression of these proteins. These findings indicate that BKE may be a valuable treatment against high glucose-induced oxidative stress HUVECs. PMID:25320714

  1. Effect of Baechu Kimchi Added Ecklonia cava Extracts on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells.

    PubMed

    Lee, Hyun-Ah; Song, Yeong-Ok; Jang, Mi-Soon; Han, Ji-Sook

    2014-09-01

    Endothelial cell dysfunction is considered to be a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of a baechu kimchi added Ecklonia cava extract (BKE) against high glucose induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced cytotoxicity, whereas treatment with BKE protected HUVECs from high glucose induced damage; by restoring cell viability. In addition, BKE reduced lipid peroxidation, intracellular reactive oxygen species and nitric oxide levels in a dose dependent manner. Treatment with high glucose concentrations also induced the overexpression of inducible nitric oxide synthase, cyclooxygenase-2 and NF-κB proteins in HUVECs, but BKE treatment significantly reduced the overexpression of these proteins. These findings indicate that BKE may be a valuable treatment against high glucose-induced oxidative stress HUVECs. PMID:25320714

  2. Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance

    PubMed Central

    Liu, Jiarong; Franklin, John L.; Messina, Joseph L.; Hill, Helliner S.; Moellering, Douglas R.; Walton, R. Grace; Martin, Mitchell; Garvey, W. Timothy

    2009-01-01

    Tribbles homolog 3 (TRIB3) was found to inhibit insulin-stimulated Akt phosphorylation and modulate gluconeogenesis in rodent liver. Currently, we examined a role for TRIB3 in skeletal muscle insulin resistance. Ten insulin-sensitive, ten insulin-resistant, and ten untreated type 2 diabetic (T2DM) patients were metabolically characterized by hyperinsulinemic euglycemic glucose clamps, and biopsies of vastus lateralis were obtained. Skeletal muscle samples were also collected from rodent models including streptozotocin (STZ)-induced diabetic rats, db/db mice, and Zucker fatty rats. Finally, L6 muscle cells were used to examine regulation of TRIB3 by glucose, and stable cell lines hyperexpressing TRIB3 were generated to identify mechanisms underlying TRIB3-induced insulin resistance. We found that 1) skeletal muscle TRIB3 protein levels are significantly elevated in T2DM patients; 2) muscle TRIB3 protein content is inversely correlated with glucose disposal rates and positively correlated with fasting glucose; 3) skeletal muscle TRIB3 protein levels are increased in STZ-diabetic rats, db/db mice, and Zucker fatty rats; 4) stable TRIB3 hyperexpression in muscle cells blocks insulin-stimulated glucose transport and glucose transporter 4 (GLUT4) translocation and impairs phosphorylation of Akt, ERK, and insulin receptor substrate-1 in insulin signal transduction; and 5) TRIB3 mRNA and protein levels are increased by high glucose concentrations, as well as by glucose deprivation in muscle cells. These data identify TRIB3 induction as a novel molecular mechanism in human insulin resistance and diabetes. TRIB3 acts as a nutrient sensor and could mediate the component of insulin resistance attributable to hyperglycemia (i.e., glucose toxicity) in diabetes. PMID:19996382

  3. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest

    SciTech Connect

    Kim, Dong Il; Park, Soo Hyun

    2013-06-14

    Highlights: •The pathophysiological role of IL-6 in high glucose-induced podocyte loss. •The novel role of PGC-1α in the development of diabetic nephropathy. •Signaling of IL-6 and PGC-1α in high glucose-induced dysfunction of podocyte. -- Abstract: Podocyte loss, which is mediated by podocyte apoptosis, is implicated in the onset of diabetic nephropathy. In this study, we investigated the involvement of interleukin (IL)-6 in high glucose-induced apoptosis of rat podocytes. We also examined the pathophysiological role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in this system. High glucose treatment induced not only podocyte apoptosis but also podocyte growth arrest. High glucose treatment also increased IL-6 secretion and activated IL-6 signaling. The high glucose-induced podocyte apoptosis was blocked by IL-6 neutralizing antibody. IL-6 treatment or overexpression induced podocyte apoptosis and growth arrest, and IL-6 siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Furthermore, high glucose or IL-6 treatment increased PGC-1α expression, and PGC-1α overexpression also induced podocyte apoptosis and growth arrest. PGC-1α siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Collectively, these findings showed that high glucose promoted apoptosis and cell growth arrest in podocytes via IL-6 signaling. In addition, PGC-1α is involved in podocyte apoptosis and cell growth arrest. Therefore, blocking IL-6 and its downstream mediators such as IL6Rα, gp130 and PGC-1α may attenuate the progression of diabetic nephropathy.

  4. Curcumin Protects Neonatal Rat Cardiomyocytes against High Glucose-Induced Apoptosis via PI3K/Akt Signalling Pathway

    PubMed Central

    Yu, Wei; Zha, Wenliang; Ke, Zhiqiang; Min, Qing; Li, Cairong; Sun, Huirong; Liu, Chao

    2016-01-01

    The function of curcumin on NADPH oxidase-related ROS production and cardiac apoptosis, together with the modulation of protein signalling pathways, was investigated in cardiomyocytes. Primary cultures of neonatal rat cardiomyocytes were exposed to 30 mmol/L high glucose with or without curcumin. Cell viability, apoptosis, superoxide formation, the expression of NADPH oxidase subunits, and potential regulatory molecules, Akt and GSK-3β, were assessed in cardiomyocytes. Cardiomyocytes exposure to high glucose led to an increase in both cell apoptosis and intracellular ROS levels, which were strongly prevented by curcumin treatment (10 μM). In addition, treatment with curcumin remarkably suppressed the increased activity of Rac1, as well as the enhanced expression of gp91phox and p47phox induced by high glucose. Lipid peroxidation and SOD were reversed in the presence of curcumin. Furthermore, curcumin treatment markedly inhibited the reduced Bcl-2/Bax ratio elicited by high glucose exposure. Moreover, curcumin significantly increased Akt and GSK-3β phosphorylation in cardiomyocytes treated with high glucose. In addition, LY294002 blocked the effects of curcumin on cardiomyocytes exposure to high glucose. In conclusion, these results demonstrated that curcumin attenuated high glucose-induced cardiomyocyte apoptosis by inhibiting NADPH-mediated oxidative stress and this protective effect is most likely mediated by PI3K/Akt-related signalling pathway. PMID:26989696

  5. Protective Role of Morin, a Flavonoid, against High Glucose Induced Oxidative Stress Mediated Apoptosis in Primary Rat Hepatocytes

    PubMed Central

    Kapoor, Radhika; Kakkar, Poonam

    2012-01-01

    Apoptosis is an early event of liver damage in diabetes and oxidative stress has been linked to accelerate the apoptosis in hepatocytes. Therefore, the compounds that can scavenge ROS may confer regulatory effects on high-glucose induced apoptosis. In the present study, primary rat hepatocytes were exposed to high concentration (40 mM) of glucose. At this concentration decreased cell viability and enhanced ROS generation was observed. Depleted antioxidant status of hepatocytes under high glucose stress was also observed as evident from transcriptional level and activities of antioxidant enzymes. Further, mitochondrial depolarisation was accompanied by the loss of mitochondrial integrity and altered expression of Bax and Bcl-2. Increased translocation of apoptotic proteins like AIF (Apoptosis inducing factor) & Endo-G (endonuclease-G) from its resident place mitochondria to nucleus was also observed. Cyt-c residing in the inter-membrane space of mitochondria also translocated to cytoplasm. These apoptotic proteins initiated caspase activation, DNA fragmentation, chromatin condensation, increased apoptotic DNA content in glucose treated hepatocytes, suggesting mitochondria mediated apoptotic mode of cell death. Morin, a dietary flavonoid from Psidium guajava was effective in increasing the cell viability and decreasing the ROS level. It maintained mitochondrial integrity, inhibited release of apoptotic proteins from mitochondria, prevented DNA fragmentation, chromatin condensation and hypodiploid DNA upon exposure to high glucose. This study confirms the capacity of dietary flavonoid Morin in regulating apoptosis induced by high glucose via mitochondrial mediated pathway through intervention of oxidative stress. PMID:22899998

  6. Effects of astragalosides from Radix Astragali on high glucose-induced proliferation and extracellular matrix accumulation in glomerular mesangial cells

    PubMed Central

    CHEN, XIAO; WANG, DONG-DONG; WEI, TONG; HE, SU-MEI; ZHANG, GUAN-YING; WEI, QUN-LI

    2016-01-01

    Diabetic nephropathy (DN) exhibits a deteriorating course that may lead to end-stage renal failure. Astragalosides have been clinically tested for the treatment of DN, but the mechanism is unclear at present. In this study, the effects of astragalosides were investigated on high glucose-induced proliferation and expression of transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), type IV collagen (colIV) and fibronectin (FN) in glomerular mesangial cells (MCs). Cell proliferation was determined by 5-bromo-2′-deoxyuridine assay, and the expression of TGF-β1, CTGF, colIV and FN mRNA and proteins in MCs was detected by reverse transcription-polymerase chain reaction and ELISA assay, respectively. The results showed that high glucose clearly induced the proliferation of MCs and increased the expression of TGF-β1, CTGF, colIV and FN. Treatment with 50, 100, 200 µg/ml astragalosides inhibited cell proliferation and the expression of TGF-β1, CTGF, colIV and FN induced by high glucose. Thus, it is concluded that astragalosides inhibit the increased cell proliferation and expression of major extracellular matrix proteins that are induced by high glucose, indicating their value for the prophylaxis and therapy of DN. PMID:27313676

  7. Myricitrin Attenuates High Glucose-Induced Apoptosis through Activating Akt-Nrf2 Signaling in H9c2 Cardiomyocytes.

    PubMed

    Zhang, Bin; Chen, Yaping; Shen, Qiang; Liu, Guiyan; Ye, Jingxue; Sun, Guibo; Sun, Xiaobo

    2016-01-01

    Hyperglycemia, as well as diabetes mellitus, has been shown to trigger cardiac cell apoptosis. We have previously demonstrated that myricitrin prevents endothelial cell apoptosis. However, whether myricitrin can attenuate H9c2 cell apoptosis remains unknown. In this study, we established an experiment model in H9c2 cells exposed to high glucose. We tested the hypothesis that myricitrin may inhibit high glucose (HG)-induced cardiac cell apoptosis as determined by TUNEL staining. Furthermore, myricitrin promoted antioxidative enzyme production, suppressed high glucose-induced reactive oxygen species (ROS) production and decreased mitochondrial membrane potential (MMP) in H9c2 cells. This agent significantly inhibited apoptotic protein expression, activated Akt and facilitated the transcription of NF-E2-related factor 2 (Nrf2)-mediated protein (heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO-1) expression as determined by Western blotting. Significantly, an Akt inhibitor (LY294002) or HO-1 inhibitor (ZnPP) not only inhibited myricitrin-induced HO-1/NQO-1 upregulation but also alleviated its anti-apoptotic effects. In summary, these observations demonstrate that myricitrin activates Nrf2-mediated anti-oxidant signaling and attenuates H9c2 cell apoptosis induced by high glucose via activation of Akt signaling. PMID:27399653

  8. Protective Effects of Panax notoginseng Saponins against High Glucose-Induced Oxidative Injury in Rat Retinal Capillary Endothelial Cells.

    PubMed

    Fan, Yue; Qiao, Yuan; Huang, Jianmei; Tang, Minke

    2016-01-01

    Diabetic retinopathy, a leading cause of visual loss and blindness, is characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for diabetic retinopathy and is associated with increased oxidative stress in the retina. In this study, we investigated the potential protective effects of Panax notoginseng Saponins (PNS) in retinal capillary endothelial cells (RCECs) exposed to high glucose conditions. We found a pronounced increase in cell viability in rat RCECs incubated with both PNS and high glucose (30 mM) for 48 h or 72 h. The increased viability was accompanied by reduced intracellular hydrogen peroxide (H2O2) and superoxide (O2 (-)), decreased mitochondrial reactive oxygen species (ROS), and lowered malondialdehyde (MDA) levels. PNS also increased the activities of total superoxide dismutase (SOD), MnSOD, catalase (CAT), and glutathione peroxidase (GSH-PX). The glutathione (GSH) content also increased after PNS treatment. Furthermore, PNS reduced NADPH oxidase 4 (Nox4) expression. These results indicate that PNS exerts a protective effect against high glucose-induced injury in RCECs, which may be partially attributed to its antioxidative function. PMID:27019662

  9. Protective Effects of Panax notoginseng Saponins against High Glucose-Induced Oxidative Injury in Rat Retinal Capillary Endothelial Cells

    PubMed Central

    Fan, Yue; Qiao, Yuan; Huang, Jianmei

    2016-01-01

    Diabetic retinopathy, a leading cause of visual loss and blindness, is characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for diabetic retinopathy and is associated with increased oxidative stress in the retina. In this study, we investigated the potential protective effects of Panax notoginseng Saponins (PNS) in retinal capillary endothelial cells (RCECs) exposed to high glucose conditions. We found a pronounced increase in cell viability in rat RCECs incubated with both PNS and high glucose (30 mM) for 48 h or 72 h. The increased viability was accompanied by reduced intracellular hydrogen peroxide (H2O2) and superoxide (O2−), decreased mitochondrial reactive oxygen species (ROS), and lowered malondialdehyde (MDA) levels. PNS also increased the activities of total superoxide dismutase (SOD), MnSOD, catalase (CAT), and glutathione peroxidase (GSH-PX). The glutathione (GSH) content also increased after PNS treatment. Furthermore, PNS reduced NADPH oxidase 4 (Nox4) expression. These results indicate that PNS exerts a protective effect against high glucose-induced injury in RCECs, which may be partially attributed to its antioxidative function. PMID:27019662

  10. SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in skeletal muscle cells.

    PubMed

    Zhang, Hao-Hao; Ma, Xiao-Jun; Wu, Li-Na; Zhao, Yan-Yan; Zhang, Peng-Yu; Zhang, Ying-Hui; Shao, Ming-Wei; Liu, Fei; Li, Fei; Qin, Gui-Jun

    2015-05-01

    Insulin resistance is often characterized as the most critical factor contributing to the development of type 2 diabetes mellitus (T2DM). Sustained high glucose is an important extracellular environment that induces insulin resistance. Acquired insulin resistance is associated with reduced insulin-stimulated mitochondrial activity as a result of increased mitochondrial dysfunction. Silent information regulator 1 (SIRT1) is one member of the SIRT2 (Sir2)-like family of proteins involved in glucose homeostasis and insulin secretion in mammals. Although SIRT1 has a therapeutic effect on metabolic deterioration in insulin resistance, it is still not clear how SIRT1 is involved in the development of insulin resistance. Here, we demonstrate that pcDNA3.1 vector-mediated overexpression of SIRT1 attenuates insulin resistance in the high glucose-induced insulin-resistant skeleton muscle cells. These beneficial effects were associated with ameliorated mitochondrial dysfunction. Further studies have demonstrated that SIRT1 restores mitochondrial complex I activity leading to decreased oxidative stress and mitochondrial dysfunction. Furthermore, SIRT1 significantly elevated the level of another SIRT which is named SIRT3, and SIRT3 siRNA-suppressed SIRT1-induced mitochondria complex activity increments. Taken together, these results showed that SIRT1 improves insulin sensitivity via the amelioration of mitochondrial dysfunction, and this is achieved through the SIRT1-SIRT3-mitochondrial complex I pathway. PMID:25710929

  11. Effects of methanolic extracts of edible plants on RAGE in high-glucose-induced human endothelial cells.

    PubMed

    Okada, Mizue; Okada, Yoshinori

    2015-01-01

    Advanced glycation end products' (AGEs) engagement of a cell-surface receptor for AGEs (RAGE) has been causally implicated in the pathogenesis of vascular complications in diabetic patients. Methanolic extracts from edible plants (MEEP) are naturally occurring phenolic compounds. The phenolic compounds have been reported to possess potent radical-scavenging properties. We investigated whether MEEP could inhibit high glucose-induced RAGE production through interference with reactive oxygen species generation in endothelial cells (ECs). ECs were incubated with 4.5 g/l of glucose in culture medium treated with 21 MEEP. Determination of RAGE production in the culture supernatants was performed by colorimetric ELISA. DNA damage was determined by using the 8-hydroxydeoxyguanosine ELISA kit. Because peroxynitrite radicals with stronger toxicity were produced by nitric oxide radical (NO), the NO scavenging activity of MEEP was assessed as nitrite generation. Peroxynitrite radical-dependent oxidation inhibition by MEEP was estimated by the Crow method. The results showed that four extracts reduced RAGE production. The extract from onion peel showed the highest RAGE production inhibition activity, followed by that of onion rhizome, cow pea and burdock. The results showed that RAGE production is correlated with the above-mentioned indicators. This study supports the utilization of four extracts for improved treatment of diabetic complications. PMID:26407112

  12. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    SciTech Connect

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  13. Serelaxin (recombinant human relaxin-2) prevents high glucose-induced endothelial dysfunction by ameliorating prostacyclin production in the mouse aorta.

    PubMed

    Ng, Hooi Hooi; Leo, Chen Huei; Parry, Laura J

    2016-05-01

    Diabetes-induced endothelial dysfunction is a critical initiating factor in the development of cardiovascular complications. Treatment with relaxin improves tumour necrosis factor α-induced endothelial dysfunction by enhancing endothelial nitric oxide synthase (eNOS) activity and restoring superoxide dismutase 1 protein in rat aortic rings ex vivo. It is, therefore, possible that relaxin treatment could alleviate endothelial dysfunction in diabetes. This study aimed to test the hypothesis that serelaxin (recombinant human relaxin-2) prevents high glucose-induced vascular dysfunction in the mouse aorta. Abdominal aortae were isolated from C57BL/6 male mice and incubated in M199 media for 3days with either normal glucose (5.5mM) or high glucose (30mM), and co-incubated with placebo (20mM sodium acetate) or 10nM serelaxin at 37°C in 5% CO2. Vascular function was analysed using wire-myography. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh) (pEC50; normal glucose=7.66±0.10 vs high glucose=7.29±0.10, n=11-12, P<0.05) and the contraction induced by NOS inhibitor, L-NAME (200μM) (normal glucose=59.9±8.3% vs high glucose=38.7±4.3%, n=6, P<0.05), but had no effect on the endothelium-independent agonist, sodium nitroprusside (SNP)-mediated relaxation. Treatment with serelaxin restored endothelial function (pEC50; 7.83±0.11, n=11) but not NO availability. The presence of the cyclooxygenase (COX) inhibitor, indomethacin (1μM) (pEC50; control=7.29±0.10 vs indo=7.74±0.18, n=6-12, P<0.05) and a superoxide dismutase mimetic, tempol (10μM) (pEC50; control=7.29±0.10 vs tempol=7.82±0.05, n=6-12, P<0.01) significantly improved sensitivity to ACh in high glucose treated aortae, but had no effect in serelaxin treated aortae. This suggests that high glucose incubation alters the superoxide and COX-sensitive pathway, which was normalized by co-incubation with serelaxin. Neither high glucose incubation nor serelaxin

  14. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.

    PubMed

    Song, Seung Eun; Jo, Hye Jun; Kim, Yong-Woon; Cho, Young-Je; Kim, Jae-Ryong; Park, So-Young

    2016-04-01

    This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6-25 mM) increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM) prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM). High glucose increased reactive oxygen species (ROS) generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX) 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK)1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor) prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF)-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells. PMID:27103328

  15. c-Src tyrosine kinase mediates high glucose-induced endothelin-1 expression.

    PubMed

    Manea, Simona-Adriana; Fenyo, Ioana Madalina; Manea, Adrian

    2016-06-01

    Endothelin-1 (ET-1) plays an important role in the pathophysiology of diabetes-associated cardiovascular disorders. The molecular mechanisms leading to ET-1 upregulation in diabetes are not entirely defined. c-Src tyrosine kinase regulates important pathophysiological aspects of vascular response to insults. In this study, we aimed to elucidate whether high glucose-activated c-Src signaling plays a role in the regulation of ET-1 expression. Human endothelial cells EAhy926 (ECs) were exposed to normal or high levels of glucose for 24h. Male C57BL/6J mice were rendered diabetic with streptozotocin and then treated with a specific c-Src inhibitor (Src I1) or c-Src siRNA. Real-time PCR, Western blot, and ELISA, were used to investigate ET-1 regulation. The c-Src activity and expression were selectively downregulated by pharmacological inhibition and siRNA-mediated gene silencing, respectively. High glucose dose-dependently up-regulated c-Src phosphorylation and ET-1 gene and protein expression levels in human ECs. Chemical inhibition or silencing of c-Src significantly decreased the high-glucose augmented ET-1 expression in cultured ECs. In vivo studies showed significant elevations in the aortic ET-1 mRNA expression and plasma ET-1 concentration in diabetic mice compared to non-diabetic animals. Treatment with Src I1, as well as in vivo silencing of c-Src, significantly reduced the upregulated ET-1 expression in diabetic mice. These data provide new insights into the regulation of ET-1 expression in endothelial cells in diabetes. Pharmacological targeting of c-Src activity and/or expression may represent a potential therapeutic strategy to reduce ET-1 level and to counteract diabetes-induced deleterious vascular effects. PMID:27102411

  16. High glucose-induced proteome alterations in hepatocytes and its possible relevance to diabetic liver disease.

    PubMed

    Chen, Jing-Yi; Chou, Hsiu-Chuan; Chen, You-Hsuan; Chan, Hong-Lin

    2013-11-01

    Hyperglycemia can cause several abnormalities in liver cells, including diabetic liver disease. Previous research has shown that high blood glucose levels can damage liver cells through glycoxidation. However, the detailed molecular mechanisms underlying the effects of high blood glucose on the development of diabetic liver disease have yet to be elucidated. In this study, we cultured a liver cell line (Chang liver cell) in mannitol-balanced 5.5 mM, 25 mM and 100 mM d-glucose media and evaluated protein expression and redox regulation. We identified 141 proteins that showed significant changes in protein expression and 29 proteins that showed significant changes in thiol reactivity, in response to high glucose concentration. Several proteins involved in transcription-control, signal transduction, redox regulation and cytoskeleton regulation showed significant changes in expression, whereas proteins involved in protein folding and gene regulation displayed changes in thiol reactivity. Further analyses of clinical plasma specimens confirmed that the proteins AKAP8L, galectin-3, PGK 1, syntenin-1, Abin 2, aldose reductase, CD63, GRP-78, GST-pi, RXR-gamma, TPI and vimentin showed type 2 diabetic liver disease-dependent alterations. In summary, in this study we used a comprehensive hepatocyte-based proteomic approach to identify changes in protein expression and to identify redox-associated diabetic liver disease markers induced by high glucose concentration. Some of the identified proteins were validated with clinical samples and are presented as potential targets for the prognosis and diagnosis of diabetic liver disease. PMID:24011924

  17. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    SciTech Connect

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  18. MicroRNA-24 inhibits high glucose-induced vascular smooth muscle cell proliferation and migration by targeting HMGB1.

    PubMed

    Yang, Jian; Chen, Lihua; Ding, Jiawang; Fan, Zhixing; Li, Song; Wu, Hui; Zhang, Jing; Yang, Chaojun; Wang, Huibo; Zeng, Ping; Yang, Jun

    2016-07-25

    Dysfunction of vascular smooth muscle cells (VSMCs) performs a key role in the pathogenesis of diabetic vascular disease. Recent studies have reported that microRNA-24 (miR-24) may be implicated in diabetes and atherosclerotic vascular diseases. This study was designed to explore the role of miR-24 on VSMC proliferation and migration under high glucose conditions mimicking diabetes, and reveal the underlying mechanism. VSMCs were isolated from rat thoracic aortas, treated with normal glucose (NG, 5.5mM) or high glucose (HG, 30mM) during an incubation period. Cell viability, proliferation and migration were detected by trypan blue staining, BrdU incorporation assay and transwell chamber assay. Gene and protein expression were analyzed by qRT-PCR and Western blot respectively. We also used electrophoretic mobility shift assay (EMSA) to detect nuclear factor kappaB (NF-κB) DNA binding. TNF-α and IL-6 levels were determined by enzyme-linked immunosorbent assay. The results showed that adenovirus-mediated miR-24 overexpression significantly inhibited HG-stimulated VSMC proliferation and migration. Meanwhile, high mobility group box-1 (HMGB1) as a target of miR-24, was also markedly suppressed after miR-24 transfection. Additionally, NF-κB nuclear translocation and DNA binding, TNF-α and IL-6 production were all decreased associated with the down-regulation of HMGB1. The above data indicated that miR-24 is a crucial regulator of high glucose-induced proliferation and migration in VSMCs, and suggests that elevation of miR-24 in vascular system may be a novel therapeutic strategy to prevent the development of diabetic atherosclerosis. PMID:27085480

  19. Hyperoside inhibits high-glucose-induced vascular inflammation in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Kwak, Soyoung; Kwon, O-Jun; Bae, Jong-Sup

    2014-10-01

    Hyperoside, an active compound from the genera of Hypericum and Crataegus, was reported to have antioxidant, antihyperglycemic, anticancer, anti-inflammatory, and anticoagulant activities. Vascular inflammatory process has been suggested to play a key role in initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Thus, in this study, we attempted to determine whether hyperoside can suppress vascular inflammatory processes induced by high glucose (HG) in human umbilical vein endothelial cells (HUVECs) and mice. Data showed that HG induced markedly increased vascular permeability, monocyte adhesion, expressions of cell adhesion molecules (CAMs), formation of reactive oxygen species (ROS), and activation of nuclear factor (NF)-κB. Remarkably, all of the above-mentioned vascular inflammatory effects of HG were attenuated by pretreatment with hyperoside. Vascular inflammatory responses induced by HG are critical events underlying development of various diabetic complications; therefore, our results suggest that hyperoside may have significant therapeutic benefits against diabetic complications and atherosclerosis. PMID:24609927

  20. Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6.

    PubMed

    D'Onofrio, Nunzia; Servillo, Luigi; Giovane, Alfonso; Casale, Rosario; Vitiello, Milena; Marfella, Raffaele; Paolisso, Giuseppe; Balestrieri, Maria Luisa

    2016-07-01

    Ergothioneine (Egt), the betaine of 2-mercapto-L-histidine, is a dietary antioxidant protecting against many diseases, including cardiovascular disease (CVD), through a redox mechanism different from alkylthiols. Here, experiments were designed to evaluate the mechanisms underlying the beneficial effect of Egt against hyperglycaemia-induced senescence in endothelial cells. To this end, cells were incubated with increasing concentrations of Egt (0.01-1.00mM) for 12h followed by incubation for 48h with high-glucose (25mM). Cell evaluation indicated that viability was not affected by mM concentrations of Egt and that the high-glucose cytotoxicity was prevented with the highest efficacy at 0.5mM Egt. The cytoprotective effect of Egt was paralleled by reduced ROS production, cell senescence, and, interestingly, the formation of hercynine (EH), a betaine we recently found to be produced during the Egt oxidation pathway. Notably, the Egt beneficial effect was exerted through the upregulation of sirtuin 1 (SIRT1) and sirtuin 6 (SIRT6) expression and the downregulation of p66Shc and NF-κB. SIRT1 activity inhibition and SIRT6 gene silencing by small interfering RNA abolished the protective effect of Egt against the high-glucose-induced endothelial senescence. These data provide the first evidence of the Egt ability to interfere with endothelial senescence linked to hyperglycaemia through the regulation of SIRT1 and SIRT6 signaling, thus further strengthening the already assessed role of these two histone deacetylases in type 2 diabetes. PMID:27101740

  1. Aralia taibaiensis Protects Cardiac Myocytes against High Glucose-Induced Oxidative Stress and Apoptosis.

    PubMed

    Duan, Jialin; Wei, Guo; Guo, Chao; Cui, Jia; Yan, Jiajia; Yin, Ying; Guan, Yue; Weng, Yan; Zhu, Yanrong; Wu, Xiaoxiao; Wang, Yanhua; Xi, Miaomiao; Wen, Aidong

    2015-01-01

    Patients with type 2 diabetes have increased cardiovascular disease risk compared with those without diabetes. Hyperglycemia can induce reactive oxygen species (ROS) generation, which contributes to the development of diabetic cardiomyopathy. Our previous study has demonstrated that the total saponins of Aralia taibaiensis (sAT), a frequently-used antidiabetic medicine in traditional Chinese medicine (TCM), can scavenge free radicals in vitro and have good anti-oxidant ability on lipid peroxidation of rat liver microsomes. This work was designed to investigate whether sAT could protect the heart while it was used in the treatment of diabetes. Oxidative stress was induced in H9c2 cells by high glucose (33 mM) and glucose oxidase (15 mU, G/GO) and the protective effects of sAT were evaluated. Treatment of H9c2 cells with G/GO resulted in an increase in cell death, intracellular ROS level and cell oxidative injury, which were markedly reduced by sAT treatment. Further study revealed that sAT induced the nuclear translocation of Nrf2 and expression of its downstream targets. Moreover, Nrf2 siRNA markedly abolished the cytoprotective effects of sAT. sAT exerted cytoprotective effects against oxidative stress induced by hyperglycemia and the cardioprotective effects of sAT might be through the Nrf2/ARE pathway. Thus, sAT might be a promising candidate for the treatment of diabetic cardiomyopathy. PMID:26446201

  2. High glucose induces dysfunction of airway epithelial barrier through down-regulation of connexin 43.

    PubMed

    Yu, Hongmei; Yang, Juan; Zhou, Xiangdong; Xiao, Qian; Lü, Yang; Xia, Li

    2016-03-01

    The airway epithelium is a barrier to the inhaled antigens and pathogens. Connexin 43 (Cx43) has been found to play critical role in maintaining the function of airway epithelial barrier and be involved in the pathogenesis of the diabetic retinal vasculature, diabetes nephropathy and diabetes skin. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that the down-regulation of Cx43 induced by HG alters the expression of tight junctions (zonula occludens-1 (ZO-1) and occludin) and contributes to dysfunction of airway epithelial barrier, and Cx43 plays a critical role in the process in human airway epithelial cells (16 HBE). We show that high glucose (HG) decreased the expression of ZO-1 and occludin, disassociated interaction between Cx43 and tight junctions, and then increased airway epithelial transepithelial electrical resistance (TER) and permeability by down-regulation of Cx43 in human airway epithelial cells. These observations demonstrate an important role for Cx43 in regulating HG-induced dysfunction of airway epithelial barrier. These findings may bring new insights into the molecular pathogenesis of pulmonary infection related to diabetes mellitus and lead to novel therapeutic intervention for the dysfunction of airway epithelial barrier in chronic inflammatory airway diseases. PMID:26902399

  3. Cytoprotective mechanism of ferulic acid against high glucose-induced oxidative stress in cardiomyocytes and hepatocytes

    PubMed Central

    Song, Yuan; Wen, Luona; Sun, Jianxia; Bai, Weibin; Jiao, Rui; Hu, Yunfeng; Peng, Xichun; He, Yong; Ou, Shiyi

    2016-01-01

    Background Ferulic acid (FA), a phenolic acid, is a potential therapy for diabetes mellitus. FA has been shown to protect against hepatic and myocardial injury and oxidative stress in obese rats with late-stage diabetes, but the mechanism of the antioxidative activity of FA is still unclear. Objective The aim of this study was to elucidate whether FA can prevent damage to cardiomyocytes and hepatocytes caused by high glucose (HG)-induced oxidative stress and whether the protection effects of FA on these cells are related to the Keap1-Nrf2-ARE signaling pathways. Design Cells were divided into four groups: a control group (cultured with normal medium), an HG group (medium containing 80 mmol/L glucose), an FA+HG group (medium containing 80 mmol/L glucose and 1, 5, or 10 µg/mL FA), and a dimethylbiguanide (DMBG)+HG group (medium containing 80 mmol/L glucose and 50 µg/mL DMBG). Results FA treatment significantly increased cell viability and significantly decreased cell apoptosis compared with the HG-treated group. Moreover, FA down-regulated the expression of Keap1 protein and up-regulated the expression of Nrf2 protein and gene transcription of HO-1 and glutathione S-transferase (GST) in a dose-dependent manner. Conclusion FA alleviated the HG-induced oxidative stress and decreased cell apoptosis in hepatocytes and cardiomyocytes. These effects were associated with the Keap1-Nrf2-ARE signaling pathway. PMID:26869273

  4. Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells.

    PubMed

    Lan, Tian; Liu, Weihua; Xie, Xi; Xu, Suowen; Huang, Kaipeng; Peng, Jing; Shen, Xiaoyan; Liu, Peiqing; Wang, Lijing; Xia, Pu; Huang, Heqing

    2011-12-01

    Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphK(WT)) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphK(G82D)) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphK(G82D) markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy. PMID:21998146

  5. Sphingosine Kinase-1 Pathway Mediates High Glucose-Induced Fibronectin Expression in Glomerular Mesangial Cells

    PubMed Central

    Lan, Tian; Liu, Weihua; Xie, Xi; Xu, Suowen; Huang, Kaipeng; Peng, Jing; Shen, Xiaoyan; Liu, Peiqing; Wang, Lijing; Xia, Pu

    2011-01-01

    Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphKWT) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphKG82D) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphKG82D markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy. PMID:21998146

  6. Astragaloside IV prevents high glucose-induced podocyte apoptosis via downregulation of TRPC6.

    PubMed

    Yao, Xing-Mei; Liu, Yu-Jun; Wang, Yun-Man; Wang, Hao; Zhu, Bing-Bing; Liang, Yong-Ping; Yao, Wei-Guo; Yu, Hui; Wang, Nian-Song; Zhang, Xue-Mei; Peng, Wen

    2016-06-01

    Diabetic nephropathy (DN) is one of the most important causes of end‑stage renal disease. Astragaloside IV (AS-IV) is a saponin isolated from Astragalus membranaceus, which possesses various pharmacological activities. AS‑IV prevents podocyte apoptosis and ameliorates renal injury in DN; however, few studies have focused on its effects on ion channels. The transient receptor potential channel 6 (TRPC6) is an important Ca2+‑permeable ion channel in podocytes, which is involved in high glucose (HG)-induced podocyte apoptosis. The aim of the present study was to investigate whether AS‑IV prevented HG‑induced podocyte apoptosis via TRPC6. Cultured podocytes were pre‑treated with 10, 20 or 40 µM AS‑IV for 1 h prior to HG exposure for 24 h. Apoptosis, cell viability, expression of TRPC6, nuclear factor of activated T cells (NFAT2) and B‑cell lymphoma 2‑associated X protein (Bax), as well as the intracellular Ca2+ concentration were subsequently analyzed. The results indicated that HG induced podocyte apoptosis and upregulation of TRPC6, and increased intracellular Ca2+. Furthermore, enhanced NFAT2 and Bax expression was detected. Conversely, AS‑IV protected HG‑induced podocyte apoptosis, downregulated TRPC6 expression and suppressed intracellular Ca2+ in HG-stimulated podocytes. AS‑IV also suppressed NFAT2 and Bax expression. These results suggest that AS‑IV may prevent HG-induced podocyte apoptosis via downregulation of TRPC6, which is possibly mediated via the calcineurin/NFAT signaling pathway. PMID:27109610

  7. High glucose induces autophagy of MC3T3-E1 cells via ROS-AKT-mTOR axis.

    PubMed

    Wang, Xiaoju; Feng, Zhengping; Li, Jiling; Chen, Lixue; Tang, Weixue

    2016-07-01

    In the present study, we investigate the function of ROS-AKT-mTOR axis on the apoptosis, proliferation and autophagy of MC3T3-E1 cells, and the proliferation of MC3T3-E1 cells after autophagy inhibition under high glucose conditions. MC3T3-E1 cells cultured in vitro were divided into the following groups: normal control group, N-acetylcysteine (NAC) group, 11.0 mM high glucose group, 11.0 mM high glucose + NAC group, 22.0 mM high glucose group, 22.0 mM high glucose + NAC group, CQ group, 22.0 mM high glucose + CQ group, 3-MA group and 3-MA + 22.0 mM high glucose group. ROS production was measured by DCFH-DA fluorescent probe. Cell proliferation was measured by MTT assay. Cells in different groups were stained with Annexin V-FITC/PI, and then apoptosis rate was detected by flow cytometry. Nucleus morphology was observed under fluorescence microscope after being incubated with Honchest33258. Protein expression was measured using Western blotting and immunofluorescence. Cell apoptosis and proliferation in high glucose group were increased and decreased, respectively, in a dose-dependent manner. Autophagy was significantly induced in high glucose group, even though different concentration of glucose induced autophagy in different stages of autophagy. ROS production in MC3T3-E1 cells was remarkably increased in high glucose group, but not in a dose-dependent manner. NAC, as an antioxidant, reduced ROS production and ameliorated cell apoptosis, proliferation abnormity and autophagy caused by high glucose. Expression of p-AKT and p-mTOR proteins were dramatically decreased in high glucose group, and NAC reversed their expression. In addition, 3-MA, an inhibitor of autophagy, significantly decreased the proliferation of MC3T3-E1 cells. When cocultured with 22.0 mM glucose that induced autophagy, proliferation of MC3T3-E1 cells was not affected compared to 22.0 mM high glucose group. Our present findings reveal that high glucose affects apoptosis

  8. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS

    PubMed Central

    Sun, Li-na; Liu, Xiang-chun; Chen, Xiang-jun; Guan, Guang-ju; Liu, Gang

    2016-01-01

    Aim: Caveolin-1 (cav-1) is a major multifunctional scaffolding protein of caveolae. Cav-1 is primarily expressed in mesangial cells, renal proximal tubule cells and podocytes in kidneys. Recent evidence shows that the functional connections between cav-1 and ROS play a key role in many diseases. In this study we investigated whether regulating the functional connections between cav-1 and ROS in kidneys contributed to the beneficial effects of curcumin in treating diabetic nephropathy in vitro and in vivo. Methods: Cultured mouse podocytes (mpc5) were incubated in a high glucose (HG, 30 mmol/L) medium for 24, 48 or 72 h. Male rats were injected with STZ (60 mg/kg, ip) to induce diabetes. ROS generation, SOD activity, MDA content and caspase-3 activity in the cultured cells and kidney cortex homogenate were determined. Apoptotic proteins and cav-1 phosphorylation were analyzed using Western blot analyses. Results: Incubation in HG-containing medium time-dependently increased ROS production, oxidative stress, apoptosis, and cav-1 phosphorylation in podocytes. Pretreatment with curcumin (1, 5, and 10 μmol/L) dose-dependently attenuated these abnormalities in HG-treated podocytes. Furthermore, in HG-containing medium, the podocytes transfected with a recombinant plasmid GFP-cav-1 Y14F (mutation at a cav-1 phosphorylation site) exhibited significantly decreased ROS production and apoptosis compared with the cells transfected with empty vector. In diabetic rats, administration of curcumin (100 or 200 mg/kg body weight per day, ig, for 8 weeks) not only significantly improved the renal function, but also suppressed ROS levels, oxidative stress, apoptosis and cav-1 phosphorylation in the kidneys. Conclusion: Curcumin attenuates high glucose-induced podocyte apoptosis in vitro and diabetic nephropathy in vivo partly through regulating the functional connections between cav-1 phosphorylation and ROS. PMID:26838071

  9. Ramipril protects the endothelium from high glucose-induced dysfunction through CaMKKβ/AMPK and heme oxygenase-1 activation.

    PubMed

    Tian, Shiliu; Ge, Xinfa; Wu, Ke; Yang, Huabing; Liu, Yu

    2014-07-01

    This study aims to investigate the effects of ramipril (RPL) on endothelial dysfunction associated with diabetes mellitus using cultured human aortic endothelial cells (HAECs) and a type 2 diabetic animal model. The effect of RPL on vasodilatory function in fat-fed, streptozotocin-treated rats was assessed. RPL treatment of 8 weeks alleviated insulin resistance and inhibited the decrease in endothelium-dependent vasodilation in diabetic rats. RPL treatment also reduced serum advanced glycation end products (AGE) concentration and rat aorta reactive oxygen species formation and increased aorta endothelium heme oxygenase-1 (HO-1) expression. Exposure of HAECs to high concentrations of glucose induced prolonged oxidative stress, apoptosis, and accumulation of AGEs. These effects were abolished by incubation of ramiprilat (RPT), the active metabolite of RPL. However, treatment of HAECs with STO-609, a CaMKKβ (Ca(2+)/calmodulin-dependent protein kinase kinase-β) inhibitor; compound C, an AMPK (AMP-activated protein kinase) inhibitor; and Zn(II)PPIX, a selective HO-1 inhibitor, blocked these beneficial effects of RPT. In addition, RPT increased nuclear factor erythroid 2-related factor-2 (Nrf-2) nuclear translocation and activation in a CaMKKβ/AMPK pathway-dependent manner, leading to increased expression of the Nrf-2-regulated antioxidant enzyme, HO-1. The inhibition of CaMKKβ or AMPK by pharmaceutical approach ablated RPT-induced HO-1 expression. Taken together, RPL ameliorates insulin resistance and endothelial dysfunction in diabetes via reducing oxidative stress. These effects are mediated by RPL activation of CaMKK-β, which in turn activates the AMPK-Nrf-2-HO-1 pathway for enhanced endothelial function. PMID:24741076

  10. High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells

    SciTech Connect

    Huang, Wei; Xu, Ling; Zhou, Xueqin; Gao, Chenlin; Yang, Maojun; Chen, Guo; Zhu, Jianhua; Jiang, Lan; Gan, Huakui; Gou, Fang; Feng, Hong; Peng, Juan; Xu, Yong

    2013-08-30

    Highlights: •The expression of SUMO1, SUMO2/3 under high glucose was obviously enhanced. •High glucose induced degradation of IκBα and activation of NF-κB pathway. •Sumoylation of IκBα in high glucose were significantly decreased. •The proteasome inhibitor MG132 could partially revert the degradation of IκBα. -- Abstract: The posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation of inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6 mmol/L), high glucose groups (10, 20, and 30 mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30 mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p < 0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p < 0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which

  11. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    PubMed

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy. PMID:25816073

  12. O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2.

    PubMed

    Ding, Fang; Yu, Lu; Wang, Meihui; Xu, Shengjie; Xia, Qiang; Fu, Guosheng

    2013-08-01

    Continuous hyperglycemia is considered to be the most significant pathogenesis of diabetic cardiomyopathy, which manifests as cardiac hypertrophy and subsequent heart failure. O-GlcNAcylation has attracted attention as a post-translational protein modification in the past decade. The role of O-GlcNAcylation in high glucose-induced cardiomyocyte hypertrophy remains unclear. We studied the effect of O-GlcNAcylation on neonatal rat cardiomyocytes that were exposed to high glucose and myocardium in diabetic rats induced by streptozocin. High glucose (30 mM) incubation induced a greater than twofold increase in cell size and increased hypertrophy marker gene expression accompanied by elevated O-GlcNAcylation protein levels. High glucose increased ERK1/2 but not p38 MAPK or JNK activity, and cyclin D2 expression was also increased. PUGNAc, an inhibitor of β-N-acetylglucosaminidase, enhanced O-GlcNAcylation and imitated the effects of high glucose. OGT siRNA and ERK1/2 inhibition with PD98059 treatment blunted the hypertrophic response and cyclin D2 upregulation. OGT inhibition also prevented ERK1/2 activation. We also observed concentric hypertrophy and similar changes of O-GlcNAcylation level, ERK1/2 activation and cyclin D2 expression in myocardium of diabetic rats induced by streptozocin. In conclusion, O-GlcNAcylation plays a role in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2. PMID:23665912

  13. Propolis, a Constituent of Honey, Inhibits the Development of Sugar Cataracts and High-Glucose-Induced Reactive Oxygen Species in Rat Lenses

    PubMed Central

    Shibata, Teppei; Shibata, Shinsuke; Shibata, Naoko; Kiyokawa, Etsuko; Singh, Dhirendra P.

    2016-01-01

    Purpose. This study investigated the effects of oral propolis on the progression of galactose-induced sugar cataracts in rats and the in vitro effects of propolis on high-glucose-induced reactive oxygen species (ROS) and cell death in cultured rat lens cells (RLECs). Methods. Galactose-fed rats and RLECs cultured in high glucose (55 mM) medium were treated with propolis or vehicle control. Relative lens opacity was assessed by densitometry and changes in lens morphology by histochemical analysis. Intracellular ROS levels and cell viability were measured. Results. Oral administration of propolis significantly inhibited the onset and progression of cataract in 15% and 25% of galactose-fed rats, respectively. RLECs cultured with high glucose showed a significant increase in ROS expression with reduced cell viability. Treatment of these RLECs with 5 and 50 μg/mL propolis cultured significantly reduced ROS levels and increased cell viability, indicating that the antioxidant activity of propolis protected cells against ROS-induced damage. Conclusion. Propolis significantly inhibited the onset and progression of sugar cataract in rats and mitigated high-glucose-induced ROS production and cell death. These effects may be associated with the ability of propolis to inhibit hyperglycemia-evoked oxidative or osmotic stress-induced cellular insults. PMID:27242920

  14. Anthocyanin inhibits high glucose-induced hepatic mtGPAT1 activation and prevents fatty acid synthesis through PKCζ[S

    PubMed Central

    Guo, Honghui; Li, Dan; Ling, Wenhua; Feng, Xiang; Xia, Min

    2011-01-01

    Mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 (mtGPAT1) controls the first step of triacylglycerol (TAG) synthesis and is critical to the understanding of chronic metabolic disorders such as primary nonalcoholic fatty liver disease (NAFLD). Anthocyanin, a large group of polyphenols, was negatively correlated with hepatic lipid accumulation, but its impact on mtGPAT1 activity and NAFLD has yet to be determined. Hepatoma cell lines and KKAy mice were used to investigate the impact of anthocyanin on high glucose-induced mtGPAT1 activation and hepatic steatosis. Treatment with anthocyanin cyanidin-3-O-β-glucoside (Cy-3-g) reduced high glucose-induced GPAT1 activity through the prevention of mtGPAT1 translocation from the endoplasmic reticulum to the outer mitochondrial membrane (OMM), thereby suppressing intracellular de novo lipid synthesis. Cy-3-g treatment also increased protein kinase C ζ phosphorylation and membrane translocation in order to phosphorylate the mtF0F1-ATPase β-subunit, reducing its enzymatic activity and thus inhibiting mtGPAT1 activation. In vivo studies further showed that Cy-3-g treatment significantly decreases hepatic mtGPAT1 activity and its presence in OMM isolated from livers, thus ameliorating hepatic steatosis in diabetic KKAy mice. Our findings reveal a novel mechanism by which anthocyanin regulates lipogenesis and thereby inhibits hepatic steatosis, suggesting its potential therapeutic application in diabetes and related steatotic liver diseases. PMID:21343633

  15. A novel polysaccharide compound derived from algae extracts protects retinal pigment epithelial cells from high glucose-induced oxidative damage in vitro.

    PubMed

    Xie, Peiyu; Fujii, Isao; Zhao, Ji'en; Shinohara, Makoto; Matsukura, Makoto

    2012-01-01

    Diabetic retinopathy is a common complication of diabetes mellitus (DM). The oxidative damage inflicted on retinal pigment epithelial (RPE) cells by high glucose closely approximates the molecular basis for the loss of vision associated with this disease. We investigate a novel algae-derived polysaccharide compound for its role in protecting ARPE-19 cells from high glucose-induced oxidative damage. ARPE-19 cells were cultured for 4 d with normal concentration of D-glucose, and exposed to either normal or high concentrations of D-glucose in the presence or absence of the polysaccharide compound at variety of concentrations for another 48 h. Taurine was used as a positive control. Activity of super oxide dismutase (SOD) and concentration of glutathione (GSH) were measured as well as cytotoxicity of high glucose and the polysaccharide compound. To analyse cellular damage by high glucose, activation of Annexin V and p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) were examined. Our results showed that a significant cellular damage on ARPE-19 cells after 48 h treatment with high glucose, accompanied by a decrease in SOD activity and GSH concentration; high glucose also caused ARPE-19 cell apoptosis and activation of p38MAPK and ERK. As the non-toxic polysaccharide compound protected ARPE-19 cells from high glucose-induced cellular damage, the compound recovered SOD activity and concentration of GSH in the cells. The compound also abrogated the cell apoptosis and activation of p38MAPK and ERK. Therefore, the polysaccharide compound derived from algae extracts could be unique candidate for a new class of anti-DM and anti-oxidative damage. PMID:22975494

  16. Biphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose-Induced Oxidative Stress

    PubMed Central

    Abbasi, Naser; Khosravi, Afra; Aidy, Ali; Shafiei, Massoumeh

    2016-01-01

    Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether a cytoprotective concentration range of luteolin could be separated from a cytotoxic concentration range in human MG-63 osteoblast-like cells in high-glucose condition. Methods: Cells were cultured in a normal- or high-glucose medium. Cell viability was determined with the MTT assay. The formation of intracellular reactive oxygen species (ROS) was measured using probe 2’,7’ -dichlorofluorescein diacetate, and osteogenic differentiation was evaluated with an alkaline phosphatase bioassay. Results: ROS generation, reduction in alkaline phosphatase activity, and cell death induced by high glucose were inhibited by lower concentrations of luteolin (EC50, 1.29±0.23 µM). Oxidative stress mediated by high glucose was also overcome by N-acetyl-L-cysteine. At high concentrations, luteolin caused osteoblast cell death in normal- and high-glucose states (IC50, 34±2.33 and 27±2.42 µM, respectively), as represented by increased ROS and decreased alkaline phosphatase activity. Conclusion: Our results indicated that the cytoprotective action of luteolin in glucotoxic condition was manifested in much lower concentrations, by a factor of approximately 26 and 20, than was its cytotoxic activity, which occurred under normal or glucotoxic condition, respectively. PMID:26989282

  17. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart.

    PubMed

    Pan, Yong; Zhu, Guanghui; Wang, Yi; Cai, Lu; Cai, Yuepiao; Hu, Jie; Li, Yilan; Yan, Yongbo; Wang, Zengshou; Li, Xiaokun; Wei, Tiemin; Liang, Guang

    2013-01-01

    There is increasing evidence indicating that inflammatory processes are involved in the development and progression of diabetic complications. However, effective anti-inflammatory treatments for patients who have diabetic complications have yet been practically identified. Curcumin is a main component of Curcuma longa with numerous pharmacological activities. Previously, we synthesized a novel curcumin analogue (B06) that exhibited an improved pharmacokinetic and enhanced anti-inflammatory activity compared to curcumin. The present study aimed to test the hypothesis that B06 may reduce high-glucose-induced inflammation and inflammation-mediated diabetic complications. In vitro, pretreatment with B06 at a concentration of 5 μM significantly reduced the high-glucose-induced overexpression of inflammatory cytokines in macrophages. This anti-inflammatory activity of B06 is associated with its inhibition of c-Jun N-terminal kinase/nuclear factor κB activation. In vivo, despite that B06 administration at 0.2 mg · kg(-1) · d(-1) for 6 weeks did not affect the blood glucose profile of diabetic rats, the B06-treated animals displayed significant decreases in inflammatory mediators in the serum, kidney, and heart and renal macrophage infiltration. This was accompanied with an attenuation of diabetes-induced structural and functional abnormalities in the kidney and heart. Taken together, these data suggest that the novel derivative B06 might be a potential therapeutic agent for diabetic complications via an anti-inflammatory mechanism and support the potential application in diabetic complication therapy via anti-inflammatory strategy. PMID:22819547

  18. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway

    PubMed Central

    2014-01-01

    Background Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Methods Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2′, 7′-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. Results HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. Conclusions GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability. PMID:24580748

  19. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    PubMed Central

    Cheng, Xiaofei; Ni, Bin; Zhang, Feng; Hu, Ying

    2016-01-01

    Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs) and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM). Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM) were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS) production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9), matrix metalloproteinase 3 (MMP-3), and tissue inhibitor of metalloproteinase 1 (TIMP-1), was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  20. CTRP9 induces mitochondrial biogenesis and protects high glucose-induced endothelial oxidative damage via AdipoR1 -SIRT1- PGC-1α activation.

    PubMed

    Cheng, Liang; Li, Bin; Chen, Xu; Su, Jie; Wang, Hongbing; Yu, Shiqiang; Zheng, Qijun

    2016-09-01

    Vascular lesions caused by endothelial dysfunction are the most common and serious complication of diabetes. The vasoactive potency of CTRP9 has been reported in our previous study via nitric oxide (NO) production. However, the effect of CTRP9 on vascular endothelial cells remains unknown. This study aimed to investigate the protection role of CTRP9 in the primary aortic vascular endothelial cells and HAECs under high-glucose condition. We found that the aortic vascular endothelial cells isolated from mice fed with a high fat diet generated more ROS production than normal cells, along with decreased mitochondrial biogenesis, which was also found in HAECs treated with high glucose. However, the treatment of CTPR9 significantly reduced ROS production and increased the activities of endogenous antioxidant enzymes, the expression of PGC-1α, NRF1, TFAM, ATP5A1 and SIRT1, and the activity of cytochrome c oxidase, indicating an induction of mitochondrial biogenesis. Furthermore, silencing the expression of SIRT1 in HAECs impeded the effect of CTRP9 on mitochondrial biogenesis, while silencing the expression of AdipoR1 in HAECs reversed the expression of SIRT1 and PGC-1α. Based on these findings, this study showed that CTRP9 might induce mitochondrial biogenesis and protect high glucose-induced endothelial oxidative damage via AdipoR1-SIRT1-PGC-1α signaling pathway. PMID:27349872

  1. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes

    PubMed Central

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2015-01-01

    Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes. PMID:26053739

  2. Identification of compounds from the water soluble extract of Cinnamomum cassia barks and their inhibitory effects against high-glucose-induced mesangial cells.

    PubMed

    Luo, Qi; Wang, Shu-Mei; Lu, Qing; Luo, Jie; Cheng, Yong-Xian

    2013-01-01

    The difficulty of diabetic nephropathy (DN) treatment makes prevention the best choice. Cinnamomum cassia barks, known as Chinese cinnamon or Chinese cassia, is one of the most popular natural spices and flavoring agents in many parts of the World. Since previous reports indicated that Chinese cinnamon extract could be used for the treatment of diabetes, we proposed that this spice may be beneficial for the prevention of DN. However, the responsible compounds need to be further identified. In this study, we isolated three new phenolic glycosides, cinnacassosides A-C (1-3), together with fifteen known compounds from the water soluble extract of Chinese cinnamon. The structures of the new compounds were identified by comprehensive spectroscopic evidence. Eleven compounds (6-9, 11, 13-18) were isolated from this spice for the first time, despite extensive research on this species in the past, which added new facets for the chemical profiling of this spice. These isolates were purposely evaluated for their inhibitory effects on IL-6 and extracellular matrix production in mesangial cells which are definitely implicated in DN. The results showed that compounds 4-8 could inhibit over secretion of IL-6, collagen IV and fibronectin against high-glucose-induced mesangial cells at 10 mM, suggesting that Chinese cinnamon could be used as a functional food against DN. PMID:24013407

  3. [Microdevice for the investigation of high-glucose induced lifespan and the protective effect of polydatin in C. elegans].

    PubMed

    Zhu, Guoli; Yin, Fangchao; Wang, Li; Zhang, Min; Jiang, Lei; Qin, Jianhua

    2016-02-01

    Caenorhabditis elegans (C. elegans) has been widely used as a model organism for biomedical research due to its sufficient homology with human at molecular or genomic level. In this work, we describe a microfluidic device not only to investigate the response of C. elegans including lifespan and oxidative stress, but also to evaluate the protective effect of polydatin induced by high-glucose condition. It was found that the mean lifespan of worms was significantly reduced and the oxidative stress protein GST-4 was increased in worms that are subjected to high glucose. However, a certain dose of polydatin could weaken the increased oxidative stress induced by high-glucose and extend the lifespan, indicating the protective effect of polydatin against the toxic of high-glucose. The established approach is simple to operate, easy for realtime imaging and multiparatemer evaluations in parallel, providing a potential platform for drug evaluation/screening in a high throughput format at single animal resolution. PMID:27382717

  4. Experimental study on apoptosis of TNFR1 receptor pro-endothelial progenitor cells activated by high glucose induced oxidative stress

    PubMed Central

    Liu, Yong; Xei, Fei; Xu, Xiong-Fei; Zeng, Hong; He, Hu-Qiang; Zhang, Lei; Zheng, Ying-Qiang; He, Yan-Zheng

    2015-01-01

    Objective: To investigate whether high glucose in vitro activating TNFR1 and further promote rat marrow endothelial progenitor cells (EPCs) apoptosis. Methods: Rat morrow endothelial progenitor cells were cultured and identified by Confocal Microscopy; then were treated with high glucose (5.5, 15, 30, 60 mmol/L), mannitol (15, 30, 60, 90 mmol/L), high glucose + Tempol and high glucose+ MAB430. Apoptosis rate of the above cells were detected by flow cytometry. ROS and MDA level and anti-O2- were detected by colorimetric technique; the expression level of TNFR1 induced signal pathway related proteins were detected by Western blotting. Results: High glucose can induce endothelial progenitor cells apoptosis, which is mostly in the later stage (72 h-96 h) instead of the earlier stage (24 h-48 h); high glucose can also induce oxidative stress reaction and the produces ROS and MDA increase significantly in the later stage (after 72 h), but anti-O2- decrease significantly. TNF apoptosis signal pathway related protein expression level not increase in the earlier stage (before 24 h) but increase significantly in the later stage (after 72 h). Tempol and MAB430 down-regulate TNF apoptosis signal pathway related protein expression and reduce EPCs apoptosis. Conclusion: High glucose activates the TNFR1 of TPCs through oxidative stress reaction and further induces cell apoptosis. PMID:26884909

  5. The role of local renin-angiotensin system on high glucose-induced cell toxicity, apoptosis and reactive oxygen species production in PC12 cells

    PubMed Central

    Shahveisi, Kaveh; Mousavi, Seyed Hadi; Hosseini, Mahmoud; Rad, Abolfazl Khajavi; Jalali, Seyed Amir; Rajaei, Ziba; Sadeghnia, Hamid Reza; Hadjzadeh, Mousa-Al-Reza

    2014-01-01

    Objective(s): Hyperglycemia, oxidative stress and apoptosis have key roles in pathogenesis of diabetic neuropathy. There are local renin-angiotensin systems (RASs) in different tissues such as neural tissue. Local RASs are involved in physiological and pathophysiological processes such as inflammation, proliferation and apoptosis. This study aimed to investigate the role of local renin-angiotensin system on high glucose-induced cell toxicity, apoptosis and reactive oxygen species (ROS) production in PC12 cells, as a cell model of diabetic neuropathy. Materials and Methods: PC12 cells were exposed to a high glucose concentration (27 mg/ml), captopril (ACE inhibitor), telmisartan and losartan (AT1 antagonists), and also PD123319 (AT2 antagonist) were administered before and after induction of high glucose toxicity. Then cell viability was assessed by MTT assay and apoptotic cells and intracellular ROS production were detected by annexin V-propidium iodide and DCFDA, respectively, using flow cytometry. Results: High glucose concentration decreased cell viability, and increased apoptotic cells. Intracellular ROS production was also increased. In PC12 cells pretreatment and treatment by the drugs showed a significant improvement in cell viability and reduced apoptosis in captopril, telmisartan and PD123319 but only captopril and telmisartan were able to reduce ROS production. Losrtan significantly lowered ROS but didn't show any improvements in cell viability and apoptotic cells. Conclusion: The results of the present study showed that RAS inhibitors reduced cell toxicity and apoptosis and ROS production was induced by high glucose. It may be suggested that local RAS has a role in high glucose toxicity. PMID:25422756

  6. Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice.

    PubMed

    Taniguchi, Kanta; Xia, Ling; Goldberg, Howard J; Lee, Ken W K; Shah, Anu; Stavar, Laura; Masson, Elodie A Y; Momen, Abdul; Shikatani, Eric A; John, Rohan; Husain, Mansoor; Fantus, I George

    2013-11-01

    Chronic exposure to high glucose leads to diabetic nephropathy characterized by increased mesangial matrix protein (e.g., collagen) accumulation. Altered cell signaling and gene expression accompanied by oxidative stress have been documented. The contribution of the tyrosine kinase, c-Src (Src), which is sensitive to oxidative stress, was examined. Cultured rat mesangial cells were exposed to high glucose (25 mmol/L) in the presence and absence of Src inhibitors (PP2, SU6656), Src small interfering RNA (siRNA), and the tumor necrosis factor-α-converting enzyme (TACE) inhibitor, TAPI-2. Src was investigated in vivo by administration of PP2 to streptozotocin (STZ)-induced diabetic DBA2/J mice. High glucose stimulated Src, TACE, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK1/2, p38), and collagen IV accumulation in mesangial cells. PP2 and SU6656 blocked high glucose-stimulated phosphorylation of Src Tyr-416, EGFR, and MAPKs. These inhibitors and Src knockdown by siRNA, as well as TAPI-2, also abrogated high glucose-induced phosphorylation of these targets and collagen IV accumulation. In STZ-diabetic mice, albuminuria, increased Src pTyr-416, TACE activation, ERK and EGFR phosphorylation, glomerular collagen accumulation, and podocyte loss were inhibited by PP2. These data indicate a role for Src in a high glucose-Src-TACE-heparin-binding epidermal growth factor-EGFR-MAPK-signaling pathway to collagen accumulation. Thus, Src may provide a novel therapeutic target for diabetic nephropathy. PMID:23942551

  7. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling

    PubMed Central

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek

    2016-01-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia. PMID:26924930

  8. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling.

    PubMed

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek; Lee, Jong Eun

    2016-02-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia. PMID:26924930

  9. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  10. High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy

    PubMed Central

    2014-01-01

    Background Despite advances in the treatment of heart failure, mortality remains high, particularly in individuals with diabetes. Activated transforming growth factor beta (TGF-β) contributes to the pathogenesis of the fibrotic interstitium observed in diabetic cardiomyopathy. We hypothesized that high glucose enhances the activity of the transcriptional co-activator p300, leading to the activation of TGF-β via acetylation of Smad2; and that by inhibiting p300, TGF-β activity will be reduced and heart failure prevented in a clinically relevant animal model of diabetic cardiomyopathy. Methods p300 activity was assessed in H9c2 cardiomyoblasts under normal glucose (5.6 mmol/L—NG) and high glucose (25 mmol/L—HG) conditions. 3H-proline incorporation in cardiac fibroblasts was also assessed as a marker of collagen synthesis. The role of p300 activity in modifying TGF-β activity was investigated with a known p300 inhibitor, curcumin or p300 siRNA in vitro, and the functional effects of p300 inhibition were assessed using curcumin in a hemodynamically validated model of diabetic cardiomyopathy – the diabetic TG m(Ren-2)27 rat. Results In vitro, H9c2 cells exposed to HG demonstrated increased p300 activity, Smad2 acetylation and increased TGF-β activity as assessed by Smad7 induction (all p < 0.05 c/w NG). Furthermore, HG induced 3H-proline incorporation as a marker of collagen synthesis (p < 0.05 c/w NG). p300 inhibition, using either siRNA or curcumin reduced p300 activity, Smad acetylation and TGF-β activity (all p < 0.05 c/w vehicle or scrambled siRNA). Furthermore, curcumin therapy reduced 3H-proline incorporation in HG and TGF-β stimulated fibroblasts (p < 0.05 c/w NG). To determine the functional significance of p300 inhibition, diabetic Ren-2 rats were randomized to receive curcumin or vehicle for 6 weeks. Curcumin treatment reduced cardiac hypertrophy, improved diastolic function and reduced extracellular matrix production, without

  11. Panax Quinquefolius Saponin of Stem and Leaf Attenuates Intermittent High Glucose-Induced Oxidative Stress Injury in Cultured Human Umbilical Vein Endothelial Cells via PI3K/Akt/GSK-3β Pathway

    PubMed Central

    Wang, Jingshang; Yin, Huijun; Guo, Chunyu; Xia, Chengdong; Liu, Qian; Zhang, Lu

    2013-01-01

    Panax quinquefolius saponin of stem and leaf (PQS), the effective parts of American ginseng, is widely used in China as a folk medicine for diabetes and cardiovascular diseases treatment. In our previous studies, we have demonstrated that PQS could improve the endothelial function of type II diabetes mellitus (T2DM) rats with high glucose fluctuation. In the present study, we investigated the protective effects of PQS against intermittent high glucose-induced oxidative damage on human umbilical vein endothelial cells (HUVECs) and the role of phosphatidylinositol 3-kinase kinase (PI3K)/Akt/GSK-3β pathway involved. Our results suggested that exposure of HUVECs to a high glucose concentration for 8 days showed a great decrease in cell viability accompanied by marked MDA content increase and SOD activity decrease. Moreover, high glucose significantly reduced the phosphorylation of Akt and GSK-3β. More importantly, these effects were even more evident in intermittent high glucose condition. PQS treatment significantly attenuated intermittent high glucose-induced oxidative damage on HUVECs and meanwhile increased cell viability and phosphorylation of Akt and GSK-3β of HUVECs. Interestingly, all these reverse effects of PQS on intermittent high glucose-cultured HUVECs were inhibited by PI3K inhibitor LY294002. These findings suggest that PQS attenuates intermittent-high-glucose-induced oxidative stress injury in HUVECs by PI3K/Akt/GSK-3β pathway. PMID:23956765

  12. Panax Quinquefolius Saponin of Stem and Leaf Attenuates Intermittent High Glucose-Induced Oxidative Stress Injury in Cultured Human Umbilical Vein Endothelial Cells via PI3K/Akt/GSK-3 β Pathway.

    PubMed

    Wang, Jingshang; Yin, Huijun; Huang, Ye; Guo, Chunyu; Xia, Chengdong; Liu, Qian; Zhang, Lu

    2013-01-01

    Panax quinquefolius saponin of stem and leaf (PQS), the effective parts of American ginseng, is widely used in China as a folk medicine for diabetes and cardiovascular diseases treatment. In our previous studies, we have demonstrated that PQS could improve the endothelial function of type II diabetes mellitus (T2DM) rats with high glucose fluctuation. In the present study, we investigated the protective effects of PQS against intermittent high glucose-induced oxidative damage on human umbilical vein endothelial cells (HUVECs) and the role of phosphatidylinositol 3-kinase kinase (PI3K)/Akt/GSK-3 β pathway involved. Our results suggested that exposure of HUVECs to a high glucose concentration for 8 days showed a great decrease in cell viability accompanied by marked MDA content increase and SOD activity decrease. Moreover, high glucose significantly reduced the phosphorylation of Akt and GSK-3 β . More importantly, these effects were even more evident in intermittent high glucose condition. PQS treatment significantly attenuated intermittent high glucose-induced oxidative damage on HUVECs and meanwhile increased cell viability and phosphorylation of Akt and GSK-3 β of HUVECs. Interestingly, all these reverse effects of PQS on intermittent high glucose-cultured HUVECs were inhibited by PI3K inhibitor LY294002. These findings suggest that PQS attenuates intermittent-high-glucose-induced oxidative stress injury in HUVECs by PI3K/Akt/GSK-3 β pathway. PMID:23956765

  13. Rosiglitazone Prevents High Glucose-Induced Vascular Endothelial Growth Factor and Collagen IV Expression in Cultured Mesangial Cells

    PubMed Central

    Whiteside, Catharine; Wang, Hong; Xia, Ling; Munk, Snezana; Goldberg, Howard J.; Fantus, I. George

    2009-01-01

    Peroxisome proliferator-activated receptor (PPARγ), a ligand-dependent transcription factor, negatively modulates high glucose effects. We postulated that rosiglitazone (RSG), an activator of PPARγ prevents the upregulation of vascular endothelial growth factor (VEGF) and collagen IV by mesangial cells exposed to high glucose. Primary cultured rat mesangial cells were growth-arrested in 5.6 mM (NG) or 25 mM D-glucose (HG) for up to 48 hours. In HG, PPARγ mRNA and protein were reduced within 3 h, and enhanced ROS generation, expression of p22phox, VEGF and collagen IV, and PKC-ζ membrane association were prevented by RSG. In NG, inhibition of PPARγ caused ROS generation and VEGF expression that were unchanged by RSG. Reduced AMP-activated protein kinase (AMPK) phosphorylation in HG was unchanged with RSG, and VEGF expression was unaffected by AMPK inhibition. Hence, PPARγ is a negative modulator of HG-induced signaling that acts through PKC-ζ but not AMPK and regulates VEGF and collagen IV expression by mesangial cells. PMID:19609456

  14. MicroRNA-29 regulates high-glucose-induced apoptosis in human retinal pigment epithelial cells through PTEN.

    PubMed

    Lin, Xiaohui; Zhou, Xiyuan; Liu, Danning; Yun, Lixia; Zhang, Lina; Chen, Xiaohai; Chai, Qinghe; Li, Langen

    2016-04-01

    Hyperglycemia or high-glucose (HG)-induced apoptosis in human retinal pigment epithelial (RPE) cells is a characteristic process in diabetic retinopathy. In our study, we examined whether microRNA-29 (miR-29) may regulate HG-induced RPE cell apoptosis. Human RPE cell line, ARPE-19 cells, was treated with various high concentration of glucose in vitro. HG-induced RPE cell apoptosis was examined by terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay and miR-29 gene expression by quantitative RT-PCR (qRT-PCR). miR-29 was then downregulated in RPE cells, and its effect on HG-induced apoptosis was examined by TUNEL assay and western blot assay on caspase-7 protein. Association of miR-29 on its downstream target, PTEN, in HG-induced RPE cell apoptosis was evaluated by dual-luciferase assay and qRT-PCR. PTEN was silenced in RPE cells. The effects of PTEN downregulation on miR-29-mediated HG-induced RPE cell apoptosis were also examined by TUNEL and western blot assays. HG induced significant apoptosis in RPE cells in a dose-dependent manner. miR-29 was upregulated by HG in RPE cells. miR-29 downregulation protected HG-induced apoptosis and reduced the production of caspase-7 protein in RPE cells. PTEN was shown to be directly downregulated by HG and then upregulated by miR-29 downregulation in RPE cells. Small interfering RNA (siRNA)-mediated PTEN downregulation reversed the protective effect of miR-29 downregulation on HG-induced RPE cell apoptosis. This study demonstrates that miR-29, through inverse association of PTEN, plays an important role in the process of HG-induced apoptosis in RPE cells. PMID:26822433

  15. Linagliptin Limits High Glucose Induced Conversion of Latent to Active TGFß through Interaction with CIM6PR and Limits Renal Tubulointerstitial Fibronectin

    PubMed Central

    Gangadharan Komala, Muralikrishna; Gross, Simon; Zaky, Amgad; Pollock, Carol; Panchapakesan, Usha

    2015-01-01

    Background In addition to lowering blood glucose in patients with type 2 diabetes mellitus, dipeptidyl peptidase 4 (DPP4) inhibitors have been shown to be antifibrotic. We have previously shown that cation independent mannose-6-phosphate receptor (CIM6PR) facilitates the conversion of latent to active transforming growth factor β1 (GFß1) in renal proximal tubular cells (PTCs) and linagliptin (a DPP4 inhibitor) reduced this conversion with downstream reduction in fibronectin transcription. Objective We wanted to demonstrate that linagliptin reduces high glucose induced interaction between membrane bound DPP4 and CIM6PR in vitro and demonstrate reduction in active TGFß mediated downstream effects in a rodent model of type 1 diabetic nephropathy independent of high glycaemic levels. Materials and Methods We used human kidney 2 (HK2) cells and endothelial nitric oxide synthase knock out mice to explore the mechanism and antifibrotic potential of linagliptin independent of glucose lowering. Using a proximity ligation assay, we show that CIM6PR and DPP4 interaction was increased by high glucose and reduced by linagliptin and excess mannose-6-phosphate (M6P) confirming that linagliptin is operating through an M6P-dependent mechanism. In vivo studies confirmed these TGFß1 pathway related changes and showed reduced fibronectin, phosphorylated smad2 and phosphorylated smad2/3 (pSmad2/3) with an associated trend towards reduction in tubular atrophy, which was independent of glucose lowering. No reduction in albuminuria, glomerulosclerotic index or cortical collagen deposition was observed. Conclusion Linagliptin inhibits activation of TGFß1 through a M6P dependent mechanism. However this in isolation is not sufficient to reverse the multifactorial nature of diabetic nephropathy. PMID:26509887

  16. Sodium Tanshinone IIA Silate Inhibits High Glucose-Induced Vascular Smooth Muscle Cell Proliferation and Migration through Activation of AMP-Activated Protein Kinase

    PubMed Central

    Wu, Wen-yu; Yan, Hong; Wang, Xin-bo; Gui, Yu-zhou; Gao, Fei; Tang, Xi-lan; Qin, Yin-lin; Su, Mei; Chen, Tao; Wang, Yi-ping

    2014-01-01

    The proliferation of vascular smooth muscle cells may perform a crucial role in the pathogenesis of diabetic vascular disease. AMPK additionally exerts several salutary effects on vascular function and improves vascular abnormalities. The current study sought to determine whether sodium tanshinone IIA silate (STS) has an inhibitory effect on vascular smooth muscle cell (VSMC) proliferation and migration under high glucose conditions mimicking diabetes without dyslipidemia, and establish the underlying mechanism. In this study, STS promoted the phosphorylation of AMP-activated protein kinase (AMPK) at T172 in VSMCs. VSMC proliferation was enhanced under high glucose (25 mM glucose, HG) versus normal glucose conditions (5.5 mM glucose, NG), and this increase was inhibited significantly by STS treatment. We utilized western blotting analysis to evaluate the effects of STS on cell-cycle regulatory proteins and found that STS increased the expression of p53 and the Cdk inhibitor, p21, subsequent decreased the expression of cell cycle-associated protein, cyclin D1. We further observed that STS arrested cell cycle progression at the G0/G1 phase. Additionally, expression and enzymatic activity of MMP-2, translocation of NF-κB, as well as VSMC migration were suppressed in the presence of STS. Notably, Compound C (CC), a specific inhibitor of AMPK, as well as AMPK siRNA blocked STS-mediated inhibition of VSMC proliferation and migration. We further evaluated its potential for activating AMPK in aortas in animal models of type 2 diabetes and found that Oral administration of STS for 10 days resulted in activation of AMPK in aortas from ob/ob or db/db mice. In conclusion, STS inhibits high glucose-induced VSMC proliferation and migration, possibly through AMPK activation. The growth suppression effect may be attributable to activation of AMPK-p53-p21 signaling, and the inhibitory effect on migration to the AMPK/NF-κB signaling axis. PMID:24739942

  17. Relaxin Inhibits High Glucose-Induced Matrix Accumulation in Human Mesangial Cells by Interfering with TGF-β1 Production and Mesangial Cells Phenotypic Transition.

    PubMed

    Xie, Xiangcheng; Xia, Wenkai; Fei, Xiao; Xu, Qunhong; Yang, Xiu; Qiu, Donghao; Wang, Ming

    2015-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). DN is characterized by glomerular extracellular matrix accumulation, mesangial expansion, basement membrane thickening, and renal interstitial fibrosis. To date, mounting evidence has shown that H2 relaxin possesses powerful antifibrosis properties; however, the mechanisms of H2 relaxin on diabetic nephropathy remain unknown. Here, we aimed to explore whether H2 relaxin can reduce production of extracellular matrix (ECM) secreted by human mesangial cells (HMC). HMC were exposed to 5.5 mM glucose (NG) or 30 mM glucose (HG) with or without H2 relaxin. Fibronectin (FN) and collagen type IV levels in the culture supernatants were examined by solid-phase enzyme-linked immunoadsorbent assay (ELISA). Western blot was used to detect the expression of α-smooth muscle actin (α-SMA) protein. Quantitative polymerase chain reaction (qPCR) method was employed to analyze transforming growth factor (TGF)-β1 mRNA expression. Compared with the normal glucose group, the levels of fibronectin and collagen type were markedly increased after being cultured in high glucose medium. Compared with the high glucose group, remarkable decreases of fibronectin, collagen type IV, α-smooth muscle actin, and TGF-β1 mRNA expression were observed in the H2 relaxin-treated group. The mechanism by which H2 relaxin reduced high glucose-induced overproduction of ECM may be associated with inhibition of TGF-β1 mRNA expression and mesangial cells' phenotypic transition. H2 relaxin is a potentially effective modality for the treatment of DN. PMID:26424011

  18. The role of TGF-β-activated kinase 1 in db/db mice and high glucose-induced macrophage.

    PubMed

    Xu, Xingxin; Fan, Zhe; Qi, Xiangming; Shao, Yunxia; Wu, Yonggui

    2016-09-01

    Accumulating evidence reveals that inflammation plays a vital part in the development of diabetic nephropathy (DN), little information is available about the TGF-β-activated kinase 1 (TAK1) signal pathway activating inflammatory response in DN. We used bone marrow-derived macrophages (BMMs) and db/db mice to investigate the potential protective effects and mechanisms of TAK1 inhibitor (5Z-7-oxozeaenol) on diabetic kidney disease. The study showed that pretreatment with 5Z-7-oxozeaenol not only remarkably decreased high glucose (HG) stimulated excessive release of MCP-1 and TNF-α, but also significantly down-regulated ERK1/2, p38MAPK phosphorylation, and NF-κB activation in macrophages. In consistent, 5Z-7-oxozeaenol markedly reduced diabetes-induced albuminuria, histological changes, macrophage infiltration, and renal inflammatory cytokines expression and exerted its function through down-regulating ERK1/2, p38MAPK, NF-κB activation in the kidneys of db/db mice. Our findings may provide a novel direction to study the molecular mechanism and a perspective intervention to halt the progression of DN. PMID:27268284

  19. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    PubMed Central

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  20. Overexpression of uncoupling protein 2 inhibits the high glucose-induced apoptosis of human umbilical vein endothelial cells

    PubMed Central

    HE, YING; LUAN, ZHOU; FU, XUNAN; XU, XUN

    2016-01-01

    Ectopic apoptosis of vascular cells plays a critical role in the early stage development of diabetic retinopathy (DR). Uncoupling protein 2 (UCP2) is a mitochondrial modulator which protects against endothelial dysfunction. However, the role which UCP2 plays in endothelial apoptosis and its association with DR was unclear. In the present study, we investigated whether UCP2 functioned as an inhibitor of DR in endothelial cells. Firstly, we noted that in UCP2-knockout mice retinal cell death and damage in vivo was similar to that of db/db diabetic mice. Additionally, UCP2 knockdown induced caspase-3 activation and exaggerated high glucose (HG)-induced apoptosis of human umbilical vein endothelial cells (HUVECs). Conversely, adenovirus-mediated UCP2 overexpression inhibited the apoptosis of HUVECs and HG-induced caspase-3 activation. Furthermore, HG treatment resulted in the opening of the permeability transition pore (PTP) and liberation of cytochrome c from mitochondria to the cytosol in HUVECs. Notably, UCP2 overexpression inhibited these processes. Furthermore, adenovirus-mediated UCP2 overexpression led to a significant increase in intracellular nitric oxide (NO) levels and a decrease in reactive oxygen species (ROS) generation in HUVECs. Collectively, these data suggest that UCP2 plays an anti-apoptotic role in endothelial cells. Thus, we suggest that approaches which augment UCP2 expression in vascular endothelial cells aid in preventing the early stage development and progression of DR. PMID:26846204

  1. Ghrelin inhibits high glucose-induced 16HBE cells apoptosis by regulating Wnt/β-catenin pathway.

    PubMed

    Liu, Xiaoyan; Chen, Dilong; Wu, Zhongjun; Li, Jing; Li, Jianqiang; Zhao, Hui; Liu, Tanzhen

    2016-09-01

    Ghrelin has a protective effect on diabetes and its complications. To expound its probable molecular mechanisms, we investigated the effects of ghrelin on high glucose (HG)-induced cell apoptosis and intracellular signaling pathways in cultured human bronchial epithelial cells (16HBE). In this study, we firstly came to conclusion that HG-induced 16HBE apoptosis was significantly inhibited by co-treatment of ghrelin. The molecular mechanism of ghrelin-induced protective effects for lungs is still not understood. We reported here for the first time that ghrelin can not only eliminate apoptosis of 16HBE, but also regulate the disordered cell cycle caused by HG. We speculated here that ghrelin inhibits the apoptosis of 16HBE by regulating the abnormal cell cycle to some extent. The mechanism may be that ghrelin up-regulates the expression of cyclin D1 via regulating Wnt/β-catenin pathway, which has an intimate relationship with lung diseases. These results suggested the possible role of ghrelin in treating diabetic lung diseases, especially in view of its low toxicity in humans. PMID:27378423

  2. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism.

    PubMed

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong; Gao, Hongchang

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  3. MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1.

    PubMed

    Yang, Haibo; Wang, Qingjun; Li, Sutong

    2016-03-18

    Emerging evidence has demonstrated that microRNAs (miRNAs) play a mediatory role in the pathogenesis of diabetic nephropathy. In this study, we found that miR-218 was upregulated in high glucose (HG) treated podocytes, which are essential components of the glomerular filtration barrier and a major prognostic determinant in diabetic nephropathy. Additionally, up-regulation of miR-218 was accompanied by an increased rate of podocyte death and down-regulation in the level of nephrin, a key marker of podocytes. However, inhibition of miR-218 exerted the opposite effect. In addition, the dual-luciferase reporter assay showed that miR-218 directly targeted the 3'-untranslated region of heme oxygenase-1 (HO-1), and further study confirmed an increase of HO-1 in HG-treated podocytes transfected with anti-miR-218. Knockdown of HO-1 blocked the anti-apoptotic effect of anti-miR-218. Furthermore, inhibition of miR-218 was associated with decreased expression of the known pro-apoptotic molecule p38-mitogen-activated protein kinase (p38-MAPK) activation. Following preconditioning with SB203580, an inhibitor of p38-MAPK, the stimulatory effect of HG on podocyte apoptosis was strikingly ameliorated. These findings suggested that miR-218 accelerated HG-induced podocyte apoptosis through directly down-regulating HO-1 and facilitating p38-MAPK activation. PMID:26876575

  4. High levels of glucose induce "metabolic memory" in cardiomyocyte via epigenetic histone H3 lysine 9 methylation.

    PubMed

    Yu, Xi-Yong; Geng, Yong-Jian; Liang, Jia-Liang; Zhang, Saidan; Lei, He-Ping; Zhong, Shi-Long; Lin, Qiu-Xiong; Shan, Zhi-Xin; Lin, Shu-Guang; Li, Yangxin

    2012-09-01

    Diabetic patients continue to develop inflammation and cardiovascular complication even after achieving glycemic control, suggesting a "metabolic memory". Metabolic memory is a major challenge in the treatment of diabetic complication, and the mechanisms underlying metabolic memory are not clear. Recent studies suggest a link between chromatin histone methylation and metabolic memory. In this study, we tested whether histone 3 lysine-9 tri-methylation (H3K9me3), a key epigenetic chromatin marker, was involved in high glucose (HG)-induced inflammation and metabolic memory. Incubating cardiomyocyte cells in HG resulted in increased levels of inflammatory cytokine IL-6 mRNA when compared with myocytes incubated in normal culture media, whereas mannitol (osmotic control) has no effect. Chromatin immunoprecipitation (ChIP) assays showed that H3K9me3 levels were significantly decreased at the promoters of IL-6. Immunoblotting demonstrated that protein levels of the H3K9me3 methyltransferase, Suv39h1, were also reduced after HG treatment. HG-induced apoptosis, mitochondrial dysfunction and cytochrome-c release were reversible. However, the effects of HG on the expression of IL-6 and the levels of H3K9me3 were irreversible after the removal of HG from the culture. These results suggest that HG-induced sustained inflammatory phenotype and epigenetic histone modification, rather than HG-induced mitochondrial dysfunction and apoptosis, are main mechanisms responsible for metabolic memory. In conclusion, our data demonstrate that HG increases expression of inflammatory cytokine and decreases the levels of histone-3 methylation at the cytokine promoter, and suggest that modulating histone 3 methylation and inflammatory cytokine expression may be a useful strategy to prevent metabolic memory and cardiomyopathy in diabetic patients. PMID:22707199

  5. Overexpression of miR-34c inhibits high glucose-induced apoptosis in podocytes by targeting Notch signaling pathways

    PubMed Central

    Liu, Xiang-Dong; Zhang, Lian-Yun; Zhu, Tie-Chui; Zhang, Rui-Fang; Wang, Shu-Long; Bao, Yan

    2015-01-01

    Recent findings have shown that microRNAs play critical roles in the pathogenesis of diabetic nephropathy. miR-34c has been found to inhibit fibrosis and the epithelial-mesenchymal transition of kidney cells. However, the role of miR-34c in diabetic nephropathy has not been well studied. The current study was designed to investigate the role and potential underlying mechanism of miR-34c in regulating diabetic nephropathy. After treating podocytes with high glucose (HG) in vitro, we found that miR-34c was downregulated and that overexpression of miR-34c inhibited HG-induced podocyte apoptosis. The direct interaction between miR-34c and the 3’-untranslated region (UTR) of Notch1 and Jagged1 was validated by dual-luciferase reporter assay. Moreover, Notch1 and Jagged1 as putative targets of miR-34c were downregulated by miR-34c overexpression in HG-treated podocytes. Overexpression of miR-34c inhibited HG-induced Notch signaling pathway activation, as indicated by decreased expression of the Notch intracellular domain (NICD) and downstream genes including Hes1 and Hey1. Furthermore, miR-34c overexpression increased the expression of the anti-apoptotic gene Bcl-2, and decreased the expression of the pro-apoptotic protein Bax and cleaved Caspase-3. Additionally, the phosphorylation of p53 was also downregulated by miR-34c overexpression. Taken together, our findings suggest that miR-34c overexpression inhibits the Notch signaling pathway by targeting Notch1 and Jaggged1 in HG-treated podocytes, representing a novel and potential therapeutic target for the treatment of diabetic nephropathy. PMID:26191142

  6. Oxidative Stress-Activated NHE1 Is Involved in High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells

    PubMed Central

    Wu, Yiqing; Zhang, Min; Liu, Rui

    2016-01-01

    Purpose Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes mellitus involving disturbances in electrolytes and the acid-base balance caused by a disorder of glucose metabolism. NHE1 is a Na+/H+ exchanger responsible for keeping intracellular pH (pHi) balance and cell growth. Our study aimed to investigate roles of NHE1 in high glucose (HG)-induced apoptosis in renal tubular epithelial cells. Materials and Methods Renal epithelial tubular cell line HK-2 was cultured in medium containing 5 mM or 30 mM glucose. Then, cell apoptosis, oxidative stress, NHE1 expression, and pHi were evaluated. NHE1 siRNA and inhibitor were used to evaluate its role in cell apoptosis. Results HG significantly increased cell apoptosis and the production of reactive oxygen species (ROS) and 8-OHdG (p<0.05). Meanwhile, we found that HG induced the expression of NHE1 and increased the pHi from 7.0 to 7.6 after 48 h of incubation. However, inhibiting NHE1 using its specific siRNA or antagonist DMA markedly reduced cell apoptosis stimulated by HG. In addition, suppressing cellular oxidative stress using antioxidants, such as glutathione and N-acetyl cysteine, significantly reduced the production of ROS, accompanied by a decrease in NHE1. We also found that activated cyclic GMP-Dependent Protein Kinase Type I (PKG) signaling promoted the production of ROS, which contributed to the regulation of NHE1 functions. Conclusion Our study indicated that HG activates PKG signaling and elevates the production of ROS, which was responsible for the induction of NHE1 expression and dysfunction, as well as subsequent cell apoptosis, in renal tubular epithelial cells. PMID:27401659

  7. Naringin inhibits ROS-activated MAPK pathway in high glucose-induced injuries in H9c2 cardiac cells.

    PubMed

    Chen, Jingfu; Guo, Runmin; Yan, Hai; Tian, Lihong; You, Qiong; Li, Shanghai; Huang, Ruina; Wu, Keng

    2014-04-01

    Naringin, an active flavonoid isolated from citrus fruit extracts, exhibits biological and pharmacological properties, such as antioxidant activity and antidiabetic effect. Mitogen-activated protein kinase (MAPK) signalling pathway has been shown to participate in hyperglycaemia-induced injury. The present study tested the hypothesis that naringin protects against high glucose (HG)-induced injuries by inhibiting MAPK pathway in H9c2 cardiac cells. To examine this, the cells were treated with 35 mM glucose (HG) for 24 hr to establish a HG-induced cardiomyocyte injury model. The cells were pre-treated with 80 μM naringin for 2 hr before exposure to HG. The findings of this study showed that exposure of H9c2 cells to HG for 24 hr markedly induced injuries, as evidenced by a decrease in cell viability, increases in apoptotic cells and reactive oxygen species (ROS) production, as well as dissipation of mitochondrial membrance potential (MMP). These injuries were significantly attenuated by the pre-treatment of cells with either naringin or SB203580 (a selective inhibitor of p38 MAPK) or U0126 (a selective inhibitor of extracellular signal regulated kinase 1/2, ERK1/2) or SP600125 (a selective inhibitor of c-jun N-termanal kinase, JNK) before exposure to HG, respectively. Furthermore, exposure of cells to HG increased the phosphorylation of p38 MAPK, ERK1/2 and JNK. The increased activation of MAPK pathway was ameliorated by pre-treatment with either naringin or N-acetyl-L-cysteine (NAC), a ROS scavenger, which also reduced HG-induced cytotoxicity and apoptosis, leading to increase in cell viability and decrease in apoptotic cells. In conclusion, our findings provide new evidence for the first time that naringin protects against HG-induced injuries by inhibiting the activation of MAPK (p38 MAPK, ERK1/2 and JNK) and oxidative stress in H9c2 cells. PMID:24118820

  8. The Inhibitory Effect of Rhein on Proliferation of High Glucose-induced Mesangial Cell Through Cell Cycle Regulation and Induction of Cell Apoptosis

    PubMed Central

    Xu, Shouzhu; Lv, Yanying; Zhao, Jing; Wang, Junping; Wang, Guangjian; Wang, Siwang

    2016-01-01

    Objectives: Increased mesangial cell proliferation and accumulation of extracellular matrix (ECM) are the major pathological features of early-stage diabetic nephropathy. This study was sought to investigate the inhibitory effects of rhein (RH) on high glucose (HG)-cultured mesangial cells. Specially, we focus on the analysis of proliferation rate, cell cycle regulation, apoptosis, and the expression of collagen IV and laminin. Materials and Methods: The established rat renal mesangial cell (RMC) line was cultured in medium with different concentrations of glucose (5.6 mM or 25 mM) and RH (40 μM, 20 μM, and 10 μM). Pro-treated cells were collected at 12 h, 24 h, and 48 h for cell proliferation analysis and after 24 h for the experiments of flow cytometry, transmission electron microscope, real-time polymerase chain reaction, and Western blotting. Results: Our data shows HG can promote the proliferation of RMCs and RH has an inhibitory effect on HG-induced RMC proliferation and expression of ECM. Based on our data, we hypothesize this inhibitory effect might be a result of cell cycle regulation and the induction of cellular apoptosis. Conclusion: RH can inhibit cellular proliferation and downregulate the expression of ECM under the circumstance of HG. The mechanism of growth suppression may be due to cell cycle arrest at G1 phase, induction of cell apoptosis, and upregulation of apoptotic mediators bax and caspase-3. SUMMARY Rhein (RH) has an inhibitory effect on high glucose.induced rat mesangial cells proliferationRH has an inhibitory effect on the expression of extracellular matrixRH has a growth.suppression effectRH can upregulate the expression of apoptotic mediators bax and caspase-3All above shows RH is one of the main active ingredient in Shenkang injection. Abbreviations used: RH: Rhein, ECM: Extracellular matrix, DN: Diabetic nephropathy, RMC: Renal mesangial cell, SKI: Shenkang injection, MTT: 3-(4,5-dimethylthiazol–2-yl)-2,5-diphenyltetrazolium

  9. 6,6'-bieckol isolated from Ecklonia cava protects oxidative stress through inhibiting expression of ROS and proinflammatory enzymes in high-glucose-induced human umbilical vein endothelial cells.

    PubMed

    Park, Mi-Hwa; Heo, Soo-Jin; Park, Pyo-Jam; Moon, Sang-Ho; Sung, Si-Heung; Jeon, Byong-Tae; Lee, Seung-Hong

    2014-09-01

    Hyperglycemia-induced oxidative stress accelerates endothelial cell dysfunctions, which cause various complications of diabetes. The protective effects of 6,6'-bieckol (BEK), one of phlorotannin compound purified from Ecklonia cava against high-glucose-induced oxidative stress was investigated using human umbilical vein endothelial cells (HUVECs), which is susceptible to oxidative stress. High glucose (30 mM) treatment induced HUVECs' cell death, but BEK, at concentration 10 or 50 μg/ml, significantly inhibited the high-glucose-induced cytotoxicity. Furthermore, treatment with BEK dose-dependently decreased thiobarbituric acid reactive substances (TBARS), intracellular reactive oxygen species (ROS) generation, and nitric oxide level increased by high glucose. In addition, high glucose levels induced the overexpressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) proteins in HUVECs, but BEK treatment reduced the overexpressions of these proteins. These findings indicate that BEK is a potential therapeutic agent that will prevent diabetic endothelial dysfunction and related complications. PMID:25086922

  10. Saponins from Platycodon grandiflorum inhibit hepatic lipogenesis through induction of SIRT1 and activation of AMP-activated protein kinase in high-glucose-induced HepG2 cells.

    PubMed

    Hwang, Yong Pil; Choi, Jae Ho; Kim, Hyung Gyun; Lee, Hyun-Sun; Chung, Young Chul; Jeong, Hye Gwang

    2013-09-01

    Saponins from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have antioxidant and hepatoprotective properties. This study investigated the effects of CKS on AMP-activated protein kinase (AMPK) activation and hepatic lipogenesis in HepG2 cells. CKS suppressed high-glucose-induced lipid accumulation and inhibited high-glucose-induced fatty acid synthase (FAS) and sterol regulatory element binding protein-1c (SREBP-1c) expression in HepG2 cells. Moreover, the use of a pharmacological AMPK inhibitor revealed that AMPK is essential for the suppression of SREBP-1c expression in CKS-treated cells. Finally, the activation of calcium/calmodulin-dependent kinase kinase β (CaMKKβ) and SIRT1 was necessary for CKS-enhanced activation of AMPK. These results indicate that CKS prevents lipid accumulation in HepG2 cells by blocking the expression of SREBP-1c and FAS through SIRT1 and CaMKKβ/AMPK activation. Using CKS to target AMPK activation may provide a promising approach for the prevention lipogenesis. PMID:23578622

  11. High Glucose-Induced Mitochondrial Respiration and Reactive Oxygen Species in Mouse Cerebral Pericytes is Reversed by Pharmacological Inhibition of Mitochondrial Carbonic Anhydrases: Implications for Cerebral Microvascular Disease in Diabetes

    PubMed Central

    Shah, Gul N.; Morofuji, Yoichi; Banks, William A.; Price, Tulin O.

    2013-01-01

    Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood-brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration. PMID:24076121

  12. The dual targeting of EGFR and ErbB2 with the inhibitor Lapatinib corrects high glucose-induced apoptosis and vascular dysfunction by opposing multiple diabetes-induced signaling changes.

    PubMed

    Benter, Ibrahim F; Sarkhou, Fatima; Al-Khaldi, Abeer T; Chandrasekhar, Bindu; Attur, Sreeja; Dhaunsi, Gursev S; Yousif, Mariam H M; Akhtar, Saghir

    2015-01-01

    The epidermal growth factor receptors, EGFR and EGFR2 (ErbB2), appear important mediators of diabetes-induced vascular dysfunction. We investigated whether targeted dual inhibition of EGFR and ErbB2 with Lapatinib would be effective in treating diabetes-induced vascular dysfunction in a rat model of type 1 diabetes. In streptozotocin-induced diabetes, chronic 4-week oral or acute, ex vivo, administration of Lapatinib prevented the development of vascular dysfunction as indicated by the attenuation of the hyper-reactivity of the diabetic mesenteric vascular bed (MVB) to norephinephrine without correcting hyperglycemia. Chronic in vivo or acute ex vivo Lapatinib treatment also significantly attenuated diabetes-induced increases in phosphorylation of EGFR, ErbB2, ERK1/2, AKT, ROCK2 and IkB-alpha as well as normalized the reduced levels of phosphorylated FOXO3A, and eNOS (Ser1177) in the diabetic MVB. Similar results were observed in vascular smooth muscle cells (VSMCs) cultured in high glucose (25 mM) treated with Lapatinib or small interfering RNA (siRNA) targeting the ErbB2 receptor. Lapatinib also prevented high glucose-induced apoptosis in VSMC. Thus, Lapatinib corrects hyperglycemia-induced apoptosis and vascular dysfunction with concomitant reversal of diabetes or high glucose-induced signaling changes in EGFR/ErbB2 and downstream signaling pathways implying that targeted dual inhibition of EGFR/ErbB2 might be an effective vasculoprotective treatment strategy in diabetic patients. PMID:26114862

  13. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  14. Berberine attenuates high glucose-induced fibrosis by activating the G protein-coupled bile acid receptor TGR5 and repressing the S1P2/MAPK signaling pathway in glomerular mesangial cells.

    PubMed

    Yang, Zhiying; Li, Jie; Xiong, Fengxiao; Huang, Junying; Chen, Cheng; Liu, Peiqing; Huang, Heqing

    2016-08-15

    Berberine (BBR) exerts powerful renoprotective effects on diabetic nephropathy (DN), but the underlying mechanisms remain unclear. We previously demonstrated that activation of the G protein-coupled bile acid receptor TGR5 ameliorates diabetic nephropathy by inhibiting the activation of the sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 2 (S1P2) signaling pathway. In this study, we explored the role of TGR5 in the BBR-induced downregulation of sphingosine 1-phosphate receptor 2 (S1P2)/mitogen-activated protein kinase (MAPK)-mediated fibrosis in glomerular mesangial cells (GMCs). Results showed that, BBR suppressed the expression of FN, ICAM-1, and TGF-β1 in high-glucose cultures of GMCs, and the phosphorylation level of c-Jun/c-Fos was downregulated. The high glucose lowered TGR5 expression in a time-dependent manner; this effect was reversed by BBR in a dose-dependent manner. The TGR5 agonist INT-777 decreased the high glucose-induced FN, ICAM-1, and TGF-β1 protein contents. In addition, TGR5 siRNA blocked S1P2 degradation by BBR. And MAPK signaling, which plays important regulatory roles in the pathological progression of DN, was activated by TGR5 siRNA. Apart from this, MAPK signaling as well as FN, ICAM-1, and TGF-β1 suppressed by BBR under high glucose conditions were limited by TGR5 depletion. Thus, BBR decreases FN, ICAM-1, and TGF-β1 levels under high glucose conditions in GMCs possibly by activating TGR5 and inhibiting S1P2/MAPK signaling. PMID:27292312

  15. The antioxidant edaravone prevents cardiac dysfunction by suppressing oxidative stress in type 1 diabetic rats and in high-glucose-induced injured H9c2 cardiomyoblasts.

    PubMed

    Ji, Lei; Liu, Yingying; Zhang, Ying; Chang, Wenguang; Gong, Junli; Wei, Shengnan; Li, Xudong; Qin, Ling

    2016-09-01

    Edaravone, a radical scavenger, has been recognized as a potential protective agent for cardiovascular diseases. However, little is known about the effect of edaravone in cardiac complications associated with diabetes. Here, we have demonstrated that edaravone prevents cardiac dysfunction and apoptosis in the streptozotocin-induced type 1 diabetic rat heart. Mechanistic studies revealed that edaravone treatment improved cardiac function and restored superoxide dismutase levels. In addition, treatment of diabetic animals by edaravone increased protein expressions of sirtuin-1 (SIRT-1), peroxisome proliferator activated receptor γ coactivator α (PGC-1α), nuclear factor like-2 (NRF-2), and B cell lymphoma 2 (Bcl-2), and reduced protein expressions of Bax and Caspase-3 compared to the control group. High glucose incubation resulted in the production of reactive oxygen species (ROS) and cell death. Treatment of high-glucose-incubated H9c2 cells by edaravone reduced ROS production and cell death. In addition, the treatment of high-glucose-incubated H9c2 cells by edaravone increased the activity of antioxidative stress by increasing SIRT-1, PGC-1α, and NRF-2, and this treatment also reduced apoptosis by increasing Bcl-2 expression and reducing Bax and Caspase-3 expressions. Knockdown SIRT-1 with small interferer RNA abolished the effects of edaravone. Overall, our data demonstrated that edaravone may be an effective agent against the development of diabetic cardiomyopathy. PMID:27376621

  16. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    PubMed

    Huang, Qian; Sparatore, Anna; Del Soldato, Piero; Wu, Lingyun; Desai, Kaushik

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4) and inducible nitric oxide synthase (iNOS) protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM) and high glucose (25 mM). ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor), all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM). ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM). In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known deleterious effects

  17. Fagopyrum tataricum (Buckwheat) Improved High-Glucose-Induced Insulin Resistance in Mouse Hepatocytes and Diabetes in Fructose-Rich Diet-Induced Mice

    PubMed Central

    Lee, Chia-Chen; Hsu, Wei-Hsuan; Shen, Siou-Ru; Cheng, Yu-Hsiang; Wu, She-Ching

    2012-01-01

    Fagopyrum tataricum (buckwheat) is used for the treatment of type 2 diabetes mellitus in Taiwan. This study was to evaluate the antihyperglycemic and anti-insulin resistance effects of 75% ethanol extracts of buckwheat (EEB) in FL83B hepatocytes by high-glucose (33 mM) induction and in C57BL/6 mice by fructose-rich diet (FRD; 60%) induction. The active compounds of EEB (100 μg/mL; 50 mg/kg bw), quercetin (6 μg/mL; 3 mg/kg bw), and rutin (23 μg/mL; 11.5 mg/kg bw) were also employed to treat FL83B hepatocytes and animal. Results indicated that EEB, rutin, and quercetin + rutin significantly improved 2-NBDG uptake via promoting Akt phosphorylation and preventing PPARγ degradation caused by high-glucose induction for 48 h in FL83B hepatocytes. We also found that EEB could elevate hepatic antioxidant enzymes activities to attenuate insulin resistance as well as its antioxidation caused by rutin and quercetin. Finally, EEB also inhibited increases in blood glucose and insulin levels of C57BL/6 mice induced by FRD. PMID:22548048

  18. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells.

    PubMed

    Shah, Anu; Xia, Ling; Goldberg, Howard; Lee, Ken W; Quaggin, Susan E; Fantus, I George

    2013-03-01

    Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN. PMID:23329835

  19. Thioredoxin-interacting Protein Mediates High Glucose-induced Reactive Oxygen Species Generation by Mitochondria and the NADPH Oxidase, Nox4, in Mesangial Cells*

    PubMed Central

    Shah, Anu; Xia, Ling; Goldberg, Howard; Lee, Ken W.; Quaggin, Susan E.; Fantus, I. George

    2013-01-01

    Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN. PMID:23329835

  20. High glucose induces mitochondrial dysfunction and apoptosis in human retinal pigment epithelium cells via promoting SOCS1 and Fas/FasL signaling.

    PubMed

    Chen, Min; Wang, Wei; Ma, Jian; Ye, Panpan; Wang, Kaijun

    2016-02-01

    Diabetic retinopathy (DR) is one of the most serious complications of diabetes mellitus (DM), however, the contribution of high glucose (HG) or hyperglycemia to DR is far from fully understanding. In the present study, we examined the expression of Fas/FasL signaling and suppressors of cytokine signaling (SOCS)1 and 3 in HG-induced human retinal pigment epithelium cells (ARPE-19 cells). And then we investigated the regulatory role of both Fas and SOCS1 in HG-induced mitochondrial dysfunction and apoptosis. Results demonstrated that HG with more than 40mM induced mitochondrial dysfunction via reducing mitochondrial membrane potential (MMP) and via inhibiting the Bcl-2 level, which is the upstream signaling of mitochondria in ARPE-19 cells. HG also upreuglated the Fas signaling and SOCS levels probably via promoting JAK/STAT signaling in ARPE-19 cells. Moreover, the exogenous Fas or entogenous overexpressed SOCS1 accentuated the HG-induced mitochondrial dysfunction and apoptosis, whereas the knockdown of either Fas or SOCS1 reduced the HG-induced mitochondria dysfunction and apoptosis. Thus, the present study confirmed that both Fas/FasL signaling and SOCS1 promoted the HG-induced mitochondrial dysfunction and apoptosis. These results implies the key regulatory role of Fas signaling and SOCS in DR. PMID:26700587

  1. Exogenous spermine ameliorates high glucose-induced cardiomyocytic apoptosis via decreasing reactive oxygen species accumulation through inhibiting p38/JNK and JAK2 pathways

    PubMed Central

    He, Yuqin; Yang, Jinxia; Li, Hongzhu; Shao, Hongjiang; Wei, Can; Wang, Yuehong; Li, Meixiu; Xu, Changqing

    2015-01-01

    Reactive oxygen species (ROS) generation has been suggested to play a vital role in the initiation and progression of diabetic cardiomyopathy, a major complication of diabetes mellitus. Recent studies reveal that spermine possesses proliferative, antiaging and antioxidative properties. Thus, we hypothesized that spermine could decrease apoptosis via suppressing ROS accumulation induced by high glucose (HG) in cardiomyocytes. Cultured neonatal rat ventricle cardiomyocytes were treated with normal glucose (NG) (5 mM) or HG (25 mM) in the presence or absence of spermine for 48 h. The cell activity, apoptosis, ROS production, T-SOD and GSH activities, MDA content and GSSG level were assessed. The results showed that HG induced lipid peroxidation and the increase of intracellular ROS formation and apoptosis in primary cardiomyocytes. Spermine could obviously improve the above-mentioned changes. Western blot analysis revealed that spermine markedly inhibited HG-induced the phosphorylation of p38/JNK MAPKs and JAK2. Moreover, spermine had better antioxidative and anti-apoptotic effects than N-acetyl-L-cysteine (NAC). Taken together, the present data suggested that spermine could suppress ROS accumulation to decrease cardiomyocytes apoptosis in HG condition, which may be attributed to the inhibition of p38/JNK and JAK2 activation and its natural antioxidative property. Our findings may highlight a new therapeutic intervention for the prevention of diabetic cardiomyopathy. PMID:26884823

  2. 1,25(OH)2D3 inhibits high glucose-induced apoptosis and ROS production in human peritoneal mesothelial cells via the MAPK/P38 pathway.

    PubMed

    Yang, Lina; Wu, Lan; Du, Shuyan; Hu, Ye; Fan, Yi; Ma, Jianfei

    2016-07-01

    The regulation of cell proliferation, differentiation and immunomodulation are affected by 1,25(OH)2D3. However, its function during apoptosis and oxidative stress in human peritoneal mesothelial cells (HPMCs) remains unknown. The aim of the present study was to investigate whether the regulation of apoptosis and oxidative stress have therapeutic relevance in peritoneal dialysis (PD) therapy. The present study investigated the effects of 1,25(OH)2D3 on high glucose (HG)-induced apoptosis and reactive oxygen species (ROS) production in HPMCs, and examined the underlying molecular mechanisms. Flow cytometry and western blotting were performed to detect cell apoptosis, 2,7-dichlorofluorescein diacetate was used to measure reactive oxygen species production and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to measure cell viability. The results of the present study demonstrated that exposure to HG increased apoptosis and ROS production in HPMCs, whereas pretreatment with 1,25(OH)2D3 significantly inhibited HG‑induced apoptosis and ROS production. Further analysis revealed that 1,25(OH)2D3 facilitated cell survival via the MAPK/P38 pathway. The results of the present study indicate that 1,25(OH)2D3 inhibits apoptosis and ROS production in HG‑induced HPMCs via inhibition of the MAPK/P38 pathway. PMID:27220355

  3. DANGER is involved in high glucose-induced radioresistance through inhibiting DAPK-mediated anoikis in non-small cell lung cancer

    PubMed Central

    Kim, Daehoon; Seong, Ki Moon; Park, Sungkyun; Kim, Wanyeon; Youn, BuHyun

    2016-01-01

    18F-labeled fluorodeoxyglucose (FDG) uptake during FDG positron emission tomography seems to reflect increased radioresistance. However, the exact molecular mechanism underlying high glucose (HG)-induced radioresistance is unclear. In the current study, we showed that ionizing radiation-induced activation of the MEK-ERK-DAPK-p53 signaling axis is required for anoikis (anchorage-dependent apoptosis) of non-small cell lung cancer (NSCLC) cells in normal glucose media. Phosphorylation of DAPK at Ser734 by ERK was essential for p53 transcriptional activity and radiosensitization. In HG media, overexpressed DANGER directly bound to the death domain of DAPK, thus inhibiting the catalytic activity of DAPK. In addition, inhibition of the DAPK-p53 signaling axis by DANGER promoted anoikis-resistance and epithelial-mesenchymal transition (EMT), resulting in radioresistance of HG-treated NSCLC cells. Notably, knockdown of DANGER enhanced anoikis, EMT inhibition, and radiosensitization in a mouse xenograft model of lung cancer. Taken together, our findings offered evidence that overexpression of DANGER and the subsequent inhibitory effect on DAPK kinase activity are critical responses that account for HG-induced radioresistance of NSCLC. PMID:26769850

  4. P38 MAPK/miR-1 are involved in the protective effect of EGCG in high glucose-induced Cx43 downregulation in neonatal rat cardiomyocytes.

    PubMed

    Yu, Lu; Yu, Hongmei; Li, Xiaoting; Jin, Chongying; Zhao, Yanbo; Xu, Shengjie; Sheng, Xia

    2016-08-01

    The remodeling of cardiac gap junctions contributes to various arrhythmias in a diabetic heart. We previously reported that Epigallocatechin-3-gallate (EGCG) attenuated connexin43 (Cx43) protein downregulation induced by high glucose (HG) in neonatal rat cardiomyocytes, but Cx43 mRNA expression was not affected. It indicated the possible mechanisms of post-transcriptional regulation, which still remains unclear. As microRNAs (miRNAs) regulate gene expression widely at post-transcriptional level, we measured miR-1/206 in cardiomyocytes treated with HG and EGCG by quantitative RT-PCR and investigated their relationship with signal transduction pathways. The results showed that HG induced miR-1/206 elevation by PKC MAPK pathway. Moreover, we tested the negative regulation effect of miR-1/206 on Cx43 protein by miRNAs transfection. EGCG, however, nearly abolished the HG-induced miR-1 augmentation via P38 MAPK pathway. Therefore, our study suggested that PKC-activated miR-1/206 expression might contribute to Cx43 downregulation in HG-treated cardiomyocytes, and EGCG conferred protective effect by inhibiting miR-1 elevation via P38 MAPK pathway. PMID:27306406

  5. 1,25-Dihydroxyvitamin D3 Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARγ Signaling Pathway

    PubMed Central

    Zhang, Xiaoliang; Zhou, Min; Guo, Yinfeng; Song, Zhixia; Liu, Bicheng

    2015-01-01

    Macrophages, especially their activation state, are closely related to the progression of diabetic nephropathy. Classically activated macrophages (M1) are proinflammatory effectors, while alternatively activated macrophages (M2) exhibit anti-inflammatory properties. 1,25-Dihydroxyvitamin D3 has renoprotective roles that extend beyond the regulation of mineral metabolism, and PPARγ, a nuclear receptor, is essential for macrophage polarization. The present study investigates the effect of 1,25-dihydroxyvitamin D3 on macrophage activation state and its underlying mechanism in RAW264.7 cells. We find that, under high glucose conditions, RAW264.7 macrophages tend to switch to the M1 phenotype, expressing higher iNOS and proinflammatory cytokines, including TNFα and IL-12. While 1,25-dihydroxyvitamin D3 significantly inhibited M1 activation, it enhanced M2 macrophage activation; namely, it upregulated the expression of MR, Arg-1, and the anti-inflammatory cytokine IL-10 but downregulated the M1 markers. However, the above effects of 1,25-dihydroxyvitamin D3 were abolished when the expression of VDR and PPARγ was inhibited by VDR siRNA and a PPARγ antagonist. In addition, PPARγ was also decreased upon treatment with VDR siRNA. The above results demonstrate that active vitamin D promoted M1 phenotype switching to M2 via the VDR-PPARγ pathway. PMID:25961000

  6. CKIP-1 ameliorates high glucose-induced expression of fibronectin and intercellular cell adhesion molecule-1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.

    PubMed

    Gong, Wenyan; Chen, Cheng; Xiong, Fengxiao; Yang, Zhiying; Wang, Yu; Huang, Junying; Liu, Peiqing; Huang, Heqing

    2016-09-15

    Glucose and lipid metabolism disorders as well as oxidative stress (OSS) play important roles in diabetic nephropathy (DN). Glucose and lipid metabolic dysfunctions are the basic pathological changes of chronic microvascular complications of diabetes mellitus, such as DN. OSS can lead to the accumulation of extracellular matrix and inflammatory factors which will accelerate the progress of DN. Casein kinase 2 interacting protein-1 (CKIP-1) mediates adipogenesis, cell proliferation and inflammation under many circumstances. However, whether CKIP-1 is involved in the development of DN remains unknown. Here, we show that CKIP-1 is a novel regulator of resisting the development of DN and the underlying molecular mechanism is related to activating the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) antioxidative stress pathway. The following findings were obtained: (1) The treatment of glomerular mesangial cells (GMCs) with high glucose (HG) decreased CKIP-1 levels in a time-dependent manner; (2) CKIP-1 overexpression dramatically reduced fibronectin (FN) and intercellular adhesionmolecule-1 (ICAM-1) expression. Depletion of CKIP-1 further induced the production of FN and ICAM-1; (3) CKIP-1 promoted the nuclear accumulation, DNA binding, and transcriptional activity of Nrf2. Moreover, CKIP-1 upregulated the expression of Nrf2 downstream genes, heme oxygenase (HO-1) and superoxide dismutase 1 (SOD1); and ultimately decreased the levels of reactive oxygen species (ROS). The molecular mechanisms clarify that the advantageous effect of CKIP-1 on DN are well connected with the activation of the Nrf2/ARE antioxidative stress pathway. PMID:27481061

  7. Retinoic Acid Protects Cardiomyocytes from High Glucose-Induced Apoptosis via Inhibition of Sustained Activation of NF-κB Signaling

    PubMed Central

    Nizamutdinova, Irina T.; Guleria, Rakeshwar S.; Singh, Amar B.; Kendall, Jonathan A.; Baker, Kenneth M.; Pan, Jing

    2012-01-01

    We have previously shown that retinoic acid (RA) has protective effects on high glucose (HG)-induced cardiomyocyte apoptosis. To further elucidate the molecular mechanisms of RA effects, we determined the interaction between nuclear factor (NF)-κB and RA signaling. HG induced a sustained phosphorylation of IKK/IκBα and transcriptional activation of NF-κB in cardiomyocytes. Activated NF-κB signaling has an important role in HG-induced cardiomyocyte apoptosis and gene expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α and monocyte chemoattractant protein-1 (MCP-1). All-trans RA (ATRA) and LGD1069, through activation of RAR/RXR-mediated signaling, inhibited the HG-mediated effects in cardiomyocytes. The inhibitory effect of RA on NF-κB activation was mediated through inhibition of IKK/IκBα phosphorylation. ATRA and LGD1069 treatment promoted protein phosphatase 2A (PP2A) activity, which was significantly suppressed by HG stimulation. The RA effects on IKK and IκBα were blocked by okadaic acid or silencing the expression of PP2Ac-subunit, indicating that the inhibitory effect of RA on NF-κB is regulated through activation of PP2A and subsequent dephosphorylation of IKK/IκBα. Moreover, ATRA and LGD1069 reversed the decreased PP2A activity and inhibited the activation of IKK/IκBα and gene expression of MCP-1, IL-6 and TNF-α in the hearts of Zucker diabetic fatty rats. In summary, our findings suggest that the suppressed activation of PP2A contributed to sustained activation of NF-κB in HG-stimulated cardiomyocytes; and that the protective effect of RA on hyperglycemia-induced cardiomyocyte apoptosis and inflammatory responses is partially regulated through activation of PP2A and suppression of NF-κB-mediated signaling and downstream targets. PMID:22718360

  8. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway.

    PubMed

    Yin, Qingqiao; Xia, Yuanyu; Wang, Guan

    2016-09-01

    As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders. PMID:27378427

  9. High Glucose Induces Down-Regulated GRIM-19 Expression to Activate STAT3 Signaling and Promote Cell Proliferation in Cell Culture

    PubMed Central

    Li, Yong-Guang; Han, Bei-Bei; Li, Feng; Yu, Jian-Wu; Dong, Zhi-Feng; Niu, Geng-Ming; Qing, Yan-Wei; Li, Jing-Bo; Wei, Meng; Zhu, Wei

    2016-01-01

    Recent studies indicated that Gene Associated with Retinoid-IFN-Induced Mortality 19 (GRIM-19), a newly discovered mitochondria-related protein, can regulate mitochondrial function and modulate cell viability possibly via interacting with STAT3 signal. In the present study we sought to test: 1) whether GRIM-19 is involved in high glucose (HG) induced altered cell metabolism in both cancer and cardiac cells, 2) whether GRIM-19/STAT3 signaling pathway plays a role in HG induced biological effects, especially whether AMPK activity could be involved. Our data showed that HG enhanced cell proliferation of both HeLa and H9C2 cells, which was closely associated with down-regulated GRIM-19 expression and increased phosphorylated STAT3 level. We showed that GRIM-19 knock-down alone in normal glucose cultured cells can also result in an increase in phosphorylated STAT3 level and enhanced proliferation capability, whereas GRIM-19 over-expression can abolished HG induced STAT3 activation and enhanced cell proliferation. Importantly, both down-regulated or over-expression of GRIM-19 increased lactate production in both HeLa and H9C2 cells. The activated STAT3 was responsible for increased cell proliferation as either AG-490, an inhibitor of JAK2, or siRNA targeting STAT3 can attenuate cell proliferation increased by HG. In addition, HG increased lactate acid levels in HeLa cells, which was also observed when GRIM-19 was genetically manipulated. However, HG did not affect the lactate levels in H9C2 cells. Of note, over-expression of GRIM-19 and silencing of STAT3 both increased lactate production in H9C2 cells. As expected, HG resulted in significant decreases in phosphorylated AMPKα levels in H9C2 cells, but not in HeLa cells. Interestingy, activation of AMPKα by metformin was associated with a reversal of the suppressed GRIM-19 expression in H9C2 cells, the fold of changes in GRIM-19 expression by metformin were much less in HeLa cells. Metformin did not affect the

  10. Protective effects of Notch1 signaling activation against high glucose-induced myocardial cell injury: Analysis of its mechanisms of action.

    PubMed

    Zhang, Jian; Li, Bingong; Zheng, Zeqi; Kang, Ting; Zeng, Minghui; Liu, Yanhua; Xia, Baohua

    2015-09-01

    Notch1 plays an important role in cardiomyocyte apoptosis and cardiac fibrosis. However, the effects of Notch1 on diabetic cardiomyopathy (DCM) and its mechanisms of action remain unclear. In the present study, we sought to investigate the role of Notch1 in, and its effects on high glucose (HG)‑induced myocardial cell apoptosis and myocardial fibrosis. H9c2 cells exposed to HG were used to establish an in vitro model of myocardial injury. The H9c2 cells were cultured with normal glucose (NG; 5.5 mmol/L‑ NG), and were then epxosed to HG (33 mmol/L‑ HG), a γ‑secretase inhibitor (DAPT), and were transfected with a lentiviral vector containing the Notch1 intracellular domain (N1ICD; lentivirus‑N1ICD). At 72 h following exposure to HG, DAPT or transfection with lentivirus‑N1ICD, myocardial cell viability was assessed using a Cell Counting kit‑8 (CCK‑8) assay. Cell apoptosis was measured using Annexin V/propidium iodide (PI) double staining and flow cytometry. The mRNA expression levels of hairy/enhancer of split‑1 (Hes‑1) and hairy/enhancer-of-split related with YRPW motif‑1 (Hey‑1) were measured by quantitative PCR (qPCR), while the protein expression of N1ICD, Bax, Bcl‑2, transforming growth factor‑β1 (TGF‑β1) and connective tissue growth factor (CTGF), and the levels of phosphorylated (p-)AKT, total (t-)AKT, p‑phosphoinositide 3-kinase (PI3K) and t‑AKT were measured by western blot analysis. Our results revealed that exposure to HG induced apoptosis and upregulated TGF‑β1 and CTGF expression in the H9c2 cardiomyocytes. Furthermore, the Notch1 and PI3K/AKT signaling pathways were activated following transfection with lentivirus‑N1ICD, and this activation enhanced myocardial cell viability, prevented cardiomyocyte apoptosis and decreased TGF‑β1 and CTGF expression. On the whole, our data demonstrate that the overexpression of Notch1 prevents HG‑induced cardiomyocyte apoptosis and decreases CTGF expression in H9c2 cells

  11. Glucose-Induced Down Regulation of Thiamine Transporters in the Kidney Proximal Tubular Epithelium Produces Thiamine Insufficiency in Diabetes

    PubMed Central

    Larkin, James R.; Zhang, Fang; Godfrey, Lisa; Molostvov, Guerman; Zehnder, Daniel; Rabbani, Naila; Thornalley, Paul J.

    2012-01-01

    Increased renal clearance of thiamine (vitamin B1) occurs in experimental and clinical diabetes producing thiamine insufficiency mediated by impaired tubular re-uptake and linked to the development of diabetic nephropathy. We studied the mechanism of impaired renal re-uptake of thiamine in diabetes. Expression of thiamine transporter proteins THTR-1 and THTR-2 in normal human kidney sections examined by immunohistochemistry showed intense polarised staining of the apical, luminal membranes in proximal tubules for THTR-1 and THTR-2 of the cortex and uniform, diffuse staining throughout cells of the collecting duct for THTR-1 and THTR-2 of the medulla. Human primary proximal tubule epithelial cells were incubated with low and high glucose concentration, 5 and 26 mmol/l, respectively. In high glucose concentration there was decreased expression of THTR-1 and THTR-2 (transporter mRNA: −76% and −53% respectively, p<0.001; transporter protein −77% and −83% respectively, p<0.05), concomitant with decreased expression of transcription factor specificity protein-1. High glucose concentration also produced a 37% decrease in apical to basolateral transport of thiamine transport across cell monolayers. Intensification of glycemic control corrected increased fractional excretion of thiamine in experimental diabetes. We conclude that glucose-induced decreased expression of thiamine transporters in the tubular epithelium may mediate renal mishandling of thiamine in diabetes. This is a novel mechanism of thiamine insufficiency linked to diabetic nephropathy. PMID:23285265

  12. l-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2

    PubMed Central

    Nakatsu, Daiki; Horiuchi, Yuta; Kano, Fumi; Noguchi, Yoshiyuki; Sugawara, Taichi; Takamoto, Iseki; Kubota, Naoto; Kadowaki, Takashi; Murata, Masayuki

    2015-01-01

    Increase in the concentration of plasma l-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged l-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged l-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued l-cysteine–induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, l-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. l-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N′-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in l-cysteine–treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to l-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D. PMID:25713368

  13. GYY4137, a novel hydrogen sulfide-releasing molecule, likely protects against high glucose-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells.

    PubMed

    Wei, Wen-Bin; Hu, Xun; Zhuang, Xiao-Dong; Liao, Li-Zhen; Li, Wei-Dong

    2014-04-01

    Diabetic cardiomyopathy (DCM) has become a major cause of diabetes-related morbidity and mortality. Increasing evidences have proved that hydrogen sulfide (H2S) fulfills a positive role in regulating diabetic myocardial injury. The present study was designed to determine whether GYY4137, a novel H2S-releasing molecule, protected H9c2 cells against high glucose (HG)-induced cytotoxicity by activation of the AMPK/mTOR signal pathway. H9c2 cells were incubated in normal glucose (5.5 mM), 22, 33, and 44 mM glucose for 24 h to mimic the hyperglycemia in DCM in vitro. Then we added 50, 100, and 200 μM GYY4137, and measured the cell viability, lactate dehydrogenase (LDH) enzyme activity, and mitochondrial membrane potential (MMP). 0.5 mM 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) and 1 mM adenine 9-β-D-arabinofuranoside (Ara-A, an AMPK inhibitor) were used to identity whether the AMPK/mTOR signal pathway was involved in GYY4137-mediated cardioprotection. We demonstrated that HG decreased cell viability and increased LDH enzyme activity in a concentration-dependent manner. 33 mM HG treatment for 24 h was chosen as our model group for further study. Both 100 and 200 μM GYY4137 treatments significantly attenuated HG-induced cell viability decrement, LDH enzyme activity increase, and MMP collapse. AICAR had similar effects to GYY4137 treatment while Ara-A attenuated GYY4137-mediated cardioprotection. Importantly, both GYY4137 and AICAR increased AMPK phosphorylation and decreased mTOR phosphorylation compared with the HG model group while Ara-A attenuated GYY4137-mediated AMPK phosphorylation increase and mTOR phosphorylation decrement. In conclusion, we propose that GYY4137 likely protects against HG-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells. PMID:24374752

  14. Prevalence of Hearing Impairment in High Risk Infants.

    PubMed

    Vashistha, Ishika; Aseri, Yogesh; Singh, B K; Verma, P C

    2016-06-01

    Hearing impairment is prevalent in the general population, early intervention facilitates proper development. The aim of this study was to establish the prevalence of hearing impairment in high-risk infants born between 2013 and 2014. 100 newborns were evaluated using evoked otoacoustic emissions and distortion produce and auditory behavior. Tests were reported if the results were altered. If altered results persisted, the child was referred for impedance testing and when necessary for medical evaluation. Infants referred for BOA and OAE undergone Brainstem auditory evoked potential testing. Of 100 children, 85 children have hearing within normal limits. Hearing impairment was found in 15 out of which 7 had unilateral hearing loss and 8 had bilateral hearing loss. The high prevalence of hearing impairment in this population underlines the importance of early audiological testing. PMID:27340640

  15. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.

    PubMed

    Mason, R Preston; Jacob, Robert F

    2015-02-01

    Lipid oxidation leads to endothelial dysfunction, inflammation, and foam cell formation during atherogenesis. Glucose also contributes to lipid oxidation and promotes pathologic changes in membrane structural organization, including the development of cholesterol crystalline domains. In this study, we tested the comparative effects of eicosapentaenoic acid (EPA), an omega-3 fatty acid indicated for the treatment of very high triglyceride (TG) levels, and other TG-lowering agents (fenofibrate, niacin, and gemfibrozil) on lipid oxidation in human low-density lipoprotein (LDL) as well as membrane lipid vesicles prepared in the presence of glucose (200 mg/dL). We also examined the antioxidant effects of EPA in combination with atorvastatin o-hydroxy (active) metabolite (ATM). Glucose-induced changes in membrane structural organization were measured using small angle x-ray scattering approaches and correlated with changes in lipid hydroperoxide (LOOH) levels. EPA was found to inhibit LDL oxidation in a dose-dependent manner (1.0-10.0 µM) and was distinguished from the other TG-lowering agents, which had no significant effect as compared to vehicle treatment alone. Similar effects were observed in membrane lipid vesicles exposed to hyperglycemic conditions. The antioxidant activity of EPA, as observed in glucose-treated vesicles, was significantly enhanced in combination with ATM. Glucose treatment produced highly-ordered, membrane-restricted, cholesterol crystalline domains, which correlated with increased LOOH levels. Of the agents tested in this study, only EPA inhibited glucose-induced cholesterol domain formation. These data demonstrate that EPA, at pharmacologic levels, inhibits hyperglycemia-induced changes in membrane lipid structural organization through a potent antioxidant mechanism associated with its distinct, physicochemical interactions with the membrane bilayer. PMID:25449996

  16. Tetrahydropteridines possess antioxidant roles to guard against glucose-induced oxidative stress in Dictyostelium discoideum

    PubMed Central

    Park, Seon-Ok; Kim, Hye-Lim; Lee, Soo-Woong; Park, Young Shik

    2013-01-01

    Glucose effects on the vegetative growth of Dictyostelium discoideum Ax2 were studied by examining oxidative stress and tetrahydropteridine synthesis in cells cultured with different concentrations (0.5X, 7.7 g L-1; 1X, 15.4 g L-1; 2X, 30.8 g L-1) of glucose. The growth rate was optimal in 1X cells (cells grown in 1X glucose) but was impaired drastically in 2X cells, below the level of 0.5X cells. There were glucose-dependent increases in reactive oxygen species (ROS) levels and mitochondrial dysfunction in parallel with the mRNA copy numbers of the enzymes catalyzing tetrahydropteridine synthesis and regeneration. On the other hand, both the specific activities of the enzymes and tetrahydropteridine levels in 2X cells were lower than those in 1X cells, but were higher than those in 0.5X cells. Given the antioxidant function of tetrahydropteridines and both the beneficial and harmful effects of ROS, the results suggest glucose-induced oxidative stress in Dictyostelium, a process that might originate from aerobic glycolysis, as well as a protective role of tetrahydropteridines against this stress. [BMB Reports 2013; 46(2): 86-91] PMID:23433110

  17. Mediation of glucose-induced anorexia by central nervous system interleukin 1 signaling.

    PubMed

    Mizuno, Tooru M; Lew, Pei San; Spirkina, Alexandra; Xu, Yang

    2013-11-01

    Hypothalamic glucose sensing plays a critical role in the regulation of food intake and metabolism. Glucose injection, either centrally or peripherally suppresses food intake. However, the mechanism of glucose-induced feeding suppression is not fully understood. It has been demonstrated that hypothalamic interleukin 1 beta (IL-1β) mRNA levels are altered by metabolic states and IL-1 signaling participates in the regulation of food intake. Therefore, we hypothesized that hypothalamic IL-1 gene expression is regulated by glucose and glucose-induced feeding suppression is mediated via hypothalamic IL-1 signaling. To address this hypothesis, we examined the effect of glucose on IL-1α and IL-1β mRNA expression in the hypothalamus. We also examined the effect of intraperitoneal injection of glucose on food intake in wild-type and type I IL-1 receptor (IL-1RI)-deficient mice. Levels of IL-1α and IL-1β mRNA in the hypothalamus were increased in response to feeding and intraperitoneal injection of glucose, and were positively correlated with blood glucose levels in mice. Exposure of hypothalamic explants to high glucose (10 mM) media increased IL-1α and IL-1β mRNA levels compared to low glucose (1 mM) media. Intraperitoneal glucose administration reduced food intake in wild-type mice, while the feeding-suppressing effect of glucose was attenuated in IL-1RI-deficient mice. These findings support the role for hypothalamic IL-1 signaling in the mediation of the anorectic effect of glucose. PMID:24013028

  18. The protective effect of magnesium lithospermate B against glucose-induced intracellular oxidative damage

    SciTech Connect

    Qu, Jian; Ren, Xian; Hou, Rui-ying; Dai, Xing-ping; Zhao, Ying-chun; Xu, Xiao-jing; Zhang, Wei; Zhou, Gan; Zhou, Hong-hao; Liu, Zhao-qian

    2011-07-22

    Highlights: {yields} LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. {yields} LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. {yields} LAB plays an important role against glucose-induced intracellular oxidative damage. {yields} The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway. -- Abstract: Objectives: To investigate the effects of magnesium lithospermate B (LAB) on intracellular reactive oxygen species (ROS) production induced by high dose of glucose or H{sub 2}O{sub 2}, we explored the influences of LAB on the expression of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor-2 (Nrf2) in HEK293T cells after treatment with high dose of glucose. Materials and methods: The total nuclear proteins in HEK293T cells were extracted with Cytoplasmic Protein Extraction Kit. The ROS level was determined by flow cytometry. The mRNA and protein expression of HO-1 and Nrf2 were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Results: LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. The amount of Nrf2 translocation was enhanced after cells were pretreated with 50 {mu}mol/L or 100 {mu}mol/L LAB. Silencing of Nrf2 gene eliminated the enhanced expression of HO-1 protein induced by high dose of glucose plus LAB. Conclusions: LAB plays an important role against glucose-induced intracellular oxidative damage. The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway.

  19. A high fructose diet impairs spatial memory in male rats.

    PubMed

    Ross, A P; Bartness, T J; Mielke, J G; Parent, M B

    2009-10-01

    Over the past three decades there has been a substantial increase in the amount of fructose consumed by North Americans. Recent evidence from rodents indicates that hippocampal insulin signaling facilitates memory and excessive fructose consumption produces hippocampal insulin resistance. Based on this evidence, the present study tested the hypothesis that a high fructose diet would impair hippocampal-dependent memory. Adult male Sprague-Dawley rats (postnatal day 61) were fed either a control (0% fructose) or high fructose diet (60% of calories). Food intake and body mass were measured regularly. After 19 weeks, the rats were given 3 days of training (8 trials/day) in a spatial version of the water maze task, and retention performance was probed 48 h later. The high fructose diet did not affect acquisition of the task, but did impair performance on the retention test. Specifically, rats fed a high fructose diet displayed significantly longer latencies to reach the area where the platform had been located, made significantly fewer approaches to that area, and spent significantly less time in the target quadrant than did control diet rats. There was no difference in swim speed between the two groups. The retention deficits correlated significantly with fructose-induced elevations of plasma triglyceride concentrations. Consequently, the impaired spatial water maze retention performance seen with the high fructose diet may have been attributable, at least in part, to fructose-induced increases in plasma triglycerides. PMID:19500683

  20. [Role of the NADH shuttle system in glucose-induced insulin secretion].

    PubMed

    Eto, K; Kadowaki, T

    1999-03-01

    To determine the role of the NADH shuttle system composed of the glycerol phosphate shuttle and malate-aspartate shuttle in glucose-induced insulin secretion from pancreatic beta cells, we have generated mice which lack mitochondrial glycerol-3 phosphate dehydrogenase (mGPDH), a rate-limiting enzyme of the glycerol phosphate shuttle. When both shuttles were halted in mGPDH-deficient islets treated with aminooxyacetate, an inhibitor of the malate-aspartate shuttle, glucose-induced insulin secretion was almost completely abrogated. Under these conditions, although the flux of glycolysis and supply of glucose-derived pyruvate into mitochondria were unaffected, glucose-induced increases in NAD(P)H autofluorescence, mitochondrial membrane potential, Ca2+ entry into mitochondria, and ATP content were severely attenuated. This study provides the first direct evidence that the NADH shuttle system is essential for coupling glycolysis with the activation of mitochondrial energy metabolism to trigger glucose-induced insulin secretion and thus revises the classical model for the metabolic signals of glucose-induced insulin secretion. PMID:10199125

  1. Ethanol extract of Moringa oliefera prevents in vitro glucose induced cataract on isolated goat eye lens

    PubMed Central

    Kurmi, Raghvendra; Ganeshpurkar, Aditya; Bansal, Divya; Agnihotri, Abhishek; Dubey, Nazneen

    2014-01-01

    Aim of Study: The aim of current work was to evaluate in vitro anticataract potential of Moringa oliefera extract. Materials and Methods: Goat eye lenses were divided into 4 groups; Group served as control, Group II as toxic control, Group III and Group IV were incubated in extract (250 μg/ml and 500 μg/ml of extract of M. oliefera) Group II, III and IV were incubated in 55 mM glucose in artificial aqueous humor to induce lens opacification. Estimation of total, water soluble protein, catalase, glutathione and malondialdehyde along with photographic evaluation of lens was done. Results: Group II (toxic control) lenses showed high amount of MDA (Malondialdehyde), soluble, insoluble protein, decreased catalase and glutathione levels, while lenses treated with Moringa oliefera extract (Group III and Group IV) showed significant (* P < 0.05) reduction in MDA and increased level of catalase, glutathione, total and soluble protein. Conclusion: Results of present findings suggest protective effect of Moringa oliefera in prevention of in vitro glucose induced cataract. PMID:24008789

  2. High blood pressure in older subjects with cognitive impairment.

    PubMed

    Mossello, Enrico; Simoni, David

    2016-01-01

    High blood pressure and cognitive impairment often coexist in old age, but their pathophysiological association is complex. Several longitudinal studies have shown that high blood pressure at midlife is a risk factor for cognitive impairment and dementia, although this association is much less clear in old age. The effect of blood pressure lowering in reducing the risk of dementia is only borderline significant in clinical trials of older subjects, partly due to the insufficient follow-up time. Conversely, dementia onset is associated with a decrease of blood pressure values, probably secondary to neurodegeneration. Prognostic effect of blood pressure values in cognitively impaired older subjects is still unclear, with aggressive blood pressure lowering being potentially harmful in this patients category. Brief cognitive screening, coupled with simple motor assessment, are warranted to identify frail older subjects who need a more cautious approach to antihypertensive treatment. Values obtained with ambulatory blood pressure monitoring seem more useful than clinical ones to predict the outcome of cognitively impaired older subjects. Future studies should identify the most appropriate blood pressure targets in older subjects with cognitive impairment. RiassuntoIpertensione arteriosa e decadimento cognitivo spesso coesistono in età avanzata, sebbene la loro associazione sia complessa dal punto di vista fisiopatologico. Diversi studi longitudinali hanno mostrato che elevati valori pressori in età adulta rappresentano un fattore di rischio per decadimento cognitivo e demenza, sebbene tale associazione sia molto meno chiara in età avanzata. L'effetto della terapia antiipertensiva è risultato ai limiti della significatività statistica nel ridurre il rischio di demenza negli studi di intervento su soggetti anziani, in parte a causa della durata insufficiente del follow-up. D'altra parte, l'insorgenza di demenza è associata con una riduzione dei valori pressori

  3. High altitude impairs in vivo immunity in humans.

    PubMed

    Oliver, Samuel J; Macdonald, Jamie H; Harper Smith, Adam D; Lawley, Justin S; Gallagher, Carla A; Di Felice, Umberto; Walsh, Neil P

    2013-06-01

    The aim was to assess the effect of high altitude on the development of new immune memory (induction) using a contact sensitization model of in vivo immunity. We hypothesized that high-altitude exposure would impair induction of the in vivo immune response to a novel antigen, diphenylcyclopropenone (DPCP). DPCP was applied (sensitization) to the lower back of 27 rested controls at sea level and to ten rested mountaineers 28 hours after passive ascent to 3777 m. After sensitization, mountaineers avoided strenuous exercise for a further 24 hours, after which they completed alpine activities for 11-18 days. Exactly 4 weeks after sensitization, the strength of immune memory induction was quantified in rested mountaineers and controls at sea level, by measuring the response to a low, dose-series DPCP challenge, read at 48 hours as skin measures of edema (skinfold thickness) and redness (erythema). Compared with control responses, skinfold thickness and erythema were reduced in the mountaineers (skinfold thickness,-52%, p=0.01, d=0.86; erythema, -36%, p=0.02, d=0.77). These changes in skinfold thickness and erythema were related to arterial oxygen saturation (r=0.7, p=0.04), but not cortisol (r<0.1, p>0.79), at sensitization. In conclusion, this is the first study to show, using a contact sensitization model of in vivo immunity, that high altitude exposure impairs the development of new immunity in humans. PMID:23795734

  4. Photoreactivation of Escherichia coli is impaired at high growth temperatures.

    PubMed

    Xu, Lei; Tian, Changqing; Lu, Xiaohua; Ling, Liefeng; Lv, Jun; Wu, Mingcai; Zhu, Guoping

    2015-06-01

    Photolyase repairs UV-induced lesions in DNA using light energy, which is the principle of photoreactivation. Active photolyase contains the two-electron-reduced flavin cofactor. We observed that photoreactivation of Escherichia coli was impaired at growth temperatures ⩾37°C, and growth in this temperature range also resulted in decreased photolyase protein levels in the cells. However, the levels of phr transcripts (encoding photolyase) were almost unchanged at the various growth temperatures. A lacZ-reporter under transcriptional control of the phr promoter showed no temperature-dependent expression. However, a translational reporter consisting of the photolyase N-terminal α/β domain-LacZ fusion protein exhibited lower β-galactosidase activity at high growth temperatures (37-42°C). These results indicated that the change in photolyase levels at different growth temperatures is post-transcriptional in nature. Limited proteolysis identified several susceptible cleavage sites in E. coli photolyase. In vitro differential scanning calorimetry and activity assays revealed that denaturation of active photolyase occurs at temperatures ⩾37°C, while apo-photolyase unfolds at temperatures ⩾25°C. Evidence from temperature-shift experiments also implies that active photolyase is protected from thermal unfolding and proteolysis in vivo, even at 42°C. These results suggest that thermal unfolding and proteolysis of newly synthesized apo-photolyase, but not active photolyase, is responsible for the impaired photoreactivation at high growth temperatures (37-42°C). PMID:25839748

  5. Snf1-Dependent Transcription Confers Glucose-Induced Decay upon the mRNA Product

    PubMed Central

    Braun, Katherine A.; Dombek, Kenneth M.

    2015-01-01

    In the yeast Saccharomyces cerevisiae, the switch from respiratory metabolism to fermentation causes rapid decay of transcripts encoding proteins uniquely required for aerobic metabolism. Snf1, the yeast ortholog of AMP-activated protein kinase, has been implicated in this process because inhibiting Snf1 mimics the addition of glucose. In this study, we show that the SNF1-dependent ADH2 promoter, or just the major transcription factor binding site, is sufficient to confer glucose-induced mRNA decay upon heterologous transcripts. SNF1-independent expression from the ADH2 promoter prevented glucose-induced mRNA decay without altering the start site of transcription. SNF1-dependent transcripts are enriched for the binding motif of the RNA binding protein Vts1, an important mediator of mRNA decay and mRNA repression whose expression is correlated with decreased abundance of SNF1-dependent transcripts during the yeast metabolic cycle. However, deletion of VTS1 did not slow the rate of glucose-induced mRNA decay. ADH2 mRNA rapidly dissociated from polysomes after glucose repletion, and sequences bound by RNA binding proteins were enriched in the transcripts from repressed cells. Inhibiting the protein kinase A pathway did not affect glucose-induced decay of ADH2 mRNA. Our results suggest that Snf1 may influence mRNA stability by altering the recruitment activity of the transcription factor Adr1. PMID:26667037

  6. Glucose induces rapid changes in the secretome of Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Protein secretion is a fundamental process in all living cells. Proteins can either be secreted via the classical or non-classical pathways. In Saccharomyces cerevisiae, gluconeogenic enzymes are in the extracellular fraction/periplasm when cells are grown in media containing low glucose. Following a transfer of cells to high glucose media, their levels in the extracellular fraction are reduced rapidly. We hypothesized that changes in the secretome were not restricted to gluconeogenic enzymes. The goal of the current study was to use a proteomic approach to identify extracellular proteins whose levels changed when cells were transferred from low to high glucose media. Results We performed two iTRAQ experiments and identified 347 proteins that were present in the extracellular fraction including metabolic enzymes, proteins involved in oxidative stress, protein folding, and proteins with unknown functions. Most of these proteins did not contain typical ER-Golgi signal sequences. Moreover, levels of many of these proteins decreased upon a transfer of cells from media containing low to high glucose media. Using an extraction procedure and Western blotting, we confirmed that the metabolic enzymes (glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, glucose-6-phosphate dehydrogenase, pyruvate decarboxylase), proteins involved in oxidative stress (superoxide dismutase and thioredoxin), and heat shock proteins (Ssa1p, Hsc82p, and Hsp104p) were in the extracellular fraction during growth in low glucose and that the levels of these extracellular proteins were reduced when cells were transferred to media containing high glucose. These proteins were associated with membranes in vesicle-enriched fraction. We also showed that small vesicles were present in the extracellular fraction in cells grown in low glucose. Following a transfer from low to high glucose media for 30 minutes, 98% of these vesicles disappeared from the extracellular fraction

  7. High Blood Pressure and Cognitive Decline in Mild Cognitive Impairment

    PubMed Central

    Goldstein, Felicia C.; Levey, Allan I.; Steenland, N. Kyle

    2013-01-01

    Objectives To determine whether high blood pressure (BP) levels are associated with faster decline in specific cognitive domains. Design Prospective longitudinal cohort. Setting Uniform Data Set of the National Institutes of Health, National Institute on Aging Alzheimer's Disease Centers. Participants One thousand three hundred eighty-five participants with a diagnosis of mild cognitive impairment (MCI) and measured BP values at baseline and two annual follow-up visits. Measurements Neuropsychological test scores and Clinical Dementia Rating Sum of Boxes (CDR Sum) score. Results Participants with MCI with two or three annual occasions of high BP values (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg) had significantly faster decline on neuropsychological measures of visuomotor sequencing, set shifting, and naming than those who were normotensive on all three occasions. High systolic BP values were associated as well with faster decline on the CDR Sum score. Conclusion Hypertension is associated with faster cognitive decline in persons at risk for dementia. PMID:23301925

  8. Acrolein Impairs the Cholesterol Transport Functions of High Density Lipoproteins

    PubMed Central

    Chadwick, Alexandra C.; Holme, Rebecca L.; Chen, Yiliang; Thomas, Michael J.; Sorci-Thomas, Mary G.; Silverstein, Roy L.; Pritchard, Kirkwood A.; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway. PMID:25849485

  9. Glucose-induced alterations of cytosolic free calcium in cultured rat tail artery vascular smooth muscle cells.

    PubMed Central

    Barbagallo, M; Shan, J; Pang, P K; Resnick, L M

    1995-01-01

    We have previously suggested that hyperglycemia per se may contribute to diabetic hypertensive and vascular disease by altering cellular ion content. To more directly investigate the potential role of glucose in this process, we measured cytosolic free calcium in primary cultures of vascular smooth muscle cells isolated from Sprague-Dawley rat tail artery before and after incubation with 5 (basal), 10, 15, and 20 mM glucose. Glucose significantly elevated cytosolic free calcium in a dose- and time-dependent manner, from 110.0 +/- 5.4 to 124.5 +/- 9.0, 192.7 +/- 20.4, and 228.4 +/- 21.9 nM at 5, 10, 15, and 20 mM glucose concentrations, respectively. This glucose-induced cytosolic free calcium elevation was also specific, no change being observed after incubation with equivalent concentrations of L-glucose or mannitol. This glucose effect was also dependent on extracellular calcium and pH, since these calcium changes were inhibited in an acidotic or a calcium-free medium, or by the competitive calcium antagonist lanthanum. We conclude that ambient glucose concentrations within clinically observed limits may alter cellular calcium ion homeostasis in vascular smooth muscle cells. We suggest that these cellular ionic effects of hyperglycemia may underlie the predisposition to hypertension and vascular diseases among diabetic subjects and/or those with impaired glucose tolerance. PMID:7860758

  10. Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases.

    PubMed

    Gerbeth, Carolin; Schmidt, Oliver; Rao, Sanjana; Harbauer, Angelika B; Mikropoulou, Despina; Opalińska, Magdalena; Guiard, Bernard; Pfanner, Nikolaus; Meisinger, Chris

    2013-10-01

    Most mitochondrial proteins are imported by the translocase of the outer mitochondrial membrane (TOM). Tom22 functions as central receptor and transfers preproteins to the import pore. Casein kinase 2 (CK2) constitutively phosphorylates the cytosolic precursor of Tom22 at Ser44 and Ser46 and, thus, promotes its import. It is unknown whether Tom22 is regulated under different metabolic conditions. We report that CK1, which is involved in glucose-induced signal transduction, is bound to mitochondria. CK1 phosphorylates Tom22 at Thr57 and stimulates the assembly of Tom22 and Tom20. In contrast, protein kinase A (PKA), which is also activated by the addition of glucose, phosphorylates the precursor of Tom22 at Thr76 and impairs its import. Thus, PKA functions in an opposite manner to CK1 and CK2. Our results reveal that three kinases regulate the import and assembly of Tom22, demonstrating that the central receptor is a major target for the posttranslational regulation of mitochondrial protein import. PMID:24093680

  11. Volatile anesthetics suppress glucose-stimulated insulin secretion in MIN6 cells by inhibiting glucose-induced activation of hypoxia-inducible factor 1

    PubMed Central

    Suzuki, Kengo; Sato, Yoshifumi; Kai, Shinichi; Nishi, Kenichiro; Adachi, Takehiko; Matsuo, Yoshiyuki

    2015-01-01

    Proper glycemic control is one of the most important goals in perioperative patient management. Insulin secretion from pancreatic β-cells in response to an increased blood glucose concentration plays the most critical role in glycemic control. Several animal and human studies have indicated that volatile anesthetics impair glucose-stimulated insulin secretion (GSIS). A convincing GSIS model has been established, in which the activity of ATP-dependent potassium channels (KATP) under the control of intracellular ATP plays a critical role. We previously reported that pimonidazole adduct formation and stabilization of hypoxia-inducible factor-1α (HIF-1α) were detected in response to glucose stimulation and that MIN6 cells overexpressing HIF-1α were resistant to glucose-induced hypoxia. Genetic ablation of HIF-1α or HIF-1β significantly inhibited GSIS in mice. Moreover, we previously reported that volatile anesthetics suppressed hypoxia-induced HIF activation in vitro and in vivo.To examine the direct effect of volatile anesthetics on GSIS, we used the MIN6 cell line, derived from mouse pancreatic β-cells. We performed a series of experiments to examine the effects of volatile anesthetics (sevoflurane and isoflurane) on GSIS and demonstrated that these compounds inhibited the glucose-induced ATP increase, which is dependent on intracellular hypoxia-induced HIF-1 activity, and suppressed GSIS at a clinically relevant dose in these cells. PMID:26713247

  12. Impaired osmoregulation at high altitude. Studies on Mt Everest.

    PubMed

    Blume, F D; Boyer, S J; Braverman, L E; Cohen, A; Dirkse, J; Mordes, J P

    1984-07-27

    Osmoregulation was studied in 13 mountaineers who had experienced long-term exposure to high altitude on Mt Everest. Serum osmolality rose from 290 +/- 1 mOsm/kg to 295 +/- 2 mOsm/kg at 5,400 m and finally to 302 +/- 4 mOsm/kg at 6,300 m after a mean of 26.5 days above 5,400 m. Despite this degree of osmoconcentration, plasma arginine-vasopressin concentration remained unchanged: 1.1 +/-0.1 microU/mL at sea level, 0.8 +/- 0.1 microU/mL at 5,400 m, and 0.9 +/- 0.1 microU/mL at 6,300 m. Urinary vasopressin excretion was also similar at all three altitudes. We conclude that prolonged exposure to high altitude may result in persistent impairment of osmoregulation, caused in part by an inappropriate arginine-vasopressin response to hyperosmolality. PMID:6429358

  13. Regulation of brain water during acute glucose-induced hyperosmolality in ovine fetuses, lambs, and adults.

    PubMed

    Stonestreet, Barbara S; Petersson, Katherine H; Sadowska, Grazyna B; Patlak, Clifford S

    2004-02-01

    We tested the hypothesis that, during acute glucose-induced hyperosmolality, the brain shrinks less than predicted on the basis of an ideal osmometer and that brain volume regulation is present in fetuses, premature and newborn lambs. Brain water responses to glucose-induced hyperosmolality were measured in the cerebral cortex, cerebellum, and medulla of fetuses at 60% of gestation, premature ventilated lambs at 90% of gestation, newborn lambs, and adult sheep. After exposure of the sheep to increases in osmolality with glucose plus NaCl, brain water and electrolytes were measured. The ideal osmometer is a system in which impermeable solutes do not enter or leave in response to an osmotic stress. In the absence of volume regulation, brain solute remains constant as osmolality changes. The osmotically active solute demonstrated direct linear correlations with plasma osmolality in the cerebral cortex of the fetuses at 60% of gestation (r = 0.72, n = 24, P = 0.0001), premature lambs (r = 0.58, n = 22, P = 0.005), newborn lambs (r = 0.57, n = 24, P = 0.004), and adult sheep (r = 0.70, n = 18, P = 0.001). Similar findings were observed in the cerebellum and medulla. Increases in the quantity of osmotically active solute over the range of plasma osmolalities indicate that volume regulation was present in the brain regions of the fetuses, premature lambs, newborn lambs, and adult sheep during glucose-induced hyperosmolality. We conclude that, during glucose-induced hyperosmolality, the brain shrinks less than predicted on the basis of an ideal osmometer and exhibits volume regulation in fetuses at 60% of gestation, premature lambs, newborn lambs, and adult sheep. PMID:14578364

  14. Glucose-induced conformational change in yeast hexokinase.

    PubMed Central

    Bennett, W S; Steitz, T A

    1978-01-01

    The A isozyme of yeast hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) crystallized as a complex with glucose has a conformation that is dramatically different from the conformation of the B isozyme crystallized in the absence of glucose. Comparison of the high-resolution structures shows that one lobe of the molecule is rotated by 12 degrees relative to the other lobe, resulting in movements of as much as 8 A in the polypeptide backbone and closing the cleft between the lobes into which glucose is bound. The conformational change is produced by the binding of glucose (R.C. McDonald, T.A. Steitz, and D.M. Engelman, unpublished data) and is essential for catalysis [Anderson, C.M., Stenkamp, R.E., McDonald, R.C. & Steitz, T.A. (1978) J. Mol. Biol. 123, 207-219] and thus provides an example of induced fit. The surface area of the hexokinase A-glucose complex exposed to solvent is smaller than that of native hexokinase B. By using the change in exposed surface area to estimate the hydrophobic contribution to the free energy changes upon glucose binding, we find that the hydrophobic effect alone favors the active conformation of hexokinase in the presence and absence of sugar. The observed stability of the inactive conformation of the enzyme in the absence of substrates may result from a deficiency of complementary interactions within the cavity that forms when the two lobes close together. PMID:283394

  15. Personal-Space Preference among Male Elementary and High School Students with and without Visual Impairments.

    ERIC Educational Resources Information Center

    Eaton, Susan B.; Fuchs, Lynn S.; Snook-Hill, Mary-Maureen

    1998-01-01

    Compared elementary and high school boys who were either severely visually impaired, sighted but blindfolded, and sighted with no visual restrictions. Investigated personal-space preference (PSP) and found the visually impaired and blindfolded boys chose a smaller initial PSP, but all three groups were similar on approach PSP and stop-distance…

  16. Aflibercept, bevacizumab and ranibizumab prevent glucose-induced damage in human retinal pericytes in vitro, through a PLA2/COX-2/VEGF-A pathway.

    PubMed

    Giurdanella, Giovanni; Anfuso, Carmelina Daniela; Olivieri, Melania; Lupo, Gabriella; Caporarello, Nunzia; Eandi, Chiara M; Drago, Filippo; Bucolo, Claudio; Salomone, Salvatore

    2015-08-01

    Diabetic retinopathy, a major cause of vision loss, is currently treated with anti-VEGF agents. Here we tested two hypotheses: (i) high glucose damages retinal pericytes, the cell layer surrounding endothelial cells, via VEGF induction, which may be counteracted by anti-VEGFs and (ii) activation of PLA2/COX-2 pathway by high glucose might be upstream and/or downstream of VEGF in perycites, as previously observed in endothelial cells. Human retinal pericytes were treated with high glucose (25mM) for 48h and/or anti-VEGFs (40μg/ml aflibercept, 25μg/ml bevacizumab, 10μg/ml ranibizumab). All anti-VEGFs significantly prevented high glucose-induced cell damage (assessed by LDH release) and improved cell viability (assessed by MTT and Evans blue). High glucose-induced VEGF-A expression, as detected both at mRNA (qPCR) and protein (ELISA) level, while receptor (VEGFR1 and VEGFR2) expression, detected in control condition, was unaffected by treatments. High glucose induced also activation of PLA2/COX-2 pathway, as revealed by increased phosphorylation of cPLA2, COX-2 expression and PGE2 release. Treatment with cPLA2 (50μM AACOCF3) and COX-2 (5μM NS-392) inhibitors prevented both cell damage and VEGF-A induced by high glucose. Finally, challenge with exogenous VEGF-A (10ng/ml) induced VEGF-A expression, while anti-VEGFs reduced VEGF-A expression induced by either high glucose or exogenous VEGF-A. These data indicate that high glucose directly damages pericytes through activation of PLA2/COX-2/VEGF-A pathway. Furthermore, a kind of feed-forward loop between cPLA2/COX-2/PG axis and VEGF appears to operate in this system. Thus, anti-VEGFs afford protection of pericytes from high glucose by inhibiting this loop. PMID:26056075

  17. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance.

    PubMed

    Zhang, Wei; Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H; Garvey, W John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang; Garvey, W Timothy

    2016-08-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. PMID:27207527

  18. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells.

    PubMed

    Mehmeti, Ilir; Lortz, Stephan; Elsner, Matthias; Lenzen, Sigurd

    2014-09-26

    Oxidative folding of (pro)insulin is crucial for its assembly and biological function. This process takes place in the endoplasmic reticulum (ER) and is accomplished by protein disulfide isomerase and ER oxidoreductin 1β, generating stoichiometric amounts of hydrogen peroxide (H2O2) as byproduct. During insulin resistance in the prediabetic state, increased insulin biosynthesis can overwhelm the ER antioxidative and folding capacity, causing an imbalance in the ER redox homeostasis and oxidative stress. Peroxiredoxin 4 (Prdx4), an ER-specific antioxidative peroxidase can utilize luminal H2O2 as driving force for reoxidizing protein disulfide isomerase family members, thus efficiently contributing to disulfide bond formation. Here, we examined the functional significance of Prdx4 on β-cell function with emphasis on insulin content and secretion during stimulation with nutrient secretagogues. Overexpression of Prdx4 in glucose-responsive insulin-secreting INS-1E cells significantly metabolized luminal H2O2 and improved the glucose-induced insulin secretion, which was accompanied by the enhanced proinsulin mRNA transcription and insulin content. This β-cell beneficial effect was also observed upon stimulation with the nutrient insulin secretagogue combination of leucine plus glutamine, indicating that the effect is not restricted to glucose. However, knockdown of Prdx4 had no impact on H2O2 metabolism or β-cell function due to the fact that Prdx4 expression is negligibly low in pancreatic β-cells. Moreover, we provide evidence that the constitutively low expression of Prdx4 is highly susceptible to hyperoxidation in the presence of high glucose. Overall, these data suggest an important role of Prdx4 in maintaining insulin levels and improving the ER folding capacity also under conditions of a high insulin requirement. PMID:25122762

  19. Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine PDGF loop.

    PubMed

    Fraser, Donald; Brunskill, Nigel; Ito, Takafumi; Phillips, Aled

    2003-12-01

    We have recently reported increased transforming growth factor (TGF)-beta1 gene transcription in proximal tubular cells within 12 hours of exposure to 25 mmol/L D-glucose, with a requirement for a second stimulus such as platelet-derived growth factor (PDGF) to increase its translation in short-term experiments. In the current study we investigated the effect on TGF-beta 1 production of prolonged exposure of proximal tubular cells to high glucose concentrations. Enzyme-linked immunosorbent assay of cell culture supernatant showed significant increase in latent TGF-beta 1 only after 7 days exposure to high glucose. Radiolabeling of glucose-stimulated cells with (3)H amino acids and subsequent immunoprecipitation of TGF-beta 1 demonstrated de novo synthesis from day 5 of high glucose exposure onwards. Similarly, polysome analysis showed enhanced translation of TGF-beta mRNA after 4 or more days of high glucose exposure. TGF-beta 1 synthesis, following addition of glucose, was inhibited by blockade of the PDGF-alpha receptor subunit. Glucose did not alter PDGF expression, nor expression of PDGF alpha-receptors. Activation of the receptor following addition of 25 mm D-glucose could be demonstrated suggesting increased sensitivity to endogenous PDGF. Exposure to glucose activated p38MAP kinase, and inhibition of this activation abrogated both glucose induced TGF-beta 1 transcriptional activation and TGF-beta 1 synthesis. Inhibition of p38MAP kinase did not influence the effect of exogenous PDGF when cells were stimulated sequentially by glucose and PDGF. We postulate that glucose induces an early increase in TGF-beta 1 transcription via activation of p38MAP kinase. In addition, glucose causes a late increase in PDGF-dependent TGF-beta 1 translation by enhancing cellular sensitivity to PDGF. This provides a potential explanation for the clinical observation that prolonged poor glycemic control may contribute to progression of diabetic nephropathy. PMID:14633628

  20. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells.

    PubMed

    Xia, Hua-Qiang; Pan, Yi; Peng, Ju; Lu, Guang-Xiu

    2011-06-01

    MicroRNAs (miRNAs) are 19- to 25-nt fragments cleaved from 70- to 100-nt hairpin precursors. These molecules participate in essential biological processes. It was estimated that 30% of all protein-coding genes are miRNA targets. Thousands of miRNAs have already been identified in plants and animals, but little is known about their biological roles. MicroRNA375 (miR375) is highly expressed in pancreatic islets of humans and mice and regulates insulin secretion in isolated pancreatic cells. To improve our understanding of the biological roles of miR375, we constructed the plasmid pAAV-miR375 and transfected it into mouse Nit-1 cells. Real-time PCR and Northern blot analysis showed that the Nit-1 cells transfected with pAAV-miR375 over-expressed the mature miR375 compared with Nit-1 cells transfected with control plasmid or untransfected cells. The expression of myotrophin (Mtpn) decreased and insulin secretion was reduced in Nit-1 cells transfected with pAAV-miR375. In this study, we successfully established an over-expression system for miR375 and a technique to study the biological function of miRNAs by over-expression. We verified that miR375 reduced glucose-induced insulin secretion by down-regulating the expression of Mtpn in Nit-1 cells in vitro, suggesting that miR375 has potential therapeutic applications in type II diabetes. PMID:20221699

  1. Glucose induces intestinal human UDP-glucuronosyltransferase (UGT) 1A1 to prevent neonatal hyperbilirubinemia.

    PubMed

    Aoshima, Naoya; Fujie, Yoshiko; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2014-01-01

    Inadequate calorie intake or starvation has been suggested as a cause of neonatal jaundice, which can further cause permanent brain damage, kernicterus. This study experimentally investigated whether additional glucose treatments induce the bilirubin-metabolizing enzyme--UDP-glucuronosyltransferase (UGT) 1A1--to prevent the onset of neonatal hyperbilirubinemia. Neonatal humanized UGT1 (hUGT1) mice physiologically develop jaundice. In this study, UGT1A1 expression levels were determined in the liver and small intestine of neonatal hUGT1 mice that were orally treated with glucose. In the hUGT1 mice, glucose induced UGT1A1 in the small intestine, while it did not affect the expression of UGT1A1 in the liver. UGT1A1 was also induced in the human intestinal Caco-2 cells when the cells were cultured in the presence of glucose. Luciferase assays demonstrated that not only the proximal region (-1300/-7) of the UGT1A1 promoter, but also distal region (-6500/-4050) were responsible for the induction of UGT1A1 in the intestinal cells. Adequate calorie intake would lead to the sufficient expression of UGT1A1 in the small intestine to reduce serum bilirubin levels. Supplemental treatment of newborns with glucose solution can be a convenient and efficient method to treat neonatal jaundice while allowing continuous breastfeeding. PMID:25209391

  2. Advanced Glycation End Products Impair Voltage-Gated K+ Channels-Mediated Coronary Vasodilation in Diabetic Rats

    PubMed Central

    Su, Wen; Li, Weiping; Chen, Hui; Liu, Huirong; Huang, Haixia; Li, Hongwei

    2015-01-01

    Background We have previously reported that high glucose impairs coronary vasodilation by reducing voltage-gated K+ (Kv) channel activity. However, the underlying mechanisms remain unknown. Advanced glycation end products (AGEs) are potent factors that contribute to the development of diabetic vasculopathy. The aim of this study was to investigate the role of AGEs in high glucose-induced impairment of Kv channels-mediated coronary vasodilation. Methods Patch-clamp recording and molecular biological techniques were used to assess the function and expression of Kv channels. Vasodilation of isolated rat small coronary arteries was measured using a pressurized myograph. Treatment of isolated coronary vascular smooth muscle cells (VSMCs) and streptozotocin-induced diabetic rats with aminoguanidine, the chemical inhibitor of AGEs formation, was performed to determine the contribution of AGEs. Results Incubation of VSMCs with high glucose reduced Kv current density by 60.4 ± 4.8%, and decreased expression of Kv1.2 and Kv1.5 both at the gene and protein level, whereas inhibiting AGEs formation or blocking AGEs interacting with their receptors prevented high glucose-induced impairment of Kv channels. In addition, diabetic rats manifested reduced Kv channels-mediated coronary dilation (9.3 ± 1.4% vs. 36.9 ± 1.4%, P < 0.05), which was partly corrected by the treatment with aminoguanidine (24.4 ± 2.2% vs. 9.3 ± 1.4%, P < 0.05). Conclusions Excessive formation of AGEs impairs Kv channels in VSMCs, then leading to attenuation of Kv channels-mediated coronary vasodilation. PMID:26562843

  3. Provision of High-Quality Orientation and Mobility Services to Older Persons with Visual Impairments.

    ERIC Educational Resources Information Center

    Hill, M.-M.

    1991-01-01

    The provision of high quality orientation and mobility (O&M) services to older persons with visual impairments requires consideration of problems in attitudes, client characteristics, financial resources, inservice training, and the availability of age-appropriate assessment instruments. This paper discusses research on O&M interventions and…

  4. Social Studies: A Resource Guide for Hearing-Impaired High School Students.

    ERIC Educational Resources Information Center

    Jaggers, Robert A.; Jaggers, Barbara A.

    The guide was written to give secondary level hearing impaired students exposure to real life problems from a social studies perspective. Units are outlined for the three levels of the high school years and provide an overview, information on vocabulary, target competencies, suggested activities, sources, and a list of objectives. The units are…

  5. Brief Report: Biochemical Correlates of Clinical Impairment in High Functioning Autism and Asperger's Disorder

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Weaver, Kurt E.; Liang, Olivia; Dawson, Geraldine; Aylward, Elizabeth

    2009-01-01

    Amygdala dysfunction has been proposed as a critical contributor to social impairment in autism spectrum disorders (ASD). The current study investigated biochemical abnormalities in the amygdala in 20 high functioning adults with autistic disorder or Asperger's disorder and 19 typically developing adults matched on age and IQ. Magnetic resonance…

  6. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding.

    PubMed

    Vogt, Merly C; Paeger, Lars; Hess, Simon; Steculorum, Sophie M; Awazawa, Motoharu; Hampel, Brigitte; Neupert, Susanne; Nicholls, Hayley T; Mauer, Jan; Hausen, A Christine; Predel, Reinhard; Kloppenburg, Peter; Horvath, Tamas L; Brüning, Jens C

    2014-01-30

    Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect. PMID:24462248

  7. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high fat feeding

    PubMed Central

    Vogt, Merly C.; Paeger, Lars; Hess, Simon; Steculorum, Sophie M.; Awazawa, Motoharu; Hampel, Brigitte; Neupert, Susanne; Nicholls, Hayley T.; Mauer, Jan; Hausen, A. Christine; Predel, Reinhard; Kloppenburg, Peter; Horvath, Tamas L.; Brüning, Jens C.

    2014-01-01

    Summary Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high fat diet (HFD)-feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin-(POMC) and orexigenic agoui-related peptide (AgRP)-neurons, electrophysiological properties of POMC-neurons and posttranslational processing of POMC remain unaffected in response to maternal HFD-feeding during lactation, the formation of POMC- and AgRP-projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC-neurons of the offspring prevents altered POMC-projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation and impaired glucose-stimulated insulin-secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections and that abnormal insulin signaling contributes to this effect. PMID:24462248

  8. HIGH GLUCOSE INDUCES TOLL-LIKE RECEPTOR EXPRESSION IN HUMAN MONOCYTES: MECHANISM OF ACTIVATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Hyperglycemia induced inflammation is central in diabetes complications and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses as well as inflammation. However, there is a paucity of data examining the expression a...

  9. An examination of the Clinical Impairment Assessment among women at high risk for eating disorder onset

    PubMed Central

    Vannucci, Anna; Kass, Andrea E.; Sinton, Meghan M.; Aspen, Vandana; Weisman, Hannah; Bailey, Jakki O.; Wilfley, Denise E.; Taylor, C. Barr

    2013-01-01

    Identifying measures that reliably and validly assess clinical impairment has important implications for eating disorder (ED) diagnosis and treatment. The current study examined the psychometric properties of the Clinical Impairment Assessment (CIA) in women at high risk for ED onset. Participants were 543 women (20.6 ± 2.0 years) who were classified into one of three ED categories: clinical ED, high risk for ED onset, and low risk control. Among high risk women, the CIA demonstrated high internal consistency (α = 0.93) and good convergent validity with disordered eating attitudes (rs = 0.27–0.68, ps < 0.001). Examination of the CIA’s discriminant validity revealed that CIA global scores were highest among women with a clinical ED (17.7 ± 10.7) followed by high risk women (10.6 ± 8.5) and low risk controls (3.0 ± 3.3), respectively (p < 0.001). High risk women reporting behavioral indices of ED psychopathology (objective and/or subjective binge episodes, purging behaviors, driven exercise, and ED treatment history) had higher CIA global scores than those without such indices (ps < 0.05), suggesting good criterion validity. These data establish the first norms for the CIA in a United States sample. The CIA is psychometrically sound among high risk women, and heightened levels of impairment among these individuals as compared to low risk women verify the relevance of early intervention efforts. PMID:22516320

  10. Angiotensin-converting enzyme inhibition increases glucose-induced insulin secretion in response to acute restraint.

    PubMed

    Schweizer, Júnia R O L; Miranda, Paulo A C; Fóscolo, Rodrigo B; Lemos, Joao P M; Paula, Luciano F; Silveira, Warley C; Santos, Robson A S; Pinheiro, Sérgio V B; Coimbra, Candido C; Ribeiro-Oliveira, Antônio

    2012-12-01

    There is increasing evidence suggesting involvement of the renin-angiotensin system (RAS) in carbohydrate metabolism and its response to stress. Thus, the aim of the present study was to evaluate the effects of chronic inhibition of the RAS on glucose and insulin levels during acute restraint stress. Male Holtzman rats were treated with 10 mg/kg per day enalapril solution or vehicle for 14 days. After 14 days, rats were divided into three experimental groups: enalapril + restraint (ER), vehicle + restraint (VR) and enalapril + saline (ES). Rats in the restraint groups were subjected to 30 min restraint stress, whereas rats in the ES groups were given saline infusion instead. Blood samples were collected at baseline and after 5, 10, 20 and 30 min restraint stress or saline infusion. After restraint, a hyperglycaemic response was observed in the ER and VR groups that peaked at 20 and 10 min, respectively (P < 0.05 compared with baseline). The area under the glucose curve was markedly increased in the ER and VR groups compared with that in the ES group (P < 0.05 for both). Importantly, restraint induced a marked increase in insulin secretion in the ER group compared with only a mild elevation in the VR group; insulin secretion in both groups peaked at 20 min (P < 0.05 compared with baseline). Analysis of the area under the insulin curve confirmed an increase in insulin secretion in the ER compared with the VR and ES groups (P < 0.05 for both). The results of the present study reinforce that the RAS is involved in modulating responses to stress and suggest that RAS inhibition with enalapril may increase glucose-induced insulin secretion in response to acute restraint. PMID:23734984

  11. High Prevalence of Hearing Impairment in HIV-Infected Peruvian Children

    PubMed Central

    Chao, Christina K.; Czechowicz, Josephine A.; Messner, Anna H.; Alarcón, Jorge; Roca, Lenka Kolevic; Rodriguez, Marsi M. Larragán; Villafuerte, César Gutiérrez; Montano, Silvia M.; Zunt, Joseph R.

    2012-01-01

    Objectives To measure the prevalence and to identify risk factors of hearing impairment in human immunodeficiency virus-infected children living in Peru. Study design Cross-sectional observational study. Setting Two public hospitals and 1 nonprofit center in Lima, Peru, between August 2009 and April 2010. Subjects A total of 139 HIV-infected children, ages 4 to 19 years. Methods Hearing impairment and otologic health were assessed with pure tone audiometry, tympanometry, and otoscopy. The primary outcome was hearing loss, defined as average threshold >25dB for 0.5, 1, 2, and 4 kHz, in one or both ears. Historical and socioeconomic information was obtained through parental survey and medical chart review. Statistical analysis included univariate analysis and multivariate logistic regression. Results Fifty-four (38.8%) of 139 children had hearing impairment. On multivariate analysis, risk factors included: tympanic membrane perforation (odds ratio [OR] 7.08; 95% confidence interval [CI], 1.65-30.5; P = .01), abnormal tympanometry (OR 2.71; 95% CI, 1.09-6.75; P = .03), cerebral infection (OR 11.6; 95% CI, 1.06-126; P = .05), seizures (OR 5.20; 95% CI, 1.21-22.4; P = .03), and CD4 cell count <500 cells/mm3 (OR 3.53; 95% CI, 1.18-10.5; P = .02). Conclusions The prevalence of hearing impairment in HIV-infected children in Lima, Peru was 38.8%. Middle ear disease, prior cerebral infection, and low CD4 cell count were significantly associated with hearing impairment. The high prevalence of hearing impairment emphasizes the need for periodic hearing assessment in the routine clinical care of HIV-infected children. PMID:22128111

  12. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    PubMed

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-01

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (P<0.001), working memory (P<0.01), and object recognition memory (P<0.01), decreased the dendritic spine density (P<0.001), damaged pyramidal neurons in the CA1 subfield (P<0.001) compared with the CD group. However, lycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (P<0.001). Thus, this study indicated that lycopene helps to protect HFD induced cognitive dysfunction. PMID:27177726

  13. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers.

    PubMed

    West, John B

    2016-03-01

    Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered. PMID:25962370

  14. Interpreting the Meaning of the Terms "Certified" and "Highly Qualified" for Teachers of Students with Visual Impairments

    ERIC Educational Resources Information Center

    Pogrund, Rona L.; Wibbenmeyer, Kristina A.

    2008-01-01

    This article investigates the value of the term "highly qualified" as it relates to teachers of students with visual impairments. Routes to certification of teachers of students with visual impairments in the United States are not uniform and may not always reflect high-quality teacher preparation. A rationale for more stringent national standards…

  15. Mathematical impairment associated with high-contrast abnormalities in change detection and magnocellular visual evoked response.

    PubMed

    Jastrzebski, Nicola R; Crewther, Sheila G; Crewther, David P

    2015-10-01

    The cause of developmental dyscalculia, a specific deficit in acquisition of arithmetic skills, particularly of enumeration, has never been investigated with respect to the patency of the visual magnocellular system. Here, the question of dysfunction of the afferent magnocellular cortical input and its dorsal stream projections was tested directly using nonlinear analysis of the visual evoked potential (VEP) and through the psychophysical ability to rapidly detect visual change. A group of young adults with self-reported deficiencies of arithmetical ability, showed marked impairment in magnitude estimation and enumeration performance-though not in lexical decision reaction times when compared with an arithmetically capable group controlled for age and handedness. Multifocal nonlinear VEPs were recorded at low (24 %) and high (96 %) contrast. First- and second-order VEP kernels were comparable between groups at low contrast, but not at high contrast. The mathematically impaired group showed an abnormal lack of contrast saturation in the shortest latency first-order peak (N60) and a delayed P100 positivity in the first slice of the second-order kernel. Both features have previously been argued to be physiological markers of magnocellular function. Mathematically impaired participants also performed worse on a gap paradigm change detection for digit task showing increased reaction times for high-contrast stimuli but not for low-contrast stimuli compared with controls. The VEP results give direct evidence of abnormality in the occipital processing of magnocellular information in those with mathematical impairment. The anomalous high visual contrast physiological and psychophysical performance suggests an abnormality in the inhibitory processes that normally result in saturation of contrast gain in the magnocellular system. PMID:26195163

  16. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells.

    PubMed

    Salunkhe, Vishal A; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24-48 h inhibited voltage-gated Ca(2+) channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable

  17. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells

    PubMed Central

    Salunkhe, Vishal A.; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable

  18. A specific impairment in cognitive control in individuals with high-functioning autism.

    PubMed

    Barbalat, Guillaume; Leboyer, Marion; Zalla, Tiziana

    2014-11-01

    Although it is largely demonstrated that Autism Spectrum Disorders (ASDs) are characterized by executive dysfunctions, little is known about the fine-grained levels of this impairment. Here, we investigated the hierarchical architecture of control modules in autism using an experimental paradigm based upon a multistage model of executive functions. This model postulates that executive functions are hierarchically organized as a cascade of three different control processes, which are implemented according to information conveyed by sensory signals (sensory control), the immediate perceptual context (contextual control), and the temporal episode in which stimuli occur (episodic control). Sixteen high-functioning adults with autism or Asperger Syndrome (HFA/AS) and sixteen matched comparison participants took part in two distinct visuo-motor association experiments designed to separately vary the demands of sensory and episodic controls (first experiment) and contextual and episodic controls (second experiment). Participants with HFA/AS demonstrated no significant differences in performances with comparison participants when they had to control sensory or contextual information. However, they showed decreased accuracy when having to control information related to episodic signals. Remarkably, performances in episodic control were associated to the autism spectrum quotient in both groups, suggesting that this episodic control impairment might be at the core of ASDs. Those results plead for a specific, rather than generalised, deficit in executive functions in autism. Our study contributes to a better understanding of the impaired cognitive processes that are unique to autism and warrants confirmation using other models of executive functions. PMID:25106070

  19. Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice.

    PubMed

    Kaczmarczyk, Melissa M; Machaj, Agnieszka S; Chiu, Gabriel S; Lawson, Marcus A; Gainey, Stephen J; York, Jason M; Meling, Daryl D; Martin, Stephen A; Kwakwa, Kristin A; Newman, Andrew F; Woods, Jeffrey A; Kelley, Keith W; Wang, Yanyan; Miller, Michael J; Freund, Gregory G

    2013-09-01

    The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1-3wks) of a high-fat diet (HFD). After 1wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1β, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD. PMID:23411461

  20. Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice

    PubMed Central

    Kaczmarczyk, Melissa M.; Machaj, Agnieszka S.; Chiu, Gabriel S.; Lawson, Marcus A.; Gainey, Stephen J.; York, Jason M.; Meling, Daryl D.; Martin, Stephen A.; Kwakwa, Kristen A.; Newman, Andrew F.; Woods, Jeffrey A.; Kelley, Keith W.; Wang, Yanyan; Miller, Michael J.; Freund, Gregory G.

    2013-01-01

    The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1–3 wks) of a high-fat diet (HFD). After 1 wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1β, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD. PMID:23411461

  1. Effect of blueberries and insulin on glucose induced neurotoxicity in brain cells in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Literature had shown that disruption in glucose metabolism seen in metabolic syndrome maybe responsible for neuronal cell-death. Oxidative stress (OS) and inflammation (INF) triggered by the impaired metabolic process are considered to be the primary factors for the toxic neuronal atmos...

  2. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    PubMed

    Yang, Yang; Jing, Xiao-Peng; Zhang, Shou-Peng; Gu, Run-Xia; Tang, Fang-Xu; Wang, Xiu-Lian; Xiong, Yan; Qiu, Mei; Sun, Xu-Ying; Ke, Dan; Wang, Jian-Zhi; Liu, Rong

    2013-01-01

    Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose), 60 ppm Zn (high dose) or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit. PMID:23383172

  3. Pressor recovery after acute stress is impaired in high fructose-fed Lean Zucker rats.

    PubMed

    Thompson, Jennifer A; D'Angelo, Gerard; Mintz, James D; Fulton, David J; Stepp, David W

    2016-06-01

    Insulin resistance is a powerful predictor of cardiovascular disease; however, the mechanistic link remains unclear. This study aims to determine if early cardiovascular changes associated with short-term fructose feeding in the absence of obesity manifest as abnormal blood pressure control. Metabolic dysfunction was induced in Lean Zucker rats by short-term high-fructose feeding. Rats were implanted with telemetry devices for the measurement of mean arterial blood pressure (MAP) and subjected to air jet stress at 5 and 8 weeks after feeding. Additional animals were catheterized under anesthesia for the determination of MAP and blood flow responses in the hind limb and mesenteric vascular beds to intravenous injection of isoproterenol (0.001-0.5 μm), a β-adrenergic agonist. Metabolic dysfunction in high-fructose rats was not accompanied by changes in 24-h MAP Yet, animals fed a high-fructose diet for 8 weeks exhibited a marked impairment in blood pressure recovery after air-jet stress. Dose-dependent decreases in MAP and peripheral blood flow in response to isoproterenol treatment were significantly attenuated in high-fructose rats. These data suggest that impaired blood pressure recovery to acute mental stress precedes the onset of hypertension in the early stages of insulin resistance. Further, blunted responses to isoproterenol implicate β2-adrenergic sensitivity as a possible mechanism responsible for altered blood pressure control after short-term high-fructose feeding. PMID:27335430

  4. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an islet substance serving as an intra-islet amplifier of glucose-induced insulin secretion in rats.

    PubMed Central

    Yada, T; Sakurada, M; Ishihara, H; Nakata, M; Shioda, S; Yaekura, K; Hamakawa, N; Yanagida, K; Kikuchi, M; Oka, Y

    1997-01-01

    1. We examined whether pituitary adenylate cyclase-activating polypeptide with 38 or 27 residues (PACAP-38 or PACAP-27) serves as an intra-islet regulator of glucose-induced insulin secretion in rats. PACAP antiserum specific for PACAP-38 and PACAP-27 was used to neutralize the effect of endogenous PACAP in islets. PACAP release from islets was bioassayed using the response of cytosolic Ca2+ concentration ([Ca2+]i) in single beta-cells, monitored by dual-wavelength fura-2 microfluorometry. Expression of PACAP mRNA was studied by reverse transcription-polymerase chain reaction (RT-PCR), while expression of PACAP was studied by metabolic labelling and immunoblotting. Localization of PACAP receptors was studied immunohistochemically. 2. High glucose-stimulated insulin release from isolated islets was attenuated by PACAP antiserum but not by non-immune sera. 3. The islet incubation medium with high glucose (Med) possessed a capacity, which was neutralized by PACAP antiserum, to increase [Ca2+]i in beta-cells. PACAP antiserum also neutralized the [Ca2+]i-increasing action of synthetic PACAP-38 and PACAP-27, but not that of vasoactive intestinal polypeptide (VIP) and glucagon. 4. Both Med and synthetic PACAP increased [Ca2+]i in beta-cells only in the presence of stimulatory, but not basal, glucose concentrations. In contrast, ATP, a substance that is known to be released from beta-cells, increased [Ca2+]i in beta-cells at both and stimulatory glucose concentrations. 5. Expression of PACAP mRNA and biosynthesis of PACAP-38 were detected in islets and a beta-cell line, MIN6. 6. Immunoreactivity for PACAP-selective type-I receptor was observed in islets. 7. [Ca2+]i measurements combined with immunocytochemistry with insulin antiserum revealed a substantial population of glucose-unresponsive beta-cells, many of which were recruited by PACAP-38 into [Ca2+]i responses. 8. These results indicate that PACAP-38 is a novel islet substance that is synthesized and released by islet

  5. Optimization of extraction and purification of arctiin from Fructus arctii and its protection against glucose-induced rat aortic endothelial cell injury.

    PubMed

    Lu, Lai-chun; Zhang, Rong; Song, Ming-bao; Zhou, Shi-wen; Qian, Gui-sheng

    2014-05-01

    To develop an efficient method for extracting and purifying the active ingredient, arctiin, from Fructus arctii and to investigate the protective effect of arctiin against glucose-induced rat aortic endothelial cell (RAEC) injury was investigated. Using a L9 (34) orthogonal array and two-step column chromatography (with AB-8 macroporous resin) arctiin extraction was optimized using a reflux method with 70% ethanol. The RAECs were then treated with different concentrations of arctiin (1, 10, or 100 μg/ml). The effects of arctiin on cell viability in a high glucose medium, malondialdehyde (MDA) levels, and lactate dehydrogenase were measured using commercially available assays. After extraction, the purity of arctiin reached 95.7%. In rats, arctiin was shown to stimulate the proliferation of RAECs in a high glucose medium in a dose-dependent manner. Exposure of RAECs to high glucose resulted in a significant increase in MDA and release of lactate dehydrogenase. This was accompanied by significant increase in nitric oxide release and expression of antiendothelial nitric oxide synthase. This technique resulted in relatively pure arctiin extraction. Furthermore, the results from this study suggest that arctiin could potentially function as a protector against vascular endothelial cell injury and further investigation is warranted. PMID:24163109

  6. Protective Effects of Liraglutide and Linagliptin in C. elegans as a New Model for Glucose-Induced Neurodegeneration.

    PubMed

    Wongchai, K; Schlotterer, A; Lin, J; Humpert, P M; Klein, T; Hammes, H-P; Morcos, M

    2016-01-01

    Liraglutide and linagliptin are novel drugs for the treatment of diabetes. Antioxidative and neuroprotective effects have been described for both compounds. However, it is not yet known, whether these mechanisms are also protective against diabetic retinal neurodegeneration. We assessed the antioxidative and neuroprotective capabilities of liraglutide and linagliptin as well as the signaling pathways involved, by using C. elegans as a model for glucose-induced neurodegeneration. C. elegans were cultivated under conditions, which mimic clinical hyperglycemia, and treated with 160 μmol/l liraglutide or 13 μmol/l linagliptin. Oxidative stress was reduced by 29 or 78% and methylglyoxal-derived advanced glycation endproducts (AGEs) by 33 or 22%, respectively. This resulted in an improved neuronal function by 42 or 60% and an extended mean lifespan by 9 or 11%, respectively. Antioxidative and AGE reducing effects of liraglutide and linagliptin were not dependent on v-akt murine thymoma viral oncogene homologue 1/forkhead box O1 (AKT1/FOXO). Neuroprotection by liraglutide was AKT1/FOXO dependent, yet AKT1/FOXO independent upon linagliptin treatment. Both liraglutide and linagliptin exert neuroprotective effects in an experimental model for glucose-induced neurodegeneration, however, the signaling pathways differ in the present study. Further pharmacological intervention with these pathways may help to delay the clinical onset of diabetic retinopathy by preserving neuronal integrity. PMID:25951323

  7. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets.

    PubMed

    Bielohuby, Maximilian; Sisley, Stephanie; Sandoval, Darleen; Herbach, Nadja; Zengin, Ayse; Fischereder, Michael; Menhofer, Dominik; Stoehr, Barbara J M; Stemmer, Kerstin; Wanke, Rüdiger; Tschöp, Matthias H; Seeley, Randy J; Bidlingmaier, Martin

    2013-11-01

    Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic β-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects. PMID:23982154

  8. Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3.

    PubMed

    Berent-Spillson, Alison; Robinson, Amanda M; Golovoy, David; Slusher, Barbara; Rojas, Camilo; Russell, James W

    2004-04-01

    Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N-acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions. PMID:15030392

  9. High levels of dietary fat impair glucose homeostasis in rainbow trout.

    PubMed

    Figueiredo-Silva, A Cláudia; Panserat, Stéphane; Kaushik, Sadasivam; Geurden, Inge; Polakof, Sergio

    2012-01-01

    This study was designed to assess the effects of dietary fat levels on glucose homeostasis in rainbow trout under prolonged hyperglycaemia induced by high carbohydrate intake. Trout were fed identical amounts of one of two iso-energetic diets containing either a low (LFD, 3%) or a high fat level (HFD, 20%) and similar amounts of digestible carbohydrates (26-30%) for 14 days. While a single high fat meal reduced glycaemia compared with a low fat meal, the consumption of a high fat diet for 14 days resulted in prolonged hypergylcaemia and reduced plasma glucose clearance in response to an exogenous glucose or insulin challenge. The hyperglycaemic phenotype in trout was characterised by a reduction of the activities of lipogenic and glucose phosphorylating enzymes with a concomitant stimulation of enzymes involved in glucose production in the liver and reduced glycogen levels in the white muscle. Impaired glucose tolerance (IGT) was further associated with a significant reduction of insulin receptor substrate 1 (IRS1) protein content in muscle, and with a poor response of HFD fed fish to an exogenous insulin load, suggestive of impaired insulin signalling in trout fed with a HFD. To our knowledge, this is the first study showing that a teleost can also develop a high fat-induced IGT, characterised by persistent hyperglycaemia and reduced insulin sensitivity, established symptoms of IGT and the prediabetic insulin-resistant state in mammals. Our results also provide evidence that persistent hyperglycaemia after a high carbohydrate meal stems from a metabolic interaction between dietary macronutrients rather than from high carbohydrate intake alone. PMID:22162865

  10. Experimental studies of high-accuracy RFID localization with channel impairments

    NASA Astrophysics Data System (ADS)

    Pauls, Eric; Zhang, Yimin D.

    2015-05-01

    Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.

  11. Impaired High-Density Lipoprotein Anti-Oxidant Function Predicts Poor Outcome in Critically Ill Patients

    PubMed Central

    Schrutka, Lore; Goliasch, Georg; Meyer, Brigitte; Wurm, Raphael; Koller, Lorenz; Kriechbaumer, Lukas; Heinz, Gottfried; Pacher, Richard; Lang, Irene M

    2016-01-01

    Introduction Oxidative stress affects clinical outcome in critically ill patients. Although high-density lipoprotein (HDL) particles generally possess anti-oxidant capacities, deleterious properties of HDL have been described in acutely ill patients. The impact of anti-oxidant HDL capacities on clinical outcome in critically ill patients is unknown. We therefore analyzed the predictive value of anti-oxidant HDL function on mortality in an unselected cohort of critically ill patients. Method We prospectively enrolled 270 consecutive patients admitted to a university-affiliated intensive care unit (ICU) and determined anti-oxidant HDL function using the HDL oxidant index (HOI). Based on their HOI, the study population was stratified into patients with impaired anti-oxidant HDL function and the residual study population. Results During a median follow-up time of 9.8 years (IQR: 9.2 to 10.0), 69% of patients died. Cox regression analysis revealed a significant and independent association between impaired anti-oxidant HDL function and short-term mortality with an adjusted HR of 1.65 (95% CI 1.22–2.24; p = 0.001) as well as 10-year mortality with an adj. HR of 1.19 (95% CI 1.02–1.40; p = 0.032) when compared to the residual study population. Anti-oxidant HDL function correlated with the amount of oxidative stress as determined by Cu/Zn superoxide dismutase (r = 0.38; p<0.001). Conclusion Impaired anti-oxidant HDL function represents a strong and independent predictor of 30-day mortality as well as long-term mortality in critically ill patients. PMID:26978526

  12. Impairment of cognitive performance associated with dieting and high levels of dietary restraint.

    PubMed

    Green, M W; Rogers, P J; Elliman, N A; Gatenby, S J

    1994-03-01

    Seventy women students were tested on a short battery of tasks assessing cognitive performance. They also completed self-report ratings of mood, the Dutch Eating Behaviour Questionnaire (DEBQ) to which was appended several additional items concerning their recent dieting behaviour, and a 24-h dietary recall. Heart rate was measured before and after testing. Compared with nondieting subjects with low to moderate scores on the restraint factor of the DEBQ, subjects (n = 15) who reported that they were currently dieting to lose weight displayed impaired performance on a vigilance task and also tended to show poorer immediate memory and longer reaction times. Highly restrained eaters who were not dieting at the time of testing, on the whole, performed at an intermediate level on these tests. In contrast, the dieters tended to show the best performance on an undemanding finger tapping task, indicating that they were not slowed in their fine motor responses or lacking in motivation to carry out the tasks. Poorer cognitive functioning during dieting could arise as a direct consequence of the effects of food restriction on energy metabolism or other physiological mechanisms--the dietary records indicated that the current dieters were eating at about 70% of maintenance energy requirement. However, it is also possible that cognitive performance is impaired during dieting due to anxiety resulting from stressful effects of imposing and maintaining dietary restraint. PMID:8190760

  13. Glucose-induced thermogenesis in patients with small cell lung carcinoma. Before and after inhibition of tumour growth by chemotherapy.

    PubMed

    Simonsen, L; Bülow, J; Sengeløv, H; Madsen, J; Ovesen, L

    1993-07-01

    Seven weight-losing patients with histologically verified small cell lung carcinoma were given an oral glucose load of 75 g before and at least 3 weeks after the end of chemotherapy to examine the effect of glucose on whole body and skeletal muscle thermogenesis before and after reduction of tumour. Whole body energy expenditure was measured by the open circuit ventilated hood system. Forearm blood flow was measured by venous-occlusion strain-gauge plethysmography. The uptake of oxygen in skeletal muscle was calculated as the product of the forearm blood flow and the difference in a-v oxygen concentration. Whole body resting energy expenditure (REE) did not increase, it was 4.4 +/- 0.3 kJ min-1 (mean +/- SE) before chemotherapy and 4.4 +/- 0.2 kJ min-1 after chemotherapy. The glucose-induced thermogenesis in the 180 min following the glucose load was 93.6 +/- 9.9 kJ 180 min-1 before chemotherapy. This is significantly increased compared to that found in a healthy control group (74.7 +/- 4.8 kJ 180 min-1, P < 0.02). The glucose-induced thermogenesis was significantly reduced to 47.7 +/- 10.2 kJ 180 min-1 (P < 0.05) after chemotherapy. The oxygen uptake in resting skeletal muscles was 6.9 +/- 0.3 mumol 100 g-1 min-1 before chemotherapy and 7.0 +/- 0.7 mumol 100 g-1 min-1 after chemotherapy. This did not increase during the first 90 min following the glucose load in either investigations. In the period 90-180 min following the glucose load, the oxygen uptake was significantly increased before chemotherapy as compared to after chemotherapy, which suggests that the reduced whole body thermogenesis after chemotherapy in part was due to reduced skeletal muscle thermogenesis. PMID:8396523

  14. High Current Anxiety Symptoms, But Not a Past Anxiety Disorder Diagnosis, are Associated with Impaired Fear Extinction

    PubMed Central

    Duits, Puck; Cath, Danielle C.; Heitland, Ivo; Baas, Johanna M. P.

    2016-01-01

    Although impaired fear extinction has repeatedly been demonstrated in patients with anxiety disorders, little is known about whether these impairments persist after treatment. The current comparative exploratory study investigated fear extinction in 26 patients treated for their anxiety disorder in the years preceding the study as compared to 17 healthy control subjects. Fear-potentiated startle and subjective fear were measured in a cue and context fear conditioning paradigm within a virtual reality environment. Results indicated no differences in fear extinction between treated anxiety patients and control subjects. However, scores on the Beck Anxiety Inventory across all participants revealed impaired extinction of fear potentiated startle in subjects with high compared to low anxiety symptoms over the past week. Taken together, this exploratory study found no support for impaired fear extinction in treated anxiety patients, and implies that current anxiety symptoms rather than previous patient status determine the success of extinction. PMID:26955364

  15. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    PubMed

    Liu, Zhigang; Patil, Ishan Y; Jiang, Tianyi; Sancheti, Harsh; Walsh, John P; Stiles, Bangyan L; Yin, Fei; Cadenas, Enrique

    2015-01-01

    High-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  16. Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression.

    PubMed

    Krasovska, Olena S; Stasyk, Olena G; Nahorny, Viktor O; Stasyk, Oleh V; Granovski, Nikolai; Kordium, Vitaliy A; Vozianov, Oleksandr F; Sibirny, Andriy A

    2007-07-01

    The most commonly used expression platform for production of recombinant proteins in the methylotrophic yeast Hansenula polymorpha relies on the strong and strictly regulated promoter from the gene encoding peroxisomal enzyme alcohol (or methanol) oxidase (P(MOX)). Expression from P(MOX) is induced by methanol and is partially derepressed in glycerol or xylose medium, whereas in the presence of hexoses, disaccharides or ethanol, it is repressed. The need for methanol for maximal induction of gene expression in large-scale fermentation is a significant drawback, as this compound is toxic, flammable, supports a slow growth rate and requires extensive aeration. We isolated H. polymorpha mutants deficient in glucose repression of P(MOX) due to an impaired HpGCR1 gene, and other yet unidentified secondary mutations. The mutants exhibited pronounced defects in P(MOX) regulation only by hexoses and xylose, but not by disaccharides or ethanol. With one of these mutant strains as hosts, we developed a modified two-carbon source mode expression platform that utilizes convenient sugar substrates for growth (sucrose) and induction of recombinant protein expression (glucose or xylose). We demonstrate efficient regulatable by sugar carbon sources expression of three recombinant proteins: a secreted glucose oxidase from the fungus Aspergillus niger, a secreted mini pro-insulin, and an intracellular hepatitis B virus surface antigen in these mutant hosts. The modified expression platform preserves the favorable regulatable nature of P(MOX) without methanol, making a convenient alternative to the traditional system. PMID:17163508

  17. Carnitine protects the nematode Caenorhabditis elegans from glucose-induced reduction of survival depending on the nuclear hormone receptor DAF-12

    SciTech Connect

    Deusing, Dorothé Jenni Beyrer, Melanie Fitzenberger, Elena Wenzel, Uwe

    2015-05-08

    Besides its function in transport of fatty acids into mitochondria in order to provide substrates for β-oxidation, carnitine has been shown to affect also glucose metabolism and to inhibit several mechanisms associated with diabetic complications. In the present study we used the mev-1 mutant of the nematode Caenorhabditis elegans fed on a high glucose concentration in liquid media as a diabetes model and tested the effects of carnitine supplementation on their survival under heat-stress. Carnitine at 100 μM completely prevented the survival reduction that was caused by the application of 10 mM glucose. RNA-interference for sir-2.1, a candidate genes mediating the effects of carnitine revealed no contribution of the sirtuin for the rescue of survival. Under daf-12 RNAi rescue of survival by carnitine was abolished. RNA-interference for γ-butyrobetaine hydroxylase 2, encoding the key enzyme for carnitine biosynthesis did neither increase glucose toxicity nor prevent the rescue of survival by carnitine, suggesting that the effects of carnitine supplementation on carnitine levels were significant. Finally, it was demonstrated that neither the amount of lysosomes nor the proteasomal activity were increased by carnitine, excluding that protein degradation pathways, such as autophagy or proteasomal degradation, are involved in the protective carnitine effects. In conclusion, carnitine supplementation prevents the reduction of survival caused by glucose in C. elegans in dependence on a nuclear hormone receptor which displays high homologies to the vertebrate peroxisomal proliferator activated receptors. - Highlights: • Carnitine protects from glucose-induced reduction of stress-resistance. • Carnitine acts via the PPAR homolog DAF-12 on glucose toxicity. • Carnitine protects from glucose toxicity independent of protein degradation.

  18. Selective impairment of cognitive empathy for moral judgment in adults with high functioning autism

    PubMed Central

    Torralva, Teresa; Rattazzi, Alexia; Marenco, Victoria; Roca, María; Manes, Facundo

    2013-01-01

    Faced with a moral dilemma, conflict arises between a cognitive controlled response aimed at maximizing welfare, i.e. the utilitarian judgment, and an emotional aversion to harm, i.e. the deontological judgment. In the present study, we investigated moral judgment in adult individuals with high functioning autism/Asperger syndrome (HFA/AS), a clinical population characterized by impairments in prosocial emotions and social cognition. In Experiment 1, we compared the response patterns of HFA/AS participants and neurotypical controls to moral dilemmas with low and high emotional saliency. We found that HFA/AS participants more frequently delivered the utilitarian judgment. Their perception of appropriateness of moral transgression was similar to that of controls, but HFA/AS participants reported decreased levels of emotional reaction to the dilemma. In Experiment 2, we explored the way in which demographic, clinical and social cognition variables including emotional and cognitive aspects of empathy and theory of mind influenced moral judgment. We found that utilitarian HFA/AS participants showed a decreased ability to infer other people’s thoughts and to understand their intentions, as measured both by performance on neuropsychological tests and through dispositional measures. We conclude that greater prevalence of utilitarianism in HFA/AS is associated with difficulties in specific aspects of social cognition. PMID:22689217

  19. High School Teachers' Perspectives on Supporting Students with Visual Impairments toward Higher Education: Access, Barriers, and Success

    ERIC Educational Resources Information Center

    Reed, Maureen; Curtis, Kathryn

    2011-01-01

    The objective of the study presented here was to understand the experiences of teachers in assisting students with visual impairments in making the transition to higher education. The teachers reported barriers in high school that affect students' access to and success in higher education. Furthermore, institutions of higher education provided…

  20. The Use of Assistive Technology by High School Students with Visual Impairments: A Second Look at the Current Problem

    ERIC Educational Resources Information Center

    Kelly, Stacy M.

    2011-01-01

    Even though a wide variety of assistive technology tools and devices are available in the marketplace, many students with visual impairments (that is, those who are blind or have low vision) have not yet benefitted from using this specialized technology. This article presents a study that assessed the use of assistive technology by high school…

  1. Characteristics of highly impaired children with severe chronic pain: a 5-year retrospective study on 2249 pediatric pain patients

    PubMed Central

    2012-01-01

    Background Prevalence of pain as a recurrent symptom in children is known to be high, but little is known about children with high impairment from chronic pain seeking specialized treatment. The purpose of this study was the precise description of children with high impairment from chronic pain referred to the German Paediatric Pain Centre over a 5-year period. Methods Demographic variables, pain characteristics and psychometric measures were assessed at the first evaluation. Subgroup analysis for sex, age and pain location was conducted and multivariate logistic regression applied to identify parameters associated with extremely high impairment. Results The retrospective study consisted of 2249 children assessed at the first evaluation. Tension type headache (48%), migraine (43%) and functional abdominal pain (11%) were the most common diagnoses with a high rate of co-occurrence; 18% had some form of musculoskeletal pain disease. Irrespective of pain location, chronic pain disorder with somatic and psychological factors was diagnosed frequently (43%). 55% of the children suffered from more than one distinct pain diagnosis. Clinically significant depression and general anxiety scores were expressed by 24% and 19% of the patients, respectively. Girls over the age of 13 were more likely to seek tertiary treatment compared to boys. Nearly half of children suffered from daily or constant pain with a mean pain value of 6/10. Extremely high pain-related impairment, operationalized as a comprehensive measure of pain duration, frequency, intensity, pain-related school absence and disability, was associated with older age, multiple locations of pain, increased depression and prior hospital stays. 43% of the children taking analgesics had no indication for pharmacological treatment. Conclusion Children with chronic pain are a diagnostic and therapeutic challenge as they often have two or more different pain diagnoses, are prone to misuse of analgesics and are severely

  2. Acute Thermotherapy Prevents Impairments in Cutaneous Microvascular Function Induced by a High Fat Meal

    PubMed Central

    Harvey, Jennifer C.; Roseguini, Bruno T.; Goerger, Benjamin M.; Fallon, Elizabeth A.

    2016-01-01

    We tested the hypothesis that a high fat meal (HFM) would impair cutaneous vasodilation, while thermotherapy (TT) would reverse the detrimental effects. Eight participants were instrumented with skin heaters and laser-Doppler (LD) probes and tested in three trials: control, HFM, and HFM + TT. Participants wore a water-perfused suit perfused with 33°C (control and HFM) or 50°C (HFM + TT) water. Participants consumed 1 g fat/kg body weight. Blood samples were taken at baseline and two hours post-HFM. Blood pressure was measured every 5–10 minutes. Microvascular function was assessed via skin local heating from 33°C to 39°C two hours after HFM. Cutaneous vascular conductance (CVC) was calculated and normalized to maximal vasodilation (%CVCmax). HFM had no effect on initial peak (48 ± 4 %CVCmax) compared to control (49 ± 4 %CVCmax) but attenuated the plateau (51 ± 4 %CVCmax) compared to control (63 ± 4 %CVCmax, P < 0.001). Initial peak was augmented in HFM + TT (66 ± 4 %CVCmax) compared to control and HFM (P < 0.05), while plateau (73 ± 3 % CVCmax) was augmented only compared to the HFM trial (P < 0.001). These data suggest that HFM negatively affects cutaneous vasodilation but can be minimized by TT. PMID:27595112

  3. Unfinished tasks foster rumination and impair sleeping - particularly if leaders have high performance expectations.

    PubMed

    Syrek, Christine J; Antoni, Conny H

    2014-10-01

    This study examines the relationship between time pressure and unfinished tasks as work stressors on employee well-being. Relatively little is known about the effect of unfinished tasks on well-being. Specifically, excluding the impact of time pressure, we examined whether the feeling of not having finished the week's tasks fosters perseverative cognitions and impairs sleep. Additionally, we proposed that leader performance expectations moderate these relationships. In more detail, we expected the detrimental effect of unfinished tasks on both rumination and sleep would be enhanced if leader expectations were perceived to be high. In total, 89 employees filled out online diary surveys both before and after the weekend over a 5-week period. Multilevel growth modeling revealed that time pressure and unfinished tasks impacted rumination and sleep on the weekend. Further, our results supported our hypothesis that unfinished tasks explain unique variance in the dependent variables above and beyond the influence of time pressure. Moreover, we found the relationship between unfinished tasks and both rumination and sleep was moderated by leader performance expectations. Our results emphasize the importance of unfinished tasks as a stressor and highlight that leadership, specifically in the form of performance expectations, contributes significantly to the strength of this relationship. PMID:24933596

  4. Acute Thermotherapy Prevents Impairments in Cutaneous Microvascular Function Induced by a High Fat Meal.

    PubMed

    Harvey, Jennifer C; Roseguini, Bruno T; Goerger, Benjamin M; Fallon, Elizabeth A; Wong, Brett J

    2016-01-01

    We tested the hypothesis that a high fat meal (HFM) would impair cutaneous vasodilation, while thermotherapy (TT) would reverse the detrimental effects. Eight participants were instrumented with skin heaters and laser-Doppler (LD) probes and tested in three trials: control, HFM, and HFM + TT. Participants wore a water-perfused suit perfused with 33°C (control and HFM) or 50°C (HFM + TT) water. Participants consumed 1 g fat/kg body weight. Blood samples were taken at baseline and two hours post-HFM. Blood pressure was measured every 5-10 minutes. Microvascular function was assessed via skin local heating from 33°C to 39°C two hours after HFM. Cutaneous vascular conductance (CVC) was calculated and normalized to maximal vasodilation (%CVCmax). HFM had no effect on initial peak (48 ± 4 %CVCmax) compared to control (49 ± 4 %CVCmax) but attenuated the plateau (51 ± 4 %CVCmax) compared to control (63 ± 4 %CVCmax, P < 0.001). Initial peak was augmented in HFM + TT (66 ± 4 %CVCmax) compared to control and HFM (P < 0.05), while plateau (73 ± 3 % CVCmax) was augmented only compared to the HFM trial (P < 0.001). These data suggest that HFM negatively affects cutaneous vasodilation but can be minimized by TT. PMID:27595112

  5. Effect of Aegle marmelos and Hibiscus rosa sinensis leaf extract on glucose tolerance in glucose induced hyperglycemic rats (Charles foster).

    PubMed

    Sachdewa, A; Raina, D; Srivastava, A K; Khemani, L D

    2001-01-01

    In an effort to test the hypoglycemic activity of Aegle marmelos and Hibiscus rosa sinensis in glucose induced hyperglycemic rats, their alcoholic leaf extracts were studied. Both the groups of animals receiving either. A. marmelos or H. rosa sinensis leaf extract for seven consecutive days, at an oral dose equivalent to 250 mg kg-1 showed significant improvements in their ability to utilize the external glucose load. Average blood glucose lowering caused by A. marmelos and H. rosa sinensis was 67% and 39% respectively, which shows that former significantly (p < 0.001) improves the glucose tolerance curve. The magnitude of this effect showed time related variation with both the plants. Efficacy of A. marmelos and H. rosa sinensis was 71% and 41% of glybenclamide, respectively. These data throw some light on the possible mechanism of hypoglycemic activity of both the plants. The mechanism of action could be speculated partly to increased utilization of glucose, either by direct stimulation of glucose uptake or via the mediation of enhanced insulin secretion. PMID:11480352

  6. Functionally-Detected Cognitive Impairment in High School Football Players without Clinically-Diagnosed Concussion

    PubMed Central

    Nauman, Eric A.; Breedlove, Evan L.; Yoruk, Umit; Dye, Anne E.; Morigaki, Katherine E.; Feuer, Henry; Leverenz, Larry J.

    2014-01-01

    Abstract Head trauma and concussion in football players have recently received considerable media attention. Postmortem evidence suggests that accrual of damage to the brain may occur with repeated blows to the head, even when the individual blows fail to produce clinical symptoms. There is an urgent need for improved detection and characterization of head trauma to reduce future injury risk and promote development of new therapies. In this study we examined neurological performance and health in the presence of head collision events in high school football players, using longitudinal measures of collision events (the HIT™ System), neurocognitive testing (ImPACT™), and functional magnetic resonance imaging MRI (fMRI). Longitudinal assessment (including baseline) was conducted in 11 young men (ages 15–19 years) participating on the varsity and junior varsity football teams at a single high school. We expected and observed subjects in two previously described categories: (1) no clinically-diagnosed concussion and no changes in neurological behavior, and (2) clinically-diagnosed concussion with changes in neurological behavior. Additionally, we observed players in a previously undiscovered third category, who exhibited no clinically-observed symptoms associated with concussion, but who demonstrated measurable neurocognitive (primarily visual working memory) and neurophysiological (altered activation in the dorsolateral prefrontal cortex [DLPFC]) impairments. This new category was associated with significantly higher numbers of head collision events to the top-front of the head, directly above the DLPFC. The discovery of this new category suggests that more players are suffering neurological injury than are currently being detected using traditional concussion-assessment tools. These individuals are unlikely to undergo clinical evaluation, and thus may continue to participate in football-related activities, even when changes in brain physiology (and potential

  7. High-flux hemodialysis after administering high-dose methotrexate in a patient with posttransplant lymphoproliferative disease and impaired renal function

    PubMed Central

    Reshetnik, Alexander; Scheurig-Muenkler, Christian; van der Giet, Markus; Tölle, Markus

    2015-01-01

    Key Clinical Message A young patient develops cerebral posttransplant lymphoproliferative disorder. Despite concurrent significantly impaired transplant kidney function use of add-on high-flux hemodialysis for additional clearance made the administration of high-dose methotrexate feasible in this patient without occurence of acute chronic kidney failure and significant hematological toxicity. PMID:26576275

  8. Glucose induced activation of canonical Wnt signaling pathway in hepatocellular carcinoma is regulated by DKK4.

    PubMed

    Chouhan, Surbhi; Singh, Snahlata; Athavale, Dipti; Ramteke, Pranay; Pandey, Vimal; Joseph, Jomon; Mohan, Rajashekar; Shetty, Praveen Kumar; Bhat, Manoj Kumar

    2016-01-01

    Elevated glycemic index, an important feature of diabetes is implicated in an increased risk of hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of this association are relatively less explored. Present study investigates the effect of hyperglycemia over HCC proliferation. We observed that high glucose culture condition (HG) specifically activates canonical Wnt signaling in HCC cells, which is mediated by suppression of DKK4 (a Wnt antagonist) expression and enhanced β-catenin level. Functional assays demonstrated that a normoglycemic culture condition (NG) maintains constitutive expression of DKK4, which controls HCC proliferation rate by suppressing canonical Wnt signaling pathway. HG diminishes DKK4 expression leading to loss of check at G0/G1/S phases of the cell cycle thereby enhancing HCC proliferation, in a β-catenin dependent manner. Interestingly, in NOD/SCID mice supplemented with high glucose, HepG2 xenografted tumors grew rapidly in which elevated levels of β-catenin, c-Myc and decreased levels of DKK4 were detected. Knockdown of DKK4 by shRNA promotes proliferation of HCC cells in NG, which is suppressed by treating cells exogenously with recombinant DKK4 protein. Our in vitro and in vivo results indicate an important functional role of DKK4 in glucose facilitated HCC proliferation. PMID:27272409

  9. Glucose induced activation of canonical Wnt signaling pathway in hepatocellular carcinoma is regulated by DKK4

    PubMed Central

    Chouhan, Surbhi; Singh, Snahlata; Athavale, Dipti; Ramteke, Pranay; Pandey, Vimal; Joseph, Jomon; Mohan, Rajashekar; Shetty, Praveen Kumar; Bhat, Manoj Kumar

    2016-01-01

    Elevated glycemic index, an important feature of diabetes is implicated in an increased risk of hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of this association are relatively less explored. Present study investigates the effect of hyperglycemia over HCC proliferation. We observed that high glucose culture condition (HG) specifically activates canonical Wnt signaling in HCC cells, which is mediated by suppression of DKK4 (a Wnt antagonist) expression and enhanced β-catenin level. Functional assays demonstrated that a normoglycemic culture condition (NG) maintains constitutive expression of DKK4, which controls HCC proliferation rate by suppressing canonical Wnt signaling pathway. HG diminishes DKK4 expression leading to loss of check at G0/G1/S phases of the cell cycle thereby enhancing HCC proliferation, in a β-catenin dependent manner. Interestingly, in NOD/SCID mice supplemented with high glucose, HepG2 xenografted tumors grew rapidly in which elevated levels of β-catenin, c-Myc and decreased levels of DKK4 were detected. Knockdown of DKK4 by shRNA promotes proliferation of HCC cells in NG, which is suppressed by treating cells exogenously with recombinant DKK4 protein. Our in vitro and in vivo results indicate an important functional role of DKK4 in glucose facilitated HCC proliferation. PMID:27272409

  10. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism

    PubMed Central

    Underwood, Erica L.; Thompson, Lucien T.

    2016-01-01

    While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD) on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD) for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms. PMID:26819773

  11. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism.

    PubMed

    Underwood, Erica L; Thompson, Lucien T

    2016-01-01

    While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD) on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD) for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms. PMID:26819773

  12. Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet

    PubMed Central

    Koike, Eiko; Win-Shwe, Tin-Tin; Yamamoto, Megumi; Takano, Hirohisa

    2014-01-01

    Background: Hexabromocyclododecane (HBCD) is an additive flame retardant used in the textile industry and in polystyrene foam manufacturing. Because of its lipophilicity and persistency, HBCD accumulates in adipose tissue and thus has the potential of causing metabolic disorders through disruption of lipid and glucose homeostasis. However, the association between HBCD and obesity remains unclear. Objectives: We investigated whether exposure to HBCD contributes to initiation and progression of obesity and related metabolic dysfunction in mice fed a normal diet (ND) or a high-fat diet (HFD). Methods: Male C57BL/6J mice were fed a HFD (62.2 kcal% fat) or a ND and treated orally with HBCD (0, 1.75, 35, or 700 μg/kg body weight) weekly from 6 to 20 weeks of age. We examined body weight, liver weight, blood biochemistry, histopathological changes, and gene expression profiles in the liver and adipose tissue. Results: In HFD-fed mice, body and liver weight were markedly increased in mice treated with the high (700 μg/kg) and medium (35 μg/kg) doses of HBCD compared with vehicle. This effect was more prominent in the high-dose group. These increases were paralleled by increases in random blood glucose and insulin levels and enhancement of microvesicular steatosis and macrophage accumulation in adipose tissue. HBCD-treated HFD-fed mice also had increased mRNA levels of Pparg (peroxisome proliferator-activated receptor-γ) in the liver and decreased mRNA levels of Glut4 (glucose transporter 4) in adipose tissue compared with vehicle-treated HFD-fed mice. Conclusions: Our findings suggest that HBCD may contribute to enhancement of diet-induced body weight gain and metabolic dysfunction through disruption of lipid and glucose homeostasis, resulting in accelerated progression of obesity. Citation: Yanagisawa R, Koike E, Win-Shwe TT, Yamamoto M, Takano H. 2014. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet. Environ Health

  13. Ethylene acts as a negative regulator of glucose induced lateral root emergence in Arabidopsis.

    PubMed

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2015-01-01

    Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status. Phytohormones are one of the major intrinsic factors regulating all aspects of plant growth and development both independently as well as through complex signal integrations at multiple levels. We have previously shown that glucose (Glc) and brassinosteroid (BR) signalings interact extensively to regulate lateral root (LR) development in Arabidopsis. (1) Auxin efflux as well as influx and downstream signaling components are also involved in Glc-BR regulation of LR emergence. Here, we provide evidence for involvement of ethylene signaling machinery downstream to Glc and BR in regulation of LR emergence. PMID:26236960

  14. Ethylene acts as a negative regulator of glucose induced lateral root emergence in Arabidopsis

    PubMed Central

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2015-01-01

    Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status. Phytohormones are one of the major intrinsic factors regulating all aspects of plant growth and development both independently as well as through complex signal integrations at multiple levels. We have previously shown that glucose (Glc) and brassinosteroid (BR) signalings interact extensively to regulate lateral root (LR) development in Arabidopsis.1 Auxin efflux as well as influx and downstream signaling components are also involved in Glc-BR regulation of LR emergence. Here, we provide evidence for involvement of ethylene signaling machinery downstream to Glc and BR in regulation of LR emergence. PMID:26236960

  15. Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E.

    PubMed

    Ganz, M B; Seftel, A

    2000-01-01

    Changes in activity or expression of protein kinase C (PKC), reactive oxygen products, and nitric oxide (NO) may account for the alteration in cell behavior seen in diabetes. These changes have been proposed to be part of the pathophysiology of erectile dysfunction. We sought to ascertain if corpus cavernosal vascular smooth muscle cells (CCSMC) grown in a high glucose milieu exhibit changes in the activity and expression of PKC isoforms, NO, and reactive oxygen products and to find out if these changes are prevented by alpha-tocopherol. Rat CCSMC were grown in 5, 15, and 30 mM glucose concentrations for 3, 7, and 14 days. PKC isoform expression was assayed with isoform-specific antibodies. In CCSMCs grown in 30 mM glucose for 2-wk, PKC-beta(2)-isoform was upregulated (n = 4; P < 0.01), whereas the expression of alpha-, delta-, epsilon-, and beta(1)-isoforms was unchanged. NO as measured by nitrate-to-nitrite ratio was greatly diminished at 14 days in 30 mM (n = 4; P < 0.002) compared with 5 mM glucose. Reactive oxygen products were upregulated at 14 days when they were assayed by the fluorescent probe dichlorofluorescein diacetate bis(acetoxy-methyl) (DCFH-DA) (n = 5; P < 0.01). When these same cells were exposed to alpha-tocopherol for 14 days, there was a reduction of PKC-beta(2) (57.8%; P < 0.01; n = 4) and a reduction in reactive oxygen product formation (71.1%; P < 0.001; n = 4), along with an increase in nitrate-to-nitrite ratio (43.9%; P < 0.01, n = 4). These results suggest that there may be an interrelationship between PKC, NO, and reactive oxygen product formation in CCSMC exposed to a high glucose environment. PMID:10644549

  16. High fat diet impairs the function of glucagon-like peptide-1 producing L-cells

    PubMed Central

    Richards, Paul; Pais, Ramona; Habib, Abdella M.; Brighton, Cheryl A.; Yeo, Giles S.H.; Reimann, Frank; Gribble, Fiona M.

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) acts as a satiety signal and enhances insulin release. This study examined how GLP-1 production from intestinal L-cells is modified by dietary changes. Methods Transgenic mouse models were utilized in which L-cells could be purified by cell specific expression of a yellow fluorescent protein, Venus. Mice were fed on chow or 60% high fat diet (HFD) for 2 or 16 weeks. L-cells were purified by flow cytometry and analysed by microarray and quantitative RT-PCR. Enteroendocrine cell populations were examined by FACS analysis, and GLP-1 secretion was assessed in primary intestinal cultures. Results Two weeks HFD reduced the numbers of GLP-1 positive cells in the colon, and of GIP positive cells in the small intestine. Purified small intestinal L-cells showed major shifts in their gene expression profiles. In mice on HFD for 16 weeks, significant reductions were observed in the expression of L-cell specific genes, including those encoding gut hormones (Gip, Cck, Sct, Nts), prohormone processing enzymes (Pcsk1, Cpe), granins (Chgb, Scg2), nutrient sensing machinery (Slc5a1, Slc15a1, Abcc8, Gpr120) and enteroendocrine-specific transcription factors (Etv1, Isl1, Mlxipl, Nkx2.2 and Rfx6). A corresponding reduction in the GLP-1 secretory responsiveness to nutrient stimuli was observed in primary small intestinal cultures. Conclusion Mice fed on HFD exhibited reduced expression in L-cells of many L-cell specific genes, suggesting an impairment of enteroendocrine cell function. Our results suggest that a western style diet may detrimentally affect the secretion of gut hormones and normal post-prandial signaling, which could impact on insulin secretion and satiety. PMID:26145551

  17. High Glucose Impairs Insulin Signaling in the Glomerulus: An In Vitro and Ex Vivo Approach

    PubMed Central

    Katsoulieris, Elias N.; Drossopoulou, Garyfalia I.; Kotsopoulou, Eleni S.; Vlahakos, Dimitrios V.; Lianos, Elias A.; Tsilibary, Effie C.

    2016-01-01

    Objective Chronic hyperglycaemia, as seen in type II diabetes, results in both morphological and functional impairments of podocytes in the kidney. We investigated the effects of high glucose (HG) on the insulin signaling pathway, focusing on cell survival and apoptotic markers, in immortalized human glomerular cells (HGEC; podocytes) and isolated glomeruli from healthy rats. Methods and Findings HGEC and isolated glomeruli were cultured for various time intervals under HG concentrations in the presence or absence of insulin. Our findings indicated that exposure of HGEC to HG led to downregulation of all insulin signaling markers tested (IR, p-IR, IRS-1, p-Akt, p-Fox01,03), as well as to increased sensitivity to apoptosis (as seen by increased PARP cleavage, Casp3 activation and DNA fragmentation). Short insulin pulse caused upregulation of insulin signaling markers (IR, p-IR, p-Akt, p-Fox01,03) in a greater extent in normoglycaemic cells compared to hyperglycaemic cells and for the case of p-Akt, in a PI3K-dependent manner. IRS-1 phosphorylation of HG-treated podocytes was negatively regulated, favoring serine versus tyrosine residues. Prolonged insulin treatment caused a significant decrease of IR levels, while alterations in glucose concentrations for various time intervals demonstrated changes of IR, p-IR and p-Akt levels, suggesting that the IR signaling pathway is regulated by glucose levels. Finally, HG exerted similar effects in isolated glomeruli. Conclusions These results suggest that HG compromises the insulin signaling pathway in the glomerulus, promoting a proapoptotic environment, with a possible critical step for this malfunction lying at the level of IRS-1 phosphorylation; thus we herein demonstrate glomerular insulin signaling as another target for investigation for the prevention and/ or treatment of diabetic nephropathy. PMID:27434075

  18. Transcriptional Consequence and Impaired Gametogenesis with High-Grade Aneuploidy in Arabidopsis thaliana

    PubMed Central

    Chen, I-Ju; Liu, Yu-Chen; Chung, Mei-Chu; Lo, Wan-Sheng

    2014-01-01

    Aneuploidy features a numerical chromosome variant that the number of chromosomes in the nucleus of a cell is not an exact multiple of the haploid number, which may have an impact on morphology and gene expression. Here we report a tertiary trisomy uncovered by characterizing a T-DNA insertion mutant (aur2-1/+) in the Arabidopsis (Arabidopsis thaliana) AURORA2 locus. Whole-genome analysis with DNA tiling arrays revealed a chromosomal translocation linked to the aur2-1 allele, which collectively accounted for a tertiary trisomy 2. Morphologic, cytogenetic and genetic analyses of aur2-1 progeny showed impaired male and female gametogenesis to various degrees and a tight association of the aur2-1 allele with the tertiary trisomy that was preferentially inherited. Transcriptome analysis showed overlapping and distinct gene expression profiles between primary and tertiary trisomy 2 plants, particularly genes involved in response to stress and various types of external and internal stimuli. Additionally, transcriptome and gene ontology analyses revealed an overrepresentation of nuclear-encoded organelle-related genes functionally involved in plastids, mitochondria and peroxisomes that were differentially expressed in at least three if not all Arabidopsis trisomics. These observations support a previous hypothesis that aneuploid cells have higher energy requirement to overcome the detrimental effects of an unbalanced genome. Moreover, our findings extend the knowledge of the complex nature of the T-DNA insertion event influencing plant genomic integrity by creating high-grade trisomy. Finally, gene expression profiling results provide useful information for future research to compare primary and tertiary trisomics for the effects of aneuploidy on plant cell physiology. PMID:25514186

  19. Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea.

    PubMed

    Bauché, Stéphanie; O'Regan, Seana; Azuma, Yoshiteru; Laffargue, Fanny; McMacken, Grace; Sternberg, Damien; Brochier, Guy; Buon, Céline; Bouzidi, Nassima; Topf, Ana; Lacène, Emmanuelle; Remerand, Ganaelle; Beaufrere, Anne-Marie; Pebrel-Richard, Céline; Thevenon, Julien; El Chehadeh-Djebbar, Salima; Faivre, Laurence; Duffourd, Yannis; Ricci, Federica; Mongini, Tiziana; Fiorillo, Chiara; Astrea, Guja; Burloiu, Carmen Magdalena; Butoianu, Niculina; Sandu, Carmen; Servais, Laurent; Bonne, Gisèle; Nelson, Isabelle; Desguerre, Isabelle; Nougues, Marie-Christine; Bœuf, Benoit; Romero, Norma; Laporte, Jocelyn; Boland, Anne; Lechner, Doris; Deleuze, Jean-François; Fontaine, Bertrand; Strochlic, Laure; Lochmuller, Hanns; Eymard, Bruno; Mayer, Michèle; Nicole, Sophie

    2016-09-01

    The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse. PMID:27569547

  20. Effect of (-)-epigallocatechin-3-gallate on glucose-induced human serum albumin glycation.

    PubMed

    Li, M; Hagerman, A E

    2015-01-01

    (-)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10-100 mM during a 21-day incubation at 37°C and pH: 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation. PMID:25794449

  1. Effect of (−)-Epigallocatechin-3-Gallate on Glucose-Induced Human Serum Albumin Glycation

    PubMed Central

    Li, Min; Hagerman, Ann E.

    2016-01-01

    (−)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10 to 100 mM during a 21-day incubation at 37 °C and pH 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation. PMID:25794449

  2. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    PubMed Central

    Wakabayashi, Ken T.; Kiyatkin, Eugene A.

    2015-01-01

    The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc), a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6–8 s; ~50 μM or ~5% of baseline) followed by a larger, more prolonged tonic elevation (~100 μM or 10% of baseline, peak ~15 min). While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine's peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine's action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells. PMID:25729349

  3. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats

    PubMed Central

    Minor, Robin K.; Smith, Daniel L.; Sossong, Alex M.; Kaushik, Susmita; Poosala, Suresh; Spangler, Edward L.; Roth, George S.; Lane, Mark; Allison, David B.; de Cabo, Rafael; Ingram, Donald K.; Mattison, Julie A.

    2009-01-01

    Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound. PMID:20026095

  4. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats

    SciTech Connect

    Minor, Robin K.; Smith, Daniel L.; Sossong, Alex M.; Kaushik, Susmita; Poosala, Suresh; Spangler, Edward L.; Roth, George S.; Lane, Mark; Allison, David B.; Cabo, Rafael de; Ingram, Donald K.; Mattison, Julie A.

    2010-03-15

    Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound.

  5. Comparison of seven water quality assessment methods for the characterization and management of highly impaired river systems.

    PubMed

    Ji, Xiaoliang; Dahlgren, Randy A; Zhang, Minghua

    2016-01-01

    In the context of water resource management and pollution control, the characterization of water quality impairments and identification of dominant pollutants are of critical importance. In this study, water quality impairment was assessed on the basis of 7 hydrochemical variables that were monitored bimonthly at 17 sites in 2010 along the rural-suburban-urban portion of the Wen-Rui Tang River in eastern China. Seven methods were used to assess water quality in the river system. These methods included single-factor assessment, water quality grading, comprehensive pollution index, the Nemerow pollution index, principle component analysis, fuzzy comprehensive evaluation, and comprehensive water quality identification index. Our analysis showed that the comprehensive water quality identification index was the best method for assessing water quality in the Wen-Rui Tang River due to its ability to effectively characterize highly polluted waters with multiple impairments. Furthermore, a guideline for the applications of these methods was presented based on their characteristics and efficacy. Results indicated that the dominant pollutant impairing water quality was total nitrogen comprised mainly of ammonium. The temporal variation of water quality was closely related to precipitation as a result of dilution. The spatial variation of water quality was associated with anthropogenic influences (urban, industrial, and agriculture activities) and water flow direction (downstream segments experiencing cumulative effects of upstream inputs). These findings provide valuable information and guidance for water pollution control and water resource management in highly polluted surface waters with multiple water quality impairments in areas with rapid industrial growth and urbanization. PMID:26643812

  6. Impaired Timing and Frequency Discrimination in High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Bhatara, Anjali; Babikian, Talin; Laugeson, Elizabeth; Tachdjian, Raffi; Sininger, Yvonne S.

    2013-01-01

    Individuals with autism spectrum disorders (ASD) frequently demonstrate preserved or enhanced frequency perception but impaired timing perception. The present study investigated the processing of spectral and temporal information in 12 adolescents with ASD and 15 age-matched controls. Participants completed two psychoacoustic tasks: one determined…

  7. Factors Predicting Post-High School Employment for Young Adults with Visual Impairments

    ERIC Educational Resources Information Center

    McDonnall, Michele Capella

    2010-01-01

    Although low levels of employment among transition-age youth with visual impairments (VI) have long been a concern, empirical research in this area is very limited. The purpose of this study was to identify factors that predict future employment for this population and to compare these factors to the factors that predict employment for the general…

  8. Progression of impairment in adolescents with attention-deficit/hyperactivity disorder through the transition out of high school: Contributions of parent involvement and college attendance.

    PubMed

    Howard, Andrea L; Strickland, Noelle J; Murray, Desiree W; Tamm, Leanne; Swanson, James M; Hinshaw, Stephen P; Arnold, L Eugene; Molina, Brooke S G

    2016-02-01

    Long-term, prospective follow-up studies of children diagnosed with attention-deficit/hyperactivity disorder (ADHD) show that symptoms tend to decline with age, but impairments in daily life functioning often persist into adulthood. We examined the developmental progression of impairments before and after the transition out of high school in relation to parent involvement during adolescence, parent support during adulthood, and college attendance, using 8 waves of data from the prospective 16-year follow-up of the Multimodal Treatment of ADHD (MTA) study. Participants were 548 proband children diagnosed with Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV; American Psychiatric Association, 2000) ADHD Combined Type and 258 age- and sex-matched comparison children (Local Normative Comparison Group; LNCG) randomly sampled from probands' schools. Impairment was assessed consistently by parent report from childhood through adulthood. Results showed that impairment worsens over time both before and after the transition to adulthood for those with ADHD histories, in contrast to non-ADHD peers, whose impairments remained stably low over time. However, impairment stabilized after leaving high school for young adults with ADHD histories who attended college. Involved parenting in adolescence was associated with less impairment overall. Attending college was associated with a stable post-high school trajectory of impairment regardless of parents' involvement during adolescence, but young adults with histories of involved parenting and who attended college were the least impaired overall. PMID:26854508

  9. Phlorotannins from Brown Algae: inhibition of advanced glycation end products formation in high glucose induced Caenorhabditis elegans.

    PubMed

    Shakambari, Ganeshan; Ashokkumar, Balasubramaniem; Varalakshmi, Perumal

    2015-06-01

    Advanced Glycation End products (AGE) generated in a non enzymatic protein glycation process are frequently associated with diabetes, aging and other chronic diseases. Here, we explored the protective effect of phlorotannins from brown algae Padina pavonica, Sargassum polycystum and Turbinaria ornata against AGEs formation. Phlorotannins were extracted from brown algae with methanol and its purity was analyzed by TLC and RP-HPLC-DAD. Twenty five grams of P. pavonica, S. polycystum, T. ornata yielded 27.6 ± 0.8 μg/ml, 37.7 μg/ml and 37.1 ± 0.74 μg/ml of phloroglucinol equivalent of phlorotannins, respectively. Antioxidant potentials were examined through DPPH assay and their IC50 values were P. pavonica (30.12 ± 0.99 μg), S. polycystum (40.9 ± 1.2 μg) and T. ornata (22.9 ± 1.3 μg), which was comparatively lesser than the control ascorbic acid (46 ± 0.2 μg). Further, anti-AGE activity was examined in vitro by BSA-glucose assay with the extracted phlorotannins of brown algae (P. pavonica, 15.16 ± 0.26 μg/ml; S. polycystum, 35.245 ± 2.3 μg/ml; T. ornata, 22.7 ± 0.3 μg/ml), which revealed the required concentration to inhibit 50% of albumin glycation (IC50) were lower for extracts than controls (phloroglucinol, 222.33 ± 4.9 μg/ml; thiamine, 263 μg/ml). Furthermore, brown algal extracts containing phlorotannins (100 μl) exhibited protective effects against AGE formation in vivo in C. elegans with induced hyperglycemia. PMID:26155677

  10. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  11. Impact of the American Diabetes Association diagnosis criteria on high-risk Spanish population. IGT Research Group. Impaired glucose tolerance.

    PubMed

    Costa, B; Franch, J; Martín, F; Morató, J; Donado, A; Basora, J; Daniel, J

    1999-10-01

    To research into the impact of the new American Diabetes Association (ADA) diagnostic criteria on high risk Spanish population, two cross-sectional studies involving seven primary health care centers in Catalonia (Spain) were revised. Individuals aged > 40 years with any major risk factor for diabetes were screened according to the World Health Organization (WHO) rules using a 75 g oral glucose tolerance test to measure fasting plasma glucose (FPG) and 2 h plasma glucose. The changes on diabetes prevalence and on epidemiological characteristics were evaluated applying the ADA criteria on the basis of FPG alone. A total of 970 individuals, 453 males (46.7%), mean age 59 years and mean body mass index (BMI) 30.6 kg/m2 were screened. Among the 459 diabetic subjects according to either the WHO or the ADA criteria, 314 (68.4%) were classified as having diabetes with respect to both sets of criteria (WHO and ADA). The overlap between impaired glucose tolerance (WHO) and impaired fasting glucose (ADA) diagnoses was 20.7%. Using the ADA criteria results in a decrease of the prevalence of diabetes by 1.5% (95% confidence interval (CI) = -2.2 to -0.8%). No changes in the diabetic phenotype (age, sex and BMI) were found. Impaired fasting glucose prevalence was 18.4% (95% CI = 16-21%). Overall concordance in terms of crude and weighted kappa-value was only acceptable (kappa = 0.51 and kappa = 0.61, respectively). To apply the new ADA diagnostic criteria on high risk Spanish population evidenced a decrease on diabetes prevalence. Nevertheless, the change of criteria undervalued the risk of postprandial hyperglycaemia related to impaired glucose tolerance. PMID:10580619

  12. Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice.

    PubMed

    Kang, Li; Dai, Chunhua; Lustig, Mary E; Bonner, Jeffrey S; Mayes, Wesley H; Mokshagundam, Shilpa; James, Freyja D; Thompson, Courtney S; Lin, Chien-Te; Perry, Christopher G R; Anderson, Ethan J; Neufer, P Darrell; Wasserman, David H; Powers, Alvin C

    2014-11-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2(+/+)) and heterozygous knockout mice (sod2(+/-)) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2(+/-) and sod2(+/+) but was markedly decreased in HF-fed sod2(+/-). Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2(+/-) was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2(+/-) and sod2(+/+) of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2(+/-) was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2(+/-) support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  13. Heterozygous SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but Not Insulin Action, in High-Fat–Fed Mice

    PubMed Central

    Dai, Chunhua; Lustig, Mary E.; Bonner, Jeffrey S.; Mayes, Wesley H.; Mokshagundam, Shilpa; James, Freyja D.; Thompson, Courtney S.; Lin, Chien-Te; Perry, Christopher G.R.; Anderson, Ethan J.; Neufer, P. Darrell; Wasserman, David H.; Powers, Alvin C.

    2014-01-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2+/+) and heterozygous knockout mice (sod2+/−) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2+/− and sod2+/+ but was markedly decreased in HF-fed sod2+/−. Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2+/− was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2+/− and sod2+/+ of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2+/− was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2+/− support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  14. Neonatal exposure to high concentration of carbon dioxide produces persistent learning deficits with impaired hippocampal synaptic plasticity.

    PubMed

    Tachibana, Kaori; Hashimoto, Toshikazu; Takita, Koichi; Ito, Ryoko; Kato, Rui; Morimoto, Yuji

    2013-04-24

    Although respiratory complications with blood gas abnormalities contribute significantly to neurodevelopment in the immature brain, little is known about the mechanisms via which blood gas abnormalities, such as hypoxic hypercapnia, impair neurocognitive outcomes. To investigate the possible long-term consequences of neonatal exposure to hypoxic hypercapnia regarding learning ability, we investigated the effect of neonatal hypoxic hypercapnia on later functions in the hippocampus, which is a structure that has been implicated in many learning and memory processes. Neonatal rat pups (postnatal day 7; P7) were exposed to a high concentration of carbon dioxide (CO2; 13%) for 2 or 4h. Exposure to CO2 in P7 rat pups caused blood gas abnormalities, including hypercapnia, hypoxia, and acidosis, and disrupted later learning acquisition, as assessed in 10-week-old adult rats subjected to a Morris water maze test. Induction of long-term potentiation (LTP) in the synapses of the hippocampal CA1 area was also impaired, whereas the paired-pulse responses of population spikes exhibited a significant increase, in CO2-exposed rats, suggesting decreased recurrent inhibition in the hippocampus. Such long-lasting modifications in hippocampal synaptic plasticity may contribute to the learning impairments associated with perinatal hypoxic hypercapnia and acidosis. PMID:23466457

  15. Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin

    PubMed Central

    Jang, Hyun-Ju; Kim, Hae-Suk; Hwang, Daniel H.; Quon, Michael J.

    2013-01-01

    Obesity is characterized by a chronic proinflammatory state that leads to endothelial dysfunction. Saturated fatty acids (SFA) stimulate Toll-like receptors (TLR) that promote metabolic insulin resistance. However, it is not known whether TLR2 mediates impairment of vascular actions of insulin in response to high-fat diet (HFD) to cause endothelial dysfunction. siRNA knockdown of TLR2 in primary endothelial cells opposed palmitate-stimulated expression of proinflammatory cytokines and splicing of X box protein 1 (XBP-1). Inhibition of unfolding protein response (UPR) reduced SFA-stimulated expression of TNFα. Thus, SFA stimulates UPR and proinflammatory response through activation of TLR2 in endothelial cells. Knockdown of TLR2 also opposed impairment of insulin-stimulated phosphorylation of eNOS and subsequent production of NO. Importantly, insulin-stimulated vasorelaxation of mesenteric arteries from TLR2 knockout mice was preserved even on HFD (in contrast with results from arteries examined in wild-type mice on HFD). We conclude that TLR2 in vascular endothelium mediates HFD-stimulated proinflammatory responses and UPR that accompany impairment of vasodilator actions of insulin, leading to endothelial dysfunction. These results are relevant to understanding the pathophysiology of the cardiovascular complications of diabetes and obesity. PMID:23531618

  16. Highly Conserved Testicular Localization of Claudin-11 in Normal and Impaired Spermatogenesis.

    PubMed

    Stammler, Angelika; Lüftner, Benjamin Udo; Kliesch, Sabine; Weidner, Wolfgang; Bergmann, Martin; Middendorff, Ralf; Konrad, Lutz

    2016-01-01

    In this study we tested expression of tight junction proteins in human, mouse and rat and analyzed the localization of claudin-11 in testis of patients with normal and impaired spermatogenesis. Recent concepts generated in mice suggest that the stage-specifically expressed claudin-3 acts as a basal barrier, sealing the seminiferous epithelium during migration of spermatocytes. Corresponding mechanisms have never been demonstrated in humans. Testicular biopsies (n = 103) from five distinct groups were analyzed: normal spermatogenesis (NSP, n = 28), hypospermatogenesis (Hyp, n = 24), maturation arrest at the level of primary spermatocytes (MA, n = 24), Sertoli cell only syndrome (SCO, n = 19), and spermatogonial arrest (SGA, n = 8). Protein expression of claudin-3, -11 and occludin was analyzed. Human, mice and rat testis robustly express claudin-11 protein. Occludin was detected in mouse and rat and claudin-3 was found only in mice. Thus, we selected claudin-11 for further analysis of localization. In NSP, claudin-11 is located at Sertoli-Sertoli junctions and in Sertoli cell contacts towards spermatogonia. Typically, claudin-11 patches do not reach the basal membrane, unless flanked by the Sertoli cell body or patches between two Sertoli cell bodies. The amount of basal claudin-11 patches was found to be increased in impaired spermatogenesis. Only claudin-11 is expressed in all three species examined. The claudin-11 pattern is robust in man with impaired spermatogenesis, but the proportion of localization is altered in SCO and MA. We conclude that claudin-11 might represent the essential component of the BTB in human. PMID:27486954

  17. Highly Conserved Testicular Localization of Claudin-11 in Normal and Impaired Spermatogenesis

    PubMed Central

    Stammler, Angelika; Lüftner, Benjamin Udo; Kliesch, Sabine; Weidner, Wolfgang; Bergmann, Martin; Middendorff, Ralf; Konrad, Lutz

    2016-01-01

    In this study we tested expression of tight junction proteins in human, mouse and rat and analyzed the localization of claudin-11 in testis of patients with normal and impaired spermatogenesis. Recent concepts generated in mice suggest that the stage-specifically expressed claudin-3 acts as a basal barrier, sealing the seminiferous epithelium during migration of spermatocytes. Corresponding mechanisms have never been demonstrated in humans. Testicular biopsies (n = 103) from five distinct groups were analyzed: normal spermatogenesis (NSP, n = 28), hypospermatogenesis (Hyp, n = 24), maturation arrest at the level of primary spermatocytes (MA, n = 24), Sertoli cell only syndrome (SCO, n = 19), and spermatogonial arrest (SGA, n = 8). Protein expression of claudin-3, -11 and occludin was analyzed. Human, mice and rat testis robustly express claudin-11 protein. Occludin was detected in mouse and rat and claudin-3 was found only in mice. Thus, we selected claudin-11 for further analysis of localization. In NSP, claudin-11 is located at Sertoli-Sertoli junctions and in Sertoli cell contacts towards spermatogonia. Typically, claudin-11 patches do not reach the basal membrane, unless flanked by the Sertoli cell body or patches between two Sertoli cell bodies. The amount of basal claudin-11 patches was found to be increased in impaired spermatogenesis. Only claudin-11 is expressed in all three species examined. The claudin-11 pattern is robust in man with impaired spermatogenesis, but the proportion of localization is altered in SCO and MA. We conclude that claudin-11 might represent the essential component of the BTB in human. PMID:27486954

  18. Gly-46 and His-50 of yeast maltose transporter Mal21p are essential for its resistance against glucose-induced degradation.

    PubMed

    Hatanaka, Haruyo; Omura, Fumihiko; Kodama, Yukiko; Ashikari, Toshihiko

    2009-06-01

    The maltose transporter gene is situated at the MAL locus, which consists of genes for a transporter, maltase, and transcriptional activator. Five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4, and MAL6) constitute a gene family in Saccharomyces cerevisiae. The expression of the maltose transporter is induced by maltose and repressed by glucose. The activity of the maltose transporter is also regulated post-translationally; Mal61p is rapidly internalized from the plasma membrane and degraded by ubiquitin-mediated proteolysis in the presence of glucose. We found that S. cerevisiae strain ATCC20598 harboring MAL21 could grow in maltose supplemented with a non- assimilable glucose analogue, 2-deoxyglucose, whereas strain ATCC96955 harboring MAL61 and strain CB11 with MAL31 and AGT1 could not. These observations implied a Mal21p-specific resistance against glucose-induced degradation. Mal21p found in ATCC20598 has 10 amino acids, including Gly-46 and His-50, that are inconsistent with the corresponding residues in Mal61p. The half-life of Mal21p for glucose-induced degradation was 118 min when expressed using the constitutive TPI1 promoter, which was significantly longer than that of Mal61p (25 min). Studies with mutant cells that are defective in endocytosis or the ubiquitination process indicated that Mal21p was less ubiquitinated than Mal61p, suggesting that Mal21p remains on the plasma membrane because of poor susceptibility to ubiquitination. Mutational studies revealed that both residues Gly-46 and His-50 in Mal21p are essential for the full resistance of maltose transporters against glucose-induced degradation. PMID:19359240

  19. Gly-46 and His-50 of Yeast Maltose Transporter Mal21p Are Essential for Its Resistance against Glucose-induced Degradation

    PubMed Central

    Hatanaka, Haruyo; Omura, Fumihiko; Kodama, Yukiko; Ashikari, Toshihiko

    2009-01-01

    The maltose transporter gene is situated at the MAL locus, which consists of genes for a transporter, maltase, and transcriptional activator. Five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4, and MAL6) constitute a gene family in Saccharomyces cerevisiae. The expression of the maltose transporter is induced by maltose and repressed by glucose. The activity of the maltose transporter is also regulated post-translationally; Mal61p is rapidly internalized from the plasma membrane and degraded by ubiquitin-mediated proteolysis in the presence of glucose. We found that S. cerevisiae strain ATCC20598 harboring MAL21 could grow in maltose supplemented with a non- assimilable glucose analogue, 2-deoxyglucose, whereas strain ATCC96955 harboring MAL61 and strain CB11 with MAL31 and AGT1 could not. These observations implied a Mal21p-specific resistance against glucose-induced degradation. Mal21p found in ATCC20598 has 10 amino acids, including Gly-46 and His-50, that are inconsistent with the corresponding residues in Mal61p. The half-life of Mal21p for glucose-induced degradation was 118 min when expressed using the constitutive TPI1 promoter, which was significantly longer than that of Mal61p (25 min). Studies with mutant cells that are defective in endocytosis or the ubiquitination process indicated that Mal21p was less ubiquitinated than Mal61p, suggesting that Mal21p remains on the plasma membrane because of poor susceptibility to ubiquitination. Mutational studies revealed that both residues Gly-46 and His-50 in Mal21p are essential for the full resistance of maltose transporters against glucose-induced degradation. PMID:19359240

  20. Mitigation of starch and glucose-induced postprandial glycemic excursion in rats by antioxidant-rich green-leafy vegetables’ juice

    PubMed Central

    Tiwari, Ashok Kumar; Jyothi, Atmakuri Lakshmana; Tejeswini, Vasantharao Brahma; Madhusudana, Kuncha; Kumar, Domati Anand; Zehra, Amtul; Agawane, Sachin Bharat

    2013-01-01

    Objective: Consumption of green-leafy vegetables is being advocated beneficial for type 2 diabetes mellitus individuals possibly because they are cost effective source of potent biological antioxidants. This research analyzed various phytochemicals, free radicals scavenging antioxidant potentials and starch digesting enzymes inhibitory activities in fresh juice of nine green-leafy vegetables. Furthermore, this study also investigated influence of these vegetables juice on starch and glucose induced postprandial glycemic load. Materials and Methods: Phytochemical constituents, in vitro free radicals scavenging antioxidant and enzymes inhibitory activities were evaluated applying various reported methods. Post-prandial glycemic excursion was induced in rats pretreated with vegetables juice by oral administration of starch and glucose. Results: All the leafy vegetables juice displayed potent free radicals scavenging activities. Juice of amaranthus, rumex, palak and raphanus displayed potential anti-oxidative property by reducing H2O2 induced hemolysis in rats red blood cells RBCs. Ajwain and rumex juice showed pancreatic α-amylase inhibitory activity. Alternanthera, ajwain, methi, amaranthus and sowa leaves juice displayed intestinal α-glucosidase inhibitory activity. Juice of raphanus, ajwain and sowa significantly mitigated starch-induced postprandial glycemic load. Amaranthus leaves juice potently mitigated glucose-induced postprandial glycemic load and also reduced hemoglobin glycation induced by glucose in vitro. Conclusions: This investigation finds that juice of leafy vegetables is potent source of biological antioxidants. In addition, juice of raphanus, ajwain and sowa leaves possess capacity to mitigate starch induced postprandial glycemic burden and amaranthus leaves’ juice can reduce glucose induced postprandial glycemic excursion. PMID:24143048

  1. Social Communication Disorder outside Autism? A Diagnostic Classification Approach to Delineating Pragmatic Language Impairment, High Functioning Autism and Specific Language Impairment

    ERIC Educational Resources Information Center

    Gibson, Jenny; Adams, Catherine; Lockton, Elaine; Green, Jonathan

    2013-01-01

    Background: Developmental disorders of language and communication present considerable diagnostic challenges due to overlapping of symptomatology and uncertain aetiology. We aimed to further elucidate the behavioural and linguistic profile associated with impairments of social communication occurring outside of an autism diagnosis. Methods: Six to…

  2. High Tech Aids Low Vision: A Review of Image Processing for the Visually Impaired

    PubMed Central

    Moshtael, Howard; Aslam, Tariq; Underwood, Ian; Dhillon, Baljean

    2015-01-01

    Recent advances in digital image processing provide promising methods for maximizing the residual vision of the visually impaired. This paper seeks to introduce this field to the readership and describe its current state as found in the literature. A systematic search revealed 37 studies that measure the value of image processing techniques for subjects with low vision. The techniques used are categorized according to their effect and the principal findings are summarized. The majority of participants preferred enhanced images over the original for a wide range of enhancement types. Adapting the contrast and spatial frequency content often improved performance at object recognition and reading speed, as did techniques that attenuate the image background and a technique that induced jitter. A lack of consistency in preference and performance measures was found, as well as a lack of independent studies. Nevertheless, the promising results should encourage further research in order to allow their widespread use in low-vision aids. PMID:26290777

  3. Thermosensing mechanisms and their impairment by high-fat diet in orexin neurons.

    PubMed

    Belanger-Willoughby, N; Linehan, V; Hirasawa, M

    2016-06-01

    In homeotherms, the hypothalamus controls thermoregulatory and adaptive mechanisms in energy balance, sleep-wake and locomotor activity to maintain optimal body temperature. Orexin neurons may be involved in these functions as they promote thermogenesis, food intake and behavioral arousal, and are sensitive to temperature and metabolic status. How thermal and energy balance signals are integrated in these neurons is unknown. Thus, we investigated the cellular mechanisms of thermosensing in orexin neurons and their response to a change in energy status using whole-cell patch clamp on rat brain slices. We found that warming induced an increase in miniature excitatory postsynaptic current (EPSC) frequency, which was blocked by the transient receptor potential vanilloid-1 (TRPV1) receptor antagonist AMG9810 and mimicked by its agonist capsaicin, suggesting that the synaptic effect is mediated by heat-sensitive TRPV1 channels. Furthermore, warming inhibits orexin neurons by activating ATP-sensitive potassium (KATP) channels, an effect regulated by uncoupling protein 2 (UCP2), as the UCP2 inhibitor genipin abolished this response. These properties are unique to orexin neurons in the lateral hypothalamus, as neighboring melanin-concentrating hormone neurons showed no response to warming within the physiological temperature range. Interestingly, in rats fed with western diet for 1 or 11weeks, orexin neurons had impaired synaptic and KATP response to warming. In summary, this study reveals several mechanisms underlying thermosensing in orexin neurons and their attenuation by western diet. Overeating induced by western diet may in part be due to impaired orexin thermosensing, as post-prandial thermogenesis may promote satiety and lethargy by inhibiting orexin neurons. PMID:26964685

  4. Are the High Hip Fracture Rates Among Norwegian Women Explained by Impaired Bone Material Properties?

    PubMed

    Duarte Sosa, Daysi; Vilaplana, Laila; Güerri, Roberto; Nogués, Xavier; Wang-Fagerland, Morten; Diez-Perez, Adolfo; F Eriksen, Erik

    2015-10-01

    Hip fracture rates in Norway rank among the highest in the world, more than double that of Spanish women. Previous studies were unable to demonstrate significant differences between the two populations with respect to bone mass or calcium metabolism. In order to test whether the difference in fracture propensity between both populations could be explained by differences in bone material quality we assessed bone material strength using microindentation in 42 Norwegian and 46 Spanish women with normal BMD values, without clinical or morphometric vertebral fractures, no clinical or laboratory signs of secondary osteoporosis, and without use of drugs with known influence on bone metabolism. Bone material properties were assessed by microindentation of the thick cortex of the mid tibia following local anesthesia of the area using the Osteoprobe device (Active Life Scientific, Santa Barbara, CA, USA). Indentation distance was standardized against a calibration phantom of methylmethacrylate and results, as percentage of this reference value, expressed as bone material strength index units (BMSi). We found that the bone material properties reflected in the BMSi value of Norwegian women was significantly inferior when compared to Spanish women (77 ± 7.1 versus 80.7 ± 7.8, p < 0.001). Total hip BMD was significantly higher in Norwegian women (1.218 g/cm(2) versus 0.938 g/cm(2) , p < 0.001) but regression analysis revealed that indentation values did not vary with BMD r(2)  = 0.03 or age r(2)  = 0.04. In conclusion Norwegian women show impaired bone material properties, higher bone mass, and were taller than Spanish women. The increased height will increase the impact on bone after falls, and impaired bone material properties may further enhance the risk fracture after such falls. These ethnic differences in bone material properties may partly explain the higher propensity for fracture in Norwegian women. PMID:25900016

  5. Impaired-Driving Prevalence Among US High School Students: Associations With Substance Use and Risky Driving Behaviors

    PubMed Central

    Li, Kaigang; Simons-Morton, Bruce G.; Hingson, Ralph

    2013-01-01

    Objectives. We examined the prevalence of impaired driving among US high school students and associations with substance use and risky driving behavior. Methods. We assessed driving while alcohol or drug impaired (DWI) and riding with alcohol- or drug-impaired drivers (RWI) in a nationally representative sample of 11th-grade US high school students (n = 2431). We examined associations with drinking and binge drinking, illicit drug use, risky driving, and demographic factors using multivariate sequential logistic regression analysis. Results. Thirteen percent of 11th-grade students reported DWI at least 1 of the past 30 days, and 24% reported RWI at least once in the past year. Risky driving was positively associated with DWI (odds ratio [OR] = 1.25; P < .001) and RWI (OR = 1.09; P < .05), controlling for binge drinking (DWI: OR = 3.17; P < .01; RWI: OR = 6.12; P < .001) and illicit drug use (DWI: OR = 5.91; P < .001; RWI: OR = 2.29; P = .05). DWI was higher for adolescents who drove after midnight (OR = 15.7), drove while sleepy or drowsy (OR = 8.6), read text messages (OR = 11.8), sent text messages (OR = 5.0), and made cell phone calls (OR = 3.2) while driving. Conclusions. Our findings suggest the need for comprehensive approaches to the prevention of DWI, RWI, and other risky driving behavior. PMID:24028236

  6. Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2).

    PubMed

    Ghanem, Simona S; Heinrich, Garrett; Lester, Sumona G; Pfeiffer, Verena; Bhattacharya, Sumit; Patel, Payal R; DeAngelis, Anthony M; Dai, Tong; Ramakrishnan, Sadeesh K; Smiley, Zachary N; Jung, Dae Y; Lee, Yongjin; Kitamura, Tadahiro; Ergun, Suleyman; Kulkarni, Rohit N; Kim, Jason K; Giovannucci, David R; Najjar, Sonia M

    2016-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 2 (CEACAM2) regulates food intake as demonstrated by hyperphagia in mice with the Ceacam2 null mutation (Cc2(-/-)). This study investigated whether CEACAM2 also regulates insulin secretion. Ceacam2 deletion caused an increase in β-cell secretory function, as assessed by hyperglycemic clamp analysis, without affecting insulin response. Although CEACAM2 is expressed in pancreatic islets predominantly in non-β-cells, basal plasma levels of insulin, glucagon and somatostatin, islet areas, and glucose-induced insulin secretion in pooled Cc2(-/-) islets were all normal. Consistent with immunofluorescence analysis showing CEACAM2 expression in distal intestinal villi, Cc2(-/-) mice exhibited a higher release of oral glucose-mediated GLP-1, an incretin that potentiates insulin secretion in response to glucose. Compared with wild type, Cc2(-/-) mice also showed a higher insulin excursion during the oral glucose tolerance test. Pretreating with exendin(9-39), a GLP-1 receptor antagonist, suppressed the effect of Ceacam2 deletion on glucose-induced insulin secretion. Moreover, GLP-1 release into the medium of GLUTag enteroendocrine cells was increased with siRNA-mediated Ceacam2 down-regulation in parallel to an increase in Ca(2+) entry through L-type voltage-dependent Ca(2+) channels. Thus, CEACAM2 regulates insulin secretion, at least in part, by a GLP-1-mediated mechanism, independent of confounding metabolic factors. PMID:26586918

  7. High serum androstenedione levels correlate with impaired memory in the surgically menopausal rat: a replication and new findings

    PubMed Central

    Camp, Bryan W.; Gerson, Julia E.; Tsang, Candy Wing S.; Villa, Stephanie R.; Acosta, Jazmin I.; Braden, B. Blair; Hoffman, Ann N.; Conrad, Cheryl D.; Bimonte-Nelson, Heather A.

    2012-01-01

    After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle-depleted ovaries. In two independent studies, in rodents that had undergone ovarian follicular depletion, we found that higher endogenous serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that higher androstenedione levels impair memory. The current study directly tested this hypothesis, examining the cognitive effects of exogenous androstenedione administration in rodents. Middle-aged ovariectomized rats received vehicle or one of two doses of androstenedione. Rats were tested on a spatial working and reference memory maze battery including the water-radial arm maze, Morris water maze (MM) and delay match-to-sample task. Androstenedione at the highest dose impaired reference memory as well as the ability to maintain performance as memory demand was elevated. This was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. We measured glutamic acid decarboxylase (GAD) protein in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system relates to androstenedione-induced memory impairments. Results showed that higher entorhinal cortex GAD levels were correlated with worse MM performance, irrespective of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle-depleted ovary, is detrimental to working memory, reference memory and memory retention. Furthermore, while spatial reference memory performance might be related to the GABAergic system, it does not appear to be altered with androstenedione administration. PMID:22758646

  8. High prevalence of vaterite in sagittal otoliths causes hearing impairment in farmed fish

    PubMed Central

    Reimer, T.; Dempster, T.; Warren-Myers, F.; Jensen, A. J.; Swearer, S. E.

    2016-01-01

    The rapid growth of aquaculture raises questions about the welfare status of mass-produced species. Sagittal otoliths are primary hearing structures in the inner ear of all teleost (bony) fishes and are normally composed of aragonite, though abnormal vaterite replacement is sometimes seen in the wild. We provide the first widespread evaluation of the prevalence of vaterite in otoliths, showing that farmed fish have levels of vaterite replacement over 10 times higher than wild fish, regardless of species. We confirm this observation with extensive sampling of wild and farmed Atlantic salmon in Norway, the world’s largest producer, and verify that vateritic otoliths are common in farmed salmon worldwide. Using a mechanistic model of otolith oscillation in response to sound, we demonstrate that average levels of vaterite replacement result in a 28–50% loss of otolith functionality across most of a salmonid’s known hearing range and throughout its life cycle. The underlying cause(s) of vaterite formation remain unknown, but the prevalence of hearing impairment in farmed fish has important implications for animal welfare, the survival of escapees and their effects on wild populations, and the efficacy of restocking programs based on captive-bred fish. PMID:27121086

  9. High prevalence of vaterite in sagittal otoliths causes hearing impairment in farmed fish.

    PubMed

    Reimer, T; Dempster, T; Warren-Myers, F; Jensen, A J; Swearer, S E

    2016-01-01

    The rapid growth of aquaculture raises questions about the welfare status of mass-produced species. Sagittal otoliths are primary hearing structures in the inner ear of all teleost (bony) fishes and are normally composed of aragonite, though abnormal vaterite replacement is sometimes seen in the wild. We provide the first widespread evaluation of the prevalence of vaterite in otoliths, showing that farmed fish have levels of vaterite replacement over 10 times higher than wild fish, regardless of species. We confirm this observation with extensive sampling of wild and farmed Atlantic salmon in Norway, the world's largest producer, and verify that vateritic otoliths are common in farmed salmon worldwide. Using a mechanistic model of otolith oscillation in response to sound, we demonstrate that average levels of vaterite replacement result in a 28-50% loss of otolith functionality across most of a salmonid's known hearing range and throughout its life cycle. The underlying cause(s) of vaterite formation remain unknown, but the prevalence of hearing impairment in farmed fish has important implications for animal welfare, the survival of escapees and their effects on wild populations, and the efficacy of restocking programs based on captive-bred fish. PMID:27121086

  10. Musical Sound Quality Impairments in Cochlear Implant (CI) Users as a Function of Limited High-Frequency Perception

    PubMed Central

    Roy, Alexis T.; Jiradejvong, Patpong; Carver, Courtney

    2012-01-01

    The purpose of this study was to (a) apply the musical sound quality assessment method, Cochlear Implant-MUltiple Stimulus with Hidden Reference and Anchor (CI-MUSHRA), to quantify musical sound quality deficits in CI (cochlear implant) users with respect to high-frequency loss, and (b) assess possible correlations between CI-MUSHRA performance and self-reported musical sound quality, as assessed by more traditional rating scales. Five versions of real-world musical stimuli were created: 8-,4-, and 2-kHz low-pass-filtered (LPF) versions with increasing high-frequency removal, a composite stimulus containing a 1-kHz LPF-filtered version and white noise (“anchor”), and an unaltered version (“hidden reference”). Using the CI-MUSHRA methodology, these versions were simultaneously presented to participants in addition to a labeled reference. Participants listened to all versions and provided ratings based on a 100-point scale that reflected perceived sound quality difference among the versions. A total of 25 musical stimuli were tested. As comparison measures, participants completed four Visual Analogue Scales (VAS) to assess musical sound quality. Overall, compared to normal hearing (NH) listeners, CI users demonstrated an impaired ability to discriminate between unaltered and altered musical stimuli with variable amounts of high-frequency information removed. Performance using CI-MUSHRA to evaluate this parameter did not correlate to measurements of musical sound quality, as assessed by VAS. This study identified high-frequency loss as one acoustic parameter contributing to overall CI-mediated musical sound quality limitations. CI-MUSHRA provided a quantitative assessment of musical sound quality. This method offers the potential to quantify CI impairments of many different acoustic parameters related to musical sound quality in the future. PMID:23172009

  11. Pairing high-frequency data with a link-node model to manage dissolved oxygen impairment in a dredged estuary.

    PubMed

    Camarillo, Mary Kay; Weissmann, Gregory A; Gulati, Shelly; Herr, Joel; Sheeder, Scott; Stringfellow, William T

    2016-08-01

    High-frequency data and a link-node model were used to investigate the relative importance of mass loads of oxygen-demanding substances and channel geometry on recurrent low dissolved oxygen (DO) in the San Joaquin River Estuary in California. The model was calibrated using 6 years of data. The calibrated model was then used to determine the significance of the following factors on low DO: excavation of the river to allow navigation of large vessels, non-point source pollution from the agricultural watershed, effluent from a wastewater treatment plant, and non-point source pollution from an urban area. An alternative metric for low DO, excess net oxygen demand (ENOD), was applied to better characterize DO impairment. Model results indicate that the dredged ship channel had the most significant effect on DO (62 % fewer predicted hourly DO violations), followed by mass load inputs from the watershed (52 % fewer predicted hourly DO violations). Model results suggest that elimination of any one factor will not completely resolve DO impairment and that continued use of supplemental aeration is warranted. Calculation of ENOD proved more informative than the sole use of DO. Application of the simple model allowed for interpretation of the extensive data collected. The current monitoring program could be enhanced by additional monitoring stations that would provide better volumetric estimates of low DO. PMID:27393195

  12. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance

    PubMed Central

    Pizzolla, Angela; Oh, Ding Yuan; Luong, Suzanne; Prickett, Sara R.; Henstridge, Darren C.; Febbraio, Mark A.; O’Hehir, Robyn E.; Rolland, Jennifer M.; Hardy, Charles L.

    2016-01-01

    The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a ‘western’ diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD) for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND). Respiratory tolerance was induced by repeated intranasal (i.n.) administration of ovalbumin (OVA), prior to induction of allergic airway inflammation (AAI) by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation. PMID:27483441

  13. High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus.

    PubMed

    Lemos, C; Rial, D; Gonçalves, F Q; Pires, J; Silva, H B; Matheus, F C; da Silva, A C; Marques, J M; Rodrigues, R J; Jarak, I; Prediger, R D; Reis, F; Carvalho, R A; Pereira, F C; Cunha, R A

    2016-02-19

    High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. Male Wistar rats were submitted for 9 weeks to a sucrose-rich diet (35% sucrose solution) and subsequently to a battery of behavioral tests; after sacrifice, their hippocampi were collected for ex vivo high-resolution magic angle spinning (HRMAS) metabolic characterization and electrophysiological extracellular recordings in slices. HSu rats displayed a decreased memory performance (object displacement and novel object recognition tasks) and helpless behavior (forced swimming test), without altered locomotion (open field). HRMAS analysis indicated a similar hippocampal metabolic profile of HSu and control rats. HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses. PMID:26704636

  14. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance.

    PubMed

    Pizzolla, Angela; Oh, Ding Yuan; Luong, Suzanne; Prickett, Sara R; Henstridge, Darren C; Febbraio, Mark A; O'Hehir, Robyn E; Rolland, Jennifer M; Hardy, Charles L

    2016-01-01

    The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a 'western' diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD) for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND). Respiratory tolerance was induced by repeated intranasal (i.n.) administration of ovalbumin (OVA), prior to induction of allergic airway inflammation (AAI) by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation. PMID:27483441

  15. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice.

    PubMed

    Kim, Tae-Woon; Choi, Hyun-Hee; Chung, Yong-Rak

    2016-06-01

    Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippocampal neuroplasticity using high-fat diet-induced obese mice. After obesity was induced by a 20-week high-fat (60%) diet, treadmill exercise was performed for 12 weeks. In the present results, cognitive function was impaired in the high-fat diet-induced obese mice. Brain-derived neurotrophic factor (BDNF) and tyrosin kinase B (TrkB) expression and cell proliferation were decreased in the high-fat diet-induced obese mice. Treadmill exercise improved cognitive function through enhancing neuroplasticity, including increased expression of BDNF and TrkB and enhanced cell proliferation. The present results suggest that treadmill exercise enhances hippocampal neuroplasticity, and then potentially plays a protective role against obesity-induced cognitive impairment. PMID:27419109

  16. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice

    PubMed Central

    Kim, Tae-Woon; Choi, Hyun-Hee; Chung, Yong-Rak

    2016-01-01

    Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippocampal neuroplasticity using high-fat diet-induced obese mice. After obesity was induced by a 20-week high-fat (60%) diet, treadmill exercise was performed for 12 weeks. In the present results, cognitive function was impaired in the high-fat diet-induced obese mice. Brain-derived neurotrophic factor (BDNF) and tyrosin kinase B (TrkB) expression and cell proliferation were decreased in the high-fat diet-induced obese mice. Treadmill exercise improved cognitive function through enhancing neuroplasticity, including increased expression of BDNF and TrkB and enhanced cell proliferation. The present results suggest that treadmill exercise enhances hippocampal neuroplasticity, and then potentially plays a protective role against obesity-induced cognitive impairment. PMID:27419109

  17. High Glucose-enhanced Acetylcholine Stimulated CGMP Masks Impaired Vascular Reactivity in Tail Arteries from Short-Term Hyperglycemic Rats

    PubMed Central

    Hamaty, Marwan; Guzmán, Cristina B.; Walsh , Mary F.; Bode, Ann M.; Levy, Joseph

    2000-01-01

    Impaired vascular endothelium-dependent relaxation and augmented contractile responses have been reported in several models of long-term hyperglycemia. However, the effects of short-term ambient hyperglycemia are poorly understood. Since oxidative stress has been implicated as a contributor to impaired vascular function, we investigated the following: Aims: (1) the effects of high glucose exposure in vitro (7 – 10 days) on vascular relaxation to acetylcholine (Ach) and contractility to norepinephrine (NE) and KCl; (2) if NO-dependent cGMP generation is affected under these conditions; and (3) aortic redox status. Methods: Non-diabetic rat tail artery rings were incubated in normal (5mM) (control NG) or high (20mM) glucose buffer (control HG). Vascular responses to Ach, NE and KCl were compared to those of streptozotocin (SZ) diabetic animals in the same buffers (diabetic NG, diabetic HG). Ach stimulated cGMP levels were quantitated as an indirect assessment of endothelial nitric oxide (NO) production and oxidative stress evaluated by measuring vascular glutathione and oxidized glutathione. Results: Rings from diabetic rats in NG showed impaired relaxation to Ach (P = 0.002) but relaxed normally, when maintained in HG. Similarly, contractile responses to NE were attenuated in diabetic rings in NG but similar to controls in HG. HG markedly augmented maximal contraction to KCl compared to control and diabetic vessels in NG (P < 0.0001). Diabetic vessels in a hyperosmolar, but normoglycemic, milieu respond like those in HG. in vitro, HG for 2 hours changed neither relaxation nor contractile responses to NE and KCl in control rings. Basal cGMP levels were lower in aortae from diabetic animals pre-incubated in NG than in HG/LG or in control rings in NG (P < 0.05). cGMP responses to Ach were exaggerated in diabetic vessels in HG (P = 0.035 vs. control NG, P = 0.043 vs. diabetic NG) but not different between control and diabetic rings in NG. Vessels from diabetic animals

  18. Impaired overt facial mimicry in response to dynamic facial expressions in high-functioning autism spectrum disorders.

    PubMed

    Yoshimura, Sayaka; Sato, Wataru; Uono, Shota; Toichi, Motomi

    2015-05-01

    Previous electromyographic studies have reported that individuals with autism spectrum disorders (ASD) exhibited atypical patterns of facial muscle activity in response to facial expression stimuli. However, whether such activity is expressed in visible facial mimicry remains unknown. To investigate this issue, we videotaped facial responses in high-functioning individuals with ASD and controls to dynamic and static facial expressions of anger and happiness. Visual coding of facial muscle activity and the subjective impression ratings showed reduced congruent responses to dynamic expressions in the ASD group. Additionally, this decline was related to social dysfunction. These results suggest that impairment in overt facial mimicry in response to others' dynamic facial expressions may underlie difficulties in reciprocal social interaction among individuals with ASD. PMID:25374131

  19. “Missed” Mild Cognitive Impairment: High False-Negative Error Rate Based on Conventional Diagnostic Criteria

    PubMed Central

    Edmonds, Emily C.; Delano-Wood, Lisa; Jak, Amy J.; Galasko, Douglas R.; Salmon, David P.; Bondi, Mark W.

    2016-01-01

    Mild cognitive impairment (MCI) is typically diagnosed using subjective complaints, screening measures, clinical judgment, and a single memory score. Our prior work has shown that this method is highly susceptible to false-positive diagnostic errors. We examined whether the criteria also lead to “false-negative” errors by diagnostically reclassifying 520 participants using novel actuarial neuropsychological criteria. Results revealed a false-negative error rate of 7.1%. Participants’ neuropsychological performance, cerebrospinal fluid biomarkers, and rate of decline provided evidence that an MCI diagnosis is warranted. The impact of “missed” cases of MCI has direct relevance to clinical practice, research studies, and clinical trials of prodromal Alzheimer's disease. PMID:27031477

  20. Impaired clearance of accumulated lysosomal glycogen in advanced Pompe disease despite high-level vector-mediated transgene expression

    PubMed Central

    Sun, Baodong; Zhang, Haoyue; Bird, Andrew; Li, Songtao; Young, Sarah P.; Koeberl, Dwight D.

    2013-01-01

    Background Infantile-onset glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) causes death early in childhood from cardiorespiratory failure in absence of effective treatment, whereas late-onset Pompe disease causes a progressive skeletal myopathy. The limitations of enzyme replacement therapy could potentially be addressed with adeno-associated virus (AAV) vector-mediated gene therapy. Methods AAV vectors containing tissue-specific regulatory cassettes, either liver-specific or muscle-specific, were administered to 12 and 17 month old Pompe disease mice to evaluate the efficacy of gene therapy in advanced Pompe disease. Biochemical correction was evaluated through GAA activity and glycogen content analyses of the heart and skeletal muscle. Western blotting, urinary biomarker, and Rotarod performance were evaluated following vector administration. Results The AAV vector containing the liver-specific regulatory cassette secreted high-level hGAA into the blood and corrected glycogen storage in the heart and diaphragm. The biochemical correction of the heart and diaphragm was associated with efficacy, as reflected by increased Rotarod performance; however, the clearance of glycogen from skeletal muscles was relatively impaired, in comparison with younger Pompe disease mice. An alternative vector containing a muscle-specific regulatory cassette transduced skeletal muscle with high efficiency, but also failed to achieve complete clearance of accumulated glycogen. Decreased transduction of the heart and liver in older mice, especially in females, was implicated as a cause for reduced efficacy in advanced Pompe disease. Conclusion The impaired efficacy of AAV vector-mediated gene therapy in old Pompe disease mice emphasized the need for early treatment to achieve full efficacy. PMID:19621331

  1. Field trial on glucose-induced insulin and metabolite responses in Estonian Holstein and Estonian Red dairy cows in two herds

    PubMed Central

    2010-01-01

    Background Insulin secretion and tissue sensitivity to insulin is considered to be one of the factors controlling lipid metabolism post partum. The objective of this study was to compare glucose-induced blood insulin and metabolite responses in Estonian Holstein (EH, n = 14) and Estonian Red (ER, n = 14) cows. Methods The study was carried out using the glucose tolerance test (GTT) performed at 31 ± 1.9 days post partum during negative energy balance. Blood samples were obtained at -15, -5, 5, 10, 20, 30, 40, 50 and 60 min relative to infusion of 0.15 g/kg BW glucose and analysed for glucose, insulin, triglycerides (TG), non-esterified fatty acids (NEFA), cholesterol and β-hydroxybutyrate (BHB). Applying the MIXED Procedure with the SAS System the basal concentration of cholesterol, and basal concentration and concentrations at post-infusion time points for other metabolites, area under the curve (AUC) for glucose and insulin, clearance rate (CR) for glucose, and maximum increase from basal concentration for glucose and insulin were compared between breeds. Results There was a breed effect on blood NEFA (P < 0.05) and a time effect on all metabolites concentration (P < 0.01). The following differences were observed in EH compared to ER: lower blood insulin concentration 5 min after glucose infusion (P < 0.05), higher glucose concentration 20 (P < 0.01) and 30 min (P < 0.05) after infusion, and higher NEFA concentration before (P < 0.01) and 5 min after infusion (P < 0.05). Blood TG concentration in ER remained stable, while in EH there was a decrease from the basal level to the 40th min nadir (P < 0.01), followed by an increase to the 60th min postinfusion (P < 0.01). Conclusion Our results imply that glucose-induced changes in insulin concentration and metabolite responses to insulin differ between EH and ER dairy cows. PMID:20089161

  2. Performance of Students with Visual Impairments on High-Stakes Tests: A Pennsylvania Report Card

    ERIC Educational Resources Information Center

    Fox, Lynn A.

    2012-01-01

    Students with disabilities participate in high-stakes assessments to meet NCLB's newer proficiency standards. This study explored performance in reading and math on the Pennsylvania System of School Assessment (PSSA), Pennsylvania's grade-level assessment, to provide a foundational baseline on performance and accommodations used by…

  3. High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling

    PubMed Central

    Fu, Xin; Xie, Fang-Nan; Dong, Ping; Li, Qiu-Chen; Yu, Guang-Yan; Xiao, Ran

    2016-01-01

    Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However, insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs), which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore, we investigated the effects of sodium fluoride (NaF) on the proliferation, differentiation and viability of H9 hESCs. For the first time, we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology, mitochondrial membrane potential (MMP), caspase activities, cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway, coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a p-JNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs. PMID:26859149

  4. Limitations on High Data Rate Optical Fiber Transmission Systems Due to Transmission Impairment

    SciTech Connect

    Menyuk, Curtis R.

    2002-03-15

    This project supplemented our regular DOE grant from the Basic Energy Sciences organization with the goal of fostering industrial partnerships and student internships. During the project period, we have interacted with between 15 and 20 companies in the optical fiber telecommunications equipment industry, and our students have participated in a number of highly visible projects with companies such as Ciena, Science Applications International Corporation, KDD, ATT, Virtual Photonics, Inc., Phaethon Telecommunications, PhotonEx, and others. The project led to many successful interactions and numerous job offers for our students.

  5. Maternal high-fat diet is associated with impaired fetal lung development.

    PubMed

    Mayor, Reina S; Finch, Katelyn E; Zehr, Jordan; Morselli, Eugenia; Neinast, Michael D; Frank, Aaron P; Hahner, Lisa D; Wang, Jason; Rakheja, Dinesh; Palmer, Biff F; Rosenfeld, Charles R; Savani, Rashmin C; Clegg, Deborah J

    2015-08-15

    Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development. PMID:26092997

  6. Maternal high-fat diet consumption impairs exercise performance in offspring.

    PubMed

    Walter, Isabel; Klaus, Susanne

    2014-01-01

    The aim of the present study was to scrutinise the influence of maternal high-fat diet (mHFD) consumption during gestation and lactation on exercise performance and energy metabolism in male mouse offspring. Female C3H/HeJ mice were fed either a semi-synthetic high-fat diet (HFD; 40 % energy from fat) or a low-fat diet (LFD; 10 % energy from fat) throughout gestation and lactation. After weaning, male offspring of both groups received the LFD. At the age of 7·5 weeks half of the maternal LFD (n 20) and the mHFD (n 21) groups were given access to a running wheel for 28 d as a voluntary exercise training opportunity. We show that mHFD consumption led to a significantly reduced exercise performance (P < 0·05) and training efficiency (P < 0·05) in male offspring. There were no effects of maternal diet on offspring body weight. Lipid and glucose metabolism was disturbed in mHFD offspring, with altered regulation of cluster of differentiation 36 (CD36) (P < 0·001), fatty acid synthase (P < 0·05) and GLUT1 (P < 0·05) gene expression in skeletal muscle. In conclusion, maternal consumption of a HFD is linked to decreased exercise performance and training efficiency in the offspring. We speculate that this may be due to insufficient muscle energy supply during prolonged exercise training. Further, this compromised exercise performance might increase the risk of obesity development in adult life. PMID:26101629

  7. Hearing Impairment and High Blood Pressure among Bus Drivers in Puducherry

    PubMed Central

    Balaji, Rajeshwar; John, Nitin Ashok; Venkatappa, Umadevi Sajja

    2016-01-01

    Introduction Noise Induced Hearing Loss (NIHL), a major heath concern due to constant exposure to loud noise is on the rising trend in today’s world. The bus drivers are more vulnerable to the auditory and non-auditory ill effects of noise pollution. Aim The aim of this study was to assess and compare the hearing level, blood pressure and peak expiratory flow rate of bus drivers and individuals employed in office jobs. Materials and Methods Fifty male bus drivers aged 30-50 years and fifty males of the same group employed in office jobs were recruited as the test and control groups respectively. The hearing level of the individuals in both the groups was assessed using the Hearing Deterioration Index (HDI). The lung function and cardiovascular status of the study participants were assessed by measuring their Peak Expiratory Flow Rate (PEFR) and Blood Pressure (BP) respectively. The mean HDI, PEFR and BP values of both the groups were compared using the unpaired t-test and the extent of correlation between HDI, service years, exposure level, systolic blood pressure (SBP) and diastolic blood pressure (DBP) was determined using Pearson correlation coefficient test. Results HDI, SBP and DBP were significantly higher among the bus drivers when compared to the controls. However, there was no significant difference in the PEFR values between the test and the control groups. There was a highly significant positive correlation between HDI and service years and exposure level. Similarly, there was a significant positive correlation between exposure level and systolic and diastolic blood pressure. Conclusion Prolonged exposure to high intensity of sound results in deterioration of hearing capacity and increase in blood pressure among the bus drivers. PMID:27042452

  8. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    PubMed Central

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  9. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose

    PubMed Central

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  10. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose.

    PubMed

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  11. Reduced phosphatidylinositol 4,5-bisphosphate synthesis impairs inner ear Ca2+ signaling and high-frequency hearing acquisition

    PubMed Central

    Rodriguez, Laura; Simeonato, Elena; Scimemi, Pietro; Anselmi, Fabio; Calì, Bianca; Crispino, Giulia; Ciubotaru, Catalin D.; Bortolozzi, Mario; Ramirez, Fabian Galindo; Majumder, Paromita; Arslan, Edoardo; De Camilli, Pietro; Pozzan, Tullio; Mammano, Fabio

    2012-01-01

    Phosphatidylinositol phosphate kinase type 1γ (PIPKIγ) is a key enzyme in the generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and is expressed at high levels in the nervous system. Homozygous knockout mice lacking this enzyme die postnatally within 24 h, whereas PIPKIγ+/− siblings breed normally and have no reported phenotype. Here we show that adult PIPKIγ+/− mice have dramatically elevated hearing thresholds for high-frequency sounds. During the first postnatal week we observed a reduction of ATP-dependent Ca2+ signaling activity in cochlear nonsensory cells. Because Ca2+ signaling under these conditions depends on inositol-1,4,5-trisphosphate generation from phospholipase C (PLC)-dependent hydrolysis of PI(4,5)P2, we conclude that (i) PIPKIγ is primarily responsible for the synthesis of the receptor-regulated PLC-sensitive PI(4,5)P2 pool in the cell syncytia that supports auditory hair cells; (ii) spatially graded impairment of this signaling pathway in cochlear nonsensory cells causes a selective alteration in the acquisition of hearing in PIPKIγ+/− mice. This mouse model also suggests that PIPKIγ may determine the level of gap junction contribution to cochlear development. PMID:22891314

  12. Kras activation in p53-deficient myoblasts results in high-grade sarcoma formation with impaired myogenic differentiation

    PubMed Central

    McKinnon, Timothy; Venier, Rosemarie; Dickson, Brendan C.; Kabaroff, Leah; Alkema, Manon; Chen, Li; Shern, Jack F.; Yohe, Marielle E.; Khan, Javed; Gladdy, Rebecca A.

    2015-01-01

    While genomic studies have improved our ability to classify sarcomas, the molecular mechanisms involved in the formation and progression of many sarcoma subtypes are unknown. To better understand developmental origins and genetic drivers involved in rhabdomyosarcomagenesis, we describe a novel sarcoma model system employing primary murine p53-deficient myoblasts that were isolated and lentivirally transduced with KrasG12D. Myoblast cell lines were characterized and subjected to proliferation, anchorage-independent growth and differentiation assays to assess the effects of transgenic KrasG12D expression. KrasG12D overexpression transformed p53−/− myoblasts as demonstrated by an increased anchorage-independent growth. Induction of differentiation in parental myoblasts resulted in activation of key myogenic regulators. In contrast, Kras-transduced myoblasts had impaired terminal differentiation. p53−/− myoblasts transformed by KrasG12D overexpression resulted in rapid, reproducible tumor formation following orthotopic injection into syngeneic host hindlimbs. Pathological analysis revealed high-grade sarcomas with myogenic differentiation based on the expression of muscle-specific markers, such as Myod1 and Myog. Gene expression patterns of murine sarcomas shared biological pathways with RMS gene sets as determined by gene set enrichment analysis (GSEA) and were 61% similar to human RMS as determined by metagene analysis. Thus, our novel model system is an effective means to model high-grade sarcomas along the RMS spectrum. PMID:25992772

  13. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats.

    PubMed

    Ha, Jung-Heun; Doguer, Caglar; Wang, Xiaoyu; Flores, Shireen R; Collins, James F

    2016-01-01

    Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype. PMID:27537180

  14. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats

    PubMed Central

    Ha, Jung-Heun; Doguer, Caglar; Wang, Xiaoyu; Flores, Shireen R.; Collins, James F.

    2016-01-01

    Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype. PMID:27537180

  15. Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera)

    PubMed Central

    Thany, Steeve H.; Bourdin, Céline M.; Graton, Jérôme; Laurent, Adèle D.; Mathé-Allainmat, Monique; Lebreton, Jacques; Le Questel, Jean-Yves

    2015-01-01

    In the present study, the effects of low (10 ng/bee) and high (100 ng/bee) doses of acetamiprid and deltamethrin insecticides on multi-trial learning and retrieval were evaluated in the honey bee Apis mellifera. After oral application, acetamiprid and deltamethrin at the concentrations used were not able to impair learning sessions. When the retention tests were performed 1 h, 6 h, and 24 h after learning, we found a significant difference between bees after learning sessions when drugs were applied 24 h before learning. Deltamethrin-treated bees were found to be more sensitive at 10 ng/bee and 100 ng/bee doses compared to acetamiprid-treated bees, only with amounts of 100 ng/bee and at 6 h and 24 h delays. When insecticides were applied during learning sessions, none of the tested insecticides was able to impair learning performance at 10 ng/bee or 100 ng/bee but retention performance was altered 24 h after learning sessions. Acetamiprid was the only one to impair retrieval at 10 ng/bee, whereas at 100 ng/bee an impairment of retrieval was found with both insecticides. The present results therefore suggest that acetamiprid and deltamethrin are able to impair retrieval performance in the honey bee Apis mellifera. PMID:26466901

  16. Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera).

    PubMed

    Thany, Steeve H; Bourdin, Céline M; Graton, Jérôme; Laurent, Adèle D; Mathé-Allainmat, Monique; Lebreton, Jacques; Questel, Jean-Yves le

    2015-01-01

    In the present study, the effects of low (10 ng/bee) and high (100 ng/bee) doses of acetamiprid and deltamethrin insecticides on multi-trial learning and retrieval were evaluated in the honey bee Apis mellifera. After oral application, acetamiprid and deltamethrin at the concentrations used were not able to impair learning sessions. When the retention tests were performed 1 h, 6 h, and 24 h after learning, we found a significant difference between bees after learning sessions when drugs were applied 24 h before learning. Deltamethrin-treated bees were found to be more sensitive at 10 ng/bee and 100 ng/bee doses compared to acetamiprid-treated bees, only with amounts of 100 ng/bee and at 6 h and 24 h delays. When insecticides were applied during learning sessions, none of the tested insecticides was able to impair learning performance at 10 ng/bee or 100 ng/bee but retention performance was altered 24 h after learning sessions. Acetamiprid was the only one to impair retrieval at 10 ng/bee, whereas at 100 ng/bee an impairment of retrieval was found with both insecticides. The present results therefore suggest that acetamiprid and deltamethrin are able to impair retrieval performance in the honey bee Apis mellifera. PMID:26466901

  17. The Influence of Neurocognitive Impairment on HIV Risk Behaviors and Intervention Outcomes among High-Risk Substance Users: A Systematic Review

    PubMed Central

    Shrestha, Roman; Copenhaver, Michael

    2016-01-01

    Neurocognitive impairment (NCI) among high-risk substance users poses a substantial barrier to reducing risk behaviors in this population. Previous work suggests that NCI is intertwined in a close, reciprocal relationship with risk behaviors. Not only does substance use worsen cognitive impairment but cognitive impairment may also reduce the efficacy of interventions aimed at reducing risk and improving medication adherence. In this systematic review, we examine the potential impact of substance abuse and cognitive functioning in the context of HIV risk behaviors and risk-reduction intervention outcomes. The findings thus far suggest that, in order to be effective, risk-reduction interventions must take into account the impact of NCI on learning, memory, and behavior. PMID:26904535

  18. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary.

    PubMed

    Sunk, Ilse-Gerlinde; Trattnig, Siegfried; Graninger, Winfried B; Amoyo, Love; Tuerk, Birgit; Steiner, Carl-Walter; Smolen, Josef S; Bobacz, Klaus

    2006-01-01

    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1beta, were analyzed by RT-PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1beta, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage. PMID:16831232

  19. Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures.

    PubMed

    Stiegler, Nina V; Krug, Anne K; Matt, Florian; Leist, Marcel

    2011-05-01

    Chemicals that specifically alter human neurite outgrowth pose a hazard for the development of the nervous system. The identification of such compounds remains a major challenge, especially in a human test system. To address this issue, we developed an imaging-based procedure in LUHMES human neuronal precursor cells to quantify neurite growth of unfixed cultures. Live imaging allowed the simultaneous evaluation of cell viability and neurite outgrowth within one culture dish. The procedure was used to test the hypothesis that inhibitors of specific pathways can impair neurite outgrowth without affecting cell viability. Although the cells were grown at high density to allow extensive networking, overall neurite growth in this complex culture was quantified with a signal-to-noise ratio of > 50. Compounds such as U0126 slowed the extension of neuronal processes at concentrations > 4 times lower than those causing cell death. High numbers of individual viable cells without neurites were identified under such conditions, and neurite outgrowth recovered after washout of the chemical. Also an extension-promoting compound, Y-27632, was identified by this unique multiparametric imaging approach. Finally, the actions of unspecific cytotoxicants such as menadione, cadmium chloride, and sodium dodecyl sulfate were tested to evaluate the specificity of the new assay. We always found a ratio of EC50 (cell death)/EC50 (neurites) < 4 for such chemicals. The described novel test system may thus be useful both for high-throughput screens to identify neuritotoxic agents and for their closer characterization concerning mode of action, compound interactions, or the reversibility of their effects. PMID:21342877

  20. Impaired systemic vascular reactivity & raised high-sensitivity C reactive protein levels in chronic obstructive pulmonary disease

    PubMed Central

    Khare, Parul; Talwar, Anjana; Chandran, Dinu; Guleria, Randeep; Jaryal, Ashok Kumar; Kumar, Guresh; Trivedi, Anjali; Deepak, K.K.

    2016-01-01

    Background & objectives: Chronic obstructive pulmonary disease (COPD) is characterized by slowly progressive airflow limitaion, chronic lung inflammation and associated systemic manifestations. The objective of this preliminary study was to investigate the levels of high sensitivity C reactive protein (hs CRP) and tumour necrosis factor-α (TNF-α) as markers of systemic inflammation and assessment of systemic vascular reactivity that may play an important role in development of cardiovascular disease in COPD patients. Methods: Systemic vascular reactivity was assessed non-invasively by measuring peripheral pulse waveform changes during reactive hyperemia (RH) in 16 COPD patients and 14 controls by photoplethysmography technique (PPG). Parameters measured were pulse wave amplitude (PWA), slope and pulse transit time (PTT). Tumour necrosis factor-α (TNF-α) and hs CRP were measured as markers of inflammation. Results: PWA during the 1st, 2nd and 3rd minutes post release of occlusion were significantly higher than the baseline means in controls, whereas in the patient group there was no significant change in the PWA during any of the observed time periods following release of occlusion, in comparison to the baseline means. Similar results were observed in slope values for patients and controls. Maximum percentage change in PWA during RH with reference to baseline was significantly lower in patients as compared to controls (26.78±20.19 vs 57.20±19.80%, P<0.001). Maximum percentage change in slope during RH with reference to baseline was significantly lower in patients as compared to controls (19.77±10.73 vs 39.25±13.49%, P<0.001). A vascular tone response as represented by PTT was also impaired in the 3rd minute of RH as compared to baseline mean values in COPD patients only. Interpretation & conclusions: Our findings showed raised hs CRP levels and impaired systemic vascular reactivity in COPD patients. Whether these may increase the risk of cardiovascular

  1. Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats.

    PubMed

    Allam, Farida; Dao, An T; Chugh, Gaurav; Bohat, Ritu; Jafri, Faizan; Patki, Gaurav; Mowrey, Christopher; Asghar, Mohammad; Alkadhi, Karim A; Salim, Samina

    2013-06-01

    We examined whether or not grape powder treatment ameliorates oxidative stress-induced anxiety-like behavior, memory impairment, and hypertension in rats. Oxidative stress in Sprague-Dawley rats was produced by using L-buthionine-(S,R)-sulfoximine (BSO). Four groups of rats were used: 1) control (C; injected with vehicle and provided with tap water), 2) grape powder-treated (GP; injected with vehicle and provided for 3 wk with 15 g/L grape powder dissolved in tap water), 3) BSO-treated [injected with BSO (300 mg/kg body weight), i.p. for 7 d and provided with tap water], and 4) BSO plus grape powder-treated (GP+BSO; injected with BSO and provided with grape powder-treated tap water). Anxiety-like behavior was significantly greater in BSO rats compared with C or GP rats (P < 0.05). Grape powder attenuated BSO-induced anxiety-like behavior in GP+BSO rats. BSO rats made significantly more errors in both short- and long-term memory tests compared with C or GP rats (P < 0.05), which was prevented in GP+BSO rats. Systolic and diastolic blood pressure was significantly greater in BSO rats compared with C or GP rats (P < 0.05), whereas grape powder prevented high blood pressure in GP+BSO rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK-1/2) was activated (P < 0.05), whereas levels of glyoxalase-1 (GLO-1), glutathione reductase-1 (GSR-1), calcium/calmodulin-dependent protein kinase type IV (CAMK-IV), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) were significantly less (P < 0.05) in BSO but not in GP+BSO rats compared with C or GP rats. We suggest that by regulating brain ERK-1/2, GLO-1, GSR-1, CAMK-IV, CREB, and BDNF levels, grape powder prevents oxidative stress-induced anxiety, memory impairment, and hypertension in rats. PMID:23596160

  2. [Deformations of the vertebral column in the visually impaired schoolchildren presenting with complicated high myopia and the possibilities for its correction].

    PubMed

    Egorova, T S; Smirnova, T S; Romashin, O V; Egorova, I V

    2016-01-01

    Complicated high myopia is one of the leading causes responsible for the disablement in the children associated with visual impairment especially when it is combined with other pathological conditions and abnormalities among which are disorders of the musculoskeletal system. In the present study, we for the first time examined visually impaired schoolchildren (n=44) who suffered from high myopia complications making use of the computed optical topographer for the evaluation of the state of their vertebral column. The control group consisted of 60 children attending a secondary school. The study revealed various deformations of the musculoskeletal system including scoliosis, misalignment of the pelvis, kyphosis, hyperlordosis, torsion, platypodia, deformation of the lower extremities and the chest. These deformations were more pronounced in the visually impaired schoolchildren in comparison with the children of the same age comprising the control group (p<0,05). It is concluded that the assessment of the state of the vertebral column with the use of the apparatus yields an important information for the elaboration and application of a series of measures for the timely provision of medical assistance needed for the comprehensive rehabilitation of the visually impaired schoolchildren presenting with high myopia complications. PMID:27213945

  3. Self-selecting fluid intake while maintaining high carbohydrate availability does not impair half-marathon performance.

    PubMed

    Lee, M J C; Hammond, K M; Vasdev, A; Poole, K L; Impey, S G; Close, G L; Morton, J P

    2014-12-01

    We aimed to test the hypothesis that self-selecting fluid intake but maintaining high exogenous CHO availability (60 g/h) does not compromise half-marathon performance. 15 participants completed 3 half-marathons while drinking a 6% CHO solution to guidelines (DRINK) or a non-caloric solution in self-selected volumes when consuming 3×glucose (20 g) gels (G-GEL) or glucose-fructose (13 g glucose+7 g fructose) gels (GF-GEL) per hour. Fluid intake (DRINK: 1 557±182, G-GEL: 473±234, GF-GEL: 404±144 ml) and percent body mass loss (DRINK: - 0.8±0.9, G-GEL: - 2.0±0.6, GF-GEL: -2.3±1.1) were different (P<0.05) between conditions, though race time did not differ (DRINK: 110.6±14.4, G-GEL: 110.3±14.6, GF-GEL: 113.7±12.8 min). In G-GEL, there was a positive correlation (P<0.05) between body mass loss and race time. Plasma glucose was lower (P<0.05) in GF-GEL compared with other conditions, and total CHO oxidation (DRINK: 3.2±0.5, G-GEL: 3.0±0.4, GF-GEL: 2.6±0.4 g/min) was lower (P=0.06) in this trial. Self-selecting fluid intake but maintaining high CHO availability does not impair half-marathon performance. Additionally, consuming glucose-fructose mixtures in sub-optimal amounts reduces plasma glucose and total rates of CHO oxidation. PMID:25144431

  4. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle.

    PubMed

    Badin, Pierre-Marie; Vila, Isabelle K; Louche, Katie; Mairal, Aline; Marques, Marie-Adeline; Bourlier, Virginie; Tavernier, Geneviève; Langin, Dominique; Moro, Cedric

    2013-04-01

    Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cε membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice. PMID:23471217

  5. MicroRNA-134 Contributes to Glucose-Induced Endothelial Cell Dysfunction and This Effect Can Be Reversed by Far-Infrared Irradiation

    PubMed Central

    Wang, Yen-Li; Chang, Shih-Ting; Liao, Ko-Hsun; Lo, Hung-Hao; Chiu, Ya-Lin; Hsieh, Tsung-Han; Huang, Tse-Shun; Lin, Chin-Sheng; Cheng, Shu-Meng; Cheng, Cheng-Chung

    2016-01-01

    Diabetes mellitus (DM) is a metabolic disease that is increasing worldwide. Furthermore, it is associated with the deregulation of vascular-related functions, which can develop into major complications among DM patients. Endothelial colony forming cells (ECFCs) have the potential to bring about medical repairs because of their post-natal angiogenic activities; however, such activities are impaired by high glucose- (HG) and the DM-associated conditions. Far-infrared radiation (FIR) transfers energy as heat that is perceived by the thermoreceptors in human skin. Several studies have revealed that FIR improves vascular endothelial functioning and boost angiogenesis. FIR has been used as anti-inflammatory therapy and as a clinical treatment for peripheral circulation improvement. In addition to vascular repair, there is increasing evidence to show that FIR can be applied to a variety of diseases, including cardiovascular disorders, hypertension and arthritis. Yet mechanism of action of FIR and the biomarkers that indicate FIR effects remain unclear. MicroRNA-134 (miR-134-5p) was identified by small RNA sequencing as being increased in high glucose (HG) treated dfECFCs (HG-dfECFCs). Highly expressed miR-134 was also validated in dmECFCs by RT-qPCR and it is associated with impaired angiogenic activities of ECFCs. The functioning of ECFCs is improved by FIR treatment and this occurs via a reduction in the level of miR-134 and an increase in the NRIP1 transcript, a direct target of miR-134. Using a mouse ischemic hindlimb model, the recovery of impaired blood flow in the presence of HG-dfECFCs was improved by FIR pretreatment and this enhanced functionality was decreased when there was miR-134 overexpression in the FIR pretreated HG-dfECFCs. In conclusion, our results reveal that the deregulation of miR-134 is involved in angiogenic defects found in DM patients. FIR treatment improves the angiogenic activity of HG-dfECFCs and dmECFCs and FIR has potential as a treatment

  6. Hearing Impairments

    NASA Astrophysics Data System (ADS)

    Cavender, Anna; Ladner, Richard E.

    For many people with hearing impairments, the degree of hearing loss is only a small aspect of their disability and does not necessarily determine the types of accessibility solutions or accommodations that may be required. For some people, the ability to adjust the audio volume may be sufficient. For others, translation to a signed language may be more appropriate. For still others, access to text alternatives may be the best solution. Because of these differences, it is important for researchers in Web accessibility to understand that people with hearing impairments may have very different cultural-linguistic traditions and personal backgrounds.

  7. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2015-05-01

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals. PMID:25817999

  8. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets*

    PubMed Central

    Kashio, Makiko; Tominaga, Makoto

    2015-01-01

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca2+-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca2+]i increases were likely caused by Ca2+ influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca2+. In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca2+]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals. PMID:25817999

  9. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice.

    PubMed

    Du, Erxia; Xiao, Liping; Hurley, Marja M

    2016-09-01

    High molecular weight FGF2 transgenic (HMWTg) mouse phenocopies the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with hypophosphatemis, and abnormal FGF23, FGFR, Klotho signaling in kidney. Since abnormal Wnt signaling was reported in Hyp mice we assessed whether Wnt signaling was impaired in HMWTg kidneys and the effect of blocking FGF receptor (FGFR) signaling. Bone mineral density and bone mineral content in female HMWTg mice were significantly reduced. HMWTg mice were gavaged with FGFR inhibitor NVP-BGJ398, or vehicle and were euthanized 24 h post treatment. Serum phosphate was significantly reduced and urine phosphate was significantly increased in HMWTg and was rescued by NVP-BGJ398. Analysis of kidneys revealed a significant reduction in Npt2a mRNA in HMWTg that was significantly increased by NVP-BGJ398. Increased FGFR1, KLOTHO, P-ERK1/2, and decreased NPT2a protein in HMWTg were rescued by NVP-BGJ398. Wnt inhibitor Engrailed-1 mRNA and protein was increased in HMWTg and was decreased by BGJ398. Akt mRNA and protein was decreased in HMWTg and was increased by NVP-BGJ398. The active form of glycogen synthase 3 beta (pGSK3-β) and phosphor-β-catenin were increased in HMWTg and were both decreased by NVP-BGJ398 while decreased active-β-catenin in HMWTg was increased by NVP-BGJ398. We conclude that FGFR blockade rescued hypophosphatemia by regulating FGF and WNT signaling in HMWTg kidneys. J. Cell. Biochem. 117: 1991-2000, 2016. © 2016 Wiley Periodicals, Inc. PMID:26762209

  10. Highly Significant Linkage to the SLI1 Locus in an Expanded Sample of Individuals Affected by Specific Language Impairment

    PubMed Central

    2004-01-01

    Specific language impairment (SLI) is defined as an unexplained failure to acquire normal language skills despite adequate intelligence and opportunity. We have reported elsewhere a full-genome scan in 98 nuclear families affected by this disorder, with the use of three quantitative traits of language ability (the expressive and receptive tests of the Clinical Evaluation of Language Fundamentals and a test of nonsense word repetition). This screen implicated two quantitative trait loci, one on chromosome 16q (SLI1) and a second on chromosome 19q (SLI2). However, a second independent genome screen performed by another group, with the use of parametric linkage analyses in extended pedigrees, found little evidence for the involvement of either of these regions in SLI. To investigate these loci further, we have collected a second sample, consisting of 86 families (367 individuals, 174 independent sib pairs), all with probands whose language skills are ⩾1.5 SD below the mean for their age. Haseman-Elston linkage analysis resulted in a maximum LOD score (MLS) of 2.84 on chromosome 16 and an MLS of 2.31 on chromosome 19, both of which represent significant linkage at the 2% level. Amalgamation of the wave 2 sample with the cohort used for the genome screen generated a total of 184 families (840 individuals, 393 independent sib pairs). Analysis of linkage within this pooled group strengthened the evidence for linkage at SLI1 and yielded a highly significant LOD score (MLS = 7.46, interval empirical P<.0004). Furthermore, linkage at the same locus was also demonstrated to three reading-related measures (basic reading [MLS = 1.49], spelling [MLS = 2.67], and reading comprehension [MLS = 1.99] subtests of the Wechsler Objectives Reading Dimensions). PMID:15133743

  11. Oxidized High-Density Lipoprotein Impairs Endothelial Progenitor Cells' Function by Activation of CD36-MAPK-TSP-1 Pathways

    PubMed Central

    Wu, Jianxiang; He, Zhiqing; Gao, Xiang; Wu, Feng; Ding, Ru; Ren, Yusheng; Jiang, Qijun; Fan, Min

    2015-01-01

    Abstract Aims: High-density lipoprotein (HDL) levels inversely correlate with cardiovascular events due to the protective effects on vascular wall and stem cells, which are susceptible to oxidative modifications and then lead to potential pro-atherosclerotic effects. We proposed that oxidized HDL (ox-HDL) might lead to endothelial progenitor cells (EPCs) dysfunction and investigated underlying mechanisms. Results: ox-HDL was shown to increase apoptosis and intracellular reactive oxygen species levels, but to reduce migration, angiogenesis, and cholesterol efflux of EPCs in a dose-dependent manner. p38 mitogen-activated protein kinase (MAPK) and NF-κB were activated after ox-HDL stimulation, which also upregulated thrombospondin-1 (TSP-1) expression without affecting vascular endothelial growth factor. Effects caused by ox-HDL could be significantly attenuated by pretreatment with short hairpin RNA-mediated CD36 knockdown or probucol. Data of in vivo experiments and the inverse correlation of ox-HDL and circulating EPC numbers among patients with coronary artery diseases (CAD) or CAD and type 2 diabetes also supported it. Meanwhile, HDL separated from such patients could significantly increase cultured EPC's caspase 3 activity, further supporting our proposal. Innovation: This is the most complete study to date of how ox-HDL would impair EPCs function, which was involved with activation of CD36-p38 MAPK-TSP-1 pathways and proved by not only the inverse relationship between ox-HDL and circulating EPCs in clinic but also pro-apoptotic effects of HDL separated from patients' serum. Conclusion: Activation of CD36-p38 MAPK-TSP-1 pathways contributes to the pathological effects of ox-HDL on EPCs' dysfunction, which might be one of the potential etiological factors responsible for the disturbed neovascularization in chronic ischemic disease. Antioxid. Redox Signal. 22, 308–324. PMID:25313537

  12. Predictors of impaired renal function among HIV infected patients commencing highly active antiretroviral therapy in Jos, Nigeria

    PubMed Central

    Agbaji, Oche O.; Onu, Adamu; Agaba, Patricia E.; Muazu, Muhammad A.; Falang, Kakjing D.; Idoko, John A.

    2011-01-01

    Background: Kidney disease is a common complication of human immunodeficiency virus (HIV) infection even in the era of antiretroviral therapy, with kidney function being abnormal in up to 30% of HIV-infected patients. We determined the predictors of impaired renal function in HIV-infected adults initiating highly active antiretroviral therapy (HAART) in Nigeria. Materials and Methods: This was a retrospective study among HIV-1 infected patients attending the antiretroviral clinic at the Jos University Teaching Hospital (JUTH), between November 2005 and November 2007. Data were analysed for age, gender, weight, WHO clinical stage, CD4 count, HIV-1 RNA viral load, HBsAg and anti-HCV antibody status. Estimated glomerular filtration rate (eGFR) was calculated using the Cockcroft-Gault equation. Statistical analysis was done using Epi Info 3.5.1. Results: Data for 491 (294 females and 197 males) eligible patients were abstracted. The mean age of this population was 38.8±8.87 years. One hundred and seventeen patients (23.8%; 95% CI, 20.2-27.9%) had a reduced eGFR (defined as <60 mL/min), with more females than males (28.6% vs. 16.8%; P=0.02) having reduced eGFR. Age and female sex were found to have significant associations with reduced eGFR. Adjusted odds ratios were 1.07 (95% CI, 1.04, 1.10) and 1.96 (95% CI, 1.23, 3.12) for age and female sex, respectively. Conclusions: Older age and female sex are independently associated with a higher likelihood of having lower eGFRs at initiation of HAART among our study population. We recommend assessment of renal function of HIV-infected patients prior to initiation of HAART to guide the choice and dosing of antiretroviral drugs. PMID:22083208

  13. Altered topological organization of high-level visual networks in Alzheimer's disease and mild cognitive impairment patients.

    PubMed

    Deng, Yanjia; Shi, Lin; Lei, Yi; Wang, Defeng

    2016-09-01

    Altered regional activation of high-level visual (HLV) cortices in patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) has been well documented in previous fMRI studies, which led us to investigate the underlying alteration of the HLV networks in the terms of intrinsic interaction and topological organization. First, the activation likelihood estimation, a coordinate-based meta-analysis approach, was used to define the cortical regions/nodes included in HLV networks of "what" and "where" visions. Secondly, the acquired HLV regions were used as seeds to calculate their interregional resting-state functional connectivities (RSFCs) based on the temporal correlation of rs-functional MRI (rs-fMRI) time series. Here, the rs-fMRI data of AD (n=30), late MCI (n=35), early MCI (n=52) and matched healthy controls (n=44) were obtained from the Alzheimer's Disease Neuroimaging Initiative dataset. Finally, based on the calculated pair-wise RSFCs, the "what" and "where" HLV networks were respectively constructed, and their topological properties were calculated and analyzed among groups using the graph theory method. The results demonstrated increased clustering coefficient combined with a prolonged characteristic path length of the "where" visual network in AD patients. No significant alternation of the "what" visual network was found among the groups. These results suggest that the abnormality of the HLV networks could be a late-stage outcome in AD and that the "where" visual network may be more susceptible to the AD-related neuropathological changes than the "what" visual network. In addition, the dysfunction of the "where" network is found to be characterized by a decreased integration combined with an increased local segregation. PMID:27461791

  14. High signal intensity in dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in three patients with impaired renal function and vascular calcification.

    PubMed

    Barbieri, Sebastiano; Schroeder, Christophe; Froehlich, Johannes M; Pasch, Andreas; Thoeny, Harriet C

    2016-05-01

    Gadolinium-based contrast agents (primarily those with linear chelates) are associated with a dose-dependent signal hyperintensity in the dentate nucleus and the globus pallidus on unenhanced T1-weighted MRI following administration to selected patients with normal renal function. The accumulation of gadolinium has also been reported in the skin, heart, liver, lung, and kidney of patients with impaired renal function suffering from nephrogenic systemic fibrosis (NSF). Here we report on three patients with impaired renal function and vascular calcification (two with confirmed NSF) whose unenhanced T1-weighted MRIs showed conspicuous high signal intensity in the dentate nucleus and the globus pallidus after they had been exposed to relatively low doses of linear gadolinium-based contrast agents (0.27, 0.45, and 0.68 mmol/kg). Signal ratios between dentate nucleus and pons and between globus pallidus and thalamus were comparable with previously reported measurements in subjects without renal impairment. Of note, all three analysed patients suffered from transient signs of neurological disorders of undetermined cause. In conclusion, the exposure to 0.27-0.68 mmol/kg of linear gadolinium-based contrast agent was associated with probable gadolinium accumulation in the brain of three patients suffering from impaired renal function and vascular calcification. © 2016 The Authors. Contrast Media & Molecular Imaging published by John Wiley & Sons Ltd. PMID:26929131

  15. High-Level Psychophysical Tuning Curves: Forward Masking in Normal-Hearing and Hearing-Impaired Listeners.

    ERIC Educational Resources Information Center

    Nelson, David A.

    1991-01-01

    Forward-masked psychophysical tuning curves were obtained at multiple probe levels from 26 normal-hearing listeners and 24 ears of 21 hearing-impaired listeners with cochlear hearing loss. Results indicated that some cochlear hearing losses influence the sharp tuning capabilities usually associated with outer hair cell function. (Author/JDD)

  16. Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rationale - Obesity is characterized by a chronic pro-inflammatory state that promotes insulin resistance in liver, adipose tissue, and skeletal muscle as well as impairing insulin action in vascular endothelium that contributes to endothelial dysfunction. Cadiovascular complications of obesity are ...

  17. Frequency of diabetes, impaired fasting glucose, and glucose intolerance in high-risk groups identified by a FINDRISC survey in Puebla City, Mexico

    PubMed Central

    García-Alcalá, Hector; Genestier-Tamborero, Christelle Nathalie; Hirales-Tamez, Omara; Salinas-Palma, Jorge; Soto-Vega, Elena

    2012-01-01

    Background As a first step in the prevention of diabetes, the International Diabetes Federation recommends identification of persons at risk using the Finnish type 2 Diabetes Risk Assessment (FINDRISC) survey. The frequency of diabetes mellitus, impaired fasting glucose, and glucose intolerance in high-risk groups identified by FINDRISC is unknown in our country. The aim of this study was to determine the frequency of diabetes mellitus, impaired fasting glucose, and glucose intolerance in higher-risk groups using a FINDRISC survey in an urban population. Methods We used a television program to invite interested adults to fill out a survey at a television station. An oral glucose tolerance test was performed in all persons with a FINDRISC score ≥ 15 points (high-risk and very high-risk groups). Patients were classified as normal (fasting glucose < 100 mg/dL and 2-hour glucose < 140 mg/dL), or having impaired fasting glucose (fasting glucose 100–125 mg/dL and 2-hour glucose < 140 mg/dL), glucose intolerance (fasting glucose < 126 mg/dL and 2-hour glucose 140–199 mg/dL), and diabetes mellitus (fasting glucose ≥ 126 mg/dL or 2-hour glucose ≥ 200 mg/dL). We describe the frequency of each diagnostic category in this selected population according to gender and age. Results A total of 186 patients had a score ≥ 15. The frequencies of diabetes mellitus, impaired fasting glucose, glucose intolerance, and normal glucose levels were 28.6%, 25.9%, 29.2%, and 16.2%, respectively. We found a higher frequency of diabetes mellitus and impaired fasting glucose in men than in women (33% versus 27% and 40% versus 21%, respectively) and more glucose intolerance in women than in men (34% versus 16%, P < 0.05). Patients with diabetes mellitus (52.55 ± 9.2 years) were older than those with impaired fasting glucose (46.19 ± 8.89 years), glucose intolerance (46.15 ± 10.9 years), and normal levels (41.9 ± 10.45 years, P < 0.05). We found a higher frequency of diabetes

  18. Sex-Related Differences in Self-Reported Neurocognitive Impairment among High-Risk Cocaine Users in Methadone Maintenance Treatment Program

    PubMed Central

    Shrestha, Roman; Huedo-Medina, Tania B; Copenhaver, Michael M

    2015-01-01

    BACKGROUND Previous research has suggested possible sex-related differences in executive functioning among cocaine users; however, no studies specifically explain sex-related differences in neurocognitive impairment (NCI) among cocaine users receiving clinical care. Knowledge about this association can aid in the development of targeted prevention strategies to reduce adverse health outcomes. This study was designed to examine the sex-related differences in NCI among high-risk cocaine users receiving substance-abuse treatment. METHODS The Neuropsychological Impairment Scale (NIS) was administered to 199 cocaine users (98 men; 101 women), receiving methadone maintainance treatment, to assess self-reported NCI by identifying the patients’ awareness of neuropsychological symptoms. We used T-test comparison to find differences in NCI between men and women and multiple regression analysis to explore the relative contribution of sex to NCI. RESULTS Consistent with prior work, high NCI was evident within this sample, as indicated by high scores on most of the NIS subscales. Women reported greater impairment than men, as evidenced by significantly higher scores on several NIS subscales, after controlling for demographic and other confounding variables. Interestingly, cocaine craving significantly predicted NCI among men but not among women, as suggested by the significant association between cocaine craving and all except one of the NIS subscales. CONCLUSIONS These findings suggest that cocaine users enter into treatment with a range of NCI – with women having significantly more neurocognitive deficits than men – that may contribute to differential treatment outcomes. This highlights the need to include additional services such as neuropsychological screening and sex-specific treatment programs to optimally reduce adverse health outcomes in these high-risk, cognitively impaired patients. PMID:25861219

  19. Spatial navigation impairments among intellectually high-functioning adults with autism spectrum disorder: exploring relations with theory of mind, episodic memory, and episodic future thinking.

    PubMed

    Lind, Sophie E; Williams, David M; Raber, Jacob; Peel, Anna; Bowler, Dermot M

    2013-11-01

    Research suggests that spatial navigation relies on the same neural network as episodic memory, episodic future thinking, and theory of mind (ToM). Such findings have stimulated theories (e.g., the scene construction and self-projection hypotheses) concerning possible common underlying cognitive capacities. Consistent with such theories, autism spectrum disorder (ASD) is characterized by concurrent impairments in episodic memory, episodic future thinking, and ToM. However, it is currently unclear whether spatial navigation is also impaired. Hence, ASD provides a test case for the scene construction and self-projection theories. The study of spatial navigation in ASD also provides a test of the extreme male brain theory of ASD, which predicts intact or superior navigation (purportedly a systemizing skill) performance among individuals with ASD. Thus, the aim of the current study was to establish whether spatial navigation in ASD is impaired, intact, or superior. Twenty-seven intellectually high-functioning adults with ASD and 28 sex-, age-, and IQ-matched neurotypical comparison adults completed the memory island virtual navigation task. Tests of episodic memory, episodic future thinking, and ToM were also completed. Participants with ASD showed significantly diminished performance on the memory island task, and performance was positively related to ToM and episodic memory, but not episodic future thinking. These results suggest that (contra the extreme male brain theory) individuals with ASD have impaired survey-based navigation skills--that is, difficulties generating cognitive maps of the environment--and adds weight to the idea that scene construction/self-projection are impaired in ASD. The theoretical and clinical implications of these results are discussed. PMID:24364620

  20. Spatial Navigation Impairments Among Intellectually High-Functioning Adults With Autism Spectrum Disorder: Exploring Relations With Theory of Mind, Episodic Memory, and Episodic Future Thinking

    PubMed Central

    2013-01-01

    Research suggests that spatial navigation relies on the same neural network as episodic memory, episodic future thinking, and theory of mind (ToM). Such findings have stimulated theories (e.g., the scene construction and self-projection hypotheses) concerning possible common underlying cognitive capacities. Consistent with such theories, autism spectrum disorder (ASD) is characterized by concurrent impairments in episodic memory, episodic future thinking, and ToM. However, it is currently unclear whether spatial navigation is also impaired. Hence, ASD provides a test case for the scene construction and self-projection theories. The study of spatial navigation in ASD also provides a test of the extreme male brain theory of ASD, which predicts intact or superior navigation (purportedly a systemizing skill) performance among individuals with ASD. Thus, the aim of the current study was to establish whether spatial navigation in ASD is impaired, intact, or superior. Twenty-seven intellectually high-functioning adults with ASD and 28 sex-, age-, and IQ-matched neurotypical comparison adults completed the memory island virtual navigation task. Tests of episodic memory, episodic future thinking, and ToM were also completed. Participants with ASD showed significantly diminished performance on the memory island task, and performance was positively related to ToM and episodic memory, but not episodic future thinking. These results suggest that (contra the extreme male brain theory) individuals with ASD have impaired survey-based navigation skills—that is, difficulties generating cognitive maps of the environment—and adds weight to the idea that scene construction/self-projection are impaired in ASD. The theoretical and clinical implications of these results are discussed. PMID:24364620

  1. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide.

    PubMed

    Gainey, Stephen J; Kwakwa, Kristin A; Bray, Julie K; Pillote, Melissa M; Tir, Vincent L; Towers, Albert E; Freund, Gregory G

    2016-01-01

    Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K(+) (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies. PMID:27563288

  2. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide

    PubMed Central

    Gainey, Stephen J.; Kwakwa, Kristin A.; Bray, Julie K.; Pillote, Melissa M.; Tir, Vincent L.; Towers, Albert E.; Freund, Gregory G.

    2016-01-01

    Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K+ (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies. PMID:27563288

  3. Glucose induces sensitivity to oxygen deprivation and modulates insulin/IGF-1 signaling and lipid biosynthesis in Caenorhabditis elegans.

    PubMed

    Garcia, Anastacia M; Ladage, Mary L; Dumesnil, Dennis R; Zaman, Khadiza; Shulaev, Vladimir; Azad, Rajeev K; Padilla, Pamela A

    2015-05-01

    Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases. PMID:25762526

  4. Glucose Induces Sensitivity to Oxygen Deprivation and Modulates Insulin/IGF-1 Signaling and Lipid Biosynthesis in Caenorhabditis elegans

    PubMed Central

    Garcia, Anastacia M.; Ladage, Mary L.; Dumesnil, Dennis R.; Zaman, Khadiza; Shulaev, Vladimir; Azad, Rajeev K.; Padilla, Pamela A.

    2015-01-01

    Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases. PMID:25762526

  5. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway.

    PubMed

    Bordicchia, M; Ceresiani, M; Pavani, M; Minardi, D; Polito, M; Wabitsch, M; Cannone, V; Burnett, J C; Dessì-Fulgheri, P; Sarzani, R

    2016-07-01

    Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes. PMID:27101299

  6. Influence of high carbohydrate versus high fat diet in ozone induced pulmonary injury and systemic metabolic impairment in a Brown Norway (BN) rat model of healthy aging

    EPA Science Inventory

    Rationale: Air pollution has been recently linked to the increased prevalence of metabolic syndrome. It has been postulated that dietary risk factors might exacerbate air pollution-induced metabolic impairment. We have recently reported that ozone exposure induces acute systemic ...

  7. Increased intramyocellular lipid/impaired insulin sensitivity is associated with altered lipid metabolic genes in muscle of high responders to a high-fat diet.

    PubMed

    Kakehi, Saori; Tamura, Yoshifumi; Takeno, Kageumi; Sakurai, Yuko; Kawaguchi, Minako; Watanabe, Takahiro; Funayama, Takashi; Sato, Fumihiko; Ikeda, Shin-Ichi; Kanazawa, Akio; Fujitani, Yoshio; Kawamori, Ryuzo; Watada, Hirotaka

    2016-01-01

    The accumulation of intramyocellular lipid (IMCL) is recognized as an important determinant of insulin resistance, and is increased by a high-fat diet (HFD). However, the effects of HFD on IMCL and insulin sensitivity are highly variable. The aim of this study was to identify the genes in muscle that are related to this inter-individual variation. Fifty healthy men were recruited for this study. Before and after HFD for 3 days, IMCL levels in the tibialis anterior were measured by (1)H magnetic resonance spectroscopy, and peripheral insulin sensitivity was evaluated by glucose infusion rate (GIR) during the euglycemic-hyperinsulinemic clamp. Subjects who showed a large increase in IMCL and a large decrease in GIR by HFD were classified as high responders (HRs), and subjects who showed a small increase in IMCL and a small decrease in GIR were classified as low responders (LRs). In five subjects from each group, the gene expression profile of the vastus lateralis muscle was analyzed by DNA microarray analysis. Before HFD, gene expression profiles related to lipid metabolism were comparable between the two groups. Gene Set Enrichment Analysis demonstrated that five gene sets related to lipid metabolism were upregulated by HFD in the HR group but not in the LR group. Changes in gene expression patterns were confirmed by qRT-PCR using more samples (LR, n = 9; HR, n = 11). These results suggest that IMCL accumulation/impaired insulin sensitivity after HFD is closely associated with changes in the expression of genes related to lipid metabolism in muscle. PMID:26487001

  8. Longitudinal Study of Impaired Intra- and Inter-Network Brain Connectivity in Subjects at High Risk for Alzheimer's Disease.

    PubMed

    Zhan, Yafeng; Ma, Jianhua; Alexander-Bloch, Aaron F; Xu, Kaibin; Cui, Yue; Feng, Qianjin; Jiang, Tianzi; Liu, Yong

    2016-04-01

    Alzheimer's disease (AD) is associated with abnormal resting-state network (RSN) architecture of the default mode network (DMN), the dorsal attention network (DAN), the executive control network (CON), the salience network (SAL), and the sensory-motor network (SMN). However, little is known about the disrupted intra- and inter-network architecture in mild cognitive impairment (MCI). Here, we employed a priori defined regions of interest to investigate the intra- and inter-network functional connectivity profiles of these RSNs in longitudinal participants, including normal controls (n = 23), participants with early MCI (n = 26), and participants with late MCI (n = 19). We found longitudinal alterations of functional connectivity within the DMN, where they were correlated with variation in cognitive ability. The SAL as well as the interaction between the DMN and the SAL were disrupted in MCI. Furthermore, our results demonstrate that longitudinal alterations of functional connectivity are more profound in earlier stages as opposed to later stages of the disease. The increased severity of cognitive impairment is associated with increasingly altered RSN connectivity patterns, suggesting that disruptions in functional connectivity may contribute to cognitive dysfunction and may represent a potential biomarker of impaired cognitive ability in MCI. Earlier prevention and treatment may help to delay disease progression to AD. PMID:27060962

  9. Environmental stimulation rescues maternal high fructose intake-impaired learning and memory in female offspring: Its correlation with redistribution of histone deacetylase 4.

    PubMed

    Wu, Kay L H; Wu, Chih-Wei; Tain, You-Lin; Huang, Li-Tung; Chao, Yung-Mei; Hung, Chun-Ying; Wu, Jin-Cheng; Chen, Siang-Ru; Tsai, Pei-Chia; Chan, Julie Y H

    2016-04-01

    Impairment of learning and memory has been documented in the later life of offspring to maternal consumption with high energy diet. Environmental stimulation enhances the ability of learning and memory. However, potential effects of environmental stimulation on the programming-associated deficit of learning and memory have not been addressed. Here, we examined the effects of enriched-housing on hippocampal learning and memory in adult female offspring rats from mother fed with 60% high fructose diet (HFD) during pregnancy and lactation. Impairment of spatial learning and memory performance in HFD group was observed in offspring at 3-month-old. Hippocampal brain-derived neurotrophic factor (BDNF) was decreased in the offspring. Moreover, the HFD group showed an up-regulation of histone deacetylase 4 (HDAC4) in the nuclear fractions of hippocampal neurons. Stimulation to the offspring for 4weeks after winning with an enriched-housing environment effectively rescued the decrease in cognitive function and hippocampal BDNF level; alongside a reversal of the increased distribution of nuclear HDAC4. Together these results suggest that later life environmental stimulation effectively rescues the impairment of hippocampal learning and memory in female offspring to maternal HFD intake through redistributing nuclear HDAC4 to increase BDNF expression. PMID:26872592

  10. A high-throughput chemical screen with FDA approved drugs reveals that the antihypertensive drug Spironolactone impairs cancer cell survival by inhibiting homology directed repair

    PubMed Central

    Shahar, Or David; Kalousi, Alkmini; Eini, Lital; Fisher, Benoit; Weiss, Amelie; Darr, Jonatan; Mazina, Olga; Bramson, Shay; Kupiec, Martin; Eden, Amir; Meshorer, Eran; Mazin, Alexander V.; Brino, Laurent; Goldberg, Michal; Soutoglou, Evi

    2014-01-01

    DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homology directed repair (HDR). Identifying novel small molecules that affect HDR is of great importance both for research use and therapy. Molecules that elevate HDR may improve gene targeting whereas inhibiting molecules can be used for chemotherapy, since some of the cancers are more sensitive to repair impairment. Here, we performed a high-throughput chemical screen for FDA approved drugs, which affect HDR in cancer cells. We found that HDR frequencies are increased by retinoic acid and Idoxuridine and reduced by the antihypertensive drug Spironolactone. We further revealed that Spironolactone impairs Rad51 foci formation, sensitizes cancer cells to DNA damaging agents, to Poly (ADP-ribose) polymerase (PARP) inhibitors and cross-linking agents and inhibits tumor growth in xenografts, in mice. This study suggests Spironolactone as a new candidate for chemotherapy. PMID:24682826

  11. All Vision Impairment

    MedlinePlus

    ... Jobs Home > Statistics and Data > All Vision Impairment All Vision Impairment Vision Impairment Defined Vision impairment is ... being blind by the U.S. definition.) The category “All Vision Impairment” includes both low vision and blindness. ...

  12. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    PubMed

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  13. Pharmacokinetics of Acyclovir and Its Metabolites in Cerebrospinal Fluid and Systemic Circulation after Administration of High-Dose Valacyclovir in Subjects with Normal and Impaired Renal Function▿

    PubMed Central

    Smith, James P.; Weller, Stephen; Johnson, Benjamin; Nicotera, Janet; Luther, James M.; Haas, David W.

    2010-01-01

    Valacyclovir, the l-valyl ester prodrug of acyclovir (ACV), is widely prescribed to treat infections caused by varicella-zoster virus or herpes simplex virus. Rarely, treatment is complicated by reversible neuropsychiatric symptoms. By mechanisms not fully understood, this occurs more frequently in the setting of renal impairment. We characterized the steady-state pharmacokinetics of ACV and its metabolites 9-[(carboxymethoxy)methyl]guanine (CMMG) and 8-hydroxy-acyclovir (8-OH-ACV) in cerebrospinal fluid (CSF) and the systemic circulation. We administered multiple doses of high-dose valacyclovir to 6 subjects with normal renal function and 3 subjects with chronic renal impairment (creatinine clearance [CrCl], ∼15 to 30 ml/min). Dosages were 2,000 mg every 6 h and 1,500 mg every 12 h, respectively. Indwelling intrathecal catheters allowed serial CSF sampling throughout the dosing interval. The average steady-state concentrations of acyclovir, CMMG, and 8-OH-ACV were greater in both the systemic circulation and the CSF among subjects with impaired renal function than among subjects with normal renal function. However, the CSF penetration of each analyte, reflected by the CSF-to-plasma area under the concentration-time curve over the 6- or 12-h dosing interval (AUCτ) ratio, did not differ based on renal function. Renal impairment does not alter the propensity for ACV or its metabolites to distribute to the CSF, but the higher concentrations in the systemic circulation, as a result of reduced elimination, are associated with proportionally higher concentrations in CSF. PMID:20038622

  14. Effect of Ginseng (Panax ginseng) Berry EtOAc Fraction on Cognitive Impairment in C57BL/6 Mice under High-Fat Diet Inducement.

    PubMed

    Park, Chang Hyeon; Park, Seon Kyeong; Seung, Tae Wan; Jin, Dong Eun; Guo, Tianjiao; Heo, Ho Jin

    2015-01-01

    High-fat diet-induced obesity leads to type 2 diabetes. Recently, there has been growing apprehension about diabetes-associated cognitive impairment (DACM). The effect of ginseng (Panax ginseng) berry ethyl acetate fraction (GBEF) on mice with high-fat diet-induced cognitive impairment was investigated to confirm its physiological function. C57BL/6 mice were fed a high-fat diet for 5 weeks and then a high-fat diet with GBEF (20 and 50 mg/kg of body weight) for 4 weeks. After three in vivo behavioral tests (Y-maze, passive avoidance, and Morris water maze tests), blood samples were collected from the postcaval vein for biochemical analysis, and whole brains were prepared for an ex vivo test. A method based on ultra-performance liquid chromatography (UPLC) accurate-mass quadrupole time-of-flight mass spectrometry (Q-TOF/MS) was used to determine major ginsenosides. GBEF decreased the fasting blood glucose levels of high-fat diet-induced diabetes mellitus (DM) mice and improved hyperglycemia. Cognitive behavior tests were examined after setting up the DM mice. The in vivo experiments showed that mice treated with GBEF exhibited more improved cognitive behavior than DM mice. In addition, GBEF effectively inhibited the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) levels of DM mice brain tissues. Q-TOF UPLC/MS analyses of GBEF showed that ginsenoside Re was the major ginsenoside. PMID:26161118

  15. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival.

    PubMed

    Utzschneider, Daniel T; Alfei, Francesca; Roelli, Patrick; Barras, David; Chennupati, Vijaykumar; Darbre, Stephanie; Delorenzi, Mauro; Pinschewer, Daniel D; Zehn, Dietmar

    2016-08-22

    Chronic infections induce T cells showing impaired cytokine secretion and up-regulated expression of inhibitory receptors such as PD-1. What determines the acquisition of this chronic phenotype and how it impacts T cell function remain vaguely understood. Using newly generated recombinant antigen variant-expressing chronic lymphocytic choriomeningitis virus (LCMV) strains, we uncovered that T cell differentiation and acquisition of a chronic or exhausted phenotype depend critically on the frequency of T cell receptor (TCR) engagement and less significantly on the strength of TCR stimulation. In fact, we noted that low-level antigen exposure promotes the formation of T cells with an acute phenotype in chronic infections. Unexpectedly, we found that T cell populations with an acute or chronic phenotype are maintained equally well in chronic infections and undergo comparable primary and secondary expansion. Thus, our observations contrast with the view that T cells with a typical chronic infection phenotype are severely functionally impaired and rapidly transition into a terminal stage of differentiation. Instead, our data unravel that T cells primarily undergo a form of phenotypic and functional differentiation in the early phase of a chronic LCMV infection without inheriting a net survival or expansion deficit, and we demonstrate that the acquired chronic phenotype transitions into the memory T cell compartment. PMID:27455951

  16. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice

    PubMed Central

    Steinmetz, Martin; Asdonk, Tobias; Lahrmann, Catharina; Lütjohann, Dieter; Nickenig, Georg; Zimmer, Sebastian

    2016-01-01

    Background Toll-like receptors (TLR) of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice. Methods and Findings TLR9-stimulation with high dose CpG ODN at concentrations between 6.25nM to 30nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/-) mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects. Conclusions Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology. PMID:26751387

  17. The activity of catechol-O-methyltransferase (COMT) is not impaired by high doses of epigallocatechin-3-gallate (EGCG) in vivo.

    PubMed

    Lorenz, Mario; Paul, Friedemann; Moobed, Minoo; Baumann, Gert; Zimmermann, Benno F; Stangl, Karl; Stangl, Verena

    2014-10-01

    Catechol-O-methyltransferase (COMT) inactivates many endogenous and exogenous compounds by O-methylation. Therefore, it represents a major enzyme of the metabolic pathway with important biological functions in hormonal and drug metabolism. The tea catechin epigallocatechin-3-gallate (EGCG) is known to inhibit COMT enzymatic activity in vitro. Based on beneficial in vitro results, EGCG is extensively used in human intervention studies in a variety of human diseases. Owing to its low bioavailability, rather high doses of EGCG are frequently applied that may impair COMT activity in vivo. Enzymatic activities of four functional COMT single-nucleotide polymorphisms (SNPs) were determined in red blood cells (RBCs) in 24 healthy human volunteers (14 women, 10 men). The subjects were supplemented with 750 mg of EGCG and EGCG plasma levels and COMT enzyme activities in erythrocytes were measured before and 2 h after intervention. The homozygous Val→Met substitution in the SNP rs4680 resulted in significantly decreased COMT activity. Enzymatic COMT activities in RBCs were also affected by the other three COMT polymorphisms. EGCG plasma levels significantly increased after intervention. They were not influenced by any of the COMT SNPs and different enzyme activities. Ingestion of 750 mg EGCG did not result in impairment of COMT activity. However, COMT activity was significantly increased by 24% after EGCG consumption. These results indicate that supplementation with a high dose of EGCG does not impair the activity of COMT. Consequently, it may not interfere with COMT-mediated metabolism and elimination of exogenous and endogenous COMT substrates. PMID:24972245

  18. High Salt Intake Increases Blood Pressure via BDNF-Mediated Downregulation of KCC2 and Impaired Baroreflex Inhibition of Vasopressin Neurons

    PubMed Central

    Choe, Katrina Y.; Han, Su Y.; Gaub, Perrine; Shell, Brent; Voisin, Daniel L.; Knapp, Blayne A.; Barker, Philip A.; Brown, Colin H.; Cunningham, J. Thomas

    2015-01-01

    Summary The mechanisms by which dietary salt promotes hypertension are unknown. Previous work established that plasma [Na+] and osmolality rise in proportion with salt intake and thus promote release of vasopressin (VP) from the neurohypophysis. Although high levels of circulating VP can increase blood pressure, this effect is normally prevented by a potent GABAergic inhibition of VP neurons by aortic baroreceptors. Here we show that chronic high salt intake impairs baroreceptor inhibition of rat VP neurons through a brain-derived neurotrophic factor (BDNF)-dependent activation of TrkB receptors and downregulation of KCC2 expression, which prevents inhibitory GABAergic signaling. We show that high salt intake increases the spontaneous firing rate of VP neurons in vivo and that circulating VP contributes significantly to the elevation of arterial pressure under these conditions. These results provide the first demonstration that dietary salt can affect blood pressure through neurotrophin-induced plasticity in a central homeostatic circuit. PMID:25619659

  19. “8 Plate”: An Alternative Device to Fix Highly Recurrent Traumatic Anterior Gleno-Humeral Instability in Patients with Severe Impairment of the Anterior Capsule

    PubMed Central

    Tudisco, C; Bisicchia, S; Savarese, E; Ippolito, E

    2014-01-01

    Background: There is still debate about the best treatment option for highly recurrent anterior shoulder dislocation in patients with severe impairment of the anterior capsule and/or recurrence after either arthroscopic or open capsulorrhaphy. Materials and Methods: The clinical and radiological findings of 7 patients treated with an open capsulorrhaphy stabilized with an “8 plate” for a highly recurrent traumatic anterior shoulder dislocation with severe impairment of the anterior capsule and a large Bankart lesion were retrospectively reviewed. Follow-up evaluation included VAS for pain, Constant-Murley, Simple Shoulder Test, ASES, UCLA, Quick DASH, Rowe, Walsch-Duplay scores, as well as X-rays of the operated shoulder. Results: At follow-up none of the patients reported subsequent dislocations. Range of motion of the shoulder was complete in all cases, but one. Results of the functional scoring systems were satisfactory. X-rays showed no osteolysis and good position of the plate. Conclusion: To our knowledge, this is the first report in the literature about an open capsular tensioning and Bankart lesion repair performed with an “8 plate”. We believe that this is a reliable and effective procedure to address traumatic anterior re-dislocation of the gleno-humeral joint when the capsule is extensively torn and frayed or in revision cases. Moreover the “8 plate” is ideal to be applied in such a narrow space on the slant surface of the scapular neck close to the glenoid rim. PMID:25621080

  20. Analysis of renal impairment in MM-003, a phase III study of pomalidomide + low - dose dexamethasone versus high - dose dexamethasone in refractory or relapsed and refractory multiple myeloma.

    PubMed

    Weisel, Katja C; Dimopoulos, Meletios A; Moreau, Philippe; Lacy, Martha Q; Song, Kevin W; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Banos, Anne; Oriol, Albert; Alegre, Adrian; Chen, Christine; Cavo, Michele; Garderet, Laurent; Ivanova, Valentina; Martinez-Lopez, Joaquin; Knop, Stefan; Yu, Xin; Hong, Kevin; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H; San Miguel, Jesus

    2016-07-01

    Pomalidomide + low-dose dexamethasone is effective and well tolerated for refractory or relapsed and refractory multiple myeloma after bortezomib and lenalidomide failure. The phase III trial MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone. This subanalysis grouped patients by baseline creatinine clearance ≥ 30 - < 60 mL/min (n=93, pomalidomide + low-dose dexamethasone; n=56, high-dose dexamethasone) or ≥ 60 mL/min (n=205, pomalidomide + low-dose dexamethasone; n=93, high-dose dexamethasone). Median progression-free survival was similar for both subgroups and favored pomalidomide + low-dose dexamethasone versus high-dose dexamethasone: 4.0 versus 1.9 months in the group with baseline creatinine clearance ≥ 30 - < 60 mL/min (P<0.001) and 4.0 versus 2.0 months in the group with baseline creatinine clearance ≥ 60 mL/min (P<0.001). Median overall survival for pomalidomide + low-dose dexamethasone versus high-dose dexamethasone was 10.4 versus 4.9 months (P=0.030) and 15.5 versus 9.2 months (P=0.133), respectively. Improved renal function, defined as an increase in creatinine clearance from < 60 to ≥ 60 mL/min, was similar in pomalidomide + low-dose dexamethasone and high-dose dexamethasone patients (42% and 47%, respectively). Improvement in progression-free and overall survival in these patients was comparable with that in patients without renal impairment. There was no increase in discontinuations of therapy, dose modifications, and adverse events in patients with moderate renal impairment. Pomalidomide at a starting dose of 4 mg + low-dose dexamethasone is well tolerated in patients with refractory or relapsed and refractory multiple myeloma, and of comparable efficacy if moderate renal impairment is present. This trial was registered with clinicaltrials.gov identifier 01311687 and EudraCT identifier 2010-019820-30. PMID:27081177

  1. Analysis of renal impairment in MM-003, a phase III study of pomalidomide + low - dose dexamethasone versus high - dose dexamethasone in refractory or relapsed and refractory multiple myeloma

    PubMed Central

    Weisel, Katja C.; Dimopoulos, Meletios A.; Moreau, Philippe; Lacy, Martha Q.; Song, Kevin W.; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Banos, Anne; Oriol, Albert; Alegre, Adrian; Chen, Christine; Cavo, Michele; Garderet, Laurent; Ivanova, Valentina; Martinez-Lopez, Joaquin; Knop, Stefan; Yu, Xin; Hong, Kevin; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H.; Miguel, Jesus San

    2016-01-01

    Pomalidomide + low-dose dexamethasone is effective and well tolerated for refractory or relapsed and refractory multiple myeloma after bortezomib and lenalidomide failure. The phase III trial MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone. This subanalysis grouped patients by baseline creatinine clearance ≥ 30 − < 60 mL/min (n=93, pomalidomide + low-dose dexamethasone; n=56, high-dose dexamethasone) or ≥ 60 mL/min (n=205, pomalidomide + low-dose dexamethasone; n=93, high-dose dexamethasone). Median progression-free survival was similar for both subgroups and favored pomalidomide + low-dose dexamethasone versus high-dose dexamethasone: 4.0 versus 1.9 months in the group with baseline creatinine clearance ≥ 30 − < 60 mL/min (P<0.001) and 4.0 versus 2.0 months in the group with baseline creatinine clearance ≥ 60 mL/min (P<0.001). Median overall survival for pomalidomide + low-dose dexamethasone versus high-dose dexamethasone was 10.4 versus 4.9 months (P=0.030) and 15.5 versus 9.2 months (P=0.133), respectively. Improved renal function, defined as an increase in creatinine clearance from < 60 to ≥ 60 mL/min, was similar in pomalidomide + low-dose dexamethasone and high-dose dexamethasone patients (42% and 47%, respectively). Improvement in progression-free and overall survival in these patients was comparable with that in patients without renal impairment. There was no increase in discontinuations of therapy, dose modifications, and adverse events in patients with moderate renal impairment. Pomalidomide at a starting dose of 4 mg + low-dose dexamethasone is well tolerated in patients with refractory or relapsed and refractory multiple myeloma, and of comparable efficacy if moderate renal impairment is present. This trial was registered with clinicaltrials.gov identifier 01311687 and EudraCT identifier 2010-019820-30. PMID:27081177

  2. Cognitive MMN and P300 in mild cognitive impairment and Alzheimer's disease: A high density EEG-3D vector field tomography approach.

    PubMed

    Papadaniil, Chrysa D; Kosmidou, Vasiliki E; Tsolaki, Anthoula; Tsolaki, Magda; Kompatsiaris, Ioannis Yiannis; Hadjileontiadis, Leontios J

    2016-10-01

    Precise preclinical detection of dementia for effective treatment and stage monitoring is of great importance. Miscellaneous types of biomarkers, e.g., biochemical, genetic, neuroimaging, and physiological, have been proposed to diagnose Alzheimer's disease (AD), the usual suspect behind manifested cognitive decline, and mild cognitive impairment (MCI), a neuropathology prior to AD that does not affect cognitive functions. Event related potential (ERP) methods constitute a non-invasive, inexpensive means of analysis and have been proposed as sensitive biomarkers of cognitive impairment; besides, various ERP components are strongly linked with working memory, attention, sensory processing and motor responses. In this study, an auditory oddball task is employed, to acquire high density electroencephalograhy recordings from healthy elderly controls, MCI and AD patients. The mismatch negativity (MMN) and P300 ERP components are then extracted and their relationship with neurodegeneration is examined. Then, the neural activation at these components is reconstructed using the 3D vector field tomography (3D-VFT) inverse solution. The results reveal a decline of both ERPs amplitude, and a statistically significant prolongation of their latency as cognitive impairment advances. For the MMN, higher brain activation is usually localized in the inferior frontal and superior temporal gyri in the controls. However, in AD, parietal sites exhibit strong activity. Stronger P300 generators are mostly found in the frontal lobe for the controls, but in AD they often shift to the temporal lobe. Reduction in inferior frontal source strength and the switch of the maximum intensity area to parietal and superior temporal sites suggest that these areas, especially the former, are of particular significance when neurodegenerative disorders are investigated. The modulation of MMN and P300 can serve to produce biomarkers of dementia and its progression, and brain imaging can further contribute

  3. Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: The Seven Northeastern Cities (SNEC) study

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Wen; Vivian, Elaina; Mohammed, Kahee A.; Jakhar, Shailja; Vaughn, Michael; Huang, Jin; Zelicoff, Alan; Xaverius, Pamela; Bai, Zhipeng; Lin, Shao; Hao, Yuan-Tao; Paul, Gunther; Morawska, Lidia; Wang, Si-Quan; Qian, Zhengmin; Dong, Guang-Hui

    2016-08-01

    Epidemiological studies have reported inconsistent and inconclusive associations between long-term exposure to ambient air pollution and lung function in children from Europe and America, where air pollution levels were typically low. The aim of the present study is to examine the relationship between air pollutants and lung function in children selected from heavily industrialized and polluted cities in northeastern China. During 2012, 6740 boys and girls aged 7-14 years were recruited in 24 districts of seven northeastern cities. Portable electronic spirometers were used to measure lung function. Four-year average concentrations of particulate matter with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at monitoring stations in the 24 districts. Two-staged regression models were used in the data analysis, controlling for covariates. Overall, for all subjects, the increased odds of lung function impairment associated with exposure to air pollutants, ranged from 5% (adjusted odds ratio [aOR] = 1.05; 95% confidence interval [CI] = 1.01, 1.10) for FVC < 85% predicted per 46.3 μg/m3 for O3 to 81% (aOR = 1.81; 95%CI = 1.44, 2.28) for FEV1 < 85% predicted per 30.6 μg/m3 for PM10. The linear regression models consistently showed a negative relationship between all air pollutants and lung function measures across subjects. There were significant interaction terms indicating gender differences for lung function impairment and pulmonary function from exposure to some pollutants (P < 0.10). In conclusion, long term exposure to high concentrations of ambient air pollution is associated with decreased pulmonary function and lung function impairment, and females appear to be more susceptible than males.

  4. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring

    PubMed Central

    Borengasser, Sarah J.; Faske, Jennifer; Kang, Ping; Blackburn, Michael L.; Badger, Thomas M.

    2014-01-01

    The proportion of pregnant women who are obese at conception continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are maternally inherited, and we have previously shown impaired mitochondrial function in rat offspring exposed to maternal obesity in utero. Mitochondrial health is maintained by mitochondrial dynamics, or the processes of fusion and fission, which serve to repair damaged mitochondria, remove irreparable mitochondria, and maintain mitochondrial morphology. An imbalance between fusion and fission has been associated with obesity, insulin resistance, and reproduction complications. In the present study, we examined the influence of maternal obesity and postweaning high-fat diet (HFD) on key regulators of mitochondrial fusion and fission in rat offspring at important developmental milestones which included postnatal day (PND)35 (2 wk HFD) and PND130 (∼16 wk HFD). Our results indicate HFD-fed offspring had reduced mRNA expression of presenilin-associated rhomboid-like (PARL), optic atrophy (OPA)1, mitofusin (Mfn)1, Mfn2, fission (Fis)1, and nuclear respiratory factor (Nrf)1 at PND35, while OPA1 and Mfn2 remained decreased at PND130. Putative transcriptional regulators of mitochondrial dynamics were reduced in rat placenta and offspring liver and skeletal muscle [peroxisome proliferator-activated receptor gamma coactivator (PGC1)α, PGC1β, and estrogen-related receptor (ERR)α], consistent with indirect calorimetry findings revealing reduced energy expenditure and impaired fat utilization. Overall, maternal obesity detrimentally alters mitochondrial targets that may contribute to impaired mitochondrial health and increased obesity susceptibility in later life. PMID:25336449

  5. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats.

    PubMed

    Patki, Gaurav; Allam, Farida H; Atrooz, Fatin; Dao, An T; Solanki, Naimesh; Chugh, Gaurav; Asghar, Mohammad; Jafri, Faizan; Bohat, Ritu; Alkadhi, Karim A; Salim, Samina

    2013-01-01

    Diminished estrogen influence at menopause is reported to be associated with cognitive decline, heightened anxiety and hypertension. While estrogen therapy is often prescribed to overcome these behavioral and physiological deficits, antioxidants which have been shown beneficial are gaining nutritional intervention and popularity. Therefore, in the present study, utilizing the antioxidant properties of grapes, we have examined effect of 3 weeks of grape powder (GP; 15 g/L dissolved in tap water) treatment on anxiety-like behavior, learning-memory impairment and high blood pressure in ovariectomized (OVX) rats. Four groups of female Wistar rats were used; sham control, sham-GP treated, OVX and OVX+GP treated. We observed a significant increase in systolic and diastolic blood pressure in OVX rats as compared to sham-controls. Furthermore, ovariectomy increased anxiety-like behavior and caused learning and memory impairment in rats as compared to sham-controls. Interestingly, providing grape powder treated water to OVX rats restored both systolic and diastolic blood pressure, decreased anxiety-like behavior and improved memory function. Moreover, OVX rats exhibited an impaired long term potentiation which was restored with grape powder treatment. Furthermore, ovariectomy increased oxidative stress in the brain, serum and urine, selectively decreasing antioxidant enzyme, glyoxalase-1 protein expression in the hippocampus but not in the cortex and amygdala of OVX rats, while grape powder treatment reversed these effects. Other antioxidant enzyme levels, including manganese superoxide dismutase (SOD) and Cu/Zn SOD remained unchanged. We suggest that grape powder by regulating oxidative stress mechanisms exerts its protective effect on blood pressure, learning-memory and anxiety-like behavior. Our study is the first to examine behavioral, biochemical, physiological and electrophysiological outcome of estrogen depletion in rats and to test protective role of grape powder

  6. Grape Powder Intake Prevents Ovariectomy-Induced Anxiety-Like Behavior, Memory Impairment and High Blood Pressure in Female Wistar Rats

    PubMed Central

    Patki, Gaurav; Allam, Farida H.; Atrooz, Fatin; Dao, An T.; Solanki, Naimesh; Chugh, Gaurav; Asghar, Mohammad; Jafri, Faizan; Bohat, Ritu; Alkadhi, Karim A.; Salim, Samina

    2013-01-01

    Diminished estrogen influence at menopause is reported to be associated with cognitive decline, heightened anxiety and hypertension. While estrogen therapy is often prescribed to overcome these behavioral and physiological deficits, antioxidants which have been shown beneficial are gaining nutritional intervention and popularity. Therefore, in the present study, utilizing the antioxidant properties of grapes, we have examined effect of 3 weeks of grape powder (GP; 15 g/L dissolved in tap water) treatment on anxiety-like behavior, learning-memory impairment and high blood pressure in ovariectomized (OVX) rats. Four groups of female Wistar rats were used; sham control, sham-GP treated, OVX and OVX+GP treated. We observed a significant increase in systolic and diastolic blood pressure in OVX rats as compared to sham-controls. Furthermore, ovariectomy increased anxiety-like behavior and caused learning and memory impairment in rats as compared to sham-controls. Interestingly, providing grape powder treated water to OVX rats restored both systolic and diastolic blood pressure, decreased anxiety-like behavior and improved memory function. Moreover, OVX rats exhibited an impaired long term potentiation which was restored with grape powder treatment. Furthermore, ovariectomy increased oxidative stress in the brain, serum and urine, selectively decreasing antioxidant enzyme, glyoxalase-1 protein expression in the hippocampus but not in the cortex and amygdala of OVX rats, while grape powder treatment reversed these effects. Other antioxidant enzyme levels, including manganese superoxide dismutase (SOD) and Cu/Zn SOD remained unchanged. We suggest that grape powder by regulating oxidative stress mechanisms exerts its protective effect on blood pressure, learning-memory and anxiety-like behavior. Our study is the first to examine behavioral, biochemical, physiological and electrophysiological outcome of estrogen depletion in rats and to test protective role of grape powder

  7. High-throughput, fully-automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment

    PubMed Central

    Kovacevic, Sanja; Rafii, Michael S.; Brewer, James B.

    2008-01-01

    Medial temporal lobe (MTL) atrophy is associated with increased risk for conversion to Alzheimer's disease (AD), but manual tracing techniques and even semi-automated techniques for volumetric assessment are not practical in the clinical setting. In addition, most studies that examined MTL atrophy in AD have focused only on the hippocampus. It is unknown the extent to which volumes of amygdala and temporal horn of the lateral ventricle predict subsequent clinical decline. This study examined whether measures of hippocampus, amygdala, and temporal horn volume predict clinical decline over the following 6-month period in patients with mild cognitive impairment (MCI). Fully-automated volume measurements were performed in 269 MCI patients. Baseline volumes of the hippocampus, amygdala, and temporal horn were evaluated as predictors of change in Mini-mental State Exam (MMSE) and Clinical Dementia Rating Sum of Boxes (CDR SB) over a 6-month interval. Fully-automated measurements of baseline hippocampus and amygdala volumes correlated with baseline delayed recall scores. Patients with smaller baseline volumes of the hippocampus and amygdala or larger baseline volumes of the temporal horn had more rapid subsequent clinical decline on MMSE and CDR SB. Fully-automated and rapid measurement of segmental MTL volumes may help clinicians predict clinical decline in MCI patients. PMID:19474571

  8. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes

    PubMed Central

    Maung, Stephanie; Schaffler, Mitchell B.; Spray, David C.; Suadicani, Sylvia O.; Thi, Mia M.

    2016-01-01

    Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood. We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP release. To simulate in vitro the glucose levels to which bone cells are exposed in healthy vs. diabetic bones, we cultured osteoblast and osteocyte cell lines for 10 days in medium containing 5.5 or 25 mM glucose. High glucose effects on expression and function of P2Rs and Panx1 channels were determined by Western Blot analysis, quantification of Ca2+ responses to P2R agonists and oscillatory fluid shear stress (± 10 dyne/cm2), and measurement of flow-induced ATP release. Diabetic C57BL/6J-Ins2Akita mice were used to evaluate in vivo effects of high glucose on P2R and Panx1. Western blotting indicated altered P2X7R, P2Y2R and P2Y4R expression in high glucose exposed bone cells, and in diabetic bone tissue. Moreover, high glucose blunted normal P2R- and flow-induced Ca2+ signaling and ATP release from osteocytes. These findings indicate that T1D impairs load-induced ATP signaling in osteocytes and affects osteoblast function, which are essential for maintaining bone health. PMID:27159053

  9. High-Fat Feeding Impairs Nutrient Sensing and Gut Brain Integration in the Caudomedial Nucleus of the Solitary Tract in Mice

    PubMed Central

    Cavanaugh, Althea R.; Schwartz, Gary J.; Blouet, Clémence

    2015-01-01

    Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS), remain poorly understood. In this paper, we assessed the consequences of high-fat (HF) feeding and diet-induced obesity (DIO) on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF) diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1). We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size. PMID:25774780

  10. High-fat feeding impairs nutrient sensing and gut brain integration in the caudomedial nucleus of the solitary tract in mice.

    PubMed

    Cavanaugh, Althea R; Schwartz, Gary J; Blouet, Clémence

    2015-01-01

    Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS), remain poorly understood. In this paper, we assessed the consequences of high-fat (HF) feeding and diet-induced obesity (DIO) on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF) diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1). We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size. PMID:25774780

  11. High prevalence of diabetes mellitus and impaired glucose tolerance in liver cancer patients: A hospital based study of 4610 patients with benign tumors or specific cancers

    PubMed Central

    Roujun, Chen; Yanhua, Yi; Bixun, Li

    2016-01-01

    Objective: The prevalence of diabetes mellitus (DM), impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) were hypothesised to be different among different tumor patients. This study aimed to study the association between the prevalence of DM, IGT and IFG and liver cancer, colorectal cancer, breast cancer, cervical cancer, nasopharyngeal cancer and benign tumor. Methods:  A hospital based retrospective study was conducted on 4610 patients admitted to the Internal Medical Department of the Affiliated Tumor Hospital of Guangxi Medical University, China. Logistic regression was used to examine the association between gender, age group, ethnicity , cancer types or benign tumors and prevalence of DM, IFG, IGT. Results: Among 4610 patients, there were 1000 liver cancer patients, 373 breast cancer patients, 415 nasopharyngeal cancer patients, 230 cervical cancer patients, 405 colorectal cancer patients, and 2187 benign tumor patients. The prevalence of DM and IGT in liver cancer patients was 14.7% and 22.1%, respectively. The prevalence of DM and IGT was 13.8% and 20%, respectively, in colorectal cancer patients, significantly higher than that of benign cancers. After adjusting for gender, age group, and ethnicity, the prevalence of DM and IGT in liver cancers patients was 1.29 times (CI :1.12-1.66) and 1.49 times (CI :1.20-1.86) higher than that of benign tumors, respectively. Conclusion: There was a high prevalence of DM and IGT in liver cancer patients. PMID:27610222

  12. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    PubMed Central

    Liu, Shing-Hwa; Cai, Fang-Ying; Chiang, Meng-Tsan

    2015-01-01

    This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF) diet (63.1%). Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1) normal group (normal); (2) HF group; (3) chitosan + HF group (HF + C). The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8%) significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF)-α, Interleukin (IL)-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC) and triglyceride (TG) contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), the TC/high-density lipoprotein cholesterol (HDL-C) ratio, and increased the HDL-C/(LDL-C + VLDL-C) ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4) protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment of

  13. Hearing Impairment

    MedlinePlus

    ... known as noise-induced hearing loss (NIHL) . Personal music players are among the chief culprits of NIHL ... exposure to high noise levels (such as loud music) over time can cause permanent damage to the ...

  14. Unimpaired Perception of Social and Physical Causality, but Impaired Perception of Animacy in High Functioning Children with Autism

    ERIC Educational Resources Information Center

    Congiu, Sara; Schlottmann, Anne; Ray, Elizabeth

    2010-01-01

    We investigated perception of social and physical causality and animacy in simple motion events, for high-functioning children with autism (CA = 13, VMA = 9.6). Children matched 14 different animations to pictures showing physical, social or non-causality. In contrast to previous work, children with autism performed at a high level similar to…

  15. Evidence for impairments in using static line drawings of eye gaze cues to orient visual-spatial attention in children with high functioning autism.

    PubMed

    Goldberg, Melissa C; Mostow, Allison J; Vecera, Shaun P; Larson, Jennifer C Gidley; Mostofsky, Stewart H; Mahone, E Mark; Denckla, Martha B

    2008-09-01

    We examined the ability to use static line drawings of eye gaze cues to orient visual-spatial attention in children with high functioning autism (HFA) compared to typically developing children (TD). The task was organized such that on valid trials, gaze cues were directed toward the same spatial location as the appearance of an upcoming target, while on invalid trials gaze cues were directed to an opposite location. Unlike TD children, children with HFA showed no advantage in reaction time (RT) on valid trials compared to invalid trials (i.e., no significant validity effect). The two stimulus onset asynchronies (200 ms, 700 ms) did not differentially affect these findings. The results suggest that children with HFA show impairments in utilizing static line drawings of gaze cues to orient visual-spatial attention. PMID:18074212

  16. The Contribution of Childhood Parental Rejection and Early Androgen Exposure to Impairments in Socio-Cognitive Skills in Intimate Partner Violence Perpetrators with High Alcohol Consumption

    PubMed Central

    Romero-Martínez, Ángel; Lila, Marisol; Catalá-Miñana, Alba; Williams, Ryan K.; Moya-Albiol, Luis

    2013-01-01

    Alcohol consumption, a larger history of childhood parental rejection, and high prenatal androgen exposure have been linked with facilitation and high risk of recidivism in intimate partner violence (IPV) perpetrators. Participants were distributed into two groups according to their alcohol consumption scores as high (HA) and low (LA). HA presented a higher history of childhood parental rejection, prenatal masculinization (smaller 2D:4D ratio), and violence-related scores than LA IPV perpetrators. Nonetheless, the former showed poor socio-cognitive skills performance (cognitive flexibility, emotional recognition and cognitive empathy). Particularly in HA IPV perpetrators, the history of childhood parental rejection was associated with high hostile sexism and low cognitive empathy. Moreover, a masculinized 2D:4D ratio was associated with high anger expression and low cognitive empathy. Parental rejection during childhood and early androgen exposure are relevant factors for the development of violence and the lack of adequate empathy in adulthood. Furthermore, alcohol abuse plays a key role in the development of socio-cognitive impairments and in the proneness to violence and its recidivism. These findings contribute to new coadjutant violence intervention programs, focused on the rehabilitation of basic executive functions and emotional decoding processes and on the treatment of alcohol dependence. PMID:23965927

  17. The contribution of childhood parental rejection and early androgen exposure to impairments in socio-cognitive skills in intimate partner violence perpetrators with high alcohol consumption.

    PubMed

    Romero-Martínez, Ángel; Lila, Marisol; Catalá-Miñana, Alba; Williams, Ryan K; Moya-Albiol, Luis

    2013-08-01

    Alcohol consumption, a larger history of childhood parental rejection, and high prenatal androgen exposure have been linked with facilitation and high risk of recidivism in intimate partner violence (IPV) perpetrators. Participants were distributed into two groups according to their alcohol consumption scores as high (HA) and low (LA). HA presented a higher history of childhood parental rejection, prenatal masculinization (smaller 2D:4D ratio), and violence-related scores than LA IPV perpetrators. Nonetheless, the former showed poor socio-cognitive skills performance (cognitive flexibility, emotional recognition and cognitive empathy). Particularly in HA IPV perpetrators, the history of childhood parental rejection was associated with high hostile sexism and low cognitive empathy. Moreover, a masculinized 2D:4D ratio was associated with high anger expression and low cognitive empathy. Parental rejection during childhood and early androgen exposure are relevant factors for the development of violence and the lack of adequate empathy in adulthood. Furthermore, alcohol abuse plays a key role in the development of socio-cognitive impairments and in the proneness to violence and its recidivism. These findings contribute to new coadjutant violence intervention programs, focused on the rehabilitation of basic executive functions and emotional decoding processes and on the treatment of alcohol dependence. PMID:23965927

  18. Magnolia Bioactive Constituent 4-O-Methylhonokiol Prevents the Impairment of Cardiac Insulin Signaling and the Cardiac Pathogenesis in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Zhang, Zhiguo; Chen, Jing; Zhou, Shanshan; Wang, Shudong; Cai, Xiaohong; Conklin, Daniel J.; Kim, Ki-Soo; Kim, Ki Ho; Tan, Yi; Zheng, Yang; Kim, Young Heui; Cai, Lu

    2015-01-01

    In obesity, cardiac insulin resistance is a putative cause of cardiac hypertrophy and dysfunction. In our previous study, we observed that Magnolia extract BL153 attenuated high-fat-diet (HFD)-induced cardiac pathogenic changes. In this study, we further investigated the protective effects of the BL153 bioactive constituent, 4-O-methylhonokiol (MH), against HFD-induced cardiac pathogenesis and its possible mechanisms. C57BL/6J mice were fed a normal diet or a HFD with gavage administration of vehicle, BL153, or MH (low or high dose) daily for 24 weeks. Treatment with MH attenuated HFD-induced obesity, as evidenced by body weight gain, and cardiac pathogenesis, as assessed by the heart weight and echocardiography. Mechanistically, MH treatment significantly reduced HFD-induced impairment of cardiac insulin signaling by preferentially augmenting Akt2 signaling. MH also inhibited cardiac expression of the inflammatory factors tumor necrosis factor-α and plasminogen activator inhibitor-1 and increased the phosphorylation of nuclear factor erythroid-derived 2-like 2 (Nrf2) as well as the expression of a Nrf2 downstream target gene heme oxygenase-1. The increased Nrf2 signaling was associated with decreased oxidative stress and damage, as reflected by lowered malondialdehyde and 3-nitrotyrosine levels. Furthermore, MH reduced HFD-induced cardiac lipid accumulation along with lowering expression of cardiac fatty acid translocase/CD36 protein. These results suggest that MH, a bioactive constituent of Magnolia, prevents HFD-induced cardiac pathogenesis by attenuating the impairment of cardiac insulin signaling, perhaps via activation of Nrf2 and Akt2 signaling to attenuate CD36-mediated lipid accumulation and lipotoxicity. PMID:26157343

  19. Magnolia bioactive constituent 4-O-methylhonokiol prevents the impairment of cardiac insulin signaling and the cardiac pathogenesis in high-fat diet-induced obese mice.

    PubMed

    Zhang, Zhiguo; Chen, Jing; Zhou, Shanshan; Wang, Shudong; Cai, Xiaohong; Conklin, Daniel J; Kim, Ki-Soo; Kim, Ki Ho; Tan, Yi; Zheng, Yang; Kim, Young Heui; Cai, Lu

    2015-01-01

    In obesity, cardiac insulin resistance is a putative cause of cardiac hypertrophy and dysfunction. In our previous study, we observed that Magnolia extract BL153 attenuated high-fat-diet (HFD)-induced cardiac pathogenic changes. In this study, we further investigated the protective effects of the BL153 bioactive constituent, 4-O-methylhonokiol (MH), against HFD-induced cardiac pathogenesis and its possible mechanisms. C57BL/6J mice were fed a normal diet or a HFD with gavage administration of vehicle, BL153, or MH (low or high dose) daily for 24 weeks. Treatment with MH attenuated HFD-induced obesity, as evidenced by body weight gain, and cardiac pathogenesis, as assessed by the heart weight and echocardiography. Mechanistically, MH treatment significantly reduced HFD-induced impairment of cardiac insulin signaling by preferentially augmenting Akt2 signaling. MH also inhibited cardiac expression of the inflammatory factors tumor necrosis factor-α and plasminogen activator inhibitor-1 and increased the phosphorylation of nuclear factor erythroid-derived 2-like 2 (Nrf2) as well as the expression of a Nrf2 downstream target gene heme oxygenase-1. The increased Nrf2 signaling was associated with decreased oxidative stress and damage, as reflected by lowered malondialdehyde and 3-nitrotyrosine levels. Furthermore, MH reduced HFD-induced cardiac lipid accumulation along with lowering expression of cardiac fatty acid translocase/CD36 protein. These results suggest that MH, a bioactive constituent of Magnolia, prevents HFD-induced cardiac pathogenesis by attenuating the impairment of cardiac insulin signaling, perhaps via activation of Nrf2 and Akt2 signaling to attenuate CD36-mediated lipid accumulation and lipotoxicity. PMID:26157343

  20. AC1MMYR2 impairs high dose paclitaxel-induced tumor metastasis by targeting miR-21/CDK5 axis.

    PubMed

    Ren, Yu; Zhou, Xuan; Yang, Juan-Juan; Liu, Xia; Zhao, Xiao-hui; Wang, Qi-xue; Han, Lei; Song, Xin; Zhu, Zhi-yan; Tian, Wei-ping; Zhang, Lun; Mei, Mei; Kang, Chun-sheng

    2015-07-01

    Paclitaxel (taxol) is a widely used chemo-drug for many solid tumors, while continual taxol treatment is revealed to stimulate tumor dissemination. We previously found that a small molecule inhibitor of miR-21, termed AC1MMYR2, had the potential to impair tumorigenesis and metastasis. The aim of this study was to investigate whether combining AC1MMYR2 with taxol could be explored as a means to limit tumor metastasis. Here we showed that abnormal activation of miR-21/CDK5 axis was associated with breast cancer lymph node metastasis, which was also contribute to high dose taxol-induced invasion and epithelial mesenchymal transition (EMT) in both breast cancer cell line MDA-MB-231 and glioblastoma cell line U87VIII. AC1MMYR2 attenuated CDK5 activity by functional targeting CDK5RAP1, CDK5 activator p39 and target p-FAK(ser732). A series of in vitro assays indicated that treatment of AC1MMYR2 combined with taxol suppressed tumor migration and invasion ability in both MDA-MB-231 and U87VIII cell. More importantly, combination therapy impaired high-dose taxol induced invadopodia, and EMT markers including β-catenin, E-cadherin and vimentin. Strikingly, a significant reduction of lung metastasis in mice was observed in the AC1MMYR2 plus taxol treatment. Taken together, our work demonstrated that AC1MMYR2 appeared to be a promising strategy in combating taxol induced cancer metastasis by targeting miR-21/CDK5 axis, which highlighted the potential for development of therapeutic modalities for better clinic taxol application. PMID:25827073

  1. Titanium Implant Impairment and Surrounding Muscle Cell Death Following High-Salt Diet: An In Vivo Study

    PubMed Central

    Lecocq, Mathieu; Felix, Marie-Solenne; Linares, Jean-Marc; Chaves-Jacob, Julien; Decherchi, Patrick; Dousset, Erick

    2016-01-01

    Aim of the study High-salt consumption has been widely described as a risk factor for cardiovascular, renal and bone functions. In the present study, the extent to which high-salt diet could influence Ti6Al4V implant surface characteristic, its adhesion to rat tibial crest, and could modify muscle cell viability of two surrounding muscles, was investigated in vivo. These parameters have also been assessed following a NMES (neuro-myoelectrostimulation) program similar to that currently used in human care following arthroplasty. Results After a three-week diet, a harmful effect on titanium implant surface and muscle cell viability was noted. This is probably due to salt corrosive effect on metal and then release of toxic substance around biologic tissue. Moreover, if the use of NMES with high-salt diet induced muscles damages, the latter were higher when implant was added. Unexpectedly, higher implant-to-bone adhesion was found for implanted animals receiving salt supplementation. Conclusion Our in vivo study highlights the potential dangerous effect of high-salt diet in arthroplasty based on titanium prosthesis. This effect appears to be more important when high-salt diet is combined with NMES. PMID:26761710

  2. High-light stress does not impair biomass accumulation of sun-acclimated tropical tree seedlings (Calophyllum longifolium Willd. and Tectona grandis L. f.).

    PubMed

    Krause, G H; Gallé, A; Virgo, A; García, M; Bucic, P; Jahns, P; Winter, K

    2006-01-01

    Studies with seedlings of tropical rainforest trees ( Calophyllum longifolium Willd.; Tectona grandis L. f.) were designed to test whether high-light stress affects photosynthetic performance and growth. Seedlings were cultivated in pots at a field site in Central Panama (9 degrees N) and separated into two groups: (1) plants exposed to full solar radiation; (2) plants subjected to automatic neutral shading (48 %) whenever visible irradiance surpassed 1000, 1200, or 1600 micromol photons m-2 s-1. After 2-4 months, chlorophyll fluorescence (Fv/Fm ratio), photosynthetic net CO2 uptake, pigment composition, alpha-tocopherol content of leaves, and plant biomass accumulation were measured. Fully sun-exposed, compared to periodically shaded plants, experienced substantial high-light stress around midday, indicated by photoinhibition of photosystem II and depressed net CO2 uptake. Higher contents of xanthophyll cycle pigments, lutein, and alpha-tocopherol showed an enhancement of photoprotection in fully sun-exposed plants. However, in all experiments, the maximum capacity of net CO2 uptake and plant dry mass did not differ significantly between the two treatments. Thus, in these experiments, high-light stress did not impair productivity of the seedlings studied. Obviously, the continuously sun-exposed plants were capable of fully compensating for any potential costs associated with photoinhibition and repair of photosystem II, reduced CO2 assimilation, and processes of high-light acclimation. PMID:16435267

  3. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  4. Long-term Treatment of Teicoplanin for Methicillin-resistant Staphylococcus aureus Sternal Osteomyelitis with Renal Impairment: A Case of High Teicoplanin Trough Levels Maintained by Therapeutic Drug Monitoring.

    PubMed

    Shiohira, Hideo; Nakamatsu, Masashi; Kise, Yuya; Higa, Futoshi; Tateyama, Masao; Hokama, Nobuo; Kuniyoshi, Yukio; Ueda, Shinichiro; Nakamura, Katsunori; Fujita, Jiro

    2016-01-01

    Teicoplanin, a glycopeptide antibiotic for methicillin-resistant Staphylococcus aureus, is recommended for therapeutic drug monitoring during treatment. Maintaining a high trough range of teicoplanin is also recommended for severe infectious disease. However, the optimal dose and interval of treatment for severe renal impairment is unknown. We report a 79-year-old man who received long-term teicoplanin treatment for methicillin-resistant Staphylococcus aureus bacteremia due to postoperative sternal osteomyelitis with renal impairment. Plasma teicoplanin trough levels were maintained at a high range (20-30 μg/mL). Although the patient required long-term teicoplanin treatment, a further decline in renal function was not observed, and blood culture remained negative after the start of treatment. Teicoplanin treatment that is maintained at a high trough level by therapeutic drug monitoring might be beneficial for severe methicillin-resistant Staphylococcus aureus infection accompanied by renal impairment. PMID:27592834

  5. Relationships among Testing Medium, Test Performance, and Testing Time of High School Students Who Are Visually Impaired

    ERIC Educational Resources Information Center

    Erin, Jane N.; Hong, Sunggye; Schoch, Christina; Kuo, YaJu

    2006-01-01

    This study compared the test scores and time required by high school students who are blind, sighted, or have low vision to complete tests administered in written and oral formats. The quantitative results showed that the blind students performed better on multiple-choice tests in braille and needed more time while taking tests in braille. The…

  6. The Inhibition of the Highly Expressed Mir-221 and Mir-222 Impairs the Growth of Prostate Carcinoma Xenografts in Mice

    PubMed Central

    Mercatelli, Neri; Coppola, Valeria; Bonci, Desirée; Miele, Francesca; Costantini, Arianna; Guadagnoli, Marco; Bonanno, Elena; Muto, Giovanni; Frajese, Giovanni Vanni; De Maria, Ruggero; Spagnoli, Luigi Giusto; Farace, Maria Giulia; Ciafrè, Silvia Anna

    2008-01-01

    Background MiR-221 and miR-222 are two highly homologous microRNAs whose upregulation has been recently described in several types of human tumors, for some of which their oncogenic role was explained by the discovery of their target p27, a key cell cycle regulator. We previously showed this regulatory relationship in prostate carcinoma cell lines in vitro, underlying the role of miR-221/222 as inducers of proliferation and tumorigenicity. Methodology/Principal Findings Here we describe a number of in vivo approaches confirming our previous data. The ectopic overexpression of miR-221 is able, per se, to confer a high growth advantage to LNCaP-derived tumors in SCID mice. Consistently, the anti-miR-221/222 antagomir treatment of established subcutaneous tumors derived from the highly aggressive PC3 cell line, naturally expressing high levels of miR-221/222, reduces tumor growth by increasing intratumoral p27 amount; this effect is long lasting, as it is detectable as long as 25 days after the treatment. Furthermore, we provide evidence in favour of a clinical relevance of the role of miR-221/222 in prostate carcinoma, by showing their general upregulation in patient-derived primary cell lines, where we find a significant inverse correlation with p27 expression. Conclusions/Significance These findings suggest that modulating miR-221/222 levels may have a therapeutic potential in prostate carcinoma. PMID:19107213

  7. Impaired Cholesterol Efflux Capacity of High-Density Lipoprotein Isolated From Interstitial Fluid in Type 2 Diabetes Mellitus—Brief Report

    PubMed Central

    Tietge, Uwe J.F.; Dikkers, Arne; Parini, Paolo; Angelin, Bo; Rudling, Mats

    2016-01-01

    Objective— Patients with type 2 diabetes mellitus (T2D) have an increased risk of cardiovascular disease, the mechanism of which is incompletely understood. Their high-density lipoprotein (HDL) particles in plasma have been reported to have impaired cholesterol efflux capacity. However, the efflux capacity of HDL from interstitial fluid (IF), the starting point for reverse cholesterol transport, has not been studied. We here investigated the cholesterol efflux capacity of HDL from IF and plasma from T2D patients and healthy controls. Approach and Results— HDL was isolated from IF and peripheral plasma from 35 T2D patients and 35 age- and sex-matched healthy controls. Cholesterol efflux to HDL was determined in vitro, normalized for HDL cholesterol, using cholesterol-loaded macrophages. Efflux capacity of plasma HDL was 10% lower in T2D patients than in healthy controls, in line with previous observations. This difference was much more pronounced for HDL from IF, where efflux capacity was reduced by 28% in T2D. Somewhat surprisingly, the efflux capacity of HDL from IF was lower than that of plasma HDL, by 15% and 32% in controls and T2D patients, respectively. Conclusion— These data demonstrate that (1) HDL from IF has a lower cholesterol efflux capacity than plasma HDL and (2) the efflux capacity of HDL from IF is severely impaired in T2D when compared with controls. Because IF comprises the compartment where reverse cholesterol transport is initiated, the marked reduction in cholesterol efflux capacity of IF-HDL from T2D patients may play an important role for their increased risk to develop atherosclerosis. PMID:27034474

  8. Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats.

    PubMed

    Kim, Yonwook J; Bi, Sheng

    2016-01-15

    Neuropeptide Y (NPY) in the dorsomedial hypothalamus (DMH) plays an important role in the regulation of energy balance. While DMH NPY overexpression causes hyperphagia and obesity in rats, knockdown of NPY in the DMH via adeno-associated virus (AAV)-mediated RNAi (AAVshNPY) ameliorates these alterations. Whether this knockdown has a therapeutic effect on obesity and glycemic disorder has yet to be determined. The present study sought to test this potential using a rat model of high-fat diet (HFD)-induced obesity and insulin resistance, mimicking human obesity with impaired glucose homeostasis. Rats had ad libitum access to rodent regular chow (RC) or HFD. Six weeks later, an oral glucose tolerance test (OGTT) was performed for verifying HFD-induced glucose intolerance. After verification, obese rats received bilateral DMH injections of AAVshNPY or the control vector AAVshCTL, and OGTT and insulin tolerance test (ITT) were performed at 16 and 18 wk after viral injection (23 and 25 wk on HFD), respectively. Rats were killed at 26 wk on HFD. We found that AAVshCTL rats on HFD remained hyperphagic, obese, glucose intolerant, and insulin resistant relative to lean control RC-fed rats receiving DMH injection of AAVshCTL, whereas these alterations were reversed in NPY knockdown rats fed a HFD. NPY knockdown rats exhibited normal food intake, body weight, glucose tolerance, and insulin sensitivity, as seen in lean control rats. Together, these results demonstrate a therapeutic action of DMH NPY knockdown against obesity and impaired glucose homeostasis in rats, providing a potential target for the treatment of obesity and diabetes. PMID:26561644

  9. High Working Memory Load Impairs Language Processing during a Simulated Piloting Task: An ERP and Pupillometry Study

    PubMed Central

    Causse, Mickaël; Peysakhovich, Vsevolod; Fabre, Eve F.

    2016-01-01

    Given the important amount of visual and auditory linguistic information that pilots have to process, operating an aircraft generates a high working-memory load (WML). In this context, the ability to focus attention on relevant information and to remain responsive to concurrent stimuli might be altered. Consequently, understanding the effects of WML on the processing of both linguistic targets and distractors is of particular interest in the study of pilot performance. In the present work, participants performed a simplified piloting task in which they had to follow one of three colored aircraft, according to specific written instructions (i.e., the written word for the color corresponding to the color of one of the aircraft) and to ignore either congruent or incongruent concurrent auditory distractors (i.e., a spoken name of color). The WML was manipulated with an n-back sub-task. Participants were instructed to apply the current written instruction in the low WML condition, and the 2-back written instruction in the high WML condition. Electrophysiological results revealed a major effect of WML at behavioral (i.e., decline of piloting performance), electrophysiological, and autonomic levels (i.e., greater pupil diameter). Increased WML consumed resources that could not be allocated to the processing of the linguistic stimuli, as indexed by lower P300/P600 amplitudes. Also, significantly, lower P600 responses were measured in incongruent vs. congruent trials in the low WML condition, showing a higher difficulty reorienting attention toward the written instruction, but this effect was canceled in the high WML condition. This suppression of interference in the high load condition is in line with the engagement/distraction trade-off model. We propose that P300/P600 components could be reliable indicators of WML and that they allow an estimation of its impact on the processing of linguistic stimuli. PMID:27252639

  10. High Working Memory Load Impairs Language Processing during a Simulated Piloting Task: An ERP and Pupillometry Study.

    PubMed

    Causse, Mickaël; Peysakhovich, Vsevolod; Fabre, Eve F

    2016-01-01

    Given the important amount of visual and auditory linguistic information that pilots have to process, operating an aircraft generates a high working-memory load (WML). In this context, the ability to focus attention on relevant information and to remain responsive to concurrent stimuli might be altered. Consequently, understanding the effects of WML on the processing of both linguistic targets and distractors is of particular interest in the study of pilot performance. In the present work, participants performed a simplified piloting task in which they had to follow one of three colored aircraft, according to specific written instructions (i.e., the written word for the color corresponding to the color of one of the aircraft) and to ignore either congruent or incongruent concurrent auditory distractors (i.e., a spoken name of color). The WML was manipulated with an n-back sub-task. Participants were instructed to apply the current written instruction in the low WML condition, and the 2-back written instruction in the high WML condition. Electrophysiological results revealed a major effect of WML at behavioral (i.e., decline of piloting performance), electrophysiological, and autonomic levels (i.e., greater pupil diameter). Increased WML consumed resources that could not be allocated to the processing of the linguistic stimuli, as indexed by lower P300/P600 amplitudes. Also, significantly, lower P600 responses were measured in incongruent vs. congruent trials in the low WML condition, showing a higher difficulty reorienting attention toward the written instruction, but this effect was canceled in the high WML condition. This suppression of interference in the high load condition is in line with the engagement/distraction trade-off model. We propose that P300/P600 components could be reliable indicators of WML and that they allow an estimation of its impact on the processing of linguistic stimuli. PMID:27252639

  11. Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation.

    PubMed

    Beilharz, J E; Maniam, J; Morris, M J

    2016-06-01

    Chronic high-energy diets are known to induce obesity and impair memory; these changes have been associated with inflammation in brain areas crucial for memory. In this study, we investigated whether inflammation could also be related to diet-induced memory deficits, prior to obesity. We exposed rats to chow, chow supplemented with a 10% sucrose solution (Sugar) or a diet high in fat and sugar (Caf+Sugar) and assessed hippocampal-dependent and perirhinal-dependent memory at 1 week. Both high-energy diet groups displayed similar, selective hippocampal-dependent memory deficits despite the Caf+Sugar rats consuming 4-5 times more energy, and weighing significantly more than the other groups. Extreme weight gain and excessive energy intake are therefore not necessary for deficits in memory. Weight gain across the diet period however, was correlated with the memory deficits, even in the Chow rats. The Sugar rats had elevated expression of a number of inflammatory genes in the hippocampus and WAT compared to Chow and Caf+Sugar rats but not in the perirhinal cortex or hypothalamus. Blood glucose concentrations were also elevated in the Sugar rats, and were correlated with the hippocampal inflammatory markers. Together, these results indicate that liquid sugar can rapidly elevate markers of central and peripheral inflammation, in association with hyperglycemia, and this may be related to the memory deficits in the Sugar rats. PMID:26970578

  12. High Hemoglobin Levels Maintained by an Erythropoiesis-Stimulating Agent Improve Renal Survival in Patients with Severe Renal Impairment.

    PubMed

    Tsubakihara, Yoshiharu; Akizawa, Tadao; Iwasaki, Manabu; Shimazaki, Ryutaro

    2015-10-01

    Our goal was to investigate the effect modification of maintaining a high Hb target range through erythropoiesis-stimulating agent therapy on the renal outcome with respect to chronic kidney disease (CKD) stage and concurrent diabetes condition in patients with CKD. We used data from a previously reported randomized controlled trial involving 321 CKD patients not on dialysis, with Hb levels of <10 g/dL, and serum creatinine (Cr) of 2.0 to 6.0 mg/dL, and in which maintaining Hb levels at 11.0-13.0 g/dL with darbepoetin-α (High Hb group) resulted in a greater renal protective effect than maintaining Hb levels at 9.0-11.0 g/dL with epoetin-α (Low Hb group). We conducted a post-hoc analysis of the effects of baseline CKD stage and concurrent diabetic condition on the renal composite endpoint, consisting of death, initiation of renal replacement therapy, and doubling of the serum Cr level. Both groups with stage 4 CKD had a 3-year cumulative renal survival rate of 53.8%, whereas in patients with stage 5 CKD, the rate in the High Hb group (31.0%) was significantly (P = 0.012) higher than that in the Low Hb group (19.1%). The observations made in patients with stage 5 CKD were maintained on further analysis of non-diabetic patients, but were not seen in those with diabetes or stage 4 CKD. These results suggest that in patients with stage 5 CKD, especially those without diabetes, achieving a higher target Hb level with erythropoiesis-stimulating agents is associated with a greater renoprotective effect. PMID:25944732

  13. High levels of plasma cortisol and impaired hypoosmoregulation in a mutant medaka deficient in P450c17I.

    PubMed

    Takahashi, Hideya; Sato, Tadashi; Ikeuchi, Toshitaka; Saito, Kazuhiro; Sakaizumi, Mitsuru; Sakamoto, Tatsuya

    2016-07-15

    scl is a spontaneous medaka mutant deficient in P450c17I, which is required for production of sex steroids, but not of cortisol, the major role of which is osmoregulation in teleost fish. The scl mutant provides a new model to study the functions of these hormones. We first found that fish homozygous for this mutation have plasma cortisol constitutively at a high physiological level (1000 nM). Since we previously showed that this level reversed the seawater-type differentiation of the medaka gastrointestinal tract, hypoosmoregulation of the scl mutant was analyzed. Muscle water contents in freshwater were normal in scl homozygotes, but the contents were lower than those of the wild type (WT) after seawater transfer. There were no differences in gill mRNA levels of corticosteroid receptors or ion transporters between scl homozygotes and WT. In the intestine, expression of glucocorticoid receptors and Na(+)/K(+)/2Cl(-) cotransporter were induced in WT during seawater acclimation, but not in scl homozygotes. The high plasma cortisol may prevent hypoosmoregulation by inhibition of increased intestinal water absorption, essentially by the Na(+)/K(+)/2Cl(-) cotransporter, in seawater. PMID:27107936

  14. Ablation of Elovl6 protects pancreatic islets from high-fat diet-induced impairment of insulin secretion.

    PubMed

    Tang, Nie; Matsuzaka, Takashi; Suzuki, Marii; Nakano, Yuta; Zao, Hui; Yokoo, Tomotaka; Suzuki-Kemuriyama, Noriko; Kuba, Motoko; Okajima, Yuka; Takeuchi, Yoshinori; Kobayashi, Kazuto; Iwasaki, Hitoshi; Yatoh, Shigeru; Takahashi, Akimitsu; Suzuki, Hiroaki; Sone, Hirohito; Shimada, Masako; Nakagawa, Yoshimi; Yahagi, Naoya; Yamada, Nobuhiro; Shimano, Hitoshi

    2014-07-18

    ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6(-/-) mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6(-/-) mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6(-/-) islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes. PMID:24938128

  15. A high-fat diet impairs cooling-evoked brown adipose tissue activation via a vagal afferent mechanism.

    PubMed

    Madden, Christopher J; Morrison, Shaun F

    2016-08-01

    In dramatic contrast to rats on a control diet, rats maintained on a high-fat diet (HFD) failed to activate brown adipose tissue (BAT) during cooling despite robust increases in their BAT activity following direct activation of their BAT sympathetic premotor neurons in the raphe pallidus. Cervical vagotomy or blockade of glutamate receptors in the nucleus of the tractus solitarii (NTS) reversed the HFD-induced inhibition of cold-evoked BAT activity. Thus, a HFD does not prevent rats from mounting a robust, centrally driven BAT thermogenesis; however, a HFD does alter a vagal afferent input to NTS neurons, thereby preventing the normal activation of BAT thermogenesis to cooling. These results, paralleling the absence of cooling-evoked glucose uptake in the BAT of obese humans, reveal a neural mechanism through which consumption of a HFD contributes to reduced energy expenditure and thus to weight gain. PMID:27354235

  16. Impaired Transcriptional Response of the Murine Heart to Cigarette Smoke in the Setting of High Fat Diet and Obesity

    SciTech Connect

    Tilton, Susan C.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Mikheev, Vladimir B.; Lee, K. M.; Corley, Richard A.; Pounds, Joel G.; Bigelow, Diana J.

    2013-07-01

    Smoking and obesity are each well-established risk factors for cardiovascular heart disease, which together impose earlier onset and greater severity of disease. To identify early signaling events in the response of the heart to cigarette smoke exposure within the setting of obesity, we exposed normal weight and high fat diet-induced obese (DIO) C57BL/6 mice to repeated inhaled doses of mainstream (MS) or sidestream (SS) cigarette smoke administered over a two week period, monitoring effects on both cardiac and pulmonary transcriptomes. MS smoke (250 μg wet total particulate matter (WTPM)/L, 5 h/day) exposures elicited robust cellular and molecular inflammatory responses in the lung with 1466 differentially expressed pulmonary genes (p < 0.01) in normal weight animals and a much-attenuated response (463 genes) in the hearts of the same animals. In contrast, exposures to SS smoke (85 μg WTPM/L) with a CO concentration equivalent to that of MS smoke (250 CO ppm) induced a weak pulmonary response (328 genes) but an extensive cardiac response (1590 genes). SS smoke and to a lesser extent MS smoke preferentially elicited hypoxia- and stress-responsive genes as well as genes predicting early changes of vascular smooth muscle and endothelium, precursors of cardiovascular disease. The most sensitive smoke-induced cardiac transcriptional changes of normal weight mice were largely absent in DIO mice after smoke exposure, while genes involved in fatty acid utilization were unaffected. At the same time, smoke exposure suppressed multiple proteome maintenance genes induced in the hearts of DIO mice. Together, these results underscore the sensitivity of the heart to SS smoke and reveal adaptive responses in healthy individuals that are absent in the setting of high fat diet and obesity.

  17. Rats with metabolic syndrome resist the protective effects of N-acetyl l-cystein against impaired spermatogenesis induced by high-phosphorus/zinc-free diet.

    PubMed

    Suzuki, Yuka; Ichihara, Gaku; Sahabudeen, Sheik Mohideen; Kato, Ai; Yamaguchi, Takanori; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Yamada, Yoshiji; Ichihara, Sahoko

    2013-11-01

    Consumption of relatively high amounts of processed food can result in abnormal nutritional status, such as zinc deficiency or phosphorus excess. Moreover, hyperphosphatemia and hypozincemia are found in some patients with diabetic nephropathy and metabolic syndrome. The present study investigated the effects of high-phosphorus/zinc-free diet on the reproductive function of spontaneously hypertensive rats/NDmcr-cp (SHR/cp), a model of the metabolic syndrome. We also investigated the effects of antioxidant, N-acetyl-l-cysteine (NAC), on testicular dysfunction under such conditions. Male SHR/cp and control rats (Wistar Kyoto rats, WKY) were divided into three groups; rats fed control diet (P 0.3%, w/w; Zn 0.2%, w/w), high-phosphorus and zinc-deficient diet (P 1.2%, w/w; Zn 0.0%, w/w) with vehicle, or high-phosphorus and zinc-deficient diet with NAC (1.5mg/g/day) for 12 weeks (n=6 or 8 rats/group). The weights of testis and epididymis were significantly reduced by high-phosphate/zinc-free diet in both SHR/cp and WKY. The same diet significantly reduced caudal epididymal sperm count and motility and induced histopathological changes in the testis in both strains. Treatment with NAC provided significant protection against the toxic effects of the diet on testicular function in WKY, but not in SHR/cp. The lack of the protective effects of NAC on impaired spermatogenesis in SHR/cp could be due to the more pronounced state of oxidative stress observed in these rats compared with WKY. PMID:23810784

  18. Prion-Protein-interacting Amyloid-β Oligomers of High Molecular Weight Are Tightly Correlated with Memory Impairment in Multiple Alzheimer Mouse Models*

    PubMed Central

    Kostylev, Mikhail A.; Kaufman, Adam C.; Nygaard, Haakon B.; Patel, Pujan; Haas, Laura T.; Gunther, Erik C.; Vortmeyer, Alexander; Strittmatter, Stephen M.

    2015-01-01

    Alzheimer disease (AD) is characterized by amyloid-β accumulation, with soluble oligomers (Aβo) being the most synaptotoxic. However, the multivalent and unstable nature of Aβo limits molecular characterization and hinders research reproducibility. Here, we characterized multiple Aβo forms throughout the life span of various AD mice and in post-mortem human brain. Aβo exists in several populations, where prion protein (PrPC)-interacting Aβo is a high molecular weight Aβ assembly present in multiple mice and humans with AD. Levels of PrPC-interacting Aβo match closely with mouse memory and are equal or superior to other Aβ measures in predicting behavioral impairment. However, Aβo metrics vary considerably between mouse strains. Deleting PrPC expression in mice with relatively low PrPC-interacting Aβo (Tg2576) results in partial rescue of cognitive performance as opposed to complete recovery in animals with a high percentage of PrPC-interacting Aβo (APP/PSEN1). These findings highlight the relative contributions and interplay of Aβo forms in AD. PMID:26018073

  19. High levels of interleukin-10 impair resistance to pulmonary coccidioidomycosis in mice in part through control of nitric oxide synthase 2 expression.

    PubMed

    Jimenez, Maria del Pilar; Walls, Lorraine; Fierer, Joshua

    2006-06-01

    We have shown previously that there is a direct correlation between IL-10 levels and susceptibility to Coccidioides immitis peritonitis in C57BL/6 (B6), DBA/2, and BXD recombinant inbred mice. We now show that B6 mice are also more susceptible to C. immitis pneumonia and that interleukin-10 (IL-10)-deficient (IL-10-/-) B6 mice are more resistant to C. immitis pneumonia. In addition, we established that high levels of IL-10 are sufficient to make genetically resistant mice susceptible to both C. immitis peritonitis and pneumonia by infecting h.IL-10 transgenic mice. Infected h.IL-10 transgenic mice express lower levels of gamma interferon, IL-12 p40, and inducible nitric oxide synthetase 2 (NOS2) mRNA in their lungs, implicating inducible NOS as a defense mechanism in this disease. We treated DBA/2 mice with aminoguanidine, and they became more susceptible to C. immitis peritonitis and pneumonia. We conclude that high levels of IL-10 are both necessary and sufficient to make mice susceptible to C. immitis, regardless of the genetic background of the mice, and that IL-10 impairs resistance to C. immitis in part by suppressing NO synthesis. PMID:16714569

  20. Differentiation of the ILO boundary chest roentgenograph (0/1 to 1/0) in asbestosis by high-resolution computed tomography scan, alveolitis, and respiratory impairment.

    PubMed

    Harkin, T J; McGuinness, G; Goldring, R; Cohen, H; Parker, J E; Crane, M; Naidich, D P; Rom, W N

    1996-01-01

    High-resolution computed tomography (HRCT) scans have been advocated as providing greater sensitivity in detecting parenchymal opacities in asbestos-exposed individuals, especially in the presence of pleural fibrosis, and having excellent inter- and intraobserver reader interpretation. We compared the 1980 International Labor Organization (ILO) International Classification of the Radiographs of the Pneumoconioses for asbestosis with the high-resolution CT scan using a grid scoring system to better differentiate normal versus abnormal in the ILO boundary 0/1 to 1/0 chest roentgenograph. We studied 37 asbestos-exposed individuals using the ILO classification, HRCT grid scores, respiratory symptom questionnaires, pulmonary function tests, and bronchoalveolar lavage. We used Pearson correlation coefficients to evaluate the linear relationship between outcome variables and each roentgenographic method. The normal HRCT scan proved to be an excellent predictor of "normality," with pulmonary function values close to 100% for forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), total lung capacity (TLC), and carbon monoxide diffusing capacity (DLCO) and no increase in BAL inflammatory cells. Concordant HRCT/ILO abnormalities were associated with reduced FEV1/FVC ratio, reduced diffusing capacity, and alveolitis consistent with a definition of asbestosis. In our study, the ILO classification and HRCT grid scores were both excellent modalities for the assessment of asbestosis and its association with impaired physiology and alveolitis, with their combined use providing statistical associations with alveolitis and reduced diffusing capacity. PMID:8871331

  1. Speech impairment (adult)

    MedlinePlus

    Language impairment; Impairment of speech; Inability to speak; Aphasia; Dysarthria; Slurred speech; Dysphonia voice disorders ... disorders develop gradually, but anyone can develop a speech and ... suddenly, usually in a trauma. APHASIA Alzheimer disease ...

  2. Mild Cognitive Impairment

    MedlinePlus

    ... Research Portfolio (IADRP) AMP-AD Detecting Cognitive Impairment Database ... Mild cognitive impairment (MCI) is a condition in which people have more memory or other thinking problems than normal for their ...

  3. Speech impairment (adult)

    MedlinePlus

    Language impairment; Impairment of speech; Inability to speak; Aphasia; Dysarthria; Slurred speech; Dysphonia voice disorders ... Common speech and language disorders include: APHASIA Aphasia is ... understand or express spoken or written language. It commonly ...

  4. Pharmacokinetics of cefuroxime in normal and impaired renal function: comparison of high-pressure liquid chromatography and microbiological assays.

    PubMed Central

    Bundtzen, R W; Toothaker, R D; Nielson, O S; Madsen, P O; Welling, P G; Craig, W A

    1981-01-01

    The pharmacokinetics of cefuroxime were studied after a single dose of 750 mg was given intravenously to each of 21 male volunteers grouped according to their creatinine clearances; these clearances were 60 to 120, 20 to 59, and less than 20 ml/min per 1.73 m,2 respectively, for groups 1 (12 subjects), 2 (4 subjects), and 3 (5 subjects). Cefuroxime obeyed two-compartment model kinetics in all three groups. Initial serum levels of cefuroxime were approximately 130 microgram/ml in group 1 and 2 and 80 microgram/ml in group 3. the levels then declined rapidly for 0.5 to 1 h after injection. After that time, cefuroxime levels declined more slowly, and the elimination rate became monoexponential. The mean serum half-lives for cefuroxime in groups 2, 2, and 3 were 1.7, 2.4, and 17.6 h, respectively. Mean cefuroxime levels in serum were greater than 8 microgram/ml for 3 h in group 1, for 6 h in group 2, and for 30 h in group 3. Cumulative 24-h urinary excretion accounted for essentially 100% of the dose in group 1 and 2, and for 40% in group 3. Urine levels exceeded the minimal inhibitory concentration for susceptible organisms for more than 12 h in all groups. Cefuroxime distribution characteristics were independent of renal function. In patients with creatinine clearances less than 20 ml/min per 1.73 m2, doses of cefuroxime needs to be reduced. A microbiological disk diffusion assay and a high-pressure liquid chromatography assay for cefuroxime yielded statistically identical results, except for serum levels in uremic patients (group 3). PMID:7247369

  5. High-mobility group box 1 impairs airway epithelial barrier function through the activation of the RAGE/ERK pathway

    PubMed Central

    HUANG, WUFENG; ZHAO, HAIJIN; DONG, HANGMING; WU, YUE; YAO, LIHONG; ZOU, FEI; CAI, SHAOXI

    2016-01-01

    Recent studies have indicated that high-mobility group box 1 protein (HMGB1) and the receptor for advanced glycation end-products (RAGE) contribute to the pathogenesis of asthma. However, whether the activation of the HMGB1/RAGE axis mediates airway epithelial barrier dysfunction remains unknown. Thus, the aim of this study was to examine the effects of HMGB1 and its synergistic action with interleukin (IL)-1β on airway epithelial barrier properties. We evaluated the effects of recombinant human HMGB1 alone or in combination with IL-1β on ionic and macromolecular barrier permeability, by culturing air-liquid interface 16HBE cells with HMGB1 to mimic the differentiated epithelium. Western blot analysis and immunofluorescence staining were utilized to examine the level and structure of major junction proteins, namely E-cadherin, β-catenin, occludin and claudin-1. Furthermore, we examined the effects of RAGE neutralizing antibodies and mitogen-activated protein kinase (MAPK) inhibitors on epithelial barrier properties in order to elucidate the mechanisms involved. HMGB1 increased FITC-dextran permeability, but suppressed epithelial resistance in a dose-and time-dependent manner. HMGB1-mediated barrier hyperpermeability was accompanied by a disruption of cell-cell contacts, the selective downregulation of occludin and claudin-1, and the redistribution of E-cadherin and β-catenin. HMGB1 in synergy with IL-1β induced a similar, but greater barrier hyperpermeability and induced the disruption of junction proteins. Furthermore, HMGB1 elicited the activation of the RAGE/extracellular signal-related kinase (ERK)1/2 signaling pathway, which correlated with barrier dysfunction in the 16HBE cells. Anti-RAGE antibody and the ERK1/2 inhibitor, U0126, attenuated the HMGB1-mediated changes in barrier permeability, restored the expression levels of occludin and claudin-1 and pevented the redistribution of E-cadherin and β-catenin. Taken together, the findings of our study

  6. High-mobility group box 1 impairs airway epithelial barrier function through the activation of the RAGE/ERK pathway.

    PubMed

    Huang, Wufeng; Zhao, Haijin; Dong, Hangming; Wu, Yue; Yao, Lihong; Zou, Fei; Cai, Shaoxi

    2016-05-01

    Recent studies have indicated that high-mobility group box 1 protein (HMGB1) and the receptor for advanced glycation end-products (RAGE) contribute to the pathogenesis of asthma. However, whether the activation of the HMGB1/RAGE axis mediates airway epithelial barrier dysfunction remains unknown. Thus, the aim of this study was to examine the effects of HMGB1 and its synergistic action with interleukin (IL)-1β on airway epithelial barrier properties. We evaluated the effects of recombinant human HMGB1 alone or in combination with IL-1β on ionic and macromolecular barrier permeability, by culturing air-liquid interface 16HBE cells with HMGB1 to mimic the differentiated epithelium. Western blot analysis and immunofluorescence staining were utilized to examine the level and structure of major junction proteins, namely E-cadherin, β-catenin, occludin and claudin-1. Furthermore, we examined the effects of RAGE neutralizing antibodies and mitogen-activated protein kinase (MAPK) inhibitors on epithelial barrier properties in order to elucidate the mechanisms involved. HMGB1 increased FITC-dextran permeability, but suppressed epithelial resistance in a dose- and time-dependent manner. HMGB1-mediated barrier hyperpermeability was accompanied by a disruption of cell-cell contacts, the selective downregulation of occludin and claudin-1, and the redistribution of E-cadherin and β-catenin. HMGB1 in synergy with IL-1β induced a similar, but greater barrier hyperpermeability and induced the disruption of junction proteins. Furthermore, HMGB1 elicited the activation of the RAGE/extracellular signal-related kinase (ERK)1/2 signaling pathway, which correlated with barrier dysfunction in the 16HBE cells. Anti-RAGE antibody and the ERK1/2 inhibitor, U0126, attenuated the HMGB1-mediated changes in barrier permeability, restored the expression levels of occludin and claudin-1 and pevented the redistribution of E-cadherin and β-catenin. Taken together, the findings of our study

  7. The Impaired Social Worker.

    ERIC Educational Resources Information Center

    Reamer, Frederic G.

    1992-01-01

    Discusses concept of the impaired professional; reviews research on various types of impairment (personality disorders, depression and other emotional problems, marital problems, and physical illness), prevalence and causes of impairment, and responses to it; and outlines model assessment and action plan for social workers who encounter an…

  8. ABE. The Hearing Impaired.

    ERIC Educational Resources Information Center

    Carver, L. Sue

    This handbook was written to help teachers of adult basic education (ABE) adapt their teaching methods for hearing impaired persons. Written in a narrative format, the guide covers the following topics: ABE for the hearing impaired, hints for working with the hearing impaired without an interpreter, peer pairing, interpreters in the classroom…

  9. Adapting for Impaired Patrons.

    ERIC Educational Resources Information Center

    Schuyler, Michael

    1999-01-01

    Describes how a library, with an MCI Corporation grant, approached the process of setting up computers for the visually impaired. Discusses preparations, which included hiring a visually-impaired user as a consultant and contacting the VIP (Visually Impaired Persons) group; equipment; problems with the graphical user interface; and training.…

  10. High glucose suppresses embryonic stem cell differentiation into neural lineage cells.

    PubMed

    Yang, Penghua; Shen, Wei-bin; Reece, E Albert; Chen, Xi; Yang, Peixin

    2016-04-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system. PMID:26940741

  11. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  12. Moderately Low Magnesium Intake Impairs Growth of Lean Body Mass in Obese-Prone and Obese-Resistant Rats Fed a High-Energy Diet

    PubMed Central

    Bertinato, Jesse; Lavergne, Christopher; Rahimi, Sophia; Rachid, Hiba; Vu, Nina A.; Plouffe, Louise J.; Swist, Eleonora

    2016-01-01

    The physical and biochemical changes resulting from moderately low magnesium (Mg) intake are not fully understood. Obesity and associated co-morbidities affect Mg metabolism and may exacerbate Mg deficiency and physiological effects. Male rats selectively bred for diet-induced obesity (OP, obese-prone) or resistance (OR, obese-resistant) were fed a high-fat, high-energy diet containing moderately low (LMg, 0.116 ± 0.001 g/kg) or normal (NMg, 0.516 ± 0.007 g/kg) Mg for 13 weeks. The growth, body composition, mineral homeostasis, bone development, and glucose metabolism of the rats were examined. OP and OR rats showed differences (p < 0.05) in many physical and biochemical measures regardless of diet. OP and OR rats fed the LMg diet had decreased body weight, lean body mass, decreased femoral size (width, weight, and volume), and serum Mg and potassium concentrations compared to rats fed the NMg diet. The LMg diet increased serum calcium (Ca) concentration in both rat strains with a concomitant decrease in serum parathyroid hormone concentration only in the OR strain. In the femur, Mg concentration was reduced, whereas concentrations of Ca and sodium were increased in both strains fed the LMg diet. Plasma glucose and insulin concentrations in an oral glucose tolerance test were similar in rats fed the LMg or NMg diets. These results show that a moderately low Mg diet impairs the growth of lean body mass and alters femoral geometry and mineral metabolism in OP and OR rats fed a high-energy diet. PMID:27136580

  13. Moderately Low Magnesium Intake Impairs Growth of Lean Body Mass in Obese-Prone and Obese-Resistant Rats Fed a High-Energy Diet.

    PubMed

    Bertinato, Jesse; Lavergne, Christopher; Rahimi, Sophia; Rachid, Hiba; Vu, Nina A; Plouffe, Louise J; Swist, Eleonora

    2016-01-01

    The physical and biochemical changes resulting from moderately low magnesium (Mg) intake are not fully understood. Obesity and associated co-morbidities affect Mg metabolism and may exacerbate Mg deficiency and physiological effects. Male rats selectively bred for diet-induced obesity (OP, obese-prone) or resistance (OR, obese-resistant) were fed a high-fat, high-energy diet containing moderately low (LMg, 0.116 ± 0.001 g/kg) or normal (NMg, 0.516 ± 0.007 g/kg) Mg for 13 weeks. The growth, body composition, mineral homeostasis, bone development, and glucose metabolism of the rats were examined. OP and OR rats showed differences (p < 0.05) in many physical and biochemical measures regardless of diet. OP and OR rats fed the LMg diet had decreased body weight, lean body mass, decreased femoral size (width, weight, and volume), and serum Mg and potassium concentrations compared to rats fed the NMg diet. The LMg diet increased serum calcium (Ca) concentration in both rat strains with a concomitant decrease in serum parathyroid hormone concentration only in the OR strain. In the femur, Mg concentration was reduced, whereas concentrations of Ca and sodium were increased in both strains fed the LMg diet. Plasma glucose and insulin concentrations in an oral glucose tolerance test were similar in rats fed the LMg or NMg diets. These results show that a moderately low Mg diet impairs the growth of lean body mass and alters femoral geometry and mineral metabolism in OP and OR rats fed a high-energy diet. PMID:27136580

  14. Females with angina pectoris have altered lipoprotein metabolism with elevated cholesteryl ester transfer protein activity and impaired high-density lipoproteins-associated antioxidant enzymes

    PubMed Central

    PARK, JUNGHO; KIM, JAE-RYONG; SHIN, DONG-GU; CHO, KYUNG-HYUN

    2012-01-01

    In order to investigate non-invasive biomarkers for angina pectoris (AP), we analyzed the lipid and protein composition in individual lipoproteins from females with angina pectoris (n=22) and age- and gender-matched controls (n=20). In the low-density lipoprotein (LDL) fraction, the triglycerides (TG) and protein content increased in the AP group compared to the control group. The AP group had lower total cholesterol (TC) and elevated TG in the high-density lipoprotein (HDL) fraction. In the AP group, cholesteryl ester transfer protein (CETP) activity was enhanced in HDL and LDL, while lecithin:cholesterol acyltransferase (LCAT) activity in HDL3 was almost depleted. Antioxidant activity was significantly decreased in the HDL3 fraction, with a decrease in the HDL2 particle size. In the HDL3 fraction, paraoxonase and platelet activating factor-acetylhydrolase (PAF-AH) activity were much lower and the levels of CETP and apoC-III were elevated in the AP group. The LDL from the AP group was more sensitive to cupric ion-mediated oxidation with faster mobility. In conclusion, the lipoprotein fractions in the AP group had impaired antioxidant activity and increased TG and apoC-III with structural and functional changes. PMID:22211242

  15. Polydatin Restores Endothelium-Dependent Relaxation in Rat Aorta Rings Impaired by High Glucose: A Novel Insight into the PPARβ-NO Signaling Pathway.

    PubMed

    Wu, Yang; Xue, Lai; Du, Weimin; Huang, Bo; Tang, Cuiping; Liu, Changqing; Qiu, Hongmei; Jiang, Qingsong

    2015-01-01

    Polydatin, a natural component from Polygonum Cuspidatum, has important therapeutic effects on metabolic syndrome. A novel therapeutic strategy using polydatin to improve vascular function has recently been proposed to treat diabetes-related cardiovascular complications. However, the biological role and molecular basis of polydatin's action on vascular endothelial cells (VECs)-mediated vasodilatation under diabetes-related hyperglycemia condition remain elusive. The present study aimed to assess the contribution of polydatin in restoring endothelium-dependent relaxation and to determine the details of its underlying mechanism. By measuring endothelium-dependent relaxation, we found that acetylcholine-induced vasodilation was impaired by elevated glucose (55 mmol/L); however, polydatin (1, 3, 10 μmol/L) could restore the relaxation in a dose-dependent manner. Polydatin could also improve the histological damage to endothelial cells in the thoracic aorta. Polydatin's effects were mediated via promoting the expression of endothelial NO synthase (eNOS), enhancing eNOS activity and decreasing the inducible NOS (iNOS) level, finally resulting in a beneficial increase in NO release, which probably, at least in part, through activation of the PPARβ signaling pathway. The results provided a novel insight into polydatin action, via PPARβ-NO signaling pathways, in restoring endothelial function in high glucose conditions. The results also indicated the potential utility of polydatin to treat diabetes related cardiovascular diseases. PMID:25941823

  16. Secretin receptor-knockout mice are resistant to high-fat diet-induced obesity and exhibit impaired intestinal lipid absorption.

    PubMed

    Sekar, Revathi; Chow, Billy K C

    2014-08-01

    Secretin, a classical gastrointestinal hormone released from S cells in response to acid and dietary lipid, regulates pleiotropic physiological functions, such as exocrine pancreatic secretion and gastric motility. Subsequent to recently proposed revisit on secretin's metabolic effects, we have confirmed lipolytic actions of secretin during starvation and discovered a hormone-sensitive lipase-mediated mechanistic pathway behind. In this study, a 12 wk high-fat diet (HFD) feeding to secretin receptor-knockout (SCTR(-/-)) mice and their wild-type (SCTR(+/+)) littermates revealed that, despite similar food intake, SCTR(-/-) mice gained significantly less weight (SCTR(+/+): 49.6±0.9 g; SCTR(-/-): 44.7±1.4 g; P<0.05) and exhibited lower body fat content. These SCTR(-/-) mice have corresponding alleviated HFD-associated hyperleptinemia and improved glucose/insulin tolerance. Further analyses indicate that SCTR(-/-) have impaired intestinal fatty acid absorption while having similar energy expenditure and locomotor activity. Reduced fat absorption in the intestine is further supported by lowered postprandial triglyceride concentrations in circulation in SCTR(-/-) mice. In jejunal cells, transcript and protein levels of a key fat absorption regulator, cluster of differentiation 36 (CD36), was reduced in knockout mice, while transcript of Cd36 and fatty-acid uptake in isolated enterocytes was stimulated by secretin. Based on our findings, a novel positive feedback pathway involving secretin and CD36 to enhance intestinal lipid absorption is being proposed. PMID:24769669

  17. Obesity Resistance and Enhanced Insulin Sensitivity in Ahnak-/- Mice Fed a High Fat Diet Are Related to Impaired Adipogenesis and Increased Energy Expenditure

    PubMed Central

    Kim, Yo Na; Shin, Sun Mee; Roh, Kyung Jin; Lee, Seo Hyun; Sohn, Mira; Cho, Soo Young; Lee, Sang Hyuk; Ko, Chang-Yong; Kim, Han-Sung; Choi, Cheol Soo; Bae, Yun Soo; Seong, Je Kyung

    2015-01-01

    Objective Recent evidence has suggested that AHNAK expression is altered in obesity, although its role in adipose tissue development remains unclear. The objective of this study was to determine the molecular mechanism by which Ahnak influences adipogenesis and glucose homeostasis. Design We investigated the in vitro role of AHNAK in adipogenesis using adipose-derived mesenchymal stem cells (ADSCs) and C3H10T1/2 cells. AHNAK-KO male mice were fed a high-fat diet (HFD; 60% calories from fat) and examined for glucose and insulin tolerances, for body fat compositions, and by hyperinsulinemic-euglycemic clamping. Energy expenditures were assessed using metabolic cages and by measuring the expression levels of genes involved in thermogenesis in white or brown adipose tissues. Results Adipogenesis in ADSCs was impaired in AHNAK-KO mice. The loss of AHNAK led to decreased BMP4/SMAD1 signaling, resulting in the downregulation of key regulators of adipocyte differentiation (P<0.05). AHNAK directly interacted with SMAD1 on the Pparγ2 promoter. Concomitantly, HFD-fed AHNAK-KO mice displayed reduced hepatosteatosis and improved metabolic profiles, including improved glucose tolerance (P<0.001), enhanced insulin sensitivity (P<0.001), and increased energy expenditure (P<0.05), without undergoing alterations in food intake and physical activity. Conclusion AHNAK plays a crucial role in body fat accumulation by regulating adipose tissue development via interaction with the SMAD1 protein and can be involved in metabolic homeostasis. PMID:26466345

  18. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    PubMed

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. PMID:27354540

  19. Decreased Osteoclastogenesis and High Bone Mass in Mice with Impaired Insulin Clearance Due to Liver-Specific Inactivation to CEACAM1

    PubMed Central

    Huang, S.; Kaw, M.; Harris, M.T.; Ebraheim, N.; McInerney, M.F.; Najjar, S.M.; Lecka-Czernik, B.

    2010-01-01

    Type 2 diabetes is associated with normal-to-higher bone mineral density (BMD) and increased rate of fracture. Hyperinsulinemia and hyperglycemia may affect bone mass and quality in the diabetic skeleton. In order to dissect the effect of hyperinsulinemia from the hyperglycemic impact on bone homeostasis, we have analyzed L-SACC1 mice, a murine model of impaired insulin clearance in liver causing hyperinsulinemia and insulin resistance without fasting hyperglycemia. Adult L-SACC1 mice exhibit significantly higher trabecular and cortical bone mass, attenuated bone formation as measured by dynamic histomorphometry, and reduced number of osteoclasts. Serum levels of bone formation (BALP) and bone resorption markers (TRAP5b and CTX) are decreased by approximately 50%. The L-SACC1 mutation in the liver affects myeloid cell lineage allocation in the bone marrow: the (CD3−CD11b−CD45R−) population of osteoclast progenitors is decreased by 40% and the number of (CD3−CD11b−CD45R+) B-cell progenitors is increased by 60%. L-SACC1 osteoclasts express lower levels of c-fos and RANK and their differentiation is impaired. In vitro analysis corroborated a negative effect of insulin on osteoclast recruitment, maturation and the expression levels of c-fos and RANK transcripts. Although bone formation is decreased in L-SACC1 mice, the differentiation potential and expression of the osteoblast-specific gene markers in L-SACC1-derived mesenchymal stem cells (MSC) remain unchanged as compared to the WT. Interestingly, however MSC from L-SACC1 mice exhibit increased PPARγ2 and decreased IGF-1 transcript levels. These data suggest that high bone mass in L-SACC1 animals results, at least in part, from a negative regulatory effect of insulin on bone resorption and formation, which leads to decreased bone turnover. Because low bone turnover contributes to decreased bone quality and an increased incidence of fractures, studies on L-SACC1 mice may advance our understanding of altered

  20. Specific language impairment.

    PubMed

    Kamhi, Alan G; Clark, Mary Kristen

    2013-01-01

    The acquisition of language is one of the most important achievements in young children, in part because most children appear to acquire language with little effort. Some children are not so fortunate, however. There is a large group of children who also have difficulty learning language, but do not have obvious neurological, cognitive, sensory, emotional, or environmental deficits. Clinicians often refer to these children as language disordered or language impaired. Researchers tend to refer to these children as specific language impaired (SLI). Children with SLI have intrigued researchers for many years because there is no obvious reason for their language learning difficulties. SLI has been found to be an enduring condition that begins in early childhood and often persists into adolescence and adulthood. The language problems of children with SLI are not limited to spoken language; they also affect reading and writing and thus much of academic learning. Knowledge of the characteristics of SLI should aid physicians, pediatricians, and early childhood specialists to identify these children during the preschool years and ensure that they receive appropriate services. With high-quality language intervention and literacy instruction, most children with SLI should be able to perform and function adequately in school and beyond. PMID:23622167

  1. Memory Impairment in Children with Language Impairment

    ERIC Educational Resources Information Center

    Baird, Gillian; Dworzynski, Katharina; Slonims, Vicky; Simonoff, Emily

    2010-01-01

    Aim: The aim of this study was to assess whether any memory impairment co-occurring with language impairment is global, affecting both verbal and visual domains, or domain specific. Method: Visual and verbal memory, learning, and processing speed were assessed in children aged 6 years to 16 years 11 months (mean 9y 9m, SD 2y 6mo) with current,…

  2. Working memory impairment in calcineurin knock-out mice is associated with alterations in synaptic vesicle cycling and disruption of high-frequency synaptic and network activity in prefrontal cortex.

    PubMed

    Cottrell, Jeffrey R; Levenson, Jonathan M; Kim, Sung Hyun; Gibson, Helen E; Richardson, Kristen A; Sivula, Michael; Li, Bing; Ashford, Crystle J; Heindl, Karen A; Babcock, Ryan J; Rose, David M; Hempel, Chris M; Wiig, Kjesten A; Laeng, Pascal; Levin, Margaret E; Ryan, Timothy A; Gerber, David J

    2013-07-01

    Working memory is an essential component of higher cognitive function, and its impairment is a core symptom of multiple CNS disorders, including schizophrenia. Neuronal mechanisms supporting working memory under normal conditions have been described and include persistent, high-frequency activity of prefrontal cortical neurons. However, little is known about the molecular and cellular basis of working memory dysfunction in the context of neuropsychiatric disorders. To elucidate synaptic and neuronal mechanisms of working memory dysfunction, we have performed a comprehensive analysis of a mouse model of schizophrenia, the forebrain-specific calcineurin knock-out mouse. Biochemical analyses of cortical tissue from these mice revealed a pronounced hyperphosphorylation of synaptic vesicle cycling proteins known to be necessary for high-frequency synaptic transmission. Examination of the synaptic vesicle cycle in calcineurin-deficient neurons demonstrated an impairment of vesicle release enhancement during periods of intense stimulation. Moreover, brain slice and in vivo electrophysiological analyses showed that loss of calcineurin leads to a gene dose-dependent disruption of high-frequency synaptic transmission and network activity in the PFC, correlating with selective working memory impairment. Finally, we showed that levels of dynamin I, a key presynaptic protein and calcineurin substrate, are significantly reduced in prefrontal cortical samples from schizophrenia patients, extending the disease relevance of our findings. Our data provide support for a model in which impaired synaptic vesicle cycling represents a critical node for disease pathologies underlying the cognitive deficits in schizophrenia. PMID:23825400

  3. Driver Compensation: Impairment or Improvement?

    PubMed

    Young, Richard A

    2015-12-01

    Strayer et al.'s conclusion that their "cognitive distraction scale" for auditory-vocal tasks indicates "significant impairments to driving" is not supported by their data. Additional analysis demonstrates that slower brake reaction times during auditory-vocal tasks were fully compensated for by longer following distances to the lead car. Naturalistic driving data demonstrate that cellular conversation decreases crash risk, the opposite of the article's assumption. Hence, the scale's internal and external validities for indicating driving impairment are highly questionable. PMID:26534851

  4. Early identification of brain injury in infants with hypoxic ischemic encephalopathy at high risk for severe impairments: accuracy of MRI performed in the first days of life

    PubMed Central

    2014-01-01

    Background Despite therapeutic hypothermia 30-70% of newborns with moderate or severe hypoxic ischemic encephalopathy will die or survive with significant long-term impairments. Magnetic resonance imaging (MRI) in the first days of life is being used for early identification of these infants and end of life decisions are relying more and more on it. The purpose of this study was to evaluate how MRI performed around day 4 of life correlates with the ones obtained in the second week of life in infants with hypoxic-ischemic encephalopathy (HIE) treated with hypothermia. Methods Prospective observational cohort study between April 2009 and July 2011. Consecutive newborns with HIE evaluated for therapeutic hypothermia were included. Two sequential MR studies were performed: an •early’ study around the 4th day of life and a •late’ study during the second week of life. MRI were assessed and scored by two neuroradiologists who were blinded to the clinical condition of the infants. Results Forty-eight MRI scans were obtained in the 40 newborns. Fifteen infants underwent two sequential MR scans. The localization, extension and severity of hypoxic-ischemic injury in early and late scans were highly correlated. Hypoxic-ischemic injury scores from conventional sequences (T1/T2) in the early MRI correlated with the scores of the late MRI (Spearman ρ = 0.940; p < .001) as did the scores between diffusion-weighted images in early scans and conventional images in late MR studies (Spearman ρ = 0.866; p < .001). There were no significant differences in MR images between the two sequential scans. Conclusions MRI in the first days of life may be a useful prognostic tool for clinicians and can help parents and neonatologist in medical decisions, as it highly depicts hypoxic-ischemic brain injury seen in scans performed around the second week of life. PMID:25005267

  5. High testosterone levels and sensitivity to acute stress in perpetrators of domestic violence with low cognitive flexibility and impairments in their emotional decoding process: a preliminary study.

    PubMed

    Romero-Martínez, Angel; Lila, Marisol; Sariñana-González, Patricia; González-Bono, Esperanza; Moya-Albiol, Luis

    2013-01-01

    Hormonal and neuropsychological impairment in intimate partner violence (IPV) perpetrators could play a role in domestic violence. For characterizing whether there is a specific psychobiological response to stress, participants who had previously been jailed for IPV and controls were compared for testosterone and cortisol levels, tested for 2D:4D ratio (as an indicator of masculinization), and given several trait questionnaires and neuropsychological tests related to executive functions and theory of mind. After performing the Trier Social Stress Test (TSST), IPV perpetrators experienced decreases in salivary testosterone (T) levels, a moderate worsening of mood, slight anxiety, and a salivary cortisol (C) level increase. Moreover, high basal T was related with high levels of anger and anxiety and worse mood. However, that basal mood does not significantly alter T levels in response to stress. Nonetheless, controls experienced smaller changes in T and larger changes in C and psychological mood. With respect to neuropsychological and cognitive empathic features, IPV perpetrators showed poorer executive performance and emotional recognition than controls. In addition, deficits in both neuropsychological domains were positively associated. Regarding emotional empathy, IPV perpetrators showed higher levels of personal distress than controls. The 2D:4D ratio was lower in IPV perpetrators than in controls. Moreover, only in the former a smaller 2D:4D ratio was related to large increases in T in response to stress and poor emotional recognition. Together with social aspects involved in IPV, differences in psychobiological variables and their relationships could play a relevant role in the onset and perpetuation of violent behavior. PMID:23677518

  6. Impaired myocardial function does not explain reduced left ventricular filling and stroke volume at rest or during exercise at high altitude.

    PubMed

    Stembridge, Mike; Ainslie, Philip N; Hughes, Michael G; Stöhr, Eric J; Cotter, James D; Tymko, Michael M; Day, Trevor A; Bakker, Akke; Shave, Rob

    2015-11-15

    Impaired myocardial systolic contraction and diastolic relaxation have been suggested as possible mechanisms contributing to the decreased stroke volume (SV) observed at high altitude (HA). To determine whether intrinsic myocardial performance is a limiting factor in the generation of SV at HA, we assessed left ventricular (LV) systolic and diastolic mechanics and volumes in 10 healthy participants (aged 32 ± 7; mean ± SD) at rest and during exercise at sea level (SL; 344 m) and after 10 days at 5,050 m. In contrast to SL, LV end-diastolic volume was ∼19% lower at rest (P = 0.004) and did not increase during exercise despite a greater untwisting velocity. Furthermore, resting SV was lower at HA (∼17%; 60 ± 10 vs. 70 ± 8 ml) despite higher LV twist (43%), apical rotation (115%), and circumferential strain (17%). With exercise at HA, the increase in SV was limited (12 vs. 22 ml at SL), and LV apical rotation failed to augment. For the first time, we have demonstrated that EDV does not increase upon exercise at high altitude despite enhanced in vivo diastolic relaxation. The increase in LV mechanics at rest may represent a mechanism by which SV is defended in the presence of a reduced EDV. However, likely because of the higher LV mechanics at rest, no further increase was observed up to 50% peak power. Consequently, although hypoxia does not suppress systolic function per se, the capacity to increase SV through greater deformation during submaximal exercise at HA is restricted. PMID:25749445

  7. Moderate doses of conjugated linoleic acid reduce fat gain, maintain insulin sensitivity without impairing inflammatory adipose tissue status in mice fed a high-fat diet

    PubMed Central

    2010-01-01

    Background The enrichment of diet with nutrients with potential benefits on body composition is a strategy to combat obesity. Conjugated linoleic acid (CLA) due its beneficial effects on body composition and inflammatory processes becomes an interesting candidate, since the promotion and impairment of obesity is closely linked to a low-grade inflammation state of adipose tissue. Previously we reported the favourable effects of moderate doses of CLA mixture on body composition and inflammatory status of adipose tissue in mice fed a standard-fat diet. In the present study we assessed the potential beneficial effects of CLA mixture (cis-9, trans-11 and trans-10, cis-12, 50:50) in mice fed a high-fat diet. Methods Two doses were assayed: 0.15 g (CLA1) and 0.5 g CLA/kg body weight (CLA2) for the first 30 days of the study and then animals received a double amount for another 35 days. Results The lowest dose (CLA1) had minor effects on body composition, plasma parameters and gene expression. However, a clear reduction in fat accumulation was achieved by CLA2, accompanied by a reduction in leptin, adiponectin and non-esterified fatty acids (NEFA) plasma concentrations. Insulin sensitivity was maintained despite a slight increase in fasting glucose and insulin plasma concentrations. The study of gene expression both in adipocytes and in the stromal vascular fraction (SVF) suggested that CLA may reduce either the infiltration of macrophages in adipose tissue or the induction of expression of pro-inflammatory cytokines. Conclusion In conclusion, the use of moderate doses of an equimolar mix of the two main CLA isomers reduces body fat content, improves plasma lipid profile, maintains insulin sensitivity (despite a moderate degree of hyperinsulinaemia) without the promotion of inflammatory markers in adipose tissue of mice fed a high-fat diet. PMID:20180981

  8. Identification of Adults with Developmental Language Impairments

    ERIC Educational Resources Information Center

    Fidler, Lesley J.; Plante, Elena; Vance, Rebecca

    2011-01-01

    Purpose: To assess the utility of a wide range of language measures (phonology, morphology, syntax, and semantics) for the identification of adults with developmental language impairment. Method: Measures were administered to 3 groups of adults, each representing a population expected to demonstrate high levels of language impairment, and to…

  9. Ascorbate Reverses High Glucose- and RAGE-induced Leak of the Endothelial Permeability Barrier

    PubMed Central

    Meredith, M. Elizabeth; Qu, Zhi-chao; May, James M.

    2014-01-01

    High glucose concentrations due to diabetes increase leakage of plasma constituents across the endothelial permeability barrier. We sought to determine whether vitamin C, or ascorbic acid (ascorbate), could reverse such high glucose-induced increases in endothelial barrier permeability. Human umbilical vein endothelial cells and two brain endothelial cell lines cultured at 25 mM glucose showed increases in endothelial barrier permeability to radiolabeled inulin compared to cells cultured at 5 mM glucose. Acute loading of the cells for 30–60 min with ascorbate before the permeability assay prevented the high glucose-induced increase in permeability and decreased basal permeability at 5 mM glucose. High glucose-induced barrier leakage was mediated largely by activation of the receptor for advanced glycation end products (RAGE), since it was prevented by RAGE blockade and mimicked by RAGE ligands. Intracellular ascorbate completely prevented RAGE ligand-induced increases in barrier permeability. The high glucose-induced increase in endothelial barrier permeability was also acutely decreased by several cell-penetrant antioxidants, suggesting that at least part of the ascorbate effect could be due to its ability to act as an antioxidant. PMID:24472555

  10. Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis

    PubMed Central

    Kunz, Sabine; Gardeström, Per; Pesquet, Edouard; Kleczkowski, Leszek A.

    2015-01-01

    Simple sugars, like glucose (Glc) and sucrose (Suc), act as signals to modulate the expression of hundreds of genes in plants. Frequently, however, it remains unclear whether this regulation is induced by the sugars themselves or by their derivatives generated in the course of carbohydrate (CH) metabolism. In the present study, we tested the relevance of different CH metabolism and allocation pathways affecting expression patterns of five selected sugar-responsive genes (bZIP63, At5g22920, BT2, MGD2, and TPS9) in Arabidopsis thaliana. In general, the expression followed diurnal changes in the overall sugar availability. However, under steady growth conditions, this response was hardly impaired in the mutants for CH metabolizing/ transporting proteins (adg1, sex1, sus1-4, sus5/6, and tpt2), including also hexokinase1 (HXK1) loss- and gain-of-function plants—gin2.1 and oe3.2, respectively. In addition, transgenic plants carrying pbZIP63::GUS showed no changes in reporter-gene-expression when grown on sugar under steady-state conditions. In contrast, short-term treatments of agar-grown seedlings with 1% Glc or Suc induced pbZIP63::GUS repression, which became even more apparent in seedlings grown in liquid media. Subsequent analyses of liquid-grown gin2.1 and oe3.2 seedlings revealed that Glc -dependent regulation of the five selected genes was not affected in gin2.1, whereas it was enhanced in oe3.2 plants for bZIP63, At5g22920, and BT2. The sugar treatments had no effect on ATP/ADP ratio, suggesting that changes in gene expression were not linked to cellular energy status. Overall, the data suggest that HXK1 does not act as Glc sensor controlling bZIP63, At5g22920, and BT2 expression, but it is nevertheless required for the production of a downstream metabolic signal regulating their expression. PMID:26236323

  11. Impaired natriuretic response to high-NaCl diet plus aldosterone infusion in mice overexpressing human CD39, an ectonucleotidase (NTPDase1)

    PubMed Central

    Zhang, Yue; Robson, Simon C.; Morris, Kaiya L.; Heiney, Kristina M.; Dwyer, Karen M.; Ecelbarger, Carolyn M.

    2015-01-01

    Extracellular nucleotides acting through P2 receptors facilitate natriuresis. To define how purinergic mechanisms are involved in sodium homeostasis, we used transgenic (TG) mice that globally overexpress human CD39 (hCD39, NTPDase1), an ectonucleotidase that hydrolyzes extracellular ATP/ADP to AMP, resulting in an altered extracellular purine profile. On a high-sodium diet (HSD, 3.5% Na+), urine volume and serum sodium were significantly higher in TG mice but sodium excretion was unaltered. Furthermore, TG mice showed an attenuated fall in urine aldosterone with HSD. Western blot analysis revealed significantly lower densities (∼40%) of the β-subunit of the epithelial sodium channel (ENaC) in medulla, and the major band (85-kDa) of γ-ENaC in TG mice cortex. To evaluate aldosterone-independent differences, in a second experiment, aldosterone was clamped by osmotic minipump at 20 μg/day, and mice were fed either an HSD or a low-sodium diet (LSD, 0.03% Na+). Here, no differences in urine volume or osmolality, or serum aldosterone were found, but TG mice showed a modest, yet significant impairment in late natriuresis (days 3 and 4). Several major sodium transporters or channel subunits were differentially expressed between the genotypes. HSD caused a downregulation of Na-Cl cotransporter (NCC) in both genotypes; and had higher cortical levels of NCC, Na-K-ATPase (α-1 subunit), and α- and γ-ENaC. The Na-K-2Cl cotransporter (NKCC2) was downregulated by HSD in wild-type mice, but it increased in TG mice. In summary, our data support the concept that extracellular nucleotides facilitate natriuresis; they also reveal an aldosterone-independent downregulation of major renal sodium transporters and channel subunits by purinergic signaling. PMID:25877509

  12. Vibrotactile Presentation of Musical Notes to the Glabrous Skin for Adults with Normal Hearing or a Hearing Impairment: Thresholds, Dynamic Range and High-Frequency Perception.

    PubMed

    Hopkins, Carl; Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary; Ginsborg, Jane

    2016-01-01

    Presentation of music as vibration to the skin has the potential to facilitate interaction between musicians with hearing impairments and other musicians during group performance. Vibrotactile thresholds have been determined to assess the potential for vibrotactile presentation of music to the glabrous skin of the fingertip, forefoot and heel. No significant differences were found between the thresholds for sinusoids representing notes between C1 and C6 when presented to the fingertip of participants with normal hearing and with a severe or profound hearing loss. For participants with normal hearing, thresholds for notes between C1 and C6 showed the characteristic U-shape curve for the fingertip, but not for the forefoot and heel. Compared to the fingertip, the forefoot had lower thresholds between C1 and C3, and the heel had lower thresholds between C1 and G2; this is attributed to spatial summation from the Pacinian receptors over the larger contactor area used for the forefoot and heel. Participants with normal hearing assessed the perception of high-frequency vibration using 1s sinusoids presented to the fingertip and were found to be more aware of transient vibration at the beginning and/or end of notes between G4 and C6 when stimuli were presented 10dB above threshold, rather than at threshold. An average of 94% of these participants reported feeling continuous vibration between G4 and G5 with stimuli presented 10dB above threshold. Based on the experimental findings and consideration of health effects relating to vibration exposure, a suitable range of notes for vibrotactile presentation of music is identified as being from C1 to G5. This is more limited than for human hearing but the fundamental frequencies of the human voice, and the notes played by many instruments, lie within it. However, the dynamic range might require compression to avoid the negative effects of amplitude on pitch perception. PMID:27191400

  13. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments

    PubMed Central

    del Mar, Nobel; von Buttlar, Xinyu; Yu, Angela S.; Guley, Natalie H.; Reiner, Anton; Honig, Marcia G.

    2015-01-01

    Diffuse axonal injury is thought to be the basis of the functional impairments stemming from mild traumatic brain injury. To examine how axons are damaged by traumatic events, such as motor vehicle accidents, falls, sports activities, or explosive blasts, we have taken advantage of the spinal cord with its extensive white matter tracts. We developed a closed-body model of spinal cord injury in mice whereby high-pressure air blasts targeted to lower thoracic vertebral levels produce tensile, compressive, and shear forces within the parenchyma of the spinal cord and thereby cause extensive axonal injury. Markers of cytoskeletal integrity showed that spinal cord axons exhibited three distinct pathologies: microtubule breakage, neurofilament compaction, and calpain-mediated spectrin breakdown. The dorsally situated axons of the corticospinal tract primarily exhibited microtubule breakage, whereas all three pathologies were common in the lateral and ventral white matter. Individual axons typically demonstrated only one of the three pathologies during the first 24 h after blast injury, suggesting that the different perturbations are initiated independently of one another. For the first few days after blast, neurofilament compaction was frequently accompanied by autophagy, and subsequent to that, by the fragmentation of degenerating axons. TuJ1 immunolabeling and mice with YFP-reporter labeling each revealed more extensive microtubule breakage than did βAPP immunolabeling, raising doubts about the sensitivity of this standard approach for assessing axonal injury. Although motor deficits were mild and largely transient, some aspects of motor function gradually worsened over several weeks, suggesting that a low level of axonal degeneration continued past the initial wave. Our model can help provide further insight into how to intervene in the processes by which initial axonal damage culminates in axonal degeneration, to improve outcomes after traumatic injury. Importantly

  14. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments.

    PubMed

    del Mar, Nobel; von Buttlar, Xinyu; Yu, Angela S; Guley, Natalie H; Reiner, Anton; Honig, Marcia G

    2015-09-01

    Diffuse axonal injury is thought to be the basis of the functional impairments stemming from mild traumatic brain injury. To examine how axons are damaged by traumatic events, such as motor vehicle accidents, falls, sports activities, or explosive blasts, we have taken advantage of the spinal cord with its extensive white matter tracts. We developed a closed-body model of spinal cord injury in mice whereby high-pressure air blasts targeted to lower thoracic vertebral levels produce tensile, compressive, and shear forces within the parenchyma of the spinal cord and thereby cause extensive axonal injury. Markers of cytoskeletal integrity showed that spinal cord axons exhibited three distinct pathologies: microtubule breakage, neurofilament compaction, and calpain-mediated spectrin breakdown. The dorsally situated axons of the corticospinal tract primarily exhibited microtubule breakage, whereas all three pathologies were common in the lateral and ventral white matter. Individual axons typically demonstrated only one of the three pathologies during the first 24h after blast injury, suggesting that the different perturbations are initiated independently of one another. For the first few days after blast, neurofilament compaction was frequently accompanied by autophagy, and subsequent to that, by the fragmentation of degenerating axons. TuJ1 immunolabeling and mice with YFP-reporter labeling each revealed more extensive microtubule breakage than did βAPP immunolabeling, raising doubts about the sensitivity of this standard approach for assessing axonal injury. Although motor deficits were mild and largely transient, some aspects of motor function gradually worsened over several weeks, suggesting that a low level of axonal degeneration continued past the initial wave. Our model can help provide further insight into how to intervene in the processes by which initial axonal damage culminates in axonal degeneration, to improve outcomes after traumatic injury. Importantly

  15. Shooting history and presence of high-frequency hearing impairment in swedish hunters: A cross-sectional internet-based observational study.

    PubMed

    Honeth, Louise; Ström, Peter; Ploner, Alexander; Bagger-Sjöbäck, Dan; Rosenhall, Ulf; Nyrén, Olof

    2015-01-01

    The aim of this cross-sectional study among Swedish hunters was to examine the association between shooting history and presence of high-frequency hearing impairment (HFHI). All hunters registered with an e-mail address in the membership roster of the Swedish Hunters' Association were invited via e-mail to a secure website with a questionnaire and an Internet-based audiometry test. Associations, expressed as prevalence ratio (PR), were multivariately modelled using Poisson regression. The questionnaire was answered by 1771 hunters (age 11-91 years), and 202 of them also completed the audiometry test. Subjective severe hearing loss was reported by 195/1771 (11%), while 23/202 (11%) exhibited HFHI upon testing with Internet-based audiometry. As many as 328/1771 (19%) had never used hearing protection during hunting. In the preceding 5 years, 785/1771 (45%), had fired >6 unprotected gunshots with hunting rifle calibers. The adjusted PR of HFHI when reporting 1-6 such shots, relative to 0, was 1.5 [95% confidence interval (CI) 1.1-2.1; P = 0.02]. We could not verify any excessive HFHI prevalence among 89 hunters reporting unprotected exposure to such gunshot noise >6 times. Nor did the total number of reported rifle shots seem to matter. These findings support the notion of a wide variation in individual susceptibility to impulse noise; that significant sound energy, corresponding to unprotected noise from hunting rifle calibers, seems to be required; that susceptible individuals may sustain irreversible damage to the inner ear from just one or a few shots; and that use of hearing protection should be encouraged from the first shot with such weapons. PMID:26356369

  16. Vibrotactile Presentation of Musical Notes to the Glabrous Skin for Adults with Normal Hearing or a Hearing Impairment: Thresholds, Dynamic Range and High-Frequency Perception

    PubMed Central

    Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary; Ginsborg, Jane

    2016-01-01

    Presentation of music as vibration to the skin has the potential to facilitate interaction between musicians with hearing impairments and other musicians during group performance. Vibrotactile thresholds have been determined to assess the potential for vibrotactile presentation of music to the glabrous skin of the fingertip, forefoot and heel. No significant differences were found between the thresholds for sinusoids representing notes between C1 and C6 when presented to the fingertip of participants with normal hearing and with a severe or profound hearing loss. For participants with normal hearing, thresholds for notes between C1 and C6 showed the characteristic U-shape curve for the fingertip, but not for the forefoot and heel. Compared to the fingertip, the forefoot had lower thresholds between C1 and C3, and the heel had lower thresholds between C1 and G2; this is attributed to spatial summation from the Pacinian receptors over the larger contactor area used for the forefoot and heel. Participants with normal hearing assessed the perception of high-frequency vibration using 1s sinusoids presented to the fingertip and were found to be more aware of transient vibration at the beginning and/or end of notes between G4 and C6 when stimuli were presented 10dB above threshold, rather than at threshold. An average of 94% of these participants reported feeling continuous vibration between G4 and G5 with stimuli presented 10dB above threshold. Based on the experimental findings and consideration of health effects relating to vibration exposure, a suitable range of notes for vibrotactile presentation of music is identified as being from C1 to G5. This is more limited than for human hearing but the fundamental frequencies of the human voice, and the notes played by many instruments, lie within it. However, the dynamic range might require compression to avoid the negative effects of amplitude on pitch perception. PMID:27191400

  17. Shooting history and presence of high-frequency hearing impairment in Swedish hunters: A cross-sectional internet-based observational study

    PubMed Central

    Honeth, Louise; Ström, Peter; Ploner, Alexander; Bagger-Sjöbäck, Dan; Rosenhall, Ulf; Nyrén, Olof

    2015-01-01

    The aim of this cross-sectional study among Swedish hunters was to examine the association between shooting history and presence of high-frequency hearing impairment (HFHI). All hunters registered with an e-mail address in the membership roster of the Swedish Hunters’ Association were invited via e-mail to a secure website with a questionnaire and an Internet-based audiometry test. Associations, expressed as prevalence ratio (PR), were multivariately modelled using Poisson regression. The questionnaire was answered by 1771 hunters (age 11-91 years), and 202 of them also completed the audiometry test. Subjective severe hearing loss was reported by 195/1771 (11%), while 23/202 (11%) exhibited HFHI upon testing with Internet-based audiometry. As many as 328/1771 (19%) had never used hearing protection during hunting. In the preceding 5 years, 785/1771 (45%), had fired >6 unprotected gunshots with hunting rifle calibers. The adjusted PR of HFHI when reporting 1-6 such shots, relative to 0, was 1.5 [95% confidence interval (CI) 1.1-2.1; P = 0.02]. We could not verify any excessive HFHI prevalence among 89 hunters reporting unprotected exposure to such gunshot noise >6 times. Nor did the total number of reported rifle shots seem to matter. These findings support the notion of a wide variation in individual susceptibility to impulse noise; that significant sound energy, corresponding to unprotected noise from hunting rifle calibers, seems to be required; that susceptible individuals may sustain irreversible damage to the inner ear from just one or a few shots; and that use of hearing protection should be encouraged from the first shot with such weapons. PMID:26356369

  18. Chronic High Dose Intraperitoneal Bisphenol A (BPA) Induces Substantial Histological and Gene Expression Alterations in Rat Penile Tissue Without Impairing Erectile Function

    PubMed Central

    Kovanecz, Istvan; Gelfand, Robert; Masouminia, Maryam; Gharib, Sahir; Segura, Denesse; Vernet, Dolores; Rajfer, Jacob; Li, De-Kun; Liao, Chun Yang; Kannan, Kurunthachalam; Gonzalez-Cadavid, Nestor F.

    2014-01-01

    dose of BPA developed hypogonadism and a corporal histo- and molecular-pathology usually associated with ED, no changes were detected in erectile function as measured by EFS and cavernosometry. Further studies using alternate routes of BPA administration with various doses and length of exposure are needed to expand these findings. Kovanecz I, Gelfand R, Masouminia M, Gharib S, Segura D, Vernet D, Rajfer J, Li DK, Liao CY, Kannan K, and Gonzalez-Cadavid NF. Chronic high dose intraperitoneal bisphenol A (BPA) induces substantial histological and gene expression alterations in rat penile tissue without impairing erectile function. PMID:24134786

  19. Using Early Standardized Language Measures to Predict Later Language and Early Reading Outcomes in Children at High Risk for Language-Learning Impairments

    ERIC Educational Resources Information Center

    Flax, Judy F.; Realpe-Bonilla, Teresa; Roesler, Cynthia; Choudhury, Naseem; Benasich, April

    2009-01-01

    The aim of the study was to examine the profiles of children with a family history (FH+) of language-learning impairments (LLI) and a control group of children with no reported family history of LLI (FH-) and identify which language constructs (receptive or expressive) and which ages (2 or 3 years) are related to expressive and receptive language…

  20. Education for the Hearing Impaired (Auditorily Impaired).

    ERIC Educational Resources Information Center

    World Federation of the Deaf, Rome (Italy).

    Education for the hearing impaired is discussed in nine conference papers. J. N. Howarth describes "The Education of Deaf Children in Schools for Hearing Pupils in the United Kingdom" and A.I.Dyachkov of the U.S.S.R. outlines Didactical Principles of Educating the Deaf in the Light of their Rehabilitation Goal." Seven papers from Poland are also…

  1. Development or Impairment?

    ERIC Educational Resources Information Center

    Hakansson, Gisela

    2010-01-01

    Joanne Paradis' Keynote Article on bilingualism and specific language impairment (SLI) is an impressive overview of research in language acquisition and language impairment. Studying different populations is crucial both for theorizing about language acquisition mechanisms, and for practical purposes of diagnosing and supporting children with…

  2. Speaking Rates of Turkish Prelingually Hearing-Impaired Children

    ERIC Educational Resources Information Center

    Girgin, M. Cem

    2007-01-01

    The aim of training for the hearing impaired children in auditory oral approach is to develop good speaking abilities. However profoundly hearing-impaired children show a wide range of spoken language abilities, some having highly intelligible speeches while others have unintelligible ones. This is due to hearing-impaired children's speech…

  3. The Impact of Visual Impairment on Perceived School Climate

    ERIC Educational Resources Information Center

    Schade, Benjamin; Larwin, Karen H.

    2015-01-01

    The current investigation examines whether visual impairment has an impact on a student's perception of the school climate. Using a large national sample of high school students, perceptions were examined for students with vision impairment relative to students with no visual impairments. Three factors were examined: self-reported level of…

  4. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    SciTech Connect

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced

  5. Are fetal growth impairment and preterm birth causally related to child attention problems and ADHD? Evidence from a comparison between high-income and middle-income cohorts

    PubMed Central

    Murray, Elizabeth; Pearson, Rebecca; Fernandes, Michelle; Santos, Iná S; Barros, Fernando C; Victora, Cesar G; Stein, Alan; Matijasevich, Alicia

    2016-01-01

    Background Cross-cohort comparison is an established method for improving causal inference. This study compared 2 cohorts, 1 from a high-income country and another from a middle-income country, to (1) establish whether birth exposures may play a causal role in the development of childhood attention problems; and (2) identify whether confounding structures play a different role in parent-reported attention difficulties compared with attention deficit hyperactivity disorder (ADHD) diagnoses. Methods Birth exposures included low birth weight (LBW), small-for-gestational age (SGA), small head circumference (HC) and preterm birth (PTB)). Outcomes of interest were attention difficulties (Strengths and Difficulties Questionnaire, SDQ) and ADHD (Development and Well-Being Assessment, DAWBA). Associations between exposures and outcomes were compared between 7-year-old children from the Avon Longitudinal Study of Parents and Children (ALSPAC) in the UK (N=6849) and the 2004 Pelotas cohort in Brazil (N=3509). Results For attention difficulties (SDQ), the pattern of association with birth exposures was similar between cohorts: following adjustment, attention difficulties were associated with SGA (OR=1.59, 95% CI 1.20 to 2.19) and small HC (OR=1.64, 95% CI 1.11 to 2.41) in ALSPAC and SGA (OR=1.35, 95% CI 1.04 to 1.75) in Pelotas. For ADHD, however, the pattern of association following adjustment differed markedly between cohorts. In ALSPAC, ADHD was associated with LBW (OR=2.29, 95% CI 1.09 to 4.80) and PTB (OR=2.33, 95% CI 1.23 to 4.42). In the Pelotas cohort, however, ADHD was associated with SGA (OR=1.69, 95% CI 1.02 to 2.82). Conclusions The findings suggest that fetal growth impairment may play a causal role in the development of attention difficulties in childhood, as similar associations were identified across both cohorts. Confounding structures, however, appear to play a greater role in determining whether a child meets the full diagnostic criteria for ADHD. PMID

  6. Infection with a Mouse-Adapted Strain of the 2009 Pandemic Virus Causes a Highly Severe Disease Associated with an Impaired T Cell Response

    PubMed Central

    Meunier, Isabelle; Morisseau, Olivier; Garneau, Émilie; Marois, Isabelle; Cloutier, Alexandre; Richter, Martin V.

    2015-01-01

    Despite a relatively low fatality rate, the 2009 H1N1 pandemic virus differed from other seasonal viruses in that it caused mortality and severe pneumonia in the young and middle-aged population (18–59 years old). The mechanisms underlying this increased disease severity are still poorly understood. In this study, a human isolate of the 2009 H1N1 pandemic virus was adapted to the mouse (MAp2009). The pathogenicity of the MAp2009 virus and the host immune responses were evaluated in the mouse model and compared to the laboratory H1N1 strain A/Puerto Rico/8/1934 (PR8). The MAp2009 virus reached consistently higher titers in the lungs over 14 days compared to the PR8 virus, and caused severe disease associated with high morbidity and 85% mortality rate, contrasting with the 0% death rate in the PR8 group. During the early phase of infection, both viruses induced similar pathology in the lungs. However, MAp2009-induced lung inflammation was sustained until the end of the study (day 14), while there was no sign of inflammation in the PR8-infected group by day 10. Furthermore, at day 3 post-infection, MAp2009 induced up to 10- to 40-fold more cytokine and chemokine gene expression, respectively. More importantly, the numbers of CD4+ T cells and virus-specific CD8+ T cells were significantly lower in the lungs of MAp2009-infected mice compared to PR8-infected mice. Interestingly, there was no difference in the number of dendritic cells in the lung and in the draining lymph node. Moreover, mice infected with PR8 or MAp2009 had similar numbers of CCR5 and CXCR3-expressing T cells, suggesting that the impaired T cell response was not due to a lack of chemokine responsiveness or priming of T cells. This study demonstrates that a mouse-adapted virus from an isolate of the 2009 pandemic virus interferes with the adaptive immune response leading to a more severe disease. PMID:26381265

  7. Cortical Visual Impairment: New Directions

    PubMed Central

    Good, William V.

    2009-01-01

    Cortical visual impairment is the leading cause of bilateral low vision in children in the U.S., yet very little research is being done to find new diagnostic measures and treatments. Dr. Velma Dobson's pioneering work on visual assessments of developmentally delayed children stands out as highly significant in this field. Future research will assess new diagnostic measures, including advanced imaging techniques. In addition, research will evaluate methods to prevent, treat, and rehabilitate infants and children afflicted with this condition. PMID:19417710

  8. Impairment in Non-Word Repetition: A Marker for Language Impairment or Reading Impairment?

    ERIC Educational Resources Information Center

    Baird, Gillian; Slonims, Vicky; Simonoff, Emily; Dworzynski, Katharina

    2011-01-01

    Aim: A deficit in non-word repetition (NWR), a measure of short-term phonological memory proposed as a marker for language impairment, is found not only in language impairment but also in reading impairment. We evaluated the strength of association between language impairment and reading impairment in children with current, past, and no language…

  9. Cooperation between HMGA1, PDX-1, and MafA is Essential for Glucose-Induced Insulin Transcription in Pancreatic Beta Cells

    PubMed Central

    Arcidiacono, Biagio; Iiritano, Stefania; Chiefari, Eusebio; Brunetti, Francesco S.; Gu, Guoqiang; Foti, Daniela Patrizia; Brunetti, Antonio

    2014-01-01

    The high-mobility group AT-hook 1 (HMGA1) protein is a nuclear architectural factor that can organize chromatin structures. It regulates gene expression by controlling the formation of stereospecific multiprotein complexes called “enhanceosomes” on the AT-rich regions of target gene promoters. Previously, we reported that defects in HMGA1 caused decreased insulin receptor expression and increased susceptibility to type 2 diabetes mellitus in humans and mice. Interestingly, mice with disrupted HMGA1 gene had significantly smaller islets and decreased insulin content in their pancreata, suggesting that HMGA1 may have a direct role in insulin transcription and secretion. Herein, we investigate the regulatory roles of HMGA1 in insulin transcription. We provide evidence that HMGA1 physically interacts with PDX-1 and MafA, two critical transcription factors for insulin gene expression and beta-cell function, both in vitro and in vivo. We then show that the overexpression of HMGA1 significantly improves the transactivating activity of PDX-1 and MafA on human and mouse insulin promoters, while HMGA1 knockdown considerably decreased this transactivating activity. Lastly, we demonstrate that high glucose stimulus significantly increases the binding of HMGA1 to the insulin (INS) gene promoter, suggesting that HMGA1 may act as a glucose-sensitive element controlling the transcription of the INS gene. Together, our findings provide evidence that HMGA1, by regulating PDX-1- and MafA-induced transactivation of the INS gene promoter, plays a critical role in pancreatic beta-cell function and insulin production. PMID:25628604

  10. Hearing or speech impairment - resources

    MedlinePlus

    Resources - hearing or speech impairment ... The following organizations are good resources for information on hearing impairment or speech impairment: Alexander Graham Bell Association for the Deaf and Hard of Hearing -- www.agbell. ...

  11. The endocytosis gene END3 is essential for the glucose-induced rapid decline of small vesicles in the extracellular fraction in Saccharomyces cerevisiae

    PubMed Central

    Giardina, Bennett J.; Stein, Kathryn; Chiang, Hui-Ling

    2014-01-01

    Background Protein secretion is a fundamental process in all living cells. Gluconeogenic enzymes are secreted when Saccharomyces cerevisiae are grown in media containing low glucose. However, when cells are transferred to media containing high glucose, they are internalized. We investigated whether or not gluconeogenic enzymes were associated with extracellular vesicles in glucose-starved cells. We also examined the role that the endocytosis gene END3 plays in the internalization of extracellular proteins/vesicles in response to glucose addition. Methods Transmission electron microscopy was performed to determine the presence of extracellular vesicles in glucose-starved wild-type cells and the dynamics of vesicle transport in cells lacking the END3 gene. Proteomics was used to identify extracellular proteins that associated with these vesicles. Results Total extracts prepared from glucose-starved cells consisted of about 95% small vesicles (30–50 nm) and 5% large structures (100–300 nm). The addition of glucose caused a rapid decline in small extracellular vesicles in wild-type cells. However, most of the extracellular vesicles were still observed in cells lacking the END3 gene following glucose replenishment. Proteomics was used to identify 72 extracellular proteins that may be associated with these vesicles. Gluconeogenic enzymes fructose-1,6-bisphosphatase, malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase, as well as non-gluconeogenic enzymes glyceraldehyde-3-phosphate dehydrogenase and cyclophilin A, were distributed in the vesicle-enriched fraction in total extracts prepared from cells grown in low glucose. Distribution of these proteins in the vesicle-enriched fraction required the integrity of the membranes. When glucose was added to glucose-starved wild-type cells, levels of extracellular fructose-1,6-bisphosphatase, malate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxykinase, glyceraldehyde-3-phosphate

  12. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/β-Catenin-Dependent Transcription of p21(cip1).

    PubMed

    McClelland Descalzo, Darcie L; Satoorian, Tiffany S; Walker, Lauren M; Sparks, Nicole R L; Pulyanina, Polina Y; Zur Nieden, Nicole I

    2016-07-12

    Embryonic stem cells (ESCs), which are derived from a peri-implantation embryo, are routinely cultured in medium containing diabetic glucose (Glc) concentrations. While pregnancy in women with pre-existing diabetes may result in small embryos, whether such high Glc levels affect ESC growth remains uncovered. We show here that long-term exposure of ESCs to diabetic Glc inhibits their proliferation, thereby mimicking in vivo findings. Molecularly, Glc exposure increased oxidative stress and activated Forkhead box O3a (FOXO3a), promoting increased expression and activity of the ROS-removal enzymes superoxide dismutase and catalase and the cell-cycle inhibitors p21(cip1) and p27(kip1). Diabetic Glc also promoted β-catenin nuclear localization and the formation of a complex with FOXO3a that localized to the promoters of Sod2, p21(cip1), and potentially p27(kip1). Our results demonstrate an adaptive response to increases in oxidative stress induced by diabetic Glc conditions that promote ROS removal, but also result in a decrease in proliferation. PMID:27411103

  13. Impairments to Vision

    MedlinePlus

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  14. Kids' Quest: Vision Impairment

    MedlinePlus

    ... important job. Â Return to Steps World-Wide Web Search Kids Health: What is Vision Impairment What ... for the Blind (AFB) created the Braille Bug web site to teach sighted children about braille, and ...

  15. Mild Cognitive Impairment

    MedlinePlus

    ... other people their age. This condition is called mild cognitive impairment, or MCI. People with MCI can take care of themselves and do their normal activities. MCI memory problems may include Losing things often Forgetting ...

  16. Hearing Impairment and Retirement

    PubMed Central

    Fischer, Mary E; Cruickshanks, Karen J; Pinto, Alex; Klein, Barbara E K; Klein, Ronald; Dalton, Dayna S

    2013-01-01

    BACKGROUND Many factors influence the decision to retire including age, insurance and pension availability along with physical and mental health. Hearing impairment may be one such factor. PURPOSE The purpose of this study was to compare the 15 year retirement rate among subjects with and without hearing impairment. RESEARCH DESIGN Prospective, population-based study STUDY SAMPLE Subjects were participants in the Epidemiology of Hearing Loss Study (EHLS), a longitudinal investigation of age-related hearing loss. Participants who were working full- or part-time in 1993–1995 were included (n=1410, mean age=57.8 years). DATA COLLECTION AND ANALYSIS Data from four EHLS phases (1993–1995, 1998–2000, 2003–2005, and 2009–2010) were analyzed in 2010–2012. Hearing impairment was defined as a pure tone threshold average (at 0.5,1,2 and 4 kHz) greater than 25 dB HL in the worse ear. Employment status was determined at each of the four phases. Kaplan-Meier estimates of the cumulative incidence of retirement were calculated and Cox discrete-time modeling was used to determine the effect of hearing impairment on the rate of retirement. RESULTS The cumulative incidence of retirement was significantly (p < 0.02) higher in those with a hearing impairment (77%) compared to those without a hearing impairment (74%). After adjustment for age, gender, self-reported health, and history of chronic disease, there was no significant difference in the rate of retirement between those with and without a hearing impairment (Hazard Ratio (HR) = 0.9, 95% Confidence Interval (CI) = 0.7, 1.1). Similar results were observed when hearing aid users were excluded, when hearing impairment was based on the better ear thresholds, and when analyses were restricted to those less than 65 years of age and working full-time at baseline. Participants with a hearing impairment were less likely to state that the main reason for retirement was that the time seemed right. CONCLUSIONS Hearing impairment

  17. [Cognitive impairment in Parkinson's disease].

    PubMed

    Tachibana, Hisao

    2013-01-01

    Cognitive impairment is a common finding in Parkinson's disease (PD), even in the early stages. The concept of mild cognitive impairment (MCI) in PD was recently formalized with diagnosis being reached after impairments in neuropsychological tasks become significant in at least one domain. The brain profile of cognitive deficits involves executive functions (e. g., planning, set shifting, set maintenance, problem solving), attention and memory function. Memory deficits are characterized by impairments in delayed recall, temporal ordering and conditional associate learning. PD patients demonstrate relatively preserved recognition. Visuospatial dysfunctions have also been reported, while language is largely preserved. The existence of two distinct mild cognitive syndromes has also been suggested. One of these affects mainly the frontostriatal executive deficits that are modulated by dopaminergic medications and by a genetically determined level of prefrontal cortex dopamine release. The other affects the more-posterior cortical abilities, such as visuospatial and memory functions, and is suggested to be associated with an increased risk for conversion to dementia. Cross-sectional studies have commonly reported dementia in 20-30% of PD patients, although the 8-year cumulative incidence of dementia may be as high as 78%. Factors associated with dementia in PD are age at onset, age at the time of examination, akinetic-rigid form PD, depression, hallucination, rapid eye movement sleep behavioral disorder and severe olfactory deficits. Clinical features generally involve the same type of deficits as those found in MCI patients, which are more severe and more extensive. The phenomenology of the dementia syndrome is similar to that seen in dementia with Lewy bodies, and clinicopathological correlation studies have revealed varying results with regard to neurochemical deficits and the pathological substrate underlying cognitive impairment and dementia. Early cognitive

  18. Mandatory notification of impaired doctors.

    PubMed

    Beran, R G

    2014-12-01

    Mandatory reporting of impaired doctors is compulsory in Australasia. Australian Health Practitioner Regulation Agency guidelines for notification claim high benchmark though the Royal Australasian College of Surgeons and the Royal Australasian College of Physicians suggest they still obstruct doctors seeking help. Western Australia excludes mandatory reporting of practitioner-patients. This study examines reporting, consequences and international experiences with notification. Depressed doctors avoid diagnosis and treatment, fearing consequences, yet are more prone to marital problems, substance dependence and needing psychotherapy. South African research confirms isolation of impaired doctors and delayed seeking help with definable characteristics of those at risk. New Zealand data acknowledge: errors occur; questionable contribution from mandatory reporting; issues concerning competence assessment; favouring reporting to senior colleagues or self-intervention to compliance with mandatory reporting. UK found an anaesthetist guilty of professional misconduct for not reporting and sanctioned doctors regarding Harold Shipman. Australians are reluctant to report, fearing legalistic intrusion into care. Australian research confirmed definable characteristics for doctors with psychiatric illness or alcohol abuse. Exposure to legal medicine evokes personal disenchantment for doctors involved. Medicine poses barriers for impaired doctors. Spanish and UK doctors do not use general practitioners and may have suboptimal care. US and European doctors self-medicate using samples. US drug-dependent doctors also prescribe for spouses. Junior doctors are losing empathy with the profession. UK doctors favour private care, avoiding public scrutiny. NZ and Brazil created specific services for doctors, which appear effective. Mandatory reporting may be counterproductive requiring reappraisal. PMID:25442756

  19. HEARING IMPAIRMENT IN CHILDREN

    PubMed Central

    Kohlmoos, H. W.

    1953-01-01

    Abnormal behavior in children may frequently be caused by impairment of hearing. Early detection of the impairment and of the cause are of utmost importance, not only to prevent irreversible changes where that is possible, but to permit early beginning of special training for children who are permanently deaf. Recent studies have shown that deafness of infants may follow rubella in the mother in early pregnancy, or kernicterus caused by Rh incompatibilities. Measures to control these disorders are being investigated. Adequate and careful treatment of diseases of the nose, as well as surgical drainage of infected ears when necessary, are important factors in the prevention of hearing loss in children. PMID:13009516

  20. Loss of Mammal-specific Tectorial Membrane Component Carcinoembryonic Antigen Cell Adhesion Molecule 16 (CEACAM16) Leads to Hearing Impairment at Low and High Frequencies*

    PubMed Central

    Kammerer, Robert; Rüttiger, Lukas; Riesenberg, Rainer; Schäuble, Constanze; Krupar, Rosemarie; Kamp, Annegret; Sunami, Kishiko; Eisenried, Andreas; Hennenberg, Martin; Grunert, Fritz; Bress, Andreas; Battaglia, Sebastiano; Schrewe, Heinrich; Knipper, Marlies; Schneider, Marlon R.; Zimmermann, Wolfgang

    2012-01-01

    The vertebrate-restricted carcinoembryonic antigen gene family evolves extremely rapidly. Among their widely expressed members, the mammal-specific, secreted CEACAM16 is exceptionally well conserved and specifically expressed in the inner ear. To elucidate a potential auditory function, we inactivated murine Ceacam16 by homologous recombination. In young Ceacam16−/− mice the hearing threshold for frequencies below 10 kHz and above 22 kHz was raised. This hearing impairment progressed with age. A similar phenotype is observed in hearing-impaired members of Family 1070 with non-syndromic autosomal dominant hearing loss (DFNA4) who carry a missense mutation in CEACAM16. CEACAM16 was found in interdental and Deiters cells and was deposited in the tectorial membrane of the cochlea between postnatal days 12 and 15, when hearing starts in mice. In cochlear sections of Ceacam16−/− mice tectorial membranes were significantly more often stretched out as compared with wild-type mice where they were mostly contracted and detached from the outer hair cells. Homotypic cell sorting observed after ectopic cell surface expression of the carboxyl-terminal immunoglobulin variable-like N2 domain of CEACAM16 indicated that CEACAM16 can interact in trans. Furthermore, Western blot analyses of CEACAM16 under reducing and non-reducing conditions demonstrated oligomerization via unpaired cysteines. Taken together, CEACAM16 can probably form higher order structures with other tectorial membrane proteins such as α-tectorin and β-tectorin and influences the physical properties of the tectorial membrane. Evolution of CEACAM16 might have been an important step for the specialization of the mammalian cochlea, allowing hearing over an extended frequency range. PMID:22544735

  1. Black Adzuki Bean (Vigna angularis) Extract Protects Pancreatic β Cells and Improves Glucose Tolerance in C57BL/6J Mice Fed a High-Fat Diet.

    PubMed

    Kim, Mina; Kim, Dae Keun; Cha, Youn-Soo

    2016-05-01

    Adzuki beans have long been cultivated as a food and folk medicine in East Asia. In this study, we investigated the effect of black adzuki bean (BAB) extract on pancreatic cells and determined their mechanism of action in impaired glucose tolerance in an animal model of type 2 diabetes. In addition, we performed functional gene annotation analysis to identify genes related to the regulation of glucose metabolism and insulin response. Treatment of pancreatic β cells with BAB extract (0.2 mg/mL) led to tolerance of the high glucose-induced glucotoxicity, resulting in a similar viability as cells maintained in normal glucose media. In addition, dietary supplementation with BAB extract significantly (P < .05) improved hyperglycemia and homeostasis model assessment of insulin resistance index (HOMA-IR) in high-fat diet-induced glucose-intolerant obese C57BL/6J mice. Our results suggest that BAB extract ameliorates hyperglycemia and glucose intolerance, and lowers HOMA-IR by regulating insulin secretion and response, and by maintaining the integrity of pancreatic β cells exposed to hyperglycemic conditions. PMID:27070495

  2. Specific Language Impairment

    MedlinePlus

    ... to distinguish between children who are struggling to learn a new language and children with true language impairments. After studying a large group of Hispanic children who speak English as a second language, NIDCD-funded researchers have developed a dual ...

  3. Cognitive Impairment After Stroke

    PubMed Central

    Gauba, Charu; Chaudhari, Dinesh

    2015-01-01

    Background: Vascular dementia is extremely common and contributes to stroke-associated morbidity and mortality. The study of vascular dementia may help to plan preventive interventions. Aims: To study the frequency of cognitive impairment after stroke in a series of consecutive patients with acute stroke, along with factors which influence it. Methods: Fifty adults with acute infarct or hemorrhage (as seen on computed tomography of the brain) were included in the study. The National Institute of Health Stroke Scale (NIHSS) and Barthel’s Index scores were done. Cognitive testing was done by PGI Battery of Brain Dysfunction (PGI-BBD) and Short Form of the Informant Questionnaire on Cognitive Decline in the Elderly (SIQCODE). Statistical analysis was by Student’s t-test, Chi-square test, Fisher’s exact test, and Mann-Whitney U test. Results: Mean age of patients was 61.82 years; males and ischemic strokes predominated. Dementia was seen in 30%, cognitive impairment no dementia (CIND) in 42%, and normal cognition in 28% patients. Factors associated with vascular cognitive impairment included old age, male sex, low education, hemorrhages, recurrent or severe stroke, silent infarcts, severe cortical atrophy, and left hemispheric or subcortical involvement. Conclusions: Up to 72% of patients have some form of cognitive impairment after a stroke. Secondary stroke prevention could reduce the incidence of vascular dementia. PMID:26543693

  4. A novel recurrent CHEK2 Y390C mutation identified in high-risk Chinese breast cancer patients impairs its activity and is associated with increased breast cancer risk.

    PubMed

    Wang, N; Ding, H; Liu, C; Li, X; Wei, L; Yu, J; Liu, M; Ying, M; Gao, W; Jiang, H; Wang, Y

    2015-10-01

    Certain predisposition factors such as BRCA1/2 and CHEK2 mutations cause familial breast cancers that occur early. In China, breast cancers are diagnosed at relatively younger age, and higher percentage of patients are diagnosed before 40 years, than that in Caucasians. However, the prevalence for BRCA1/2 mutations and reported CHEK2 germline mutations is much lower or absent in Chinese population, arguing for the need to study other novel risk alleles among Chinese breast cancer patients. In this study, we searched for CHEK2 mutations in young, high-risk breast cancer patients in China and detected a missense variant Y390C (1169A > G) in 12 of 150 patients (8.0%) and 2 in 250 healthy controls (0.8%, P = 0.0002). Four of the Y390C carriers have family history of breast and/or ovarian cancer. In patients without family history, Y390C carriers tend to develop breast cancer early, before 35 years of age. The codon change at Y390, a highly conserved residue located in CHEK2's kinase domain, appeared to significantly impair CHEK2 activity. Functional analysis suggested that the CHEK2 Y390C mutation is deleterious as judged by the mutant protein's inability to inactivate CDC25A or to activate p53 after DNA damage. Cells expressing the CHEK2 Y390C variant showed impaired p21 and Puma expression after DNA damage, and the deregulated cell cycle checkpoint and apoptotic response may help conserve mutations and therefore contribute to tumorigeneisis. Taken together, our results not only identified a novel CHEK2 allele that is associated with cancer families and confers increased breast cancer risk, but also showed that this allele significantly impairs CHEK2 function during DNA damage response. Our results provide further insight on how the function of such an important cancer gene may be impaired by existing mutations to facilitate tumorigenesis. It also offers a new subject for breast cancer monitoring, prevention and management. PMID:25619829

  5. Frailty and the risk of cognitive impairment.

    PubMed

    Searle, Samuel D; Rockwood, Kenneth

    2015-01-01

    Aging occurs as a series of small steps, first causing cellular damage and then affecting tissues and organs. This is also true in the brain. Frailty, a state of increased risk due to accelerated deficit accumulation, is robustly a risk factor for cognitive impairment. Community-based autopsy studies show that frail individuals have brains that show multiple deficits without necessarily demonstrating cognitive impairment. These facts cast a new light on the growing number of risk factors for cognitive impairment, suggesting that, on a population basis, most health deficits can be associated with late-life cognitive impairment. The systems mechanism by which things that are bad for the body are likely to be bad for the brain can be understood like this: the burden of health deficits anywhere indicates impaired ability to withstand or repair endogenous and environmental damage. This in turn makes additional damage more likely. If true, this suggests that a life course approach to preventing cognitive impairment is desirable. Furthermore, conducting studies in highly selected, younger, healthier individuals to provide 'proof of concept' information is now common. This strategy might exclude the very circumstances that are required for disease expression in the people in whom dementia chiefly occurs (that is, older adults who are often in poor health). PMID:26240611

  6. "They Think They Know What's Best for Me": An Interpretative Phenomenological Analysis of the Experience of Inclusion and Support in High School for Vision-Impaired Students with Albinism

    ERIC Educational Resources Information Center

    Thurston, Mhairi

    2014-01-01

    The challenges of social inclusion and access to the curriculum facing students with visual impairment in schools are well documented. The refreshed UK Vision Strategy (2013) seeks to improve education for students with vision impairment. In order to do this, it is important to understand how students with visual impairment experience education.…

  7. Impairment of ovarian function and associated health-related abnormalities are attributable to low social status in premenopausal monkeys and not mitigated by a high-isoflavone soy diet

    PubMed Central

    Kaplan, J.R.; Chen, H.; Appt, S.E.; Lees, C.J.; Franke, A.A.; Berga, S.L.; Wilson, M.E.; Manuck, S.B.; Clarkson, T.B.

    2010-01-01

    BACKGROUND Psychological stress may impair premenopausal ovarian function and contribute to risk for chronic disease. Soy isoflavones may also influence ovarian function and affect health. Here, we report the effects of a psychological stressor (subordinate social status) and dietary soy on reproductive function and related health indices in female monkeys. We hypothesized that reproductive compromise and adverse health outcomes would be induced in subordinate when compared with dominant monkeys and be mitigated by exposure to soy. METHODS Subjects were 95 adult cynomolgus monkeys (Macaca fascicularis) housed in social groups of five or six. Animals consumed a soy-free, animal protein-based diet during an 8-month Baseline phase and then, during a 32-month Treatment phase, consumed either the baseline diet or an identical diet that substituted high-isoflavone soy protein for animal protein. RESULTS Across more than 1200 menstrual cycles, subordinate monkeys consistently exhibited ovarian impairment [increased cycle length (P < 0.02) and variability (P < 0.02) and reduced levels of progesterone (P < 0.04) and estradiol (P < 0.04)]. Subordinate status was confirmed behaviorally and was associated with elevated cortisol (P < 0.04) and relative osteopenia (P < 0.05). Consumption of the soy diet had no significant effects. CONCLUSIONS (i) Psychological stress adversely affects ovarian function and related health indices in a well-accepted animal model of women's health; (ii) Similar effects may extend to women experiencing reproductive impairment of psychogenic origin; (iii) soy protein and isoflavones neither exacerbate nor mitigate the effects of an adverse psychosocial environment; and (iv) this study was limited by an inability to investigate the genetic and developmental determinants of social status. PMID:20956266

  8. Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: mitoprotection against Ca²⁺-induced mitochondrial impairment.

    PubMed

    Nuñez-Figueredo, Yanier; Pardo-Andreu, Gilberto L; Ramírez-Sánchez, Jeney; Delgado-Hernández, René; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Naal, Zeki; Muller, Alexandre Pastoris; Portela, Luis Valmor; Souza, Diogo O

    2014-10-01

    Because mitochondrial oxidative stress and impairment are important mediators of neuronal damage in neurodegenerative diseases and in brain ischemia/reperfusion, in the present study, we evaluated the antioxidant and mitoprotective effect of a new promising neuroprotective molecule, JM-20, in mitochondria and synaptosomes isolated from rat brains. JM-20 inhibited succinate-mediated H₂O₂ generation in both mitochondria and synaptosomes incubated in depolarized (high K(+)) medium at extremely low micromolar concentration and with identical IC₅₀ values of 0.91 μM. JM-20 also repressed glucose-induced H₂O₂ generation stimulated by rotenone or by antimycin A in synaptosomes incubated in high sodium-polarized medium at extremely low IC₅₀ values of 0.395 μM and 2.452 μM, respectively. JM-20 was unable to react directly with H₂O₂ or with superoxide anion radicals but displayed a cathodic reduction peak at -0.71V, which is close to that of oxygen (-0.8V), indicating high electron affinity. JM-20 also inhibited uncoupled respiration in mitochondria or synaptosomes and was a more effective inhibitor in the presence of the respiratory substrates glutamate/malate than in the presence of succinate. JM-20 also prevented Ca(2+)-induced mitochondrial permeability transition pore opening, membrane potential dissipation and cytochrome c release, which are key pathogenic events during stroke. This molecule also prevented Ca(2+) influx into synaptosomes and mitochondria; the former effect was a consequence of the latter because JM-20 inhibition followed the patterns of carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP), which is a classic mitochondrial uncoupler. Because the mitochondrion is considered an important source and target of neuronal cell death signaling after an ischemic insult, the antioxidant and protective effects of JM-20 against the deleterious effects of Ca(2+) observed at the mitochondrial level in this study may endow this molecule

  9. Grammatical Impairments in PPA

    PubMed Central

    Thompson, Cynthia K.; Mack, Jennifer E.

    2015-01-01

    Background Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. Aims We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. Main Contribution PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Conclusions Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real

  10. Hearing or speech impairment - resources

    MedlinePlus

    ... resources for information on hearing impairment or speech impairment: Alexander Graham Bell Association for the Deaf and Hard of Hearing -- www.agbell.org American Speech-Language-Hearing Association -- www.asha.org/public Center for ...

  11. Chemistry for the Visually Impaired.

    ERIC Educational Resources Information Center

    Ratliff, Judy L.

    1997-01-01

    Discusses modifications to general education or introductory chemistry courses that allow visually impaired students to participate productively. Describes a strategy for teaching about elements and density, and the construction of a conductivity tester for visually impaired students. (JRH)

  12. The Implicit Function as Squashing Time Model: A Novel Parallel Nonlinear EEG Analysis Technique Distinguishing Mild Cognitive Impairment and Alzheimer's Disease Subjects with High Degree of Accuracy

    PubMed Central

    Buscema, Massimo; Capriotti, Massimiliano; Bergami, Francesca; Babiloni, Claudio; Rossini, Paolo; Grossi, Enzo

    2007-01-01

    Objective. This paper presents the results obtained using a protocol based on special types of artificial neural networks (ANNs) assembled in a novel methodology able to compress the temporal sequence of electroencephalographic (EEG) data into spatial invariants for the automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects. With reference to the procedure reported in our previous study (2007), this protocol includes a new type of artificial organism, named TWIST. The working hypothesis was that compared to the results presented by the workgroup (2007); the new artificial organism TWIST could produce a better classification between AD and MCI. Material and methods. Resting eyes-closed EEG data were recorded in 180 AD patients and in 115 MCI subjects. The data inputs for the classification, instead of being the EEG data, were the weights of the connections within a nonlinear autoassociative ANN trained to generate the recorded data. The most relevant features were selected and coincidently the datasets were split in the two halves for the final binary classification (training and testing) performed by a supervised ANN. Results. The best results distinguishing between AD and MCI were equal to 94.10% and they are considerable better than the ones reported in our previous study (∼92%) (2007). Conclusion. The results confirm the working hypothesis that a correct automatic classification of MCI and AD subjects can be obtained by extracting spatial information content of the resting EEG voltage by ANNs and represent the basis for research aimed at integrating spatial and temporal information content of the EEG. PMID:18309366

  13. Neurological Impairment: Nomenclature and Consequences.

    ERIC Educational Resources Information Center

    Spears, Catherine E.; Weber, Robert E.

    Neurological impairment as discussed includes a range of disabilities referred to as neurological impairment: minimal brain dysfunction/damage, developmental disability, perceptual handicap, learning disability, hyperkinetic behavioral syndrome, and others. Defined are causes of neurological impairment and methods of diagnosis. Symptoms…

  14. The impaired radiologist.

    PubMed

    Magnavita, N; Magnavita, G; Bergamaschi, A

    2010-08-01

    The concept of the "impaired physician" is an oxymoron. Physicians are by definition bearers of health, which can lead to overlooking the possibility of them contracting an illness that reduces their diagnostic and therapeutic abilities, with a consequent danger to their patients' health. The clinical reasons for which a radiologist may constitute a danger to patients can be divided into two categories: infectious blood-borne diseases, which can be transmitted to the patient during interventional radiology procedures; and neurodegenerative and psychiatric disorders, including alcohol and drug abuse, which temporarily or permanently impair the faculty of judgement. All radiologists have a duty to periodically verify their own state of health and seek help as soon as possible when they fear it may be a danger. This individual responsibility towards one's own patients is flanked by the health and safety requirements provided by European regulations for radiologists who are employers, directors or department heads. The occupational health physician plays a key role in identifying and managing the impaired radiologist. PMID:20221712

  15. Diabetes and Cognitive Impairment.

    PubMed

    Zilliox, Lindsay A; Chadrasekaran, Krish; Kwan, Justin Y; Russell, James W

    2016-09-01

    Both type 1 (T1DM) and type 2 diabetes mellitus (T2DM) have been associated with reduced performance on multiple domains of cognitive function and with evidence of abnormal structural and functional brain magnetic resonance imaging (MRI). Cognitive deficits may occur at the very earliest stages of diabetes and are further exacerbated by the metabolic syndrome. The duration of diabetes and glycemic control may have an impact on the type and severity of cognitive impairment, but as yet we cannot predict who is at greatest risk of developing cognitive impairment. The pathophysiology of cognitive impairment is multifactorial, although dysfunction in each interconnecting pathway ultimately leads to discordance in metabolic signaling. The pathophysiology includes defects in insulin signaling, autonomic function, neuroinflammatory pathways, mitochondrial (Mt) metabolism, the sirtuin-peroxisome proliferator-activated receptor-gamma co-activator 1α (SIRT-PGC-1α) axis, and Tau signaling. Several promising therapies have been identified in pre-clinical studies, but remain to be validated in clinical trials. PMID:27491830

  16. Sleep, Torpor and Memory Impairment

    NASA Astrophysics Data System (ADS)

    Palchykova, S.; Tobler, I.

    It is now well known that daily torpor induces a sleep deficit. Djungarian hamsters emerging from this hypometabolic state spend most of the time in sleep. This sleep is characterized by high initial values of EEG slow-wave activity (SWA) that monotonically decline during recovery sleep. These features resemble the changes seen in numerous species during recovery after prolonged wakefulness or sleep deprivation (SD). When hamsters are totally or partially sleep deprived immediately after emerging from torpor, an additional increase in SWA can be induced. It has been therefore postulated, that these slow- waves are homeostatically regulated, as predicted by the two-process model of sleep regulation, and that during daily torpor a sleep deficit is accumulated as it is during prolonged waking. The predominance of SWA in the frontal EEG observed both after SD and daily torpor provides further evidence for the similarity of these conditions. It has been shown in several animal and human studies that sleep can enhance memory consolidation, and that SD leads to memory impairment. Preliminary data obtained in the Djungarian hamster showed that both SD and daily torpor result in object recognition deficits. Thus, animals subjected to SD immediately after learning, or if they underwent an episode of daily torpor between learning and retention, displayed impaired recognition memory for complex object scenes. The investigation of daily torpor can reveal mechanisms that could have important implications for hypometabolic state induction in other mammalian species, including humans.

  17. Subclinical Congenital Cytomegalovirus Infection and Hearing Impairment

    ERIC Educational Resources Information Center

    Dahle, Arthur J.; And Others

    1974-01-01

    When the hearing sensitivity of children with subclinical congenital cytomegalovirus infection was evaluated and compared with that of a group of matched control subjects, nine of the 18 infected subjects were found to have some hearing loss, ranging from slight high-frequency impairments to a severe-to-profound unilateral loss. (MYS)

  18. Language Learning Impairment in Sequential Bilingual Children

    ERIC Educational Resources Information Center

    Ebert, Kerry Danahy; Kohnert, Kathryn

    2016-01-01

    We review and synthesize empirical evidence at the intersection of two populations: children with language learning impairment (LLI) and children from immigrant families who learn a single language from birth and a second language beginning in early childhood. LLI is a high incidence disorder that, in recent years, has been referred to by…

  19. Rehabilitation and Visual Impairment: A Human System.

    ERIC Educational Resources Information Center

    Vander Kolk, Charles J.

    1982-01-01

    The rehabilitation of visually impaired persons can be conceptualized by a human systems approach. This paper explaines seven levels of human systems, related factors, and 10 assumptions that lead to high standards for rehabilitation workers and organizations. The concepts are applied to work with clients and use in rehabilitation agencies.…

  20. Cognitive impairment and stroke in elderly patients.

    PubMed

    Lo Coco, Daniele; Lopez, Gianluca; Corrao, Salvatore

    2016-01-01

    We reviewed current knowledge about the interaction between stroke and vascular risk factors and the development of cognitive impairment and dementia. Stroke is increasingly recognized as an important cause of cognitive problems and has been implicated in the development of both Alzheimer's disease and vascular dementia. The prevalence of cognitive impairment after stroke is high, and their combined effects significantly increase the cost of care and health resource utilization, with reflections on hospital readmissions and increased mortality rates. There is also substantial evidence that vascular risk factors (such as hypertension, diabetes, obesity, dyslipidemia, and tobacco smoking) are independently associated with an increased risk of cognitive decline and dementia. Thus, a successful management of these factors, as well as optimal acute stroke management, might have a great impact on the development of cognitive impairment. Notwithstanding, the pathological link between cognitive impairment, stroke, and vascular risk factors is complex and still partially unclear so that further studies are needed to better elucidate the boundaries of this relationship. Many specific pharmacological treatments, including anticholinergic drugs and antihypertensive medications, and nonpharmacological approaches, such as diet, cognitive rehabilitation, and physical activity, have been studied for patients with vascular cognitive impairment, but the optimal care is still far away. Meanwhile, according to the most recent knowledge, optimal stroke care should also include cognitive assessment in the short and long term, and great efforts should be oriented toward a multidisciplinary approach, including quality-of-life assessment and support of caregivers. PMID:27069366

  1. Cognitive impairment and stroke in elderly patients

    PubMed Central

    Lo Coco, Daniele; Lopez, Gianluca; Corrao, Salvatore

    2016-01-01

    We reviewed current knowledge about the interaction between stroke and vascular risk factors and the development of cognitive impairment and dementia. Stroke is increasingly recognized as an important cause of cognitive problems and has been implicated in the development of both Alzheimer’s disease and vascular dementia. The prevalence of cognitive impairment after stroke is high, and their combined effects significantly increase the cost of care and health resource utilization, with reflections on hospital readmissions and increased mortality rates. There is also substantial evidence that vascular risk factors (such as hypertension, diabetes, obesity, dyslipidemia, and tobacco smoking) are independently associated with an increased risk of cognitive decline and dementia. Thus, a successful management of these factors, as well as optimal acute stroke management, might have a great impact on the development of cognitive impairment. Notwithstanding, the pathological link between cognitive impairment, stroke, and vascular risk factors is complex and still partially unclear so that further studies are needed to better elucidate the boundaries of this relationship. Many specific pharmacological treatments, including anticholinergic drugs and antihypertensive medications, and nonpharmacological approaches, such as diet, cognitive rehabilitation, and physical activity, have been studied for patients with vascular cognitive impairment, but the optimal care is still far away. Meanwhile, according to the most recent knowledge, optimal stroke care should also include cognitive assessment in the short and long term, and great efforts should be oriented toward a multidisciplinary approach, including quality-of-life assessment and support of caregivers. PMID:27069366

  2. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    PubMed

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. PMID:26348137

  3. The visually impaired child.

    PubMed

    Thompson, Lisa; Kaufman, Lawrence M

    2003-02-01

    This article discusses the causes of childhood blindness and how the primary care provider may begin the appropriate steps toward diagnosing and managing the visually impaired child. Community resources (see Box 3) and low-vision programs in schools should be used so that parents do not need to reinvent strategies to raise a blind child. Worldwide, childhood blindness, which places is a tremendous burden on families and communities of the third world, is mostly preventable with improved hygiene, diet, and immunization. PMID:12713115

  4. Adults with Intellectual Impairment Who Stammer: A Clinical Case Study

    ERIC Educational Resources Information Center

    Stansfield, Jois; Collier, Ruth; King, Ruth

    2012-01-01

    Adults with intellectual impairments have a high prevalence of stammering. Characteristic speech and associated behaviours are also different in quality and more variable between individuals than those of the typical adult population. This paper describes a speech and language therapy group with two adults with intellectual impairments and…

  5. Speech Rates of Turkish Prelingually Hearing-Impaired Children

    ERIC Educational Resources Information Center

    Girgin, M. Cem

    2008-01-01

    The aim of training children with hearing impairment in the auditory oral approach is to develop good speaking abilities. However, children with profound hearing-impairment show a wide range of spoken language abilities, some having highly intelligible speech while others have unintelligible speech. This is due to errors in speech production.…

  6. Face Scanning Distinguishes Social from Communication Impairments in Autism

    ERIC Educational Resources Information Center

    Falck-Ytter, Terje; Fernell, Elisabeth; Gillberg, Christopher; Von Hofsten, Claes

    2010-01-01

    How closely related are the social and communicative impairments in Autism Spectrum Disorder (ASD)? Recent findings in typically developing children suggest that both types of impairment are highly heritable but have only moderate behavioural and genetic overlap. So far, their respective roles in social perception are poorly understood. Here we…

  7. Early Language Impairment and Young Adult Delinquent and Aggressive Behavior

    ERIC Educational Resources Information Center

    Brownlie, E.B.; Beitchman, Joseph H.; Escobar, Michael; Young, Arlene; Atkinson, Leslie; Johnson, Carla; Wilson, Beth; Douglas, Lori

    2004-01-01

    Clinic and forensic studies have reported high rates of language impairments in conduct- disordered and incarcerated youth. In community samples followed to early adolescence, speech and language impairments have been linked to attention deficits and internalizing problems, rather than conduct problems, delinquency, or aggression. This study…

  8. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    SciTech Connect

    Lee, Eun-Jung; Kim, Jun Won; Yoo, Hyun; Kwak, Woori; Choi, Won Hoon; Cho, Seoae; Choi, Yu Jeong; Lee, Yoon-Jin; Cho, Jaeho

    2015-08-14

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL

  9. Dimethylfumarate Impairs Neutrophil Functions.

    PubMed

    Müller, Susen; Behnen, Martina; Bieber, Katja; Möller, Sonja; Hellberg, Lars; Witte, Mareike; Hänsel, Martin; Zillikens, Detlef; Solbach, Werner; Laskay, Tamás; Ludwig, Ralf J

    2016-01-01

    Host defense against pathogens relies on neutrophil activation. Inadequate neutrophil activation is often associated with chronic inflammatory diseases. Neutrophils also constitute a significant portion of infiltrating cells in chronic inflammatory diseases, for example, psoriasis and multiple sclerosis. Fumarates improve the latter diseases, which so far has been attributed to the effects on lymphocytes and dendritic cells. Here, we focused on the effects of dimethylfumarate (DMF) on neutrophils. In vitro, DMF inhibited neutrophil activation, including changes in surface marker expression, reactive oxygen species production, formation of neutrophil extracellular traps, and migration. Phagocytic ability and autoantibody-induced, neutrophil-dependent tissue injury ex vivo was also impaired by DMF. Regarding the mode of action, DMF modulates-in a stimulus-dependent manner-neutrophil activation using the phosphoinositide 3-kinase/Akt-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 pathways. For in vivo validation, mouse models of epidermolysis bullosa acquisita, an organ-specific autoimmune disease caused by autoantibodies to type VII collagen, were employed. In the presence of DMF, blistering induced by injection of anti-type VII collagen antibodies into mice was significantly impaired. DMF treatment of mice with clinically already-manifested epidermolysis bullosa acquisita led to disease improvement. Collectively, we demonstrate a profound inhibitory activity of DMF on neutrophil functions. These findings encourage wider use of DMF in patients with neutrophil-mediated diseases. PMID:26763431

  10. Design and baseline characteristics of the PODOSA (Prevention of Diabetes & Obesity in South Asians) trial: a cluster, randomised lifestyle intervention in Indian and Pakistani adults with impaired glycaemia at high risk of developing type 2 diabetes

    PubMed Central

    Douglas, Anne; Bhopal, Raj S; Bhopal, Ruby; Forbes, John F; Gill, Jason M R; McKnight, John; Murray, Gordon; Sattar, Naveed; Sharma, Anu; Wallia, Sunita; Wild, Sarah; Sheikh, Aziz

    2013-01-01

    Objectives To describe the design and baseline population characteristics of an adapted lifestyle intervention trial aimed at reducing weight and increasing physical activity in people of Indian and Pakistani origin at high risk of developing type 2 diabetes. Design Cluster, randomised controlled trial. Setting Community-based in Edinburgh and Glasgow, Scotland, UK. Participants 156 families, comprising 171 people with impaired glycaemia, and waist sizes ≥90 cm (men) and ≥80 cm (women), plus 124 family volunteers. Interventions Families were randomised into either an intensive intervention of 15 dietitian visits providing lifestyle advice, or a light (control) intervention of four visits, over a period of 3 years. Outcome measures The primary outcome is a change in mean weight between baseline and 3 years. Secondary outcomes are changes in waist, hip, body mass index, plasma blood glucose and physical activity. The cost of the intervention will be measured. Qualitative work will seek to understand factors that motivated participation and retention in the trial and families’ experience of adhering to the interventions. Results Between July 2007 and October 2009, 171 people with impaired glycaemia, along with 124 family volunteers, were randomised. In total, 95% (171/196) of eligible participants agreed to proceed to the 3-year trial. Only 13 of the 156 families contained more than one recruit with impaired glycaemia. We have recruited sufficient participants to undertake an adequately powered trial to detect a mean difference in weight of 2.5 kg between the intensive and light intervention groups at the 5% significance level. Over half the families include family volunteers. The main participants have a mean age of 52 years and 64% are women. Conclusions Prevention of Diabetes & Obesity in South Asians (PODOSA) is one of the first community-based, randomised lifestyle intervention trials in a UK South Asian population. The main trial results will

  11. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation.

    PubMed

    Lee, Eun-Jung; Kim, Jun Won; Yoo, Hyun; Kwak, Woori; Choi, Won Hoon; Cho, Seoae; Choi, Yu Jeong; Lee, Yoon-Jin; Cho, Jaeho

    2015-08-14

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm(2) fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C-C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. PMID:26047701

  12. Elevated levels of high-sensitivity C-reactive protein are associated with mild cognitive impairment and its subtypes: results of a population-based case-control study.

    PubMed

    Dlugaj, Martha; Gerwig, Marcus; Wege, Natalia; Siegrist, Johannes; Mann, Klaus; Bröcker-Preuss, Martina; Dragano, Nico; Moebus, Susanne; Jöckel, Karl-Heinz; Bokhof, Beate; Möhlenkamp, Stefan; Erbel, Raimund; Weimar, Christian

    2012-01-01

    As high-sensitivity C-reactive protein (hsCRP) seems to be associated with an increased risk of cognitive decline, this nested case-control study examined the relation of hsCRP and mild cognitive impairment (MCI) at different time points. 148 MCI cases (106 amnestic, 42 non-amnestic (aMCI/naMCI)) and 148 matched controls were identified from a prospective population based cohort study of 4,359 participants (aged 50-80). HsCRP levels were measured 5 years before (baseline) and at the time of neuropsychological testing (follow-up). Odds ratios (OR) for hsCRP quartiles serum levels were calculated for the two time points using logistic regression analyses and were adjusted for cardiovascular covariates. In the fully adjusted model, baseline hsCRP levels were significantly associated with both MCI and aMCI (OR = 2.29, 95% confidence interval (CI), 1.01-5.15, first versus fourth quartile, respective OR = 2.73, 95% CI, 1.09-6.84). At follow-up, the fourth hsCRP quartile was associated with MCI (OR = 3.60, 95% CI, 1.55-8.33), aMCI (OR = 3.73, 95% CI, 1.52-9.17) and naMCI (OR = 3.66, 95% CI, 1.00-13.77). Elevated hsCRP levels, even detected five years before diagnosis, are associated with an at least twofold increased probability of MCI. These findings suggest that inflammation plays an important role in the development and presence of cognitive impairment. PMID:22008268

  13. Perceived social support in adolescents with and without visual impairment.

    PubMed

    Pinquart, Martin; Pfeiffer, Jens P

    2013-11-01

    The study assessed perceived availability of support from parents, peers, and teachers in adolescents with and without visual impairment. Adolescents with visual impairment perceived lower levels of parental support but higher levels of support from teachers than sighted adolescents, and these differences remained stable across a 2-year interval. There was considerable heterogeneity within the groups as adolescents with visual impairment were most often found in clusters with high levels as well as low levels of all assessed sources of support. High perceived support from all sources showed positive associations with life-satisfaction of adolescents with and without visual impairment. As lower levels of perceived parental support of students with visual impairment were based on students from residential schools, we conclude that measures would be welcomed for improvement of parent-child contacts during the school days. PMID:24060727

  14. High-resolution fMRI detects neuromodulation of individual brainstem nuclei by electrical tongue stimulation in balance-impaired individuals

    PubMed Central

    Wildenberg, Joseph C.; Tyler, Mitchell E.; Danilov, Yuri P.; Kaczmarek, Kurt A.; Meyerand, Mary E.

    2011-01-01

    High resolution functional magnetic resonance imaging (fMRI) can be used to precisely identify blood-oxygen-level dependent (BOLD) activation of small structures within the brainstem not accessible with standard fMRI. A previous study identified a region within the pons exhibiting sustained neuromodulation due to electrical tongue stimulation, but was unable to precisely identify the neuronal structure involved. For this study, high-resolution images of neural activity induced by optic flow were acquired in nine healthy controls and nine individuals with balance dysfunction before and after information-free tongue stimulation. Subjects viewed optic flow videos to activate the structures of interest. Sub-millimeter in-plane voxels of structures within the posterior fossa were acquired using a restricted field of view. Whole-brain functional imaging verified that global activation patterns due to optic flow were consistent with previous studies. Optic flow activated the visual association cortices, the vestibular nuclei, and the superior colliculus, as well as multiple regions within the cerebellum. The anterior cingulate cortex showed decreased activity after stimulation, while a region within the pons had increased post-stimulation activity. These observations suggest the pontine region is the trigeminal nucleus and that tongue stimulation interfaces with the balance-processing network within the pons. This high-resolution imaging allows detection of activity within individual brainstem nuclei not possible using standard resolution imaging. PMID:21496490