Science.gov

Sample records for impedance planimetric description

  1. Planimetric Martian triangulations

    USGS Publications Warehouse

    Arthur, D.W.G.; McMacken, D.K.

    1977-01-01

    Narrow-angle photographs, which have severe drawbacks for stereophotogrammetry, have advantages for simple plane triangulations. Rectified narrow-angle pictures corrected for map projection effects can be combined in the map plane in relatively accurate planimetric triangulations. Provided the strict precepts of least squares are not followed, these triangulations can incorporate considerable overdetermination without increase in the labor of solving the equations. These plane triangulations have been used successfully in the cartography of Mars and are illustrated here by a triangulation of the environs of the prime Martian landing site.

  2. Kinetic Description of the Impedance Probe

    NASA Astrophysics Data System (ADS)

    Oberrath, Jens; Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf

    2011-10-01

    Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool, one of which is the impedance probe (IP). The application of such a probe in plasmas with pressures of a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma spectroscopy was presented by R.P. Brinkmann and can be used to describe the multipole resonance probe (MRP). In principle the IP is interpretable as a special case of the MRP in lower order. Thus, we are able to describe the IP by the kinetic model of the MRP. Based on this model we derive a solution to investigate the influence of kinetic effects to the resonance behavior of the IP. Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool, one of which is the impedance probe (IP). The application of such a probe in plasmas with pressures of a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma spectroscopy was presented by R.P. Brinkmann and can be used to describe the multipole resonance probe (MRP). In principle the IP is interpretable as a special case of the MRP in lower order. Thus, we are able to describe the IP by the kinetic model of the MRP. Based on this model we derive a solution to investigate the influence of kinetic effects to the resonance behavior of the IP. The authors acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) via the Ruhr University Research School and the Federal Ministry of Education and Research in frame of the PluTO project.

  3. [Planimetric volumetry of human brains].

    PubMed

    Orthner, H; Seler, W

    1975-04-01

    1) Coronal sections measuring exactly 4 mm in thickness of 106 human brains (212 cerebral hemispheres) were cut with the Göttinger Hirnmakrotom. Planimetric volumetry of various macroscopically delineated structures was performed on photographs of the sections. 2) The volumes ovtained from 58 "normal cases" were used for determining preliminary standards as well as mean values and standard deviations for age and sex. The female-male ratio of the structures measured varies between 86 and 92%. Comparing right and left a predominance of the left pallidum for both sexes is apparent showing an error probability of less than 5%. In "normal" men a significant predominance of the rightsided frontal structures, located anterior to the anterior commissure, have been found (error probability of less than 1%). 3) Regarding the 48 "abnormal cases", striatum and pallidum show a uniform picture in Huntington's disease, namely an extreme shrinkage. The pallidum shrinks to a similar extent as the striatum, although its neurones are not substantially affected by this system atrophy. Other structures do not display similarly uniform changes in this disease. 4) In Parkinson's syndrome a tendency of the pallidum to enlarge -- though statistically not significant -- is seen. This raises the question whether a constitutional hyperplasia of this structure is sometimes involved in the pathogenesis. 5) In Pick's disease, it is not only the histologically impressive centers of shrinkage of the cerebral cortex that are atrophic, but, to a somewhat lesser degree, also the whole telencephalon. 6) In an 18-year-old girl with malignant obsessional neurosis (schizophrenia?) the volume of the striatum was highly above average values enlarged. 7) Bibliographical data of macroscopic-quantitative brain research reveal many problems which can be solved today due to improved methods. PMID:125721

  4. [Planimetric measurement of floor space covered by pullets].

    PubMed

    Spindler, Birgit; Clauss, Marcus; Briese, Andreas; Hartung, Jörg

    2013-01-01

    The available floor space has a strong impact on the execution of various behaviours of laying hens. Presently, in Germany detailed requirements on the housing of pullets are insufficient. In order to get a first approximation, the floor space covered by pullets was determined by the colour contrast planimetric method KobaPlan. The measurements on standing and sitting pullets were done on a random sample of Lohmann Brown (LB), Lohmann Tradition (LT), Lohmann Selected Leghorn (LSL) and Dekalb White (DW) hybrids from the 6th week of life to 18/20 weeks at regular intervals. The hens were weighed and photographed digitally in a specific planimetric box (n = 2600 photographs from pullets in standing and 1360 in sitting position). Afterwards the KobaPlan software program calculated the animal area.The results showed a correlation between floor space covered by the pullets in standing position and the live weight (R2 = 0.80-0.96). The mean floor space covered by LB and LT at the end of rearing (body weight 1450 +/- 25 g LB and 1500 +/- 25 g LT) was 422.4 +/- 41.9 cm2 (LB) and 446.7 +/- 49.0 cm2 (LT) stand- ing, respectively 448.0 +/- 51.0 cm2 (LB) and 464.5 +/- 42.6 cm2 (LT) sitting. LSL and DW (body weight 1300 +/- 25 g) used 371.0 +/- 41.3 cm2 (LSL) and 349.3 +/- 26.3 cm2 (DW), respectively in standing and 379.5 +/- 41.2 cm2 (LSL) in sitting position. Maximum stocking density recommendation for pullets based on these planimetric results compared with the space allowance in alternative housing systems for laying hens are between eleven and 14 birds/m2. To verify this stocking density recommendation for pullets further studies should be complemented by specific ethological observations. PMID:23540199

  5. Verification and Improving Planimetric Accuracy of Airborne Laser Scanning Data with Using Photogrammetric Data

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Dominik, W.; Ostrowski, W.

    2014-03-01

    In this study results of planimetric accuracy of LIDAR data were verified with application of intensity of laser beam reflection and point cloud modelling results. Presented research was the basis for improving the accuracy of the products from the processing of LIDAR data, what is particularly important in issues related to surveying measurements. In the experiment, the true-ortho from the large-format aerial images with known exterior orientation were used to check the planimetric accuracy of LIDAR data in two proposed approaches. First analysis was carried out by comparison the position of the selected points identifiable on true-ortho from aerial images with corresponding points in the raster of reflection intensity reflection. Second method to verify planimetric accuracy used roof ridges from 3D building models automatically created from LIDAR data being intersections of surfaces from point cloud. Both analyses were carried out for 3 fragments of LIDAR strips. Detected systematic planimetric error in size of few centimetres enabled an implementation of appropriate correction for analyzed data locally. The presented problem and proposed solutions provide an opportunity to improve the accuracy of the LiDAR data. Such methods allowed for efficient use by specialists in other fields not directly related to the issues of orientation and accuracy of photogrammetric data during their acquisition and pre-processing

  6. Fourier analysis of planimetric lunar crater shape - Possible guide to impact history and lunar geology

    NASA Technical Reports Server (NTRS)

    Eppler, D. T.; Nummedal, D.; Ehrlich, R.

    1977-01-01

    If the lithology of lunar crust influences impact crater morphology, a method of analysis that is sensitive to small-scale changes in crater shape is required. In the present paper, it is shown that Fourier analysis in closed form can provide detailed information regarding planimetric crater shape. Preliminary analysis of the rim crest outline of 247 nearside lunar craters (larger than 18 km in diam) led to the following information: Imbrian and pre-Imbrian craters are more elongate than younger craters, possibly as a result of widespread crustal deformation early in the moon's history. Crater size does not affect the planimetric shape of craters. Highland craters are less circular than mare craters, probably due to the greater structural and lithologic complexity of the highland crust. Craters comprising each shape family of the eleventh harmonic typically are located in the same general geographic region of the moon.

  7. Accuracy assessment of planimetric large-scale map data for decision-making

    NASA Astrophysics Data System (ADS)

    Doskocz, Adam

    2016-06-01

    This paper presents decision-making risk estimation based on planimetric large-scale map data, which are data sets or databases which are useful for creating planimetric maps on scales of 1:5,000 or larger. The studies were conducted on four data sets of large-scale map data. Errors of map data were used for a risk assessment of decision-making about the localization of objects, e.g. for land-use planning in realization of investments. An analysis was performed for a large statistical sample set of shift vectors of control points, which were identified with the position errors of these points (errors of map data). In this paper, empirical cumulative distribution function models for decision-making risk assessment were established. The established models of the empirical cumulative distribution functions of shift vectors of control points involve polynomial equations. An evaluation of the compatibility degree of the polynomial with empirical data was stated by the convergence coefficient and by the indicator of the mean relative compatibility of model. The application of an empirical cumulative distribution function allows an estimation of the probability of the occurrence of position errors of points in a database. The estimated decision-making risk assessment is represented by the probability of the errors of points stored in the database.

  8. System Description and First Application of an FPGA-Based Simultaneous Multi-Frequency Electrical Impedance Tomography.

    PubMed

    Aguiar Santos, Susana; Robens, Anne; Boehm, Anna; Leonhardt, Steffen; Teichmann, Daniel

    2016-01-01

    A new prototype of a multi-frequency electrical impedance tomography system is presented. The system uses a field-programmable gate array as a main controller and is configured to measure at different frequencies simultaneously through a composite waveform. Both real and imaginary components of the data are computed for each frequency and sent to the personal computer over an ethernet connection, where both time-difference imaging and frequency-difference imaging are reconstructed and visualized. The system has been tested for both time-difference and frequency-difference imaging for diverse sets of frequency pairs in a resistive/capacitive test unit and in self-experiments. To our knowledge, this is the first work that shows preliminary frequency-difference images of in-vivo experiments. Results of time-difference imaging were compared with simulation results and shown that the new prototype performs well at all frequencies in the tested range of 60 kHz-960 kHz. For frequency-difference images, further development of algorithms and an improved normalization process is required to correctly reconstruct and interpreted the resulting images. PMID:27463715

  9. Manual planimetric measurement of carotid plaque volume using three-dimensional ultrasound imaging

    SciTech Connect

    Landry, Anthony; Ainsworth, Craig; Blake, Chris; Spence, J. David; Fenster, Aaron

    2007-04-15

    We investigated the utility of three manual planimetric methods to quantify carotid plaque volume. A single observer measured 15 individual plaques from 15 three-dimensional (3D) ultrasound (3D US) images of patients ten times each using three different planimetric approaches. Individual plaque volumes were measured (range: 32.6-597.1 mm{sup 3}) using a standard planimetric approach (M1) whereby a plaque end was identified and sequential contours were measured. The same plaques were measured using a second approach (M2), whereby plaque ends were first identified and the 3D US image of the plaque was then subdivided into equal intervals. A third method (M3) was used to measure total plaque burden (range: 165.1-1080.0 mm{sup 3}) in a region ({+-}1.5 cm) relative to the carotid bifurcation. M1 systematically underestimated individual plaque volume compared to M2 (V{sub 2}=V{sub 1}+14.0 mm{sup 3}, r=0.99, p=0.006) due to a difference in the mean plaque length measured. Coefficients of variance (CV) for M1 and M2 decrease with increasing plaque volume, with M2 results less than M1. Root mean square difference between experimental and theoretical CV for M2 was 3.2%. The standard deviation in the identification of the transverse location of the carotid bifurcation was 0.56 mm. CVs for plaque burden measured using M3 ranged from 1.2% to 7.6% and were less than CVs determined for individual plaque volumes of the same volume. The utility of M3 was demonstrated by measuring carotid plaque burden and volume change over a period of 3 months in three patients. In conclusion, M2 was determined to be a more superior measurement technique than M1 to measure individual plaque volume. Furthermore, we demonstrated the utility of M3 to quantify regional plaque burden and to quantify change in plaque volume.

  10. Planimetric frontal area in the four swimming strokes: implications for drag, energetics and speed.

    PubMed

    Gatta, Giorgio; Cortesi, Matteo; Fantozzi, Silvia; Zamparo, Paola

    2015-02-01

    The purpose of this study was to use the planimetric method to determine frontal area (Ap) throughout the stroke cycle in the four swimming strokes as well as during "streamlined leg kicking". The minimum Ap values in all strokes are similar to those assessed during "streamlined leg kicking" (about 0.13m(2)). Active drag (Da=1/2ρ Cd Ap v(2)) was then calculated/estimated based on the average Ap values, as calculated for a full cycle in each condition. Da is the lowest in the "streamlined leg kicking" condition (Da=19.5v(2), e.g., similar to the values of passive drag reported in the literature), is similar in front crawl (Da=30.0v(2)), backstroke (Da=26.9v(2)) and butterfly (Da=28.5v(2)) and is the largest in the breaststroke (Da=37.5v(2)). Based on the C vs. v relationships reported in the literature for the four strokes it is then possible to estimate drag efficiency: for a speed of 1.5ms(-1), it ranges from 0.035-0.038 (breaststroke and backstroke, respectively) to 0.052-0.058 (butterfly and front crawl, respectively). This study is the first to establish Ap values throughout the swimming cycle for all swimming strokes and these findings have implications for active drag estimates, for the energetics of swimming and for swimming speed. PMID:25461432

  11. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  12. Impedance magnetocardiogram.

    PubMed

    Kandori, A; Miyashita, T; Suzuki, D; Yokosawa, K; Tsukada, K

    2001-02-01

    We have developed an impedance magnetocardiogram (IMCG) system to detect the change of magnetic field corresponding to changes in blood volume in the heart. A low magnetic field from the electrical activity of the human heart--the so-called magnetocardiogram (MCG)--can be simultaneously detected by using this system. Because the mechanical and electrical functions in the heart can be monitored by non-invasive and non-contact measurements, it is easy to observe the cardiovascular functions from an accurate sensor position. This system uses a technique to demodulate induced current in a subject. A flux-locked circuit of a superconducting quantum interference device has a wide frequency range (above 1 MHz) because a constant current (40 kHz) is fed through the subject. It is shown for the first time that the system could measure IMCG signals at the same time as MCG signals. PMID:11229740

  13. Planimetric and volumetric analysis of channel change in the post-hydraulic mining period (1906-2009) in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Ghoshal, Subhajit

    Advances in remote sensing technologies can facilitate acquisition of topographical and planimetric information in fluvial environments and can produce spatial data with high spatial and temporal resolutions. Measuring planimetric and volumetric change in fluvial sediment budgets and geomorphic change detection was used for long-term monitoring of a fluvial system. Channel and floodplain changes caused by hydraulic gold mining sediment in this system are a major example of anthropogenic impacts on a fluvial system. This study uses remote sensing change-detection techniques to examine spatial and temporal patterns of HMS redistribution at a centennial time scale, and to measure and evaluate the magnitude and processes of a major channel and floodplain metamorphosis. Five reach-scale sites along the lower Yuba River and two sites on the Feather River were chosen for detailed analysis of planimetric and volumetric changes over a period of ~100 years. Volumetric changes were measured using DEM differencing and soft-copy photogrammetry methods, and planimetric changes were recorded from rectified maps and aerial photographs. This study indicates significant changes in channel morphology and sediment storage over the last 100 years. Large deposits of historical sediment remaining in the bed, banks and terraces of the lower Yuba River were remobilized by floods. The volumetric analysis shows the results of dredging of ditches, deposition in natural levees, and net erosion of high-water channels from 1906 or 1909 to 1999. Over the last century, channels incised up to ~13 m into mining sediment deposits. Systematic uncertainty analysis reveals vertical errors are mostly dependent on the topographical slopes and maximum errors are concentrated on the steep channel banks and scarps. The planimetric analysis shows significant reworking of sediment occurred throughout the 72-year period from 1937 to 2009. Substantial amounts of HMS remobilization occurred during major flood

  14. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  15. Mars planimetric mapping

    NASA Astrophysics Data System (ADS)

    Batson, R. M.; Bridges, P. M.; Lee, E. M.

    1985-04-01

    The 1:5,000,000 scale shaded relief maps of Mars originally compiled from Mariner 9 pictures are being upgraded by adding details visible on Viking Orbiter images. This work is done by modifying the original airbrush drawings; no attempt is made to reposition features according to the latest control nets. Thirteen of these maps have been published to date, two are in compilation, and two are in press. A hard cover atlas containing reduced scale versions of all Mars cartographic products will be published upon completion of the revisions of the 1:5,000,000 scale maps, the 1:2,000,000 scale photomosaics, and Mars color albedo mapping tasks. This atlas will supersede the existing Atlas of Mars prepared by Batson and others.

  16. A planimetric study of the mean epithelial thickness (MET) of the molluscan digestive gland over the tidal cycle and under environmental stress conditions

    NASA Astrophysics Data System (ADS)

    Marigómez, J. A.; Sáez, V.; Cajaraville, M. P.; Angulo, E.

    1990-03-01

    Thinning of the digestive epithelium of marine molluscs may provide an index of environmental stress. Variability in epithelial thickness, as a consequence of the large variety of environmental and populational variables which could affect MET (Mean Epithelial Thickness), may counter the value of the index. Variation in MET of the intertidal gastropod Littorina littorea (L.) has been studied under experimental tidal conditions and, based on published data, under natural tidal conditions in the bivalves Mercenaria mercenaria (L.) and Mytilus edulis L. using a planimetric method. We found no significant variation in MET in all cases. The present results are discussed in relation to those obtained with L. littorea experimentally exposed to Cd and which show a significant reduction in MET after long sublethal exposure periods.

  17. Robust impedance shaping telemanipulation

    SciTech Connect

    Colgate, J.E.

    1993-08-01

    When a human operator performs a task via a bilateral manipulator, the feel of the task is embodied in the mechanical impedance of the manipulator. Traditionally, a bilateral manipulator is designed for transparency; i.e., so that the impedance reflected through the manipulator closely approximates that of the task. Impedance shaping bilateral control, introduced here, differs in that it treats the bilateral manipulator as a means of constructively altering the impedance of a task. This concept is particularly valuable if the characteristic dimensions (e.g., force, length, time) of the task impedance are very different from those of the human limb. It is shown that a general form of impedance shaping control consists of a conventional power-scaling bilateral controller augmented with a real-time interactive task simulation (i.e., a virtual environment). An approach to impedance shaping based on kinematic similarity between tasks of different scale is introduced and illustrated with an example. It is shown that an important consideration in impedance shaping controller design is robustness; i.e., guaranteeing the stability of the operator/manipulator/task system. A general condition for the robustness of a bilateral manipulator is derived. This condition is based on the structured singular value ({mu}). An example of robust impedance shaping bilateral control is presented and discussed.

  18. Impedance Noise Identification for State-of-Health Prognostics

    SciTech Connect

    Jon P. Christophersen; Chester G. Motloch; John L. Morrison; Ian B. Donnellan; William H. Morrison

    2008-07-01

    Impedance Noise Identification is an in-situ method of measuring battery impedance as a function of frequency using a random small signal noise excitation source. Through a series of auto- and cross-correlations and Fast Fourier Transforms, the battery complex impedance as a function of frequency can be determined. The results are similar to those measured under a lab-scale electrochemical impedance spectroscopy measurement. The lab-scale measurements have been shown to correlate well with resistance and power data that are typically used to ascertain the remaining life of a battery. To this end, the Impedance Noise Identification system is designed to acquire the same type of data as an on-board tool. A prototype system is now under development, and results are being compared to standardized measurement techniques such as electrochemical impedance spectroscopy. A brief description of the Impedance Noise Identification hardware system and representative test results are presented.

  19. Impedance of a nanoantenna

    SciTech Connect

    Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois

    2009-10-07

    We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.

  20. Overview Of Impedance Sensors

    NASA Astrophysics Data System (ADS)

    Abele, John E.

    1989-08-01

    Electrical impedance has been one of the many "tools of great promise" that physicians have employed in their quest to measure and/or monitor body function or physiologic events. So far, the expectations for its success have always exceeded its performance. In simplistic terms, physiologic impedance is a measure of the resistance in the volume between electrodes which changes as a function of changes in that volume, the relative impedance of that volume, or a combination of these two. The history and principles of electrical impedance are very nicely reviewed by Geddes and Baker in their textbook "Principles of Applied Biomedical Instrumentation". It is humbling, however, to note that Cremer recorded variations in electrical impedance in frog hearts as early as 1907. The list of potential applications includes the measurement of thyroid function, estrogen activity, galvanic skin reflex, respiration, blood flow by conductivity dilution, nervous activity and eye movement. Commercial devices employing impedance have been and are being used to measure respiration (pneumographs and apneamonitors), pulse volume (impedance phlebographs) and even noninvasive cardiac output.

  1. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  2. Impedance of accelerator components

    SciTech Connect

    Corlett, J.N.

    1996-05-01

    As demands for high luminosity and low emittance particle beams increase, an understanding of the electromagnetic interaction of these beams with their vacuum chamber environment becomes more important in order to maintain the quality of the beam. This interaction is described in terms of the wake field in time domain, and the beam impedance in frequency domain. These concepts are introduced, and related quantities such as the loss factor are presented. The broadband Q = 1 resonator impedance model is discussed. Perturbation and coaxial wire methods of measurement of real components are reviewed.

  3. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  4. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  5. Impedance cardiography: recent advancements.

    PubMed

    Cybulski, Gerard; Strasz, Anna; Niewiadomski, Wiktor; Gąsiorowska, Anna

    2012-01-01

    The aim of this paper is the presentation of recent advancements in impedance cardiography regarding methodical approach, applied equipment and clinical or research implementations. The review is limited to the papers which were published over last 17 months (dated 2011 and 2012) in well recognised scientific journals. PMID:23042327

  6. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  7. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  8. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  9. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  10. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2013-05-28

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  11. Impedance Measurement Box

    Energy Science and Technology Software Center (ESTSC)

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  12. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  13. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  14. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  15. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  16. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  17. IMPEDANCE OF FINITE LENGTH RESISTOR

    SciTech Connect

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  18. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  19. Bioelectrical impedance analysis revisited.

    PubMed

    Mikes, D M; Cha, B A; Dym, C L; Baumgaertner, J; Hartzog, A G; Tacey, A D; Calabria, M R

    1999-12-01

    Although total limb volume measurements are used to track the progress of lymphedema and its treatment, these measurements can be confounded by changes other than fluid excess namely muscle or fat gain. Bioelectrical impedance analysis (BIA) is a technique that specifically quantifies both total body fluid and extracellular fluid in extremities. Whereas BIA has potential as a quick, inexpensive, and quantitative technique to measure directly fluid gain or loss from lymphedema, it also has certain shortcomings that must be addressed before it can be validated. this paper examines the back-ground that explains why measuring total limb volume is insufficient to quantify the extent of peripheral lymphedema and explores the advantages and drawbacks of using BIA for this purpose. PMID:10652699

  20. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  1. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  2. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  3. Electromagnetic scattering by impedance structures

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1987-01-01

    The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.

  4. Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Retter, Utz; Lohse, Heinz

    Non-steady-state measuring techniques are known to be extremely suitable for the investigation of the electrode kinetics of more complex electrochemical systems. Perturbation of the electrochemical system leads to a shift of the steady state. The rate at which it proceeds to a new steady state depends on characteristic parameters (reaction rate constants, diffusion coefficients, charge transfer resistance, double-layer capacity). Due to non-linearities caused by the electron transfer, low-amplitude perturbation signals are necessary. The small perturbation of the electrode state has the advantage that the solutions of relevant mathematical equations used are transformed in limiting forms that are normally linear. Impedance spectroscopy represents a powerful method for investigation of electrical properties of materials and interfaces of conducting electrodes. Relevant fields of application are the kinetics of charges in bulk or interfacial regions, the charge transfer of ionic or mixed ionic-ionic conductors, semiconducting electrodes, the corrosion inhibition of electrode processes, investigation of coatings on metals, characterisation of materials and solid electrolyte as well as solid-state devices.

  5. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  6. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  7. Coupling impedance for modern accelerators

    SciTech Connect

    Heifets, S.A.; Kheifets, S.A. )

    1992-03-10

    A systematic review of theoretical results for the longitudinal and transverse impedances obtained by different methods is presented. The paper comprises definitions, general theorems, modal analysis, a diffraction model, and analytical results. Several new results are included. In particular, necessary and sufficient conditions are given for the independence of the impedance from the beam longitudinal direction. The impedances of two basic simple structures---that of a {ital cavity} and that of a {ital step}---are studied in detail. The transition from the regime of a cavity to the regime of a step is explained, an approximate formula describing this transition is given, and the criterion for determining the applicability of each regime is established. The asymptotic behavior of the impedance for a finite number {ital M} of periodically arranged cavities as a function of {ital M} is studied. The different behaviors of the impedance for a single cavity and that for an infinite number of cavities are explained as resulting from the interference of the diffracted waves. A criterion for determining the transition in the impedance behavior from small {ital M} to large {ital M} is presented.

  8. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  9. IMPEDANCE ALARM SYSTEM

    DOEpatents

    Cowen, R.G.

    1959-09-29

    A description is given of electric protective systems and burglar alarm systems of the capacitance type in which the approach of an intruder at a place to be protected varies the capacitance in an electric circuit and the change is thereafter communicated to a remote point to actuate an alarm. According to the invention, an astable transitor multi-vibrator has the amplitude at its output voltage controlled by a change in the sensing capacitance. The sensing capacitance is effectively connected between collector and base of one stage of the multivibrator circuit through the detector-to-monitor line. The output of the detector is a small d-c voltage across the detector-to-monitor line. This d- c voltage is amplified and monitored at the other end of the line, where an appropriate alarm is actuated if a sudden change in the voltage occurs. The present system has a high degree of sensitivity and is very difficult to defeat by known techniques.

  10. Noncontact scanning electrical impedance imaging.

    PubMed

    Liu, Hongze; Hawkins, Aaron; Schultz, Stephen; Oliphant, Travis E

    2004-01-01

    We are interested in applying electrical impedance imaging to a single cell because it has potential to reveal both cell anatomy and cell function. Unfortunately, classic impedance imaging techniques are not applicable to this small scale measurement due to their low resolution. In this paper, a different method of impedance imaging is developed based on a noncontact scanning system. In this system, the imaging sample is immersed in an aqueous solution allowing for the use of various probe designs. Among those designs, we discuss a novel shield-probe design that has the advantage of better signal-to-noise ratio with higher resolution compared to other probes. Images showing the magnitude of current for each scanned point were obtained using this configuration. A low-frequency linear physical model helps to relate the current to the conductivity at each point. Line-scan data of high impedance contrast structures can be shown to be a good fit to this model. The first two-dimensional impedance image of biological tissues generated by this technique is shown with resolution on the order of 100 mum. The image reveals details not present in the optical image. PMID:17271930

  11. [Monitoring cervical dilatation by impedance].

    PubMed

    Salvat, J; Lassen, M; Sauze, C; Baud, S; Salvat, F

    1992-01-01

    Several different physics procedures have been tried to mechanize the recording of partograms. Can a measure of impedance of tissue Z using potential difference V, according to Ohm's law V = Z1, and 1 is a constant, be correlated with a measure of cervical dilatation using vaginal examination? This was our hypothesis. The tissue impedance meter was made to our design and applied according to a bipolar procedure. Our work was carried out on 28 patients. 10 patients were registered before labour started in order to test the apparatus and to record the impedance variations without labour taking place, and 18 patients were registered in labour to see whether there was any correlation. The level of impedance in the cervix without labour was 302.7 Ohms with a deviation of 8.2. Using student's t tests it was found that there was a significant correlation (p less than 0.001) in four measurements between the impedance measure and measures obtained by extrapolating the degrees of dilatation calculated from vaginal examination. This is a preliminary study in which we have defined the conditions that are necessary to confirm these first results and to further develop the method. PMID:1401774

  12. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  13. Drought description

    USGS Publications Warehouse

    Matalas, N.C.

    1991-01-01

    What constitutes a comprehensive description of drought, a description forming a basis for answering why a drought occurred is outlined. The description entails two aspects that are "naturally" coupled, named physical and economic, and treats the set of hydrologic measures of droughts in terms of their multivariate distribution, rather than in terms of a collection of the marginal distributions. ?? 1991 Springer-Verlag.

  14. Microfabricated Thin Film Impedance Sensor & AC Impedance Measurements

    PubMed Central

    Yu, Jinsong; Liu, Chung-Chiun

    2010-01-01

    Thin film microfabrication technique was employed to fabricate a platinum based parallel-electrode structured impedance sensor. Electrochemical impedance spectroscopy (EIS) and equivalent circuit analysis of the small amplitude (±5 mV) AC impedance measurements (frequency range: 1 MHz to 0.1 Hz) at ambient temperature were carried out. Testing media include 0.001 M, 0.01 M, 0.1 M NaCl and KCl solutions, and alumina (∼3 μm) and sand (∼300 μm) particulate layers saturated with NaCl solutions with the thicknesses ranging from 0.6 mm to 8 mm in a testing cell, and the results were used to assess the effect of the thickness of the particulate layer on the conductivity of the testing solution. The calculated resistances were approximately around 20 MΩ, 4 MΩ, and 0.5 MΩ for 0.001 M, 0.01 M, and 0.1 M NaCl solutions, respectively. The presence of the sand particulates increased the impedance dramatically (6 times and 3 times for 0.001 M and 0.1 M NaCl solutions, respectively). A cell constant methodology was also developed to assess the measurement of the bulk conductivity of the electrolyte solution. The cell constant ranged from 1.2 to 0.8 and it decreased with the increase of the solution thickness. PMID:22219690

  15. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  16. The Aberdeen Impedance Imaging System.

    PubMed

    Kulkarni, V; Hutchison, J M; Mallard, J R

    1989-01-01

    The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal. PMID:2742979

  17. Calibration of electrical impedance tomography

    SciTech Connect

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  18. A PARAMETRIC STUDY OF BCS RF SURFACE IMPEDANCE WITH MAGNETIC FIELD USING THE XIAO CODE

    SciTech Connect

    Reece, Charles E.; Xiao, Binping

    2013-09-01

    A recent new analysis of field-dependent BCS rf surface impedance based on moving Cooper pairs has been presented.[1] Using this analysis coded in Mathematica TM, survey calculations have been completed which examine the sensitivities of this surface impedance to variation of the BCS material parameters and temperature. The results present a refined description of the "best theoretical" performance available to potential applications with corresponding materials.

  19. The quantum Hall impedance standard

    NASA Astrophysics Data System (ADS)

    Schurr, J.; Kučera, J.; Pierz, K.; Kibble, B. P.

    2011-02-01

    Alternating current measurements of double-shielded quantum Hall devices have revealed a fascinating property of which only a quantum effect is capable: it can detect its own frequency dependence and convert it to a current dependence which can be used to eliminate both of them. According to an experimentally verified model, the residual frequency dependence is smaller than the measuring uncertainty of 1.3 × 10-9 kHz-1. In this way, a highly precise quantum standard of impedance can be established, without having to correct for any calculated frequency dependence and without the need for any artefact with a calculated frequency dependence. Nothing else like that is known to us and we hope that our results encourage other national metrology institutes to also apply it to impedance metrology and further explore its beautiful properties.

  20. FXR accelerator cavity impedance experiments

    SciTech Connect

    Avalle, C.A.

    1998-01-05

    One of the goals of the present Flash X-Ray (FXR) accelerator upgrade effort [1][2] at Lawrence Livermore National Laboratory (LLNL) is to reduce the cavity transverse impedance, since it has been shown that beam stability is significantly affected by this parameter [3]. Recently, we have evaluated various techniques and cell modifications to accomplish that, both through lab measurements and computer models. A spare cell, identical in every way to cells in the accelerator, was specially modified for the experiments. The impedance measurements were done without the beam, by applying twin-wire techniques. This report describes the results of these experiments and suggests possible cell modifications to improve their performance. The techniques and modifications which are suggested might also be applicable to AHF and DARHT-2 long-pulse accelerator development.

  1. Impedance based automatic electrode positioning.

    PubMed

    Miklody, Daniel; Hohne, Johannes

    2015-08-01

    The position of electrodes in electrical imaging and stimulation of the human brain is an important variable with vast influences on the precision in modeling approaches. Nevertheless, the exact position is obscured by many factors. 3-D Digitization devices can measure the distribution over the scalp surface but remain uncomfortable in application and often imprecise. We demonstrate a new approach that uses solely the impedance information between the electrodes to determine the geometric position. The algorithm involves multidimensional scaling to create a 3 dimensional space based on these impedances. The success is demonstrated in a simulation study. An average electrode position error of 1.67cm over all 6 subjects could be achieved. PMID:26736345

  2. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  3. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  4. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  5. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  6. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  7. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  8. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  9. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  10. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  11. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  12. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  13. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  14. Joint Impedance Decreases during Movement Initiation

    PubMed Central

    Ludvig, Daniel; Antos, Stephen A.; Perreault, Eric J.

    2013-01-01

    The mechanical properties of the joint influence how we interact with our environment and hence are important in the control of both posture and movement. Many studies have investigated how the mechanical properties—specifically the impedance—of different joints vary with different postural tasks. However, studies on how joint impedance varies with movement remain limited. The few studies that have investigated how impedance varies with movement have found that impedance is lower during movement than during posture. In this study we investigated how impedance changed as people transitioned from a postural task to a movement task. We found that subjects’ joint impedances decreased at the initiation of movement, prior to increasing at the cessation of movement. This decrease in impedance occurred even though the subjects’ torque and EMG levels increased. These findings suggest that during movement the central nervous system may control joint impedance independently of muscle activation. PMID:23366632

  15. Descriptive statistics.

    PubMed

    Shi, Runhua; McLarty, Jerry W

    2009-10-01

    In this article, we introduced basic concepts of statistics, type of distributions, and descriptive statistics. A few examples were also provided. The basic concepts presented herein are only a fraction of the concepts related to descriptive statistics. Also, there are many commonly used distributions not presented herein, such as Poisson distributions for rare events and exponential distributions, F distributions, and logistic distributions. More information can be found in many statistics books and publications. PMID:19891281

  16. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2002-08-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  17. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-10-29

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  18. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2004-05-03

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  19. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2004-02-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  20. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2005-01-17

    This project aimed at developing a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GTI. GTI proposed to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment

  1. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-10-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  2. Bilateral Impedance Control For Telemanipulators

    NASA Technical Reports Server (NTRS)

    Moore, Christopher L.

    1993-01-01

    Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.

  3. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-06-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  4. Impedance spectroscopy of food mycotoxins

    NASA Astrophysics Data System (ADS)

    Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.

    2012-01-01

    A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.

  5. Spheromak Impedance and Current Amplification

    SciTech Connect

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  6. Impedance studies on Li-ion cathodes

    SciTech Connect

    NAGASUBRAMANIAN, GANESAN

    2000-04-17

    This paper describes the author's 2- and 3-electrode impedance results of metal oxide cathodes. These results were extracted from impedance data on 18650 Li-ion cells. The impedance results indicate that the ohmic resistance of the cell is very nearly constant with state-of-charge (SOC) and temperature. For example, the ohmic resistance of 18650 Li-ion cells is around 60 m{Omega} for different SOCS (4.1V to 3.0V) and temperatures from 35 C to {minus}20 C. However, the interfacial impedance shows a modest increase with SOC and a huge increase of between 10 and 100 times with decreasing temperature. For example, in the temperature regime (35 C down to {minus}20 C) the overall cell impedance has increased from nearly 200 m{Omega} to 8,000 m{Omega}. Most of the increase in cell impedance comes from the metal oxide cathode/electrolyte interface.

  7. TRANSVERSE IMPEDANCE MEASUREMENT AT THE RHIC.

    SciTech Connect

    ZHANG,S.Y.; HUANG,H.; CAMERON,P.; DREES,A.; FLILLER,R.; SATOGATA,T.

    2002-06-02

    The RHIC transverse impedance was measured during the last operation run. Measurement of the imaginary part of the broadband impedance was the main goal. No large difference between the two rings was found nor in either plane. The measured tune shift is larger than the expected by a factor of 2.5 to 3. Several other issues such as the real part impedance measurement are also presented.

  8. Adaptive Impedance Control Of Redundant Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.

    1994-01-01

    Improved method of controlling mechanical impedance of end effector of redundant robotic manipulator based on adaptive-control theory. Consists of two subsystems: adaptive impedance controller generating force-control inputs in Cartesian space of end effector to provide desired end-effector-impedance characteristics, and subsystem implementing algorithm that maps force-control inputs into torques applied to joints of manipulator. Accurate control of end effector and effective utilization of redundancy achieved simultaneously by use of method. Potential use to improve performance of such typical impedance-control tasks as deburring edges and accommodating transitions between unconstrained and constrained motions of end effectors.

  9. Anaphoric Descriptions

    ERIC Educational Resources Information Center

    Beller, Charley

    2013-01-01

    The study of definite descriptions has been a central part of research in linguistics and philosophy of language since Russell's seminal work "On Denoting" (Russell 1905). In that work Russell quickly dispatches analyses of denoting expressions with forms like "no man," "some man," "a man," and "every…

  10. Electrical Impedance Tomography of Electrolysis

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686

  11. Impedance Spectroscopy of Human Blood

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Bernal, José J.; Sosa, Modesto A.; Villagómez, Julio C.; Palomares, Pascual

    2004-09-01

    The blood is one of the corporal fluids more used with analytical purposes. When the blood is extracted, immediately it is affected by agents that act on it, producing transformations in its elements. Among the effects of these transformations the hemolysis phenomenon stands out, which consists of the membrane rupture and possible death of the red blood cells. The main purpose of this investigation was the quantification of this phenomenon. A Solartron SI-1260 Impedance Spectrometer was used, which covers a frequency range of work from 1 μHz to 10 MHz, and its accuracy has been tested in the accomplishment of several applications. Measurements were performed on 3 mL human blood samples, from healthy donors. Reactive strips for sugar test of 2 μL, from Bayer, were used as electrodes, which allow gathering a portion of the sample, to be analyzed by the spectrometer. Preliminary results of these measurements are presented.

  12. RF discharge impedance measurements using a new method to determine the stray impedances

    SciTech Connect

    Bakker, L.P.; Kroesen, G.M.W.; Hoog, F.J. de )

    1999-06-01

    The impedance of a capacitively coupled radio frequency discharge in a tubular fluorescent lamp filled with neon and mercury is measured. The stray impedances in the electrical network are determined using a new method that requires no extra instruments. The reflection of power is used to determine the stray impedances. Making use of a simple discharge impedance model, the electron density in the lamp is estimated.

  13. Description Logics

    NASA Astrophysics Data System (ADS)

    Baader, Franz

    Description Logics (DLs) are a well-investigated family of logic-based knowledge representation formalisms, which can be used to represent the conceptual knowledge of an application domain in a structured and formally well-understood way. They are employed in various application domains, such as natural language processing, configuration, and databases, but their most notable success so far is the adoption of the DL-based language OWL as standard ontology language for the semantic web.

  14. Far-infrared embedding impedance measurements

    NASA Technical Reports Server (NTRS)

    Neikirk, D. P.; Rutledge, D. B.

    1984-01-01

    A technique which allows the measurement of detector embedding impedance has been developed. By using a bismuth microbolometer as a variable resistance load the impedance of one element in a bow-tie antenna array operating at 94 GHz was inferred. The technique is frequency insensitive, and could be used throughout the far-infrared.

  15. How good is the impedance boundary condition?

    NASA Technical Reports Server (NTRS)

    Lee, Shung-Wu; Gee, W.

    1987-01-01

    The impedance boundary condition (IBC) is often used in scattering problems involving material-coated conducting bodies. It is shown that for some commonly encountered coating configurations, the value of the impedance varies significantly as functions of the incident angle and polarization. Hence, the use of IBC in a rigorously formulated problem may affect the accuracy of the final solution.

  16. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  17. Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.

    PubMed

    Ravi, Karthik; Katzka, David A

    2016-09-01

    The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology. PMID:27325223

  18. Possibilities of electrical impedance tomography in gynecology

    NASA Astrophysics Data System (ADS)

    V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.

    2013-04-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  19. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  20. Impedance of finite length resistive cylinder

    NASA Astrophysics Data System (ADS)

    Krinsky, S.; Podobedov, B.; Gluckstern, R. L.

    2004-11-01

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a). In the equilibrium regime, ka2≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka2≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.

  1. Self and mutual time-dependent interaction forces between ultrasonic transducers - application to the computation of radiation impedances

    SciTech Connect

    Cassereau, D. ); Guyomar, D. )

    1993-01-01

    In this paper, diffraction theory is used to describe the self and mutual time-dependent interaction forces between ultrasonic transducers. This concept is interesting since it is equivalent, up to a temporal Fourier transform, to the radiation impedance. The formalism allows a description of self and mutual radiation impedances in terms of the aperture functions of the emitter and the receiver, and this description does not suppose that the transducers work in the piston mode. Then, the formalism is used to retrieve the well-known results about the radiation impedance of a circular piston. Finally, the mutual radiation impedance between two transducers is analyzed, the particular case of small transducers compared to the wavelength is discussed. The results are similar to those obtained by Stepanishen and Pritchard, except that the results here exhibit a correction term that increases the validity domain of the approximations. 14 refs., 2 figs.

  2. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  3. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  4. Estimates of Acausal Joint Impedance Models

    PubMed Central

    Perreault, Eric J.

    2013-01-01

    Estimates of joint or limb impedance are commonly used in the study of how the nervous system controls posture and movement, and how that control is altered by injury to the neural or musculoskeletal systems. Impedance characterizes the dynamic relationship between an imposed perturbation of joint position and the torques generated in response. While there are many practical reasons for estimating impedance rather than its inverse, admittance, it is an acausal representation of the limb mechanics that can lead to difficulties in interpretation or use. The purpose of this study was to explore the acausal nature of nonparametric estimates of joint impedance representations to determine how they are influenced by common experimental and computational choices. This was accomplished by deriving discrete-time realizations of first-and second-order derivatives to illustrate two key difficulties in the physical interpretation of impedance impulse response functions. These illustrations were provided using both simulated and experimental data. It was found that the shape of the impedance impulse response depends critically on the selected sampling rate, and on the bandwidth and noise characteristics of the position perturbation used during the estimation process. These results provide important guidelines for designing experiments in which nonparametric estimates of impedance will be obtained, especially when those estimates are to be used in a multistep identification process. PMID:22907963

  5. Estimates of acausal joint impedance models.

    PubMed

    Westwick, David T; Perreault, Eric J

    2012-10-01

    Estimates of joint or limb impedance are commonly used in the study of how the nervous system controls posture and movement, and how that control is altered by injury to the neural or musculoskeletal systems. Impedance characterizes the dynamic relationship between an imposed perturbation of joint position and the torques generated in response. While there are many practical reasons for estimating impedance rather than its inverse, admittance, it is an acausal representation of the limb mechanics that can lead to difficulties in interpretation or use. The purpose of this study was to explore the acausal nature of nonparametric estimates of joint impedance representations to determine how they are influenced by common experimental and computational choices. This was accomplished by deriving discrete-time realizations of first- and second-order derivatives to illustrate two key difficulties in the physical interpretation of impedance impulse response functions. These illustrations were provided using both simulated and experimental data. It was found that the shape of the impedance impulse response depends critically on the selected sampling rate, and on the bandwidth and noise characteristics of the position perturbation used during the estimation process. These results provide important guidelines for designing experiments in which nonparametric estimates of impedance will be obtained, especially when those estimates are to be used in a multistep identification process. PMID:22907963

  6. Measurements of electrical impedance of biomedical objects.

    PubMed

    Frączek, Marcin; Kręcicki, Tomasz; Moron, Zbigniew; Krzywaźnia, Adam; Ociepka, Janusz; Rucki, Zbigniew; Szczepanik, Zdzisław

    2016-01-01

    Some basic problems related to measurements of electrical impedance of biological objects (bioimpedance) have been presented in this paper. Particularly problems arising from impedance occurring at the sensor-tissue interface (interfacial impedances) in contact measuring methods have been discussed. The influence of finite values of impedances of the current source and voltage measuring device has also been taken into consideration. A model of the impedance sensor for the four-electrode measurement method containing the interfacial, source and measuring device impedances has been given and its frequency characteristics obtained by the computer simulation have been presented. The influence of these impedances on the shape of frequency characteristic of the sensor model has been discussed. Measurements of bioimpedance of healthy and anomalous soft tissues have been described. Some experimental results, particularly the frequency characteristics of bioimpedance, have been shown. The presented results of measurement show that bioimpedance can be a valuable source of information about the tissues, so measurement of bioimpedance can be a useful supplement to other medical diagnostic methods. PMID:27151250

  7. Summary of the impedance working group

    SciTech Connect

    Chao, A.W.

    1995-05-01

    The impedance working group concentrated on the LHC design during the workshop. They look at the impedance contributions of liner, beam position monitors, shielded bellows, experimental chambers, superconducting cavities, recombination chambers, space charge, kickers, and the resistive wall. The group concluded that the impedance budgeting and the conceptual designs of the vacuum chamber components looked basically sound. It also noted, not surprisingly, that a large amount of studies are to be carried out further, and it ventured to give a partial list of these studies.

  8. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  9. Koch fractal boundary patch over reactive impedance

    NASA Astrophysics Data System (ADS)

    Reddy V, Venkateshwar; Sarma, N. V. S. N.

    2013-04-01

    This paper describes the enhancement of bandwidth and miniaturization for patch antennas. Introduction of fractal structure (Square Koch) over reactive impedance surface (RIS) is used to enhance impedance bandwidth while minimizing the patch size. Comparison has been made with those of a single-layer (sub1) antenna and the corresponding dual-layer (RIS) antenna. Approximately double the impedance bandwidth is achieved with the proposed RIS Square Koch antenna 1 when compared with Square Koch antenna 1without RIS. There is a 55 % reduction in the patch size. The simulated results indicate that the presented antennas provide gain of about 2.5dBi over the entire band of frequencies.

  10. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE.

    SciTech Connect

    HAHN,H.; DAVINO,D.

    2002-06-02

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit.

  11. Analysis of Diffraction of Dominant Mode in an Acoustic Impedance Loaded Trifurcated Duct

    NASA Astrophysics Data System (ADS)

    Ayub, Muhammad; Hussain Tiwana, Mazhar; Mann, Amer Bilad

    2010-11-01

    The paper presents the analytical description of diffraction phenomena of sound at the opening of a two dimensional semi-infinite acoustically soft duct. This soft duct is symmetrically located inside an infinite duct with normal impedance boundary conditions in the case where the surface acoustic impedances of the upper and lower infinite plates are different from each other. A matrix Wiener- Hopf equation associated with a new canonical scattering problem is solved explicitly. A new kernel function arose for the problem and has been factorized. The graphical results are also presented which show how effectively the unwanted noise can be reduced by proper selection of different parameters.

  12. Mutual impedance computation between printed dipoles

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N. G.; Rana, I. E.

    1981-01-01

    The mutual impedance between microstrip dipoles printed on a grounded substrate is computed. Results for the microstrip dipoles in broadside, collinear, and echelon arrangements are presented. The significance of surface wave to mutual coupling is discussed.

  13. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng; Tirkas, Panayiotis A.

    1993-01-01

    During the period of this research project, a comprehensive study of pyramidal horn antennas was conducted. Full-wave analytical and numerical techniques were developed to analyze horn antennas with or without impedance surfaces. Based on these full-wave analytic techniques, research was conducted on the use of impedance surfaces on the walls of the horn antennas to control the antenna radiation patterns without a substantial loss of antenna gain. It was found that the use of impedance surfaces could modify the antenna radiation patterns. In addition to the analytical and numerical models, experimental models were also constructed and they were used to validate the predictions. Excellent agreement between theoretical predictions and the measured data was obtained for pyramidal horns with perfectly conducting surfaces. Very good comparisons between numerical and experimental models were also obtained for horns with impedance surfaces.

  14. Acoustic input impedance measurements on brass instruments

    NASA Astrophysics Data System (ADS)

    Pyle, Robert W., Jr.

    2002-11-01

    Measurement of the acoustic input impedance of a brass instrument can reveal something about the instrument's intonation, its reasonable playing range, its tone color, and perhaps whether the mouthpiece used for the impedance measurement is appropriate for the instrument. Such measurements are made at sound-presssure levels much lower than those encountered under playing conditions. Thus, impedance measurements may offer the only feasible way to infer something about the playing characteristics of instruments, typically museum specimens, that are too rare or too fragile to be played. In this paper the effects of some of the available choices of sound source and stimulus signal on measurement accuracy will be explored. Driver-transducer nonlinearity, source impedance, signal-to-noise ratio, and any necessary signal processing will be discussed.

  15. Impedance feedback control for scanning electrochemical microscopy.

    PubMed

    Alpuche-Aviles, M A; Wipf, D O

    2001-10-15

    A new constant-distance imaging method based on the relationship between tip impedance and tip-substrate separation has been developed for the scanning electrochemical microscope. The tip impedance is monitored by application of a high-frequency ac voltage bias between the tip and auxiliary electrode. The high-frequency ac current is easily separated from the dc-level faradaic electrochemistry with a simple RC filter, which allows impedance measurements during feedback or generation/collection experiments. By employing a piezo-based feedback controller, we are able to maintain the impedance at a constant value and, thus, maintain a constant tip-substrate separation. Application of the method to feedback and generation/collection experiments with tip electrodes as small as 2 microm is presented. PMID:11681463

  16. Inversion of elastic impedance for unconsolidated sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Elastic properties of gas-hydrate-bearing sediments are important for quantifying gas hydrate amounts as well as discriminating the gas hydrate effect on velocity from free gas or pore pressure. This paper presents an elastic inversion method for estimating elastic properties of gas-hydrate-bearing sediments from angle stacks using sequential inversion of P-wave impedance from the zero-offset stack and S-wave impedance from the far-offset stack without assuming velocity ratio.

  17. CSR Impedance for Non-Ultrarelativistic Beams

    SciTech Connect

    Li, Rui; Tsai, Cheng Y.

    2015-09-01

    For the analysis of the coherent synchrotron radiation (CSR)-induced microbunching gain in the low energy regime, such as when a high-brightness electron beam is transported through a low-energy merger in an energy-recovery linac (ERL) design, it is necessary to extend the CSR impedance expression in the ultrarelativistic limit to the non-ultrarelativistic regime. This paper presents our analysis of CSR impedance for general beam energies.

  18. Wave impedance of an atomically thin crystal.

    PubMed

    Merano, Michele

    2015-11-30

    I propose an expression for the electromagnetic wave impedance of a two-dimensional atomic crystal, and I deduce the Fresnel coefficients in terms of this quantity. It is widely known that a two-dimensional crystal can absorb light, if its conductivity is different from zero. It is less emphasized that they can also store a certain amount of electromagnetic energy. The concept of impedance is useful to quantify this point. PMID:26698783

  19. Acoustic impedance microscopy for biological tissue characterization.

    PubMed

    Kobayashi, Kazuto; Yoshida, Sachiko; Saijo, Yoshifumi; Hozumi, Naohiro

    2014-09-01

    A new method for two-dimensional acoustic impedance imaging for biological tissue characterization with micro-scale resolution was proposed. A biological tissue was placed on a plastic substrate with a thickness of 0.5mm. A focused acoustic pulse with a wide frequency band was irradiated from the "rear side" of the substrate. In order to generate the acoustic wave, an electric pulse with two nanoseconds in width was applied to a PVDF-TrFE type transducer. The component of echo intensity at an appropriate frequency was extracted from the signal received at the same transducer, by performing a time-frequency domain analysis. The spectrum intensity was interpreted into local acoustic impedance of the target tissue. The acoustic impedance of the substrate was carefully assessed prior to the measurement, since it strongly affects the echo intensity. In addition, a calibration was performed using a reference material of which acoustic impedance was known. The reference material was attached on the same substrate at different position in the field of view. An acoustic impedance microscopy with 200×200 pixels, its typical field of view being 2×2 mm, was obtained by scanning the transducer. The development of parallel fiber in cerebella cultures was clearly observed as the contrast in acoustic impedance, without staining the specimen. The technique is believed to be a powerful tool for biological tissue characterization, as no staining nor slicing is required. PMID:24852259

  20. Modeling magnetically insulated devices using flow impedance

    SciTech Connect

    Mendel, C.W. Jr.; Rosenthal, S.E. )

    1995-04-01

    In modern pulsed power systems the electric field stresses at metal surfaces in vacuum transmission lines are so high that negative surfaces are space-charge-limited electron emitters. These electrons do not cause unacceptable losses because magnetic fields due to system currents result in net motion parallel to the electrodes. It has been known for several years that a parameter known as flow impedance is useful for describing these flows. Flow impedance is a measure of the separation between the anode and the mean position of the electron cloud, and it will be shown in this paper that in many situations flow impedance depends upon the geometry of the transmission line upstream of the point of interest. It can be remarkably independent of other considerations such as line currents and voltage. For this reason flow impedance is a valuable design parameter. Models of impedance transitions and voltage adders using flow impedance will be developed. Results of these models will be compared to two-dimensional, time-dependent, particle-in-cell simulations.

  1. Experimental study of coupling impedance: Part I longitudinal impedance measurement techniques

    SciTech Connect

    Song, J.J.

    1991-10-22

    Beam coupling impedances for the 7-GeV APS storage ring have been numerically estimated. In order to confirm these calculations, measurements of the coupling impedance of various vacuum components around the main storage ring were done with a coaxial wire method. In this paper, the procedure of the longitudinal impedance measurement techniques will be described. As an example, sections of the Cu beam chamber, the Cu beam + antechambers, and the Al beam + antechambers were used as a device under test (DUT) to obtain the results. The transverse impedance measurements will be described in a separate paper.

  2. Descriptive thermodynamics

    NASA Astrophysics Data System (ADS)

    Ford, David; Huntsman, Steven

    2006-06-01

    Thermodynamics (in concert with its sister discipline, statistical physics) can be regarded as a data reduction scheme based on partitioning a total system into a subsystem and a bath that weakly interact with each other. Whereas conventionally, the systems investigated require this form of data reduction in order to facilitate prediction, a different problem also occurs, in the context of communication networks, markets, etc. Such “empirically accessible” systems typically overwhelm observers with the sort of information that in the case of (say) a gas is effectively unobtainable. What is required for such complex interacting systems is not prediction (this may be impossible when humans besides the observer are responsible for the interactions) but rather, description as a route to understanding. Still, the need for a thermodynamical data reduction scheme remains. In this paper, we show how an empirical temperature can be computed for finite, empirically accessible systems, and further outline how this construction allows the age-old science of thermodynamics to be fruitfully applied to them.

  3. A physical interpretation of impedance at conducting polymer/electrolyte junctions

    SciTech Connect

    Stavrinidou, Eleni; Sessolo, Michele; Sanaur, Sébastien; Malliaras, George G.; Winther-Jensen, Bjorn

    2014-01-15

    We monitor the process of dedoping in a planar junction between an electrolyte and a conducting polymer using electrochemical impedance spectroscopy performed during moving front measurements. The impedance spectra are consistent with an equivalent circuit of a time varying resistor in parallel with a capacitor. We show that the resistor corresponds to ion transport in the dedoped region of the film, and can be quantitatively described using ion density and drift mobility obtained from the moving front measurements. The capacitor, on the other hand, does not depend on time and is associated with charge separation at the moving front. This work offers a physical description of the impedance of conducting polymer/electrolyte interfaces based on materials parameters.

  4. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  5. Vascular impedance analysis in human pulmonary circulation.

    PubMed

    Zhou, Qinlian; Gao, Jian; Huang, Wei; Yen, Michael

    2006-01-01

    Vascular impedance is determined by morphometry and mechanical properties of the vascular system, as well as the rheology of the blood. The interactions between all these factors are complicated and difficult to investigate solely by experiments. A mathematical model representing the entire system of human pulmonary circulation was constructed based on experimentally measured morphometric and elasticity data of the vessels. The model consisted of 16 orders of arteries and 15 orders of veins. The pulmonary arteries and veins were considered as elastic tubes and their impedance was calculated based on Womersley's theory. The flow in capillaries was described by the "sheet-flow" theory. The model yielded an impedance modulus spectrum that fell steeply from a high value at 0 Hz to a minimum around 1.5 Hz. At about 4 Hz, it reached a second high and then oscillated around a relatively small value at higher frequencies. Characteristic impedance was 27.9 dyn-sec/cm5. Influence of variations in vessel geometry and elasticity on impedance spectra was analyzed. Simulation results showed good agreement with experimental measurements. PMID:16817653

  6. Non-contact scanning electrical impedance imaging.

    PubMed

    Liu, Hongze; Hawkins, Aaron; Schultz, Stephen; Oliphant, Travis

    2004-01-01

    We are interested in applying electrical impedance imaging to a single cell because it has potential to reveal both cell anatomy and cell function. Unfortunately, classic impedance imaging techniques are not applicable to this small scale measurement due to their low resolution. In this paper, a different method of impedance imaging is developed based on a non-contact scanning system. In this system, the imaging sample is immersed in an aqueous solution allowing for the use of various probe designs. Among those designs, we discuss a novel shield-probe design that has the advantage of better signal-to-noise ratio with higher resolution compared to other probes. Images showing the magnitude of current for each scanned point were obtained using this configuration. A low-frequency linear physical model helps to relate the current to the conductivity at each point. Line-scan data of high impedance contrast structures can be shown to be a good fit to this model. The first two-dimensional impedance image of biological tissues generated by this technique is shown with resolution on the order of 100 mum. The image reveals details not present in the optical image. PMID:17271931

  7. Next Generation Plasma Impedance Probe Instrumentation Technique

    NASA Astrophysics Data System (ADS)

    Carlson, C. G.; Swenson, C. M.; Fish, C.

    2003-12-01

    Four Utah State University Plasma Impedance Probes (PIP) were part of NASA's Sequential Rocket Study of Descending Layers in the E-Region (E-Winds). The payloads were launched at 11:19 pm, 1:41 am, 2:50 am and 3:07 am on June 30 and July 1, 2003 from Wallops Island, Virginia into the nighttime D and E-regions. The PIP is a suite of instruments for observing relative and absolute electron densities, magnetic field strength, and electron-neutral collision frequency. The suite consists of a Plasma Frequency Probe, a Swept Impedance Probe, a Q probe, an experimental Ion Impedance probe, and a DC Langmuir probe. The first four instrument diagnostics are based on the impedance characteristics of an antenna immersed in plasma. Resonance effects at low frequencies (1-100 kHz) where ion dynamics become important were observed by the Ion Impedance Probe. This data set may lead to the first mid-latitude measurements of ion-neutral collision frequency and full conductivity measurements of the ionosphere. Preliminary analysis of flight data shows a considerable amount of sensitivity in all of the instruments that should allow for absolute electron density measurement in the 1 to 10 per cc range and comparable accuracy in electron neutral collision frequency. This paper presents the instrumentation techniques, calibrations and initial results for this flight.

  8. Antenna pattern control using impedence surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng

    1991-01-01

    During this research period, September 16, 1990 to March 15, 1991, a design method for selecting a low-loss impedance material coating for a horn antenna pattern control has been developed. This method and the stepped waveguide technique can be employed to accurately compute the electromagnetic wave phenomenon inside the transition region of the horn antenna, with or without the impedance surfaces, from the feed to the radiating aperture. For moment method solutions of the electric and magnetic current distributions on the radiating aperture and the outer surface of the horn antenna, triangular surface-patch modes are introduced to replace the sinusoidal surface-patch modes as expansion and testing functions to provide a more physical expansion of the current distributions. In the synthesis problem, a numerical optimization process is formulated to minimize the error function between the desired waveguide modes and the modes provided by the horn transition with impedance surfaces. Since the modes generated by the horn transition with impedance surface are computed by analytical techniques, the computational error involved in the synthesis of the antenna pattern is minimum. Therefore, the instability problem can be avoided. A preliminary implementation of the techniques has demonstrated that the developed theory of the horn antenna pattern control using the impedance surfaces is realizable.

  9. Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial

    SciTech Connect

    Altimiras, Carles Parlavecchio, Olivier; Joyez, Philippe; Vion, Denis; Roche, Patrice; Esteve, Daniel; Portier, Fabien

    2013-11-18

    We report the efficient coupling of a 50  Ω microwave circuit to a high impedance conductor. We use an impedance transformer consisting of a λ/4 co-planar resonator whose inner conductor contains an array of superconducting quantum interference devices (SQUIDs), providing it with a tunable lineic inductance L∼80 μ{sub 0}, resulting in a characteristic impedance Z{sub C}∼1 kΩ. The impedance matching efficiency is characterized by measuring the shot noise power emitted by a dc biased tunnel junction connected to the resonator. We demonstrate matching to impedances in the 15 to 35 kΩ range with bandwidths above 100 MHz around a resonant frequency tunable between 4 and 6 GHz.

  10. Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial

    NASA Astrophysics Data System (ADS)

    Altimiras, Carles; Parlavecchio, Olivier; Joyez, Philippe; Vion, Denis; Roche, Patrice; Esteve, Daniel; Portier, Fabien

    2013-11-01

    We report the efficient coupling of a 50 Ω microwave circuit to a high impedance conductor. We use an impedance transformer consisting of a λ/4 co-planar resonator whose inner conductor contains an array of superconducting quantum interference devices (SQUIDs), providing it with a tunable lineic inductance L ˜80 μ0, resulting in a characteristic impedance ZC˜1 k Ω. The impedance matching efficiency is characterized by measuring the shot noise power emitted by a dc biased tunnel junction connected to the resonator. We demonstrate matching to impedances in the 15 to 35 kΩ range with bandwidths above 100 MHz around a resonant frequency tunable between 4 and 6 GHz.

  11. Effective impedance for predicting the existence of surface states

    NASA Astrophysics Data System (ADS)

    Xiao, Meng; Huang, Xueqin; Fang, Anan; Chan, C. T.

    2016-03-01

    We build an effective impedance for two-dimensional (2D) photonic crystals (PCs) comprising a rectangular lattice of dielectric cylinders with the incident electric field polarized along the axis of the cylinders. In particular, we discuss the feasibility of constructing an effective impedance for the case where the Bloch wave vector is far away from the center of Brillouin zone, where the optical response of the PC is necessarily anisotropic, and hence the effective description becomes inevitably angle dependent. We employ the scattering theory and treat the 2D system as a stack of 1D arrays. We consider only the zero-order interlayer diffraction, and all the higher order diffraction terms of interlayer scattering are ignored. This approximation works well when the higher order diffraction terms are all evanescent waves and the interlayer distance is far enough for them to decay out. Scattering theory enables the calculation of transmission and reflection coefficients of a finite-sized slab, and we extract the effective parameters such as the effective impedance (Ze) and the effective refractive index (ne) using a parameter retrieval method. We note that ne is uniquely defined only in a very limited region of the reciprocal space. (nek0a ≪1 , where k0 is the wave vector inside the vacuum and a is thickness of the slab for retrieval), but Ze is uniquely defined and has a well-defined meaning inside a much larger domain in the reciprocal space. For a lossless system, the effective impedance Ze is purely real for the pass band and purely imaginary in the band gaps. Using the sign of the imaginary part of Ze, we can classify the band gaps into two groups, and this classification explains why there is usually no surface state on the boundary of typical fully gapped PCs composed of a lattice of dielectric cylinders. This effective medium approach also allows us to predict the dispersion of surface states even when the surface wave vectors are well beyond the zone

  12. Propagation of waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1974-01-01

    A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.

  13. Ferrofluid Microwave Devices With Magnetically Controlled Impedances

    NASA Astrophysics Data System (ADS)

    Fannin, P. C.; Stefu, N.; Marin, C. N.; Malaescu, I.; Totoreanu, R.

    2010-08-01

    Ferrofluid filled transmission lines are microwave electronic devices. The complex dielectric permittivity and the complex magnetic permeability of a kerosene based ferrofluid with magnetite nanoparticles, in the frequency range (0.5-6) GHz were measured, for several values of polarising field, H. Afterwards, the input impedance of a short-circuited transmission line filled with this ferrofluid was computed using the equation Z = Zc tanh(γl). Here Zc and l are the characteristic impedance and the length of the coaxial line and γ is the propagation constant, depending on the dielectric and magnetic parameters of the material within the line. It is demonstrated how the impedance displays a frequency and polarizing field dependence, which has application in the design of magnetically controlled microwave devices.

  14. Respiratory acoustic impedance in left ventricular failure.

    PubMed

    Depeursinge, F B; Feihl, F; Depeursinge, C; Perret, C H

    1989-12-01

    The measurement of respiratory acoustic impedance (Zrs) by forced pseudorandom noise provides a simple means of assessing respiratory mechanics in nonintubated intensive care patients. To characterize the lung mechanical alterations induced by acute vascular congestion of the lung, Zrs was measured in 14 spontaneously breathing patients hospitalized for acute left ventricular failure. The Zrs data in the cardiac patients were compared with those of 48 semirecumbent normal subjects and those of 23 sitting asthmatic patients during allergen-induced bronchospasm. In the patients with acute left ventricular failure, the Zrs abnormalities noted were an excessive frequency dependence of resistance from 10 to 20 Hz and an abnormally low reactance at all frequencies, abnormalities qualitatively similar to those observed in the asthmatic patients but of lesser magnitude. Acute lung vascular congestion modifies the acoustic impedance of the respiratory system. Reflex-induced bronchospasm might be the main mechanism altering respiratory acoustic impedance in acute left ventricular failure. PMID:2582846

  15. Plasma Diagnostics by Antenna Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Baker, K. D.; Pound, E.; Jensen, M. D.

    1993-01-01

    The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described.

  16. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  17. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  18. Impedance Characteristics of the Plasma Absorption Probe

    NASA Astrophysics Data System (ADS)

    Yamazawa, Yohei

    2009-10-01

    The plasma absorption probe (PAP) is a diagnostics for determination of spatially resolved electron density.footnotetextH. Kokura, et al., Jpn. J. Appl. Phys. 38 5262 (1999). PAP has attracted considerable interest because of its applicability in a reactive plasma. The simple structure of the probe allows us a robust measurement while the mechanism of the absorption is complicated and there are still some uncertainty.footnotetextM. Lapke, et al., Appl. Phys. Lett. 90, 121502 (2007) In this study, we focus on the frequency characteristics of the impedance instead of the absorption spectrum. An electromagnetic field simulation reveals that there is only one parallel resonance in the impedance characteristics even in a case there are many peaks in absorption spectrum. Thus, the impedance characteristics provide a clue to understanding the mechanism.

  19. Minimal implementation of an AFE4300-based spectrometer for electrical impedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Praveen, A.; Bartolome, E.; Soundarapandian, K.; Bragos, R.

    2013-04-01

    The AFE4300 is a new low-cost on-chip impedance spectrometer developed by Texas Instruments able to handle multiple four electrode interface measurements. In this work, we present a brief description and characterization of this device and, besides its interesting features as a body-composition impedancemeter system; we evaluate its potential to develop minimal implementations for other biomedical applications. As the case study presented in this paper, its use to monitor ventilatory time-varying bioimpedance.

  20. Optical input impedance of nanostrip antennas

    NASA Astrophysics Data System (ADS)

    Wang, Ivan; Du, Ya-ping

    2012-05-01

    We conduct an investigation into optical nanoantennas in the form of a strip dipole made from aluminum. With the finite-difference time domain simulation both optical input impedance and radiation efficiency of nanostrip antennas are addressed. An equivalent circuit is presented as well for the nanostrip antennas at optical resonances. The optical input resistance can be adjusted by varying the geometric parameters of antenna strips. By changing both strip area and strip length simultaneously, optical input resistance can be adjusted for matching impedance with an external feeding or loading circuit. It is found that the optical radiation efficiency does not change significantly when the size of a nanostrip antenna varies moderately.

  1. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  2. Study of Body Composition by Impedance Analysis

    NASA Astrophysics Data System (ADS)

    González-Solís, J. L.; Vargas-Luna, M.; Sosa-Aquino, M.; Bernal-Alvarado, J.; Gutiérrez-Juárez, G.; Huerta-Franco, R.; Sanchis-Sabater, A.

    2002-08-01

    This work presents a set of impedance measurements and preliminary results on the analysis of body composition using impedance spectroscopy. This study is made using a pork meat sample and spectra from fat and flesh region were independently obtained using the same electrodes array. From these measurements, and theoretical considerations, it is possible to explain the behavior of the composite sample flesh-fat-flesh and, fitting the electrical parameters of the model, it shows the plausibility of a physical and quantitative application to human corporal composition.

  3. Impedance spectra of polypyrrole coated platinum electrodes.

    PubMed

    Onnela, Niina; Savolainen, Virpi; Hiltunen, Maiju; Kellomäki, Minna; Hyttinen, Jari

    2013-01-01

    Polypyrrole (PPy) coated electrodes may provide new solutions to increase the charge injection capacity and biocompatibility of metal electrodes in e.g., neural stimulus applications. In this study, electrical impedance spectra of PPy coated platinum (Pt) electrodes having three different coating thicknesses were measured and modeled. A suitable equivalent electrical circuit providing the material characteristics was chosen and the impedance data was analyzed using the model and data fitting. The modeled parameter values of different coating thicknesses were compared and our results demonstrated the changes in charge transfer properties and mechanisms of thin and thick PPy film coatings. PMID:24109743

  4. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  5. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  6. Impedance Scaling for Small Angle Transitions

    SciTech Connect

    Stupakov, G.; Bane, Karl; Zagorodnov, I.; /DESY

    2010-10-27

    Based on the parabolic equation approach to Maxwell's equations we have derived scaling properties of the high frequency impedance/short bunch wakefields of structures. For the special case of small angle transitions we have shown the scaling properties are valid for all frequencies. Using these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings. We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and found that the scaling works well. In modern ring-based light sources one often finds insertion devices having extremely small vertical apertures (on the order of millimeters) to allow for maximal undulator fields reaching the beam. Such insertion devices require that there be beam pipe transitions from these small apertures to the larger cross-sections (normally on the order of centimeters) found in the rest of the ring. The fact that there may be many such transitions, and that these transitions introduce beam pipe discontinuities very close to the beam path, means that their impedance will be large and, in fact, may dominate the impedance budget of the entire ring. To reduce their impact on impedance, the transitions are normally tapered gradually over a long distance. The accurate calculation of the impedance or wakefield of these long transitions, which are typically 3D objects (i.e. they do not have cylindrical symmetry), can be quite a challenging numerical task. In this report we present a method of obtaining the impedance of a long, small angle transition from the calculation of a scaled, shorter one. Normally, the actual calculation is obtained from a time domain simulation of the wakefield in the structure, where the impedance can be obtained by performing a Fourier transform. We shall see that the scaled calculation reduces the computer time and memory requirements

  7. Implementation of Impedance Method in Syncope Treatment

    NASA Astrophysics Data System (ADS)

    Pęczalski, Kazimierz; Wojciechowski, Dariusz; Dunajski, Zbigniew; Pałko, Tadeusz

    2007-01-01

    Current syncope treatment by cardiac pacing is limited to patients developing cardiodepressive reaction. There is strong need to apply this method to other types of reaction. Presented method shows, that impedance method can be applied for early detection of vasodepressive syncope. Thus the method can be applied for antivasovagal pacing in syncopic patients.

  8. Acoustic grazing flow impedance using waveguide principles

    NASA Technical Reports Server (NTRS)

    Armstrong, D. L.

    1971-01-01

    A grazing flow apparatus was designed to measure the impedance of acoustic materials when installed in environments that subject the material to grazing airflow. The design of the apparatus and the data analysis technique is based on the solution of the convected wave equation in an infinite length waveguide.

  9. Electrical Impedance Tomography Technology (EITT) Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  10. Energy-storage of a prescribed impedance

    NASA Technical Reports Server (NTRS)

    Smith, W. E.

    1969-01-01

    General mathematical expression found for energy storage shows that for linear, passive networks there is a minimum possible energy storage corresponding to a prescribed impedance. The electromagnetic energy storage is determined at different excitation frequencies through analysis of the networks terminal and reactance characteristics.

  11. Explicit Expressions of Impedances and Wake Functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2012-06-11

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  12. Explicit expressions of impedances and wake functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2010-10-01

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  13. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  14. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A.; Mansure, Arthur J.

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  15. High Impedance Comparator for Monitoring Water Resistivity.

    ERIC Educational Resources Information Center

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  16. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  17. Scattering by a groove in an impedance plane

    NASA Technical Reports Server (NTRS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-01-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  18. Inter-Changeability of Impedance Devices for Lymphedema Assessment.

    PubMed

    van Zanten, Malou; Piller, Neil; Ward, Leigh C

    2016-06-01

    Impedance technology is a popular technique for the early detection of lymphedema. The preferred approach is to use bioimpedance spectroscopy (BIS), with measurements being made with the subject lying supine, although attempts have been made to use single or multiple frequency impedance measurements obtained while the subject is standing. The aim of the present study was to determine the equivalence of these different approaches. Impedance measurements of the individual limbs of 37 healthy individuals were determined using both a stand-on, multi-frequency impedance device and a supine impedance spectroscopy instrument. Significant differences were found between the instruments in both absolute impedance values and, importantly, inter-limb impedance ratios. Since impedance ratios in healthy individuals provide the reference standard for detection of lymphedema, these data indicate that the methods are not interchangeable. Consideration of the errors associated with each method indicates that the BIS remains the preferred method for lymphedema detection. PMID:26574711

  19. Stimuli dependent impedance of conductive magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xuan, Shouhu; Dong, Bo; Xu, Feng; Gong, Xinglong

    2016-02-01

    The structure dependent impedance of conductive magnetorheological elastomers (MREs) under different loads and magnetic fields has been studied in this work. By increasing the weight fraction of iron particles, the conductivity of the MREs increased. Dynamic mechanical measurements and synchrotron radiation x-ray computed tomography (SR-CT) were used and they provided reasons for the electrical properties changing significantly under pressure and magnetic field stimulation. The high sensitivity of MREs to external stimuli renders them suitable for application in force or magnetic field sensors. The equivalent circuit model was proposed to analyze the impedance response of MREs and it fits the experimental results very well. Each circuit component reflected the change of the inner interface under different conditions, thus relative changes in the microstructure could be distinguished. This method could be used not only to detect the structural changes in the MRE but also to provide a great deal of valuable information for the further understanding of the MR mechanism.

  20. Readout electrode assembly for measuring biological impedance

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Moody, D. L., Jr. (Inventor)

    1976-01-01

    The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes.

  1. Impedance issues in the CERN SPS

    NASA Astrophysics Data System (ADS)

    Linnecar, T.

    1999-12-01

    The future use of the CERN SPS accelerator as injector for the Large Hadron Collider, LHC, and the possible use of the SPS as a neutrino source for the Gran Sasso experiment are pushing the maximum intensity requirements of the accelerator much higher than achieved up to now. At the same time the requirements on beam quality are becoming far more stringent. The SPS machine, built in the 70's, is not a "smooth" machine. It contains many discontinuities in vacuum chamber cross-section and many cavity-like objects, as well as the 5 separate RF systems at present installed. All these lead to a high impedance, seen by the beam, spread over a wide frequency range. As a result there is a constant fight against instabilities, both single and multi bunch, as the intensity increases. A program of studies is under way in the SPS to identify, reduce, and remove where possible the sources of these impedances.

  2. Impedance of a beam tube with antechamber

    SciTech Connect

    Barry, W.; Lambertson, G.R.; Voelker, F.

    1986-08-01

    A beam vacuum chamber was proposed to allow synchrotron light to radiate from a circulating electron beam into an antechamber containing photon targets, pumps, etc. To determine the impedance such a geometry would present to the beam, electromagnetic measurements were carried out on a section of chamber using for low frequencies a current-carrying wire and for up to 16 GHz, a resonance perturbation method. Because the response of such a chamber would depend on upstream and downstream restrictions of aperture yet to be determined, the resonance studies were analyzed in some generality. The favorable conclusion of these studies is that the antechamber makes practically no contribution to either the longitudinal or the transverse impedances.

  3. Automatic digital-analog impedance plethysmograph

    NASA Astrophysics Data System (ADS)

    Goy, C. B.; Mauro, K. A.; Yanicelli, L. M.; Parodi, N. F.; Gómez López, M. A.; Herrera, M. C.

    2016-04-01

    Venous occlusion plethysmography (VOP) is a traditional method widely used to assess limb blood circulation. One common mode to record VOP is by means of evaluating limb volume changes using impedance plethysmography (IP). In this paper the design and implementation of an automatic digital-analog impedance plethysmograph (ADAIP) for VOP is presented. The system is tested using precision resistances in order to calculate its repeatability. Then its global performance is assessed by means of VOP recordings on the upper and me lower limb of a healthy volunteer. The obtained repeatability was very high (95%), and the VOP recordings where the expected ones. It can be concluded that the whole system performs well and that it is suitable for automatic VOP recording.

  4. Impedance characteristics of terawatt ion diodes

    NASA Astrophysics Data System (ADS)

    Mendel, C. W., Jr.; Desjarlais, M. P.; Pointon, T. D.; Quintenz, J. P.; Rosenthal, S. E.; Seidel, D. B.; Slutz, S. A.

    Light ion fusion research has developed ion diodes that have unique properties when compared to other ion diodes. These diodes involve relativistic electrons, ion beam stagnation pressures that compress the magnetic field to the order of 10 Tesla, and large space charge and particle current effects throughout the accelerating region. These diodes have required new theories and models to account for effects that previously were unimportant. One of the most important effects of the magnetic field compression and large space charge has been impedance collapse. The impedance collapse can lead to poor energy transfer efficiency, beam debunching, and rapid change of the beam focus. The current understanding of these effects is discussed including some of the methods used to ameliorate them, and the future directions the theory and modeling will take.

  5. Enhanced Method for Cavity Impedance Calculations

    SciTech Connect

    Frank Marhauser, Robert Rimmer, Kai Tian, Haipeng Wang

    2009-05-01

    With the proposal of medium to high average current accelerator facilities the demand for cavities with extremely low Higher Order Mode (HOM) impedances is increasing. Modern numerical tools are still under development to more thoroughly predict impedances that need to take into account complex absorbing boundaries and lossy materials. With the usually large problem size it is preferable to utilize massive parallel computing when applicable and available. Apart from such computational issues, we have developed methods using available computer resources to enhance the information that can be extracted from a cavities? wakefield computed in time domain. In particular this is helpful for a careful assessment of the extracted RF power and the mitigation of potential beam break-up or emittance diluting effects, a figure of merit for the cavity performance. The method is described as well as an example of its implementation.

  6. Nonlinear acoustic impedance of thermoacoustic stack

    NASA Astrophysics Data System (ADS)

    Ge, Huan; Fan, Li; Xiao, Shu-yu; Tao, Sha; Qiu, Mei-chen; Zhang, Shu-yi; Zhang, Hui

    2012-09-01

    In order to optimize the performances of the thermoacoustic refrigerator working with the high sound pressure level, the nonlinear acoustic characteristics of the thermoacoustic stack in the resonant pipe are studied. The acoustic fluid impedance of the stack made of copper mesh and set up in a resonant pipe is measured in the acoustic fields with different intensities. It is found that when the sound pressure level in the pipe increases to a critical value, the resistance of the stack increases nonlinearly with the sound pressure, while the reactance of the stack keeps constant. Based on the experimental results, a theory model is set up to describe the acoustic characteristics of the stack, according to the rigid frame theory and Forchheimmer equation. Furthermore, the influences of the sound pressure level, operating frequency, volume porosity, and length of the stack on the nonlinear impedance of the stack are evaluated.

  7. Superconducting surface impedance under radiofrequency field

    DOE PAGESBeta

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  8. Equivalent impedance of a rough interface

    NASA Astrophysics Data System (ADS)

    Zhuk, N. P.; Tret'iakov, O. A.

    1987-10-01

    An equivalent-impedance (EI) dyad is constructed for a rough and plane (on the average) interface dividing two plane-stratified magnetodielectric media. Its characteristics are related to those of a smooth surface and to the scattering properties of the roughnesses. It is shown that the Hermitian part of an EI dyad is formed through field scattering by roughnesses into the propagating natural modes of the regular medium.

  9. Impedance analysis of nanocarbon DSSC electrodes

    NASA Astrophysics Data System (ADS)

    Gagliardi, S.; Giorgi, L.; Giorgi, R.; Lisi, N.; Dikonimos Makris, Th.; Salernitano, E.; Rufoloni, A.

    2009-07-01

    Carbon nanoparticles and multiwall carbon nanotubes were deposited on an Optically Transparent Electrode (OTE) for application in Dye Sensitised Solar Cells (DSSCs) as counter electrode materials. Electrochemical Impedance Spectroscopy (EIS) was used to evaluate the behaviour in a I3-/I electrolyte solution. Results were compared to commercial Pt catalysed OTE and polycrystalline graphite. Multiwalled carbon nanotubes show low series resistance and low charge transfer resistance promising an improved fill factor (and efficiency) in DSSCs assembled with such materials as counter electrodes.

  10. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  11. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  12. Measurement of shear impedances of viscoelastic fluids

    SciTech Connect

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, A.C.

    1996-12-31

    Shear-wave reflection coefficients from a solid/fluid interface are derived for non-Newtonian fluids that can be described by Maxwell, Voigt, and power-law fluid models. Based on model calculations, we have identified the measurable effects on the reflection coefficients due to fluid non-Newtonian behavior. The models are used to interpret the viscosity data obtained by a technique based on shear impedance measurement.

  13. Application of impedance spectroscopy to SOFC research

    SciTech Connect

    Hsieh, G.; Mason, T.O.; Pederson, L.R.

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  14. Antenna pattern control using impedance surfaces

    NASA Astrophysics Data System (ADS)

    Balanis, Constantine A.; Liu, Kefeng

    1992-09-01

    During this research period, we have effectively transferred existing computer codes from CRAY supercomputer to work station based systems. The work station based version of our code preserved the accuracy of the numerical computations while giving a much better turn-around time than the CRAY supercomputer. Such a task relieved us of the heavy dependence of the supercomputer account budget and made codes developed in this research project more feasible for applications. The analysis of pyramidal horns with impedance surfaces was our major focus during this research period. Three different modeling algorithms in analyzing lossy impedance surfaces were investigated and compared with measured data. Through this investigation, we discovered that a hybrid Fourier transform technique, which uses the eigen mode in the stepped waveguide section and the Fourier transformed field distributions across the stepped discontinuities for lossy impedances coating, gives a better accuracy in analyzing lossy coatings. After a further refinement of the present technique, we will perform an accurate radiation pattern synthesis in the coming reporting period.

  15. Bioelectrical impedance analysis of bovine milk fat

    NASA Astrophysics Data System (ADS)

    Veiga, E. A.; Bertemes-Filho, P.

    2012-12-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  16. On the directional symmetry of the impedance

    SciTech Connect

    Heifets, S.A.

    1990-03-01

    The independence of the impedance on the beam direction is an important feature of an accelerator structure, in particular, for the electron-positron storage rings where bunches of opposite charges travel through the same vacuum chamber in opposite directions. Recently Gluckstern and Zotter considered a cylindrically symmetric but longitudinally asymmetric cavity with side pipes of equal radii. They were able to prove that for a relativistic particle the longitudinal impedance of the cavity with an arbitrary shape is independent of the direction in which the beam travels through it. Their result corroborates numerical observations of the independence of the wakefield obtained with the code TBCI. Bisognano gave an elegant proof of the same statement. His approach is based on a reciprocity relation applied to the tensor Green's function. I follow here his idea in a somewhat simpler way to obtain more general and physically transparent proof of this property for both longitudinal and transverse impedances. The result is valid for a cavity with no azimuthal symmetry and for arbitrary particle velocity, as soon as it may be considered constant. At the same time the limits of its validity are shown.

  17. PEP-X IMPEDANCE AND INSTABILITY CALCULATIONS

    SciTech Connect

    Bane, K.L.F.; Lee, L.-Q.; Ng, C.; Stupakov, G.; au Wang, L.; Xiao, L.; /SLAC

    2010-08-25

    PEP-X, a next generation, ring-based light source is designed to run with beams of high current and low emittance. Important parameters are: energy 4.5 GeV, circumference 2.2 km, beam current 1.5 A, and horizontal and vertical emittances, 185 pm by 8 pm. In such a machine it is important that impedance driven instabilities not degrade the beam quality. In this report they study the strength of the impedance and its effects in PEP-X. For the present, lacking a detailed knowledge of the vacuum chamber shape, they create a straw man design comprising important vacuum chamber objects to be found in the ring, for which they then compute the wake functions. From the wake functions they generate an impedance budget and a pseudo-Green function wake representing the entire ring, which they, in turn, use for performing microwave instability calculations. In this report they, in addition, consider in PEP-X the transverse mode-coupling, multi-bunch transverse, and beam-ion instabilities.

  18. Oblique impacts into low impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2009-12-01

    Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA

  19. The Influence of Segmental Impedance Analysis in Predicting Validity of Consumer Grade Bioelectrical Impedance Analysis Devices

    NASA Astrophysics Data System (ADS)

    Sharp, Andy; Heath, Jennifer; Peterson, Janet

    2008-05-01

    Consumer grade bioelectric impedance analysis (BIA) instruments measure the body's impedance at 50 kHz, and yield a quick estimate of percent body fat. The frequency dependence of the impedance gives more information about the current pathway and the response of different tissues. This study explores the impedance response of human tissue at a range of frequencies from 0.2 - 102 kHz using a four probe method and probe locations standard for segmental BIA research of the arm. The data at 50 kHz, for a 21 year old healthy Caucasian male (resistance of 180φ±10 and reactance of 33φ±2) is in agreement with previously reported values [1]. The frequency dependence is not consistent with simple circuit models commonly used in evaluating BIA data, and repeatability of measurements is problematic. This research will contribute to a better understanding of the inherent difficulties in estimating body fat using consumer grade BIA devices. [1] Chumlea, William C., Richard N. Baumgartner, and Alex F. Roche. ``Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectrical impedance.'' Am J Clin Nutr 48 (1998): 7-15.

  20. Impedance analysis of fibroblastic cell layers measured by electric cell-substrate impedance sensing

    NASA Astrophysics Data System (ADS)

    Lo, Chun-Min; Ferrier, Jack

    1998-06-01

    Impedance measurements of cell layers cultured on gold electrode surfaces obtained by electric cell-substrate impedance sensing provide morphological information such as junctional resistance and cell-substrate separation. Previously, a model that assumes that cells have a disklike shape and that electric currents flow radially underneath the ventral cell surface and then through the paracellular space has been used to theoretically calculate the impedance of the cell-covered electrode. In this paper we propose an extended model of impedance analysis for cell layers where cellular shape is rectangular. This is especially appropriate for normal fibroblasts in culture. To verify the model, we analyze impedance data obtained from four different kinds of fibroblasts that display a long rectangular shape. In addition, we measure the average cell-substrate separation of human gingival fibroblasts at different temperatures. At temperatures of 37, 22, and 4 °C, the average separation between ventral cell surface and substratum are 46, 55, and 89 nm, respectively.

  1. Label-Free Impedance Biosensors: Opportunities and Challenges

    PubMed Central

    Daniels, Jonathan S.; Pourmand, Nader

    2007-01-01

    Impedance biosensors are a class of electrical biosensors that show promise for point-of-care and other applications due to low cost, ease of miniaturization, and label-free operation. Unlabeled DNA and protein targets can be detected by monitoring changes in surface impedance when a target molecule binds to an immobilized probe. The affinity capture step leads to challenges shared by all label-free affinity biosensors; these challenges are discussed along with others unique to impedance readout. Various possible mechanisms for impedance change upon target binding are discussed. We critically summarize accomplishments of past label-free impedance biosensors and identify areas for future research. PMID:18176631

  2. Wakefield and impedance studies of a liner using MAFIA

    NASA Astrophysics Data System (ADS)

    Chou, W.; Barts, T.

    1993-12-01

    The liner is a perforated beam tube which is coaxial with an outer bore tube. The 3D code MAFIA version 3.1 is used to study the wakefields, impedances, and resonances of this structure. The short range wakes and low frequency (below the cutoff) impedances are in agreement with the theoretical model. The long range wakes and high frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the SSC impedance budget is discussed.

  3. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  4. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  5. Mechanism of the formation for thoracic impedance change.

    PubMed

    Kuang, Ming-Xing; Xiao, Qiu-Jin; Cui, Chao-Ying; Kuang, Nan-Zhen; Hong, Wen-Qin; Hu, Ai-Rong

    2010-03-01

    The purpose of this study is to investigate the mechanism of the formation for thoracic impedance change. On the basis of Ohm's law and the electrical field distribution in the cylindrical volume conductor, the formula about the thoracic impedance change are deduced, and they are demonstrated with the model experiment. The results indicate that the thoracic impedance change caused by single blood vessel is directly proportional to the ratio of the impedance change to the basal impedance of the blood vessel itself, to the length of the blood vessel appearing between the current electrodes, and to the basal impedance between two detective electrodes on the chest surface, while it is inversely proportional to the distance between the blood vessel and the line joining two detective electrodes. The thoracic impedance change caused by multiple blood vessels together is equal to the algebraic addition of all thoracic impedance changes resulting from the individual blood vessels. That is, the impedance changes obey the principle of adding scalars in the measurement of the electrical impedance graph. The present study can offer the theoretical basis for the waveform reconstruction of Impedance cardiography (ICG). PMID:20336823

  6. Characterization of protein-immobilized polystyrene nanoparticles using impedance spectroscopy.

    PubMed

    Park, Soo-In; Lee, Sang-Yup

    2014-10-01

    A novel approach for characterization of non-conductive protein-immobilized nanoparticles using AC impedance spectroscopy combined with conductive atomic force microscopy was examined. As AC impedance spectroscopy can provide information on diverse electrical properties such as capacitance and inductance, it is applicable to the characterization of non-conductive substances. Several non-conductive protein-immobilized polystyrene nanoparticles were analyzed using AC impedance spectroscopy, and their impedance spectra were used as markers for nanoparticle identification. Analyses of impedance signals using an electrical circuit model established that the capacitance and inductance of each nanoparticle changed with the adsorbed protein and that impedance spectral differences were characteristic properties of the proteins. From this study, AC impedance spectroscopy was shown to be a useful tool for characterization of non-conductive nanoparticles and is expected to be applicable to the development of sensors for nanomaterials. PMID:25942903

  7. A review of impedance measurements of whole cells.

    PubMed

    Xu, Youchun; Xie, Xinwu; Duan, Yong; Wang, Lei; Cheng, Zhen; Cheng, Jing

    2016-03-15

    Impedance measurement of live biological cells is widely accepted as a label free, non-invasive and quantitative analytical method to assess cell status. This method is easy-to-use and flexible for device design and fabrication. In this review, three typical techniques for impedance measurement, i.e., electric cell-substrate impedance sensing, Impedance flow cytometry and electric impedance spectroscopy, are reviewed from the aspects of theory, to electrode design and fabrication, and applications. Benefiting from the integration of microelectronic and microfluidic techniques, impedance sensing methods have expanded their applications to nearly all aspects of biology, including living cell counting and analysis, cell biology research, cancer research, drug screening, and food and environmental safety monitoring. The integration with other techniques, the fabrication of devices for certain biological assays, and the development of point-of-need diagnosis devices is predicted to be future trend for impedance sensing techniques. PMID:26513290

  8. Techniques for beam impedance measurements above cutoff

    SciTech Connect

    Lambertson, G.R.; Jacob, A.F.; Rimmer, R.A.; Voelker, F.

    1990-08-01

    Methods for measuring beam impedance above cutoff have been very limited. For design work on the ALS we have developed two techniques that yield data in the frequency domain with high sensitivity. The first is an extension of the wire method; the second utilizes traveling TM waves to simulate the beam's fields at the wall, and thus avoids the mechanical difficulties of mounting the wire. It is also more sensitive than the other method but the interpretation is complicated by the presence of higher order modes. With either method we were able to detect resonant peaks smaller than 1 Ohm at 10 GHz.

  9. Method for conducting nonlinear electrochemical impedance spectroscopy

    DOEpatents

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  10. Bioelectrical impedance assessment of wound healing.

    PubMed

    Lukaski, Henry C; Moore, Micheal

    2012-01-01

    Objective assessment of wound healing is fundamental to evaluate therapeutic and nutritional interventions and to identify complications. Despite availability of many techniques to monitor wounds, there is a need for a safe, practical, accurate, and effective method. A new method is localized bioelectrical impedance analysis (BIA) that noninvasively provides information describing cellular changes that occur during healing and signal complications to wound healing. This article describes the theory and application of localized BIA and provides examples of its use among patients with lower leg wounds. This promising method may afford clinicians a novel technique for routine monitoring of interventions and surveillance of wounds. PMID:22401341

  11. Broadband Planar 5:1 Impedence Transformer

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  12. Fractional Calculus Model of Electrical Impedance Applied to Human Skin

    PubMed Central

    Vosika, Zoran B.; Lazovic, Goran M.; Misevic, Gradimir N.; Simic-Krstic, Jovana B.

    2013-01-01

    Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1) Weyl fractional derivative operator, 2) Cole equation, and 3) Constant Phase Element (CPE). These generalizations were described by the novel equation which presented parameter related to remnant memory and corrected four essential parameters We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects. PMID:23577065

  13. Fractional calculus model of electrical impedance applied to human skin.

    PubMed

    Vosika, Zoran B; Lazovic, Goran M; Misevic, Gradimir N; Simic-Krstic, Jovana B

    2013-01-01

    Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1) Weyl fractional derivative operator, 2) Cole equation, and 3) Constant Phase Element (CPE). These generalizations were described by the novel equation which presented parameter [Formula: see text] related to remnant memory and corrected four essential parameters [Formula: see text] We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters [Formula: see text] We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for[Formula: see text] Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects. PMID:23577065

  14. Acquisition of teleological descriptions

    NASA Astrophysics Data System (ADS)

    Franke, David W.

    1992-03-01

    Teleology descriptions capture the purpose of an entity, mechanism, or activity with which they are associated. These descriptions can be used in explanation, diagnosis, and design reuse. We describe a technique for acquiring teleological descriptions expressed in the teleology language TeD. Acquisition occurs during design by observing design modifications and design verification. We demonstrate the acquisition technique in an electronic circuit design.

  15. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  16. Arts of electrical impedance tomographic sensing

    PubMed Central

    Wang, Mi; Wang, Qiang; Karki, Bishal

    2016-01-01

    This paper reviews governing theorems in electrical impedance sensing for analysing the relationships of boundary voltages obtained from different sensing strategies. It reports that both the boundary voltage values and the associated sensitivity matrix of an alternative sensing strategy can be derived from a set of full independent measurements and sensitivity matrix obtained from other sensing strategy. A new sensing method for regional imaging with limited measurements is reported. It also proves that the sensitivity coefficient back-projection algorithm does not always work for all sensing strategies, unless the diagonal elements of the transformed matrix, ATA, have significant values and can be approximate to a diagonal matrix. Imaging capabilities of few sensing strategies were verified with static set-ups, which suggest the adjacent electrode pair sensing strategy displays better performance compared with the diametrically opposite protocol, with both the back-projection and multi-step image reconstruction methods. An application of electrical impedance tomography for sensing gas in water two-phase flows is demonstrated. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185968

  17. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  18. Arts of electrical impedance tomographic sensing.

    PubMed

    Wang, Mi; Wang, Qiang; Karki, Bishal

    2016-06-28

    This paper reviews governing theorems in electrical impedance sensing for analysing the relationships of boundary voltages obtained from different sensing strategies. It reports that both the boundary voltage values and the associated sensitivity matrix of an alternative sensing strategy can be derived from a set of full independent measurements and sensitivity matrix obtained from other sensing strategy. A new sensing method for regional imaging with limited measurements is reported. It also proves that the sensitivity coefficient back-projection algorithm does not always work for all sensing strategies, unless the diagonal elements of the transformed matrix, A(T)A, have significant values and can be approximate to a diagonal matrix. Imaging capabilities of few sensing strategies were verified with static set-ups, which suggest the adjacent electrode pair sensing strategy displays better performance compared with the diametrically opposite protocol, with both the back-projection and multi-step image reconstruction methods. An application of electrical impedance tomography for sensing gas in water two-phase flows is demonstrated. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185968

  19. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  20. Plasma Impedance Spectrum Analyzer (PISA): an advanced impedance probe for measuring plasma density and other parameters

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Pfaff, R. F.; Uribe, P.; Burchill, J.

    2006-12-01

    High-accuracy, high-cadence measurements of ionospheric electron density between 100 and a few x 106 / cc and electron temperature from 200 K to a few thousand K are of critical importance for understanding conductivity, Joule heating rates, and instability growth rates. We present results from the development of an impedance probe at NASA GSFC and show its strengths relative to other measurement techniques. Complementary measurement techniques such as Langmuir Probes, while providing extremely high measurement cadence, suffer from uncertainties in calibration, surface contamination effects, and wake/sheath effects. Impedance Probes function by measuring the phase shift between the voltage on a long antenna and the current flowing from the antenna into the plasma as a function of frequency. At frequencies for which the phase shift is zero, a plasma resonance is assumed to exist. These resonances depend on a variety of plasma parameters, including the electron density, electron temperature, and magnetic field strength, as well as the antenna geometry, angle between the antenna and the magnetic field, and sheath / Debye length effects, but do not depend on the surface properties of the antenna. Previous impedance probe designs which "lock" onto the upper hybrid resonance are susceptible to losing lock in low-density environments. Information about other resonances, including the series resonance (which strongly depends on temperature) and other resonances which may occur near the upper hybrid, confounding its identification, are typically not transmitted. The novel features of the GSFC Impedance Probe (PISA) include: 1) A white noise generator that stimulates a wide range of frequencies simultaneously, allowing the instrument to send down the entire impedance frequency spectrum every few milliseconds. This allows identification of all resonance frequencies, including the series resonance which depends on temperature. 2) DC bias voltage stepping to bring the antenna

  1. Knowing more by fewer measurements: about the (In)ability of bioelectric impedance to enhance obesity research in children.

    PubMed

    Gelbrich, G; Reich, A; Müller, G; Kiess, W

    2005-03-01

    The prevalence of obesity is increasing worldwide. The implications for human health can already be observed in children. Consequently, it is desirable to provide good quantitative descriptions of the relationship of body fat and health risks, such as hypertension. Bioelectric impedance analysis has been frequently praised to be useful for assessing body fat. Devices to analyse body composition based on this technique seem to be selling well, while the real gain in information they provide is unclear. Here we show in a cohort of 2,218 schoolchildren that the body mass index (which is more easily and less costly to determine) is a better predictor of hypertension than the data delivered by impedance analysis. Moreover, we demonstrate that the output of a random number generator is competitive with impedance measurement for this purpose. It is explained by simple arguments from physics why the formulas for the computation of body fat from bioelectric impedance obliterate rather than clarify the relationship of obesity and hypertension. As a consequence, we suggest questioning the opinion propagated by others that bioelectric impedance analysis is a useful tool in field studies on body fat in children. Measurements requiring more effort (compared to simpler methods) should be proved to add worthwhile information, otherwise they should be avoided. PMID:15813605

  2. Impedance measurements of the Spallation Neutron Source extraction kicker system

    NASA Astrophysics Data System (ADS)

    Hahn, H.

    2004-10-01

    Transverse coupling impedance measurements of the Spallation Neutron Source (SNS) beam extraction system were performed and the results are here reported. The SNS beam extraction system is composed from 14 subsystems, each of which consists of a vertical kicker magnet plus a pulse forming network (PFN). Impedance bench measurements were performed on one large and one small aperture magnet, stand-alone as well as assembled with the first-article production PFN. The impedance measuring methods to cover the interesting frequency range from below 1 to 100MHz are described in considerable detail. The upper frequency range is properly covered by the conventional twin-wire method but it had to be supplemented at the low-frequency end by a direct input impedance measurement at the magnet busbar. Required modifications of the PFN to maintain the impedance budget are discussed. The total impedance estimate was finally obtained by quadratic scaling with vertical aperture from the two tested kicker subsystems.

  3. Transverse beam coupling impedance of the CERN Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Persichelli, S.; Migliorati, M.; Biancacci, N.; Gilardoni, S.; Metral, E.; Salvant, B.

    2016-04-01

    Beam coupling impedance is a fundamental parameter to characterize the electromagnetic interaction of a particle beam with the surrounding environment. Synchrotron machine performances are critically affected by instabilities and collective effects triggered by beam coupling impedance. In particular, transverse beam coupling impedance is expected to impact beam dynamics of the CERN Proton Synchrotron (PS), since a significant increase in beam intensity is foreseen within the framework of the LHC Injectors Upgrade (LIU) project. In this paper we describe the study of the transverse beam coupling impedance of the PS, taking into account the main sources of geometrical impedance and the contribution of indirect space charge at different energies. The total machine impedance budget, determined from beam-based dedicated machine measurement sessions, is also discussed and compared with the theoretical model.

  4. Impedance analysis of the PEP-II vacuum chamber

    SciTech Connect

    Ng, C.K.; Weiland, T.

    1995-05-01

    The PEP-II high energy ring (HER) vacuum chamber consists of a copper tube with periodically spaced pumping slots. The impedance of the vacuum chamber due to the slots is analyzed. Both narrow-band and broadband impedances are considered as well as longitudinal and transverse components thereof. It is found that although the broad-band impedance is tolerable, the narrow-band impedance may exceed the instability limit given by the natural damping with no feedback system on. Traveling wave modes in the chamber are the major source of this high value narrow-band impedance. We also study the dependences of the impedance on the slot length and the geometrical cross section.

  5. Electrical impedance tomography: so close to touching the holy grail

    PubMed Central

    2014-01-01

    Electrical impedance tomography is a new technology giving us lung imaging that may allow lung function to be monitored at the bedside. Several applications have been studied to guide mechanical ventilation at the bedside with electrical impedance tomography. Positive end-expiratory pressure trials guided by electrical impedance tomography are relevant in terms of recruited volume or homogeneity of the lung. Tidal impedance variation is a new parameter of electrical impedance tomography that may help physicians with ventilator settings in acute respiratory distress syndrome patients. This parameter is able to identify the onset of overdistention in the nondependent part and recruitment in the dependent part. Electrical impedance tomography presents a big step forward in mechanical ventilation. PMID:25041593

  6. Validation of a Numerical Method for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1996-01-01

    This paper reports the initial results of a test series to evaluate a method for determining the normal incidence impedance of a locally reacting acoustically absorbing liner, located on the lower wall of a duct in a grazing incidence, multi-modal, non-progressive acoustic wave environment without flow. This initial evaluation is accomplished by testing the methods' ability to converge to the known normal incidence impedance of a solid steel plate, and to the normal incidence impedance of an absorbing test specimen whose impedance was measured in a conventional normal incidence tube. The method is shown to converge to the normal incident impedance values and thus to be an adequate tool for determining the impedance of specimens in a grazing incidence, multi-modal, nonprogressive acoustic wave environment for a broad range of source frequencies.

  7. Transverse impedance measurement in RHIC and the AGS

    SciTech Connect

    Biancacci, Nicolo; Blaskiewicz, M.; Dutheil, Y.; Liu, C.; Mernick, M.; Minty, M.; White, S. M.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  8. Impedance Matched to Vacuum, Invisible Edge, Diffraction Suppressed Mirror

    NASA Technical Reports Server (NTRS)

    Hagopian, John G. (Inventor); Roman, Patrick A. (Inventor); Shiri, Sharham (Inventor); Wollack, Edward J. (Inventor)

    2015-01-01

    Diffraction suppressed mirrors having an invisible edge are disclosed for incident light at both targeted wavelengths and broadband incident light. The mirrors have a first having at least one discontiguous portion having a plurality of nanostructured apertures. The discontiguous mirror portion impedance matches a relatively high impedance portion of the mirror to a relatively low impedance portion of the mirror, thereby reducing the diffraction edge effect otherwise present in a conventional mirror.

  9. Mutual impedance of nonplanar-skew sinusoidal dipoles

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Geary, N. H.

    1975-01-01

    The mutual impedance expressions for parallel dipoles in terms of sine-integrals and cosine-integrals have been published by King (1957). The investigation reported provides analogous expressions for nonparallel dipoles. The expressions presented are most useful when the monopoles are close together. The theory of moment methods shows an approach for employing the mutual impedance of filamentary sinusoidal dipoles to calculate the impedance and scattering properties of straight and bent wires with small but finite diameter.

  10. Mutual impedance of nonplanar-skew sinusoidal dipoles

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Geary, N. H.

    1974-01-01

    The mutual impedance of nonplanar-skew sinusoidal dipoles is presented as a summation of several exponential integrals with complex arguments. Mathematical models are developed to show the near-zone field of the sinusoidal dipole. The mutual impedance of coupled dipoles is expressed as the sum of four monopole-mobopole impedances to simplify the analysis procedure. The subroutines for solving the parameters of the dipoles are discussed.

  11. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  12. Validation of an Impedance Education Method in Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Parrott, Tony L.

    2004-01-01

    This paper reports results of a research effort to validate a method for educing the normal incidence impedance of a locally reacting liner, located in a grazing incidence, nonprogressive acoustic wave environment with flow. The results presented in this paper test the ability of the method to reproduce the measured normal incidence impedance of a solid steel plate and two soft test liners in a uniform flow. The test liners are known to be locally react- ing and exhibit no measurable amplitude-dependent impedance nonlinearities or flow effects. Baseline impedance spectra for these liners were therefore established from measurements in a conventional normal incidence impedance tube. A key feature of the method is the expansion of the unknown impedance function as a piecewise continuous polynomial with undetermined coefficients. Stewart's adaptation of the Davidon-Fletcher-Powell optimization algorithm is used to educe the normal incidence impedance at each Mach number by optimizing an objective function. The method is shown to reproduce the measured normal incidence impedance spectrum for each of the test liners, thus validating its usefulness for determining the normal incidence impedance of test liners for a broad range of source frequencies and flow Mach numbers. Nomenclature

  13. Proceedings of the impedance and bunch instability workshop

    SciTech Connect

    Not Available

    1990-04-01

    This report discusses the following topics: impedance and bunch lengthening; single bunch stability in the ESRF; a longitudinal mode-coupling instability model for bunch lengthening; high-frequency behavior of longitudinal coupling impedance; beam-induced energy spreads at beam-pipe transitions; on the calculation of wake functions using MAFIA-T3 code; preliminary measurements of the bunch length and the impedance of LEP; measurements and simulations of collective effects in the CERN SPS; bunch lengthening in the SLC damping rings; and status of impedance measurements for the spring-8 storage ring.

  14. [Cardiac output monitoring by impedance cardiography in cardiac surgery].

    PubMed

    Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A

    1990-04-01

    The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347

  15. Impedance measurements for detecting pathogens attached to antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2004-12-28

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  16. Measured longitudinal beam impedance of a Tevatron separator

    SciTech Connect

    James L Crisp; Brian J Fellenz

    2002-12-09

    Twenty two separators are currently installed in the Tevatron. The longitudinal impedance of one of these devices was recently measured with a stretched wire. The stretched wire technique can only measure impedance below the cutoff frequency (500MHz). The geometry of a separator is similar to an un-terminated stripline beam position detector. The separator plates occupy a 13.5'' ID vacuum tank, are 101'' long, 7.8'' wide, and have a 2'' gap between them. The differential characteristic impedance between the plates is estimated to be 81 {Gamma} and the common mode impedance plate to ground is about 42 {Gamma}.

  17. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, Rodney J.

    1996-01-01

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

  18. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, R.J.

    1996-10-22

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

  19. In vivo impedance spectroscopy of deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Lempka, Scott F.; Miocinovic, Svjetlana; Johnson, Matthew D.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  20. Comprehensive characterization of thermophysical properties in solids using thermal impedance

    NASA Astrophysics Data System (ADS)

    Martínez-Flores, J. J.; Licea-Jiménez, L.; Pérez García, S. A.; Rodríguez-Viejo, J.; Alvarez-Quintana, J.

    2012-11-01

    Thermal impedance Zth(iω) is a way of defining the thermophysical characteristics and behavior of thermal systems. Existing photoacoustic and photothermal approaches based on thermal impedance formalism merely allows a partial thermal characterization of the materials (generally, either thermal diffusivity or thermal effusivity). In this work, a new approach based on the thermal impedance concept in terms of its characteristic thermal time constant is developed from thermal quadrupoles formalism. The approach outlined in this contribution presents a set of analytical equations in which through a single measurement of thermal impedance is sufficient to obtain a comprehensive characterization of the thermophysical properties of solid materials in a simple way.

  1. Corrosion Study Using Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  2. Wave guide impedance matching method and apparatus

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

  3. Esophageal Impedance Monitoring for Gastroesophageal Reflux

    PubMed Central

    Mousa, Hayat M.; Rosen, Rachel; Woodley, Frederick W.; Orsi, Marina; Armas, Daneila; Faure, Christophe; Fortunato, John; O'Connor, Judith; Skaggs, Beth; Nurko, Samuel

    2014-01-01

    Dual pH-multichannel intraluminal impedance (pH-MII) is a sensitive tool for evaluating overall gastroesophageal reflux disease, and particularly for permitting detection of nonacid reflux events. pH-MII technology is especially useful in the postprandial period or at other times when gastric contents are nonacidic. pH-MII was recently recognized by the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition as being superior to pH monitoring alone for evaluation of the temporal relation between symptoms and gastroesophageal reflux. In children, pHMII is useful to correlate symptoms with reflux (particularly nonacid reflux), to quantify reflux during tube feedings and the postprandial period, and to assess efficacy of antireflux therapy. This clinical review is simply an evidence-based overview addressing the indications, limitations, and recommended protocol for the clinical use of pH-MII in children. PMID:21240010

  4. Bioelectrical impedance analysis. What does it measure?

    NASA Technical Reports Server (NTRS)

    Schoeller, D. A.

    2000-01-01

    Bioelectrical impedance analysis (BIA) has been proposed for measuring fat-free mass, total body water, percent fat, body cell mass, intracellular water, and extracellular water: a veritable laboratory in a box. Although it is unlikely that BIA is quite this versatile, correlations have been demonstrated between BIA and all of these body compartments. At the same time, it is known that all of the compartments are correlated among themselves. Because of this, it is difficult to determine whether BIA is specific for any or all of these compartments. To investigate this question, we induced acute changes in total body water and its compartments over a 3-h period. Using this approach, we demonstrated that multifrequency BIA, using the Cole-Cole model to calculate the zero frequency and infinite frequency resistance, measures extracellular and intracellular water.

  5. Quartz tuning fork based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  6. Impedance characteristic of the GEC reference cell

    SciTech Connect

    Verdeyen, J.T.; Miller, P.A.

    1992-12-01

    One can make measurements of the electrical parameters (V, I, P) at the access terminals of a reactor, but it is more desirable to relate those parameters to that at the plasma terminals. Toward that end, the authors have made precision impedance measurements over the range of 1-108 MHz on the GEC RF Reference Cell with the plasma terminals open circuited, short circuited and inductively loaded. This enables them to infer an equivalent circuit which is consistent with the geometry of the cell and which agrees with the input measurements to a high degree of accuracy. Using this circuit, one can relate the plasma quantities to the terminal values with the standard ABCD matrix which is valid at all frequencies. The procedure for inferring this circuit and accounting for the resistive losses will be presented.

  7. Algorithmic Error Correction of Impedance Measuring Sensors

    PubMed Central

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  8. KRAKEN, a numerical model of RHIC impedances

    SciTech Connect

    Peggs, S.; Mane, V.

    1995-05-01

    The simulation code KRAKEN confirms analytical predictions of head-tail stability criteria, in the presence of momentum dependent linear coupling. It also confirms that resistive wall transverse wake fields are not a serious threat to strong head-tail stability in RHIC, at the vulnerable stage of proton injection. Equation 10, derived from the perspective of two macroparticles, potentially offers a very convenient seminumerical evaluation of the effects of arbitrary transverse wake potentials. It remains to be seen how well the two macroparticle results correlate with simulations using, say, 100 macroparticles. KRAKEN is still under rapid development. Future plans are to include resonant wakefields, multiple bunches, space charge wakefields, betatron detuning, and a connection to the detailed RHIC impedance database.

  9. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  10. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  11. Scheme for rapid adjustment of network impedance

    DOEpatents

    Vithayathil, John J.

    1991-01-01

    A static controlled reactance device is inserted in series with an AC electric power transmission line to adjust its transfer impedance. An inductor (reactor) is serially connected with two back-to-back connected thyristors which control the conduction period and hence the effective reactance of the inductor. Additional reactive elements are provided in parallel with the thyristor controlled reactor to filter harmonics and to obtain required range of variable reactance. Alternatively, the static controlled reactance device discussed above may be connected to the secondary winding of a series transformer having its primary winding connected in series to the transmission line. In a three phase transmission system, the controlled reactance device may be connected in delta configuration on the secondary side of the series transformer to eliminate triplen harmonics.

  12. Active acoustical impedance using distributed electrodynamical transducers.

    PubMed

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency. PMID:19206865

  13. A state feedback electro-acoustic transducer for active control of acoustic impedance

    NASA Astrophysics Data System (ADS)

    Samejima, Toshiya

    2003-03-01

    In this paper, a new control system in which the acoustic impedance of an electro-acoustic transducer diaphragm can be actively varied by modifying design parameters is presented and its effectiveness is theoretically investigated. The proposed control system is based on a state-space description of the control system derived from an electrical equivalent circuit of an electro-acoustic transducer to which a differentiating circuit is connected, and is designed using modern control theory. The optimal quadratic regulator is used in the control system design, with its quadratic performance index formulated for producing desired acoustic impedance. Computer simulations indicate that the acoustic impedance of the diaphragm can be significantly varied over a wide frequency range that includes the range below the resonance frequency of the electro-acoustic transducer. A computer model of the proposed control system is used to illustrate its application to semi-active noise control in a duct. It is demonstrated that the proposed control system provides substantial reductions in the noise radiating from the outlet of the duct, both in the stiffness control range and in the mass control range.

  14. Label-free single cell analysis with a chip-based impedance flow cytometer

    NASA Astrophysics Data System (ADS)

    Pierzchalski, Arkadiusz; Hebeisen, Monika; Mittag, Anja; Di Berardino, Marco; Tarnok, Attila

    2010-02-01

    For description of cellular phenotypes and physiological states new developments are needed. Axetris' impedance flow cytometer (IFC) (Leister) is a new promising label-free alternative to fluorescence-based flow cytometry (FCM). IFC measures single cells at various frequencies simultaneously. The frequencies used for signal acquisition range from 0.1 to 20 MHz. The impedance signal provides information about cell volume (< 1 MHz), membrane capacitance (~1-4 MHz) and cytoplasmic conductivity (4-10 MHz), parameters directly related to the physiological conditions of single cells. In MCF-7 cell viability experiments, cells were treated with cytotoxic agents to induce cell death. Impedance analysis showed discrimination between viable and dead cells. This was clearly visible at 4 MHz suggesting that differentiation was possible based on cell membrane capacitance. Changes in cell membrane potential were also analysed by IFC. RN22 cells were loaded with membrane potential sensitive dye (DiBAC4). The cells were then treated with the ionophore valinomycin. Changes in membrane potential were detectable at the level of cytoplasm conductivity (>4 MHz) and membrane capacitance (1-4 MHz). Our data indicate that IFC can be a valuable alternative to conventional FCM for various applications in the field of cell death and physiology. The work will be extended to address further potential applications of IFC in biotechnology and biomedical cell analysis, as well as in cell sorting.

  15. Multimedia content description framework

    NASA Technical Reports Server (NTRS)

    Bergman, Lawrence David (Inventor); Kim, Michelle Yoonk Yung (Inventor); Li, Chung-Sheng (Inventor); Mohan, Rakesh (Inventor); Smith, John Richard (Inventor)

    2003-01-01

    A framework is provided for describing multimedia content and a system in which a plurality of multimedia storage devices employing the content description methods of the present invention can interoperate. In accordance with one form of the present invention, the content description framework is a description scheme (DS) for describing streams or aggregations of multimedia objects, which may comprise audio, images, video, text, time series, and various other modalities. This description scheme can accommodate an essentially limitless number of descriptors in terms of features, semantics or metadata, and facilitate content-based search, index, and retrieval, among other capabilities, for both streamed or aggregated multimedia objects.

  16. Preliminary Results on Different Impedance Contrast Agents for Pulmonary Perfusion Imaging with Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Pouliopoulos, J.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    Recent studies in animal models suggest that the use of small volume boluses of NaCl as an impedance contrast agent can significantly improve pulmonary perfusion imaging by Electrical Impedance Tomography (EIT). However, these studies used highly concentrated NaCl solution (20%) which may have adverse effects on the patients. In a pilot experiment, we address this problem by comparing a number of different Impedance Contrast Boluses (ICBs). Conductivity changes in the lungs of a sheep after the injection of four different ICBs were compared, including three NaCl-based ICBs and one glucose-based ICB. The following procedure was followed for each ICB. Firstly, ventilation was turned off to provide an apneic window of approximately 40s to image the conductivity changes due to the ICB. Each ICB was then injected through a pig-tail catheter directly into the right atrium. EIT images were acquired throughout the apnea to capture the conductivity change. For each ICB, the experiment was repeated three times. The three NaCl-based ICB exhibited similar behaviour in which following the injection of each of these ICBs, the conductivity of each lung predictably increased. The effect of the ICB of 5% glucose solution was inconclusive. A small decrease in conductivity in the left lung was observed in two out of three cases and none was discernible in the right lung.

  17. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  18. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  19. An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.

    ERIC Educational Resources Information Center

    Caceci, Marco S.

    1984-01-01

    Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…

  20. Flip-Chip Carrier Would Match Microwave FET Impedances

    NASA Technical Reports Server (NTRS)

    Huang, H. C.

    1982-01-01

    Proposed field-effect transistor consists of three cells which make up one complete FET pellet. Pellet is flip-chip mounted on carrier with source grounded gate and drain posts connected directly to impedance-matching transmission-line segments. Impedance transformers are part of mounting and contact strips.

  1. Equivalent circuit models for ac impedance data analysis

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  2. Geometric beam coupling impedance of LHC secondary collimators

    NASA Astrophysics Data System (ADS)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  3. Electrochemical impedance measurement of a carbon nanotube probe electrode.

    PubMed

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2012-12-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1-10 nm in CNT diameter, 80-300 nm in insulator diameter, 0.5-4 μm in exposed CNT length and 1-10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. PMID:23124171

  4. An Alternative to Impedance Screening: Unoccluded Frontal Bone Conduction Screening.

    ERIC Educational Resources Information Center

    Square, Regina; And Others

    1985-01-01

    A bone conduction hearing screening test using frontal bone oscillator placement was compared with pure-tone air-conduction screening and impedance audiometry with 114 preschoolers. Unoccluded frontal bone conduction testing produced screening results not significantly different from results obtained by impedance audiometry. (CL)!

  5. Surface impedance in the anomalous skin effect regime

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Janusz; Kirkiewicz, Józef

    2008-12-01

    An analytical solution of the surface impedance is obtained using the kinetic equation with the collision integral that takes into account the Fermi liquid effects. It is assumed that the reflection of electrons is purely diffusive. Particular attention is paid to the influence of external magnetic field and polarization of the incident wave on the real and imagine part of the surface impedance.

  6. Effect of Feeding and Suction on Gastric Impedance Spectroscopy Measurements.

    PubMed

    Beltran, Nohra E; Sánchez-Miranda, Gustavo; Sacristan, Emilio

    2015-01-01

    A specific device and system has been developed and tested for clinical monitoring of gastric mucosal reactance in the critically ill as an early warning of splanchnic hypoperfusion associated with shock and sepsis. This device has been proven effective in clinical trials and is expected to become commercially available next year. The system uses a combination nasogastric tube and impedance spectroscopy probe as a single catheter. Because this device has a double function, the question is: Does enteral feeding or suction affect the gastric reactance measurements? This study was designed to evaluate the effect of feeding and suction on the measurement of gastric impedance spectroscopy in healthy volunteers. Impedance spectra were obtained from the gastric wall epithelia of 18 subjects. The spectra were measured for each of the following conditions: postinsertion of gastric probe, during active suction, postactive suction, and during enteral feeding (236 ml of nutritional supplement). Impedance spectra were reproducible in all volunteers under all conditions tested. There was a slight increase in impedance parameters after suction, and a decrease in impedance after feeding; however, these observed differences were insignificant compared to patient-to-patient variability, and truly negligible compared with previously observed changes associated with splanchnic ischemia in critically ill patients. Our results demonstrate that suction or feeding when using the impedance spectro-metry probe/nasogastric tube does not significantly interfere with gastric impedance spectrometer measurements. PMID:26226020

  7. Development of impedance matching technologies for ICRF antenna arrays

    SciTech Connect

    Pinsker, R.I.

    1998-03-01

    All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array`s input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array.

  8. Modifying the acoustic impedance of polyurea-based composites

    NASA Astrophysics Data System (ADS)

    Nantasetphong, Wiroj; Amirkhizi, Alireza V.; Jia, Zhanzhan; Nemat-Nasser, Sia

    2013-04-01

    Acoustic impedance is a material property that depends on mass density and acoustic wave speed. An impedance mismatch between two media leads to the partial reflection of an acoustic wave sent from one medium to another. Active sonar is one example of a useful application of this phenomenon, where reflected and scattered acoustic waves enable the detection of objects. If the impedance of an object is matched to that of the surrounding medium, however, the object may be hidden from observation (at least directly) by sonar. In this study, polyurea composites are developed to facilitate such impedance matching. Polyurea is used due to its excellent blast-mitigating properties, easy casting, corrosion protection, abrasion resistance, and various uses in current military technology. Since pure polyurea has impedance higher than that of water (the current medium of interest), low mass density phenolic microballoon particles are added to create composite materials with reduced effective impedances. The volume fraction of particles is varied to study the effect of filler quantity on the acoustic impedance of the resulting composite. The composites are experimentally characterized via ultrasonic measurements. Computational models based on the method of dilute-randomly-distributed inclusions are developed and compared with the experimental results. These experiments and models will facilitate the design of new elastomeric composites with desirable acoustic impedances.

  9. Development on electromagnetic impedance function modeling and its estimation

    SciTech Connect

    Sutarno, D.

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  10. Development on electromagnetic impedance function modeling and its estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2015-09-01

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  11. Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding

    PubMed Central

    Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian

    2012-01-01

    Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514

  12. Utilization of bone impedance for age estimation in postmortem cases.

    PubMed

    Ishikawa, Noboru; Suganami, Hideki; Nishida, Atsushi; Miyamori, Daisuke; Kakiuchi, Yasuhiro; Yamada, Naotake; Wook-Cheol, Kim; Kubo, Toshikazu; Ikegaya, Hiroshi

    2015-11-01

    In the field of Forensic Medicine the number of unidentified cadavers has increased due to natural disasters and international terrorism. The age estimation is very important for identification of the victims. The degree of sagittal closure is one of such age estimation methods. However it is not widely accepted as a reliable method for age estimation. In this study, we have examined whether measuring impedance value (z-values) of the sagittal suture of the skull is related to the age in men and women and discussed the possibility to use bone impedance for age estimation. Bone impedance values increased with aging and decreased after the age of 64.5. Then we compared age estimation through the conventional visual method and the proposed bone impedance measurement technique. It is suggested that the bone impedance measuring technique may be of value to forensic science as a method of age estimation. PMID:26421720

  13. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  14. Does combing the scalp reduce scalp electrode impedances?

    PubMed

    Mahajan, Yatin; McArthur, Genevieve

    2010-05-15

    Electrical activity from the human brain can be recorded via electrodes on the scalp. It is important to reduce the impedance of each electrode to minimize unwanted noise in the recording. Electrode impedance can be improved by abrading the skin to remove dead skin cells. In this experiment, we tested if abrading the skin by combing the scalp leads to a significant reduction in electrode impedance. We compared the mean electrode impedance values of 20 subjects whose scalps were combed prior to electrode cap placement, with 20 subjects whose scalps were not combed. Combing significantly reduced the impedances at central, right, and left areas of the scalp. This finding supports the use of scalp combing to reduce the time and subject discomfort that can be associated with placing scalp electrodes. This is particularly important for experiments testing children. PMID:20211649

  15. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.

  16. Method of estimating pulse response using an impedance spectrum

    SciTech Connect

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  17. Physics 3204. Course Description.

    ERIC Educational Resources Information Center

    Newfoundland and Labrador Dept. of Education.

    A description of the physics 3204 course in Newfoundland and Labrador is provided. The description includes: (1) statement of purpose, including general objectives of science education; (2) a list of six course objectives; (3) course content for units on sound, light, optical instruments, electrostatics, current electricity, Michael Faraday and…

  18. Descriptive Metadata: Emerging Standards.

    ERIC Educational Resources Information Center

    Ahronheim, Judith R.

    1998-01-01

    Discusses metadata, digital resources, cross-disciplinary activity, and standards. Highlights include Standard Generalized Markup Language (SGML); Extensible Markup Language (XML); Dublin Core; Resource Description Framework (RDF); Text Encoding Initiative (TEI); Encoded Archival Description (EAD); art and cultural-heritage metadata initiatives;…

  19. Development of CSAMT impedance modeling and its estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2015-04-01

    Accurate modeling and estimation of impedance functions is essential for the correct interpretation of Controlled Source Audio Magnetotelluric (CSAMT) measurements. Non plane wave effect of CSAMT source and noises are inevitably encountered when CSAMT observations are conducted and, consequently, impedance estimates are usually based on least-squares (LS) approximation, and the resulting estimates need to be corrected for the non plane wave field fraction. However, estimation procedure based on LS would not be statistically optimal, as outliers (abnormal data) are frequently superimposed on a normal ambient CSAMT noise field. In this situation, the estimation can be seriously misleading, while plane wave correction has also limited application, as the non plane wave field fraction is reasonably strong. This paper briefly discus the recent development of alternative methods for the CSAMT impedance modeling and its estimation, those are efficient in nature. The means for accomplishing the non plane wave problem is based on full solution numerical modeling of CSAMT impedance function that accommodates the non plane wave effect in the function. Whilst, one appealing approach to dealing with outliers is to make the estimation procedure robust. This is based on the M-estimation and the Hilbert transform operating on the causal CSAMT impedance functions. As demonstrated, the full solution based modeling for CSAMT impedance function is applied for all measurement zones, including near-, transition- as well as the far-field zones, and suitably, the plane wave correction is no longer needed for the impedance function. In the resulting impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic data, it is shown that the proposed methods can produce usable CSAMT impedance functions for all measurement zones, even under condition of severe noise contamination.

  20. Modified sparse regularization for electrical impedance tomography.

    PubMed

    Fan, Wenru; Wang, Huaxiang; Xue, Qian; Cui, Ziqiang; Sun, Benyuan; Wang, Qi

    2016-03-01

    Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L1 norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts. PMID:27036798

  1. Low impedance printed circuit radiating element

    NASA Technical Reports Server (NTRS)

    Rahm, James K. (Inventor); Frankievich, Robert H. (Inventor); Martinko, John D. (Inventor)

    1993-01-01

    A printed circuit radiating element comprises a geometrically symmetric planar area of a conducting material separated from a ground plane by a dielectric medium. The driving point of the radiating element is at the base of a notch in one side thereof so that the driving impedance is reduced from that obtained when the element is driven at its edge. Symmetrically disposed on opposite sides of an axis of symmetry of the element along which the driving point lies are two notches which restore the electrical symmetry of the radiating element thereby to suppress higher order modes. The suppression of these higher order modes results in a radiation pattern with minimal cross-polarized energy in the principal planes and high port-to-port isolation which could not be achieved with an asymmetrical element. Two driving points may be employed with the radiating element to produce a dual linearly polarized antenna and a reactive combiner or hybrid may be employed to obtain circularly-polarized radiations. The shape of the radiating element may be square, rectangular or circular, for example, in accordance with the desired characteristics. A plurality of radiating elements may be interconnected via appropriate transmission paths to form an antenna array.

  2. Journal and Wave Bearing Impedance Calculation Software

    NASA Technical Reports Server (NTRS)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  3. A Batteryless Sensor ASIC for Implantable Bio-Impedance Applications.

    PubMed

    Rodriguez, Saul; Ollmar, Stig; Waqar, Muhammad; Rusu, Ana

    2016-06-01

    The measurement of the biological tissue's electrical impedance is an active research field that has attracted a lot of attention during the last decades. Bio-impedances are closely related to a large variety of physiological conditions; therefore, they are useful for diagnosis and monitoring in many medical applications. Measuring living tissues, however, is a challenging task that poses countless technical and practical problems, in particular if the tissues need to be measured under the skin. This paper presents a bio-impedance sensor ASIC targeting a battery-free, miniature size, implantable device, which performs accurate 4-point complex impedance extraction in the frequency range from 2 kHz to 2 MHz. The ASIC is fabricated in 150 nm CMOS, has a size of 1.22 mm × 1.22 mm and consumes 165 μA from a 1.8 V power supply. The ASIC is embedded in a prototype which communicates with, and is powered by an external reader device through inductive coupling. The prototype is validated by measuring the impedances of different combinations of discrete components, measuring the electrochemical impedance of physiological solution, and performing ex vivo measurements on animal organs. The proposed ASIC is able to extract complex impedances with around 1 Ω resolution; therefore enabling accurate wireless tissue measurements. PMID:26372646

  4. Measurement and simulation of the RHIC abort kicker longitudinal impedence

    SciTech Connect

    Abreu,N.P.; Hahn,H.; Choi, E.

    2009-09-01

    In face of the new upgrades for RHIC the longitudinal impedance of the machine plays an important role in setting the threshold for instabilities and the efficacy of some systems. In this paper we describe the measurement of the longitudinal impedance of the abort kicker for RHIC as well as computer simulations of the structure. The impedance measurement was done by the S{sub 21} wire method covering the frequency range from 9 kHz to 2.5 GHz. We observed a sharp resonance peak around 10 MHz and a broader peak around 20 MHz in both, the real and imaginary part, of the Z/n. These two peaks account for a maximum imaginary longitudinal impedance of j15 {Omega}, a value an order of magnitude larger than the estimated value of j0.2 {Omega}, which indicates that the kicker is one of the main sources of longitudinal impedance in the machine. A computer model was constructed for simulations in the CST MWS program. Results for the magnet input and the also the beam impedance are compared to the measurements. A more detail study of the system properties and possible changes to reduce the coupling impedance are presented.

  5. Impedance spectroscopy for the detection and identification of unknown toxins

    NASA Astrophysics Data System (ADS)

    Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.

    2012-06-01

    Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.

  6. Analysis of left ventricular impedance in comparison with ultrasound images.

    PubMed

    Choi, Seong Wook; Park, Sung Min

    2012-05-01

    Cardiac monitoring of ventricular assist devices (VADs) is important for detecting heart failure risks, such as critical arrhythmia and ventricular fibrillation, and for supplying data that are useful for hemodynamic control. Specifically, impedance cardiograms (ICGs) are especially beneficial because they have no effect on the tissue or organs and can monitor various parameters simultaneously, including the heart rate and heart contractions. In this article, we measured impedance changes in porcine left ventricles using electrodes placed around the inlet and outlet cannulae of the VAD. The measured left ventricular impedance (LVI) waveform changes are caused by heart movements, such as cardiac muscle contraction and changes in blood volume as a result of heart filling and emptying. In contrast to other impedance measurements, LVI is less affected by the movement of other organs. Using a porcine model, LVIs were measured and compared with blood flow data measured with an ultrasound blood flowmeter. The ICG showed the same frequency as the animal's heart rate, and their amplitudes were closely related to cardiac output (CO). However, the waveform differed from other vital signs, such as CO, electrocardiogram, and blood pressure. Ultrasound images were used to explain the impedance waveform. In the ultrasound images, we obtained the shape and size of the animal's heart and calculated the predicted impedance data. We then compared these to the actual measured data. These results show that the impedance signal contains detailed information on heart rate and CO; these results were unaffected by the cannulae or VAD perfusion. PMID:22188560

  7. Measuring the Acoustic Impedance of Pipes and Musical Instruments

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert

    2007-05-01

    Using a small electret microphone and a piezo-buzzer we have constructed a simple impedance transducer to measure the input impedance of air columns, such as cylindrical pipes, as well as musical instruments. The input impedance of an air column is given as the ratio of the pressure to the volume flow of air at the input of the air column. The microphone serves as the pressure transducer, while the piezo-buzzer is controlled to provide a constant velocity amplitude. Therefore the microphone signal is proportional to the acoustical impedance and, if required, can be calibrated using a simple air column for which the impedance can be calculated. This impedance transducer is currently in use as demonstration equipment for a physical acoustics class. It is simple to use and robust, so that it is well-suited for an undergraduate introductory laboratory environment. This talk will discuss the function of the impedance transducer and show examples of the type of measurements that can be performed. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C1.1

  8. Frequency dependent elastic impedance inversion for interstratified dispersive elastic parameters

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao; Wu, Guochen

    2016-08-01

    The elastic impedance equation is extended to frequency dependent elastic impedance equation by taking partial derivative to frequency. With this equation as the forward solver, a practical frequency dependent elastic impedance inversion approach is presented to implement the estimation of the interstratified dispersive elastic parameters which makes full use of the frequency information of elastic impedances. Three main steps are included in this approach. Firstly, the elastic Bayesian inversion is implemented for the estimation of elastic impedances from different incident angle. Secondly, with those estimated elastic impedances, their variations are used to estimate P-wave velocity and S-wave velocity. Finally, with the prior elastic impedance and P-wave and S-wave velocity information, the frequency dependent elastic variation with incident angle inversion is presented for the estimation of the interstratified elastic parameters. With this approach, the interstratified elastic parameters rather than the interface information can be estimated, making easier the interpretation of frequency dependent seismic attributes. The model examples illustrate the feasibility and stability of the proposed method in P-wave velocity dispersion and S-wave velocity dispersion estimation. The field data example validates the possibility and efficiency in hydrocarbon indication of the estimated P-wave velocity dispersion and S-wave velocity dispersion.

  9. Very long period magnetotellurics at Tucson Observatory: Estimation of impedances

    SciTech Connect

    Egbert, G.D.; Booker, J.R.; Schultz, A.

    1992-10-10

    Eleven years (1932-1942) of electric potential and magnetic measurements at the Tucson observatory represent a unique very long period magnetotelluric (MT) data set. The authors report on a careful reanalysis of this data using modern processing techniques. They have developed and used novel methods for separating out the quasi-periodic daily variation fields and for cleaning up outliers and filling in missing data in the time domain. MT impedance tensors, estimated using the cleaned and filled data and using robust frequency domain methods, are well determined and smoothly varying for periods between 4 hours and 10 days. At longer periods the electric field data are swamped by large-amplitude incoherent noise, particularly after the third year of the experiment. Although they find no evidence for contamination of any field components by oceanic motional induction at tidal periods, the MT impedance estimates do show evidence of small systematic biases due to finite spatial scale geomagnetic sources at harmonics of the daily variation period. These periods are thus removed from the time series and not used in further analysis. They show that the resulting impedance tensor is well modeled by a real, frequency-independent distortion of a scalar impedance, which is consistent with non-inductive distortion of the electric fields by local surface geology. To estimate the undetermined static shift of the MT impedance, the authors compare the long-period MT results to equivalent MT impedances determined from 46 years of geomagnetic data. Combining the geomagnetic and undistorted MT impedances results in scalar impedance estimates for periods 0.17 < T < 91 days of unprecedented precision. However, for periods less than one day, the phase and amplitude of this impedance, while individually consistent, are not mutually consistent with any one-dimensional conductivity distribution. 51 refs., 19 figs., 4 tabs.

  10. Impedance hand controllers for increasing efficiency in teleoperations

    NASA Technical Reports Server (NTRS)

    Carignan, C.; Tarrant, J.

    1989-01-01

    An impedance hand controller with direct force feedback is examined as an alternative to bilateral force reflection in teleoperations involving force contact. Experimentation revealed an operator preference for direct force feedback which provided a better feel of contact with the environment. The advantages of variable arm impedance were also made clear in tracking tests where subjects preferred the larger hand controller inertias made possible by the acceleration feedback loop in the master arm. The ability to decouple the hand controller impedance from the slave arm dynamics is expected to be even more significant when the inertial properties of various payloads in the slave arm are considered.

  11. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  12. Diffractive Model of the high-frequency impedance

    SciTech Connect

    Samuel Heifets

    1989-06-12

    High frequency diffraction can be described by iterations based on an approximate formulation of the boundary conditions. The method formulated is analogous to the Born series of scattering theory. It is used to study the interaction of short bunches with the beam environment in terms of the impedances. The impedances of typical elements of an accelerator structure are obtained. The cross-talk between elements, the impedance of a periodic array, and the effect of a taper are discussed. The method can be applied to a cavity of an arbitrary shape.

  13. Measured longitudinal beam impedance of booster gradient magnets

    SciTech Connect

    James L Crisp and Brian J. Fellenz

    2001-08-24

    The Booster gradient magnets have no vacuum pipe which forces the beam image current to flow along the laminated pole tips. Both D and F style magnets were measured with a stretched wire to determine the longitudinal beam impedance caused by these laminations. Results are compared to calculations done 30 years ago. The inductive part of the magnet impedance is interesting because it partially compensates for the negative inductance effects of space charge on the beam. An R/L circuit consisting of 37K{center_dot} in parallel with between 40 and 100uH is a reasonable approximation to the total impedance of Booster magnet laminations.

  14. On the longitudinal coupling impedance of a toroidal beam tube

    SciTech Connect

    Hahn, H.; Tepikian, S.

    1990-01-01

    In this paper, the longitudinal coupling impedance of a smooth toroidal beam tube is derived. By treating the torus as a slow-wave structure, the well-known method of describing the impedance in terms of cavity resonances can be used. A simple analytical expression for the coupling impedance of a toroidal beam tube with square cross section valid in the low-frequency limit is obtained. The results from the present study are compared with previously published solutions and qualitative differences are pointed out. 16 refs., 3 figs., 1 tab.

  15. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas.

    PubMed

    Alù, Andrea; Engheta, Nader

    2008-07-25

    Here we explore the radiation features of optical nanoantennas, analyzing the concepts of optical input impedance, optical radiation resistance, impedance matching, and loading of plasmonic nanodipoles. We discuss how the concept of antenna impedance may be applied to optical frequencies and how its quantity may be properly defined and evaluated. We exploit these concepts in the optimization of nanoantenna loading by optical nanocircuit elements, extending classic concepts of radio-frequency antenna theory to the visible regime for the proper design and matching of plasmonic nanoantennas. PMID:18764328

  16. Low Impedance Bellows for High-current Beam Operations

    SciTech Connect

    Wu, G; Nassiri, A; Waldschmidt, G J; Yang, Y; Feingold, J J; Mammosser, J D; Rimmer, R A; Wang, H; Jang, J; Kim, S H

    2012-07-01

    In particle accelerators, bellows are commonly used to connect beamline components. Such bellows are traditionally shielded to lower the beam impedance. Excessive beam impedance can cause overheating in the bellows, especially in high beam current operation. For an SRF-based accelerator, the bellows must also be particulate free. Many designs of shielded bellows incorporate rf slides or fingers that prevent convolutions from being exposed to wakefields. Unfortunately these mechanical structures tend to generate particulates that, if left in the SRF accelerator, can migrate into superconducting cavities, the accelerator's critical components. In this paper, we describe a prototype unshielded bellows that has low beam impedance and no risk of particulate generation.

  17. Volume dependence of respiratory impedance in infants.

    PubMed

    Peták, F; Hayden, M J; Hantos, Z; Sly, P D

    1997-10-01

    We previously studied low-frequency respiratory impedance (Zrs) data at an elevated lung volume to separate airway and tissue mechanical properties in normal infants (Am. I. Respir. Crit. Care Med. 1996; 154:161-166). The aim of the present study was to determine the volume dependence of the airway and tissue mechanics by extending Zrs measurements to lower lung volumes. Zrs spectra between 0.5 and 21 Hz were measured in supine sleeping infants (n = 8; 7 to 26 mo of age) at mean transrespiratory pressures (Ptr[mean]) of 20, 10, and 0 cm H2O, during periods of apnea induced by inflating the infants' lungs to a pressure of 20 cm H2O through a face mask. At each inflation pressure, a model containing airway resistance (Raw) and inertance (law) and tissue damping (G) and elastance (H) was fitted to Zrs data. At FRC, the values of Raw, law, G, and H were 20.6+/-4.9 (SD) cm H2O x s/L, 0.037+/-0.014 cm H2O x s2/L, 39.6+/-10.3 cm H2O/L, and 147+/-35 cm H2O/L, respectively. Increase of Ptr(mean) caused a monotonous decrease in Raw (42+/-7% of the value at FRC), while law remained constant. The tissue parameters were minimal at a Ptr(mean) of 10 cm H2O (68+/-10% and 78+/-6% in G and H, respectively) and significantly higher at both 0 and 20 cm H2O. Although Zrs measurements can be made in most infants at lung volumes as low as FRC, an inflation pressure of 20 cm H2O provides a higher success rate and is therefore a more suitable condition for general use. PMID:9351618

  18. Active acoustical impedance using distributed electrodynamic transducers

    NASA Astrophysics Data System (ADS)

    Collet, M.; Berthillier, M.; David, P.

    2006-03-01

    New miniaturization and integration capabilities available from the emerging MEMS technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, color, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates acoustic impedance capabilities of a set of distributed transducers connected with suitable controlling laws. Basically, we search to design an integrated electro-mechanical system which presents a global behavior with appropriate acoustical characteristics. This problem is intrinsically connected with the control of multi physical system based on PDE and with the notion of multi-scaled physics when we dispose MEMS devices. By using specific techniques based on partial differential equation control theory, we have first build a simple boundary control equation able to annihilate wave reflection. The obtained control strategies can also be discretized to be implemented like a zero or first order spatial operator. Thus, we can use quasi-collocated transducers and their well-known poles-zeros interlacing property to guarantee robust stability. This paper aims at showing in a first part how a well controlled semi-distributed active skin can substantially modify transmissibility or reflectivity of the corresponding homogeneous wall. In a second part numerical and experimental results underline the capabilities of the method. Finally efficiency of such a device is compared theoretically with those obtained by classical x-filtered LMS strategy.

  19. Hardware description languages

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.

    1994-01-01

    Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.

  20. Giant magneto-impedance and stress-impedance effects of microwire composites for sensing applications

    NASA Astrophysics Data System (ADS)

    Qin, F. X.; Peng, H. X.; Popov, V. V.; Phan, M. H.

    2011-02-01

    Composites consisting of glass-coated amorphous microwire Co 68.59Fe 4.84Si 12.41B 14.16 and 913 E-glass prepregs were designed and fabricated. The influences of tensile stress, annealing and number of composite layers on the giant magneto-impedance (GMI) and giant stress-impedance (GSI) effects in these composites were investigated systematically. It was found that the application of tensile stress along the microwire axis or an increase in the number of composite layers reduced the GMI effect and increased the circular anisotropy field, while the annealing treatment had a reverse effect. The value of matrix-wire interfacial stress calculated via the GMI profiles coincided with the value of the applied effective tensile stress to yield similar GMI profiles. Enhancement of the GSI effect was achieved in the composites relative to their single microwire inclusion. These findings are important for the development of functional microwire-based composites for magnetic- and stress-sensing applications. They also open up a new route for probing the interfacial stress in fibre-reinforced polymer (FRP) composites.

  1. Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance.

    PubMed

    Guermandi, Marco; Cardu, Roberto; Franchi Scarselli, Eleonora; Guerrieri, Roberto

    2015-02-01

    The IC presented integrates the front-end for EEG and Electrical Impedance Tomography (EIT) acquisition on the electrode, together with electrode-skin contact impedance monitoring and EIT current generation, so as to improve signal quality and integration of the two techniques for brain imaging applications. The electrode size is less than 2 cm(2) and only 4 wires connect the electrode to the back-end. The readout circuit is based on a Differential Difference Amplifier and performs single-ended amplification and frequency division multiplexing of the three signals that are sent to the back-end on a single wire which also provides power supply. Since the system's CMRR is a function of each electrode's gain accuracy, an analysis is performed on how this is influenced by mismatches in passive and active components. The circuit is fabricated in 0.35 μm CMOS process and occupies 4 mm(2), the readout circuit consumes 360 μW, the input referred noise for bipolar EEG signal acquisition is 0.56 μVRMS between 0.5 and 100 Hz and almost halves if only EEG signal is acquired. PMID:24860040

  2. Impedance and Otoscopy Screening of Multiply Handicapped Children in School.

    ERIC Educational Resources Information Center

    Bruns, Janet M.; And Others

    1979-01-01

    In order to examine the effectiveness of impedance and otoscopic screening in the determination of middle ear abnormalities, 79 physically handicapped, mentally retarded school children (mean age 8 years) were examined. (Author/PHR)

  3. Using ac dipoles to localize sources of beam coupling impedance

    NASA Astrophysics Data System (ADS)

    Biancacci, N.; Tomás, R.

    2016-05-01

    The beam coupling impedance is one of the main sources of beam instabilities and emittance blow up in circular accelerators. A refined machine impedance evaluation is therefore required in order to understand and model intensity dependent effects and instabilities that may limit the machine performance. For this reason, many impedance source localization techniques have been developed. In this work we present the impedance localization technique based on the observation of phase advance versus intensity at the beam position monitors using ac dipoles to force betatron oscillations. We present analytical formulas for the interpretation of measurements together with simulations to benchmark and illustrate the equations. Studies on the method accuracy for different Fourier transform algorithms are presented as well as first exploratory measurements performed in the LHC.

  4. Statistical Properties of Antenna Impedance in an Electrically Large Cavity

    SciTech Connect

    WARNE,LARRY K.; LEE,KELVIN S.H.; HUDSON,H. GERALD; JOHNSON,WILLIAM A.; JORGENSON,ROY E.; STRONACH,STEPHEN L.

    2000-12-13

    This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.

  5. Motion discrimination of throwing a baseball using forearm electrical impedance

    NASA Astrophysics Data System (ADS)

    Nakamura, Takao; Kusuhara, Toshimasa; Yamamoto, Yoshitake

    2013-04-01

    The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.

  6. Smart mug to measure hand's geometrical mechanical impedance.

    PubMed

    Hondori, Hossein Mousavi; Tech, Ang Wei

    2011-01-01

    A novel device, which looks like a mug, has been proposed for measuring the impedance of human hand. The device is designed to have convenient size and light weight similar to an ordinary coffee mug. It contains a 2-axis inertia sensor to monitor vibration and a small motor to carry an eccentric mass (m=100 gr, r=2 cm, rpm=600). The centrifugal force due to the rotating mass applies a dynamic force to the hand that holds the mug. Correlation of the acceleration signals with the perturbing force gives the geometrical mechanical impedance. Experimental results on a healthy subject shows that impedance is posture dependant while it changes with the direction of the applied perturbing force. For nine postures the geometrical impedance is obtained all of which have elliptical shapes. The method can be used for assessment of spasticity and monitoring stability in patients with stroke or similar problems. PMID:22255230

  7. Bioelectrical impedance analysis for bovine milk: Preliminary results

    NASA Astrophysics Data System (ADS)

    Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.

    2010-04-01

    This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.

  8. New impedance and electrochemical image techniques for biological applications

    NASA Astrophysics Data System (ADS)

    Tao, N. J.

    2010-03-01

    A method to image local surface impedance and electrochemical current optically is developed for biological applications. The principle of the impedance imaging is based on sensitive dependence of surface plasmon resonance (SPR) on local surface charge density. The technique can image local surface impedance and charge while providing simultaneously a conventional surface plasmon resonance (SPR) image. By applying a potential modulation to a sensor surface, it is possible to obtain an image of the DC component, and the amplitude and phase images of the AC component. The DC image provides local molecular binding, as found in the conventional SPR imaging technique. The AC images are directly related to the local impedance of the surface. This imaging capability may be used as a new detection platform for DNA and protein microarrays, a new method for analyzing local molecular binding and interfacial processes and a new tool for imaging cells and tissues.

  9. Digital synthetic impedance for application in vibration damping.

    PubMed

    Nečásek, J; Václavík, J; Marton, P

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass. PMID:26931876

  10. Digital synthetic impedance for application in vibration damping

    NASA Astrophysics Data System (ADS)

    Nečásek, J.; Václavík, J.; Marton, P.

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  11. The development of algorithms in electrical impedance computerized tomography.

    PubMed

    Shie, J R; Li, C J; Lin, J T

    2000-01-01

    Electrical Impedance Computerized Tomography (EICT) is an imaging method to reconstruct the impedance distribution inside of domain through the boundary injected current and display the impedance contrast ratio as an image. This paper concentrates on developing two algorithms to enhance the quality of the conductivity image. The two algorithms are "Fine-Mesh Conversion Method" and "Sub-Domain EICT Method". "Fine-Mesh Conversion Method" is a numerical calibration process to find a coarse mesh impedance network that behaves like a fine mesh network in terms of giving similar voltages under the same current excitations. "Sub-Domain EICT" solves a higher resolution EICT with the cost of a lower resolution EICT by combining "Fine-Mesh Conversion Method", and a Fuzzy Logic Inference Systems (FLIS) classifier. PMID:10834231

  12. Beam coupling impedances of fast transmission-line kickers.

    SciTech Connect

    Kurennoy, S.

    2002-01-01

    Fast transmission-line kickers contain no ferrite and consist of two long metallic parallel plates supported by insulators inside a beam pipe. A beam is deflected by both the electric and magnetic fields of a TEM wave created by a pulse propagating along the strips in the direction opposite to the beam. Computations of the beam coupling impedances for such structures are difficult because of their length. In the paper, the beam coupling impedances of transmission-line kickers are calculated by combining analytical and numerical methods: the wake potentials computed in short models are extended analytically to obtain the wakes for the long kickers, and then the corresponding beam impedances are derived. At very low frequencies the results are compared with simple analytical expressions for the coupling impedances of striplines in beam position monitors.

  13. Impedance Biosensors: Applications to Sustainability and Remaining Technical Challenges

    PubMed Central

    2015-01-01

    Due to their all-electrical nature, impedance biosensors have significant potential for use as simple and portable sensors for environmental studies and environmental monitoring. Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/mL for norfluoxetine and BDE-47, respectively. Although impedance biosensors have been widely studied in the academic literature, commercial applications have been hindered by several technical limitations, including possible limitations to small analytes, the complexity of impedance detection, susceptibility to nonspecific adsorption, and stability of biomolecule immobilization. Recent research into methods to overcome these obstacles is briefly reviewed. New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a 30 day trial. PMID:25068095

  14. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    PubMed Central

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  15. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection.

    PubMed

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  16. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    NASA Astrophysics Data System (ADS)

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-08-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  17. Microwave longitudinal coupling impedance in ISABELLE vacuum chamber

    SciTech Connect

    Giordano, S.; Votruba, J.

    1980-03-01

    The purpose of this paper is to investigate the modes above the cutoff frequency of the ISABELLE vacuum chamber, and to measure some typical values of the longitudinal coupling impedance. (The investigation was limited to only those modes that have fields in the beam pipe.) Measurements show that the impedance, Z, between 2.6 and 2.8 GHz, can be as high as 10 x n ohms, where n is the ratio of the excitation frequency of the beam divided by the fundamental rotational frequency of the ISABELLE ring. Future work calls for an investigation of the coupling impedance above 2.8 GHz; preliminary work indicates that these impedances Z/n, can be considerably higher than 10 ohms.

  18. Prediction of lamb carcass composition by impedance spectroscopy.

    PubMed

    Altmann, M; Pliquett, U; Suess, R; von Borell, E

    2004-03-01

    The objective of this study was to compare impedance spectroscopy with resistance measurements at a single frequency (50 kHz) for the prediction of lamb carcass composition. The impedance spectrum is usually recorded by measuring the complex impedance at various frequencies (frequency domain); however, in this study, we also applied the faster and simpler measurement in the time domain (application of a current step and measurement of the voltage response). The study was carried out on 24 male, German Black-headed Mutton lambs with an average BW of 45 kg. Frequency- and time domain-based impedance measurements were collected at 20 min and 24 h postmortem with different electrode placements. Real and imaginary parts at various frequencies were calculated from the locus diagram. Left sides were dissected into lean, fat, and bone, and right sides were ground to determine actual carcass composition. Crude fat, crude protein, and moisture were chemically analyzed on ground samples. Frequency- and time domain-based measurements did not provide the same absolute impedance values; however, the high correlations (P < 0.001) between these methods for the "real parts" showed that they ranked individuals in the same order. Most of the time domain data correlated higher to carcass composition than did the frequency domain data. The real parts of impedance showed correlations between -0.37 (P > 0.05) and -0.74 (P < 0.001) to water, crude fat, lean, and fatty tissue, whereas the relations to CP were much lower (from 0.00 to -0.47, P < 0.05). Electrode placements at different locations did not substantially improve the correlations with carcass composition. The "imaginary parts" of impedance were not suitable for the prediction of carcass composition. The highest accuracy (R2 = 0.66) was reached for the estimation of crude fat percentage by a regression equation with the time domain-based impedance measured at 24 h postmortem. Furthermore, there was not a clear superiority of

  19. Electrical impedance measurements: rapid method for detecting and monitoring microorganisms.

    PubMed Central

    Cady, P; Dufour, S W; Shaw, J; Kraeger, S J

    1978-01-01

    A conceptually simple and east-to-use technique is described that uses continuous impedance measurements for automated monitoring of microbial growth and metabolism. The method has been applied to a wide range of microorganisms. Optical clarity is not required. The sensitivity and reproducibility of the method are demonstrated. The mechanism whereby microbial growth alters the impedance of the medium is discussed, as well as potential applications of the method to clinical microbiology. Images PMID:348718

  20. Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.

    2001-01-01

    Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.

  1. Experimental acquisition system for impedance tomography with active electrode approach.

    PubMed

    Rigaud, B; Shi, Y; Chauveau, N; Morucci, J P

    1993-11-01

    An experimental system for impedance tomography has been constructed. The acquisition system uses 16 multifunctional active electrodes, each including a current source and a voltage buffer. Images of active and reactive parts of different target impedances in a phantom filled with liquid have been obtained. The system performance has been compared with those of other systems using either a mesh phantom or rods as point sources used for the determination of the modulation transfer function. PMID:8145585

  2. High power impedance matchers with 100-ps risetime

    NASA Astrophysics Data System (ADS)

    Booth, R.

    1989-12-01

    This paper describes several impedance matchers for use with high-power, nanosecond-width pulses. These transmission-line devices are simple and economical to construct and have proven useful in a number of applications at the Lawrence Livermore National Laboratory (LLNL). The author discusses design principles, compares the characteristics of impedance matchers and conventional pulse transformers, and presents details of several successful designs which have handled pulses up to 4000V and 150A.

  3. Frequency Dependent Microwave Impedance Microscopy of Ferroelectric Domain Walls

    NASA Astrophysics Data System (ADS)

    Johnston, Scott; Shen, Zhi-Xun

    ABO3 ferroelectrics are known to exhibit domain wall conductivity which is of great fundamental and technological interest. Microwave Impedance Microscopy is a near field measurement technique which allows local, non-contact measurement of AC conductivity and permittivity. In this work, Microwave Impedance Microscopy over a wide frequency range is used to probe the electrical properties of domain walls in ABO3 ferroelectrics. An unexpected, strong frequency dependence in the microwave dissipation near domain walls is observed.

  4. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  5. Positive impedance humidity sensors via single-component materials

    PubMed Central

    Qian, Jingwen; Peng, Zhijian; Shen, Zhenguang; Zhao, Zengying; Zhang, Guoliang; Fu, Xiuli

    2016-01-01

    Resistivity-type humidity sensors have been investigated with great interest due to the increasing demands in industry, agriculture and daily life. To date, most of the available humidity sensors have been fabricated based on negative humidity impedance, in which the electrical resistance decreases as the humidity increases, and only several carbon composites have been reported to present positive humidity impedance. However, here we fabricate positive impedance humidity sensors only via single-component WO3−x crystals. The resistance of WO3−x crystal sensors in response to relative humidity could be tuned from a negative to positive one by increasing the compositional x. And it was revealed that the positive humidity impedance was driven by the defects of oxygen vacancy. This result will extend the application field of humidity sensors, because the positive humidity impedance sensors would be more energy-efficient, easier to be miniaturized and electrically safer than their negative counterparts for their lower operation voltages. And we believe that constructing vacancies in semiconducting materials is a universal way to fabricate positive impedance humidity sensors. PMID:27150936

  6. Implementation and Validation of an Impedance Eduction Technique

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.

    2011-01-01

    Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.

  7. Damage detection technique by measuring laser-based mechanical impedance

    SciTech Connect

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  8. Microbial Sulfate Reduction Measured by an Automated Electrical Impedance Technique

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Silverman, M. P.

    1979-01-01

    Electrical impedance measurements are used to investigate the rates of sulfate reduction by pure cultures of and sediments containing sulfur-reducing bacteria. Changes in the electrical impedance ratios of pure cultures of Desulfovibrio aestuarii and samples of reduced sediments from San Francisco Bay were measured by a Bactometer 32, and sulfate reduction was followed by measuring the incorporation of (S-35) sulfate into metal sulfides. The growth of the bacteria in pure culture is found to result in an increase of 0.2200 in the impedance ratio within 24 h, accompanied by increases in protein, ATP, sulfide and absorptance at 660 nm, all of which are inhibited by the addition of molybdate. Similar responses were observed in the sediments, although impedance ratio responses were not completely inhibited upon the addition of molybdate, due to the presence of nonsulfate-respiring microorganisms. Experiments conducted with sterile media and autoclaved sediments indicate that the presence of H2S together with iron is responsible for the impedance effect, and sulfate reduction rates ranging between 0.85 and 1.78 mmol/l per day are estimated for the sediments by the impedance technique.

  9. Whole-body impedance--what does it measure?

    PubMed

    Foster, K R; Lukaski, H C

    1996-09-01

    Although the bioelectrical impedance technique is widely used in human nutrition and clinical research, an integrated summary of the biophysical and bioelectrical bases of this approach is lacking. We summarize the pertinent electrical phenomena relevant to the application of the impedance technique in vivo and discuss the relations between electrical measurements and biological conductor volumes. Key terms in the derivation of bioelectrical impedance analysis are described and the relation between the electrical properties of tissues and tissue structure is discussed. The relation between the impedance of an object and its geometry, scale, and intrinsic electrical properties is also discussed. Correlations between whole-body impedance measurements and various bioconductor volumes, such as total body water and fat-free mass, are experimentally well established; however, the reason for the success of the impedence technique is much less clear. The bioengineering basis for the technique is critically presented and considerations are proposed that might help to clarify the method and potentially improve its sensitivity. PMID:8780354

  10. Clinical implementation of electrical impedance tomography with hyperthermia.

    PubMed

    Moskowitz, M J; Ryan, T P; Paulsen, K D; Mitchell, S E

    1995-01-01

    We describe the use of electrical impedance tomography (EIT) for non-invasive thermal imaging in conjunction with a clinical treatment of a superficial scalp lesion utilizing a spiral microstrip antenna. This is our first reported use of EIT with a clinical hyperthermia treatment and perhaps the first world-wide. The thermal measurements recorded during treatment compare favourably with the images reconstructed from impedance data gathered during heating. A linear relation, measured in phantom material, between the change in temperature with the change in reconstructed impedance was assumed. The average discrepancy between the measured temperature changes with the temperatures reconstructed from the impedance changes was 1.4 degrees C, with the maximum being 8.9 degrees C. These preliminary data suggest that impedance changes can be measured during hyperthermia delivery and temperature estimates based on these observed changes are possible in the clinical setting. These findings also point to the complex, yet critical nature of the impedance versus temperature relationship for tissue in vivo. The reconstructed thermal images may provide complementary information about the overall thermal damage imposed during heating. Based on this initial clinical experience we feel that EIT has great potential as a viable clinical aid in imaging the temperature changes imposed during hyperthermia. PMID:7790730

  11. Feasibility of Bioelectrical Impedance Spectroscopy Measurement before and after Thoracentesis

    PubMed Central

    Weyer, Sören; Pauly, Karolin; Napp, Andreas; Dreher, Michael; Leonhardt, Steffen; Marx, Nikolaus; Schauerte, Patrick; Mischke, Karl

    2015-01-01

    Background. Bioelectrical impedance spectroscopy is applied to measure changes in tissue composition. The aim of this study was to evaluate its feasibility in measuring the fluid shift after thoracentesis in patients with pleural effusion. Methods. 45 participants (21 with pleural effusion and 24 healthy subjects) were included. Bioelectrical impedance was analyzed for “Transthoracic,” “Foot to Foot,” “Foot to Hand,” and “Hand to Hand” vectors in low and high frequency domain before and after thoracentesis. Healthy subjects were measured at a single time point. Results. The mean volume of removed pleural effusion was 1169 ± 513 mL. The “Foot to Foot,” “Hand to Hand,” and “Foot to Hand” vector indicated a trend for increased bioelectrical impedance after thoracentesis. Values for the low frequency domain in the “Transthoracic” vector increased significantly (P < 0.001). A moderate correlation was observed between the amount of removed fluid and impedance change in the low frequency domain using the “Foot to Hand” vector (r = −0.7). Conclusion. Bioelectrical impedance changes in correlation with the thoracic fluid level. It was feasible to monitor significant fluid shifts and loss after thoracentesis in the “Transthoracic” vector by means of bioelectrical impedance spectroscopy. The trial is registered with Registration Numbers IRB EK206/11 and NCT01778270. PMID:25861647

  12. Impedance characterization of microarray recording electrodes in vitro.

    PubMed

    Merrill, Daniel R; Tresco, Patrick A

    2005-11-01

    The mechanisms underlying performance degradation of chronically implanted silicon microelectrode arrays in the central nervous system (CNS) remain unclear. Humoral and cellular components of the brain foreign body response were evaluated to determine whether their presence on the electrode surface results in increased electrical impedance. Iridium oxide microelectrode recording arrays were electrically characterized in saline, culture media with 10% fetal bovine serum, and coated with various CNS cell types isolated from rat brain. Electrochemical impedance spectroscopy and cyclic voltammetry were performed using a three-electrode system. Potential cycling caused an immediate decrease in electrical impedance, which increased with time toward precycling values, with the effect of cycling remaining significant for several days. The addition of serum caused a significant increase in impedance of up to 28% relative to the saline control. Microelectrodes coated with various cell types known to participate in the foreign body response caused a 20%-80% increase in impedance immediately after contact that remained constant or gradually increased for several weeks. Our findings suggest that the attachment of molecular and cellular species following microelectrode implantation into brain tissue likely contribute to increases in impedance, but do not appear sufficient to hinder recording performance. PMID:16285400

  13. Positive impedance humidity sensors via single-component materials.

    PubMed

    Qian, Jingwen; Peng, Zhijian; Shen, Zhenguang; Zhao, Zengying; Zhang, Guoliang; Fu, Xiuli

    2016-01-01

    Resistivity-type humidity sensors have been investigated with great interest due to the increasing demands in industry, agriculture and daily life. To date, most of the available humidity sensors have been fabricated based on negative humidity impedance, in which the electrical resistance decreases as the humidity increases, and only several carbon composites have been reported to present positive humidity impedance. However, here we fabricate positive impedance humidity sensors only via single-component WO3-x crystals. The resistance of WO3-x crystal sensors in response to relative humidity could be tuned from a negative to positive one by increasing the compositional x. And it was revealed that the positive humidity impedance was driven by the defects of oxygen vacancy. This result will extend the application field of humidity sensors, because the positive humidity impedance sensors would be more energy-efficient, easier to be miniaturized and electrically safer than their negative counterparts for their lower operation voltages. And we believe that constructing vacancies in semiconducting materials is a universal way to fabricate positive impedance humidity sensors. PMID:27150936

  14. Damage detection technique by measuring laser-based mechanical impedance

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-01

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  15. Positive impedance humidity sensors via single-component materials

    NASA Astrophysics Data System (ADS)

    Qian, Jingwen; Peng, Zhijian; Shen, Zhenguang; Zhao, Zengying; Zhang, Guoliang; Fu, Xiuli

    2016-05-01

    Resistivity-type humidity sensors have been investigated with great interest due to the increasing demands in industry, agriculture and daily life. To date, most of the available humidity sensors have been fabricated based on negative humidity impedance, in which the electrical resistance decreases as the humidity increases, and only several carbon composites have been reported to present positive humidity impedance. However, here we fabricate positive impedance humidity sensors only via single-component WO3‑x crystals. The resistance of WO3‑x crystal sensors in response to relative humidity could be tuned from a negative to positive one by increasing the compositional x. And it was revealed that the positive humidity impedance was driven by the defects of oxygen vacancy. This result will extend the application field of humidity sensors, because the positive humidity impedance sensors would be more energy-efficient, easier to be miniaturized and electrically safer than their negative counterparts for their lower operation voltages. And we believe that constructing vacancies in semiconducting materials is a universal way to fabricate positive impedance humidity sensors.

  16. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  17. Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition.

    PubMed Central

    Bao, J Z; Davis, C C; Schmukler, R E

    1992-01-01

    We report measurements of the electrical impedance of human erythrocytes in the frequency range from 1 Hz to 10 MHz, and for temperatures from 4 to 40 degrees C. In order to achieve high sensitivity in this frequency range, we embedded the cells in the pores of a filter, which constrains the current to pass through the cells in the pores. Based on the geometry of the cells embedded in the filter a circuit model is proposed for the cell-filter saline system. A constant phase angle (CPA) element, i.e., an impedance of the form Z = A/(j omega)alpha, where A is a constant, j = square root of -1, omega is angular frequency, and 0 less than alpha less than 1 has been used to describe the ac response of the interface between the cell surface and the electrolyte solution, i.e., the electrical double layer. The CPA and other elements of the circuit model are determined by a complex nonlinear least squares (CNLS) fit, which simultaneously fits the real and imaginary parts of the experimental data to the circuit model. The specific membrane capacitance is determined to be 0.901 +/- 0.036 microF/cm2, and the specific cytoplasm conductivity to be 0.413 +/- 0.031 S/m at 26 degrees C. The temperature dependence of the cytoplasm conductivity, membrane capacitance, and CPA element has been obtained. The membrane capacitance increases markedly at approximately 37 degrees C, which suggests a phase transition in the cell membrane. PMID:1600086

  18. Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition.

    PubMed

    Bao, J Z; Davis, C C; Schmukler, R E

    1992-05-01

    We report measurements of the electrical impedance of human erythrocytes in the frequency range from 1 Hz to 10 MHz, and for temperatures from 4 to 40 degrees C. In order to achieve high sensitivity in this frequency range, we embedded the cells in the pores of a filter, which constrains the current to pass through the cells in the pores. Based on the geometry of the cells embedded in the filter a circuit model is proposed for the cell-filter saline system. A constant phase angle (CPA) element, i.e., an impedance of the form Z = A/(j omega)alpha, where A is a constant, j = square root of -1, omega is angular frequency, and 0 less than alpha less than 1 has been used to describe the ac response of the interface between the cell surface and the electrolyte solution, i.e., the electrical double layer. The CPA and other elements of the circuit model are determined by a complex nonlinear least squares (CNLS) fit, which simultaneously fits the real and imaginary parts of the experimental data to the circuit model. The specific membrane capacitance is determined to be 0.901 +/- 0.036 microF/cm2, and the specific cytoplasm conductivity to be 0.413 +/- 0.031 S/m at 26 degrees C. The temperature dependence of the cytoplasm conductivity, membrane capacitance, and CPA element has been obtained. The membrane capacitance increases markedly at approximately 37 degrees C, which suggests a phase transition in the cell membrane. PMID:1600086

  19. CRAC2 model description

    SciTech Connect

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Johnson, J.D.; Ostmeyer, R.M.; Aldrich, D.C.; Blond, R.M.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.

  20. Preliminary Experiments on Noise Reduction in Cavities Using Active Impedance Changes

    NASA Astrophysics Data System (ADS)

    LACOUR, O.; GALLAND, M. A.; THENAIL, D.

    2000-02-01

    This paper reports experiments on the active control of enclosed sound fields via wall impedance changes. Two methods previously developed allow one to implement practically active acoustic impedances: the first is referred to as “direct” control and permits precise realizations for harmonic excitations, while the second is a hybrid passive/active feedback control well suited for random noise treatments. The two techniques have been already presented [1]; the contribution of this work relies on testing the efficiency of both systems in silencing two enclosures through experimental analyses, subsequently compared with classical analytical description. The first test cavity is one-dimensional; a global sound reduction is achieved by the hybrid system for a broadband primary excitation. The second system is a reactangular three-dimensional cavity closed by a simply supported elastic plate. The noise source is an external load applied at one point of the plate. Different impedance values are successively assigned, their effect being estimated through a global sound level indicator. Attention is also given to plate vibration changes, which may occur. Three typical behaviours of the plate-cavity system are investigated. A first experiment involves an excitation at an acoustic resonance and induces a weak plate-cavity coupling. The second, also at an acoustic resonance of the cavity, yields a strong coupling while the third corresponds to an off-resonance excitation. The hybrid feedback control system provides useful attenuation for all cases, and shows also a promising behaviour when dealing with broadband excitations. It confirms the interest of the method when classical feedforward active control fails, i.e., when reliable prior information of the undesired disturbance is not available.

  1. Investigating the superhydrophobic behavior for underwater surfaces using impedance-based methods.

    PubMed

    Tuberquia, Juan C; Song, Won S; Jennings, G Kane

    2011-08-15

    We have investigated the impedance behavior of immersed superhydrophobic (SH) polymethylene surfaces by tailoring the surface tension of the contacting liquid phase to gradually transition the surface from the Cassie to the Wenzel state. Control over the surface tension is accomplished by varying the ethanol content of the aqueous phase. To establish the mechanism of the transition, we imaged the interface of the film and identified three distinct events of this process: a nucleation event at low concentrations of ethanol in which small areas beneath the liquid phase transition into the Wenzel state, a propagation event characterized by the enlargement of the Wenzel domains and the lateral displacement of air, and a final event at higher concentrations of ethanol in which the thin air layer at the interface morphs into isolated pockets of air. Using this visualization of the transition, we characterized the Cassie and the Wenzel states by measuring the impedance at a frequency of 1 kHz for an initially SH film that changes its wetting behavior upon addition of ethanol. Establishment of the Cassie and Wenzel state conditions was based on concepts of electrochemical impedance spectroscopy (EIS) and quantitatively validated using both the Helmholtz theory and the analytical description of the electrochemical system in terms of the circuit model of a metal surface covered by a polymer film. Finally, we apply this strategy to determine the possibility for SH polymethylene (PM) films to reversibly transition between the Cassie and the Wenzel states. Results show that after rinsing and drying at ambient conditions for 24 h, the film recovers the SH state, suggesting the applicability of these SH films in outdoor environments with occasional periodic submersion in water. PMID:21696148

  2. Correcting electrode impedance effects in broadband SIP measurements

    NASA Astrophysics Data System (ADS)

    Huisman, Johan Alexander; Zimmermann, Egon; Esser, Odilia; Haegel, Franz-Hubert; Vereecken, Harry

    2016-04-01

    Broadband spectral induced polarization (SIP) measurements of the complex electrical resistivity can be affected by the contact impedance of the potential electrodes above 100 Hz. In this study, we present a correction procedure to remove electrode impedance effects from SIP measurements. The first step in this correction procedure is to estimate the electrode impedance using a measurement with reversed current and potential electrodes. In a second step, this estimated electrode impedance is used to correct SIP measurements based on a simplified electrical model of the SIP measurement system. We evaluated this new correction procedure using SIP measurements on water because of the well-defined dielectric properties. It was found that the difference between the corrected and expected phase of the complex electrical resistivity of water was below 0.1 mrad at 1 kHz for a wide range of electrode impedances. In addition, SIP measurements on a saturated unconsolidated sediment sample with two types of potential electrodes showed that the measured phase of the electrical resistivity was very similar (difference <0.2 mrad) up to a frequency of 10 kHz after the effect of the different electrode impedances was removed. Finally, SIP measurements on variably saturated unconsolidated sand were made. Here, the plausibility of the phase of the electrical resistivity was improved for frequencies up to 1 kHz, but errors remained for higher frequencies due to the approximate nature of the electrode impedance estimates and some remaining unknown parasitic capacitances that led to current leakage. It was concluded that the proposed correction procedure for SIP measurements improved the accuracy of the phase measurements by an order of magnitude in the kHz frequency range. Further improvement of this accuracy requires a method to accurately estimate parasitic capacitances in situ.

  3. Effectiveness of impedance monitoring during radiofrequency ablation for predicting popping

    PubMed Central

    Iida, Hiroya; Aihara, Tsukasa; Ikuta, Shinichi; Yamanaka, Naoki

    2012-01-01

    AIM: To retrospectively evaluate the effectiveness of impedance monitoring for predicting popping during radiofrequency ablation (RFA) using internally cooled electrodes. METHODS: We reviewed 140 patients (94 males, 46 females; age range 73.0 ± 11.1 year) who underwent RFA between February 2006 and November 2008 with a modified protocol using a limited power delivery rather than a conventional one to avoid popping. All the patients provided their written informed consent, and the study was approved by the institutional review board. Intraprocedural impedances were measured for the study subjects, and the tumors were classified into three types according to the characteristics of their impedance curves: increasing, flat, or decreasing. The tumors were further sorted into seven subtypes (A-G) depending on the curvature of the impedance curve’s increase or decrease. Relative popping rates were determined for the three types and seven subtypes. A chi-square test was performed to estimate statistical significance. RESULTS: A total of 148 nodules treated by RFA were analyzed. The study samples included 132 nodules of hepatocellular carcinoma, 14 nodules of metastatic liver cancer, and two nodules of intrahepatic cholangiocarcinoma. The numbers of nodules with each impedance curve type were as follows: 37 increasing-type nodules, 43 flat-type nodules, and 68 decreasing-type nodules. Popping occurrence rates were 24.3%, 46.5% and 64.7%, respectively. Flat-type nodules exhibited a significantly higher rate of popping compared to increasing-type nodules (P = 0.039). Decreasing-type nodules exhibited a significantly higher rate of popping compared to increasing-type nodules (P < 0.0001). Notably, nodules that showed a sharp decrease in impedance in the latter ablation period (subtype E) exhibited a significantly higher rate of popping compared to other subtypes. CONCLUSION: Intraprocedural impedance monitoring can be a useful tool to predict the occurrence of popping

  4. Spectral properties of plasmon resonances in a random impedance network model of binary nanocomposites

    NASA Astrophysics Data System (ADS)

    Olekhno, N. A.; Beltukov, Y. M.; Parshin, D. A.

    2016-05-01

    One of the methods for the description of plasmon resonances in disordered metal-dielectric nanocomposites represents an initial composite as an electric network in the form of a lattice whose bonds are randomly arranged complex impedances. In this work, a general method is used to describe resonances in binary networks consisting of two types of impedances, which are arbitrary functions of the frequency [Th. Jonckheere and J.M. Luck, J. Phys. A 31, 3687 (1998)]. The generalization of the low-frequency L- C model where metal and dielectric regions in the lattice are replaced by inductive bonds L and capacitive bonds C d, respectively, has been considered. To analyze the spectrum of resonances in the entire optical region, a more accurate model involves the replacement of the metal regions by bonds in the form of parallel LC circuits with the resonant frequency equal to the plasma frequency of the metal ωp. The spectral properties of this model, as well as the model of a nanocomposite consisting of two metals with different plasma frequencies, have been considered. Analytical relations between the spectra of all such systems and the spectra of the initial L- C model have been established in the matrix representation. General expressions describing the dependence of the resonance spectrum of composites with arbitrary geometry on the permittivity of the matrix have been obtained.

  5. Teaching Descriptive Style.

    ERIC Educational Resources Information Center

    Brashers, H. C.

    1968-01-01

    As the inexperienced writer becomes aware of the issues involved in the composition of effective descriptive prose, he also develops a consistent control over his materials. The persona he chooses, if coherently thought out, can function as an index of many choices, helping him to manipulate the tone, intent, and mood of this style; to regulate…

  6. Impedance-based damage detection for civil infrastructures

    NASA Astrophysics Data System (ADS)

    Park, Seunghee; Roh, YongRae; Yi, JinHak; Yun, Chung-Bang; Kwak, Hyo-Gyoung; Lee, SangHan

    2004-07-01

    The objective of this study is to investigate the feasibility of an impedance-based damage detection technique using piezoelectric (PZT) transducers for civil infrastructures such as steel bridges. The basic concept of the technique is to monitor the changes in the electrical impedance to detect structural damages. Those changes in the electrical impedance are due to the electro-mechanical coupling property of piezoelectric materials. The smart PZT transducers which act as both actuators and sensors in a self-analyzing manner are emerging to be effective in non-parametric health monitoring of structural systems. This health monitoring technique can be easily adapted to existing structures, since only a small number of PZT patches are needed for continuous monitoring of their structural integrity. This impedance-based method operates at high frequencies (above 100 kHz), which enables it to detect incipient-type damage. It is not interfered by normal operating conditions, vibrations of the host structure, and changes in the host external body. The results of the experimental study on three kinds of structural members indicate that cracks or loosened bolts/nuts near the PZT sensors may be effectively detected by monitoring the shifts of the resonant frequencies of the impedance functions.

  7. Do changes in transcardiac impedance modulation correlate with haemodynamic status?

    PubMed

    Weiss, S M; Einstein, R; Matthews, R J; Leer, T W; Cincunegui, J L; McCulloch, R

    1992-06-01

    Implantable cardiac pacemakers and defibrillators have the ability to revert a variety of arrhythmias to normal sinus rhythm. For correct operation, such devices require accurate arrhythmia classification. Arrhythmia classification by these devices could be improved with the addition of a suitable haemodynamic sensor. This study investigated the use of transcardiac impedance for haemodynamic sensing. Ventricular fibrillation, ventricular tachycardia, electro-mechanical dissociation and five rates of ventricular pacing, each having a different associated level of haemodynamic compromise, were induced in each of seven mongrel dogs. The amplitude responses of the modulations of transcardiac impedance were compared with those of arterial pulse pressure (an established measure of haemodynamic status), and changes in cycle length. The correlation coefficient for changes in transcardiac impedance modulation amplitude and arterial pulse pressure was found to be 0.89. For transcardiac impedance modulation amplitude and cycle length, the correlation coefficient was 0.77, and for arterial pulse pressure and cycle length, the correlation coefficient was 0.85. In the acute anaesthetised dog, changes in the amplitude of transcardiac impedance modulations were shown to reflect different levels of haemodynamic status. PMID:1642572

  8. Characterisation of CFRP adhesive bonds by electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Wandowski, Tomasz; Ostachowicz, Wieslaw M.

    2014-03-01

    In aircraft industry the Carbon Fiber Reinforced Polymer (CFRP) elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. The contamination leading to weak bonds may have various origin and be caused by moisture, release agent, hydraulic fluid, fuel, poor curing of adhesive and so on. In this research three different causes of possible weak bonds were selected for the investigation: 1. Weak bond due to release agent contamination, 2. Weak bond due to moisture contamination, 3. Weak bond due to poor curing of the adhesive. In order to assess the bond quality electromechanical impedance (EMI) technique was selected and investigation was focused on the influence of bond quality on electrical impedance of piezoelectric transducer. The piezoelectric transducer was mounted at the middle of each sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570. Using the impedance analyzer the electrical parameters were measured for wide frequency band. Due to piezoelectric effect the electrical response of a piezoelectric transducer is related to mechanical response of the sample to which the transducers is attached. The impedance spectra were investigated in order to find indication of the weak bonds. These spectra were compared with measurements for reference sample using indexes proposed in order to assess the bond quality.

  9. Development of a wearable multi-frequency impedance cardiography device.

    PubMed

    Weyer, Sören; Menden, Tobias; Leicht, Lennart; Leonhardt, Steffen; Wartzek, Tobias

    2015-02-01

    Cardiovascular diseases as well as pulmonary oedema can be early diagnosed using vital signs and thoracic bio-impedance. By recording the electrocardiogram (ECG) and the impedance cardiogram (ICG), vital parameters are captured continuously. The aim of this study is the continuous monitoring of ECG and multi-frequency ICG by a mobile system. A mobile measuring system, based on 'low-power' ECG, ICG and an included radio transmission is described. Due to the high component integration, a board size of only 6.5 cm×5 cm could be realized. The measured data can be transmitted via Bluetooth and visualized on a portable monitor. By using energy-efficient hardware, the system can operate for up to 18 hs with a 3 V battery, continuously sending data via Bluetooth. Longer operating times can be realized by decreased transfer rates. The relative error of the impedance measurement was less than 1%. The ECG and ICG measurements allow an approximate calculation of the heart stroke volume. The ECG and the measured impedance showed a high correlation to commercial devices (r=0.83, p<0.05). In addition to commercial devices, the developed system allows a multi-frequency measurement of the thoracic impedance between 5-150 kHz. PMID:25559781

  10. Application of plant impedance for diagnosing plant disease

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin

    2006-10-01

    Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.

  11. Controlled metallic nanopillars for low impedance biomedical electrode.

    PubMed

    Gardner, Calvin J; Trisnadi, Jonathan; Kim, Tae Kyoung; Brammer, Karla; Reiss, Lina; Chen, Li-han; Jin, Sungho

    2014-05-01

    Radial metallic nanopillar/nanowire structures can be created by a controlled radiofrequency (RF) plasma processing technique on the surface of certain alloy wires, including important biomedical alloys such as MP35N (Co-Ni-Cr-Mo alloy), platinum-iridium and stainless steel. In electrode applications such as pacemakers or neural stimulators, the increase in surface area in elongated MP35N nanopillars allows for decreased surface impedance and greater current density. However, the nanopillar height on MP35N alloy tends to be self-limiting at ∼1-3μm. The objective of this study was to further elongate the radial nanopillars so as to reduce electrode impedance for biomedical electrode applications. Intelligent experimental design allowed for efficient investigation of processing parameters, including plasma material, process duration, power, pressure and repetition. It was found that multi-step repeated processing in the parameter-controlled RF environment could increase nanopillar height to ∼10μm, a 400% improvement, while the RF plasma processing with identical total duration but in a single step did not lead to desired nanopillar elongation. Measurement of electrode impedance in phosphate-buffered saline solution showed an associated decrease to one-fifth of the surface impedance of unprocessed wire for signals below 100Hz. For the purposes of this study, MP35N and Pt-Ir wires were characterized and demonstrated augmented surface impedance properties which, in combination with superior cell integration, enhanced biomedical electrode performance. PMID:24384124

  12. Piezogenerator impedance matching using Mason equivalent circuit for harvester identification

    NASA Astrophysics Data System (ADS)

    Li, Yang; Richard, Claude

    2014-04-01

    Any piezoelectric generator structure can be modeled close to its resonance by an equivalent circuit derived from the well known Mason equivalent circuit. This equivalent circuit can therefore be used in order to optimize the harvested power using usual electrical impedance matching. The objective of this paper is to illustrate the full process leading to the definition of the proper passive load allowing the optimization of the harvested energy of any harvesting device. First, the electric equivalent circuit of the generator is derived from the Mason equivalent circuit of a seismic harvester. Theoretical ideal impedance matching and optimal load analyze is then given emphasizing the fact that for a given acceleration a constant optimal output power is achievable for any frequency as long as the optimal load is feasible. Identification of the equivalent circuit of an experimental seismic harvester is then derived and matched impedance is defined both theoretically and experimentally. Results demonstrate that an optimal load can always be obtained and that the corresponding output power is constant. However, it is very sensitive to this impedance, and that even if impedance matching is a longtime well known technique, it is not really experimentally and practically achievable.

  13. Effects of Flow Profile on Educed Acoustic Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie r.; Nark, Douglas M.

    2010-01-01

    This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation models, as this liner is expected to be insensitive to SPL, grazing flow Mach number, and flow profile effects. The propagation models are then used to investigate the effects of shear flow profile on acoustic impedances educed for two conventional perforate-over-honeycomb liners. Results achieved with the uniform-flow models follow expected trends, but those educed with the 1-D shear-flow model do not, even for the calibration liner. However, when the flow profile used with the shear-flow model is varied to increase the Mach number gradient near the wall, results computed with the shear-flow model are well matched to those achieved with the uniform-flow model. This indicates the effects of flow profile on educed acoustic liner impedance are small, but more detailed investigations of the flow field throughout the duct are needed to better understand these effects.

  14. Nonlinear feature identification of impedance-based structural health monitoring

    SciTech Connect

    Rutherford, A. C.; Park, G. H.; Sohn, H.; Farrar, C. R.

    2004-01-01

    The impedance-based structural health monitoring technique, which utilizes electromechanical coupling properties of piezoelectric materials, has shown feasibility for use in a variety of structural health monitoring applications. Relying on high frequency local excitations (typically > 30 kHz), this technique is very sensitive to minor changes in structural integrity in the near field of piezoelectric sensors. Several damage sensitive features have been identified and used coupled with the impedance methods. Most of these methods are, however, limited to linearity assumptions of a structure. This paper presents the use of experimentally identified nonlinear features, combined with impedance methods, for structural health monitoring. Their applicability to damage detection in various frequency ranges is demonstrated using actual impedance signals measured from a portal frame structure. The performance of the nonlinear feature is compared with those of conventional impedance methods. This paper reinforces the utility of nonlinear features in structural health monitoring and suggests that their varying sensitivity in different frequency ranges may be leveraged for certain applications.

  15. Determination of soil ionic concentration using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, Gunjan; Kumar, Ratnesh; Weber, Robert J.

    2013-05-01

    This paper presents a novel approach to estimate the soil ionic concentration by way of multi-frequency impedance measurements and using the quasi-static dielectric mixing models to infer the various ionic concentrations. In our approach, the permittivity of the soil dielectric mixture is measured using impedance spectroscopy and the results are used as input parameters to dielectric mixing models, combined with the debye-type dielectric relaxation models. We observe that the dielectric mixing models work well for low RF (radio-frequency) range and help in determining the individual ionic concentration in a multi-component soil mixture. Using the fact that the permittivity of a dielectric mixture is proportional to its impedance, we validated our approach by making multi-frequency impedance measurements of a soil mixture at different concentrations of various components. The method provides a good estimate of individual components such as air, water and ions like nitrates. While the paper is written with the perspective of soil constituent concentration determination, the underlying principle of determining individual component concentration using multi-frequency impedance measurement is applicable more generally in areas such as characterizing biological systems like pathogens, quality control of pharmaceuticals etc.

  16. High-precision impedance spectroscopy: a strategy demonstrated on PZT.

    PubMed

    Boukamp, Bernard A; Blank, Dave H A

    2011-12-01

    Electrochemical impedance spectroscopy (EIS) has been recognized as a very powerful tool for studying charge and mass transport and transfer in a wide variety of electrically or electrochemically active systems. Sophisticated modeling programs make it possible to extract parameters from the impedance data, thus contributing to a better understanding of the system or material properties. For an accurate analysis, a correct modeling function is needed; this is often in the form of an equivalent circuit. It is not always possible to define the modeling function from visual inspection of the impedance dispersion. Small contributions to the overall dispersion can be masked, and hence overlooked. In this publication, a strategy is presented for high-precision impedance data analysis. A Kramers-Kronig test is used for the essential data validation. An iterative process of partial analysis and subtraction assists in deconvoluting the impedance spectrum, yielding both a vi- able model function and a set of necessary starting values for the full complex nonlinear least squares (CNLS) modeling. The advantage and possibilities of this strategy are demonstrated with an analysis of the ionic and electronic conductivity of lead zirconate titanate (PZT) as functions of temperature and oxygen partial pressure. PMID:23443688

  17. Diagnostic criteria for mass lesions differentiating in electrical impedance mammography

    NASA Astrophysics Data System (ADS)

    A, Karpov; M, Korotkova

    2013-04-01

    The purpose of this research was to determine the diagnostic criteria for differentiating volumetric lesions in the mammary gland in electrical impedance mammography. The research was carried out utilizing the electrical impedance computer mammograph llMEIK v.5.6gg®, which enables to acquire images of 3-D conductivity distribution layers within mamma's tissues up to 5 cm depth. The weighted reciprocal projection method was employed to reconstruct the 3-D electric conductivity distribution of the examined organ. The results of 3,710 electrical impedance examinations were analyzed. The analysis of a volumetric lesion included assessment of its shape, contour, internal electrical structure and changes of the surrounding tissues. Moreover, mammary gland status was evaluated with the help of comparative and age-related electrical conductivity curves. The diagnostic chart is provided. Each criterion is measured in points. Using the numerical score for evaluation of mass and non-volumetric lesions within the mammary gland in electrical impedance mammography allowed comparing this information to BI-RADS categories developed by American College of Radiology experts. The article is illustrated with electrical impedance mammograms and tables.

  18. Uncertainty Analysis of the Grazing Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  19. Impedance simulation for LEReC booster cavity transformed from ERL gun cavity

    SciTech Connect

    Liu, Chuyu

    2015-11-24

    Wake impedance induced energy spread is a concern for the low energy cooling electron beam. The impedance simulation of the booster cavity for the LEReC projection is presented in this report. The simulation is done for both non-relativistic and ultra-relativistic cases. The space charge impedance in the first case is discussed. For impedance budget consideration of the electron machine, only simulation of the geometrical impedance in the latter case is necessary since space charge is considered separately.

  20. Design and Evaluation of Modifications to the NASA Langley Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Parrott, Tony L.; Smith, Charles D.

    2004-01-01

    The need to minimize fan noise radiation from commercial aircraft engine nacelles continues to provide an impetus for developing new acoustic liner concepts. If the full value of such concepts is to be attained, an understanding of grazing flow effects is crucial. Because of this need for improved understanding of grazing flow effects, the NASA Langley Research Center Liner Physics Group has invested a large effort over the past decade into the development of a 2-D finite element method that characterizes wave propagation through a lined duct. The original test section in the Langley Grazing IncidenceTube was used to acquire data needed for implementation of this finite element method. This test section employed a stepper motor-driven axial-traversing bar, embedded in the wall opposite the test liner, to position a flush-mounted microphone at pre-selected locations. Complex acoustic pressure data acquired with this traversing microphone were used to educe the acoustic impedance of test liners using this 2-D finite element method and a local optimization technique. Results acquired in this facility have been extensively reported, and were compared with corresponding results from various U.S. aeroacoustics laboratories in the late 1990 s. Impedance data comparisons acquired from this multi-laboratory study suggested that it would be valuable to incorporate more realistic 3-D aeroacoustic effects into the impedance eduction methodology. This paper provides a description of modifications that have been implemented to facilitate studies of 3-D effects. The two key features of the modified test section are (1) the replacement of the traversing bar and its flush-mounted microphone with an array of 95 fixed-location microphones that are flush-mounted in all four walls of the duct, and (2) the inclusion of a suction device to modify the boundary layer upstream of the lined portion of the duct. The initial results achieved with the modified test section are provided in this

  1. Beam coupling impedance of fast stripline beam kickers

    SciTech Connect

    Caporaso, G; Chen, Y J; Nelson, A D; Poole, B R

    1999-03-01

    A fast stripline beam kicker is used to dynamically switch a high current electron beam between two beamlines. The transverse dipole impedance of a stripline beam kicker has been previously determined from a simple transmission line model of the structure. This model did not include effects due to the long axial slots along the structure as well as the cavities and coaxial feed transition sections at the ends of the structure. 3-D time domain simulations show that the simple transmission line model underestimates the low frequency dipole beam coupling impedance by about 20% for our structure. In addition, the end cavities and transition sections can exhibit dipole impedances not included in the transmission line model. For high current beams, these additional dipole coupling terms can provide additional beam-induced steering effects not included in the transmission line model of the structure.

  2. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform.

    PubMed

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587

  3. Modeling of converter transformers using frequency domain terminal impedance measurements

    SciTech Connect

    Liu, Yilu; Sebo, S.A.; Caldecott, R.; Kasten, D.G. ); Wright, S.E. )

    1993-01-01

    HVDC converter stations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. In order to calculate and predict the RF EM noise produced by the valve ignition of a converter station, it is essential to develop accurate models of station equipment over a broad frequency range. Models of all station equipment can be characterized by frequency dependent impedances. The paper describes the frequency dependent node-to-node impedance function (NIF) models of power system equipment based on systematic broad frequency range (50 Hz to 1MHz) external driving point impedance measurements, sponsored by the Electric Power Research Institute (EPRI). The regular structure, high accuracy, and virtually unlimited frequency range are important features of the NIF model. Examples of NIF model application in converter station RF EM noise calculations are presented.

  4. Piezoelectric impedance-based strength gain monitoring in concrete

    NASA Astrophysics Data System (ADS)

    Guo, Zhigang; Sun, Zhi

    2012-04-01

    This paper presented an experimental study on piezoelectric impedance based cubic and axial compressive strength gain monitoring in concrete during curing process. The piezoceramic (PZT) patch was attached on the concrete specimen to collect the monitoring signal. The electro-mechanical impedance (EMI) spectra of surface bonded PZT patch were collected using an impedance analyzer by sweeping the frequency. A regression analysis is conducted to establish the empirical relationship between the relative strength gain of concrete and the monitored relative resonant frequency change of the EMI spectra. The established empirical formula is used for concrete strength monitoring via EMI spectra. The results tell that the EMI technique is a practical and reliable nondestructive test method for concrete strength gain monitoring.

  5. Characterization of high impedance connecting links for Bolometric detectors

    NASA Astrophysics Data System (ADS)

    Giachero, A.; Gotti, C.; Maino, M.; Pessina, G.

    2013-08-01

    High impedance connecting links and cables are tested at low frequency in terms of their parasitic impedance to ground and to neighboring connecting links. These parameters must be well characterized with detectors operated at low temperature, especially when the very front-end is at room temperature, which results in a long link. This is the case of the LUCIFER experiment, an array of crystals where every event of interest produces two signals, one composed of phonons, the other of photons. The parasitic impedance is usually considered to be the parallel combination of a resistance and a capacitance. We characterized both and found that from the static measurements the capacitance of the cable resulted much larger. On the basis of this result we optimized the measurement set-up and developed a model to account for this behavior.

  6. Changes in impedance of Ni electrodes upon standing and cycling

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1989-01-01

    Impedances of Ni electrodes vary with many factors including voltage, cycling, and manufacturer. However, results from Ni/H2 cells being tested for Space Station Freedom show that consistent results are obtained within a group of cells from the same manufacturer if the cells are cycled and stored in the same manner. Impedance changes with storage and cycling are being investigated. Impedances are low in the fully charged state but rise abruptly by several orders of magnitude at a voltage corresponding to a very low state-of-charge. After standing for several months, this increase occurred at a higher voltage, consistent with an increase in structural order during storage which hinders diffusion of protons and reduces high rate capacity. Early measurements on the effects of cycling on Ni/H2 cells being tested for Space Station Freedom show differences between cells from different manufacturers.

  7. Active Control of Liner Impedance by Varying Perforate Orifice Geometry

    NASA Technical Reports Server (NTRS)

    Ahuji, K. K.; Gaeta, R. J., Jr.

    2000-01-01

    The present work explored the feasibility of controlling the acoustic impedance of a resonant type acoustic liner. This was accomplished by translating one perforate over another of the same porosity creating a totally new perforate that had an intermediate porosity. This type of adjustable perforate created a variable orifice perforate whose orifices were non-circular. The key objective of the present study was to quantify, the degree of attenuation control that can be achieved by applying such a concept to the buried septum in a two-degree-of-freedom (2DOF) acoustic liner. An additional objective was to examine the adequacy of the existing impedance models to explain the behavior of the unique orifice shapes that result from the proposed silding perforate concept. Different orifice shapes with equivalent area were also examined to determine if highly non-circular orifices had a significant impact on the impedance.

  8. On combined source solutions for bodies with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Rogers, J. R.

    1985-04-01

    Studies conducted by Rogers (1984, 1983) regarding impedance boundary condition (IBC) integral equations have been mainly concerned with the spurious interior resonance problem associated with electromagnetic solutions exterior to a closed surface. Specifically, exterior radiation and scattering solutions of the IBC electric and magnetic field integral equations (EFIE and MFI) have nonunique solutions at the interior resonant frequencies of a perfectly conducting cavity having the same shape as the impedance target. In the present investigation, examples are presented of numerical solutions to the IBC combined source integral equation for scattering from impedance spheres. The presented results demonstrate that the IBC combined source integral equation (CSIE) is effective in eliminating the spurious solutions which occur in the electric and magnetic field integral equations.

  9. Electrical impedance tomography of the 1995 OGI gasoline release

    SciTech Connect

    Daily, W.; Ramirez, A.

    1996-10-01

    Electrical impedance tomography (EIT) was used to image the plume resulting from a release of 378 liters (100 gallons) of gasoline into a sandy acquifer. Images were made in 5 planes before and 5 times during the release, to generate a detailed picture of the spatial as well as the temporal development of the plume as it spread at the water table. Information of the electrical impedance (both in phase and out of phase voltages) was used or several different frequencies to produce images. We observed little dispersion in the images either before or after the gasoline entered the acquifer. Likewise, despite some laboratory measurements of impedances, there was no evidence of a change in the reactance in the soil because of the gasoline.

  10. Impedances and collective instabilities of the Tevatron at Run II

    SciTech Connect

    Ng, King-Yuen, FERMI

    1998-09-01

    The longitudinal and transverse coupling impedances of the Tevatron vacuum chamber are estimated and summed up. The resistive-wall impedances of the beam pipe and the laminations in the Lambertson magnets dominate below {approximately} 50 MHz. Then come the inductive parts of the bellows and BPM`s. The longitudinal and transverse collective instabilities, for both single bunch and multi bunches, are studied using Run II parameters. As expected the transverse coupled-bunch instability driven by the resistive-wall impedance is the most severe collective instability. However, it can be damped by a transverse damper designed for the correction of injection offsets. The power of such a damper has been studied.

  11. Gas breakdown and plasma impedance in split-ring resonators

    NASA Astrophysics Data System (ADS)

    Hoskinson, Alan R.; Parsons, Stephen; Hopwood, Jeffrey

    2016-02-01

    The appearance of resonant structures in metamaterials coupled to plasmas motivates the systematic investigation of gas breakdown and plasma impedance in split-ring resonators over a frequency range of 0.5-9 GHz. In co-planar electrode gaps of 100 μm, the breakdown voltage amplitude decreases from 280 V to 225 V over this frequency range in atmospheric argon. At the highest frequency, a microplasma can be sustained using only 2 mW of power. At 20 mW, we measure a central electron density of 2 × 1020 m-3. The plasma-electrode overlap plays a key role in the microplasma impedance and causes the sheath impedance to dominate the plasma resistance at very low power levels. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  12. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587

  13. Microfabricated multi-frequency particle impedance characterization system

    SciTech Connect

    Fuller, C K; Hamilton, J; Ackler, H; Krulevitch, P; Boser, B; Eldredge, A; Becker, F; Yang, J; Gascoyne, P

    2000-03-01

    We have developed a microfabricated flow-through impedance characterization system capable of performing AC, multi-frequency measurements on cells and other particles. The sensor measures both the resistive and reactive impedance of passing particles, at rates of up to 100 particles per second. Its operational bandwidth approaches 10 MHz with a signal-to-noise ratio of approximately 40 dB. Particle impedance is measured at three or more frequencies simultaneously, enabling the derivation of multiple particle parameters. This constitutes an improvement to the well-established technique of DC particle sizing via the Coulter Principle. Human peripheral blood granulocyte radius, membrane capacitance, and cytoplasmic conductivity were measured (r = 4.1 {micro}m, C{sub mem} = 0.9 {micro}F/cm{sup 2}, {sigma}{sub int} = 0.66 S/m) and were found to be consistent with published values.

  14. Impedance characteristics of coaxial and planar magnetoplasma capacitors

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Crawford, F. W.

    1977-01-01

    A theory has been developed for the impedance of a homogeneous magnetoplasma enclosed between two specular reflecting coaxial electrodes, with a static magnetic field parallel to the electrode axes. The parallel-plate magnetoplasma capacitor is treated as a sub-case. Starting with the Vlasov equation, an integral equation is derived for the electric field. Solving this equation, and integrating to obtain the voltage, gives the capacitor impedance. This includes a capacitive component, and a resistive component expressing the Landau damping associated with the open orbits of electrons reflected at the electrodes. A direct numerical solution of the field integral equation has been carried out for a range of values of magnetic field, plasma density, and signal frequency. The values of impedance so obtained are compared with the predictions of macroscopic theory, and of an approximate microscopic theory in which open orbits are ignored and solutions are obtained using finite Fourier transform methods. The mathematical relations between these theories are demonstrated.

  15. Experimental verification of depolarization effects in bioelectrical impedance measurement.

    PubMed

    Chen, Xiaoyan; Lv, Xinqiang; Du, Meng

    2014-01-01

    The electrode polarization effects on bioelectrical impedance measurement at low-frequency cannot be ignored. In this paper, the bioelectrical data of mice livers are measured to specify the polarization effects on the bio-impedance measurement data. We firstly introduce the measurement system and methodology. Using the depolarization method, the corrected results are obtained. Besides, the specific effects of electrode polarization on bio-impedance measurement results are investigated using comparative analysis of the previous and posterior correction results from dielectric spectroscopy, Cole-Cole plot, conductivity and spectroscopy of dissipation tangent. Experimental results show that electrode polarization has a significant influence on the characteristic parameters of mouse liver tissues. To be specific, we see a low-frequency limit resistance R0 increase by 19.29%, a reactance peak XP increase by 8.50%, a low-frequency limit conductivity Kl decrease by 17.65% and a dissipation peak tangent decrease by 160%. PMID:25227082

  16. Active impedance metasurface with full 360° reflection phase tuning

    PubMed Central

    Zhu, Bo O.; Zhao, Junming; Feng, Yijun

    2013-01-01

    Impedance metasurface is composed of electrical small scatters in two dimensional plane, of which the surface impedance can be designed to produce desired reflection phase. Tunable reflection phase can be achieved by incorporating active element into the scatters, but the tuning range of the reflection phase is limited. In this paper, an active impedance metasurface with full 360° reflection phase control is presented to remove the phase tuning deficiency in conventional approach. The unit cell of the metasurface is a multiple resonance structure with two resonance poles and one resonance zero, capable of providing 360° reflection phase variation and active tuning within a finite frequency band. Linear reflection phase tuning can also be obtained. Theoretical analysis and simulation are presented and validated by experiment at microwave frequency. The proposed approach can be applied to many cases where fine and full phase tuning is needed, such as beam steering in reflectarray antennas. PMID:24162366

  17. Active impedance metasurface with full 360° reflection phase tuning.

    PubMed

    Zhu, Bo O; Zhao, Junming; Feng, Yijun

    2013-01-01

    Impedance metasurface is composed of electrical small scatters in two dimensional plane, of which the surface impedance can be designed to produce desired reflection phase. Tunable reflection phase can be achieved by incorporating active element into the scatters, but the tuning range of the reflection phase is limited. In this paper, an active impedance metasurface with full 360° reflection phase control is presented to remove the phase tuning deficiency in conventional approach. The unit cell of the metasurface is a multiple resonance structure with two resonance poles and one resonance zero, capable of providing 360° reflection phase variation and active tuning within a finite frequency band. Linear reflection phase tuning can also be obtained. Theoretical analysis and simulation are presented and validated by experiment at microwave frequency. The proposed approach can be applied to many cases where fine and full phase tuning is needed, such as beam steering in reflectarray antennas. PMID:24162366

  18. Investigation of an Anomaly Observed in Impedance Eduction Techniques

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.

    2008-01-01

    An intensive investigation into the cause of anomalous behavior commonly observed in impedance eduction techniques is performed. The investigation consists of grid refinement studies, detailed evaluation of results at and near anti-resonance frequencies, comparisons of different model results with synthesized and measured data, assessment or optimization techniques, and evaluation or boundary condition effects. Results show that the root cause of the anomalous behavior is the sensitivity of the educed impedance to small errors in the measured termination resistance at frequencies near anti-resonance or cut-on of a higher-order mode. Evidence is presented to show that the common usage of an anechoic, plane wave termination boundary condition in ducts where the "true" termination is reflective may act as a trigger for these anomalies. Replacing the exit impedance boundary condition by an exit pressure condition is shown to reduce the anomalous results.

  19. Fiber Materials AC Impedance Characteristics and Principium Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Li, Xiaofeng

    With an invariable amplitude and variable frequency inspiriting, impedance of fiber materials rapidly decrease at first and then increase speedy followed with increasing of signal frequency. For the impedance curve of frequency is section of bathtub, this phenomenon is defined as alternating current electric conductive bathtub effect of fiber material. With analysis tools,of circuit theory and medium polarization theory, the phenomenon can be deeply detected that in AC electric field there are four different kind of currents in fiber material: absorbing current, conductance current, charging current and superficial current. With more analyzing it's discovered this phenomenon can be explained by medium polarize theory. Make using of fiber AC electric conductivity bathtub effect, fast testing equipment on fiber moisture regain can be invent, and disadvantages of conventional impedance technique, such as greatness test error and electrode polarization easily. This paper affords directions to design novel speediness fiber moisture test equipments in theory.

  20. Impedance characteristics of nanoparticle-LiCoO2+PVDF

    NASA Astrophysics Data System (ADS)

    Panjaitan, Elman; Kartini, Evvy; Honggowiranto, Wagiyo

    2016-02-01

    The impendance of np-LiCoO2+xPVDF, as a cathode material candidate for lithium-ion battery (LIB), has been characterized using impedance spectroscopy for x = 0, 5, 10, 15 and 20 volume percentage (%v/v) and for frequencies in the 42 Hz to 5 MHz range. Both real and imaginary components of the impedance were found to be frequency dependent, and both tend to increase for increasing PVDF (polyvinyilidene fluoride) concentration, except that for 10% PVDF both real and imaginary components of impedance are smaller than for 5%. The mechanism for relaxation time for each addition of PVDF was analyzed using Cole-Cole plots. The analysis showed that the relaxation times of the nanostructured LiCoO2 with PVDF additive is relatively constant. Further, PVDF addition increases the bulk resistance and decreases the bulk capacitance of the nanostructured LiCoO2.

  1. The Mutual Impedance Probe (RPC-MIP) onboard ROSETTA

    NASA Astrophysics Data System (ADS)

    Henri, Pierre; Lebreton, Jean-Pierre; Béghin, Christian; Décréau, Pierrette; Grard, Réjean; Hamelin, Michel; Mazelle, Christian; Randriamboarison, Orélien; Schmidt, Walter; Winterhalter, Daniel; Aouad, Youcef; Lagoutte, Dominique; Vallières, Xavier

    2014-05-01

    The ROSETTA mission will reach the comet 67P/Churyumov-Gerasimenko in August 2014 and enable, for the first time, the in situ survey of a comet activity during along orbit. On board the ROSETTA orbiter, the Mutual Impedance Probe (MIP) is one of the instruments of the Rosetta Plasma Consortium (RPC) that aims at monitoring the cometary plasma environment. MIP is a quadrupolar probe that measures the frequency response of the coupling impedance between two emitting and two receiving dipoles. The electron density and temperature are derived from the resonance peak and the interference pattern of the mutual impedance spectrum. We will describe this instrument and discuss the preliminary results obtained during the third ROSETTA Earth flyby to show its expected capabilities. The RPC switch ON for the post-hibernation recommissioning is planned at the end of March. The health status of the instrument will be discussed.

  2. Tailoring Giant Magneto-impedance Effect in Ultrasoft Ferromagnetic Microwires

    NASA Astrophysics Data System (ADS)

    Chaturvedi, A.; Ruiz, A.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Larin, V. S.

    2012-02-01

    Research on soft ferromagnetic microwires exhibiting giant magneto-impedance (GMI) effect, which is a large change of the ac impedance of a ferromagnetic conductor in a static magnetic field, for advanced magnetic sensor applications is an area of topical interest. In this study we show how the GMI effect and its field sensitivity are optimized in Co-B-Si-Mn microwires by varying the magnetic core to glass shell diameter ratio (d). The microwires have been fabricated by the glass-coated melt spinning method. The largest values of GMI (245%) and its field sensitivity 25%/Oe are achieved at f = 13MHz for the microwires with d = 0.86. The d dependence of the magneto-impedance has been analyzed based on those of the magneto-resistance and magneto-reactance. Our studies indicate that the microwires with optimized GMI response are attractive candidate materials for structural health self-monitoring and magnetic biosensing applications.

  3. Using FOCUS to determine the radiation impedance for square transducers

    NASA Astrophysics Data System (ADS)

    Jennings, Matthew R.; McGough, Robert J.

    2012-10-01

    The power radiated by an ultrasound transducer is calculated with the radiation resistance, which is the real part of the radiation impedance. For circular transducers, an analytical solution for the radiation impedance is known, but an analytical expression for the radiation impedance is not available for rectangular or square transducers. To determine the radiation resistance in FOCUS, the pressure on the surface of a square transducer is computed with the fast nearfield method, and then the force on the transducer face is computed by integrating the pressure. Results using this approach are numerically evaluated for a range of ka values from 0.1 to 16. The pressure on the transducer face is also computed with the Rayleigh-Sommerfeld integral, and the results are compared. The numerical value of the radiation resistance computed with FOCUS and with the Rayleigh-Sommerfeld integral converge to the same value, although FOCUS calculates the same result in about one-quarter of the time.

  4. RETRIEVAL EQUIPMENT DESCRIPTIONS

    SciTech Connect

    J. Steinhoff

    1997-08-25

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) retrieval from the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. There are no quality assurance requirements or QA controls in this document. Retrieval under normal conditions is accomplished with the same fleet of equipment as is used for emplacement. Descriptions of equipment used for retrieval under normal conditions is found in Emplacement Equipment Descriptions, DI: BCAF00000-01717-5705-00002 (a document in progress). Equipment used for retrieval under abnormal conditions is addressed in this document and consists of the following: (1) Inclined Plane Hauler; (2) Bottom Lift Transporter; (3) Load Haul Dump (LHD) Loader; (4) Heavy Duty Forklift for Emplacement Drifts; (5) Covered Shuttle Car; (6) Multipurpose Vehicle; and (7) Scaler.

  5. Electrical-Impedance-Based Ice-Thickness Gauges

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard

    2003-01-01

    Langley Research Center has developed electrical-impedance-based ice-thickness gauges and is seeking partners and collaborators to commercialize them. When used as parts of active monitoring and diagnostic systems, these gauges make it possible to begin deicing or to take other protective measures before ice accretes to dangerous levels. These gauges are inexpensive, small, and simple to produce. They can be adapted to use on a variety of stationary and moving structures that are subject to accumulation of ice. Examples of such structures include aircraft, cars, trucks, ships, buildings, towers, power lines (see figure), power-generating equipment, water pipes, freezer compartments, and cooling coils. A gauge of this type includes a temperature sensor and two or more pairs of electrically insulated conductors embedded in a surface on which ice could accumulate. The electrical impedances of the pairs of conductors vary with the thickness of any ice that may be present. Somewhat more specifically, when the pairs of conductors are spaced appropriately, the ratio between their impedances is indicative of the thickness of the ice. Therefore, the gauge includes embedded electronic circuits that measure the electrical impedances, plus circuits that process the combination of temperature and impedance measurements to determine whether ice is present and, if so, how thick it is. Of course, in the processing of the impedance measurements, the temperature measurements help the circuitry to distinguish between liquid water and ice. The basic design of a gauge of this type can be adapted to local conditions. For example, if there is a need to monitor ice over a wide range of thickness, then the gauge can include more than two sets of conductors having various spacings.

  6. Electrical impedance imaging of water distribution in the root zone

    NASA Astrophysics Data System (ADS)

    Newill, P.; Karadaglić, D.; Podd, F.; Grieve, B. D.; York, T. A.

    2014-05-01

    The paper describes a technique that is proposed for imaging water transport in and around the root zone of plants using distributed measurements of electrical impedance. The technique has the potential to analyse sub-surface phenotypes, for instance drought tolerance traits in crop breeding programmes. The technical aim is to implement an automated, low cost, instrument for high-throughput screening. Ultimately the technique is targeted at in-field, on-line, measurements. For demonstration purposes the present work considers measurements on laboratory scale rhizotrons housing growing maize plants. Each rhizotron is fitted with 60 electrodes in a rectangular array. To reduce electrochemical effects the capacitively coupled contactless conductivity (C4D) electrodes have an insulating layer on the surface and the resistance of the bulk material is deduced from spectroscopic considerations. Electrical impedance is measured between pairs of electrodes to build up a two-dimensional map. A modified electrical model of such electrodes is proposed which includes the resistive and reactive components of both the insulating layer and the bulk material. Measurements taken on a parallel-plate test cell containing water confirm that the C4D technique is able to measure electrical impedance. The test cell has been used to explore the effects of water content, compaction and temperature on measurements in soil. Results confirm that electrical impedance measurements are very sensitive to moisture content. Impedance fraction changes up to 20% are observed due to compaction up to a pressure of 0.21 kg cm-2 and a temperature fraction sensitivity of about 2%/°C. The effects of compaction and temperature are most significant under dry conditions. Measurements on growing maize reveal the changes in impedance across the rhizotron over a period of several weeks. Results are compared to a control vessel housing only soil.

  7. Validation of a New Procedure for Impedance Eduction in Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2010-01-01

    A new impedance eduction procedure is validated by comparing the educed impedance spectrum to that of an older but well-tested eduction procedure. The older procedure requires the installation of a microphone array in the liner test section but the new procedure removes this requirement. A 12.7-mm stainless steel plate and a conventional liner consisting of a perforated plate bonded to a honeycomb core are tested. Test data is acquired from a grazing flow, impedance tube facility for a range of source frequencies and mean flow Mach numbers for which only plane waves are cut on. For the stainless steel plate, the educed admittance spectrum using the new procedure shows an improvement over that of the old procedure. This improvement shows up primarily in the educed conductance spectrum. Both eduction procedures show discrepancies in educed admittance in the mid-frequency range. Indications are that this discrepancy is triggered by an inconsistency between the measured eduction data (that contains boundary layer effects) and the two eduction models (for which the boundary layer is neglected). For the conventional liner, both eduction procedures are in very good agreement with each other. Small discrepancies occur for one or two frequencies in the mid-frequency range and for frequencies beyond the cut on frequency of higher-order duct modes. This discrepancy in the midfrequency range occurs because an automated optimizer is used to educe the impedance and the objective function used by the optimizer is extremely flat and therefore sensitive to initial starting values. The discrepancies at frequencies beyond the cut on frequency of higher order duct modes are due to the assumption of only plane waves in the impedance eduction model, although higher order modes are propagating in the impedance tube facility.

  8. Numerical Analysis of the Impedance of Fractal Electrodes

    NASA Astrophysics Data System (ADS)

    Cao, Qi-Zhong

    The constant-phase-angle (CPA) impedance observed in electrochemical cells is often thought to be due to fractal roughness on the electrode surface. This idea was pursued by numerous theoretical and experimental studies in the last decade but there is no consensus on the quantitative relationship between the roughness and the impedance. In this study, we consider the partial differential equations that govern the electrostatic potential and the concentrations of anions and cations between two blocking electrodes which have no chemical reactions. We assume that diffusion and conduction are the only transport mechanisms and the Poisson -Boltzmann equation is obeyed. These equations are linearized and solved analytically in one dimension and numerically in two dimensions. For the latter, we used electrodes shaped like Koch curves and saw-tooth curves. A special grid was generated by conformal mapping to fit these boundaries with singularities and the equations are solved by finite -difference method on this grid. The numerical results are compared to the one-dimensional solution that give the behavior of the flat electrode. We find that the only observable effect of surface roughness is that it increases the interfacial capacitance due to the increased surface area. No evidence of the CPA impedance could be seen in our numerical data. We also studied the problem with the boundary-element method. It confirms that the numerical results are rigorously correct in the high and low frequency limit. Requiring the impedance in the intermediate frequency regime to match smoothly with these limits rule out the possibility of a CPA impedance. We suggest that the CPA impedance observed in many experiments is caused either by the adsorption and desorption of ions on the surface, or by oxidation and corrosion on the surface that changed the boundary conditions in the system.

  9. Spacelab J experiment descriptions

    SciTech Connect

    Miller, T.Y.

    1993-08-01

    Brief descriptions of the experiment investigations for the Spacelab J Mission which was launched from the Kennedy Space Center aboard the Endeavour in Sept. 1992 are presented. Experiments cover the following: semiconductor crystals; single crystals; superconducting composite materials; crystal growth; bubble behavior in weightlessness; microgravity environment; health monitoring of Payload Specialists; cultured plant cells; effect of low gravity on calcium metabolism and bone formation; and circadian rhythm. Separate abstracts have been prepared for articles from this report.

  10. Spacelab J experiment descriptions

    NASA Technical Reports Server (NTRS)

    Miller, Teresa Y. (Editor)

    1993-01-01

    Brief descriptions of the experiment investigations for the Spacelab J Mission which was launched from the Kennedy Space Center aboard the Endeavour in Sept. 1992 are presented. Experiments cover the following: semiconductor crystals; single crystals; superconducting composite materials; crystal growth; bubble behavior in weightlessness; microgravity environment; health monitoring of Payload Specialists; cultured plant cells; effect of low gravity on calcium metabolism and bone formation; and circadian rhythm.

  11. TMACS system description

    SciTech Connect

    Scaief, C.C.

    1995-10-17

    This document provides a description of the Tank Monitor and Control System (TMACS). It is intended as an introduction for those persons unfamiliar with the system as well as a reference document for the users, maintenance personnel, and system designers. In addition to describing the system, the document outlines the associated drawing documentation, provides maintenance and spare parts information, and discusses other TMACS documents that provide additional detail

  12. Management control system description

    SciTech Connect

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  13. Subnanosecond-rise-time, low-impedance pulse generator

    SciTech Connect

    Druce, R.; Vogtlin, G.

    1983-06-03

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  14. Anisotropic bioelectrical impedance determination of subcutaneous fat thickness

    NASA Astrophysics Data System (ADS)

    Hernández-Becerra, P. A. I.; Delgadillo-Holtfort, I.; Balleza-Ordaz, M.; Huerta-Franco, M. R.; Vargas-Luna, M.

    2014-11-01

    Preliminary results have shown that bioelectrical impedance measurements performed on different parts of the human body strongly depend upon the subcutaneous fat of the considered region. In this work, a method for the determination of subcutaneous fat thickness is explored. Within this method the measurement of the bioelectrical impedance response of the fat-muscle system, both along the direction defined by the muscle fibers and along the corresponding perpendicular direction, are performed. Measurements have been carried out on human female and male subjects of ages around 25 years old at the region of the biceps. Correlation has been performed with skinfold caliper measurements.

  15. Construction of Tunnel Diode Oscillator for AC Impedance Measurement

    NASA Astrophysics Data System (ADS)

    Shin, J. H.; Kim, E.

    2014-03-01

    We construct a tunnel diode oscillator (TDO) to study electromagnetic response of a superconducting thin film. Highly sensitive tunnel diode oscillators allow us to detect extremely small changes in electromagnetic properties such as dielectric constant, ac magnetic susceptibility and magnetoresistance. A tunnel diode oscillator is a self-resonant oscillator of which resonance frequency is primarily determined by capacitance and inductance of a resonator. Amplitude of the signal depends on the quality factor of the resonator. The change in the impedance of the sample electromagnetic coupled to one of inductors in the resonator alters impedance of the inductor, and leads to the shift in the resonance frequency and the change of the amplitude.

  16. Impedance and instabilities in the NLC damping rings

    SciTech Connect

    Corlett,J.; Li, D.; Pivi, M.; Rimmer, R.; DeSantis, S.; Wolski, A.; Novokhatski,A.; Ng, C.

    2001-06-12

    We report on impedance calculations and single-bunch and multi-bunch instabilities in the NLC damping rings. Preliminary designs of vacuum chambers and major components have addressed beam impedance issues, with the desire to increase instability current thresholds and reducing growth rates. MAFIA calculations of short-range and long-range wakefields have allowed computations of growth rates and thresholds, which are presented here. Resistive wall instability dominates long-range effects, and requires a broadband feedback system to control coupled-bunch motion. Growth rates are within the range addressable by current feedback system technologies. Single-bunch instability thresholds are safely above nominal operating current.

  17. An impedance analysis of double-stream interaction in semiconductors

    NASA Technical Reports Server (NTRS)

    Chen, P. W.; Durney, C. H.

    1972-01-01

    The electromagnetic waves propagating through a drifting semiconductor plasma are studied from a macroscopic point of view in terms of double-stream interaction. The possible existing waves (helicon waves, longitudinal waves, ordinary waves, and pseudolongitudinal waves) which depend upon the orientation of the dc external magnetic field are derived. A powerful impedance concept is introduced to investigate the wave behavior of longitudinal (space charge) waves or pseudolongitudinal waves in a semiconductor plasma. The impedances due to one- and two-carrier stream interactions were calculated theoretically.

  18. Mode error analysis of impedance measurement using twin wires

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Yoshiro, Irie; Liu, Yu-Dong; Wang, Sheng

    2015-03-01

    Both longitudinal and transverse coupling impedance for some critical components need to be measured for accelerator design. The twin wires method is widely used to measure longitudinal and transverse impedance on the bench. A mode error is induced when the twin wires method is used with a two-port network analyzer. Here, the mode error is analyzed theoretically and an example analysis is given. Moreover, the mode error in the measurement is a few percent when a hybrid with no less than 25 dB isolation and a splitter with no less than 20 dB magnitude error are used. Supported by Natural Science Foundation of China (11175193, 11275221)

  19. [An instrument for estimating human body composition using impedance measurement].

    PubMed

    Yin, J; Peng, C

    1997-03-01

    According to the impedance feature of biological tissue, the instrument was designed at 1, 5, 10, 50, 100kHz to measure human impedance, and then to calculate human FAT, FFM, FAT%, TBW, ECW, ICW and so on. A 8031 singlechip microprocessor contacuting used as a control center in the instrument. The part of electric circuit contacuting human body in the instrument was unreally earthing. The instrument was safty, effective, repeatable, and easily manpulative. Prelimintary clinical experiment showed the results measured with the instrument could effectively reflect practical, status of human composition. PMID:9647623

  20. Resonant impedance matching of Abrikosov vortex-flow transistors

    SciTech Connect

    Hohenwarter, G.K.G. ); Martens, J.S.; Beyer, J.B.; Nordman, J.E. . Dept. of Electrical and Computer Engineering)

    1991-03-01

    This paper reports that the authors achieved impedance matching to low input impedance flux-flow devices with transmission line resonators. A gain of 15 db in a 50{Omega} system was predicted by simulations of the amplifier. The design, layout and fabrication of an amplifier and an oscillator circuit will be presented. Circuit layout and fabrication of YBCO and T1 based circuits is briefly described. Measurements performed on fabricated circuits show a gain of 10 db at 4 GHz for an amplifier circuit and an output power of {minus}73 dbm at 7.1 GHz for an oscillator circuit.

  1. A Case of Aerophagia Diagnosed by Multichannel Intraluminal Impedance Monitoring.

    PubMed

    Sohn, Ki Chang; Jeong, Young Hoon; Jo, Dong Ho; Heo, Won Gak; Yeom, Dong Han; Choi, Suck Chei; Ryu, Han Seung

    2015-11-01

    Aerophagia is a disorder caused by abnormal accumulation of air in the gastrointestinal tract as a result of repetitive and frequent inflow of air through the mouth. For the diagnosis of this condition, it is difficult to objectively measure the air swallowing. However, multichannel intraluminal impedance monitoring facilitates the differential diagnosis between normal air swallowing and pathologic aerophagia, and can aid in the determination of the frequency and amount of air swallowed. In this report, in addition to a literature review, we describe a case of 36-year-old man with abdominal distension who was diagnosed with aerophagia using esophageal impedance monitoring and was treated with clonazepam. PMID:26586352

  2. IMPEDANCE BUDGET FOR CRAB CAVITY IN MEIC ELECTRON RING

    SciTech Connect

    S. Ahmed, B. Yunn, G. Krafft

    2012-07-01

    The Medium Energy Electron-Ion Collider (MEIC) at Jefferson Lab has been envisioned as a first stage high energy particle accelerator beyond the 12 GeV upgrade of CEBAF. The estimate of impedance budget is important from the view point of beam stability and matching with other accelerator components driving currents. The detailed study of impedance budget for electron ring has been performed by considering the current design parameters of the e-ring. A comprehensive picture of the calculations involved in this study has been illustrated in the paper.

  3. THE COUPLING IMPEDANCE OF THE RHIC INJECTION KICKER SYSTEM.

    SciTech Connect

    HAHN,H.

    1999-06-28

    IN THIS PAPER, RESULTS FROM IMPEDANCE MEASUREMENTS ON THE RHIC INJECTION KICKERS ARE REPORTED. THE KICKER IS CONFIGURED AS A ''C'' CROSS SECTION MAGNET WITH INTERLEAVED FERRITE AND HIGH-PERMITTIVITY DIELECTRIC SECTIONS TO ACHIEVE A TRAVELLING WAVE STRUCTURE. THE IMPEDANCE WAS MEASURED USING THE WIRE METHOD, AND ACCURATE RESULTS ARE OBTAINED BY INTERPRETING THE FORWARD SCATTERING COEFFICIENT VIA THE LONG-FORMULA. THE FOUR KICKERS WITH THEIR CERAMIC BEAM TUBES CONTRIBUE AT Z/N-0.22 OMEGA/RING IN THE INTERESTING FREQUENCY RANGE FROM 0.1 TO 1 BHZ, AND LESS ABOVE.

  4. Electrochemical Impedance Of Inorganic-Zinc-Coated Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G.

    1992-01-01

    Report describes preliminary experiments to evaluate both direct-current and alternating-current electrochemical impedance measurements as candidate techniques for use in accelerated corrosion testing of mild-steel panels coated with inorganic zinc-rich primers and exposed to seaside air. Basic idea behind experiments to compare electrochemical impedance measurements with anticorrosion performances of coating materials to determine whether measurements can be used to predict performances. Part of continuing program to identify anticorrosion coating materials protecting steel panels adequately for as long as 5 years and beyond.

  5. Acoustic characteristics of the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu; Shi, Jie; Shi, Shengguo; Zhang, Haoyang

    2015-10-01

    The medium with gradient change of acoustic impedance is a new acoustic structure which developed from multiple layer structures. In this paper, the inclusion is introduced and a new set of equations is developed. It can obtain better acoustic properties based on the medium with gradient change of acoustic impedance. Theoretical formulation has been systematically addressed which demonstrates how the idea of utilizing this method. The sound reflection and absorption coefficients were obtained. At last, the validity and the correctness of this method are assessed by simulations. The results show that appropriate design of parameters of the medium can improve underwater acoustic properties.

  6. Bunch Length and Impedance Measurements at SPEAR3

    SciTech Connect

    Corbett, W.J.; Cheng, W.X.; Fisher, A.S.; Huang, X.; /SLAC

    2011-11-02

    Streak camera measurements were made at SPEAR3 to characterize longitudinal coupling impedance. For the nominal optics, data was taken at three rf voltages and a single-bunch current range of 0-20mA. Both bunchcentroid phase shift and bunch lengthening were recorded to extract values for resistive and reactive impedance. An (R+L) and a Q=1 model were then back-substituted into the Haissinski equation and compared with raw profile data. In the short bunch (low-{alpha}) mode, distribution 'bursting' was observed.

  7. Beam coupling impedances of obstacles protruding into beam pipe

    SciTech Connect

    Kurennoy, S.S.

    1997-08-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated analytically at frequencies for which the wavelength is large compared to a typical size of the obstacle. Simple formulas for a few important particular cases, including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. The analytical results are compared and agree with three-dimensional computer simulations. These results allow simple practical estimates of the broad-band impedance contributions from such discontinuities.

  8. Analytical solutions with Generalized Impedance Boundary Conditions (GIBC)

    NASA Technical Reports Server (NTRS)

    Syed, H. H.; Volakis, John L.

    1991-01-01

    Rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristics to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. The diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.

  9. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy.

    PubMed

    Hébert, Clément; Cottance, Myline; Degardin, Julie; Scorsone, Emmanuel; Rousseau, Lionel; Lissorgues, Gaelle; Bergonzo, Philippe; Picaud, Serge

    2016-12-01

    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. PMID:27612691

  10. Impedance Screening by the School Speech-Language Pathologist.

    ERIC Educational Resources Information Center

    Lucker, Jay R.; Samsky, Jay G.

    1979-01-01

    Questions regarding the use of minimally trained speech-language pathologists in conducting an impedance screening program, obtaining the cooperation of the children during testing, and dealing with problems related to referral procedures are discussed, and an account of a pilot otoadmittance screening program is presented. (Author/DLS)

  11. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing.

    PubMed

    Lu, Yong; Guo, Zheng; Song, Jing-Jing; Huang, Qin-An; Zhu, Si-Wei; Huang, Xing-Jiu; Wei, Yan

    2016-01-28

    A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (Ret) for operating the impedance. A linear relation between the relative Ret and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems. PMID:26755137

  12. Domain identification in impedance computed tomography by spline collocation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1990-01-01

    A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.

  13. Antenna impedance measurements in a magnetized plasma. II. Dipole antenna

    SciTech Connect

    Blackwell, David D.; Walker, David N.; Messer, Sarah J.; Amatucci, William E.

    2007-09-15

    This paper presents experimental impedance measurements of a dipole antenna immersed in a magnetized plasma. The impedance was derived from the magnitude and phase of the reflected power using a network analyzer over a frequency range of 1 MHz-1 GHz. The plasma density was varied between 10{sup 7} and 10{sup 10} cm{sup -3} in weakly ({omega}{sub ce}<{omega}{sub pe}) and strongly ({omega}{sub ce}>{omega}{sub pe}) magnetized plasmas in the Space Physics Simulation Chamber at the Naval Research Laboratory. Over this range of plasma conditions the wavelength in the plasma varies from the short dipole limit ({lambda}>>L) to the long dipole limit ({lambda}{approx}L). As with previous impedance measurements, there are two resonant frequencies observed as frequencies where the impedance of the antenna is real. Measurements have indicated that in the short dipole limit the majority of the power deposition takes place at the lower resonance frequency which lies between the cyclotron frequency and the upper hybrid frequency. These measured curves agree very well with the analytic theory for a short dipole in a magnetoplasma. In the long dipole regime, in addition to the short dipole effects still being present, there is resonant energy deposition which peaks at much higher frequencies and correlates to 1/2 and 3/2 wavelength dipole resonances. The wavelengths in the plasma predicted by these resonances are consistent with the antenna radiating R and L-waves.

  14. Impedance and instability threshold estimates in the main injector I

    SciTech Connect

    Martens, M.A.; Ng, K.Y.

    1994-03-01

    One of the important considerations in the design of the Main Injector is the beam coupling impedances in the vacuum chamber and the stability of the beam. Along with the higher intensities comes the possibility of instabilities which lead to growth in beam emittances and/or the loss of beam. This paper makes estimations of the various impedances and instability thresholds based on impedance estimations and measurements. Notably missing from this paper is any analysis of transition crossing and its potential limitations on beam intensity and beam emittance. Future work should consider this issue. The body of the work contains detailed analysis of the various impedance estimations and instability threshold calculations. The calculations are based on the Main Injector beam intensity of 6 x 10{sup 10} protons per bunch, 95% normalized transverse emittances of 20{pi} mm-mrad, and 95% normalized longitudinal emittance of 0.1 eV-s at 8.9 GeV injection energy and 0.25 eV-s at 150 GeV flattop energy. The conclusions section summarizes the results in the paper and is meant to be readable by itself without referring to the rest of the paper. Also in the conclusion section are recommendations for future investigations.

  15. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in the mobility of the tympanic membrane due to stiffness, flaccidity, or the presence of fluid in the middle...

  16. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in the mobility of the tympanic membrane due to stiffness, flaccidity, or the presence of fluid in the middle...

  17. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in the mobility of the tympanic membrane due to stiffness, flaccidity, or the presence of fluid in the middle...

  18. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in the mobility of the tympanic membrane due to stiffness, flaccidity, or the presence of fluid in the middle...

  19. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in the mobility of the tympanic membrane due to stiffness, flaccidity, or the presence of fluid in the middle...

  20. Organic electrochemical transistors for cell-based impedance sensing

    SciTech Connect

    Rivnay, Jonathan E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M. E-mail: owens@emse.fr; Leleux, Pierre

    2015-01-26

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  1. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition

    PubMed Central

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-01-01

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method. PMID:26198231

  2. Label-free impedance detection of cancer cells.

    PubMed

    Venkatanarayanan, Anita; Keyes, Tia E; Forster, Robert J

    2013-02-19

    Ovarian cancer cells, SKOV3, have been immobilized onto platinum microelectrodes using anti-EPCAM capture antibodies and detected with high sensitivity using electrochemical impedance. The change in impedance following cell capture is strongly dependent on the supporting electrolyte concentration. By controlling the concentration of Dulbecco's phosphate buffered saline (DPBS) electrolyte, the double layer thickness can be manipulated so that the interfacial electric field interacts with the bound cells, rather than simply decaying across the antibody capture layer. Significantly, the impedance changes markedly upon cell capture over the frequency range from 3 Hz to 90 kHz. For example, using an alternating-current (ac) amplitude of 25 mV, a frequency of 81.3 kHz, and an open circuit potential (OCP) as the direct-current (dc) voltage, a detection limit of 4 captured cells was achieved. Assuming an average cell radius of 5 μm, the linear dynamic range is from 4 captured cells to 650 ± 2 captured cells, which is approximately equivalent to fractional coverages from 0.1% to 29%. An equivalent circuit that models the impedance response of the cell capture is discussed. PMID:23331159

  3. Determination of Complex Microcalorimeter Parameters with Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Saab, T.; Bandler, S. R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lindeman, M. A.; Porter, F. S.; Sadleir, J.

    2005-01-01

    The proper understanding and modeling of a microcalorimeter s response requires the accurate knowledge of a handful of parameters, such as C, G, alpha, . . . . While a few of these, such 8s the normal state resistance and the total thermal conductance to the heat bath (G) are directly determined from the DC IV characteristics, some others, notoriously the heat capacity (C) and alpha, appear in degenerate combinations in most measurable quantities. The case of a complex microcalorimeter, i.e. one in which the absorber s heat capacity is connected by a finite thermal impedance to the sensor, and subsequently by another thermal impedance to the heat bath, results in an added ambiguity in the determination of the individual C's and G's. In general, the dependence of the microcalorimeter s complex impedance on these parameters varies with frequency. This variation allows us to determine the individual parameters by fitting the prediction of the microcalorimeter model to the impedance data. We describe in this paper our efforts at characterizing the Goddard X-ray microcalorimeters. Using the parameters determined with this method we them compare the pulse shape and noise spectra predicted by the microcalorimeter model to data taken with the same devices.

  4. EU Regulations Impede Market Introduction of GM Forest Trees.

    PubMed

    Custers, René; Bartsch, Detlef; Fladung, Matthias; Nilsson, Ove; Pilate, Gilles; Sweet, Jeremy; Boerjan, Wout

    2016-04-01

    Biotechnology can greatly improve the efficiency of forest tree breeding for the production of biomass, energy, and materials. However, EU regulations impede the market introduction of genetically modified (GM) trees so their socioeconomic and environmental benefits are not realized. European policy makers should concentrate on a science-based regulatory process. PMID:26897457

  5. Frequency-dependent shear impedance of the tectorial membrane.

    PubMed

    Gu, Jianwen Wendy; Hemmert, Werner; Freeman, Dennis M; Aranyosi, A J

    2008-09-01

    Microscale mechanical probes were designed and bulk-fabricated for applying shearing forces to biological tissues. These probes were used to measure shear impedance of the tectorial membrane (TM) in two dimensions. Forces were applied in the radial and longitudinal directions at frequencies ranging from 0.01-9 kHz and amplitudes from 0.02-4 microN. The force applied was determined by measuring the deflection of the probes' cantilever arms. TM impedance in the radial direction had a magnitude of 63 +/- 28 mN x s/m at 10 Hz and fell with frequency by 16 +/- 0.4 dB/decade, with a constant phase of -72 +/- 6 degrees . In the longitudinal direction, impedance was 36 +/- 9 mN x s/m at 10 Hz and fell by 19 +/- 0.4 dB/decade, with a constant phase of -78 +/- 4 degrees . Impedance was nearly constant as a function of force except at the highest forces, for which it fell slightly. These results show that the viscoelastic properties of the TM extend over a significant range of audio frequencies, consistent with a poroelastic interpretation of TM mechanics. The shear modulus G' determined from these measurements was 17-50 kPa, which is larger than in species with a lower auditory frequency range. This value suggests that hair bundles cannot globally shear the TM, but most likely cause bulk TM motion. PMID:18515382

  6. Impedance of a small-gap undulator vacuum chamber

    SciTech Connect

    Bane, K.; Krinsky, S.

    1993-07-01

    Insertion device performance is limited by the minimum magnet gap allowed by storage ring beam dynamics. In this note, we analyze the impedance of the vacuum chamber for the prototype small-gap undulator being built for the NSLS X-Ray ring, and discuss the consequent beam instability thresholds.

  7. Brush Seal Would Impede Flow Of Hot Gas

    NASA Technical Reports Server (NTRS)

    Carroll, Paul F.; Easter, Barry P.

    1993-01-01

    Proposed brush seal helps prevent recirculating flow of hot combustion gases from reaching bellows seal located deep in gap in wall of combustion chamber. More durable, more tolerant of irregularities, and easier to install. Seals also helpful in impeding deleterious flows of hot gases in other combustion chambers such as those of furnaces and turbomachines.

  8. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  9. Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy.

    PubMed

    Brabants, G; Lieben, S; Breynaert, E; Reichel, E K; Taulelle, F; Martens, J A; Jakoby, B; Kirschhock, C E A

    2016-04-01

    Hitherto zeolite formation has not been fully understood. Although electrochemical impedance spectroscopy has proven to be a versatile tool for characterizing ionic solutions, it was never used for monitoring zeolite growth. We show here that EIS can quantitatively monitor zeolite formation, especially during crucial early steps where other methods fall short. PMID:27020096

  10. Impedance control of robots with harmonic drive systems

    NASA Technical Reports Server (NTRS)

    Hogan, Neville; Rasolee, B. A.; Andary, James

    1991-01-01

    The design of an impedance controller based on actuator-level feedback is considered. It is shown that actuator effort (e.g. torque) feedback alone is insufficient to achieve satisfactory contact performance. Instead, combined feedback of actuator effort and motion is sufficient to achieve feedback contact performance.

  11. BIOELECTRICAL IMPEDANCE VECTOR ANALYSIS IDENTIFIES SARCOPENIA IN NURSING HOME RESIDENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of muscle mass and water shifts between body compartments are contributing factors to frailty in the elderly. The body composition changes are especially pronounced in institutionalized elderly. We investigated the ability of single-frequency bioelectrical impedance analysis (BIA) to identify b...

  12. Bladder Cancer Detection Using Electrical Impedance Technique (Tabriz Mark 1)

    PubMed Central

    Keshtkar, Ahmad; Salehnia, Zeinab; Keshtkar, Asghar; Shokouhi, Behrooz

    2012-01-01

    Bladder cancer is the fourth most common malignant neoplasm in men and the eighth in women. Bladder pathology is usually investigated visually by cystoscopy. In this technique, biopsies are obtained from the suspected area and then, after needed procedure, the diagnostic information can be taken. This is a relatively difficult procedure and is associated with discomfort for the patient and morbidity. Therefore, the electrical impedance spectroscopy (EIS), a minimally invasive screening technique, can be used to separate malignant areas from nonmalignant areas in the urinary bladder. The feasibility of adapting this technique to screen for bladder cancer and abnormalities during cystoscopy has been explored and compared with histopathological evaluation of urinary bladder lesions. Ex vivo studies were carried out in this study by using a total of 30 measured points from malignant and 100 measured points from non-malignant areas of patients bladders in terms of their biopsy reports matching to the electrical impedance measurements. In all measurements, the impedivity of malignant area of bladder tissue was significantly higher than the impedivity of non-malignant area this tissue (P < 0.005). PMID:22567538

  13. Impedance spectroscopy analysis of cell-electrode interface.

    PubMed

    Jianhui, Lin; Xiaoming, Wu; Pengsheng, Huang; Tianling, Ren; Litian, Liu

    2005-01-01

    Many chronically implanted electrodes suffer sensitivity loss in their applications in brain computer interface systems. It is hard to diagnose the cause of the problem because few measures are available to analyze directly what happened on the cell-electrode interface. In this paper, the impedance characterization of the cell-electrode interface was discussed in detail using equivalent circuit approach, which was used to evaluate the cause of the electrode sensitivity loss. The impedance spectroscopy of the cell-electrode interface acts as a function of several parameters, such as the sealing resistance and the shunt capacitance between the microelectrode and the electrolyte. Changes of the impedance spectroscopy can be traced to the parameter changes of the equivalent circuit, which reflect the status of the cell-electrode interface, such as the cell-electrode gap change, the erosion of microelectrodes, and so on. The circuit impedance simulation results give an important reference for the monitor of the cell-electrode connection, and are also helpful for the improvement of the microelectrode design. PMID:17282042

  14. Impedance sensing of flaws in non-homogeneous materials

    DOEpatents

    Novak, J.L.

    1997-02-11

    An apparatus and method are disclosed for sensing impedances of materials placed in contact therewith. The invention comprises a plurality of drive electrodes and one or more sense electrodes. Both rotating electric fields and differently shaped electric fields are provided for, as are analysis of structure and composition at different orientations and depths. 10 figs.

  15. Impedance sensing of flaws in non-homogenous materials

    DOEpatents

    Novak, James L.

    1997-01-01

    An apparatus and method for sensing impedances of materials placed in contact therewith. The invention comprises a plurality of drive electrodes and one or more sense electrodes. Both rotating electric fields and differently shaped electric fields are provided for, as are analysis of structure and composition at different orientations and depths.

  16. Impedance Changes Indicate Proximal Ventriculoperitoneal Shunt Obstruction In Vitro.

    PubMed

    Basati, Sukhraaj; Tangen, Kevin; Hsu, Ying; Lin, Hanna; Frim, David; Linninger, Andreas

    2015-12-01

    Extracranial cerebrospinal fluid (CSF) shunt obstruction is one of the most important problems in hydrocephalus patient management. Despite ongoing research into better shunt design, robust and reliable detection of shunt malfunction remains elusive. The authors present a novel method of correlating degree of tissue ingrowth into ventricular CSF drainage catheters with internal electrical impedance. The impedance based sensor is able to continuously monitor shunt patency using intraluminal electrodes. Prototype obstruction sensors were fabricated for in-vitro analysis of cellular ingrowth into a shunt under static and dynamic flow conditions. Primary astrocyte cell lines and C6 glioma cells were allowed to proliferate up to 7 days within a shunt catheter and the impedance waveform was observed. During cell ingrowth a significant change in the peak-to-peak voltage signal as well as the root-mean-square voltage level was observed, allowing the impedance sensor to potentially anticipate shunt malfunction long before it affects fluid drainage. Finite element modeling was employed to demonstrate that the electrical signal used to monitor tissue ingrowth is contained inside the catheter lumen and does not endanger tissue surrounding the shunt. These results may herald the development of "next generation" shunt technology that allows prediction of malfunction before it affects patient outcome. PMID:25014951

  17. Tests Of Shear-Flow Model For Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Parrot, Tony L.; Watson, Willie R.; Jones, Michael G.

    1992-01-01

    Tests described in report conducted to validate two-dimensional shear-flow analytical model for determination of acoustic impedance of acoustic liner in grazing-incidence, grazing-flow environment by use of infinite-waveguide method. Tests successful for both upstream and downstream propagations. Work has potential for utility in testing of engine ducts in commercial aircraft.

  18. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    NASA Astrophysics Data System (ADS)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  19. Organic electrochemical transistors for cell-based impedance sensing

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  20. Transition metal oxide as anode interface buffer for impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Tang, Chao; Wang, Xu-Liang; Zhai, Wen-Juan; Liu, Rui-Lan; Rong, Zhou; Pang, Zong-Qiang; Jiang, Bing; Fan, Qu-Li; Huang, Wei

    2015-12-01

    Impedance spectroscopy is a strong method in electric measurement, which also shows powerful function in research of carrier dynamics in organic semiconductors when suitable mathematical physical models are used. Apart from this, another requirement is that the contact interface between the electrode and materials should at least be quasi-ohmic contact. So in this report, three different transitional metal oxides, V2O5, MoO3 and WO3 were used as hole injection buffer for interface of ITO/NPB. Through the impedance spectroscopy and PSO algorithm, the carrier mobilities and I-V characteristics of the NPB in different devices were measured. Then the data curves were compared with the single layer device without the interface layer in order to investigate the influence of transitional metal oxides on the carrier mobility. The careful research showed that when the work function (WF) of the buffer material was just between the work function of anode and the HOMO of the organic material, such interface material could work as a good bridge for carrier injection. Under such condition, the carrier mobility measured through impedance spectroscopy should be close to the intrinsic value. Considering that the HOMO (or LUMO) of most organic semiconductors did not match with the work function of the electrode, this report also provides a method for wide application of impedance spectroscopy to the research of carrier dynamics.

  1. Formal descriptions for formulation.

    PubMed

    This, Hervé

    2007-11-01

    Two formalisms used to describe the physical microstructure and the organization of formulated products are given. The first, called "complex disperse systems formalism" (CDS formalism) is useful for the description of the physical nature of disperse matter. The second, called "non periodical organizational space formalism" (NPOS formalism) has the same operators as the CDS formalism, but different elements; it is useful to describe the arrangement of any objects in space. Both formalisms can be viewed as the same, applied to different orders of magnitude for spatial size. PMID:17875375

  2. MCO Monitoring activity description

    SciTech Connect

    SEXTON, R.A.

    1998-11-09

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.

  3. Multivariable Dynamic Ankle Mechanical Impedance With Relaxed Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic “peanut” shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed. PMID:24686292

  4. A mathematical model for electrical impedance spectroscopy of zwitterionic hydrogels.

    PubMed

    Feicht, Sarah E; Khair, Aditya S

    2016-08-17

    We report a mathematical model for ion transport and electrical impedance in zwitterionic hydrogels, which possess acidic and basic functional groups that carry a net charge at a pH not equal to the isoelectric point. Such hydrogels can act as an electro-mechanical interface between a relatively hard biosensor and soft tissue in the body. For this application, the electrical impedance of the hydrogel must be characterized to ensure that ion transport to the biosensor is not significantly hindered. The electrical impedance is the ratio of the applied voltage to the measured current. We consider a simple model system, wherein an oscillating voltage is applied across a hydrogel immersed in electrolyte and sandwiched between parallel, blocking electrodes. We employ the Poisson-Nernst-Planck (PNP) equations coupled with acid-base dissociation reactions for the charge on the hydrogel backbone to model the ionic transport across the hydrogel. The electrical impedance is calculated from the numerical solution to the PNP equations and subsequently analyzed via an equivalent circuit model to extract the hydrogel capacitance, resistance, and the capacitance of electrical double layers at the electrode-hydrogel interface. For example, we predict that an increase in pH from the isoelectric point, pH = 6.4 for a model PCBMA hydrogel, to pH = 8 reduces the resistance of the hydrogel by ∼40% and increases the double layer capacitance by ∼250% at an electrolyte concentration of 0.1 mM. The significant impact of charged hydrogel functional groups to the impedance is damped at higher electrolyte concentration. PMID:27464763

  5. Prevalence of child malnutrition at a university hospital using the World Health Organization criteria and bioelectrical impedance data

    PubMed Central

    Pileggi, V.N.; Monteiro, J.P.; Margutti, A.V.B.; Camelo, J.S.

    2016-01-01

    Malnutrition constitutes a major public health concern worldwide and serves as an indicator of hospitalized patients’ prognosis. Although various methods with which to conduct nutritional assessments exist, large hospitals seldom employ them to diagnose malnutrition. The aim of this study was to understand the prevalence of child malnutrition at the University Hospital of the Ribeirão Preto Medical School, University of São, Brazil. A cross-sectional descriptive study was conducted to compare the nutritional status of 292 hospitalized children with that of a healthy control group (n=234). Information regarding patients’ weight, height, and bioelectrical impedance (i.e., bioelectrical impedance vector analysis) was obtained, and the phase angle was calculated. Using the World Health Organization (WHO) criteria, 35.27% of the patients presented with malnutrition; specifically, 16.10% had undernutrition and 19.17% were overweight. Classification according to the bioelectrical impedance results of nutritional status was more sensitive than the WHO criteria: of the 55.45% of patients with malnutrition, 51.25% exhibited undernutrition and 4.20% were overweight. After applying the WHO criteria in the unpaired control group (n=234), we observed that 100.00% of the subjects were eutrophic; however, 23.34% of the controls were malnourished according to impedance analysis. The phase angle was significantly lower in the hospitalized group than in the control group (P<0.05). Therefore, this study suggests that a protocol to obtain patients’ weight and height must be followed, and bioimpedance data must be examined upon hospital admission of all children. PMID:26840712

  6. Prevalence of child malnutrition at a university hospital using the World Health Organization criteria and bioelectrical impedance data.

    PubMed

    Pileggi, V N; Monteiro, J P; Margutti, A V B; Camelo, J S

    2016-03-01

    Malnutrition constitutes a major public health concern worldwide and serves as an indicator of hospitalized patients' prognosis. Although various methods with which to conduct nutritional assessments exist, large hospitals seldom employ them to diagnose malnutrition. The aim of this study was to understand the prevalence of child malnutrition at the University Hospital of the Ribeirão Preto Medical School, University of São, Brazil. A cross-sectional descriptive study was conducted to compare the nutritional status of 292 hospitalized children with that of a healthy control group (n=234). Information regarding patients' weight, height, and bioelectrical impedance (i.e., bioelectrical impedance vector analysis) was obtained, and the phase angle was calculated. Using the World Health Organization (WHO) criteria, 35.27% of the patients presented with malnutrition; specifically, 16.10% had undernutrition and 19.17% were overweight. Classification according to the bioelectrical impedance results of nutritional status was more sensitive than the WHO criteria: of the 55.45% of patients with malnutrition, 51.25% exhibited undernutrition and 4.20% were overweight. After applying the WHO criteria in the unpaired control group (n=234), we observed that 100.00% of the subjects were eutrophic; however, 23.34% of the controls were malnourished according to impedance analysis. The phase angle was significantly lower in the hospitalized group than in the control group (P<0.05). Therefore, this study suggests that a protocol to obtain patients' weight and height must be followed, and bioimpedance data must be examined upon hospital admission of all children. PMID:26840712

  7. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  8. Experimental Study of Radiation Impedance with Effect of Reflected Wave from Sonar Dome

    NASA Astrophysics Data System (ADS)

    Jungsoon Kim,; Moojoon Kim,; Kanglyeol Ha,; Heeseon Seo,; Cheeyong Joh,

    2010-07-01

    The radiation impedance of arrayed vibrators is analyzed experimentally when the array has a reflector. To verify the effect of the reflector, the radiation impedance with the reflector was calculated. To estimate the radiation impedance change, the input impedance of the vibrator was calculated using an equivalent circuit model. The input impedance was dependant on the location of the vibrators. The experimental results show a similar tendency to the theoretical results. It is noted that the equivalent circuit model for theoretical analysis is useful for estimating the radiation impedance change caused by the reflected wave.

  9. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    SciTech Connect

    Kimura, Tomoharu; Yamada, Hirofumi; Kobayashi, Kei

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  10. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoharu; Kobayashi, Kei; Yamada, Hirofumi

    2015-08-01

    The device performances of organic thin film transistors are often limited by the metal-organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  11. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics

  12. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics

  13. Micro-Horn Arrays for Ultrasonic Impedance Matching

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Palmer, Dean

    2009-01-01

    Thin-layered structures containing arrays of micromachined horns, denoted solid micro-horn arrays (SMIHAs), have been conceived as improved means of matching acoustic impedances between ultrasonic transducers and the media with which the transducers are required to exchange acoustic energy. Typically, ultrasonic transducers (e.g., those used in medical imaging) are piezoelectric or similar devices, which produce small displacements at large stresses. However, larger displacements at smaller stresses are required in the target media (e.g., human tissues) with which acoustic energy is to be exchanged. Heretofore, efficiencies in transmission of acoustic energy between ultrasonic transducers and target media have been severely limited because substantial mismatches of acoustic impedances have remained, even when coupling material layers have been interposed between the transducers and the target media. In contrast, SMIHAs can, in principle, be designed to effect more nearly complete acoustic impedance matching, leading to power transmission efficiencies of 90 percent or even greater. The SMIHA concept is based on extension, into the higher-frequency/ lower-wavelength ultrasonic range, of the use of horns to match acoustic impedances in the audible and lower-frequency ultrasonic ranges. In matching acoustic impedance in transmission from a higher-impedance acoustic source (e.g., a piezoelectric transducer) and a lowerimpedance target medium (e.g., air or human tissue), a horn acts as a mechanical amplifier. The shape and size of the horn can be optimized for matching acoustic impedance in a specified frequency range. A typical SMIHA would consist of a base plate, a face plate, and an array of horns that would constitute pillars that connect the two plates (see figure). In use, the base plate would be connected to an ultrasonic transducer and the face plate would be placed in contact with the target medium. As at lower frequencies, the sizes and shapes of the pillars

  14. Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients.

    PubMed

    Tian, Lian; Hunter, Kendall S; Kirby, K Scott; Ivy, D Dunbar; Shandas, Robin

    2010-06-01

    Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance. PMID:20410558

  15. Description of Jet Breakup

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  16. Task Description Language

    NASA Technical Reports Server (NTRS)

    Simmons, Reid; Apfelbaum, David

    2005-01-01

    Task Description Language (TDL) is an extension of the C++ programming language that enables programmers to quickly and easily write complex, concurrent computer programs for controlling real-time autonomous systems, including robots and spacecraft. TDL is based on earlier work (circa 1984 through 1989) on the Task Control Architecture (TCA). TDL provides syntactic support for hierarchical task-level control functions, including task decomposition, synchronization, execution monitoring, and exception handling. A Java-language-based compiler transforms TDL programs into pure C++ code that includes calls to a platform-independent task-control-management (TCM) library. TDL has been used to control and coordinate multiple heterogeneous robots in projects sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It has also been used in Brazil to control an autonomous airship and in Canada to control a robotic manipulator.

  17. Wave impedances of drill strings and other periodic media

    NASA Astrophysics Data System (ADS)

    Drumheller, Douglas S.

    2002-12-01

    It is commonly known that wave reflections are caused by abrupt spatial variations in the physical parameter called wave impedance. When a material contains a spatially periodic distribution of wave impedances some very interesting and complex wave propagation phenomena will occur. Two examples of such periodic structures immediately come to mind: the first is a sandwiched structure of two types of plates, say for example, identical layers of thin steel plates interspersed with identical thick aluminum plates; and the second is a large number of identical long thin pipes that are connected from end to end with identical short heavy threaded couplings. The pipe assembly is our primary concern here because it represents the drill string, used worldwide to drill for natural energy resources. We want to understand how waves propagate through drill strings because we want to use them as a means of communication. But while the second structure is our primary concern, it is the study of the first structure, composed of layers, that is the truly historical problem and the source of much of our understanding of this rich set of wave physics. Traditionally, wave propagation in periodic media has been studied as an eigenvalue problem. The eigenvalues themselves yield information about phase velocities, group velocities, passbands, and stopbands. Most often the analysis has stopped there and the eigenvectors have been ignored. Here we turn our attention to the eigenvectors, using them to evaluate the impedance of the periodic structure with particular emphasis on the periodic drill string. As you might expect the impedance of the drill string is a complex number, which is evaluated from a very complicated expression. However, we have discovered that the impedance at two physical locations along the length of each piece of drill pipe in the drill string always reduces to a real number. This is immensely important because it allows us to match the impedance of the drill string

  18. Architecture, modeling, and analysis of a plasma impedance probe

    NASA Astrophysics Data System (ADS)

    Jayaram, Magathi

    Variations in ionospheric plasma density can cause large amplitude and phase changes in the radio waves passing through this region. Ionospheric weather can have detrimental effects on several communication systems, including radars, navigation systems such as the Global Positioning Sytem (GPS), and high-frequency communications. As a result, creating models of the ionospheric density is of paramount interest to scientists working in the field of satellite communication. Numerous empirical and theoretical models have been developed to study the upper atmosphere climatology and weather. Multiple measurements of plasma density over a region are of marked importance while creating these models. The lack of spatially distributed observations in the upper atmosphere is currently a major limitation in space weather research. A constellation of CubeSat platforms would be ideal to take such distributed measurements. The use of miniaturized instruments that can be accommodated on small satellites, such as CubeSats, would be key to achieving these science goals for space weather. The accepted instrumentation techniques for measuring the electron density are the Langmuir probes and the Plasma Impedance Probe (PIP). While Langmuir probes are able to provide higher resolution measurements of relative electron density, the Plasma Impedance Probes provide absolute electron density measurements irrespective of spacecraft charging. The central goal of this dissertation is to develop an integrated architecture for the PIP that will enable space weather research from CubeSat platforms. The proposed PIP chip integrates all of the major analog and mixed-signal components needed to perform swept-frequency impedance measurements. The design's primary innovation is the integration of matched Analog-to-Digital Converters (ADC) on a single chip for sampling the probes current and voltage signals. A Fast Fourier Transform (FFT) is performed by an off-chip Field-Programmable Gate Array (FPGA

  19. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  20. Body Fat Measurement: Weighing the Pros and Cons of Electrical Impedance.

    ERIC Educational Resources Information Center

    Nash, Heyward L.

    1985-01-01

    Research technologists have developed electrical impedance units in response to demand for a convenient and reliable method of measuring body fat. Accuracy of impedance measures versus calipers and underwater weighing are discussed. (MT)

  1. THE CHARACTERISTIC IMPEDANCE OF RECTANGULAR TRANSMISSION LINES WITH THIN CENTER CONDUCTOR AND AIR DIELECTRIC

    EPA Science Inventory

    The characteristic impedance of large-scale rectangular strip transmission line facilities used for such purposes as EMI susceptibility testing, biological exposures, etc., is discussed. These lines are characterized by a thin center conductor and an air dielectric. Impedance dat...

  2. Altered Impedance of Ear Acupuncture Point MT2 in Breast Cancer Patients: A Preliminary Observation

    PubMed Central

    Hu, Yine; Yang, Huayuan; Wang, Pin; Liu, Tangyi; Tang, Wenchao

    2015-01-01

    Skin impedance at acupuncture points (APs) has been used as a diagnostic aid for more than 50 years. In this study, we have a diagnostic tool (JXT-2008) to measure the skin impedance of ear APs of 30 breast cancer patients and the corresponding skin impedance of ear APs of 30 healthy humans, and then we compared these changes in ear AP impedance in breast cancer patients and healthy individuals. PMID:26504483

  3. Wake potentials and impedances for the ATA (Advanced Test Accelerator) induction cell

    SciTech Connect

    Craig, G.D.

    1990-09-04

    The AMOS Wakefield Code is used to calculate the impedances of the induction cell used in the Advanced Test Accelerator (ATA) at Livermore. We present the wakefields and impedances for multipoles m = 0, 1 and 2. The ATA cell is calculated to have a maximum transverse impedance of approximately 1000 {Omega}/m at 875 MHz with a quality factor Q = 5. The sensitivity of the impedance spectra to modeling variations is discussed.

  4. Nuclear radiation-warning detector that measures impedance

    SciTech Connect

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  5. Towards a graphene-based quantum impedance standard

    SciTech Connect

    Kalmbach, C.-C.; Schurr, J. Ahlers, F. J.; Müller, A.; Novikov, S.; Lebedeva, N.; Satrapinski, A.

    2014-08-18

    Precision measurements of the quantum Hall resistance with alternating current (ac) in the kHz range were performed on epitaxial graphene in order to assess its suitability as a quantum standard of impedance. The quantum Hall plateaus measured with alternating current were found to be flat within one part in 10{sup 7}. This is much better than for plain GaAs quantum Hall devices and shows that the magnetic-flux-dependent capacitive ac losses of the graphene device are less critical. The observed frequency dependence of about −8 × 10{sup −8}/kHz is comparable in absolute value to the positive frequency dependence of plain GaAs devices, but the negative sign is attributed to stray capacitances which we believe can be minimized by a careful design of the graphene device. Further improvements thus may lead to a simpler and more user-friendly quantum standard for both resistance and impedance.

  6. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  7. Numerical modeling of magnetic induction tomography using the impedance method.

    PubMed

    Ramos, Airton; Wolff, Julia G B

    2011-02-01

    This article discusses the impedance method in the forward calculation in magnetic induction tomography (MIT). Magnetic field and eddy current distributions were obtained numerically for a sphere in the field of a coil and were compared with an analytical model. Additionally, numerical and experimental results for phase sensitivity in MIT were obtained and compared for a cylindrical object in a planar array of sensors. The results showed that the impedance method provides results that agree very well with reality in the frequency range from 100 kHz to 20 MHz and for low conductivity objects (10 S/m or less). This opens the possibility of using this numerical approach in image reconstruction in MIT. PMID:21229327

  8. Traceable calibration of impedance heads and artificial mastoids

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Dickinson, L. P.; Bell, T. J.

    2015-12-01

    Artificial mastoids are devices which simulate the mechanical characteristics of the human head, and in particular of the bony structure behind the ear. They are an essential tool in the calibration of bone-conduction hearing aids and audiometers. With the emergence of different types of artificial mastoids in the market, and the realisation that the visco-elastic part of these instruments changes over time, the development of a method of traceable calibration of these devices without relying on commercial software has become important for national metrology institutes. This paper describes commercially available calibration methods, and the development of a traceable calibration method including the traceable calibration of the impedance head used to measure the mechanical impedance of the artificial mastoid.

  9. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  10. Impedance matching wireless power transmission system for biomedical devices.

    PubMed

    Lum, Kin Yun; Lindén, Maria; Tan, Tian Swee

    2015-01-01

    For medical application, the efficiency and transmission distance of the wireless power transfer (WPT) are always the main concern. Research has been showing that the impedance matching is one of the critical factors for dealing with the problem. However, there is not much work performed taking both the source and load sides into consideration. Both sides matching is crucial in achieving an optimum overall performance, and the present work proposes a circuit model analysis for design and implementation. The proposed technique was validated against experiment and software simulation. Result was showing an improvement in transmission distance up to 6 times, and efficiency at this transmission distance had been improved up to 7 times as compared to the impedance mismatch system. The system had demonstrated a near-constant transfer efficiency for an operating range of 2cm-12cm. PMID:25980873

  11. Robust recursive impedance estimation for automotive lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fridholm, Björn; Wik, Torsten; Nilsson, Magnus

    2016-02-01

    Recursive algorithms, such as recursive least squares (RLS) or Kalman filters, are commonly used in battery management systems to estimate the electrical impedance of the battery cell. However, these algorithms can in some cases run into problems with bias and even divergence of the estimates. This article illuminates problems that can arise in the online estimation using recursive methods, and lists modifications to handle these issues. An algorithm is also proposed that estimates the impedance by separating the problem in two parts; one estimating the ohmic resistance with an RLS approach, and another one where the dynamic effects are estimated using an adaptive Kalman filter (AKF) that is novel in the battery field. The algorithm produces robust estimates of ohmic resistance and time constant of the battery cell in closed loop with SoC estimation, as demonstrated by both in simulations and with experimental data from a lithium-ion battery cell.

  12. An impedance-based integrated biosensor for suspended DNA characterization

    PubMed Central

    Ma, Hanbin; Wallbank, Richard W. R.; Chaji, Reza; Li, Jiahao; Suzuki, Yuji; Jiggins, Chris; Nathan, Arokia

    2013-01-01

    Herein, we describe a novel integrated biosensor for performing dielectric spectroscopy to analyze biological samples. We analyzed biomolecule samples with different concentrations and demonstrated that the solution's impedance is highly correlated with the concentration, indicating that it may be possible to use this sensor as a concentration sensor. In contrast with standard spectrophotometers, this sensor offers a low-cost and purely electrical solution for the quantitative analysis of biomolecule solutions. In addition to determining concentrations, we found that the sample solution impedance is highly correlated with the length of the DNA fragments, indicating that the sizes of PCR products could be validated with an integrated chip-based, sample-friendly system within a few minutes. The system could be the basis of a rapid, low-cost platform for DNA characterization with broad applications in cancer and genetic disease research. PMID:24060937

  13. Longitudinal Impedance Tomography for Blood Pressure Characterization of Valve Deformation

    PubMed Central

    Vahabi, Zahra; Amirfattahi, Rasool

    2015-01-01

    Aorta is formed in a dynamic environment which gives rise to imbalances between many forces that tend to extend the diameter and length. Furthermore, internal forces tend to resist this extension. Impedance tomography can show this imbalance to stimulate the stenosis of aortic valve, growth of the elastic, collagen and to effectively reduce the stresses in the underlying tissue. In blood flow, auscultation noises occurred and in the echocardiography decrease in left ventricular ejection speed can be observed. In this paper, we have modeled an aorta based on anatomical studies to simulate natural, 20% and 30% stenosis as usual heart disease to early diagnosis. Valve deformation causes different impedance tomography in 3D mesh of aorta as blood pressure. Remodeling of aorta and its flow is found when a cylindrical slice of the fully retracted blood aorta is cut longitudinally through the wall. PMID:26120568

  14. A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array.

    PubMed

    Manickam, Arun; Chevalier, Aaron; McDermott, Mark; Ellington, Andrew D; Hassibi, Arjang

    2010-12-01

    In this paper, we present a fully integrated biosensor 10 × 10 array in a standard complementary metal-oxide semiconducor process, which takes advantage of electrochemical impedance spectroscopy (EIS). We also show that this system is able to detect various biological analytes, such as DNA and proteins, in real time and without the need for molecular labels. In each pixel of this array, we implement a biocompatible Au electrode transducer and embedded sensor circuitry which takes advantage of the coherent detector to measure the impedance of the associated electrode-electrolyte interface. This chip is capable of concurrently measuring admittance values as small as 10(-8) Ω(-1) within the array with the detection dynamic range of more than 90 dB in the frequency range of 10 Hz-50 MHz. PMID:23850755

  15. Dielectrophoresis and dielectrophoretic impedance detection of adenovirus and rotavirus

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Ding, Zhenhao; Suehiro, Junya

    2016-01-01

    The aim of this study is the electrical detection of pathogenic viruses, namely, adenovirus and rotavirus, using dielectrophoretic impedance measurement (DEPIM). DEPIM consists of two simultaneous processes: dielectrophoretic trapping of the target and measurement of the impedance change and increase in conductance with the number of trapped targets. This is the first study of applying DEPIM, which was originally developed to detect bacteria suspended in aqueous solutions, to virus detection. The dielectric properties of the viruses were also investigated in terms of their dielectrophoretic behavior. Although their estimated dielectric properties were different from those of bacteria, the trapped viruses increased the conductance of the microelectrode in a manner similar to that in bacteria detection. We demonstrated the electrical detection of viruses within 60 s at concentrations as low as 70 ng/ml for adenovirus and 50 ng/ml for rotavirus.

  16. Experimental Impedance of Single Liner Elements with Bias Flow

    NASA Technical Reports Server (NTRS)

    Follet, J. I.; Betts, J. F.; Kelly, Jeffrey J.; Thomas, Russell H.

    2000-01-01

    An experimental investigation was conducted to generate a high quality database, from which the effects of a mean bias flow on the acoustic impedance of lumped-element single-degree-of-freedom liners was determined. Acoustic impedance measurements were made using the standard two-microphone method in the NASA Langley Normal Incidence Tube. Each liner consisted of a perforated sheet with a constant-area cavity. Liner resistance was shown to increase and to become less frequency and sound pressure level dependent as the bias flow was increased. The resistance was also consistently lower for a negative bias flow (suction) than for a positive bias flow (blowing) of equal magnitude. The slope of the liner reactance decreased with increased flow.

  17. Estimating surface acoustic impedance with the inverse method.

    PubMed

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics. PMID:21939599

  18. Fluid mechanical model of the acoustic impedance of small orifices

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Rogers, T.

    1975-01-01

    A fluid mechanical model of the acoustic behavior of small orifices is presented which predicts orifice impedance as a function of incident sound pressure level, frequency, and orifice geometry. Agreement between predicted and measured values (in both water and air) of orifice impedance is excellent. The model shows that (1) the acoustic flow in the immediate neighborhood of the orifice can be modelled as a locally spherical flow, (2) within this near field, the flow is, to a first approximation, unsteady and incompressible, and (3) at very low sound pressure levels, the orifice viscous resistance is directly related to the effect of boundary-layer displacement along the walls containing the orifice, and the orifice reactance is directly related to the inertia of the oscillating flow in the orifice neighborhood.-

  19. Determination of soil moisture distribution from impedance and gravimetric measurements

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen G.; Layman, Robert; Campbell, Jeffrey E.; Walsh, John; Mckim, Harlan J.

    1992-01-01

    Daily measurements of the soil dielectric properties at 5 and 10 cm were obtained at five locations throughout the First ISLSCP Field Experiment (FIFE) test site during the 1987 intensive field campaigns (IFCs). An automated vector voltmeter was used to monitor the complex electrical impedance, at 10 MHz, of cylindrical volumes of soil delineated by specially designed soil moisture probes buried at these locations. The objective of this exercise was to test the hypothesis that the soil impedance is sensitive to the moisture content of the soil and that the imaginary part (that is, capacitive reactance) can be used to calculate the volumetric water content of the soil. These measurements were compared with gravimetric samples collected at these locations by the FIFE staff science team.

  20. Non-Intrusive Impedance-Based Cable Tester

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    1999-01-01

    A non-intrusive electrical cable tester determines the nature and location of a discontinuity in a cable through application of an oscillating signal to one end of the cable. The frequency of the oscillating signal is varied in increments until a minimum, close to zero voltage is measured at a signal injection point which is indicative of a minimum impedance at that point. The frequency of the test signal at which the minimum impedance occurs is then employed to determine the distance to the discontinuity by employing a formula which relates this distance to the signal frequency and the velocity factor of the cable. A numerically controlled oscillator is provided to generate the oscillating signal, and a microcontroller automatically controls operation of the cable tester to make the desired measurements and display the results. The device is contained in a portable housing which may be hand held to facilitate convenient use of the device in difficult to access locations.

  1. [A Meridian Visualization System Based on Impedance and Binocular Vision].

    PubMed

    Su, Qiyan; Chen, Xin

    2015-03-01

    To ensure the meridian can be measured and displayed correctly on the human body surface, a visualization method based on impedance and binocular vision is proposed. First of all, using alternating constant current source to inject current signal into the human skin surface, then according to the low impedance characteristics of meridian, the multi-channel detecting instrument detects voltage of each pair of electrodes, thereby obtaining the channel of the meridian location, through the serial port communication, data is transmitted to the host computer. Secondly, intrinsic and extrinsic parameters of cameras are obtained by Zhang's camera calibration method, and 3D information of meridian location is got by corner selection and matching of the optical target, and then transform coordinate of 3D information according to the binocular vision principle. Finally, using curve fitting and image fusion technology realizes the meridian visualization. The test results show that the system can realize real-time detection and accurate display of meridian. PMID:26524777

  2. Object impedance control for cooperative manipulation - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1992-01-01

    This paper presents the dynamic control module of the Dynamic and Strategic Control of Cooperating Manipulators (DASCCOM) project at Stanford University's Aerospace Robotics Laboratory. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to higher level strategic control modules. Experimental results from a dual two-link-arm robotic system are used to compare the object impedance controller with other strategies, both for free-motion slews and environmental contact.

  3. Meandered-line antenna with integrated high-impedance surface.

    SciTech Connect

    Forman, Michael A.

    2010-09-01

    A reduced-volume antenna composed of a meandered-line dipole antenna over a finite-width, high-impedance surface is presented. The structure is novel in that the high-impedance surface is implemented with four Sievenpiper via-mushroom unit cells, whose area is optimized to match the meandered-line dipole antenna. The result is an antenna similar in performance to patch antenna but one fourth the area that can be deployed directly on the surface of a conductor. Simulations demonstrate a 3.5 cm ({lambda}/4) square antenna with a bandwidth of 4% and a gain of 4.8 dBi at 2.5 GHz.

  4. Potassium polytitanate gas-sensor study by impedance spectroscopy.

    PubMed

    Fedorov, F S; Varezhnikov, A S; Kiselev, I; Kolesnichenko, V V; Burmistrov, I N; Sommer, M; Fuchs, D; Kübel, C; Gorokhovsky, A V; Sysoev, V V

    2015-10-15

    Nanocrystalline potassium polytitanates K2O·nTiO2·mH2O represent a new type of semiconducting compounds which are characterized by a high specific surface that makes them promising for use in gas sensors. In this work, we have studied potassium polytitanate mesoporous nanoparticle agglomerates placed over a SiO2/Si substrate equipped with multiple coplanar electrodes to measure the electrical response to various organic vapors, 1000 ppm of concentration, mixed with air by impedance spectrometry in range of the 10(-2)-10(6) Hz. The recorded impedance data for each sensor segment are associated with RC components of an equivalent circuit which are applied to selectively recognize the test vapors exploiting a "multisensor array" approach. PMID:26515008

  5. Structural damage identification using piezoelectric impedance and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Shuai, Q.; Zhou, K.; Tang, J.

    2015-04-01

    Structural damage identification is a challenging subject in the structural health monitoring research. The piezoelectric impedance-based damage identification, which usually utilizes the matrix inverse-based optimization, may in theory identify the damage location and damage severity. However, the sensitivity matrix is oftentimes ill-conditioned in practice, since the number of unknowns may far exceed the useful measurements/inputs. In this research, a new method based on intelligent inference framework for damage identification is presented. Bayesian inference is used to directly predict damage location and severity using impedance measurement through forward prediction and comparison. Gaussian process is employed to enrich the forward analysis result, thereby reducing computational cost. Case study is carried out to illustrate the identification performance.

  6. ICD lead failure detection through high frequency impedance.

    PubMed

    Kollmann, Daniel T; Swerdlow, Charles D; Kroll, Mark W; Seifert, Gregory J; Lichter, Patrick A

    2014-01-01

    Abrasion-induced insulation breach is a common failure mode of silicone-body, transvenous, implantable cardioverter defibrillator leads. It is caused either by external compression or internal motion of conducting cables. The present method of monitoring lead integrity measures low frequency conductor impedance. It cannot detect insulation failures until both the silicone lead body and inner fluoropolymer insulation have been breached completely, exposing conductors directly to blood or tissue. Thus the first clinical presentation may be either failure to deliver a life-saving shock or painful, inappropriate shocks in normal rhythm. We present a new method for identifying lead failure based on high frequency impedance measurements. This method was evaluated in 3D electromagnetic simulation and bench testing to identify insulation defects in the St. Jude Medical Riata® lead, which is prone to insulation breach. PMID:25571482

  7. Evaluation of non toxic alkyd primers by electrochemical impedance spectroscopy

    SciTech Connect

    Hernandez, L.S.; Garcia, G. |; Lopez, C.

    1998-12-31

    The purpose of this work was to compare the protective capacity of several alkyd primers pigmented with 12.1 volume percent either of calcium phosphate or micronized zinc phosphate as anticorrosive pigments. A paint containing zinc chromate was used as reference. The performance of these paints on steel was assessed through Electrochemical Impedance Spectroscopy (EIS) using a 3% NaCl solution. After 576 hr immersion, the paint with calcium phosphate and specially that with micronized zinc phosphate, showed a better behavior than paint with zinc chromate. Paint rating, using impedance parameters (ionic resistance and capacitance of the paint film, and breakpoint frequency), was in agreement with the visible paint deterioration and corrosion, In addition, there was a good correlation between these parameter and the open circuit corrosion potential of the metallic substrate.

  8. High frequency impedance spectra on the chromium dioxide thin film

    SciTech Connect

    Fu, C. M.; Lai, C. J.; Wu, J. S.; Huang, J. C. A.; Wu, C.-C.; Shyu, S.-G.

    2001-06-01

    We report on the study of high frequency magnetotransport properties of the chromium dioxide (CrO{sub 2}) thin films, grown on Si substrate using chemical vapor deposition. The film exhibits a ferromagnetic transition with a Curie temperature near 390 K. The temperature dependent spontaneous magnetization follows Bloch{close_quote}s law. The impedance spectra, being analyzed based on the fundamental electrodynamics, are demonstrated to be in a low-loss dielectric limit along with the occurrence of dielectric relaxation and magnetization response. The specific features of impedance spectra, distinct from the usual metallic ferromagnet, are attributed to the half metallic nature of CrO{sub 2}. The results explore the possibility for high frequency device applications.

  9. Semi-solid state adaptive impedance composites for HIRF protection

    NASA Astrophysics Data System (ADS)

    Bramlette, Richard B.; Barrett, Ronald M.

    2010-04-01

    The feasibility of piezoelectric-based Adaptive-Impedance Composites (AIC) as a method of protecting aircraft equipment from lightning strike events and the resultant High-Intensity Radiated Fields (HIRF) was investigated. Classical Laminated Plate Theory (CLPT) and sheet vibration theory were applied to analytically derive the performance of the AIC. Multiple prototypes were built for high voltage testing which revealed closed- to open-circuit switching as fast as 77 μs. It was observed that slight geometric variations of the AIC strongly influenced the activation voltage. The voltage necessary to trigger the 85mm long, 3rd generation AIC's impedance could be set between 10 and 60 V. The test data and the analytical predictions were compared with the lightning strike data gathered by ONERA. The comparison indicated the AIC switching speed was over 30 times faster than the necessary minimum to shield typical avionics and flight control mechanisms from lightning-strike induced electrical eddy currents and HIRF.

  10. High accuracy particle analysis using sheathless microfluidic impedance cytometry.

    PubMed

    Spencer, Daniel; Caselli, Federica; Bisegna, Paolo; Morgan, Hywel

    2016-07-01

    This paper describes a new design of microfluidic impedance cytometer enabling accurate characterization of particles without the need for focusing. The approach uses multiple pairs of electrodes to measure the transit time of particles through the device in two simultaneous different current measurements, a transverse (top to bottom) current and an oblique current. This gives a new metric that can be used to estimate the vertical position of the particle trajectory through the microchannel. This parameter effectively compensates for the non-uniform electric field in the channel that is an unavoidable consequence of the use of planar parallel facing electrodes. The new technique is explained and validated using numerical modelling. Impedance data for 5, 6 and 7 μm particles are collected and compared with simulations. The method gives excellent coefficient of variation in (electrical) radius of particles of 1% for a sheathless configuration. PMID:27241585

  11. Characterization of flow-through electrode processes by AC impedance

    SciTech Connect

    Yuh, C.Y. ); Selman, J.R. )

    1993-04-01

    Flow-through porous electrodes, such as packed-bed and fluidized-bed electrodes, are attractive for electrowinning, electro-organic synthesis and flow-battery applications. The extensive surface area of the porous electrodes makes high volumetric reaction rate more possible than in a cell with smooth electrodes. Forced convection also enhances mass-transfer rate and hence reduces concentration polarization. AC-impedance method has been used successfully in characterizing a packed-bed flow-through electrode system. A macrohomogeneous model was developed to simulate the effect of structural, physical and flow parameters. The relative importance of kinetics and mass transfer can be inferred from the AC-impedance analysis. Kinetic information about copper deposition in supported cupric sulfate solution has been obtained successfully using this technique.

  12. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  13. On-line corrosion monitoring with electrochemical impedance spectroscopy

    SciTech Connect

    Roberge, P.R. . Dept. of Chemistry and Chemical Engineering); Sastri, V.S. )

    1994-10-01

    Electrochemical impedance spectroscopy (EIS) has been found to be a rapid and accurate technique for measuring corrosion rates in the most difficult situations and for yielding information concerning the occurrence of localized corrosion. When used in the absence of potentiostatic control, the technique carries less instrumental overhead, and the danger of damaging the probe by accidental polarization is reduced. Results from two field tests were presented to illustrate the advantages of using EIS for on-line monitoring of general and localized corrosion.

  14. Insulator-based DEP with impedance measurements for analyte detection

    DOEpatents

    Davalos, Rafael V.; Simmons, Blake A.; Crocker, Robert W.; Cummings, Eric B.

    2010-03-16

    Disclosed herein are microfluidic devices for assaying at least one analyte specie in a sample comprising at least one analyte concentration area in a microchannel having insulating structures on or in at least one wall of the microchannel which provide a nonuniform electric field in the presence of an electric field provided by off-chip electrodes; and a pair of passivated sensing electrodes for impedance detection in a detection area. Also disclosed are assay methods and methods of making.

  15. Transcranial Extracellular Impedance Control (tEIC) Modulates Behavioral Performances

    PubMed Central

    Matani, Ayumu; Nakayama, Masaaki; Watanabe, Mayumi; Furuyama, Yoshikazu; Hotta, Atsushi; Hoshino, Shotaro

    2014-01-01

    Electric brain stimulations such as transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), and transcranial alternating current stimulation (tACS) electrophysiologically modulate brain activity and as a result sometimes modulate behavioral performances. These stimulations can be viewed from an engineering standpoint as involving an artificial electric source (DC, noise, or AC) attached to an impedance branch of a distributed parameter circuit. The distributed parameter circuit is an approximation of the brain and includes electric sources (neurons) and impedances (volume conductors). Such a brain model is linear, as is often the case with the electroencephalogram (EEG) forward model. Thus, the above-mentioned current stimulations change the current distribution in the brain depending on the locations of the electric sources in the brain. Now, if the attached artificial electric source were to be replaced with a resistor, or even a negative resistor, the resistor would also change the current distribution in the brain. In light of the superposition theorem, which holds for any linear electric circuit, attaching an electric source is different from attaching a resistor; the resistor affects each active electric source in the brain so as to increase (or decrease in some cases of a negative resistor) the current flowing out from each source. From an electrophysiological standpoint, the attached resistor can only control the extracellular impedance and never causes forced stimulation; we call this technique transcranial extracellular impedance control (tEIC). We conducted a behavioral experiment to evaluate tEIC and found evidence that it had real-time enhancement and depression effects on EEGs and a real-time facilitation effect on reaction times. Thus, tEIC could be another technique to modulate behavioral performance. PMID:25047913

  16. Variations of respiratory impedance with lung volume in bronchial hyperreactivity.

    PubMed

    van den Elshout, F J; van de Woestijne, K P; Folgering, H T

    1990-08-01

    The total respiratory impedance was measured at various frequencies (4 to 52 Hz) with a pseudo-random-noise forced oscillation technique (FOT). The apparatus (Oscillaire) was connected with a spirometer forming a closed respiratory circuit in which gas concentrations were kept constant. Measurements were made in 15 healthy subjects (group 1) and in 30 asthmatic patients with bronchial hyperreactivity, subdivided into group 2 treated only with inhaled beta 2-mimetics (n = 15) and in group 3 using both beta 2-mimetics and steroids in inhalation (n = 15). No significant differences were found between the impedance data obtained with the Oscillaire alone and those obtained with the Oscillaire connected with the spirometer circuit. The impedance was measured at FRC level, and at FRC +1 L and -1 L. The relative changes of the resistance at 8 Hz were -23.2 percent (13.8) at FRC +1 L and +40.9 percent (29.3) at FRC -1 L relative to the values at resting FRC. This inverse relation between airway resistance and lung volume was similar in all groups. The average reactance decreased at FRC -1 L in all groups. However, at FRC +1 L the average reactance increased 50.6 percent in group 2 and 94.2 percent in group 3, but decreased in group 1. Concomitant changes were observed in the resonant frequency and in the frequency dependence of resistance. Because of these qualitatively different responses of the impedance data to changes in lung volume (both for the whole group and for each individual) between healthy subjects and asthmatic patients, this test might be useful for the diagnosis of bronchial hyperreactivity. PMID:2376168

  17. Frequency-Dependent Shear Impedance of the Tectorial Membrane

    PubMed Central

    Gu, Jianwen Wendy; Hemmert, Werner; Freeman, Dennis M.; Aranyosi, A. J.

    2008-01-01

    Microscale mechanical probes were designed and bulk-fabricated for applying shearing forces to biological tissues. These probes were used to measure shear impedance of the tectorial membrane (TM) in two dimensions. Forces were applied in the radial and longitudinal directions at frequencies ranging from 0.01–9 kHz and amplitudes from 0.02–4 μN. The force applied was determined by measuring the deflection of the probes' cantilever arms. TM impedance in the radial direction had a magnitude of 63 ± 28 mN · s/m at 10 Hz and fell with frequency by 16 ± 0.4 dB/decade, with a constant phase of −72 ± 6°. In the longitudinal direction, impedance was 36 ± 9 mN · s/m at 10 Hz and fell by 19 ± 0.4 dB/decade, with a constant phase of −78 ± 4°. Impedance was nearly constant as a function of force except at the highest forces, for which it fell slightly. These results show that the viscoelastic properties of the TM extend over a significant range of audio frequencies, consistent with a poroelastic interpretation of TM mechanics. The shear modulus G′ determined from these measurements was 17–50 kPa, which is larger than in species with a lower auditory frequency range. This value suggests that hair bundles cannot globally shear the TM, but most likely cause bulk TM motion. PMID:18515382

  18. Some Nonlinear Reconstruction Algorithms for Electrical Impedance Tomography

    SciTech Connect

    Berryman, J G

    2001-03-09

    An impedance camera [Henderson and Webster, 1978; Dines and Lytle, 1981]--or what is now more commonly called electrical impedance tomography--attempts to image the electrical impedance (or just the conductivity) distribution inside a body using electrical measurements on its boundary. The method has been used successfully in both biomedical [Brown, 1983; Barber and Brown, 1986; J. C. Newell, D. G. Gisser, and D. Isaacson, 1988; Webster, 1990] and geophysical applications [Wexler, Fry, and Neurnan, 1985; Daily, Lin, and Buscheck, 1987], but the analysis of optimal reconstruction algorithms is still progressing [Murai and Kagawa, 1985; Wexler, Fry, and Neurnan, 1985; Kohn and Vogelius, 1987; Yorkey and Webster, 1987; Yorkey, Webster, and Tompkins, 1987; Berryman and Kohn, 1990; Kohn and McKenney, 1990; Santosa and Vogelius, 1990; Yorkey, 1990]. The most common application is monitoring the influx or efflux of a highly conducting fluid (such as brine in a porous rock or blood in the human body) through the volume being imaged. For biomedical applications, this met hod does not have the resolution of radiological methods, but it is comparatively safe and inexpensive and therefore provides a valuable alternative when continuous monitoring of a patient or process is desired. The following discussion is intended first t o summarize the physics of electrical impedance tomography, then to provide a few details of the data analysis and forward modeling requirements, and finally to outline some of the reconstruction algorithms that have proven to be most useful in practice. Pointers to the literature are provided throughout this brief narrative and the reader is encouraged to explore the references for more complete discussions of the various issues raised here.

  19. Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics

    SciTech Connect

    Rahman, Md. T. Ramana, C. V.

    2014-10-28

    Gadolinium (Gd) substituted cobalt ferrites (CoFe{sub 2−x}Gd{sub x}O{sub 4}, referred to CFGO) with variable Gd content (x = 0.0–0.4) have been synthesized by solid state ceramic method. The crystal structure and impedance properties of CFGO compounds have been evaluated. X-ray diffraction measurements indicate that CFGO crystallize in the inverse spinel phase. The CFGO compounds exhibit lattice expansion due to substitution of larger Gd ions into the crystal lattice. Impedance spectroscopy analysis was performed under a wide range of frequency (f = 20 Hz–1 MHz) and temperature (T = 303–573 K). Electrical properties of Gd incorporated Co ferrite ceramics are enhanced compared to pure CoFe{sub 2}O{sub 4} due to the lattice distortion. Impedance spectroscopic analysis illustrates the variation of bulk grain and grain-boundary contributions towards the electrical resistance and capacitance of CFGO materials with temperature. A two-layer heterogeneous model consisting of moderately conducting grain interior (ferrite-phase) regions separated by insulating grain boundaries (resistive-phase) accurately account for the observed temperature and frequency dependent electrical characteristic of CFGO ceramics.

  20. The IMPACT shirt: textile integrated and portable impedance cardiography.

    PubMed

    Ulbrich, Mark; Mühlsteff, Jens; Sipilä, Auli; Kamppi, Merja; Koskela, Anne; Myry, Manu; Wan, Tingting; Leonhardt, Steffen; Walter, Marian

    2014-06-01

    Measurement of hemodynamic parameters such as stroke volume (SV) via impedance cardiography (ICG) is an easy, non-invasive and inexpensive way to assess the health status of the heart. We present a possibility to use this technology for monitoring risk patients at home. The IMPACT Shirt (IMPedAnce Cardiography Textile) has been developed with integrated textile electrodes and textile wiring, as well as with portable miniaturized hardware. Several textile materials were characterized in vitro and in vivo to analyze their performance with regard to washability, and electrical characteristics such as skin-electrode impedance, capacitive coupling and subjective tactile feeling. The small lightweight hardware measures ECG and ICG continuously and transmits wireless data via Bluetooth to a mobile phone (Android) or PC for further analysis. A lithium polymer battery supplies the circuit and can be charged via a micro-USB. Results of a proof-of-concept trial show excellent agreement between SV assessed by a commercial device and the developed system. The IMPACT Shirt allows monitoring of SV and ECG on a daily basis at the patient's home. PMID:24846072

  1. ONERA-NASA Cooperative Effort on Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Primus, Julien; Piot, Estelle; Simon, Frank; Jones, Michael G.; Watson, Willie R

    2013-01-01

    As part of a cooperation between ONERA and NASA, the liner impedance eduction methods developed by the two research centers are compared. The NASA technique relies on an objective function built on acoustic pressure measurements located on the wall opposite the test liner, and the propagation code solves the convected Helmholtz equation in uniform ow using a finite element method that implements a continuous Galerkin discretization. The ONERA method uses an objective function based either on wall acoustic pressure or on acoustic velocity acquired above the liner by Laser Doppler Anemometry, and the propagation code solves the linearized Euler equations by a discontinuous Galerkin discretization. Two acoustic liners are tested in both ONERA and NASA ow ducts and the measured data are treated with the corresponding impedance eduction method. The first liner is a wire mesh facesheet mounted onto a honeycomb core, designed to be linear with respect to incident sound pressure level and to grazing ow velocity. The second one is a conventional, nonlinear, perforate-over-honeycomb single layer liner. Configurations without and with ow are considered. For the nonlinear liner, the comparison of liner impedance educed by NASA and ONERA shows a sensitivity to the experimental conditions, namely to the nature of the source and to the sample width.

  2. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.

    PubMed

    Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji

    2007-09-01

    This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation. PMID:17941391

  3. Time-domain fitting of battery electrochemical impedance models

    NASA Astrophysics Data System (ADS)

    Alavi, S. M. M.; Birkl, C. R.; Howey, D. A.

    2015-08-01

    Electrochemical impedance spectroscopy (EIS) is an effective technique for diagnosing the behaviour of electrochemical devices such as batteries and fuel cells, usually by fitting data to an equivalent circuit model (ECM). The common approach in the laboratory is to measure the impedance spectrum of a cell in the frequency domain using a single sine sweep signal, then fit the ECM parameters in the frequency domain. This paper focuses instead on estimation of the ECM parameters directly from time-domain data. This may be advantageous for parameter estimation in practical applications such as automotive systems including battery-powered vehicles, where the data may be heavily corrupted by noise. The proposed methodology is based on the simplified refined instrumental variable for continuous-time fractional systems method ('srivcf'), provided by the Crone toolbox [1,2], combined with gradient-based optimisation to estimate the order of the fractional term in the ECM. The approach was tested first on synthetic data and then on real data measured from a 26650 lithium-ion iron phosphate cell with low-cost equipment. The resulting Nyquist plots from the time-domain fitted models match the impedance spectrum closely (much more accurately than when a Randles model is assumed), and the fitted parameters as separately determined through a laboratory potentiostat with frequency domain fitting match to within 13%.

  4. Single cell electric impedance topography: mapping membrane capacitance.

    PubMed

    Dharia, Sameera; Ayliffe, Harold E; Rabbitt, Richard D

    2009-12-01

    Single-cell electric impedance topography (sceTopo), a technique introduced here, maps the spatial distribution of capacitance (i.e. displacement current) associated with the membranes of isolated, living cells. Cells were positioned in the center of a circular recording chamber surrounded by eight electrodes. Electrodes were evenly distributed on the periphery of the recording chamber. Electric impedance measured between adjacent electrode pairs (10 kHz-5 MHz) was used to construct topographical maps of the spatial distribution of membrane capacitance. Xenopus Oocytes were used as a model cell to develop sceTopo because these cells consist of two visually distinguishable hemispheres, each with distinct membrane composition and structure. Results showed significant differences in the imaginary component of the impedance between the two oocyte hemispheres. In addition, the same circumferential array was used to map the size of the extracellular electrical shunt path around the cell, providing a means to estimate the location and shape of the cell in the recording chamber. PMID:19904403

  5. Study of surfactant-skin interactions by skin impedance measurements.

    PubMed

    Lu, Guojin; Moore, David J

    2012-02-01

    The stratum corneum (SC) plays a very critical physiological role as skin barrier in regulating water loss through the skin and protects the body from a wide range of physical and chemical exogenous insults. Surfactant-containing formulations can induce skin damage and irritation owing to surfactant absorption and penetration. It is generally accepted that reduction in skin barrier properties occurs only after surfactants have penetrated/permeated into the skin barrier. To mitigate the harshness of surfactant-based cleansing products, penetration/permeation of surfactants should be reduced. Skin impedance measurements have been taken in vitro on porcine skin using vertical Franz diffusion cells to investigate the impact of surfactants, temperature and pH on skin barrier integrity. These skin impedance results demonstrate excellent correlation with other published methods for assessing skin damage and irritation from different surfactant chemistry, concentration, pH, time of exposure and temperature. This study demonstrates that skin impedance can be utilized as a routine approach to screen surfactant-containing formulations for their propensity to compromise the skin barrier and hence likely lead to skin irritation. PMID:21923733

  6. An analysis of the acoustic input impedance of the ear.

    PubMed

    Withnell, Robert H; Gowdy, Lauren E

    2013-10-01

    Ear canal acoustics was examined using a one-dimensional lossy transmission line with a distributed load impedance to model the ear. The acoustic input impedance of the ear was derived from sound pressure measurements in the ear canal of healthy human ears. A nonlinear least squares fit of the model to data generated estimates for ear canal radius, ear canal length, and quantified the resistance that would produce transmission losses. Derivation of ear canal radius has application to quantifying the impedance mismatch at the eardrum between the ear canal and the middle ear. The length of the ear canal was found, in general, to be longer than the length derived from the one-quarter wavelength standing wave frequency, consistent with the middle ear being mass-controlled at the standing wave frequency. Viscothermal losses in the ear canal, in some cases, may exceed that attributable to a smooth rigid wall. Resistance in the middle ear was found to contribute significantly to the total resistance. In effect, this analysis "reverse engineers" physical parameters of the ear from sound pressure measurements in the ear canal. PMID:23917695

  7. Modal decomposition method for acoustic impedance testing in square ducts.

    PubMed

    Schultz, Todd; Cattafesta, Louis N; Sheplak, Mark

    2006-12-01

    Accurate duct acoustic propagation models are required to predict and reduce aircraft engine noise. These models ultimately rely on measurements of the acoustic impedance to characterize candidate engine nacelle liners. This research effort increases the frequency range of normal-incidence acoustic impedance testing in square ducts by extending the standard two-microphone method (TMM), which is limited to plane wave propagation, to include higher-order modes. The modal decomposition method (MDM) presented includes four normal modes in the model of the sound field, thus increasing the bandwidth from 6.7 to 13.5 kHz for a 25.4 mm square waveguide. The MDM characterizes the test specimen for normal- and oblique-incident acoustic impedance and mode scattering coefficients. The MDM is first formulated and then applied to the measurement of the reflection coefficient matrix for a ceramic tubular specimen. The experimental results are consistent with results from the TMM for the same specimen to within the 95% confidence intervals for the TMM. The MDM results show a series of resonances for the ceramic tubular material exhibiting a monotonic decrease in the resonant peaks of the acoustic resistance with increasing frequency, resembling a rigidly-terminated viscous tube, and also evidence of mode scattering is visible at the higher frequencies. PMID:17225402

  8. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  9. Effect of Accelerator Impedance on Electron Cloud Instability

    NASA Astrophysics Data System (ADS)

    Allen, Brian; Muggli, Patric; Fischer, Wolfram; Blaskiewicz, Michael; Katsouleas, Thomas

    2009-11-01

    Interaction between a beam and electron clouds (e-cloud) present in circular accelerators is known to limit accelerator performances through instabilities, beam loss, beam-blowup, and the resulting reduced luminosity. The RHIC beam is most susceptible to instabilities as it crosses energy transition (γt=22.9) and it is posited that ring impedance could play a role in the development of instabilities during this transition. We use the quasi-static particle in cell code QuickPIC to describe the interaction between the RHIC Au beam and the electron cloud. In QuickPIC the electron cloud density is uniform around the ring and the beam has a constant beta function given by the accelerator circumference and the beam tune. We incorporate in the current QuickPIC version the ring impedance for a circular accelerator and we take a first look at the effect this impedance has on the beam and e-cloud interaction for typical RHIC parameters.

  10. Epithelial impedance analysis in experimentally induced colon cancer.

    PubMed Central

    Davies, R J; Joseph, R; Kaplan, D; Juncosa, R D; Pempinello, C; Asbun, H; Sedwitz, M M

    1987-01-01

    Epithelial impedance analysis was used to measure the alterations in resistance of the large bowel in a murine model of large bowel cancer. The technique was able to resolve the epithelial resistance from the total resistance of the bowel wall. A progressive decrease in resistance of the bowel epithelium occurs during carcinogenesis induced with dimethyhydrazine. About a 21% decrease in epithelial resistance from 22.0 +/- 1.3 omega.cm-2 to 17.5 +/- 1.1 omega cm-2 (p less than 0.025) was observed after 20 wk of carcinogen administration. The sensitivity of the technique in detecting altered epithelial resistance in premalignant bowel mucosa was improved by examining the impedance profile in a sodium-free Ringer's solution where the epithelium of control colons had a resistance of 24.4 +/- 1.8 omega.cm-2 compared with 19.0 +/- 1.1 omega.cm-2 (p less than 0.02) in colons from animals treated for only 4 wk with the carcinogen. Epithelial impedance analysis would seem to be a sensitive technique capable of identifying changes in the electrical properties or the large bowel early in disease states. PMID:3427187

  11. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  12. Impedance and dielectric properties of mercury cuprate at nonsuperconducting state

    NASA Astrophysics Data System (ADS)

    Özdemir, Z. Güven; Çataltepe, Ö. Aslan; Onbaşlı, Ü.

    2015-10-01

    In this paper, impedance and dielectric properties of nonsuperconducting state of the mercury-based cuprate have been investigated by impedance measurements within the frequency interval of 10 Hz-10 MHz for the first time. The dielectric loss factor (tgδ) and ac conductivity (σac) parameters have also been calculated for non-superconducting state. According to impedance spectroscopy analysis, the equivalent circuit of the mercury cuprate system manifests itself as a semicircle in the Nyquist plot that corresponds to parallel connected resistance-capacitance circuit. The oscillation frequency of the circuit has been determined as approximately 45 kHz which coincides with the low frequency radio waves. Moreover, it has been revealed that the mercury-based cuprate investigated has high dielectric constants and hence it may be utilized in microelectronic industry such as capacitors, memory devices etc., at room temperature. In addition, negative capacitance (NC) effect has been observed for the mercury cuprate regardless of the operating temperatures at nonsuperconducting state. Referring to dispersions in dielectric properties, the main contribution to dielectric response of the system has been suggested as dipolar and interfacial polarization mechanisms.

  13. Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hinton, Yolanda L.

    2008-01-01

    Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.

  14. A comprehensive impedance journey to continuous microbial fuel cells.

    PubMed

    Sevda, Surajbhan; Chayambuka, Kudakwashe; Sreekrishnan, T R; Pant, Deepak; Dominguez-Benetton, Xochitl

    2015-12-01

    The aim of the present work was to characterize the impedance response of an air-cathode MFC operating in a continuous mode and to determine intrinsic properties that define its performance which are crucial to be controlled for scalability purposes. The limiting step on electricity generation is the anodic electrochemically-active biofilm, independently of the external resistance, Rext, utilized. However, for Rext below 3 kΩ the internal impedance of the bioanode remained invariable, in good correspondence to the power density profile. The hydraulic retention time (HRT) had an effect on the impedance of both the bioanode and the air-cathode and especially on the overall MFC. The lowest HRT at which the MFC was operable was 3h. Yet, the variation on the HRT did not have a significant impact on power generation. A two constant phase element-model was associated with the EIS response of both bioanode and air-cathode, respectively. Consistency was found between the CPE behaviour and the normal power-law distribution of local resistivity with a uniform dielectric constant, which represented consistent values with the electrical double layer, the Nernst diffusion layer and presumably the biofilm thickness. These results have future implications on MFC monitoring and control, as well as in providing critical parameters for scale-up. PMID:25921205

  15. Embedded silver PDMS electrodes for single cell electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Xu, Zhensong; Cachia, Mark A.; Nguyen, John; Zheng, Yi; Wang, Chen; Sun, Yu

    2016-09-01

    This paper presents a microfluidic device with wide channels and embedded AgPDMS electrodes for measuring the electrical properties of single cells. The work demonstrates the feasibility of using a large channel design and embedded electrodes for impedance spectroscopy to circumvent issues such as channel clogging and limited device re-usability. AgPDMS electrodes were formed on channel sidewalls for impedance detection and cell electrical properties measurement. Equivalent circuit models were used to interpret multi-frequency impedance data to quantify each cell’s cytoplasm conductivity and specific membrane capacitance. T24 cells were tested to validate the microfluidic system and modeling results. Comparisons were then made by measuring two leukemia cell lines (AML-2 and HL-60) which were found to have different cytoplasm conductivity values (0.29  ±  0.15 S m‑1 versus 0.47  ±  0.20 S m‑1) and specific membrane capacitance values (41  ±  25 mF m‑2 versus 55  ±  26 mF m‑2) when the cells were flown through the wide channel and measured by the AgPDMS electrodes.

  16. Optimal impedance on transmission of Lorentz force EMATs

    NASA Astrophysics Data System (ADS)

    Isla, Julio; Seher, Matthias; Challis, Richard; Cegla, Frederic

    2016-02-01

    Electromagnetic-acoustic transducers (EMATs) are attractive for non-destructive inspections because direct contact with the specimen under test is not required. This advantage comes at a high cost in sensitivity and therefore it is important to optimise every aspect of an EMAT. The signal strength produced by EMATs is in part determined by the coil impedance regardless of the transduction mechanism (e.g. Lorentz force, magnetostriction, etc.). There is very little literature on how to select the coil impedance that maximises the wave intensity; this paper addresses that gap. A transformer circuit is used to model the interaction between the EMAT coil and the eddy currents that are generated beneath the coil in the conducting specimen. Expressions for the coil impedances that satisfy the maximum efficiency and maximum power transfer conditions on transmission are presented. To support this analysis, a tunable coil that consists of stacked identical thin layers independently accessed is used so that the coil inductance can be modified while leaving the radiation pattern of the EMAT unaffected.

  17. [Descriptive epidemiology of urolithiasis].

    PubMed

    Kodama, H; Ohno, Y

    1989-06-01

    In this paper, urolithiasis is remarked from the standpoint of descriptive epidemiology, which examines the frequency distribution of a given disease in a population in terms of time, place and personal characteristics with an aim of identifying risk factors or some clues to the etiology. Some descriptive epidemiological features of urolithiasis are summarized. Prevalence rate is around 4% (4-15% in males and 4-8% in females), and incidence rate varies from area to area: 53.2 per 100,000 population in 1975 in Japan, 364 in 1976 in Malaysia, and 540 in 1979 in West Germany. Prevalence and/or incidence rates have, in general, increased in the developed countries since World War II and in the developing countries as well, where upward trends are quite analogous to the trends observed in the nineteenth century in Europe. Recurrence rate, which is much higher in males than in females, ranges from 31% to 75%, depending on the follow-up periods. In the industrialized countries, upper urinary (renal and ureteral) stones account for more than 90% of total stones, which are ordinarily calcium complexes in composition. More common in the developing countries are lower urinary (bladder and urethral) stones, frequently composed of magnesium ammonium phosphate, which indicates a close association with urinary tract infections. Variations in frequency are evident by season and by region within a country. Age and sex differentials in urinary stone formers are substantial: more common in males 30-40 years old in the industrialized countries and in children under 10 years old in the developing countries. Racial differentials are also noted; blacks appear to suffer less frequently than whites. Stone formers experience more frequent episodes of stone formation in their family members, particularly father and brothers, than non-stone formers. These findings on racial differentials and family preponderance suggest the possible relevance of genetic factors in stone formation. Stone

  18. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography.

    PubMed

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion. PMID:27253433

  19. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography

    PubMed Central

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion. PMID:27253433

  20. Microgravity Environment Description Handbook

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; McPherson, Kevin; Hrovat, Kenneth; Moskowitz, Milton; Rogers, Melissa J. B.; Reckart, Timothy

    1997-01-01

    The Microgravity Measurement and Analysis Project (MMAP) at the NASA Lewis Research Center (LeRC) manages the Space Acceleration Measurement System (SAMS) and the Orbital Acceleration Research Experiment (OARE) instruments to measure the microgravity environment on orbiting space laboratories. These laboratories include the Spacelab payloads on the shuttle, the SPACEHAB module on the shuttle, the middeck area of the shuttle, and Russia's Mir space station. Experiments are performed in these laboratories to investigate scientific principles in the near-absence of gravity. The microgravity environment desired for most experiments would have zero acceleration across all frequency bands or a true weightless condition. This is not possible due to the nature of spaceflight where there are numerous factors which introduce accelerations to the environment. This handbook presents an overview of the major microgravity environment disturbances of these laboratories. These disturbances are characterized by their source (where known), their magnitude, frequency and duration, and their effect on the microgravity environment. Each disturbance is characterized on a single page for ease in understanding the effect of a particular disturbance. The handbook also contains a brief description of each laboratory.