Sample records for impeding exocytotic surfactant

  1. The exocytotic fusion pore modeled as a lipidic pore.

    PubMed Central

    Nanavati, C; Markin, V S; Oberhauser, A F; Fernandez, J M

    1992-01-01

    Freeze-fracture electron micrographs from degranulating cells show that the lumen of the secretory granule is connected to the extracellular compartment via large (20 to 150 nm diameter) aqueous pores. These exocytotic fusion pores appear to be made up of a highly curved bilayer that spans the plasma and granule membranes. Conductance measurements, using the patch-clamp technique, have been used to study the fusion pore from the instant it conducts ions. These measurements reveal the presence of early fusion pores that are much smaller than those observed in electron micrographs. Early fusion pores open abruptly, fluctuate, and then either expand irreversibly or close. The molecular structure of these early fusion pores is unknown. In the simplest extremes, these early fusion pores could be either ion channel like protein pores or lipidic pores. Here, we explored the latter possibility, namely that of the early exocytotic fusion pore modeled as a lipid-lined pore whose free energy was composed of curvature elastic energy and work done by tension. Like early exocytotic fusion pores, we found that these lipidic pores could open abruptly, fluctuate, and expand irreversibly. Closure of these lipidic pores could be caused by slight changes in lipid composition. Conductance distributions for stable lipidic pores matched those of exocytotic fusion pores. These findings demonstrate that lipidic pores can exhibit the properties of exocytotic fusion pores, thus providing an alternate framework with which to understand and interpret exocytotic fusion pore data. PMID:1420930

  2. Regulation of exocytotic fusion by cell inflation.

    PubMed Central

    Solsona, C; Innocenti, B; Fernández, J M

    1998-01-01

    We have inflated patch-clamped mast cells by 3.8 +/- 1.6 times their volume by applying a hydrostatic pressure of 5-15 cm H2O to the interior of the patch pipette. Inflation did not cause changes in the cell membrane conductance and caused only a small reversible change in the cell membrane capacitance (36 +/- 5 fF/cm H2O). The specific cell membrane capacitance of inflated cells was found to be 0.5 microF/cm2. High-resolution capacitance recordings showed that inflation reduced the frequency of exocytotic fusion events by approximately 70-fold, with the remaining fusion events showing an unusual time course. Shortly after the pressure was returned to 0 cm H2O, mast cells regained their normal size and appearance and degranulated completely, even after remaining inflated for up to 60 min. We interpret these observations as an indication that inflated mast cells reversibly disassemble the structures that regulate exocytotic fusion. Upon returning to its normal size, the cell cytosol reassembles the fusion pore scaffolds and allows exocytosis to proceed, suggesting that exocytotic fusion does not require soluble proteins. Reassembly of the fusion pore can be prevented by inflating the cells with solutions containing the protease pronase, which completely blocked exocytosis. We also interpret these results as evidence that the activity of the fusion pore is sensitive to the tension of the plasma membrane. PMID:9533718

  3. Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation

    PubMed Central

    Ivanov, Sergey; Fedorova, Elena E.; Limpens, Erik; De Mita, Stephane; Genre, Andrea; Bonfante, Paola; Bisseling, Ton

    2012-01-01

    Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium–legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium–legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium–legume symbiosis. PMID:22566631

  4. Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors

    PubMed Central

    Mathivanan, Sakthikumar; Devesa, Isabel; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2016-01-01

    Transient receptor potential vanilloid I (TRPV1) sensitization in peripheral nociceptors is a prominent phenomenon that occurs in inflammatory pain conditions. Pro-algesic agents can potentiate TRPV1 activity in nociceptors through both stimulation of its channel gating and mobilization of channels to the neuronal surface in a context dependent manner. A recent study reported that ATP-induced TRPV1 sensitization in peptidergic nociceptors involves the exocytotic release of channels trafficked by large dense core vesicles (LDCVs) that cargo alpha-calcitonin gene related peptide alpha (αCGRP). We hypothesized that, similar to ATP, bradykinin may also use different mechanisms to sensitize TRPV1 channels in peptidergic and non-peptidergic nociceptors. We found that bradykinin notably enhances the excitability of peptidergic nociceptors, and sensitizes TRPV1, primarily through the bradykinin receptor 2 pathway. Notably, bradykinin sensitization of TRPV1 in peptidergic nociceptors was significantly blocked by inhibiting Ca2+-dependent neuronal exocytosis. In addition, silencing αCGRP gene expression, but not substance P, drastically reduced bradykinin-induced TRPV1 sensitization in peptidergic nociceptors. Taken together, these findings indicate that bradykinin-induced sensitization of TRPV1 in peptidergic nociceptors is partially mediated by the exocytotic mobilization of new channels trafficked by αCGRP-loaded LDCVs to the neuronal membrane. Our findings further imply a central role of αCGRP peptidergic nociceptors in peripheral algesic sensitization, and substantiate that inhibition of LDCVs exocytosis is a valuable therapeutic strategy to treat pain, as it concurrently reduces the release of pro-inflammatory peptides and the membrane recruitment of thermoTRP channels. PMID:27445816

  5. Electrical impedance tomography can rapidly detect small pneumothoraces in surfactant-depleted piglets.

    PubMed

    Bhatia, Risha; Schmölzer, Georg M; Davis, Peter G; Tingay, David G

    2012-02-01

    Diagnosis of pneumothorax relies on clinical suspicion and chest X-ray, and is often delayed. We aimed to determine whether electrical impedance tomography (EIT) can accurately identify the presence of surgically created pneumothoraces before significant changes in clinical parameters. Six anesthetized and muscle-relaxed piglets with surfactant-depleted lungs were studied. Following chest drain insertion into the right ventral chest, 10-20 ml aliquots of air were instilled into the pleural space to a maximum volume of 200 ml. The pneumothorax was drained by attaching a Heimlich valve to the chest drain. At each instillation and after draining the pneumothorax, global and regional end-expiratory intra-thoracic volumes (EEV) were measured using respiratory inductive plethysmography (RIP) and EIT concurrently with [Formula: see text], heart rate and blood pressure. A significantly greater change in both global EEV(RIP) and EEV within the right ventral quadrant was seen at all volume instillations, from as little as 10 ml, compared with all other quadrants. There was no difference in EEV within the left ventral and both dorsal quadrants. Sp(O)(2) fell below 90% at 100 ml instillation. Tachycardia occurred at 140 ml instillation. EIT identified a 60% resolution of pneumothoraces within 60 s of attachment of the Heimlich valve. EIT accurately detects very small pneumothoraces before physiological parameters change.

  6. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    PubMed Central

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  7. αCGRP is essential for algesic exocytotic mobilization of TRPV1 channels in peptidergic nociceptors

    PubMed Central

    Devesa, Isabel; Ferrándiz-Huertas, Clotilde; Mathivanan, Sakthikumar; Wolf, Christoph; Luján, Rafael; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2014-01-01

    Proalgesic sensitization of peripheral nociceptors in painful syndromes is a complex molecular process poorly understood that involves mobilization of thermosensory receptors to the neuronal surface. However, whether recruitment of vesicular thermoTRP channels is a general mechanism underlying sensitization of all nociceptor types or is subtype-specific remains controversial. We report that sensitization-induced Ca2+-dependent exocytotic insertion of transient receptor potential vanilloid 1 (TRPV1) receptors to the neuronal plasma membrane is a mechanism specifically used by peptidergic nociceptors to potentiate their excitability. Notably, we found that TRPV1 is present in large dense-core vesicles (LDCVs) that were mobilized to the neuronal surface in response to a sensitizing insult. Deletion or silencing of calcitonin-gene–related peptide alpha (αCGRP) gene expression drastically reduced proalgesic TRPV1 potentiation in peptidergic nociceptors by abrogating its Ca2+-dependent exocytotic recruitment. These findings uncover a context-dependent molecular mechanism of TRPV1 algesic sensitization and a previously unrecognized role of αCGRP in LDCV mobilization in peptidergic nociceptors. Furthermore, these results imply that concurrent secretion of neuropeptides and channels in peptidergic C-type nociceptors facilitates a rapid modulation of pain signaling. PMID:25489075

  8. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains

    PubMed Central

    Wu, Zhenyong; Thiyagarajan, Sathish; O’Shaughnessy, Ben; Karatekin, Erdem

    2017-01-01

    Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx) and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs) of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores in a biochemically

  9. Effects of new fluorinated analogues of GABA, pregabalin bioisosters, on the ambient level and exocytotic release of [3H]GABA from rat brain nerve terminals.

    PubMed

    Borisova, T; Pozdnyakova, N; Shaitanova, E; Gerus, I; Dudarenko, M; Haufe, G; Kukhar, V

    2017-01-15

    Recently, we have shown that new fluorinated analogues of γ-aminobutyric acid (GABA), bioisosters of pregabalin (β-i-Bu-GABA), i.e. β-polyfluoroalkyl-GABAs (FGABAs), with substituents: β-CF 3 -β-OH (1), β-CF 3 (2); β-CF 2 CF 2 H (3), are able to increase the initial rate of [ 3 H]GABA uptake by isolated rat brain nerve terminals (synaptosomes), and this effect is higher than that of pregabalin. So, synthesized FGABAs are structural but not functional analogues of GABA. Herein, we assessed the effects of synthesized FGABAs (100μM) on the ambient level and exocytotic release of [ 3 H]GABA in nerve terminals and compared with those of pregabalin (100μM). It was shown that FGABAs 1-3 did not influence the ambient level of [ 3 H]GABA in the synaptosomal preparations, and this parameter was also not altered by pregabalin. During blockage of GABA transporters GAT1 by specific inhibitor NO-711, FGABAs and pregabalin also did not change ambient [ 3 H]GABA in synaptosomal preparations. Exocytotic release of [ 3 H]GABA from synaptosomes decreased in the presence of FGABAs 1-3 and pregabalin, and the effects of FGABAs 1 &3 were more significant than those of FGABAs 2 and pregabalin. FGABAs 1-3/pregabalin-induced decrease in exocytotic release of [ 3 H]GABA from synaptosomes was not a result of changes in the potential of the plasma membrane. Therefore, new synthesized FGABAs 1 &3 were able to decrease exocytotic release of [ 3 H]GABA from nerve terminals more effectively in comparison to pregabalin. Absence of unspecific side effects of FGABAs 1 &3 on the membrane potential makes these compounds perspective for medical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant

    PubMed Central

    Kobayashi, Jun; Kawahara, Ryosuke; Uchida, Sayaka; Koguchi, Shinichi; Ito, Takeru

    2016-01-01

    A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8) isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC) impedance spectroscopy. PMID:27347926

  11. Measurement of thin liquid film drainage using a novel high-speed impedance analyzer

    NASA Astrophysics Data System (ADS)

    Hool, Kevin O.; Saunders, Robert C.; Ploehn, Harry J.

    1998-09-01

    This work describes the design and implementation of a new instrument, called the thin film impedance analyzer, which measures the rate of drainage of thin oil films. The instrument forms an oil film by elevating a planar oil-water interface into a water drop hanging from a stainless steel capillary tube immersed in the oil. The instrument measures the magnitude of the impedance of the matter between the capillary tube and a screen electrode immersed in the lower water phase. Under appropriate conditions, the capacitance of the oil film dominates the impedance. The instrument records the increase in the magnitude of the admittance associated with the draining and thinning of the oil film. The features of the drainage curves vary considerably with the type, amount, and location of surfactants in the oil and water phases, as well as with user-specified values of drop volume, drop equilibration time, and extent of drop compression. For this reason, the instrument has utility as a screening tool for selecting surfactants for emulsion formulations. Potential future uses include accelerated prediction of emulsion stability and extraction of oil-water interfacial rheological parameters.

  12. Surfactant Effects on Structure and Mechanical Properties of Ultrahigh-Molecular-Weight Polyethylene/Layered Silicate Composites.

    PubMed

    Nikiforov, Leonid A; Okhlopkova, Tatinana A; Kapitonova, Iullia V; Sleptsova, Sardana A; Okhlopkova, Aitalina A; Shim, Ee Le; Cho, Jin-Ho

    2017-12-05

    In this study, the reinforcement of ultrahigh-molecular-weight polyethylene (UHMWPE) with biotite was investigated. The biotite filler was mechanically activated with different dry surfactants to improve its compatibility with UHMWPE and decrease agglomeration among biotite particles. Alkyldimethylbenzylammonium chloride (ADBAC) and cetyltrimethylammonium bromide (CTAB) were selected as cationic surfactants. The tensile strength of composites containing 1 wt % of CTAB-treated biotite was increased by 30% relative to those with untreated biotite, but was unchanged with ADBAC treatment of the same biotite content. The stereochemistry of the surfactant may be critical to the composite structure and mechanical properties of the material. The stereochemistry of CTAB was preferable to that of ADBAC in enhancing mechanical properties because the stereochemistry of ADBAC impedes favorable interactions with the biotite surface during mechanical activation.

  13. Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions.

    PubMed

    Pereira, Thulio C; Conceição, Carlos A F; Khan, Alamgir; Fernandes, Raquel M T; Ferreira, Maira S; Marques, Edmar P; Marques, Aldaléa L B

    2016-11-05

    Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions

    NASA Astrophysics Data System (ADS)

    Pereira, Thulio C.; Conceição, Carlos A. F.; Khan, Alamgir; Fernandes, Raquel M. T.; Ferreira, Maira S.; Marques, Edmar P.; Marques, Aldaléa L. B.

    2016-11-01

    Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique.

  15. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  16. Thermally cleavable surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElhanon, James R; Simmons, Blake A; Zifer, Thomas

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  17. Thermally cleavable surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElhanon, James R; Simmons, Blake A; Zifer, Thomas

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  18. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R [Manteca, CA; Simmons, Blake A [San Francisco, CA; Zifer, Thomas [Manteca, CA; Jamison, Gregory M [Albuquerque, NM; Loy, Douglas A [Albuquerque, NM; Rahimian, Kamyar [Albuquerque, NM; Long, Timothy M [Urbana, IL; Wheeler, David R [Albuquerque, NM; Staiger, Chad L [Albuquerque, NM

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  19. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.

    PubMed

    Borisova, Tatiana; Nazarova, Anastasia; Dekaliuk, Mariia; Krisanova, Natalia; Pozdnyakova, Natalia; Borysov, Arsenii; Sivko, Roman; Demchenko, Alexander P

    2015-02-01

    Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Research progress of surfactant

    NASA Astrophysics Data System (ADS)

    Zheng, Minyi; Mo, Lingyun; Qin, Ruqiong; Liang, Liying; Zhang, Fan

    2017-01-01

    With the rapid development of surfactant and the large growing use of the materials, the safety of surfactant may be a problem that draw worldwide attention. The surfactant can be discharged into environment through various approach and may cause toxic effects in organism. This paper reviews the environmental effects of surfactant materials for plants and animals, and raises some questions by describing the results of environmental toxicology. We put it that it is a great significant of promote the sustainable development of surfactant industry through a comprehensive understanding of surfactant environmental safety.

  1. High Doses of Amphetamine Augment, Rather Than Disrupt, Exocytotic Dopamine Release in the Dorsal and Ventral Striatum of the Anesthetized Rat

    PubMed Central

    Ramsson, Eric S.; Howard, Christopher D.; Covey, Dan P.; Garris, Paul A.

    2011-01-01

    High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action. PMID:21806614

  2. Surfactant and pulmonary blood flow distributions following treatment of premature lambs with natural surfactant.

    PubMed Central

    Jobe, A; Ikegami, M; Jacobs, H; Jones, S

    1984-01-01

    Prematurely delivered lambs were treated with radiolabeled natural surfactant by either tracheal instillation at birth and before the onset of mechanical ventilation, or after 23 +/- 1 (+/- SE) min of mechanical ventilation. Right ventricular blood flow distributions, left ventricular outputs, and left-to-right ductal shunts were measured with radiolabeled microspheres. After sacrifice, the lungs of lambs receiving surfactant at birth inflated uniformly with constant distending pressure while the lungs of lambs treated after a period of ventilation had aerated, partially aerated, and atelectatic areas. All lungs were divided into pieces which were weighed and catalogued as to location. The amount of radiolabeled surfactant and microsphere-associated radioactivity in each piece of lung was quantified. Surfactant was relatively homogenously distributed to pieces of lung from lambs that were treated with surfactant at birth; 48% of lung pieces received amounts of surfactant within +/- 25% of the mean value. Surfactant was preferentially recovered from the aerated pieces of lungs of lambs treated after a period of mechanical ventilation, and the distribution of surfactant to these lungs was very nonhomogeneous. Right ventricular blood flow distributions to the lungs were quite homogeneous in both groups of lambs. However, in 8 of 12 lambs, pulmonary blood flow was preferentially directed away from those pieces of lung that received relatively large amounts of surfactant and toward pieces of lung that received less surfactant. This acute redirection of pulmonary blood flow distribution may result from the local changes in compliances within the lung following surfactant instillation. PMID:6546766

  3. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations.

  5. Repeat surfactant therapy for postsurfactant slump.

    PubMed

    Katz, L A; Klein, J M

    2006-07-01

    To evaluate repeat surfactant therapy for the treatment of respiratory failure associated with postsurfactant slump in extremely low birth weight infants (ELBW) by characterizing the population of premature infants who develop postsurfactant slump and measuring their response to a secondary course of surfactant therapy. A retrospective analysis of a cohort of all patients admitted over a 3-year period with birth weights <1000 g (ELBW infants). Information was collected by chart review and the patients were categorized into three distinct groups for analysis. Initial surfactant only, patients who received surfactant replacement therapy only for respiratory distress syndrome (RDS); repeat surfactant, patients who received both initial surfactant replacement for RDS and repeat surfactant therapy for postsurfactant slump (defined as respiratory failure after 6 days of age), and no surfactant, patients in whom no surfactant was ever administered. A respiratory severity score (RSS) was used to measure the severity of lung disease and response to surfactant therapy. Over 3 years, there were 165 ELBW infants who could develop postsurfactant slump and be eligible for repeat surfactant therapy. There were 39 infants who never received any surfactant therapy estimated gestational age (EGA) 27.7 +/- 1.7, birth weight 856 +/- 109 g) either at birth or after 6 days of life. There were 126 patients treated for RDS with initial surfactant replacement therapy (EGA 25.6 +/- 1.9 weeks, birth weight 713 +/- 179 g). Out of these RDS patients, 101 improved with an initial course of surfactant therapy (EGA 26 +/- 1.8, birth weight 751 +/- 143 g), but 25 (20% of the patients with RDS) developed postsurfactant slump and received a repeat course of surfactant therapy (EGA 24.7 +/- 1.2, birth weight 647 +/- 120 g). The repeat surfactant group (postsurfactant slump) was significantly more premature and had significantly lower birth weights compared to both the initial surfactant only group

  6. Surfactant for Pediatric Acute Lung Injury

    PubMed Central

    Willson, Douglas F.; Chess, Patricia R.; Notter, Robert H.

    2008-01-01

    Synopsis This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is on reviewing clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS, including the multifaceted pathology of inflammatory lung injury, the effectiveness of surfactant delivery in injured lungs, and composition-based activity differences among clinical exogenous surfactant preparations. PMID:18501754

  7. Surfactants at the Design Limit.

    PubMed

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  8. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  9. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G [Idaho Falls, ID

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  10. Hemolysis by surfactants--A review.

    PubMed

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Surfactant replacement therapy--economic impact.

    PubMed

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  12. Surfactant Therapy of ALI and ARDS

    PubMed Central

    Raghavendran, K; Willson, D; Notter, RH

    2011-01-01

    This article examines exogenous lung surfactant replacement therapy and its utility in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Biophysical research has documented that lung surfactant dysfunction can be reversed or mitigated by increasing surfactant concentration, and multiple studies in animals with ALI/ARDS have shown that respiratory function and pulmonary mechanics in vivo can be improved by exogenous surfactant administration. Exogenous surfactant therapy is a routine intervention in neonatal intensive care, and is life-saving in preventing or treating the neonatal respiratory distress syndrome (NRDS) in premature infants. In applications relevant for lung injury-related respiratory failure and ALI/ARDS, surfactant therapy has been shown to be beneficial in term infants with pneumonia and meconium aspiration lung injury, and in children up to age 21 with direct pulmonary forms of ALI/ARDS. However, extension of exogenous surfactant therapy to adults with respiratory failure and clinical ALI/ARDS remains a challenge. Coverage here reviews clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS, particularly focusing on its potential advantages in patients with direct pulmonary forms of these syndromes. Also discussed is the rationale for mechanism-based therapies utilizing exogenous surfactant in combination with agents targeting other aspects of the multifaceted pathophysiology of inflammatory lung injury. Additional factors affecting the efficacy of exogenous surfactant therapy in ALI/ARDS are also described, including the difficulty of effectively delivering surfactants to injured lungs and the existence of activity differences between clinical surfactant drugs. PMID:21742216

  13. Surfactant-induced flow compromises determination of air-water interfacial areas by surfactant miscible-displacement.

    PubMed

    Costanza-Robinson, Molly S; Henry, Eric J

    2017-03-01

    Surfactant miscible-displacement (SMD) column experiments are used to measure air-water interfacial area (A I ) in unsaturated porous media, a property that influences solute transport and phase-partitioning. The conventional SMD experiment results in surface tension gradients that can cause water redistribution and/or net drainage of water from the system ("surfactant-induced flow"), violating theoretical foundations of the method. Nevertheless, the SMD technique is still used, and some suggest that experimental observations of surfactant-induced flow represent an artifact of improper control of boundary conditions. In this work, we used numerical modeling, for which boundary conditions can be perfectly controlled, to evaluate this suggestion. We also examined the magnitude of surfactant-induced flow and its impact on A I measurement during multiple SMD flow scenarios. Simulations of the conventional SMD experiment showed substantial surfactant-induced flow and consequent drainage of water from the column (e.g., from 75% to 55% S W ) and increases in actual A I of up to 43%. Neither horizontal column orientation nor alternative boundary conditions resolved surfactant-induced flow issues. Even for simulated flow scenarios that avoided surfactant-induced drainage of the column, substantial surfactant-induced internal water redistribution occurred and was sufficient to alter surfactant transport, resulting in up to 23% overestimation of A I . Depending on the specific simulated flow scenario and data analysis assumptions used, estimated A I varied by nearly 40% and deviated up to 36% from the system's initial A I . We recommend methods for A I determination that avoid generation of surface-tension gradients and urge caution when relying on absolute A I values measured via SMD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM; Loy, Douglas A [Tucson, AZ; Simmons, Blake A [San Francisco, CA; Long, Timothy M [Evanston, IL; McElhanon, James R [Manteca, CA; Rahimian, Kamyar [Albuquerque, NM; Staiger, Chad L [Albuquerque, NM

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  15. Interactions of surfactants with lipid membranes.

    PubMed

    Heerklotz, Heiko

    2008-01-01

    Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.

  16. Surfactants in the management of rhinopathologies

    PubMed Central

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS). Methods: A review of the literature was performed. Results: The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use. Conclusion: Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy. PMID:23710951

  17. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGES

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  18. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fluorescent visualization of a spreading surfactant

    NASA Astrophysics Data System (ADS)

    Fallest, David W.; Lichtenberger, Adele M.; Fox, Christopher J.; Daniels, Karen E.

    2010-07-01

    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R~tδ. We find spreading exponents δH≈0.30 and δΓ≈0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of δ=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.

  20. The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery.

    PubMed

    Poëa-Guyon, Sandrine; Ammar, Mohamed Raafet; Erard, Marie; Amar, Muriel; Moreau, Alexandre W; Fossier, Philippe; Gleize, Vincent; Vitale, Nicolas; Morel, Nicolas

    2013-10-28

    Several studies have suggested that the V0 domain of the vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1-V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading.

  1. The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery

    PubMed Central

    Poëa-Guyon, Sandrine; Ammar, Mohamed Raafet; Erard, Marie; Amar, Muriel; Moreau, Alexandre W.; Fossier, Philippe; Gleize, Vincent

    2013-01-01

    Several studies have suggested that the V0 domain of the vacuolar-type H+-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1–V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading. PMID:24165939

  2. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  3. Anaerobic Biodegradation of Detergent Surfactants

    PubMed Central

    Merrettig-Bruns, Ute; Jelen, Erich

    2009-01-01

    Detergent surfactants can be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants).

  4. Molecular simulation of surfactant-assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai

    2005-04-01

    Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.

  5. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  6. Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors

    NASA Astrophysics Data System (ADS)

    Nandhini, S.; Muralidharan, G.

    2018-04-01

    The surfactant free nickel sulphide nanoparticles were synthesized via facile hydrothermal method towards supercapacitor applications. The formation of crystalline spherical nanoparticles was confirmed through structural and morphological studies. Electrochemical behaviour of the electrode was analyzed using cyclic voltammetry (CV), galvanostatic charge-discharge studies (GCD) and electrochemical impedance spectroscopy (EIS). The CV studies imply that specific capacitance of the electrode arises from a combination of surface adsorption and Faradic reaction. The NiS electrode delivered a specific capacitance of about 529 F g-1 at a current density of 2 A g-1 (GCD measurements). A profitable charge transfer resistance of 0.5 Ω was obtained from EIS. The 100 % of capacity retention even after 2000 repeated charge-discharge cycles could be observed in 2 M KOH electrolyte at a much larger rate of 30 A g-1. The experimental results suggest that nickel sulphide is a potential candidate for supercapacitor applications.

  7. Genetics Home Reference: surfactant dysfunction

    MedlinePlus

    ... Infant ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific Articles on PubMed (1 link) PubMed OMIM (4 links) SURFACTANT METABOLISM DYSFUNCTION, PULMONARY, 1 SURFACTANT METABOLISM DYSFUNCTION, PULMONARY, 2 ...

  8. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  9. Poly(ethylene oxide) surfactant polymers.

    PubMed

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  10. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  11. An in vitro comparison of the mucoactive properties of guaifenesin, iodinated glycerol, surfactant, and albuterol.

    PubMed

    Rubin, B K

    1999-07-01

    The mechanism of action of potential mucoactive agents could relate to effects on the mucociliary apparatus or to direct effects on the secretions. The purpose of this study was to determine the in vitro effects of several agents on the properties of mucus simulants and sputum collected from 30 adults with stable chronic bronchitis. Sputum or simulants were analyzed untreated and after the addition of the test agent at 1:5 volume to volume ratio for a contact period of 60 s. The concentrations of the agents were as follows: guaifenesin, 20 mg/mL; iodinated glycerol, 3 mg/mL; surfactant (Exosurf; Glaxo Wellcome; Research Triangle Park, NC) containing 13.5 mg of phospholipid per milliliter; albuterol, 5 mg/mL; and amphibian Ringer's solution (ARS) as a control. Dynamic viscoelasticity and surface mechanical impedance were measured in a magnetic microrheometer. Cohesiveness was measured using a filancemeter. The wettability of a hydrophilic surface was measured using an image processing system. The mucociliary transportability of sputum was timed on the frog palate, and cough transportability (CTR) was measured in a cough machine. When compared to sputum that had no test agent or ARS added, all agents reduced sputum elasticity G', with surfactant, albuterol, and guaifenesin significant at p < 0.001. As well, guaifenesin (p = 0.006), albuterol (p = 0.003), and surfactant (p = 0.02) decreased surface mechanical impedance (frictional adhesiveness) compared to untreated sputum. However, there were no significant changes in wettability, hydration, cohesiveness, or CTR with any agent, and there were no significant changes in the properties of sputum or simulants treated with test agents when compared to those treated with ARS. Guaifenesin irreversibly disrupted mucociliary transport when applied directly to the frog palate. These agents appear to have a minimal direct action on sputum in vitro, suggesting that at the concentrations studied, these agents do not have a

  12. Estimation hydrophilic-lipophilic balance number of surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id; Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta; Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination ofmore » HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.« less

  13. Biomimicry of surfactant protein C

    PubMed Central

    Brown, Nathan J.; Johansson, Jan; Barron, Annelise E.

    2012-01-01

    CONSPECTUS Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned towards the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C’s seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C’s molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable poly-valine helix is replaced with a structurally stable, poly-leucine helix and includes a well placed positive charge to prevent aggregation. SP-C33 is both structurally stable and eliminates the association propensity of the native protein. The second approach

  14. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  15. Remediation using trace element humate surfactant

    DOEpatents

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  16. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions.

    PubMed

    Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng

    2017-03-17

    It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synthesis of carbohydrate-based surfactants

    DOEpatents

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  18. Interfaces Charged by a Nonionic Surfactant.

    PubMed

    Lee, Joohyung; Zhou, Zhang-Lin; Behrens, Sven Holger

    2018-05-24

    Highly hydrophobic, water-insoluble nonionic surfactants are often considered irrelevant to the ionization of interfaces at which they adsorb, despite observations that suggest otherwise. In the present study, we provide unambiguous evidence for the participation of a water-insoluble surfactant in interfacial ionization by conducting electrophoresis experiments for surfactant-stabilized nonpolar oil droplets in aqueous continuous phase. It was found that the surfactant with amine headgroup positively charged the surface of oil suspended in aqueous continuous phase (oil/water interface), which is consistent with its basic nature. In nonpolar oil continuous phase, the same surfactant positively charged the surface of solid silica (solid/oil interface) which is often considered acidic. The latter observation is exactly opposite to what the traditional acid-base mechanism of surface charging would predict, most clearly suggesting the possibility for another charging mechanism.

  19. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  20. Competitive substrate biodegradation during surfactant-enhanced remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudar, C.; Strevett, K.; Grego, J.

    The impact of synthetic surfactants on the aqueous phase biodegradation of benzene, toluene, and p-xylene (BTpX) was studied using two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), and two nonionic surfactants, POE(20) sorbitan monooleate (T-maz-80) and octyl-phenolpoly(ethyleneoxy) ethanol (CA-620). Batch biodegradation experiments were performed to evaluate surfactant biodegradability using two different microbial cultures. Of the four surfactants used in this study, SDS and T-maz-80 were readily degraded by a microbial consortium obtained from an activated sludge treatment system, whereas only SDS was degraded by a microbial culture that was acclimated to BTpX. Biodegradation kinetic parametersmore » associated with SDS and T-maz-80 degradation by the activated sludge consortium were estimated using respirometric data in conjunction with a nonlinear parameter estimation technique as {mu}{sub max} = 0.93 h{sup {minus}1}, K{sub s}= 96.18 mg/L and {mu}{sub max} = 0.41 h{sup {minus}1}, K{sub s} = 31.92 mg/L, respectively. When both BTpX and surfactant were present in the reactor along with BTpX-acclimated microorganisms, two distinct biodegradation patterns were seen. SDS was preferentially utilized inhibiting hydrocarbon biodegradation, whereas, the other three surfactants had no impact on BTpX biodegradation. None of the four surfactants were toxic to the microbial cultures used in this study. Readily biodegradable surfactants are not very effective for subsurface remediation applications as they are rapidly consumed, and also because of their potential inhibitory effects on intrinsic hydrocarbon biodegradation. This greatly increases treatment costs as surfactant recovery and reuse are adversely affected.« less

  1. Unique role of ionic liquid [bmin][BF 4] during curcumin-surfactant association and micellization of cationic, anionic and non-ionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroburate, modified the properties of aqueous surfactant solutions associated with curcumin. Because of potential pharmaceutical applications as an antioxidant, anti-inflammatory and anti-carcinogenic agent, curcumin has received ample attention as potential drug. The interaction of curcumin with various charged aqueous surfactant solutions showed it exists in deprotonated enol form in surfactant solutions. The nitro and hydroxyl groups of o-nitrophenol interact with the carbonyl and hydroxyl groups of the enol form of curcumin by forming ground state complex through hydrogen bonds and offered interesting information about the nature of the interactions between the aqueous surfactant solutions and curcumin depending on charge of head group of the surfactant. IL[bmin][BF 4] encouraged early formation of micelle in case of cationic and anionic aqueous surfactant solutions, but slightly prolonged micelle formation in the case of neutral aqueous surfactant solution. However, for curcumin IL [bmin][BF 4] favored strong association (7-fold increase) with neutral surfactant solution, marginally supported association with anionic surfactant solution and discouraged (˜2-fold decrease) association with cationic surfactant solution.

  2. Surfactants at Single-Walled Carbon Nanotube-Water Interface: Physics of Surfactants, Counter-Ions, and Hydration Shell

    NASA Astrophysics Data System (ADS)

    Khare, Ketan S.; Phelan, Frederick R., Jr.

    Specialized applications of single-walled carbon nanotubes (SWCNTs) require an efficient and reliable method to sort these materials into monodisperse fractions with respect to their defining metrics (chirality, length, etc.) while retaining their physical and chemical integrity. A popular method to achieve this goal is to use surfactants that individually disperse SWCNTs in water and then to separate the resulting colloidal mixture into fractions that are enriched in monodisperse SWCNTs. Recently, experiments at NIST have shown that subtle point mutations of chemical groups in bile salt surfactants have a large impact on the hydrodynamic properties of SWCNT-surfactant complexes during ultracentrifugation. These results provide strong motivation for understanding the rich physics underlying the assembly of surfactants around SWCNTs, the structure and dynamics of counter ions around the resulting complex, and propagation of these effects into the first hydration shell. Here, all-atom molecular dynamics simulations are used to investigate the thermodynamics of SWCNT-bile salt surfactant complexes in water with an emphasis on the buoyant characteristics of the SWCNT-surfactant complexes. Simulation results will be presented along with a comparison with experimental data. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  3. Effect of surfactants on sorption of atrazine by soil

    NASA Astrophysics Data System (ADS)

    Abu-Zreig, Majed; Rudra, R. P.; Dickinson, W. T.; Evans, L. J.

    1999-03-01

    This study investigates the effect of synthetic wastewater containing surfactants on the sorption of atrazine using an equilibrium batch technique. Laboratory experiments were conducted on three soils with two non-ionic (Rexol and Rexonic) surfactants and one anionic (Sulphonic) surfactant, specifically manufactured for the detergent industry. Four sets of experiments were conducted to examine the influence of surfactants on the equilibrium time of atrazine sorption, to explore the effect of surfactant concentration, pH and type of surfactant on the amount of atrazine sorbed and to determine sorption isotherms of atrazine in the presence of surfactants. The results indicate that the application of Sulphonic results in dramatic increase in the adsorption of atrazine on to soils, the increase being directly proportional to the concentration of the surfactant. Application of the Sulphonic surfactants with a concentration of 3000 mg/l can result in a significant increase in Kd values of atrazine for loam and sandy loam soils. On the other hand, the effect of non-ionic surfactants depends on their concentration. Generally, non-ionic surfactants can result in a slight increase in atrazine sorption at high concentration, an exception being Rexol on sandy loam soil. At low concentrations, non-ionic surfactants have shown a tendency to decrease atrazine sorption.

  4. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  5. Self-assembled Gemini surfactant film-mediated dispersion stability.

    PubMed

    Rabinovich, Y I; Kanicky, J R; Pandey, S; Oskarsson, H; Holmberg, K; Moudgil, B M; Shah, D O

    2005-08-15

    The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).

  6. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase.more » A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as

  7. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured,more » oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.« less

  8. Next Generation Surfactants for Improved Chemical Flooding Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers,more » and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four

  9. Nanoparticle-enabled delivery of surfactants in porous media.

    PubMed

    Nourafkan, Ehsan; Hu, Zhongliang; Wen, Dongsheng

    2018-06-01

    The adsorption of surfactants on the reservoir rocks surface is a serious issue in many energy and environment related areas. Learning from the concept of drug delivery in the nano-medicine field, this work proposes and validates the concept of using nanoparticles to deliver a mixture of surfactants into a porous medium. TiO 2 nanoparticles (NPs) are used as carriers for a blend of surfactants mixtures including anionic alkyl aryl sulfonic acid (AAS) and nonionic alcohol ethoxylated (EA) at the optimum salinity and composition conditions. The transport of NPs through a core sample of crushed sandstone grains and the adsorption of surfactants are evaluated. By using TiO 2 NPs, the adsorption of surfactant molecules can be significantly reduced, i.e. half of the initial adsorption value. The level of surfactant adsorption reduction is related to the NPs transport capability through the porous medium. An application study shows that comparing to surfactant flooding alone, the total oil recovery can be increased by 7.81% of original oil in place (OOIP) by using nanoparticle bonded surfactants. Such work shows the promise of NP as an effective surfactant carrier for sandstone reservoirs, which could have many potential applications in enhanced oil recovery (EOR) and environmental remediation. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Comparison of rSP-C surfactant with natural and synthetic surfactants after late treatment in a rat model of the acute respiratory distress syndrome

    PubMed Central

    Häfner, Dietrich; Germann, Paul-Georg; Hauschke, Dieter

    1998-01-01

    In a previous paper we showed that an SP-C containing surfactant preparation has similar activity as bovine-derived surfactants in a rat lung lavage model of the adult respiratory distress syndrome. In this study surfactant was given ten minutes after the last lavage (early treatment). In the present investigation we were interested how different surfactant preparations behave when they are administered 1 h after the last lavage (late treatment). Four protein containing surfactants (rSP-C surfactant, bLES, Infasurf and Survanta) were compared with three protein-free surfactants (ALEC, Exosurf and the phospholipid (PL) mixture of the rSP-C surfactant termed PL surfactant) with respect to their ability to improve gas exchange in this more stringent model when surfactant is given one hour after the last lavage. For better comparison of the surfactants the doses were related to phospholipids. The surfactants were given at doses of 25, 50 and 100 mg kg−1 body weight. The surfactants were compared to an untreated control group that was only ventilated for the whole experimental period. Tracheotomized rats (8–12 per dose and surfactant) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min−1, inspiration expiration ratio of 1 : 2, peak inspiratory pressure of 28 cmH2O at positive endexpiratory pressure (PEEP) of 8 cmH2O. Animals were ventilated for one hour after the last lavage and thereafter the surfactants were intratracheally instilled. During the whole experimental period the ventilation was not changed. Partial arterial oxygen pressures (PaO2, mmHg) at 30 min and 120 min after treatment were used for statistical comparison. All protein containing surfactants caused a dose-dependent increase of the reduced PaO2 values at 30 min after treatment. The protein-free surfactants showed only weak dose-dependent increase in PaO2 values at this time. This difference between the

  11. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    PubMed

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  12. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic

  13. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic

  14. Application of peptide gemini surfactants as novel solubilization surfactants for photosystems I and II of cyanobacteria.

    PubMed

    Koeda, Shuhei; Umezaki, Katsunari; Noji, Tomoyasu; Ikeda, Atsushi; Kawakami, Keisuke; Kondo, Masaharu; Yamamoto, Yasushi; Shen, Jian-Ren; Taga, Keijiro; Dewa, Takehisa; Ito, Shigeru; Nango, Mamoru; Tanaka, Toshiki; Mizuno, Toshihisa

    2013-09-17

    We designed novel peptide gemini surfactants (PG-surfactants), DKDKC12K and DKDKC12D, which can solubilize Photosystem I (PSI) of Thermosynecoccus elongatus and Photosystem II (PSII) of Thermosynecoccus vulcanus in an aqueous buffer solution. To assess the detailed effects of PG-surfactants on the original supramolecular membrane protein complexes and functions of PSI and PSII, we applied the surfactant exchange method to the isolated PSI and PSII. Spectroscopic properties, light-induced electron transfer activity, and dynamic light scattering measurements showed that PSI and PSII could be solubilized not only with retention of the original supramolecular protein complexes and functions but also without forming aggregates. Furthermore, measurement of the lifetime of light-induced charge-separation state in PSI revealed that both surfactants, especially DKDKC12D, displayed slight improvement against thermal denaturation below 60 °C compared with that using β-DDM. This degree of improvement in thermal resistance still seems low, implying that the peptide moieties did not interact directly with membrane protein surfaces. By conjugating an electron mediator such as methyl viologen (MV(2+)) to DKDKC12K (denoted MV-DKDKC12K), we obtained derivatives that can trap the generated reductive electrons from the light-irradiated PSI. After immobilization onto an indium tin oxide electrode, a cathodic photocurrent from the electrode to the PSI/MV-DKDKC12K conjugate was observed in response to the interval of light irradiation. These findings indicate that the PG-surfactants DKDKC12K and DKDKC12D provide not only a new class of solubilization surfactants but also insights into designing other derivatives that confer new functions on PSI and PSII.

  15. Influence of surfactants in forced dynamic dewetting.

    PubMed

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C 4 E 1 , C 8 E 3 and C 12 E 5 ) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s -1 the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  16. Structural study of surfactant-dependent interaction with protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  17. Structural study of surfactant-dependent interaction with protein

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-01

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  18. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    PubMed

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  19. Surfactants and the Mechanics of Respiration

    NASA Astrophysics Data System (ADS)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  20. Influence of Surfactants on Sodium Chloride Crystallization in Confinement

    PubMed Central

    2017-01-01

    We study the influence of different surfactants on NaCl crystallization during evaporation of aqueous salt solutions. We found that at concentrations of sodium chloride close to saturation, only the cationic surfactant CTAB and the nonionic surfactant Tween 80 remain stable. For the nonionic surfactant, the high concentration of salt does not significantly change either the critical micellar concentration (CMC) or the surface tension at the CMC; for the cationic surfactant, the CMC is reduced by roughly 2 orders of magnitude upon adding the salt. The presence of both types of surfactants in the salt solution delays the crystallization of sodium chloride with evaporation. This, in turn, leads to high supersaturation which induces the rapid precipitation of a hopper crystal in the bulk. The crystallization inhibitor role of these surfactants is shown to be mainly due to the passivation of nucleation sites at both liquid/air and solid/liquid interfaces rather than a change in the evaporation rate which is found not to be affected by the presence of the surfactants. The adsorption of surfactants at the liquid/air interface prevents the crystallization at this location which is generally the place where the precipitation of sodium chloride is observed. Moreover, sum frequency generation spectroscopy measurements show that the surfactants are also present at the solid/liquid interface. The incorporation of the surfactants into the salt crystals is investigated using a novel, but simple, method based on surface tension measurements. Our results show that the nonionic surfactant Tween 80 is incorporated in the NaCl crystals but the cationic surfactant CTAB is not. Taken together, these results therefore allow us to establish the effect of the presence of surfactants on sodium chloride crystallization. PMID:28425711

  1. Stabilizing and destabilizing protein surfactant-based foams in the presence of a chemical surfactant: Effect of adsorption kinetics.

    PubMed

    Li, Huazhen; Le Brun, Anton P; Agyei, Dominic; Shen, Wei; Middelberg, Anton P J; He, Lizhong

    2016-01-15

    Stimuli-responsive protein surfactants promise alternative foaming materials that can be made from renewable sources. However, the cost of protein surfactants is still higher than their chemical counterparts. In order to reduce the required amount of protein surfactant for foaming, we investigated the foaming and adsorption properties of the protein surfactant, DAMP4, with addition of low concentrations of the chemical surfactant sodium dodecylsulfate (SDS). The results show that the small addition of SDS can enhance foaming functions of DAMP4 at a lowered protein concentration. Dynamic surface tension measurements suggest that there is a synergy between DAMP4 and SDS which enhances adsorption kinetics of DAMP4 at the initial stage of adsorption (first 60s), which in turn stabilizes protein foams. Further interfacial properties were revealed by X-ray reflectometry measurements, showing that there is a re-arrangement of adsorbed protein-surfactant layer over a long period of 1h. Importantly, the foaming switchability of DAMP4 by metal ions is not affected by the presence of SDS, and foams can be switched off by the addition of zinc ions at permissive pH. This work provides fundamental knowledge to guide formulation using a mixture of protein and chemical surfactants towards a high performance of foaming at a low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants

    NASA Astrophysics Data System (ADS)

    Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration

    2015-03-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.

  3. Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms.

    PubMed

    Reeve, Peter J; Fallowfield, Howard J

    2018-01-01

    The objective of this review is to highlight the need for further investigation of microbial toxicity caused by desorption of surfactant from Surfactant Modified Zeolite (SMZ). SMZ is a low cost, versatile permeable reactive media which has the potential to treat multiple classes of contaminants. With this combination of characteristics, SMZ has significant potential to enhance water and wastewater treatment processes. Surfactant desorption has been identified as a potential issue for the ongoing usability of SMZ. Few studies have investigated the toxicity of surfactants used in zeolite modification towards microorganisms and fewer have drawn linkages between surfactant desorption and surfactant toxicity. This review provides an overview of natural zeolite chemistry, characteristics and practical applications. The chemistry of commonly used surfactants is outlined, along with the kinetics that drive their adsorption to the zeolite surface. Methodologies to characterise this surfactant loading are also described. Applications of SMZ in water remediation are highlighted, giving focus to applications which deal with biological pollutants and where microorganisms play a role in the remediation process. Studies that have identified surfactant desorption from SMZ are outlined. Finally, the toxicity of a commonly used cationic surfactant towards microorganisms is discussed. This review highlights the potential for surfactant to desorb from the zeolite surface and the need for further research into the toxicity of this desorbed surfactant towards microorganisms, including pathogens and environmental microbes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. ADSORPTION OF SURFACTANT ON CLAYS

    EPA Science Inventory

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  5. Surfactant protein C: basics to bedside.

    PubMed

    Curstedt, Tore

    2005-05-01

    Development of clinically active synthetic surfactants has turned out to be more complicated than initially anticipated. Surfactant protein analogues must have the right conformation without forming oligomers. Furthermore, the lipid composition, as well as a high lipid concentration in the suspension seem to be important. For successful treatment of many respiratory diseases, it is desirable that the synthetic surfactant may stabilize the alveoli at end-expiration and may resist inactivation by components leaking into the alveoli.

  6. Salting-out and multivalent cation precipitation of anionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, R.D. Jr.; Keppel, R.A.; Cosper, M.B.

    1981-02-01

    In this surfactant/polymer flooding process, a carefully designed surfactant slug is injected into an oil-bearing formation with a view to reducing the oil/water interfacial tension substantially so as to facilitate mobilization of oil droplets trapped in the less accessible void spaces of the reservoir rock. When the surfactant comes into contact with reservoir brine, oil and rock, several phenomena can occur which result in loss of surfactant from the slug, i.e., salting-out of surfactant by NaCl, precipitation of insoluble soaps by multivalent cations such as calcium, partitioning to oil of both dissolved and precipitated surfactant, and adsorption of surfactant onmore » reservoir rock have been identified as important surfactant loss processes. This study presents some experimental data which illustrate the effects of salt and multivalent cations, identifies the mechanisms which are operative, and develops mathematical relationships which enable one to describe the behavior of surfactant systems when brought into contact with salt, multivalent cations, or both. 26 references.« less

  7. Splash Dynamics of Falling Surfactant-Laden Droplets

    NASA Astrophysics Data System (ADS)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  8. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system havemore » been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.« less

  9. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacialmore » tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.« less

  10. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution.

    PubMed

    Matsaridou, Irini; Barmpalexis, Panagiotis; Salis, Andrea; Nikolakakis, Ioannis

    2012-12-01

    Self-emulsifying oil/surfactant mixtures can be incorporated into pellets that have the advantages of the oral administration of both microemulsions and a multiple-unit dosage form. The purpose of this work was to study the effects of surfactant hydrophilic-lipophilic balance (HLB) and oil/surfactant ratio on the formation and properties of self-emulsifying microcrystalline cellulose (MCC) pellets and microemulsion reconstitution. Triglycerides (C(8)-C(10)) was the oil and Cremophor ELP and RH grades and Solutol the surfactants. Pellets were prepared by extrusion/spheronization using microemulsions with fixed oil/surfactant content but with different water proportions to optimize size and shape parameters. Microemulsion reconstitution from pellets suspended in water was evaluated by turbidimetry and light scattering size analysis, and H-bonding interactions of surfactant with MCC from FT-IR spectra. It was found that water requirements for pelletization increased linearly with increasing HLB. Crushing load decreased and deformability increased with increasing oil/surfactant ratio. Incorporation of higher HLB surfactants enhanced H-bonding and resulted in faster and more extensive disintegration of MCC as fibrils. Reconstitution was greater at high oil/surfactant ratios and the droplet size of the reconstituted microemulsions was similar to that in the wetting microemulsions. The less hydrophilic ELP with a double bond in the fatty acid showed weaker H-bonding and greater microemulsion reconstitution. Purified ELP gave greater reconstitution than the unpurified grade. Thus, the work demonstrates that the choice of type and quantity of the surfactant used in the formulation of microemulsions containing pellets has an important influence on their production and performance.

  11. Spatial and Temporal Control of Surfactant Systems

    PubMed Central

    Liu, Xiaoyang; Abbott, Nicholas L.

    2011-01-01

    This paper reviews some recent progress on approaches leading to spatial and temporal control of surfactant systems. The approaches revolve around the use of redox-active and light-sensitive surfactants. Perspectives are presented on experiments that have realized approaches for active control of interfacial properties of aqueous surfactant systems, reversible control of microstructures and nanostructures formed within bulk solutions, and in situ manipulation of the interactions of surfactants with polymers, DNA and proteins. A particular focus of this review is devoted to studies of amphiphiles that contain the redox-active group ferrocene – reversible control of the oxidation state of ferrocene leads to changes in the charge/hydrophobicity of these amphiphiles, resulting in substantial changes in their self-assembly. Light-sensitive surfactants containing azobenzene, which undergo changes in shape/polarity upon illumination with light, are a second focus of this review. Examples of both redox-active and light-sensitive surfactants that lead to large (> 20mN/m) and spatially localized (~mm) changes in surface tensions on a time scale of seconds are presented. Systems that permit reversible transformations of bulk solution nanostructures – such as micelle-to-vesicle transitions or monomer-to-micelle transitions – are also described. The broad potential utility of these emerging classes of amphiphiles are illustrated by the ability to drive changes in functional properties of surfactant systems, such as rheological properties and reversible solubilization of oils, as well as the ability to control interactions of surfactants with biomolecules to modulate their transport into cells. PMID:19665723

  12. Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Jang, Seung Soon; Neidholdt, Evan L; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-02-24

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O(3)) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O(3), field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B(1-25) (a shortened version of human SP-B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B(1-25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B(1-25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B(1-25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress.

  13. Surfactants assist in lipid extraction from wet Nannochloropsis sp.

    PubMed

    Wu, Chongchong; Xiao, Ye; Lin, Weiguo; Zhu, Junying; De la Hoz Siegler, Hector; Zong, Mingsheng; Rong, Junfeng

    2017-11-01

    An efficient approach involving surfactant treatment, or the modification and utilization of surfactants that naturally occur in algae (algal-based surfactants), was developed to assist in the extraction of lipids from wet algae. Surfactants were found to be able to completely replace polar organic solvents in the extraction process. The highest yield of algal lipids extracted by hexane and algal-based surfactants was 78.8%, followed by 78.2% for hexane and oligomeric surfactant extraction, whereas the lipid yield extracted by hexane and ethanol was only 60.5%. In addition, the saponifiable lipids extracted by exploiting algal-based surfactants and hexane, or adding oligomeric surfactant and hexane, accounted for 78.6% and 75.4% of total algal lipids, respectively, which was more than 10% higher than the lipids extracted by hexane and ethanol. This work presents a method to extract lipids from algae using only nonpolar organic solvents, while obtaining high lipid yields and high selectivity to saponifiables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Segregation in like-charged polyelectrolyte-surfactant mixtures can be precisely tuned via manipulation of the surfactant mass ratio.

    PubMed

    Wills, Peter W; Lopez, Sonia G; Burr, Jocelyn; Taboada, Pablo; Yeates, Stephen G

    2013-04-09

    In this study, we consider segregative phase separation in aqueous mixtures of quaternary ammonium surfactants didecyldimethylammonium chloride (DDQ) and alkyl (C12, 70%; C14 30%) dimethyl benzyl ammonium chloride (BAC) upon the addition of poly(diallyldimethylammonium) chloride (pDADMAC) as a function of both concentration and molecular weight. The nature of the surfactant type is dominant in determining the concentration at which separation into an upper essentially surfactant-rich phase and lower polyelectrolyte-rich phase is observed. However, for high-molecular-weight pDADMAC there is a clear indication of an additional depletion flocculation effect. When the BAC/DDQ ratio is tuned, the segregative phase separation point can be precisely controlled. We propose a phase separation mechanism for like-charged quaternary ammonium polyelectrolyte/surfactant/water mixtures induced by a reduction in the ionic atmosphere around the surfactant headgroup and possible ion pair formation. An additional polyelectrolyte-induced depletion flocculation effect was also observed.

  16. Tuning of protein-surfactant interaction to modify the resultant structure.

    PubMed

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (pH7) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.

  17. Tuning of protein-surfactant interaction to modify the resultant structure

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (p H 7 ) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.

  18. Kinetic studies of amino acid-based surfactant binding to DNA.

    PubMed

    Santhiya, Deenan; Dias, Rita S; Dutta, Sounak; Das, Prasanta Kumar; Miguel, Maria G; Lindman, Björn; Maiti, Souvik

    2012-05-24

    In this work, the binding kinetics of amino acid-based surfactants, presenting different linkers and head groups, with calf thymus (CT)-DNA was studied using stopped-flow fluorescence spectroscopy. The kinetic studies were carried out as a function of Na(+) concentration and surfactant-to-DNA charge ratio. The surfactant binding on DNA took place in two consecutive steps, for which the corresponding first and second relative rate constants (k(1) and k(2)) were determined. The fast step was attributed to the surfactant binding to DNA and micelle formation in its vicinity, the slower step to DNA condensation and possible rearrangement of the surfactant aggregates. In general, both relative rate constants increase with surfactant concentration and decrease with the ionic strength of the medium. The architecture of the surfactant was found to have a significant impact on the kinetics of the DNA-surfactant complexation. Surfactants with amide linkers showed larger relative rate constants than those with ester linkers. The variation of the relative rate constants with the head groups of the surfactants, alanine and proline, was found to be less obvious, being partially dependent on the surfactant concentration.

  19. [ANTIMICROBIAL ACTION OF NOCARDIA VACCINII IMV B-7405 SURFACTANTS].

    PubMed

    Pirog, T P; Beregova, K A; Savenko, I V; Shevchuk, T A; Iutynska, G O

    2015-01-01

    To study the effect of Nocardia vaccinii IMV B-7405 surfactants on some bacteria (including pathogens of genera Proteus, Staphylococcus, Enterobacter), yeast of Candida species and fungi (Aspergillus niger R-3, Fusarium culmorum T-7). The antimi- crobial properties of surfactant were determined in suspension culture by Koch method and also by index of the minimum inhibitory concentration. Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2:1). It is shown that the antimicrobial properties of N. vaccinii IMV B-7405 surfactant depended on the degree of purification (supernatant, solution of surfactant), concentration and exposure. Survival of Escherichia coli IEM-1 and Bacillus subtilis BT-2 (both vegetative cells and spores) after treatment for 1-2 hours with surfactants solution and the supernatant (the surfactant concentration 21 µg/ml) was 3-28%. Minimum inhibitory concentrations of N. vaccinii IMV B-7405 surfactants on studied bacteria, yeast and micromycetes were 11.5-85.0; 11.5-22.5 and 165.0-325.0 µ/ml respectively. Minimum inhibitory concentrations of N. vaccinii IMV B-7405 surfactants are comparable to those of the known microbial surfactants. The possibility of using the supernatant of culture liquid as an effective antimicrobial agent noticeably simplifies and reduces the cost of the technology of its obtaining.

  20. Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Ting; Jiang, Hao; Ma, Jan

    A N-methylpyrrolidone (NMP) assisted electrochemical deposition route has been developed to realize the synthesis of a dense α-Co(OH) 2 layered structure, which is composed of nanosheets, each with a thickness of 10 nm. The capacitive characteristics of the as-obtained α-Co(OH) 2 are investigated by means of cyclic voltammetry (CV), charge/discharge characterization, and electrochemical impedance spectroscopy (EIS), in 1 M KOH electrolyte. The results indicate that α-Co(OH) 2 prepared in the presence of 20 vol.% NMP has denser and thin layered structure which promotes an increased surface area and a shortened ion diffusion path. The as-prepared α-Co(OH) 2 shows better electrochemical performance with specific capacitance of 651 F g -1 in a potential range of -0.1 to 0.45 V. These findings suggest that the surfactant-assisted electrochemical deposition is a promising process for building densely packed material systems with enhanced properties, for application in supercapacitors.

  1. Surfactant properties of human meibomian lipids.

    PubMed

    Mudgil, Poonam; Millar, Thomas J

    2011-03-25

    Human meibomian lipids are the major part of the lipid layer of the tear film. Their surfactant properties enable their spread across the aqueous layer and help maintain a stable tear film. The purpose of this study was to investigate surfactant properties of human meibomian lipids in vitro and to determine effects of different physical conditions such as temperature and increased osmolarity, such as occur in dry eye, on these properties. Human meibomian lipids were spread on an artificial tear solution in a Langmuir trough. The lipid films were compressed and expanded to record the surface pressure-area (Π-A) isocycles. The isocycles were recorded under different physical conditions such as high pressure, increasing concentration and size of divalent cations, increasing osmolarity, and varying temperature. Π-A isocycles of meibomian lipids showed that they form liquid films that are compressible and multilayered. The isocycles were unaffected by increasing concentration or size of divalent cations and increasing osmolarity in the subphase. Temperature had a marked effect on the lipids. Increase in temperature caused lipid films to become fluid, an expected feature, but decrease in temperature unexpectedly caused expansion of lipids and an increase in pressure suggesting enhanced surfactant properties. Human meibomian lipids form highly compressible, non-collapsible, multilayered liquid films. These lipids have surfactants that allow them to spread across an aqueous subphase. Their surfactant properties are unaffected by increasing divalent cations or hyperosmolarity but are sensitive to temperature. Cooling of meibomian lipids enhances their surfactant properties.

  2. Surfactant selection for a liquid foam-bed photobioreactor.

    PubMed

    Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos

    2018-02-01

    A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  3. Gemini ester quat surfactants and their biological activity.

    PubMed

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  4. Novel fluorinated gemini surfactants with γ-butyrolactone segments.

    PubMed

    Kawase, Tokuzo; Okada, Kazuyuki; Oida, Tatsuo

    2015-01-01

    In this work, novel γ-butyrolactone-type monomeric and dimeric (gemini) surfactants with a semifluoroalkyl group [Rf- (CH2)3-; Rf = C4F9, C6F13, C8F17] as the hydrophobic group were successfully synthesized. Dimethyl malonate was dimerized or connected using Br(CH2)sBr (s = 0, 1, 2, 3) to give tetraesters, and they were bis-allylated. Radical addition of fluoroalkyl using Rf-I and an initiator, i.e., 2,2'-azobisisobutyronitrile for C4F9 or di-t-butyl peroxide for C6F13 and C8F17, was perform at high temperature, with prolonged heating, to obtain bis(semifluoroalkyl)-dilactone diesters. These dilactone diesters were hydrolyzed using KOH/EtOH followed by decarboxylation in AcOH to afford γ-butyrolactonetype gemini surfactants. Common 1 + 1 semifluoroalkyl lactone surfactants were synthesized using the same method. Their surfactant properties [critical micelle concentration (CMC), γCMC, pC20, ΓCMC, and AG] were investigated by measuring the surface tension of the γ-hydroxybutyrate form prepared in aqueous tetrabutylammonium hydroxide solution. As expected, the CMC values of the gemini surfactants were more than one order of magnitude smaller than those of the corresponding 1 + 1 surfactants. Other properties also showed the excellent ability of the gemini structure to reduce the surface tension. These surfactants were easily and quantitatively recovered by acidification. The monomeric surfactant was recovered in the γ-hydroxybutyric acid form, and the gemini surfactant as a mixture of γ-butyrolactone and γ-hydroxybutyric acid forms.

  5. Surface shear inviscidity of soluble surfactants

    PubMed Central

    Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.

    2014-01-01

    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 103–104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383

  6. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  7. Degradation of surfactant-associated protein B (SP-B) during in vitro conversion of large to small surfactant aggregates.

    PubMed Central

    Veldhuizen, R A; Inchley, K; Hearn, S A; Lewis, J F; Possmayer, F

    1993-01-01

    Pulmonary surfactant obtained from lung lavages can be separated by differential centrifugation into two distinct subfractions known as large surfactant aggregates and small surfactant aggregates. The large-aggregate fraction is the precursor of the small-aggregate fraction. The ratio of the small non-surface-active to large surface-active surfactant aggregates increases after birth and in several types of lung injury. We have utilized an in vitro system, surface area cycling, to study the conversion of large into small aggregates. Small aggregates generated by surface area cycling were separated from large aggregates by centrifugation at 40,000 g for 15 min rather than by the normal sucrose gradient centrifugation. This new separation method was validated by morphological studies. Surface-tension-reducing activity of total surfactant extracts, as measured with a pulsating-bubble surfactometer, was impaired after surface area cycling. This impairment was related to the generation of small aggregates. Immunoblot analysis of large and small aggregates separated by sucrose gradient centrifugation revealed the presence of detectable amounts of surfactant-associated protein B (SP-B) in large aggregates but not in small aggregates. SP-A was detectable in both large and small aggregates. PAGE of cycled and non-cycled surfactant showed a reduction in SP-B after surface area cycling. We conclude that SP-B is degraded during the formation of small aggregates in vitro and that a change in surface area appears to be necessary for exposing SP-B to protease activity. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8216208

  8. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGES

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; ...

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  9. Gemini surfactants from natural amino acids.

    PubMed

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed. © 2013.

  10. Use of surfactants for the remediation of contaminated soils: a review.

    PubMed

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. SURFACTANT ENHANCED PHOTO-OXIDATION OF WASTEWATERS

    EPA Science Inventory

    Initial research projects using the nonionic surfactant Brij-35 established that this surfactant could successfully adsolublize aromatic organic pollutants such as anthracene, naphthalene, benzoic acid, chlorophenol, and benzene onto the surface of TiO2 par...

  12. Silica micro- and nanoparticles reduce the toxicity of surfactant solutions.

    PubMed

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Fernández-Serrano, Mercedes; Jurado, Encarnación; Lechuga, Manuela

    2018-04-20

    In this work, the toxicity of hydrophilic fumed silica micro- and nanoparticles of various sizes (7 nm, 12 nm, and 50 μm) was evaluated using the luminescent bacteria Vibrio fischeri. In addition, the toxicity of an anionic surfactant solution (ether carboxylic acid), a nonionic surfactant solution (alkyl polyglucoside), and a binary (1:1) mixture of these solutions all containing these silica particles was evaluated. Furthermore, this work discusses the adsorption of surfactants onto particle surfaces and evaluates the effects of silica particles on the surface tension and critical micellar concentration (CMC) of these anionic and nonionic surfactants. It was determined that silica particles can be considered as non-toxic and that silica particles reduce the toxicity of surfactant solutions. Nevertheless, the toxicity reduction depends on the ionic character of the surfactants. Differences can be explained by the different adsorption behavior of surfactants onto the particle surface, which is weaker for nonionic surfactants than for anionic surfactants. Regarding the effects on surface tension, it was found that silica particles increased the surface activity of anionic surfactants and considerably reduced their CMC, whereas in the case of nonionic surfactants, the effects were reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Synergism and Physicochemical Properties of Anionic/Amphoteric Surfactant Mixtures with Nonionic Surfactant of Amine Oxide Type

    NASA Astrophysics Data System (ADS)

    Blagojević, S. M.; Pejić, N. D.; Blagojević, S. N.

    2017-12-01

    The physicochemical properties of initial formulation, that is anionic/amphoteric surfactants mixture SLES/AOS/CAB (sodium lauryl ether sulfate (SLES), α-olefin sulfonates (AOS) and cocamidopropyl betaine (CAB) at ratio 80 : 15 : 5) with nonionic surfactant of amine oxide type (lauramine oxide (AO)) in various concentration (1-5%) were studied. To characterize the surfactants mixture, the critical micelle concentration (CMC), surface tension (γ), foam volume, biodegradability and irritability were determined. This study showed that adding of AO in those mixtures lowered both γ and CMC as well as enhanced SLES/AOS/CAB foaming properties, but did not significantly affect biodegradability and irritability of initial formulation. Moreover, an increase in AO concentration has a meaningful synergistic effect on the initial formulation properties. All those results indicates that a nonionic surfactant of amine oxide type significantly improves the performance of anionic/amphoteric mixed micelle systems, and because of that anionic/amphoteric/nonionic mixture can be used in considerably lower concentrations as a cleaning formulation.

  14. LNAPL Removal from Unsaturated Porous Media using Surfactant Infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Oostrom, Martinus

    A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during surfactant solution infiltration. Surfactant-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration surfactant was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated surfactant solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the firstmore » surfactant infiltration in each column, indicating that a very low surfactant concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of surfactant infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total surfactant solution application, suggesting surfactant infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between surfactant sorption was negligible.« less

  15. Interfacial mechanisms for stability of surfactant-laden films

    PubMed Central

    Chai, Chew; Àlvarez-Valenzuela, Marco A.; Tajuelo, Javier; Fuller, Gerald G.

    2017-01-01

    Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems in the limit of negligible adsorption-desorption dynamics. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows. PMID:28520734

  16. How nanobubbles lose stability: Effects of surfactants

    NASA Astrophysics Data System (ADS)

    Xiao, Qianxiang; Liu, Yawei; Guo, Zhenjiang; Liu, Zhiping; Zhang, Xianren

    2017-09-01

    In contrast to stability theories of nanobubbles, the molecular mechanism of how nanobubbles lose stability is far from being understood. In this work, we try to interpret recent experimental observations that the addition of surfactants destabilizes nanobubbles with an unclear mechanism. Using molecular dynamics simulations, we identify two surfactant-induced molecular mechanisms for nanobubbles losing stability, either through depinning of a contact line or reducing vapor-liquid surface tension. One corresponds to the case with significant adsorption of surfactants on the substrates, which causes depinning of the nanobubble contact line and thus leads to nanobubble instability. The other stresses surfactant adsorption on the vapor-liquid interface of nanobubbles, especially for insoluble surfactants, which reduces the surface tension of the interface and leads to an irreversible liquid-to-vapor phase transition. Our finding can help improve our understanding in nanobubble stability, and the insight presented here has implications for surface nanobubbles involving with other amphiphilic molecules, such as proteins and contaminations.

  17. SURFACTANT ENHANCED AQUIFER REMEDIATION WITH SURFACTANT REGENERATION/REUSE

    EPA Science Inventory

    A demonstration of surfactant-enhanced aquifer remediation was conducted during the spring of 1999 at Marine Corps Base, Camp LeJeune, NC. A PCE-DNAPL zone was identified and delineated by extensive soil sampling in 1997, and was further characteized by a partitioning interwell t...

  18. Solar energy storage using surfactant micelles

    NASA Astrophysics Data System (ADS)

    Srivastava, R. C.; Marwadi, P. R.; Latha, P. K.; Bhise, S. B.

    1982-09-01

    The results of experiments designed to test the soluble reduced form of thionine dye as a suitable solar energy storage agent inside the hydrophobic core of surfactant micelles are discussed. Aqueous solutions of thionine, methylene blue, cetyl pyridinium bromide, sodium lauryl sulphate, iron salts, and iron were employed as samples of anionic, cationic, and nonionic surfactants. The solutions were exposed to light until the dye disappeared, and then added drop-by-drop to surfactant solutions. The resultant solutions were placed in one cell compartment while an aqueous solution with Fe(2+) and Fe(3+) ions were placed in another, with the compartments being furnished with platinum electrodes connected using a saturated KCl-agar bridge. Data was gathered on the short circuit current, maximum power, and internal resistance encountered. Results indicate that dye-surfactant systems are viable candidates for solar energy storage for later conversion to electrical power.

  19. Effects of Surfactants on Chlorobenzene Absorption on Pyrite Surface

    NASA Astrophysics Data System (ADS)

    Hoa, P. T.; Suto, K.; Inoue, C.; Hara, J.

    2007-03-01

    Recently, both surfactant extraction of chlorinated compounds from contaminated soils and chemical reduction of chlorinated compounds by pyrite have had received a lot of attention. The reaction of the natural mineral pyrite was found as a surface controlling process which strongly depends on absorption of contaminants on the surface. Surfactants were not only aggregated into micelle which increase solubility of hydrophobic compounds but also tend to absorb on the solid surface. This study investigated effects of different kinds of Surfactants on absorption of chlorobenzene on pyrite surface in order to identify coupling potential of surfactant application and remediation by pyrite. Surfactants used including non-ionic, anionic and cationic which were Polyoxyethylene (23) Lauryl Ether (Brij35), Sodium Dodecyl Sulfate (SDS) and Cetyl TrimethylAmmonium Bromide (CTAB) respectively were investigated with a wide range of surfactant concentration up to 4 times of each critical micelle concentration (CMC). Chlorobenzene was chosen as a representative compound. The enhancement or competition effects of Surfactants on absorption were discussed.

  20. Charging and Screening in Nonpolar Solutions of Nonionizable Surfactants

    NASA Astrophysics Data System (ADS)

    Behrens, Sven

    2010-03-01

    Nonpolar liquids do not easily accommodate electric charges, but surfactant additives are often found to dramatically increase the solution conductivity and promote surface charging of suspended colloid particles. Such surfactant-mediated electrostatic effects have been associated with equilibrium charge fluctuations among reverse surfactant micelles and in some cases with the statistically rare ionization of individual surfactant molecules. Here we present experimental evidence that even surfactants without any ionizable group can mediate charging and charge screening in nonpolar oils, and that they can do so at surfactant concentrations well below the critical micelle concentration (cmc). Precision conductometry, light scattering, and Karl-Fischer titration of sorbitan oleate solutions in hexane, paired with electrophoretic mobility measurements on suspended polymer particles, reveal a distinctly electrostatic action of the surfactant. We interpret our observations in terms of a charge fluctuation model and argue that the observed charging processes are likely facilitated, but not limited, by the presence of ionizable impurities.

  1. Ordered DNA-Surfactant Hybrid Nanospheres Triggered by Magnetic Cationic Surfactants for Photon- and Magneto-Manipulated Drug Delivery and Release.

    PubMed

    Xu, Lu; Wang, Yitong; Wei, Guangcheng; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2015-12-14

    Here we construct for the first time ordered surfactant-DNA hybrid nanospheres of double-strand (ds) DNA and cationic surfactants with magnetic counterion, [FeCl3Br](-). The specificity of the magnetic cationic surfactants that can compact DNA at high concentrations makes it possible for building ordered nanospheres through aggregation, fusion, and coagulation. Cationic surfactants with conventional Br(-) cannot produce spheres under the same condition because they lose the DNA compaction ability. When a light-responsive magnetic cationic surfactant is used to produce nanospheres, a dual-controllable drug-delivery platform can be built simply by the applications of external magnetic force and alternative UV and visible light. These nanospheres obtain high drug absorption efficiency, slow release property, and good biocompatibility. There is potential for effective magnetic-field-based targeted drug delivery, followed by photocontrollable drug release. We deduce that our results might be of great interest for making new functional nucleic-acid-based nanomachines and be envisioned to find applications in nanotechnology and biochemistry.

  2. Ecotoxicological characterization of polyoxyethylene glycerol ester non-ionic surfactants and their mixtures with anionic and non-ionic surfactants.

    PubMed

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Fernández-Serrano, Mercedes

    2017-04-01

    This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.

  3. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen

    2017-09-01

    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.

  4. Aggregate-based sub-CMC Solubilization of Hexadecane by Surfactants.

    PubMed

    Zhong, Hua; Yang, Lei; Zeng, Guangming; Brusseau, Mark L; Wang, Yake; Li, Yang; Liu, Zhifeng; Yuan, Xingzhong; Tan, Fei

    Solubilization of hexadecane by two surfactants, SDBS and Triton X-100, at concentrations near the critical micelle concentration (CMC) and the related aggregation behavior was investigated in this study. Solubilization was observed at surfactant concentrations lower than CMC, and the apparent solubility of hexadecane increased linearly with surfactant concentration for both surfactants. The capacity of SDBS to solubilize hexadecane is stronger at concentrations below CMC than above CMC. In contrast, Triton X-100 shows no difference. The results of dynamic light scattering (DLS) and cryogenic TEM analysis show aggregate formation at surfactant concentrations lower than CMC. DLS-based size of the aggregates ( d ) decreases with increasing surfactant concentration. Zeta potential of the SDBS aggregates decreases with increasing SDBS concentration, whereas it increases for Triton X-100. The surface excess (Γ) of SDBS calculated based on hexadecane solubility and aggregate size data increases rapidly with increasing bulk concentration, and then asymptotically approaches the maximum surface excess (Γ max ). Conversely, there is only a minor increase in Γ for Triton X-100. Comparison of Γ and d indicates that excess of surfactant molecules at aggregate surface has great impact on surface curvature. The results of this study demonstrate formation of aggregates at surfactant concentrations below CMC for hexadecane solubilization, and indicate the potential of employing low-concentration strategy for surfactant application such as remediation of HOC contaminated sites.

  5. Surfactants have multi-fold effects on skin barrier function.

    PubMed

    Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine

    2015-01-01

    The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.

  6. The Influence of Hydrophobicity, Inorganic Amendments and Surfactants on Turfgrass Establishment, Growth and Quality in Constructed Root Zone Mixes

    NASA Astrophysics Data System (ADS)

    McMillan, Mica Franklin

    Soil water repellency (SWR) negatively affects turfgrass growth and quality and impedes uniform distribution of water, particularly in sand-based rootzones. Surfactants and soil amendments such as calcined clay are two approaches to improving soil hydrological properties affected by SWR. However, studying SWR in the field is difficult due to the extreme spatial variability in the soil profile. An objective of this dissertation was to assess two methods to impart SWR on sand and examine SWR amelioration strategies using these procedures under a plant environment and deficit irrigation. To determine effectiveness of artificial hydrophobicity, two methods produced severely hydrophobic substrates: stearic acid sand (HSS) and sand:peat (90:10 sand:peat v/v)(HSP). Greenhouse studies compared the effects of substrates HSS, HSP, 100% sand (SAND), sand:peat (90:10 v/v) (SP), sand:calcined clay (90:10 v/v) (CC) and naturally water repellent sand (NWRS) on bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davy] establishment and growth. Results indicate that HSS and HSP were not toxic to turfgrass but initially, hindered bermudagrass growth. At trials end, SWR had declined in both soils. A second greenhouse study assessed surfactant chemistry on substrates. After three dry downs, surfactants generally improved turfgrass quality in SAND and CC but had no significant effect in HSP and SP. Water drop penetration tests deemed CC and SAND wettable and HSP and SP nonwettable. Contact angle analysis found CC and SAND to be subcritically water repellent while HSP and SP were water repellent. Both HSP and HSS could be used to evaluate the influence of SWR on plant growth. However, both methods have disadvantages. CC remained wettable after several dry downs. In another greenhouse study, perennial ryegrass (Lolium perenne) seeds coated with 10% w/w alkyl-terminated block copolymer surfactant seed coating (SC) were evaluated as an amelioration strategy. Seed treated

  7. Inactivation of Herpes Simplex Viruses by Nonionic Surfactants

    PubMed Central

    Asculai, Samuel S.; Weis, Margaret T.; Rancourt, Martha W.; Kupferberg, A. B.

    1978-01-01

    Nonionic surface-active agents possessing ether or amide linkages between the hydrophillic and hydrophobic portions of the molecule rapidly inactivated the infectivity of herpes simplex viruses. The activity stemmed from the ability of nonionic surfactants to dissolve lipid-containing membranes. This was confirmed by observing surfactant destruction of mammalian cell plasma membranes and herpes simplex virus envelopes. Proprietary vaginal contraceptive formulations containing nonionic surfactants also inactivated herpes simplex virus infectivity. This observation suggests that nonionic surfactants in appropriate formulation could effectively prevent herpes simplex virus transmission. Images PMID:208460

  8. Reactive Oxygen Species Inactivation of Surfactant Involves Structural and Functional Alterations to Surfactant Proteins SP-B and SP-C

    PubMed Central

    Rodríguez-Capote, Karina; Manzanares, Dahis; Haines, Thomas; Possmayer, Fred

    2006-01-01

    Exposing bovine lipid extract surfactant (BLES), a clinical surfactant, to reactive oxygen species arising from hypochlorous acid or the Fenton reaction resulted in an increase in lipid (conjugated dienes, lipid aldehydes) and protein (carbonyls) oxidation products and a reduction in surface activity. Experiments where oxidized phospholipids (PL) were mixed with BLES demonstrated that this addition hampered BLES biophysical activity. However the effects were only moderately greater than with control PL. These results imply a critical role for protein oxidation. BLES oxidation by either method resulted in alterations in surfactant proteins SP-B and SP-C, as evidenced by altered Coomassie blue and silver staining. Western blot analyses showed depressed reactivity with specific antibodies. Oxidized SP-C showed decreased palmitoylation. Reconstitution experiments employing PL, SP-B, and SP-C isolated from control or oxidized BLES demonstrated that protein oxidation was more deleterious than lipid oxidation. Furthermore, addition of control SP-B can improve samples containing oxidized SP-C, but not vice versa. We conclude that surfactant oxidation arising from reactive oxygen species generated by air pollution or leukocytes interferes with surfactant function through oxidation of surfactant PL and proteins, but that protein oxidation, in particular SP-B modification, produces the major deleterious effects. PMID:16443649

  9. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  10. Solubilization of pyrene by anionic-nonionic mixed surfactants.

    PubMed

    Zhou, Wenjun; Zhu, Lizhong

    2004-06-18

    Surfactant-enhanced remediation (SER) is an effective approach for the removal of sorbed hydrophobic organic compounds from contaminated soils. The solubilization of pyrene by four anionic-nonionic mixed surfactants, sodium dodecyl sulfate (SDS) with Triton X-405 (TX405), Brij35, Brij58, and Triton X-100 (TX100), has been studied from measurements of the molar solubilization ratio (MSR), the micelle-water partition coefficient (Kmc), and the critical micelle concentration (CMC). The MSRs of pyrene in mixed surfactants are found to be larger than those predicted according to an ideal mixing rule. The mixing effect of anionic and nonionic surfactants on MSR for pyrene follows the order of SDS-TX405 > SDS-Brij35 > SDS-Brij58 > SDS-TX100 and increases with an increase in the hydrophile-lipophile balance (HLB) value of nonionic surfactant in mixed systems. In addition, the mixture of anionic and nonionic surfactants cause the Kmc value for pyrene to be greater than the ideal value in SDS-TX405 mixed system, but to be smaller than the ideal value in SDS-Brij35, SDS-Brij58, and SDS-TX100 mixed systems. Meanwhile, in the four mixed systems, the experimental CMCs are lower than the ideal CMCs at almost all mixed surfactant solution compositions. The mixing effect of anionic and nonionic surfactants on MSR for pyrene can be attributed to the conjunct or the net result of the negative deviation of the CMCs from ideal mixture and the increasing or decreasing Kmc.

  11. Baseline impedance measured during high-resolution esophageal impedance manometry reliably discriminates GERD patients.

    PubMed

    Ravi, K; Geno, D M; Vela, M F; Crowell, M D; Katzka, D A

    2017-05-01

    Baseline impedance measured with ambulatory impedance pH monitoring (MII-pH) and a mucosal impedance catheter detects gastroesophageal reflux disease (GERD). However, these tools are limited by cost or patient tolerance. We investigated whether baseline impedance measured during high-resolution impedance manometry (HRIM) distinguishes GERD patients from controls. Consecutive patients with clinical HRIM and MII-pH testing were identified. Gastroesophageal reflux disease was defined by esophageal pH <4 for ≥5% of both the supine and total study time, whereas controls had an esophageal pH <4 for ≤3% of the study performed off PPI. Baseline impedance was measured over 15 seconds during the landmark period of HRIM and over three 10 minute intervals during the overnight period of MII-pH. Among 29 GERD patients and 26 controls, GERD patients had a mean esophageal acid exposure time of 22.7% compared to 1.2% in controls (P<.0001). Mean baseline impedance during HRIM was lower in GERD (1061 Ω) than controls (2814 Ω) (P<.0001). Baseline mucosal impedance measured during HRIM and MII-pH correlated (r=0.59, P<.0001). High-resolution esophageal manometry baseline impedance had high diagnostic accuracy for GERD, with an area under the curve (AUC) of 0.931 on receiver operating characteristics (ROC) analysis. A HRIM baseline impedance threshold of 1582 Ω had a sensitivity of 86.2% and specificity of 88.5% for GERD, with a positive predictive value of 89.3% and negative predictive value of 85.2%. Baseline impedance measured during HRIM can reliably discriminate GERD patients with at least moderate esophageal acid exposure from controls. This diagnostic tool may represent an accurate, cost-effective, and less invasive test for GERD. © 2016 John Wiley & Sons Ltd.

  12. New serine-derived gemini surfactants as gene delivery systems.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Amália S

    2015-01-01

    Gemini surfactants have been extensively used for in vitro gene delivery. Amino acid-derived gemini surfactants combine the special aggregation properties characteristic of the gemini surfactants with high biocompatibility and biodegradability. In this work, novel serine-derived gemini surfactants, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini surfactant-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low surfactant/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini surfactants with great potential as gene delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.A.; Luthy, R.G.; Liu, Zhongbao

    1991-01-01

    Experimental data are presented on the enhanced apparent solubilities of naphthalene, phenanthrene, and pyrene resulting from solubilization in aqueous solutions of four commercial, nonionic surfactants: an alkyl polyoxyethylene (POE) type, two octylphenol POE types, and a nonylphenol POE type. Apparent solubilities of the polycyclic aromatic hydrocarbon (PAH) compounds in surfactant solutions were determined by radiolabeled techniques. Solubilization of each PAH compound commenced at the surfactant critical micelle concentration and was proportional to the concentration of surfactant in micelle form. The partitioning of organic compounds between surfactant micelles and aqueous solution is characterized by a mole fraction micelle-phase/aqueous-phase partition coefficient, K{submore » m}. Values of log K{sub m} for PAH compounds in surfactant solutions of this study range from 4.57 to 6.53. Log K{sub m} appears to be a linear function of log K{sub ow} for a given surfactant solution. A knowledge of partitioning in aqueous surfactant systems is a prerequisite to understanding mechanisms affecting the behavior of hydrophobic organic compounds in soil-water systems in which surfactants play a role in contaminant remediation or facilitated transport.« less

  14. Overview Of Impedance Sensors

    NASA Astrophysics Data System (ADS)

    Abele, John E.

    1989-08-01

    Electrical impedance has been one of the many "tools of great promise" that physicians have employed in their quest to measure and/or monitor body function or physiologic events. So far, the expectations for its success have always exceeded its performance. In simplistic terms, physiologic impedance is a measure of the resistance in the volume between electrodes which changes as a function of changes in that volume, the relative impedance of that volume, or a combination of these two. The history and principles of electrical impedance are very nicely reviewed by Geddes and Baker in their textbook "Principles of Applied Biomedical Instrumentation". It is humbling, however, to note that Cremer recorded variations in electrical impedance in frog hearts as early as 1907. The list of potential applications includes the measurement of thyroid function, estrogen activity, galvanic skin reflex, respiration, blood flow by conductivity dilution, nervous activity and eye movement. Commercial devices employing impedance have been and are being used to measure respiration (pneumographs and apneamonitors), pulse volume (impedance phlebographs) and even noninvasive cardiac output.

  15. Inhibitory effect of xanthan gum and synergistic surfactant additives for mild steel corrosion in 1M HCl.

    PubMed

    Mobin, Mohammad; Rizvi, Marziya

    2016-01-20

    Natural polymer xanthan gum (XG) was investigated as eco friendly corrosion inhibitor for mild steel in 1M HCl at 30 °C, 40 °C, 50 °C and 60 °C, respectively. The inhibition studies were performed using gravimetric analysis, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), quantum chemical calculations, scanning electron microscopy (SEM), and UV-visible spectrophotometry. XG significantly reduces the corrosion rates of mild steel. The inhibition efficiency (IE) of the XG increased with increase in concentration, but decreased with temperature; the maximum IE of 74.24% was obtained at concentration of 1000 ppm at 30 °C. The inhibiting action of XG is synergistically enhanced on addition of very small amount of surfactants sodium dodecyl sulfate (SDS), cetyl pyridinium chloride (CPC) and Triton X-100 (TX). The effect of SDS is more pronounced than other surfactants. Potentiodynamic polarization studies confirm XG as a mixed type inhibitor. Results of weight loss measurements are in good agreement of the results of electrochemical measurements. The UV-visible spectroscopic results indicate the formation of complex between XG and Fe(2+) ions during corrosion reaction. Mechanism of inhibition was also investigated by calculating the thermodynamic and activation parameters like ΔG(0), Ea, ΔH and ΔS. The adsorption of inhibitor on mild steel surface obeys Langmuir adsorption isotherm. SEM micrographs show a clearly different morphology in presence of XG and XG-surfactant additives and confirmed the existence of an adsorbed protective film on the mild steel surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  17. The Lγ Phase of Pulmonary Surfactant.

    PubMed

    Kumar, Kamlesh; Chavarha, Mariya; Loney, Ryan W; Weiss, Thomas M; Rananavare, Shankar B; Hall, Stephen B

    2018-06-05

    To determine how different components affect the structure of pulmonary surfactant, we measured X-ray scattering by samples derived from calf surfactant. The surfactant phospholipids demonstrated the essential characteristics of the L γ phase: a unit cell with a lattice constant appropriate for two bilayers, and crystalline chains detected by wide-angle X-ray scattering (WAXS). The electron density profile, obtained from scattering by oriented films at different relative humidities (70-97%), showed that the two bilayers, arranged as mirror images, each contain two distinct leaflets with different thicknesses and profiles. The detailed structures suggest one ordered leaflet that would contain crystalline chains and one disordered monolayer likely to contain the anionic compounds, which constitute ∼10% of the surfactant phospholipids. The spacing and temperature dependence detected by WAXS fit with an ordered leaflet composed of dipalmitoyl phosphatidylcholine. Physiological levels of cholesterol had no effect on this structure. Removing the anionic phospholipids prevented formation of the L γ phase. The cationic surfactant proteins inhibited L γ structures, but at levels unlikely related to charge. Because the L γ phase, if arranged properly, could produce a self-assembled ordered interfacial monolayer, the structure could have important functional consequences. Physiological levels of the proteins, however, inhibit formation of the L γ structures at high relative humidities, making their physiological significance uncertain.

  18. Effect of salt and surfactant concentration on the structure of polyacrylate gel/surfactant complexes.

    PubMed

    Nilsson, Peter; Unga, Johan; Hansson, Per

    2007-09-20

    Small-angle X-ray scattering was used to elucidate the structure of crosslinked polyacrylate gel/dodecyltrimethylammonium bromide complexes equilibrated in solutions of varying concentrations of surfactant and sodium bromide (NaBr). Samples were swollen with no ordering (micelle free), or they were collapsed with either several distinct peaks (cubic Pm3n) or one broad correlation peak (disordered micellar). The main factor determining the structure of the collapsed complexes was found to be the NaBr concentration, with the cubic structure existing up to approximately 150 mM NaBr and above which only the disordered micellar structure was found. Increasing the salt concentration decreases the polyion mediated attractive forces holding the micelles together causing swelling of the gel. At sufficiently high salt concentration the micelle-micelle distance in the gel becomes too large for the cubic structure to be retained, and it melts into a disordered micellar structure. As most samples were above the critical micelle concentration, the bulk of the surfactant was in the form of micelles in the solution and the surfactant concentration thereby had only a minor influence on the structure. However, in the region around 150 mM NaBr, increasing the surfactant concentration, at constant NaBr concentration, was found to change the structure from disordered micellar to ordered cubic and back to disordered again.

  19. Measuring surfactant concentration in plating solutions

    DOEpatents

    Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.

    1989-01-01

    An arrangement for measuring the concentration of surfactants in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the surfactant concentration.

  20. High Oxygen Concentrations Adversely Affect the Performance of Pulmonary Surfactant.

    PubMed

    Smallwood, Craig D; Boloori-Zadeh, Parnian; Silva, Maricris R; Gouldstone, Andrew

    2017-08-01

    Although effective in the neonatal population, exogenous pulmonary surfactant has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal surfactant replacement therapy is administered in conjunction with low fractional F IO 2 while pediatric/adult therapy is administered with high F IO 2 . We suspected a connection between F IO 2 and surfactant performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary surfactant is adversely affected by direct oxygen exposure in in vitro experiments. The mechanical performance of pulmonary surfactant was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of surfactant to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary surfactant particles in aqueous suspension. For both experiments, comparisons were made between surfactant exposed to 21% and 100% oxygen. The δA of surfactant was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively ( P = .02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively ( P < .001), corresponding to a ∼16% decrease in micelle diameter following exposure to 100% oxygen. The characteristics of pulmonary surfactant were adversely affected by short-term exposure to oxygen. Specifically, surface tension studies revealed that short-term exposure of surfactant film to high concentrations of oxygen expedited the frangibility of pulmonary surfactant, as shown with the δA. This suggests that reductions in pulmonary compliance and associated adverse effects could begin to take effect in a very short period of time. If these findings can be demonstrated in vivo, a

  1. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  2. The effect of nanoparticle aggregation on surfactant foam stability.

    PubMed

    AlYousef, Zuhair A; Almobarky, Mohammed A; Schechter, David S

    2018-02-01

    The combination of nanoparticles (NPs) and surfactant may offer a novel technique of generating stronger foams for gas mobility control. This study evaluates the potential of silica NPs to enhance the foam stability of three nonionic surfactants. Results showed that the concentration of surfactant and NPs is a crucial parameter for foam stability and that there is certain concentrations for strong foam generation. A balance in concentration between the nonionic surfactants and the NPs can enhance the foam stability as a result of forming flocs in solutions. At fixed surfactant concentration, the addition of NPs at low to intermediate concentrations can produce a more stable foam compared to the surfactant. The production of small population of flocs as a result of mixing the surfactant and NPs can enhance the foam stability by providing a barrier between the gas bubbles and delaying the coalescence of bubbles. Moreover, these flocs can increase the solution viscosity and, therefore, slow the drainage rate of thin aqueous film (lamellae). The measurements of foam half-life, bubble size, and mobility tests confirmed this conclusion. However, the addition of more solid particles or surfactant might have a negative impact on foam stability and reduce the maximum capillary pressure of coalescence as a result of forming extensive aggregates. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changesmore » in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.« less

  4. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOEpatents

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  5. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOEpatents

    Smith, Douglas D.; Hiller, John M.

    1998-01-01

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  6. Superheating of kerosene-surfactant-water interface formed in capillary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamura, Y.; Huang, Q.; Takahashi, T.

    1993-03-01

    To provide fundamental information about the microexplosion of emulsified fuels, the effect of surfactants on the superheating of a kerosene-water interface was experimentally investigated. Surfactants such as Span 80, NPE[sub 2], NPE[sub 5], and NPE[sub 7.5] were used. The three-layer sample was prepared in a capillary; the bottom layer was kerosene, the middle layer was water, and the upper layer was kerosene. The surfactants were dissolved in the upper kerosene layer. The 30-40 samples were used to determine the superheating temperature distribution. The superheating temperature decreases with increasing concentration of surfactant and approaches a constant distribution over a critical concentration.more » The superheating temperature also depends on the hydrophilic group of NPE[sub x]. To explain such an effect, the authors assumed that the surfactant was absorbed on the interface and accelerated the nucleation rate. The authors suggest a modified nucleation rate which includes the surface coverage by a surfactant. The model predicts that the presence of surfactants reduces the superheating temperature and makes the distribution broader. The prediction from this model is in good agreement with the experimental data.« less

  7. Atrazine and Diuron partitioning within a soil-water-surfactant system

    NASA Astrophysics Data System (ADS)

    Wang, P.; Keller, A.

    2006-12-01

    The interaction between pesticide and soil and water is even more complex in the presence of surfactants. In this study, batch equilibrium was employed to study the sorption of surfactants and the partitioning behaviors of Atrazine and Diuron within a soil-water-surfactant system. Five soils and four surfactants (nonionic Triton- 100, cationic Benzalkonium Chloride (BC), anionic Linear Alkylbenzenesulfonate (LAS), and anionic Sodium Dodecyl Sulfate (SDS)) were used. All surfactant sorption isotherms exhibited an initial linear increase at low surfactant concentrations but reached an asymptotic value as the surfactant concentrations increased. Among the surfactants, BC had the highest sorption onto all soils, followed by Triton-100 and then by LAS and SDS, implying that the nature of the charge significantly influences surfactant sorption. Sorption of either Triton-100 or BC was highly correlated with soil Cation Exchange Capacity (CEC) while that of LAS and SDS was complicated by the presence of Ca2+ and Mg2+ in the aqueous phase and the CEC sites. Both LAS and SDS formed complexes with Ca2+ and Mg2+, resulting in a significant decrease in the detergency of the surfactants. At high surfactant concentrations and with micelles present in the aqueous phase, the micelles formed a more competitive partitioning site for the pesticides, resulting in less pesticide sorbed to the soil. At low Triton-100 and BC concentration, the sorption of the surfactants first resulted in less Atrazine sorption but more Diuron sorption, implying competition between the surfactants and Atrazine, which serves as an indirect evidence that there is a different sorption mechanism for Atrazine. Atrazine is a weak base and it protonates and becomes positively charged near particle surfaces where the pH is much lower than in the bulk solution. The protonated Atrazine may then be held on the CEC sites via electrostatic attraction. Triton-100, LAS and SDS sorbed on the soil showed similar

  8. Surfactant titration of nanoparticle-protein corona.

    PubMed

    Maiolo, Daniele; Bergese, Paolo; Mahon, Eugene; Dawson, Kenneth A; Monopoli, Marco P

    2014-12-16

    Nanoparticles (NP), when exposed to biological fluids, are coated by specific proteins that form the so-called protein corona. While some adsorbing proteins exchange with the surroundings on a short time scale, described as a "dynamic" corona, others with higher affinity and long-lived interaction with the NP surface form a "hard" corona (HC), which is believed to mediate NP interaction with cellular machineries. In-depth NP protein corona characterization is therefore a necessary step in understanding the relationship between surface layer structure and biological outcomes. In the present work, we evaluate the protein composition and stability over time and we systematically challenge the formed complexes with surfactants. Each challenge is characterized through different physicochemical measurements (dynamic light scattering, ζ-potential, and differential centrifugal sedimentation) alongside proteomic evaluation in titration type experiments (surfactant titration). 100 nm silicon oxide (Si) and 100 nm carboxylated polystyrene (PS-COOH) NPs cloaked by human plasma HC were titrated with 3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, zwitterionic), Triton X-100 (nonionic), sodium dodecyl sulfate (SDS, anionic), and dodecyltrimethylammonium bromide (DTAB, cationic) surfactants. Composition and density of HC together with size and ζ-potential of NP-HC complexes were tracked at each step after surfactant titration. Results on Si NP-HC complexes showed that SDS removes most of the HC, while DTAB induces NP agglomeration. Analogous results were obtained for PS NP-HC complexes. Interestingly, CHAPS and Triton X-100, thanks to similar surface binding preferences, enable selective extraction of apolipoprotein AI (ApoAI) from Si NP hard coronas, leaving unaltered the dispersion physicochemical properties. These findings indicate that surfactant titration can enable the study of NP-HC stability through surfactant variation and also selective separation

  9. A novel continuous powder aerosolizer (CPA) for inhalative administration of highly concentrated recombinant surfactant protein-C (rSP-C) surfactant to preterm neonates.

    PubMed

    Pohlmann, G; Iwatschenko, P; Koch, W; Windt, H; Rast, M; de Abreu, M Gama; Taut, F J H; De Muynck, C

    2013-12-01

    In pulmonary medicine, aerosolization of substances for continuous inhalation is confined to different classes of nebulizers with their inherent limitations. Among the unmet medical needs is the lack of an aerosolized surfactant preparation for inhalation by preterm neonates, to avoid the risks associated with endotracheal intubation and surfactant bolus instillation. In the present report, we describe a high-concentration continuous powder aerosolization system developed for delivery of inhalable surfactant to preterm neonates. The developed device uses a technique that allows efficient aerosolization of dry surfactant powder, generating a surfactant aerosol of high concentration. In a subsequent humidification step, the heated aerosol particles are covered with a surface layer of water. The wet surfactant aerosol is then delivered to the patient interface (e.g., nasal prongs) through a tube. The performance characteristics of the system are given as mass concentration, dose rate, and size distribution of the generated aerosol. Continuous aerosol flows of about 0.84 L/min can be generated from dry recombinant surfactant protein-C surfactant, with concentrations of up to 12 g/m(3) and median particle sizes of the humidified particles in the range of 3 to 3.5 μm at the patient interface. The system has been successfully used in preclinical studies. The device with its continuous high-concentration delivery is promising for noninvasive delivery of surfactant aerosol to neonates and has the potential for becoming a versatile disperser platform closing the gap between continuously operating nebulizers and discontinuously operating dry powder inhaler devices.

  10. Thermally stable surfactants and compositions and methods of use thereof

    DOEpatents

    Chaiko, David J [Woodridge, IL

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  11. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  12. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.

    PubMed

    Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F

    2016-03-01

    The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Status of surfactants as penetration enhancers in transdermal drug delivery

    PubMed Central

    Som, Iti; Bhatia, Kashish; Yasir, Mohd.

    2012-01-01

    Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs. PMID:22368393

  14. Influence of stability of polymer surfactant on oil displacement mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Li; Li, Chengliang; Pi, Yanming; Wu, Di; He, Ying; Geng, Liang

    2018-02-01

    At present, most of the oilfields of China have entered the late stage of high water-cut development, and three oil recovery technique has become the leading technology for improving oil recovery. With the improvement of three oil recovery techniques, the polymer surfactant flooding technology has been widely promoted in oil fields in recent years. But in the actual field experiment, it has been found that the polymer surfactant has chromatographic separation at the extraction end, which indicates that the property of the polymer surfactant has changed during the displacement process. At present, there was few literature about how the stability of polymer surfactant affects the oil displacement mechanism. This paper used HuaDing-I polymer surfactant to conduct a micro photolithography glass flooding experiment, and then compared the oil displacement law of polymer surfactant before and after static setting. Finally, the influence law of stability of polymer surfactant on the oil displacement mechanism is obtained by comprehensive analysis.

  15. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    PubMed

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Polydiacetylene sensor interaction with food sanitizers and surfactants.

    PubMed

    Zhang, Yueyuan; Northcutt, Julie; Hanks, Tim; Miller, Ian; Pennington, Bill; Jelinek, Raz; Han, Inyee; Dawson, Paul

    2017-04-15

    Polydiacetylene (PDA) vesicles are of interest as biosensors, particularly for pathogenic bacteria. As part of a food monitoring system, interaction with food sanitizers/surfactants was investigated. PDA vesicles were prepared by inkjet-printing, photopolymerized and characterized by dynamic light scattering (DLS) and UV/Vis spectroscopy. The optical response of PDA vesicles at various concentrations verses a fixed sanitizer/surfactant concentration was determined using a two variable factorial design. Sanitizer/surfactant response at various concentrations over time was also measured. Results indicated that only Vigilquat and TritonX-100 interacted with PDA vesicles giving visible colour change out of 8 sanitizers/surfactants tested. PDA vesicle concentration, sanitizer/surfactant concentration, and time all had a significant (P<0.0001) effect on colour change. As they are highly sensitive to the presence of Vigilquat and TritonX-100, PDA sensors could be used to detect chemical residues as well as for detection of various contaminants in the food industry. Copyright © 2016. Published by Elsevier Ltd.

  17. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  18. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  19. Remediation of soil-bound polynuclear aromatic hydrocarbons using nonionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, IckTae; Ghosh, Mriganka; Cox, C.

    1996-12-31

    The solubilization and biodegradation of soil-bound PAHs from a manufactured gas plant (MGP) site soil was investigated using surfactants. Three nonionic polyoxyethylene (POE) surfactants, Triton X-100, Tween 80, and Brij 35, were used. The fate of four PAHs, phenanthrene, anthracene, pyrene, and benzo(a)pyrene were monitored during the remediation process. The measured concentrations of solubilized PAHs agreed well with those estimated using micelle-water partitioning coefficient, K{sub m}, and Raoult`s law. The solubilization of soil-bound PAHs by surfactants is a slow, nonequilibrium process. Diffusion of PAH molecules within the weathered soil-tar matrix is proposed as the rate-limiting step in solubilizing PAHs frommore » such soils. A radial diffusion model is used to describe solubilization of PAHs by surfactant washing. The model predicts experimental results fairly well at low surfactant dosages while at high dosages it somewhat overestimates the extent of solubilization. Biodegradation studies were performed using a natural consortium of microorganisms enriched from PAH-contaminated soils. Surfactants enhanced biodegradation of PAHs except for Tween 80. However, biodegradation of surfactants themselves appear to attenuate the beneficial effects of surfactant-mediated bioremediation.« less

  20. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  1. Amino acid-based surfactants – do they deserve more attention?

    PubMed

    Bordes, Romain; Holmberg, Krister

    2015-08-01

    The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Physical properties of botanical surfactants.

    PubMed

    Müller, Lillian Espíndola; Schiedeck, Gustavo

    2018-01-01

    Some vegetal species have saponins in their composition with great potential to be used as natural surfactants in organic crops. This work aims to evaluate some surfactants physical properties of Quillaja brasiliensis and Agave angustifolia, based on different methods of preparation and concentration. The vegetal samples were prepared by drying and grinding, frozen and after chopped or used fresh and chopped. The neutral bar soap was used as a positive control. The drying and grinding of samples were the preparation method that resulted in higher foam column height in both species but Q. brasiliensis was superior to A. angustifolia in all comparisons and foam index was 2756 and 1017 respectively. Critical micelle concentration of Q. brasiliensis was 0.39% with the superficial tension of 54.40mNm -1 while neutral bar soap was 0.15% with 34.96mNm -1 . Aspects such as genetic characteristics of the species, environmental conditions, and analytical methods make it difficult to compare the results with other studies, but Q. brasiliensis powder has potential to be explored as a natural surfactant in organic farming. Not only the surfactants physical properties of botanical saponins should be taken into account but also its effect on insects and diseases control when decided using them. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Neutral lipid trafficking regulates alveolar type II cell surfactant phospholipid and surfactant protein expression.

    PubMed

    Torday, John; Rehan, Virender

    2011-08-01

    Adipocyte differentiation-related protein (ADRP) is a critically important protein that mediates lipid uptake, and is highly expressed in lung lipofibroblasts (LIFs). Triacylglycerol secreted from the pulmonary circulation and stored in lipid storage droplets is a robust hormonal-, growth factor-, and stretch-regulated precursor for surfactant phospholipid synthesis by alveolar type II epithelial (ATII) cells. A549 lung epithelial cells rapidly take up green fluorescent protein (GFP)-ADRP fusion protein-associated lipid droplets (LDs) in a dose-dependent manner. The LDs initially localize to the perinuclear region of the cell, followed by localization in the cytoplasm. Uptake of ADRP-LDs causes a time- and dose-dependent increase in surfactant protein-B (SP-B) expression. This mechanism can be inhibited by either actinomycin D or cycloheximide, indicating that ADRP-LDs induce newly synthesized SP-B. ADRP-LDs concomitantly stimulate saturated phosphatidylcholine (satPC) synthesis by A549 cells, which is inhibited by ADRP antibody, indicating that this is a receptor-mediated mechanism. Intravenous administration of GFP-ADRP LDs to adult rats results in dose-dependent increases in lung ADRP and SP-B expression. These data indicate that lipofibroblast-derived ADRP coordinates ATII cells' synthesis of the surfactant phospholipid-protein complex by stimulating both satPC and SP-B. The authors propose, therefore, that ADRP is the physiologic determinant for the elusive coordinated, stoichiometric synthesis of surfactant phospholipid and protein by pulmonary ATII cells.

  4. Dicationic Surfactants with Glycine Counter Ions for Oligonucleotide Transportation.

    PubMed

    Pietralik, Zuzanna; Skrzypczak, Andrzej; Kozak, Maciej

    2016-08-04

    Gemini surfactants are good candidates to bind, protect, and deliver nucleic acids. Herein, the concept of amino acids (namely glycine) as counter ions of gemini surfactants for gene therapy application was explored. This study was conducted on DNA and RNA oligomers and two quaternary bis-imidazolium salts, having 2,5-dioxahexane and 2,8-dioxanonane spacer groups. The toxicity level of surfactants was assessed by an MTT assay, and their ability to bind nucleic acids was tested through electrophoresis. The nucleic acid conformation was established based on circular dichroism and infrared spectroscopic analyses. The structures of the formed complexes were characterized by small-angle scattering of synchrotron radiation. Both studied surfactants appear to be suitable for gene therapy; however, although they vary by only three methylene groups in the spacer, they differ in binding ability and toxicity. The tested oligonucleotides maintained their native conformations upon surfactant addition and the studied lipoplexes formed a variety of structures. In systems based on a 2,5-dioxahexane spacer, a hexagonal phase was observed for DNA-surfactant complexes and a micellar phase was dominant with RNA. For the surfactant with a 2,8-dioxanonane spacer group, the primitive cubic phase prevailed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    PubMed

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.

  6. Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby

    2014-03-01

    Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.

  7. Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent.

    PubMed

    Al-Saiedy, Mustafa; Pratt, Ryan; Lai, Patrick; Kerek, Evan; Joyce, Heidi; Prenner, Elmar; Green, Francis; Ling, Chang-Chun; Veldhuizen, Ruud; Ghandorah, Salim; Amrein, Matthias

    2018-04-01

    Pulmonary surfactant forms a cohesive film at the alveolar air-lung interface, lowering surface tension, and thus reducing the work of breathing and preventing atelectasis. Surfactant function becomes impaired during inflammation due to degradation of the surfactant lipids and proteins by free radicals. In this study, we examine the role of reactive nitrogen (RNS) and oxygen (ROS) species on surfactant function with and without physiological cholesterol levels (5-10%). Surface activity was assessed in vitro in a captive bubble surfactometer (CBS). Surfactant chemistry, monolayer fluidity and thermodynamic behavior were also recorded before and after oxidation. We report that physiologic amounts of cholesterol combined with oxidation results in severe impairment of surfactant function. We also show that surfactant polyunsaturated phospholipids are the most susceptible to oxidative alteration. Membrane thermodynamic experiments showed significant surfactant film stiffening after free radical exposure in the presence of cholesterol. These results point to a previously unappreciated role for cholesterol in amplifying defects in surface activity caused by oxidation of pulmonary surfactant, a finding that may have implications for treating several lung diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The toxicity of cationic surfactant HDTMA-Br, desorbed from surfactant modified zeolite, towards faecal indicator and environmental microorganisms.

    PubMed

    Reeve, Peter J; Fallowfield, Howard J

    2017-10-05

    Surfactant Modified Zeolite (SMZ) represents a versatile, cost-effective permeable reactive material, capable of treating multiple classes of contaminants. The potential for HDTMA-Br, a cationic surfactant commonly used to modify zeolite, to desorb from the zeolite surface has been identified as a potential issue for the ongoing use of SMZ in water remediation contexts. This paper investigates the toxicity of HDTMA-Br towards enteric virus surrogates, F-RNA bacteriophage MS2 and E. coli, Bacillus subtilis, and soil microflora. The concentration of surfactant desorbing from SMZ was quantified through a bioassay using E. coli. Results showed HDTMA-Br concentrations of ≥10 -5 M were toxic to MS2, ≥10 -4 M were toxic to E. coli and ≥10 -6 M were toxic to B. subtilis. No toxic relationship was established between HDTMA-Br and soil microflora. Desorption of ≥10 -4 M of HDTMA-Br was shown for the two SMZ samples under the mixing conditions used. Effects of this surfactant on total soil microflora were ambiguous since no toxic relationship could be established, however, HDTMA-Br, at concentrations desorbing from SMZ, were shown to impact the soil bacterium B. subtilis. Further research is required to determine the effect of this surfactant on microbial populations and species diversity in soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Therapeutic surfactant-stripped frozen micelles

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-05-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  10. Adsorption of dissymmetric cationic gemini surfactants at silica/water interface

    NASA Astrophysics Data System (ADS)

    Sun, Yuhai; Feng, Yujun; Dong, Hongwei; Chen, Zhi

    2007-05-01

    Adsorption of a series of cationic gemini surfactants 12-2- m ( m = 8, 12, 16) on the surface of silica was investigated. The critical micelle concentrations, cmcs, of cationic gemini surfactants in the initial solutions and in the supernatants were measured by conductometry and tensiometer. The changes in cmc values indicate that the ion exchanges take place between polar groups of gemini surfactants adsorbed and ions bound on the surface of silica. The adsorption isotherms of cationic gemini surfactants were obtained by a solution depletion method. Based on the driving force, the adsorption includes two steps, one of which is ion exchange, and the other is hydrophobic interaction. In each step, the tendency of surfactant molecules in the solution to form aggregates or to be adsorbed on the silica varies with their structures. The maximum adsorption amount of gemini surfactants on the silica, τmax, decreases as increasing in the length of one alkyl chain, m, from 8, 12 to 16. So the results show that the adsorption behaviors of gemini surfactants are closely related to the dissymmetry of gemini molecules.

  11. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    NASA Astrophysics Data System (ADS)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior

  12. Role of electrostatic interaction on surfactant induced protein unfolding

    NASA Astrophysics Data System (ADS)

    Sumit, Kumar, Sugam; Aswal, V. K.

    2013-02-01

    Small Angle Neutron Scattering has been used to examine the effect of electrostatic interaction on surfactant induced protein unfolding. Measurements are carried out from 1 wt% Bovine Serum Albumin (BSA) protein with 1 wt% Sodium Dodecyl Sulphate (SDS) surfactant at pH 7 in presence of varying concentration of NaCl. It is found that both the components (protein and surfactant micelle which are likely charged) exist individually without any interaction in absence of salt, whereas their interaction and protein unfolding is enhanced with the increase in salt concentration. The structure of protein-surfactant interaction is characterized by fractal bead-necklace model.

  13. Functionalized lipids and surfactants for specific applications.

    PubMed

    Kepczynski, Mariusz; Róg, Tomasz

    2016-10-01

    Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    PubMed

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  15. Controlling block copolymer phase behavior using ionic surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D.; Aswal, V. K.

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at highermore » temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.« less

  16. Process for making surfactant capped nanocrystals

    DOEpatents

    Alivisatos, A Paul; Rockenberger, Joerg

    2002-01-01

    Disclosed is a process for making surfactant capped nanocrystals of transition metal oxides. The process comprises reacting a metal cupferron complex of the formula M Cup, wherein M is a transition metal, and Cup is a cupferron, with a coordinating surfactant, the reaction being conducted at a temperature ranging from about 250 to about 300 C., for a period of time sufficient to complete the reaction.

  17. Transport and Stability of Biological Molecules in Surfactant-Alginate Composite Hydrogels

    PubMed Central

    Stoppel, Whitney L.; White, Joseph C.; Horava, Sarena D.; Bhatia, Surita R.; Roberts, Susan C.

    2013-01-01

    Obstructed transport of biological molecules can result in improper release of pharmaceuticals or biologics from biomedical devices. Recent studies have shown that nonionic surfactants, such as Pluronic® F68 (F68), positively alter biomaterial properties, such as mesh size and microcapsule diameter. To further understand the effect of F68 (incorporated at concentrations well above the critical micelle concentration (CMC)) in traditional biomaterials, the transport properties of BSA and riboflavin were investigated in F68-alginate composite hydrogels. Results indicate that small molecule transport (represented by riboflavin) was not significantly hindered by F68 in homogeneously crosslinked hydrogels (up to an 11% decrease in loading capacity and 14% increase in effective diffusion coefficient, Deff), while protein transport in homogeneously crosslinked hydrogels (represented by BSA) was significantly affected (up to a 43% decrease in loading capacity and 40% increase in Deff). For inhomogeneously crosslinked hydrogels (CaCl2 or BaCl2 gelation), the Deff increased up to 50% and 83% for small molecule and proteins, respectively. Variation in the alginate gelation method was shown to affect transport through measurable changes in swelling ratio (30% decrease) and observable changes in crosslinking structure as well as up to a 3.6 and 11.8-fold difference in Deff for riboflavin and BSA, respectively. The change in protein transport properties is a product of mesh size restrictions (10–25 nm estimated by mechanical properties) and BSA-F68 interaction (DLS). Taken as a whole, these results show that incorporation of a nonionic surfactant at concentrations above the CMC can affect device functionality by impeding the transport of large biological molecules. PMID:21798381

  18. Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems

    NASA Astrophysics Data System (ADS)

    Plucktaveesak, Nopparat

    The fundamental understanding of polyelectrolytes in aqueous solutions is an important branch of polymer research. In this work, the rheological properties of polyelectrolytes and polyelectrolyte/surfactant systems are studied. Various synthetic poly electrolytes are chosen with varied hydrophobicity. We discuss the effects of adding various surfactants to aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)- b-polyethylene oxide)-g-poly(acrylic acid) (PEO-PPO-PAA) in the first chapter. Thermogelation in aqueous solutions of PEO-PPO-PAA is due to micellization caused by aggregation of poly(propylene oxide) (PPO) blocks resulting from temperature-induced dehydration of PPO. When nonionic surfactants with hydrophilic-lipophilic balance (HLB) parameter exceeding 11 or Cn alkylsulfates; n-octyl (C8), n-decyl (C 10) and n-dodecyl (C12) sulfates are added, the gelation threshold temperature (Tgel) of 1.0wt% PEO-PPO-PAA in aqueous solutions increases. In contrast, when nonionic surfactants with HLB below 11 are added, the gelation temperature decreases. On the other hand, alkylsulfates with n = 16 or 18 and poly(ethylene oxide) (PEO) do not affect the Tgel. The results imply that both hydrophobicity and tail length of the added surfactant play important roles in the interaction of PEO-PPO-PAA micelles and the surfactant. In the second chapter, the solution behavior of alternating copolymers of maleic acid and hydrophobic monomer is studied. The alternating structure of monomers with two-carboxylic groups and hydrophobic monomers make these copolymers unique. Under appropriate conditions, these carboxylic groups dissociate leaving charges on the chain. The potentiometric titrations of copolymer solutions with added CaCl2 reveal two distinct dissociation processes corresponding to the dissociation of the two adjacent carboxylic acids. The viscosity data as a function of polymer concentration of poly(isobutylene-alt-sodium maleate), poly

  19. Allergenic activity of an air-oxidized ethoxylated surfactant.

    PubMed

    Karlberg, Ann-Therese; Bodin, Anna; Matura, Mihaly

    2003-11-01

    Ethoxylated surfactants are used in household and industrial cleaners, topical pharmaceuticals, cosmetics and laundry products. Polyethers, e.g. ethoxylated surfactants and polyethylene glycols, are oxidized by atmospheric oxygen (autoxidized) when stored and handled. We have previously shown that a chemically well-defined non-ionic surfactant, the ethoxylated alcohol penta-ethylene glycol mono-n-dodecyl ether (C12E5), forms a complex mixture of autoxidation products when exposed to air. Predictive testing in guinea pigs showed that the surfactant itself is a non-sensitizer, but that oxidation products formed are skin sensitizers. The aim of this study was to investigate the sensitizing capacity of a total oxidation mixture of C12E5 obtained after autoxidation. The allergenic activity of different oxidation products is discussed as well as the clinical importance of the findings. This study shows that the non-ionic surfactant C12E5 containing 20% oxidation products is a sensitizing mixture. The result accords with what is observed for other compounds that are unstable when in contact with air, e.g. limonene and linalool, major fragrance terpenes. Studies regarding the clinical relevance of our findings should be performed. However, it is already clear from this study that precautions must be taken in handling and storage of ethoxylated surfactants to avoid formation of allergenic mixtures.

  20. Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH.

    PubMed

    Ríos, Francisco; Lechuga, Manuela; Fernández-Serrano, Mercedes; Fernández-Arteaga, Alejandro

    2017-03-01

    The present study was designed to provide information regarding the effect of the molecular structure of amphoteric amine-oxide-based surfactants and the initial surfactant concentration on their ultimate biodegradation. Moreover, given this parameter's pH-dependence, the effect of pH was also investigated. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-Cocoamido). We studied the ultimate biodegradation using the Modified OECD Screening Test at initial surfactant concentrations ranged from 5 to 75 mg L -1 and at pH levels from 5 to 7.4. The results demonstrate that at pH 7.4, amine-oxide-based surfactants are readily biodegradable. In this study, we concluded that ω-oxidation can be assumed to be the main biodegradation pathway of amine-oxides and that differences in the biodegradability between them can be explained by the presence of an amide group in the alkyl chain of AO-Cocoamido; the CN fission of the amide group slows down their mineralization process. In addition, the increase in the concentration of the surfactant from 5 to 75 mg L -1 resulted in an increase in the final biodegradation of AO-R 12 and AO-R 14 . However, in the case of AO-Cocoamido, a clear relationship between the concentration and biodegradation cannot be stated. Conversely, the biodegradability of AO-R 12 and AO-R 14 was considerably lower in an acid condition than at a pH of 7.4, whereas AO-Cocoamido reached similar percentages in acid conditions and at a neutral pH. However, microorganisms required more time to acclimate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  2. Impedance spectroscopy study on graphene wrapped nanocrystalline V{sub 2}O{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaram, D. Surya, E-mail: dsurya.b@gmail.com; Govindaraj, G.; Cheruku, Rajesh

    2016-05-23

    Nanocrystalline V{sub 2}O{sub 5} was synthesized by solvothermal technique, which has potential application as electrode material in supercapacitors. The graphene oxide (GO) was prepared by modified Hummer’s method. The V{sub 2}O{sub 5}/ reduced graphene oxide (RGO) composite was synthesized using surfactant free hydrothermal technique to enhance the functionality in terms of conductivity and surface area of V{sub 2}O{sub 5}. The structural characterization was accomplished through X-ray diffraction and Raman spectroscopy. Morphology was identified by SEM and surface area of VRGO was enhanced by 8 times in comparison with V{sub 2}O{sub 5} nano particles, as confirmed through BET surface area analysis.more » Electrical characterization was done through impedance spectroscopy and the results showed decrease in sample resistance after wrapping V{sub 2}O{sub 5} with RGO.« less

  3. Hyaluronic acid in complexes with surfactants: The efficient tool for reduction of the cytotoxic effect of surfactants on human cell types.

    PubMed

    Sauerová, Pavla; Pilgrová, Tereza; Pekař, Miloslav; Hubálek Kalbáčová, Marie

    2017-10-01

    The cationic surfactants carbethoxypendecinium bromide (Septonex) and cetyltrimethylammonium bromide (CTAB) are known to be harmful for certain cell types (bacteria, fungi, mammal cells, etc.). Colloidal complexes of these surfactants with negatively-charged hyaluronic acid (HyA) were prepared for potential drug and/or universal delivery applications. The complexes were tested for their cytotoxic effect on different human cell types - osteoblasts, keratinocytes and fibroblasts. Both the CTAB-HyA and Septonex-HyA complexes were found to reduce the cytotoxicity induced by surfactants alone concerning all the tested concentrations. Moreover, we suggested the limits of HyA protection provided by the surfactant-HyA complexes, e.g. the importance of the amount of HyA applied. We also determined the specific sensitivity of different cell types to surfactant treatment. Keratinocytes were more sensitive to CTAB, while osteoblasts and fibroblasts were more sensitive to Septonex. Moreover, it was indirectly shown that CTAB combines lethal toxicity with cell metabolism induction, while Septonex predominantly causes lethal toxicity concerning fibroblasts. This comprehensive study of the effect of surfactant-HyA complexes on various human cell types revealed that HyA represents a useful CTAB or Septonex cytotoxic effect modulator at diverse levels. Potential applications for these complexes include drug and/or nucleic acid delivery systems, diagnostic dye carriers and cosmetics production. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Image Reconstruction Under Contact Impedance Effect in Micro Electrical Impedance Tomography Sensors.

    PubMed

    Liu, Xiayi; Yao, Jiafeng; Zhao, Tong; Obara, Hiromichi; Cui, Yahui; Takei, Masahiro

    2018-06-01

    Contact impedance has an important effect on micro electrical impedance tomography (EIT) sensors compared to conventional macro sensors. In the present work, a complex contact impedance effect ratio ξ is defined to quantitatively evaluate the effect of the contact impedance on the accuracy of the reconstructed images by micro EIT. Quality of the reconstructed image under various ξ is estimated by the phantom simulation to find the optimum algorithm. The generalized vector sampled pattern matching (GVSPM) method reveals the best image quality and the best tolerance to ξ. Moreover, the images of yeast cells sedimentary distribution in a multilayered microchannel are reconstructed by the GVSPM method under various mean magnitudes of contact impedance effect ratio |ξ|. The result shows that the best image quality that has the smallest voltage error U E = 0.581 is achieved with measurement frequency f = 1 MHz and mean magnitude |ξ| = 26. In addition, the reconstructed images of cells distribution become improper while f < 10 kHz and mean value of |ξ| > 2400.

  5. Effect of surfactant types and their concentration on the structural characteristics of nanoclay

    NASA Astrophysics Data System (ADS)

    Zawrah, M. F.; Khattab, R. M.; Saad, E. M.; Gado, R. A.

    2014-03-01

    A series of organo-modified nanoclays was synthesized using three different surfactants having different alkyl chain lengths and concentrations [0.5-5.0 cation exchange capacity (CEC)]. These surfactants were Ethanolamine (EA), Cetyltrimethylammoniumbromide (CTAB) and Tetraoctadecylammoniumbromide (TO). The obtained modified nanoclays were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) and compared with unmodified nanoclay. The results of XRD analysis indicated that the basal d-spacing has increased with increasing alkyl chain length and surfactant concentration. From the obtained microstructures of these organo-modified nanoclays, the mechanism of surfactant adsorption was proposed. At relatively low loading of surfactant, most of surfactant entered the spacing by an ion-exchange mechanism and is adsorbed onto the interlayer cation sites. When the concentration of the surfactant exceeds the CEC of clay, the surfactant molecules then adhere to the surface adsorbed surfactant. Some surfactants entered the interlayers, whereas the others were attached to the clay surface. When the concentration of surfactant increased further beyond 2.0 CEC, the surfactants might occupy the inter-particle space within the house-of-cards aggregate structure.

  6. Effect of surfactant concentration to aggregations of nanogold particles

    NASA Astrophysics Data System (ADS)

    Duangthanu, Methawee; Pattanaporkratana, Apichart

    2017-09-01

    This research presents a study of aggregation of colloidal gold nanoparticles using 400 nm diameter gold nanoparticles mixed with a surfactant (Plantacare 2000) at various concentrations. When observed under a microscope, we found that the nanoparticles aggregated to form nearly spherical clusters at the beginning of the formation, and then sedimented to the bottom of the container. These clusters moved with Brownian’s motion and collided with each other in the horizontal plane, forming branch-like clusters in 2D. The appearance and size of the clusters were different depending on the concentration of surfactant. The clusters’ size and appearance were rarely changed after mixing with surfactant for 90 minutes, and we found that the cluster’s shapes were nearly spherical at low surfactant concentration (c = 0.25%). At surfactant concentration between 0.50% - 5.00%, the aggregates formed branch-like clusters with skinnier branches and smaller sizes at higher surfactant concentration. Moreover, we also found that, at surfactant concentrations between 2.50% - 5.00%, nanoparticles and aggregates stuck to the bottom of the glass container quickly and rarely moved after 10 minutes. At c = 0.25%, the 2D fractal dimension of the aggregates was measured to be D = 1.88 ± 0.04, since the aggregates were nearly spherical. The fractal dimension decreased to the minimum of D = 1.50 ± 0.12 at c = 1.50%, similar to D ∼ 1.45 found in diffusion-limited cluster aggregation (DLCA). At surfactant concentration above 1.50%, the fractal dimension increased until it reached the value of D ∼ 1.66 at c = 5.00%.

  7. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.

    2017-02-01

    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  8. The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air-solution interface.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-08-01

    The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption. Changing the alkyl chain length affects the relative adsorption of linalool and surfactant at the interface. Similar measurements for the different alkyl sulfates and with electrolyte with the more hydrophilic perfume phenyl ethanol, reveal broadly similar trends. Although the relative adsorption of phenyl ethanol with sodium dodecylsulfate is substantially enhanced compared to sodium dodecyl-6-benzenesulfonate the effects are not as significant as was observed with linalool. The variations with alkyl chain geometry show the importance of the hydrophobic interaction between the perfume and surfactant and changes in the packing constraints on the relative adsorption. The results highlight the importance of the specific interaction between the surfactant and perfume, and the surfactant and perfume geometries on the relative adsorption at the interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. SNAP23-Dependent Surface Translocation of Leukotriene B4 (LTB4) Receptor 1 Is Essential for NOX2-Mediated Exocytotic Degranulation in Human Mast Cells Induced by Trichomonas vaginalis-Secreted LTB4

    PubMed Central

    Lee, Young Ah; Kim, Kyeong Ah; El-Benna, Jamel

    2016-01-01

    ABSTRACT Trichomonas vaginalis is a sexually transmitted parasite that causes vaginitis in women and itself secretes lipid mediator leukotriene B4 (LTB4). Mast cells are important effector cells of tissue inflammation during infection with parasites. Membrane-bridging SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes are critical for fusion during exocytosis. Although T. vaginalis-derived secretory products (TvSP) have been shown to induce exocytosis in mast cells, information regarding the signaling mechanisms between mast cell activation and TvSP is limited. In this study, we found that SNAP23-dependent surface trafficking of LTB4 receptor 1 (BLT1) is required for nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-mediated exocytotic degranulation of mast cells induced by TvSP. First, stimulation with TvSP induced exocytotic degranulation and reactive oxygen species (ROS) generation in HMC-1 cells. Next, TvSP-induced ROS generation and exocytosis were strongly inhibited by transfection of BLT1 small interfering RNA (siRNA). TvSP induced trafficking of BLT1 from the cytosol to the plasma membrane. We also found that knockdown of SNAP23 abrogated TvSP-induced ROS generation, exocytosis, and surface trafficking of BLT1 in HMC-1 cells. By coimmunoprecipitation, there was a physical interaction between BLT1 and SNAP23 in TvSP-stimulated HMC-1 cells. Taken together, our results suggest that SNAP23-dependent surface trafficking of BLT1 is essential for exocytosis in human mast cells induced by T. vaginalis-secreted LTB4. Our data collectively demonstrate a novel regulatory mechanism for SNAP23-dependent mast cell activation of T. vaginalis-secreted LTB4 involving surface trafficking of BLT1. These results can help to explain how the cross talk mechanism between parasite and host can govern deliberately tissue inflammatory responses. PMID:27795355

  10. SNAP23-Dependent Surface Translocation of Leukotriene B4 (LTB4) Receptor 1 Is Essential for NOX2-Mediated Exocytotic Degranulation in Human Mast Cells Induced by Trichomonas vaginalis-Secreted LTB4.

    PubMed

    Min, Arim; Lee, Young Ah; Kim, Kyeong Ah; El-Benna, Jamel; Shin, Myeong Heon

    2017-01-01

    Trichomonas vaginalis is a sexually transmitted parasite that causes vaginitis in women and itself secretes lipid mediator leukotriene B 4 (LTB 4 ). Mast cells are important effector cells of tissue inflammation during infection with parasites. Membrane-bridging SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes are critical for fusion during exocytosis. Although T. vaginalis-derived secretory products (TvSP) have been shown to induce exocytosis in mast cells, information regarding the signaling mechanisms between mast cell activation and TvSP is limited. In this study, we found that SNAP23-dependent surface trafficking of LTB 4 receptor 1 (BLT1) is required for nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-mediated exocytotic degranulation of mast cells induced by TvSP. First, stimulation with TvSP induced exocytotic degranulation and reactive oxygen species (ROS) generation in HMC-1 cells. Next, TvSP-induced ROS generation and exocytosis were strongly inhibited by transfection of BLT1 small interfering RNA (siRNA). TvSP induced trafficking of BLT1 from the cytosol to the plasma membrane. We also found that knockdown of SNAP23 abrogated TvSP-induced ROS generation, exocytosis, and surface trafficking of BLT1 in HMC-1 cells. By coimmunoprecipitation, there was a physical interaction between BLT1 and SNAP23 in TvSP-stimulated HMC-1 cells. Taken together, our results suggest that SNAP23-dependent surface trafficking of BLT1 is essential for exocytosis in human mast cells induced by T. vaginalis-secreted LTB 4 Our data collectively demonstrate a novel regulatory mechanism for SNAP23-dependent mast cell activation of T. vaginalis-secreted LTB 4 involving surface trafficking of BLT1. These results can help to explain how the cross talk mechanism between parasite and host can govern deliberately tissue inflammatory responses. Copyright © 2016 American Society for Microbiology.

  11. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOEpatents

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  12. Dilution of protein-surfactant complexes: a fluorescence study.

    PubMed

    Azadi, Glareh; Chauhan, Anuj; Tripathi, Anubhav

    2013-09-01

    Dilution of protein-surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta-galactosidase as model proteins. The fluorescent signature of protein-surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein-surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein-SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein-surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics. © 2013 The Protein Society.

  13. Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willumsen, P.A.; Arvin, E.

    To achieve a better quantitative understanding of the stimulating or inhibiting effect of surfactants on the metabolism of polycyclic aromatic hydrocarbons (PAHs), a biodegradation model describing solubilization, bioavailability, and biodegradation of crystalline fluoranthene is proposed and used to model experimental data. The degradation was investigated in batch systems containing the PAH-degrading bacterium Sphingomonas paucimobilis strain EPA505, the nonionic surfactant Triton X-100, and a fluoranthene-amended liquid mineral salts medium. Surfactant-enhanced biodegradation is complex; however, the biodegradation model predicted fluoranthene disappearance and the initial mineralization well. Surfactant-amendment did increase fluoranthene mineralization rates by strain EPA505; however, the increases were not proportional tomore » the rates of fluoranthene solubilization. The surfactant clearly influenced the microbial PAH metabolism as indicated by a rapid accumulation of colored products and by a surfactant -related decreased in the overall extent of fluoranthene mineralization. Model estimations of the bioavailability of micelle-solubilized fluoranthene, the relatively fast fluoranthene disappearance, and the accumulation of extracellular compounds in the degradation system suggest that low availability of micellar fluoranthene is not the only factor controlling surfactant-enhanced biodegradation. Also factors such as the extent of accumulation and bioavailability of the PAH metabolites and the crystalline solubilization rate in the presence of surfactants may determine the overall effect of surfactant-enhanced biodegradation of high molecular weight PAHs.« less

  14. Impeded Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may evenmore » be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.« less

  15. Impeded Dark Matter

    DOE PAGES

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy; ...

    2016-12-12

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may evenmore » be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.« less

  16. Determination of the critical micelle concentration in simulations of surfactant systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in bothmore » the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)« less

  17. Influence of Structure, Charge, and Concentration on the Pectin-Calcium-Surfactant Complexes.

    PubMed

    Joshi, Nidhi; Rawat, Kamla; Bohidar, H B

    2016-05-12

    Polymer-surfactant complex formation of pectin with different types of surfactants, cationic (cetyltrimethylammonium bromide, CTAB and dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS), and neutral (Triton X-100, TX-100), was investigated at room temperature in the presence and absence of cross-linker calcium chloride using light scattering, zeta potential, rheology, and UV-vis spectroscopic measurements where the surfactant concentration was maintained below their critical micellar concentration (CMC). Results indicated that the interaction of cationic surfactant with pectin in the presence and absence of calcium chloride was much stronger compared to anionic and neutral surfactants. The neutral surfactant showed identifiable interaction despite the absence of any charged headgroup, while anionic surfactant showed feeble or very weak interaction with the polymer. The pectin-CTAB or DTAB complex formation was attributed to associative electrostatic and hydrophobic interactions. On comparison between the cationic surfactants, it was found that CTAB interacts strongly with pectin because of its long hydrocarbon chain. The morphology of complexes formed exhibited random coil structures while at higher concentration of surfactant, rod-like or extended random coil structures were noticed. Thus, functional characteristics of the complex could be tuned by varying the type of surfactant (charge and structure) and its concentration. The differential network rigidity (pectin-CTAB versus pectin-DTAB gels) obtained from rheology measurements showed that addition of a very small amount of surfactant (concentration ≪ CMC) was required for enhancing network strength, while the presence of a large amount of surfactant resulted in the formation of fragile gels. No gel formation occurred when the surfactant concentration was close to their CMC values. Considering the importance of pectin in food and pharmaceutical industry, this study is relevant.

  18. Surfactant Adsorption: A Revised Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  19. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William A. Goddard III; Yongchun Tang; Patrick Shuler

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies tomore » calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in

  20. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content.

    PubMed

    Xavier-Junior, Francisco Humberto; Huang, Nicolas; Vachon, Jean-Jacques; Rehder, Vera Lucia Garcia; do Egito, Eryvaldo Sócrates Tabosa; Vauthier, Christine

    2016-12-01

    Aim was to formulate oil-in-water (O/W) microemulsion with a high volume ratio of complex natural oil, i.e. copaiba oil and low surfactant content. The strategy of formulation was based on (i) the selection of surfactants based on predictive calculations of chemical compatibility between their hydrophobic moiety and oil components and (ii) matching the HLB of the surfactants with the required HLB of the oil. Solubility parameters of the hydrophobic moiety of the surfactants and of the main components found in the oil were calculated and compared. In turn, required HLB of oils were calculated. Selection of surfactants was achieved matching their solubility parameters with those of oil components. Blends of surfactants were prepared with HLB matching the required HLB of the oils. Oil:water mixtures (15:85 and 25:75) were the titrated with surfactant blends until a microemulsion was formed. Two surfactant blends were identified from the predictive calculation approach. Microemulsions containing up to 19.6% and 13.7% of selected surfactant blends were obtained. O/W microemulsions with a high volume fraction of complex natural oil and a reasonable surfactant concentration were formulated. These microemulsions can be proposed as delivery systems for the oral administration of poorly soluble drugs.

  1. Contribution of Seawater Surfactants to Generated Primary Marine Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Frossard, A. A.; Gerard, V.; Duplessis, P.; Kinsey, J. D.; Lu, X.; Zhu, Y.; Bisgrove, J.; Maben, J. R.; Long, M. S.; Chang, R.; Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Noziere, B.; Cohen, R. C.

    2017-12-01

    Surfactants account for minor fractions of total organic carbon in the ocean but may have major impacts on the surface tension of bursting bubbles at the sea surface that drive the production of primary marine aerosol particles (PMA). Surfactants associated with marine aerosol may also significantly reduce the surface tension of water thereby increasing the potential for cloud droplet activation and growth. During September and October 2016, PMA were produced from bursting bubbles in seawater using a high capacity generator at two biologically productive and two oligotrophic stations in the western North Atlantic, as part of a cruise on the R/V Endeavor. Surfactants were extracted from paired PMA and seawater samples, and their ionic compositions, total concentrations, and critical micelle concentrations (CMC) were quantified and compared for the four hydrographic stations. Higher surfactant concentrations were determined in the aerosol produced from biologically productive seawater compared to oligotrophic seawater, and the surfactants extracted from productive seawater were stronger (had lower CMCs) than those in the oligotrophic seawater. Surfactants associated with PMA and seawater in productive regions also varied over diel cycles, whereas those in the oligotrophic regions did not. This work demonstrates a direct link between surfactants in seawater and those in PMA.

  2. The effect of surfactant on pollutant biosorption of Trametes versicolor

    NASA Astrophysics Data System (ADS)

    Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve

    2016-04-01

    The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.

  3. Adsorption of surfactants and polymers at interfaces

    NASA Astrophysics Data System (ADS)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  4. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Miranda, Paulo Barbeitas

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the

  5. Respiratory Mechanics and Gas Exchange: The Effect of Surfactants

    NASA Astrophysics Data System (ADS)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    The purpose of the lung is to exchange gases, primarily oxygen and carbon dioxide, between the atmosphere and the circulatory system. To enable this exchange, the airways in the lungs terminate in some 300 million alveoli that provide adequate surface area for transport. During breathing, work must be done to stretch various tissues to accommodate a greater volume of gas. Considerable work must also be done to expand the liquid lining (hypophase) that coats the interior surfaces of the alveoli. This is enabled by a surface active lipo-protein complex, known as pulmonary surfactant, that modifies the surface tension at the hypophase-air interface. Surfactants also serve as physical barriers that modify the rate of gas transfer across interfaces. We develop a mathematical model to study the action of pulmonary surfactant and its determinative contributions to breathing. The model is used to explore the influence of surfactants on alveolar mechanics and on gas exchange: it relates the work of respiration at the level of the alveolus to the gas exchange rate through the changing influence of pulmonary surfactant over the breathing cycle. This work is motivated by a need to develop improved surfactant replacement therapies to treat serious medical conditions.

  6. Surfactant-Enabled Epitaxy of Smooth, Cubic Oxides on Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Paisley, Elizabeth Aldret

    Epitaxial integration of polar oxides with polar semiconductors presents the possibility of tunable 2D charge carriers at polar interfaces and integration of non-linear dielectric properties if defect densities are low and interfaces are smooth. Achieving this in materials with highly dissimilar structure and symmetry remains a serious challenge and requires a dramatically improved understanding of chemically and structurally dissimilar interfaces and their synthesis. Current efforts to achieve such devices are impeded by the fact that many polar oxides have a close-packed cubic substructure that requires the oxide to grow along the {111} direction, which is compatible with hexagonal (0002) GaN. Since the {111} direction is not the lowest energy face for these oxides, conventional methods used to synthesize these oxides usually allow the interface to compensate by forming facets resulting in defects, detrimental to the sustaining interface conductivity. This thesis demonstrates a new methodology developed to allow in situ stabilization of desired crystallographic habits where water vapor is utilized during growth to hydroxylate the oxide (111) surfaces, changing the equilibrium habit from cubic to octahedral, eliminating the (100)-faceting tendency. Bulk thermodynamic calculations show that a hydroxide termination can stabilize the (111)-face. Further, Ca(OH)2 (the structure likely to represent such termination) provides a low-energy surface with six-fold symmetry and atomic registry matching {111}-CaO and GaN. Additionally, the relative free energies of formation for CaO and Ca(OH)2 provide an adequate processing window to avoid competition between oxide and hydroxide deposition. This approach is demonstrated for three model systems of rocksalt oxides grown along a polar direction on GaN: MgO, CaO, and lattice-matched compositions: Mg0.52Ca0.48O. MBE growth of smooth (111) CaO is demonstrated using RHEED intensity vs. time oscillations that show layer

  7. PHASE BEHAVIOR OF WATER/PERCHLOROETHYLENE/ANIONIC SURFACTANT SYSTEMS

    EPA Science Inventory

    Winsor Type I (o/w), Type II (w/o), and Type III (middle phase) microemulsions have been generated for water and perchloroethylene (PCE) in combination with anionic surfactants and the appropriate electrolyte concentration. The surfactant formulation was a combination of sodium d...

  8. Reaction limited aggregation in surfactant-mediated epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Liu, Bang-Gui; Zhang, Zhenyu; Wang, E. G.

    2000-05-01

    A theoretical model for reaction limited aggregation (RLA) is introduced to study the effect of a monolayer of surfactant on the formation of two-dimensional islands in heteroepitaxial and homoepitaxial growth. In this model the basic atomic processes are considered as follows. A stable island consists of the adatoms that have exchanged positions with the surfactant atoms beneath them. Movable active adatoms may (a) diffuse on the surfactant terrace, (b) exchange positions with the surfactant atoms beneath them and become island seeds (seed exchange), or (c) stick to stable islands and become stuck but still active adatoms. The rate-limiting step for the formation of a stable island is the seed exchange. Furthermore, a stuck but still active adatom must overcome a sizable potential-energy barrier to exchange positions with the surfactant atom beneath it and become a member of the stable island (aided exchange). The seed exchange process can occur with an adatom or collectively with an addimer. In the case of dimer exchange, the diffusing adatoms on the surfactant terrace can meet and (after exchanging) form stable dimers, which can then become island seeds. Systematic kinetic Monte Carlo simulations and rate-equation analysis of the model are carried out. The key finding of these simulations is that a counterintuitive fractal-to-compact island shape transition can be induced either by increasing deposition flux or by decreasing growth temperature. This major qualitative conclusion is valid for both the monomer and the dimer seed exchanges and for two different substrate lattices (square and triangular, respectively), although there are some quantitative differences in the flux and temperature dependence of the island density. The shape transition observed is contrary to the prediction of the classic diffusion-limited aggregation (DLA) theory, but in excellent qualitative agreement with recent experiments. In rationalizing the main finding, it is crucial to realize

  9. Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes.

    PubMed

    Jardak, K; Drogui, P; Daghrir, R

    2016-02-01

    Surfactants belong to a group of chemicals that are well known for their cleaning properties. Their excessive use as ingredients in care products (e.g., shampoos, body wash) and in household cleaning products (e.g., dishwashing detergents, laundry detergents, hard-surface cleaners) has led to the discharge of highly contaminated wastewaters in aquatic and terrestrial environment. Once reached in the different environmental compartments (rivers, lakes, soils, and sediments), surfactants can undergo aerobic or anaerobic degradation. The most studied surfactants so far are linear alkylbenzene sulfonate (LAS), quaternary ammonium compounds (QACs), alkylphenol ethoxylate (APEOs), and alcohol ethoxylate (AEOs). Concentrations of surfactants in wastewaters can range between few micrograms to hundreds of milligrams in some cases, while it reaches several grams in sludge used for soil amendments in agricultural areas. Above the legislation standards, surfactants can be toxic to aquatic and terrestrial organisms which make treatment processes necessary before their discharge into the environment. Given this fact, biological and chemical processes should be considered for better surfactants removal. In this review, we investigate several issues with regard to: (1) the toxicity of surfactants in the environment, (2) their behavior in different ecological systems, (3) and the different treatment processes used in wastewater treatment plants in order to reduce the effects of surfactants on living organisms.

  10. Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves

    PubMed Central

    Cao, Li-Dong; Zheng, Li; Xu, Jun; Li, Feng-Min; Huang, Qi-Liang

    2017-01-01

    The dynamics of evaporating sessile droplets on hydrophilic or hydrophobic surfaces is widely studied, and many models for these processes have been developed based on experimental evidence. However, few research has been explored on the evaporation of sessile droplets of surfactant or pesticide solutions on target crop leaves. Thus, in this paper the impact of surfactant concentrations on contact angle, contact diameter, droplet height, and evolution of the droplets’ evaporative volume on rice leaf surfaces have been investigated. The results indicate that the evaporation kinetics of surfactant droplets on rice leaves were influenced by both the surfactant concentrations and the hydrophobicity of rice leaf surfaces. When the surfactant concentration is lower than the surfactant CMC (critical micelle concentration), the droplet evaporation time is much longer than that of the high surfactant concentration. This is due to the longer existence time of a narrow wedge region under the lower surfactant concentration, and such narrow wedge region further restricts the droplet evaporation. Besides, our experimental data are shown to roughly collapse onto theoretical curves based on the model presented by Popov. This study could supply theoretical data on the evaporation of the adjuvant or pesticide droplets for practical applications in agriculture. PMID:28472108

  11. Cell-specific modulation of surfactant proteins by ambroxol treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNAmore » content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.« less

  12. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    PubMed

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  13. Fine tuning of magnetite nanoparticle size distribution using dissymmetric potential pulses in the presence of biocompatible surfactants and the electrochemical characterization of the nanoparticles.

    PubMed

    Rodríguez-López, A; Cruz-Rivera, J J; Elías-Alfaro, C G; Betancourt, I; Ruiz-Silva, H; Antaño-López, R

    2015-01-01

    The effects of varying the surfactant concentration and the anodic pulse potential on the properties and electrochemical behaviors of magnetite nanoparticles were investigated. The nanoparticles were synthesized with an electrochemical method based on applying dissymmetric potential pulses, which offers the advantage that can be used to tune the particle size distribution very precisely in the range of 10 to 50 nm. Under the conditions studied, the surfactant concentration directly affects the size distribution, with higher concentrations producing narrower distributions. Linear voltammetry was used to characterize the electrochemical behavior of the synthesized nanoparticles in both the anodic and cathodic regions, which are attributed to the oxidation of Fe(2+) and the reduction of Fe(3+); these species are part of the spinel structure of magnetite. Electrochemical impedance spectroscopy data indicated that the reduction and oxidation reactions of the nanoparticles are not controlled by the mass transport step, but by the charge transfer step. The sample with the highest saturation magnetization was that synthesized in the presence of polyethylene glycol. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Thermodynamic investigation of the binding of dissymmetric pyrenyl-gemini surfactants to DNA.

    PubMed

    Wettig, Shawn D; Deubry, Rubena; Akbar, Javed; Kaur, Tranum; Wang, Haitang; Sheinin, Tatiana; Joseph, Jamie W; Slavcev, Roderick A

    2010-05-14

    Gemini surfactants have demonstrated significant potential for use in constructing non-viral transfection vectors for the delivery of genes into cells to induce protein expression. Previously, two asymmetric gemini surfactants containing pyrenyl groups in one of the alkyl tails of the surfactants were synthesized as fluorescence probes for use in mechanistic studies of the transfection process. Here we present the results of a thermodynamic investigation of the binding interaction(s) between the pyrenyl-modified surfactants and DNA. The thermodynamics of the interactions have been examined using isothermal titration calorimetry, light scattering, zeta potential, and circular dichroism measurements. Distinct differences are observed between the interaction of 12-s-12 vs. the pyrene modified py-s-12 surfactants with DNA; an intercalated binding is found for the py-s-12 surfactants that disrupts the typical interactions observed between DNA and gemini surfactants.

  15. Microstructure of Mixed Surfactant Solutions by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward

    1995-01-01

    Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with

  16. Lodixanol inhibits exogenous surfactant therapy in rats with acute respiratory distress syndrome.

    PubMed

    Kesecioglu, J; Schultz, M J; Haitsma, J J; den Heeten, G J; Lachmann, B

    2002-05-01

    Optimal alveolar distribution of exogenous surfactant is an important determinant of its beneficial effect. This distribution can be determined by suspending surfactant in a radiological contrast medium before intratracheal instillation, followed by radiological imaging. Iodixanol is reported to be a safe contrast medium that causes no lung injury when instilled intratracheally. In this study, the effects of surfactant suspended in saline were compared with surfactant suspended either in 4:1 saline-iodixanol (64 mg iodine x mL(-1)) or in 1:1 saline-iodixanol (160 mg iodine x mL(-1)), on oxygenation and lung mechanics in a rat model of adult respiratory distress syndrome (ARDS) induced by lung lavage. After the induction of ARDS, surfactant instillation improved oxygenation, total lung volume at inflation with a distending pressure of 35 cmH2O, lung volume at transpulmonary pressure of 5 cmH2O and Gruenwald index. The effects of surfactant suspended in 4:1 saline-iodixanol were similar to those of surfactant alone. However, instillation of surfactant suspended in 1:1 saline-iodixanol resulted in significantly lower values in all measured parameters. Surface tension was the lowest in surfactant suspended in saline alone and addition of iodixanol led to an increase in surface tension in a dose-dependent manner. In conclusion, iodixanol at the higher dose caused an inhibition of the exogenous surfactant effect, characterized as a lack of improvement in oxygen tension in arterial blood, low total lung compliance, volume at 5 cmH2O end-expiration and Gruenwald index. This effect of iodixanol was probably due to its high surface tension, especially if a high concentration was used. Surfactant suspended in a lower concentration of iodixanol seems a better alternative, allowing for radiological imaging of the distribution of surfactant when intratracheally instilled.

  17. Fullerene surfactants and their use in polymer solar cells

    DOEpatents

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  18. Surfactant effects on the dynamics of an intravascular bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Eckmann, David; Ayyaswamy, P. S.

    2004-11-01

    The effects of a surfactant on the dynamics of gas bubble behavior in the arteriolar vasculature are numerically investigated. The equations for momentum in the bulk fluid (blood) and the bubble, and the convection-diffusion equations for mass transport both in the bulk fluid and on the gas-liquid interface are numerically solved using a front tracking method. Both soluble and insoluble surfactants are considered. The adsorption/desorption dynamics of the soluble surfactant is accurately resolved. For a nearly occluded bubble, a faster rate of depletion of the surfactant from the region adjacent to the wall of the vessel is observed. In several cases studied here, the bulk medium is treated as non-Newtonian (power law, Casson), although the majority of cases treat blood as Newtonian. Results show that the adsorbed surfactant serves to prevent blood proteins and other macromolecules from occupying the interface. This prevents clotting or adhesion of the bubble to the vessel wall. The results obtained have significance in the study of intravascular gas embolism. Supported by NIH R01 HL67986

  19. Equilibrium Contact Angle and Adsorption Layer Properties with Surfactants.

    PubMed

    Thiele, Uwe; Snoeijer, Jacco H; Trinschek, Sarah; John, Karin

    2018-06-19

    The three-phase contact line of a droplet on a smooth surface can be characterized by the Young equation. It relates the interfacial energies to the macroscopic contact angle θ e . On the mesoscale, wettability is modeled by a film-height-dependent wetting energy f( h). Macro- and mesoscale descriptions are consistent if γ cos θ e = γ + f( h a ), where γ and h a are the liquid-gas interface energy and the thickness of the equilibrium liquid adsorption layer, respectively. Here, we derive a similar consistency condition for the case of a liquid covered by an insoluble surfactant. At equilibrium, the surfactant is spatially inhomogeneously distributed, implying a nontrivial dependence of θ e on surfactant concentration. We derive macroscopic and mesoscopic descriptions of a contact line at equilibrium and show that they are consistent only if a particular dependence of the wetting energy on the surfactant concentration is imposed. This is illustrated by a simple example of dilute surfactants, for which we show excellent agreement between theory and time-dependent numerical simulations.

  20. Surface Wetting-Driven Separation of Surfactant-Stabilized Water-Oil Emulsions.

    PubMed

    Zhang, Qian; Li, Lei; Li, Yanxiang; Cao, Lixia; Yang, Chuanfang

    2018-05-15

    Four fluorocarbon polymers including polytetrafluoroethylene and polyvinylidene fluoride were coated on a stainless steel felt to separate emulsified water droplets from ultralow sulfur diesel (ULSD) fuels. The original fuel treated with clay to remove additives was additized again with four known surfactants including pentaerythrityoleate, (octadecadienoic acid) dipolymer, (octadecadienoic acid) tripolymer, and monoolein individually. The different surfactants adsorbed on the fuel-water interface reduce the interfacial intension with different intensities. The separation efficiency at various surfactant concentrations was used to evaluate the coalescence effect exerted by these coatings. It was found the separation was both surfactant- and coating-dependent. A fluoro-polyurethane coating (FC1) stood out to counteract the adverse effect of all the surfactants. Solid free energy was then measured using acid-base and Kaelble-Uy adhesion theories for all the coatings, but its correlation with coalescence was not found at all. Coating aging in surfactant-additized fuel on the coating's water wettability was also examined to better understand how historical wetting affects separation. A tumbled model for fluorocarbons was identified that well-explained the continuous decline of the water contact angle on the FC1 coating in fuel. Subject to the challenge of the foreign environment, the fluoroalkyl chains of the polymer tilt to expose the carbonyl groups underneath, resulting in favored coalescence separation in the presence of surfactants.

  1. Effects of smoke inhalation on alveolar surfactant subtypes in mice.

    PubMed Central

    Oulton, M. R.; Janigan, D. T.; MacDonald, J. M.; Faulkner, G. T.; Scott, J. E.

    1994-01-01

    The effects of smoke inhalation on alveolar surfactant subtypes were examined in mice exposed for 30 minutes to smoke generated from the burning of a flexible polyurethane foam. At 4 or 12 hours after the exposure, three surfactant pellets, P10, P60, and P100, and a supernatant, S100, were prepared by sequential centrifugation of lavage fluids at 10,000 g for 30 minutes (P10), 60,000 g for 60 minutes (P60), and 100,000 g for 15 hours (P100 and S100). Phospholipid analysis and electron microscopy were performed on each fraction. Smoke exposure dramatically altered the normal distributions of these fractions: it significantly increased the phospholipid content of the heavier subtype, P10, which is thought to represent newly secreted surfactant; had no effect on the intermediate form, P60; and dramatically increased the phospholipid content (approximately fivefold) of the lighter subtypes, P100 and S100, which are believed to represent catabolic end-products of alveolar surfactant. Only P100 was structurally altered by the smoke. These results represent alterations of the normal metabolic processing of alveolar surfactant. Whereas the mechanism is yet to be defined, it seems to involve a small but significant increase in the newly secreted surfactant, as well as an excessively high accumulation of the structurally altered catabolic forms of the secreted surfactant. Images Figure 3 PMID:7943183

  2. Impact of the Equation of State in Models for Surfactant Spreading Experiments

    NASA Astrophysics Data System (ADS)

    Levy, Rachel

    2014-11-01

    Pulmonary surfactant spreading models often rely on an equation of state relating surfactant concentration to surface tension. Mathematically, these models have been analyzed with simple functional relationships. However, to model an experiment with a given fluid and surfactant, a physically meaningful equation of state can be derived from experimentally obtained isotherms. We discuss the comparison between model and experiment for NBD-PC lipid (surfactant) spreading on glycerol for an empirically-determined equation of state, and compare those results to simulations with traditionally employed functional forms. In particular we compare the timescales by tracking the leading edge of surfactant, the central fluid height and dynamics of the Marangoni ridge. We consider both outward spreading of a disk-shaped region of surfactant and the hole-closure problem in which a disk-shaped surfactant-free region self-heals. Support from NSF-DMS-FRG 0968154, RCSA-CCS-19788, and HHMI.

  3. Novel Surfactants and Their Applications, Including Mustard Decontamination

    DTIC Science & Technology

    2007-06-30

    compound 21, which was converted into 17 by neutralization of its phosphorodithioic acid group and saponification of its ester groups with potassium...hydrochloride (57) to give surfactant 58. Then the saponification of 58’s ester groups gave zwitteiionic surfactant 59, followed by its reaction with two

  4. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jonathan D.

    Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc

  5. Cerebral Effect of Intratracheal Aerosolized Surfactant Versus Bolus Therapy in Preterm Lambs.

    PubMed

    Rey-Santano, Carmen; Mielgo, Victoria E; López-de-Heredia-y-Goya, Jon; Murgia, Xabier; Valls-i-Soler, Adolfo

    2016-04-01

    Aerosolization has been proposed as a useful alternative to rapid intratracheal instillation for the delivery of exogenous surfactant in neonatal respiratory distress syndrome. However, there is a lack of information regarding the likely safety of this new therapeutic approach for the neonatal brain. We aimed to compare the cerebral effects of aerosolized versus bolus surfactant administration in premature lambs with respiratory distress syndrome. Prospective randomized study. BioCruces Institute Animal Research Facility. Fourteen intensively monitored and mechanically ventilated preterm lambs. Preterm lambs were randomly assigned to receive intratracheal aerosolized surfactant or bolus surfactant. Brain hemodynamics (cerebral and regional cerebral blood flow) and cerebral oxygen metabolism (cerebral oxygen delivery, cerebral metabolic rate of oxygen, and oxygen extraction fraction) were measured every 30 minutes for 6 hours. We also performed cerebral biochemical and histological analysis. In preterm lambs with respiratory distress syndrome, cerebral blood flow, regional cerebral blood flow, cerebral oxygen delivery, and cerebral metabolic rate of oxygen increased significantly in the bolus surfactant group during the first 5 minutes, without changes in cerebral oxygen extraction fraction. By 60 minutes, all parameters had decreased in both groups, cerebral blood flow and regional cerebral blood flow (in inner and cerebellum brainstem regions) remaining higher in the bolus surfactant than in the aerosolized surfactant group. Overall, the impact of aerosol surfactant was not significantly different to that of bolus surfactant in terms of cerebral necrosis, edema, inflammation, hemorrhage, infarct, apoptosis, or oxidative stress. In preterm lambs with severe respiratory distress syndrome, aerosol surfactant administration seems to be as safe as bolus administration, showing more stable cerebral hemodynamics and cerebral oxygen metabolism to the same dose of

  6. Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) explored as a potential electrochemical sensor for dopamine: surfactants significantly influence sensor capabilities.

    PubMed

    Khan, Aamar F; Brownson, Dale A C; Foster, Christopher W; Smith, Graham C; Banks, Craig E

    2017-05-21

    Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) nanosheets are explored as a potential electrochemical sensing platform and evaluated towards the electroanalytical sensing of dopamine (DA) in the presence of the common interferents, ascorbic acid (AA) and uric acid (UA). Surfactant exfoliated 2D-hBN nanosheets (2-4 layers) fabricated using sodium cholate in aqueous media are electrically wired via a drop-casting modification process onto disposable screen-printed graphite electrodes (SPEs). We critically evaluate the performance of these 2D-hBN modified SPEs and demonstrate the effect of 'mass coverage' towards the detection of DA, AA and UA. Previous studies utilising surfactant-free (pristine) 2D-hBN modified SPEs have shown a beneficial effect towards the detection of DA, AA and UA when compared to the underlying/unmodified graphite-based electrode. We show that the fabrication route utilised to prepare 2D-hBN is a vital experimental consideration, such that the beneficial effect previously reported is considerably reduced when surfactant exfoliated 2D-hBN is utilised. We demonstrate for the first time, through implementation of control experiments in the form of surfactant modified graphite electrodes, that sodium cholate is a major contributing factor to the aforementioned detrimental behaviour. The significance here is not in the material per se, but the fundamental knowledge of the surfactant and surface coverage changing the electrochemical properties of the material under investigation. Given the wide variety of ionic and non-ionic surfactants that are utilised in the manufacture of novel 2D materials, the control experiments reported herein need to be performed in order to de-convolute the electrochemical response and effectively evaluate the 'underlying surface/surfactant/2D materials' electrocatalytic contribution.

  7. Nanotube Dispersions Made With Charged Surfactant

    NASA Technical Reports Server (NTRS)

    Kuper, Cynthia; Kuzma, Mike

    2006-01-01

    Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant(s) and carbon nanotubes derived from the HiPco(TradeMark) (or equivalent) process. Among reagents known to be made from HiPco(TradeMark)(or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.

  8. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  9. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-01-27

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  10. Impact of cationic surfactant on the self-assembly of sodium caseinate.

    PubMed

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija

    2014-08-27

    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  11. Surfactant-assisted liquefaction of particulate carbonaceous substances

    NASA Technical Reports Server (NTRS)

    Hsu, G. C. (Inventor)

    1978-01-01

    A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.

  12. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    DOE PAGES

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; ...

    2016-10-19

    One important advance in fluid surface control was the amphiphilic surfactant composed of coupled molecular structures (i.e., hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e., hard water). This disrupts surfactant function and requires extensive use of undesirable and expensive chelating additives. We show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel–Crafts acylation within single layer (SPP) zeolite catalysts. Finally, these alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less

  13. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura

    2016-11-23

    An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less

  14. Numerical simulation of surfactant-enhanced remediation using UTCHEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, G.A.; Fountain, J.C.; Pope, G.A.

    1995-12-31

    The UTCHEM multiphase compositional simulator was used to model the migration and surfactant-enhanced remediation of perchloroethylene (PCE) in a test cell at Canadian Forces Base Borden, Ontario. A line of five injection wells was installed on one side of the test cell and a line of five withdrawal wells was installed on the opposite side of the cell. The injection and withdrawal wells penetrated the entire depth of the sand aquifer. A total of 231 liters of PCE was injected into a shallow well in the center of the test cell. Prior to surfactant flushing, 47 liters of free-phase PCE,more » which flowed into the injection and withdrawal wells over a two week period, was removed using a small-diameter plastic tube and a peristaltic pump. One to two months of water flooding (pump-and-treat), using the injection-withdrawal well system, flushed an additional 12 liters of PCE. Following the water flooding, an aqueous surfactant solution of 1% nonyl phenol ethoxylate and 1% phosphate ester of the nonyl phenol ethoxylate was circulated through the test cell via the injection-withdrawal wells. Between November 11, 1990 and May 29, 1991, a total of 130,000 liters of surfactant solution were recirculated through the test cell, during which time 62 liters of PCE were recovered. This paper describes preliminary scoping simulations of the surfactant flushing process at the Borden test site to demonstrate the capability of UTCHEM to model surfactant-enhanced remediation of a non-aqueous-phase liquid (NAPL). A discussion of efforts to simulate PCE migration is also presented.« less

  15. Organised surfactant assemblies in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa

    1999-02-01

    The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic

  16. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  17. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2002-01-01

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  18. Nonionic surfactant vesicles for delivery of RNAi therapeutics

    PubMed Central

    Paecharoenchai, Orapan; Teng, Lesheng; Yung, Bryant C; Teng, Lirong; Opanasopit, Praneet; Lee, Robert J

    2014-01-01

    RNAi is a promising potential therapeutic approach for many diseases. A major barrier to its clinical translation is the lack of efficient delivery systems for siRNA. Among nonviral vectors, nonionic surfactant vesicles (niosomes) have shown a great deal of promise in terms of their efficacy and toxicity profiles. Nonionic surfactants have been shown to be a superior alternative to phospholipids in several studies. There is a large selection of surfactants with various properties that have been incorporated into niosomes. Therefore, there is great potential for innovation in terms of nisome composition. This article summarizes recent advancements in niosome technology for the delivery of siRNA. PMID:24156490

  19. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    PubMed Central

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan

    2012-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  20. Efficacy of a surfactant-based wound dressing on biofilm control.

    PubMed

    Percival, Steven L; Mayer, Dieter; Salisbury, Anne-Marie

    2017-09-01

    The aim of this study was to evaluate the efficacy of both a nonantimicrobial and antimicrobial (1% silver sulfadiazine-SSD) surfactant-based wound dressing in the control of Pseudomonas aeruginosa, Enterococcus sp, Staphylococcus epidermidis, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA) biofilms. Anti-biofilm efficacy was evaluated in numerous adapted American Standards for Testing and Materials (ASTM) standard biofilm models and other bespoke biofilm models. The ASTM standard models employed included the Minimum biofilm eradication concentration (MBEC) biofilm model (ASTM E2799) and the Centers for Disease Control (CDC) biofilm reactor model (ASTM 2871). Such bespoke biofilm models included the filter biofilm model and the chamberslide biofilm model. Results showed complete kill of microorganisms within a biofilm using the antimicrobial surfactant-based wound dressing. Interestingly, the nonantimicrobial surfactant-based dressing could disrupt existing biofilms by causing biofilm detachment. Prior to biofilm detachment, we demonstrated, using confocal laser scanning microscopy (CLSM), the dispersive effect of the nonantimicrobial surfactant-based wound dressing on the biofilm within 10 minutes of treatment. Furthermore, the non-antimicrobial surfactant-based wound dressing caused an increase in microbial flocculation/aggregation, important for microbial concentration. In conclusion, this nonantimicrobial surfactant-based wound dressing leads to the effective detachment and dispersion of in vitro biofilms. The use of surfactant-based wound dressings in a clinical setting may help to disrupt existing biofilm from wound tissue and may increase the action of antimicrobial treatment. © 2017 by the Wound Healing Society.

  1. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    EPA Science Inventory

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  2. Mobilization of arsenic from contaminated sediment by anionic and nonionic surfactants.

    PubMed

    Liang, Chuan; Peng, Xianjia

    2017-06-01

    The increasing manufacture of surfactants and their wide application in industry, agriculture and household detergents have resulted in large amounts of surfactant residuals being discharged into water and distributed into sediment. Surfactants have the potential to enhance arsenic mobility, leading to risks to the environment and even human beings. In this study, batch and column experiments were conducted to investigate arsenic mobilization from contaminated sediment by the commercial anionic surfactants sodium dodecylbenzenesulfonate (SDBS), sodium dodecyl sulfate (SDS), sodium laureth sulfate (AES) and nonionic surfactants phenyl-polyethylene glycol (Triton X-100) and polyethylene glycol sorbitan monooleate (Tween-80). The ability of surfactants to mobilize arsenic followed the order AES>SDBS>SDS≈Triton X-100>Tween 80. Arsenic mobilization by AES and Triton X-100 increased greatly with the increase of surfactant concentration and pH, while arsenic release by SDBS, SDS and Tween-80 slightly increased. The divalent ion Ca 2+ caused greater reduction of arsenic mobilization than Na + . Sequential extraction experiments showed that the main fraction of arsenic mobilized was the specifically adsorbed fraction. Solid phase extraction showed that arsenate (As(V)) was the main species mobilized by surfactants, accounting for 65.05%-77.68% of the total mobilized arsenic. The mobilization of arsenic was positively correlated with the mobilization of iron species. The main fraction of mobilized arsenic was the dissolved fraction, accounting for 70% of total mobilized arsenic. Copyright © 2016. Published by Elsevier B.V.

  3. Systems of mechanized and reactive droplets powered by multi-responsive surfactants

    NASA Astrophysics Data System (ADS)

    Yang, Zhijie; Wei, Jingjing; Sobolev, Yaroslav I.; Grzybowski, Bartosz A.

    2018-01-01

    Although ‘active’ surfactants, which are responsive to individual external stimuli such as temperature, electric or magnetic fields, light, redox processes or chemical agents, are well known, it would be interesting to combine several of these properties within one surfactant species. Such multi-responsive surfactants could provide ways of manipulating individual droplets and possibly assembling them into larger systems of dynamic reactors. Here we describe surfactants based on functionalized nanoparticle dimers that combine all of these and several other characteristics. These surfactants and therefore the droplets that they cover are simultaneously addressable by magnetic, optical and electric fields. As a result, the surfactant-covered droplets can be assembled into various hierarchical structures, including dynamic ones, in which light powers the rapid rotation of the droplets. Such rotating droplets can transfer mechanical torques to their non-nearest neighbours, thus acting like systems of mechanical gears. Furthermore, droplets of different types can be merged by applying electric fields and, owing to interfacial jamming, can form complex, non-spherical, ‘patchy’ structures with different surface regions covered with different surfactants. In systems of droplets that carry different chemicals, combinations of multiple stimuli can be used to control the orientations of the droplets, inter-droplet transport, mixing of contents and, ultimately, sequences of chemical reactions. Overall, the multi-responsive active surfactants that we describe provide an unprecedented level of flexibility with which liquid droplets can be manipulated, assembled and reacted.

  4. The interaction of a model active pharmaceutical with cationic surfactant and the subsequent design of drug based ionic liquid surfactants.

    PubMed

    Qamar, Sara; Brown, Paul; Ferguson, Steven; Khan, Rafaqat Ali; Ismail, Bushra; Khan, Abdur Rahman; Sayed, Murtaza; Khan, Asad Muhammad

    2016-11-01

    Interactions of active pharmaceutical ingredients (API) with surfactants remain an important research area due to the need to improve drug delivery systems. In this study, UV-Visible spectrophotometry was used to investigate the interactions between a model low molecular weight hydrophilic drug sodium valproate (SV) and cationic surfactant cetyltrimethylammonium bromide (CTAB). Changes in the spectra of SV were observed in pre- and post-micellar concentrations of CTAB. The binding constant (Kb) values and the number of drug molecules encapsulated per micelle were calculated, which posed the possibility of mixed micelle formation and strong complexation between SV and CTAB. These results were compared to those of a novel room temperature surface active ionic liquid, which was synthesized by the removal of inorganic counterions from a 1:1 mixture of CTAB and SV. In this new compound the drug now constitutes a building block of the carrier and, as such, has considerably different surfactant properties to its building blocks. In addition, enhanced solubility in a range of solvents, including simulated gastric fluid, was observed. The study provides valuable experimental evidence concerning the performance of drug based surfactant ionic liquids and how their chemical manipulation, without altering the architecture of the API, leads to control of surfactant behavior and physicochemical properties. In turn, this should feed through to improved and controlled drug release rates and delivery mechanisms, and the prevention of precipitation or formation of polymorphs typical of crystalline form APIs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants

    NASA Astrophysics Data System (ADS)

    Hou, Bao-feng; Wang, Ye-fei; Huang, Yong

    2015-03-01

    Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.

  6. Intratracheal Administration of Budesonide/Surfactant to Prevent Bronchopulmonary Dysplasia.

    PubMed

    Yeh, Tsu F; Chen, Chung M; Wu, Shou Y; Husan, Zahid; Li, Tsai C; Hsieh, Wu S; Tsai, Chang H; Lin, Hung C

    2016-01-01

    Bronchopulmonary dysplasia (BPD) is an important complication of mechanical ventilation in preterm infants, and no definite therapy can eliminate this complication. Pulmonary inflammation plays a crucial role in its pathogenesis, and glucocorticoid is one potential therapy to prevent BPD. To compare the effect of intratracheal administration of surfactant/budesonide with that of surfactant alone on the incidence of death or BPD. A clinical trial was conducted in three tertiary neonatal centers in the United States and Taiwan, in which 265 very-low-birth-weight infants with severe respiratory distress syndrome who required mechanical ventilation and inspired oxygen (fraction of inspired oxygen, ≥50%) within 4 hours of birth were randomly assigned to one of two groups (131 intervention and 134 control). The intervention infants received surfactant (100 mg/kg) and budesonide (0.25 mg/kg), and the control infants received surfactant only (100 mg/kg), until each infant required inspired O2 at less than 30% or was extubated. The intervention group had a significantly lower incidence of BPD or death (55 of 131 [42.0%] vs. 89 of 134 [66%]; risk ratio, 0.58; 95% confidence interval, 0.44-0.77; P < 0.001; number needed to treat, 4.1; 95% confidence interval, 2.8-7.8). The intervention group required significantly fewer doses of surfactant than did the control group. The intervention group had significantly lower interleukin levels (IL-1, IL-6, IL-8) in tracheal aspirates at 12 hours and lower IL-8 at 3-5 and 7-8 days. In very-low-birth-weight infants with severe respiratory distress syndrome, intratracheal administration of surfactant/budesonide compared with surfactant alone significantly decreased the incidence of BPD or death without immediate adverse effect. Clinical trial registered with www.clinicaltrials.gov (NCT-00883532).

  7. Interaction of cationic surfactants with DNA: a single-molecule study

    PubMed Central

    Husale, Sudhir; Grange, Wilfried; Karle, Marc; Bürgi, Stephan; Hegner, Martin

    2008-01-01

    The interaction of cationic surfactants with single dsDNA molecules has been studied using force-measuring optical tweezers. For hydrophobic chains of length 12 and greater, pulling experiments show characteristic features (e.g. hysteresis between the pulling and relaxation curves, force-plateau along the force curves), typical of a condensed phase (compaction of a long DNA into a micron-sized particle). Depending on the length of the hydrophobic chain of the surfactant, we observe different mechanical behaviours of the complex (DNA-surfactants), which provide evidence for different binding modes. Taken together, our measurements suggest that short-chain surfactants, which do not induce any condensation, could lie down on the DNA surface and directly interact with the DNA grooves through hydrophobic–hydrophobic interactions. In contrast, long-chain surfactants could have their aliphatic tails pointing away from the DNA surface, which could promote inter-molecular interactions between hydrophobic chains and subsequently favour DNA condensation. PMID:18203749

  8. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  9. PROPERTIES OF FOOD GRADE (EDIBLE) SURFACTANTS AFFECTING SUBSURFACE REMEDIATION OF CHLORINATED SOLVENTS

    EPA Science Inventory

    In this research, several food grade (edible) surfactants are systematically evaluated for various loss mechanisms: precipitation, adsorption, and coacervation (for nonionic surfactants). Cloud points for the polyethoxylate sorbitan (T-MAZ) surfactants are much higher than aquife...

  10. The interactions between ionic surfactants and phosphatidylcholine vesicles: Conductometry

    NASA Astrophysics Data System (ADS)

    Tsao, Heng-Kwong; Tseng, Wen Liang

    2001-11-01

    The interaction between ionic surfactants and phosphatidylcholine vesicles, which are prepared without addition of buffer and salt, is investigated by conductivity measurements. On the basis of the vesicle acting as a trap of charge carriers, the bilayer/aqueous phase partition coefficient K and the surfactant/lipid molar ratio Re of nine surfactants are determined. The thermodynamic consistency is satisfied by the measured parameters. The effects of the alkyl chain length (C10-C16) and ionic head group are then studied. The inverse partition coefficient K-1 is linearly related to the critical micelle concentration. The solubilizing ability Reb is a consequence of the competition between the surfactant incorporation into the bilayer and the formation of micelles. Consequently, the K parameter rises whereas the Reb parameter declines as the chain length is increased. The influence due to addition of salt is also discussed.

  11. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    PubMed Central

    Mohanty, Sagarika; Jasmine, Jublee

    2013-01-01

    Surfactant enhanced bioremediation (SEB) of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL) pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs). Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review. PMID:24350261

  12. Molecular Dynamics Study of Surfactant Self-Assembly on Single-Walled Carbon Nanotubes (SWCNTs)

    NASA Astrophysics Data System (ADS)

    Phelan, Frederick, Jr.

    2015-03-01

    Single-walled carbon nanotubes (SWNCTs) are materials with structural, electronic and optical properties that make them attractive for a myriad of advanced technology applications. Increased adaptation of these materials requires advancement in separation techniques which enables them to be sorted with increased reliability into monodisperse fractions with respect to length and chirality. Most separation techniques currently in use rely on dispersion of tubes in aqueous solution using surfactants. This results in a colloidal mixture in which tubes are packed and individually dispersed in a surfactant shell. Understanding the structure and properties of the SWCNT-surfactant complex at the molecular level, and how this is affected by chirality, will help to improve separations processes. In this work, we study the structure and properties of SWCNT-surfactant colloidal complexes using all-atom molecular dynamics. Self-assembled structures are computed for a number of combinations SWCNT/surfactant, and also, co-surfactant mixtures for the bile salt surfactant sodium deoxycholate (DOC) and the anionic surfactant sodium dodecyl sulfate (SDS). From the radial distribution function we estimate the size of the SWCNT hydration layer, and use that information to compute the buoyant densities of unfilled tubes for a number of concentrations. Estimates of the change in hydrodynamic radius with increased surfactant packing and the binding energies of the individual surfactants are also obtained.

  13. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis.

    PubMed

    Baret, Jean-Christophe; Kleinschmidt, Felix; El Harrak, Abdeslam; Griffiths, Andrew D

    2009-06-02

    In classical emulsification processes, surfactants play two roles: first, they reduce the interfacial tension, facilitating droplet deformation and rupture, and second, they reduce droplet coalescence. Here, we use a microfluidic emulsification system to completely uncouple these two processes, allowing stabilization against coalescence to be studied quantitatively and independently of droplet formation. We demonstrate that, in addition to the classical effect of stabilization by an increase of surfactant concentration, the dynamics of adsorption of surfactant at the water-oil interface is a key element for droplet stabilization. Microfluidic emulsification devices can therefore be tailored to improve emulsification while decreasing the concentration of surfactant by increasing the time before the droplets first come into contact.

  14. Effect of Surfactants on Mechanical, Thermal, and Photostability of a Monoclonal Antibody.

    PubMed

    Agarkhed, Meera; O'Dell, Courtney; Hsieh, Ming-Ching; Zhang, Jingming; Goldstein, Joel; Srivastava, Arvind

    2018-01-01

    The purpose of this work was to evaluate the effect of commonly used surfactants (at 0.01% w/v concentration) on mechanical, thermal, and photostability of a monoclonal antibody (MAb1) of IgG1 sub-class and to evaluate the minimum concentration of surfactant (Polysorbate 80) required in protecting MAb1 from mechanical stress. Surfactants evaluated were non-ionic surfactants, Polysorbate 80, Polysorbate 20, Pluronic F-68 (polyoxyethylene-polyoxypropylene block polymer), Brij 35 (polyoxyethylene lauryl ether), Triton X-100, and an anionic surfactant, Caprylic acid (1-Heptanecarboxylic acid). After evaluating effect of surfactants and determining stabilizing effect of Polysorbate 80 against mechanical stress without compromising thermal and photostability of MAb1, the minimum concentration of Polysorbate 80 required for mechanical stability was further examined. Polysorbate 80 concentration was varied from 0 to 0.02%. Mechanical stability was evaluated by agitation of MAb1 at 300 rotations per minute at room temperature for 72 h. Samples were analyzed for purity by SEC-HPLC, turbidity by absorbance at 350 nm, visible particles by visual inspection, and sub-visible particles by light obscuration technique on a particle analyzer. All non-ionic surfactants tested showed a similar effect in protecting against mechanical stress and did not exhibit any significant negative effect on thermal and photostability. However, Caprylic acid had a slightly negative effect on mechanical and photostability when compared to the non-ionic surfactants or sample without surfactant. This work demonstrated that polysorbate 80 is better than other surfactants tested and that a concentration of at least 0.005% (w/v) Polysorbate 80 is needed to protect MAb1 against mechanical stress.

  15. Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles.

    PubMed

    Wang, Dali; Lin, Zhifen; Yao, Zhifeng; Yu, Hongxia

    2014-08-01

    The potential toxicities of nanoparticles (NPs) have been intensively discussed over the past decade. In addition to their single toxicities, NPs can interact with other environmental chemicals and thereby exert joint effects on biological systems and the environment. The present study investigated the combined toxicities of NPs and surfactants, which are among the chemicals that most likely coexist with NPs. Photobacterium phosphoreum was employed as the model organism. The results indicate that surfactants with different ion types can alter the properties of NPs (i.e., particle size and surface charge) in different ways and present complex joint effects on NP toxicities. Mixtures of different NPs and surfactants exhibited antagonistic, synergistic, and additive effects. In particular, the toxicity of ZnO was observed to result from its dissolved Zn(2+); thus, the joint effects of the ZnO NPs and surfactants can be explained by the interactions between the Zn ions and the surfactants. Our study suggests that the potential hazards caused by mixtures of NPs and surfactants are different from those caused by single NPs. Because surfactants are extensively used in the field of nanotechnology and are likely to coexist with NPs in natural waters, the ecological risk assessments of NPs should consider the impacts of surfactants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Surfactant Dysfunction in ARDS and Bronchiolitis is Repaired with Cyclodextrins.

    PubMed

    Al-Saiedy, Mustafa; Gunasekara, Lasantha; Green, Francis; Pratt, Ryan; Chiu, Andrea; Yang, Ailian; Dennis, John; Pieron, Cora; Bjornson, Candice; Winston, Brent; Amrein, Matthias

    2018-03-01

    Acute respiratory distress syndrome (ARDS) is caused by many factors including inhalation of toxicants, acute barotrauma, acid aspiration, and burns. Surfactant function is impaired in ARDS and acute airway injury resulting in high surface tension with alveolar and small airway collapse, edema, hypoxemia, and death. In this study, we explore the mechanisms whereby surfactant becomes dysfunctional in ARDS and bronchiolitis and its repair with a cyclodextrin drug that sequesters cholesterol. We used in vitro model systems, a mouse model of ARDS, and samples from patients with acute bronchiolitis. Surface tension was measured by captive bubble surfactometry. Patient samples showed severe surfactant inhibition even in the absence of elevated cholesterol levels. Surfactant was also impaired in ARDS mice where the cholesterol to phospholipid ratio (W/W%) was increased. Methyl-β-cyclodextrin (MβCD) restored surfactant function to normal in both human and animal samples. Model studies showed that the inhibition of surfactant was due to both elevated cholesterol and an interaction between cholesterol and oxidized phospholipids. MβCD was also shown to have anti-inflammatory effects. Inhaled cyclodextrins have potential for the treatment of ARDS. They could be delivered in a portable device carried in combat and used following exposure to toxic gases and fumes or shock secondary to hemorrhage and burns.

  17. Peroxyoxalate chemiluminescence enhanced by oligophenylenevinylene fluorophores in the presence of various surfactants.

    PubMed

    Motoyoshiya, Jiro; Takigawa, Setsuko

    2014-11-01

    The effect of several surfactants on peroxyoxalate chemiluminescence (PO-CL) using oligophenylenevinylene fluorophores was investigated. Among several oligophenylenevinylenes consisting of stilbene units, linearly conjugated ones, such as distyrylbenzene and distyrylstilbene, effectively enhanced PO-CL efficiency. Various effects of anionic, cationic, amphoteric and non-ionic surfactants on the CL efficiency of PO-CL were determined using three oxalates and the distyrylbenzene fluorophore. Anionic and non-ionic surfactants effectively enhanced CL efficiency, in contrast to the negative effect of cationic and amphoteric surfactants. Non-ionic surfactants were also effective in CL reactions of oxalates bearing dodecyl ester groups by the hydrophobic interaction between their alkyl chains. Considering these results, the surfactants not only increase the concentrations of water-insoluble interacting species in the hydrophobic micelle cores, but also control rapid degradation of the oxalates by alkaline hydrolysis. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Simulations of surfactant effects on the dynamics of coalescing drops and bubbles

    NASA Astrophysics Data System (ADS)

    Martin, David W.; Blanchette, François

    2015-01-01

    We present simulations of coalescence in the presence of surfactant. We consider a fluid-fluid interface where we track surfactant concentration. Our model is applicable to a soap bubble merging with a suspended soap film and to a surfactant covered liquid drop merging with a reservoir. In both cases, we determine the regime in which coalescence is only partial. Along with viscous effects, represented by the Ohnesorge number, the elasticity of the surface tension relative to the surfactant concentration is seen to play a key role and exhibits a surprising nonmonotonic influence, for which we present a physical mechanism. The effects of gravity are also simulated, along with effects of differing initial conditions, as well as those of uneven initial surfactant concentration, as are likely to arise in physical applications. We describe how the presence of surfactants can influence a coalescence cascade.

  19. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    NASA Technical Reports Server (NTRS)

    Kumar, Nitin; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid/surfaces. At a hydrophobic surface, the air/hydrophobic solid tension is low, and the solid/aqueous tension is high. A large contact angle forms as the aqueous/air tension acts together with the solid/air tension to balance the large solid/aqueous tension. The aqueous phase, instead of spreading, is held in a meniscus by the large angle. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants (i.e. amphiphiles with a hydrophobic chain of methylene groups attached to a large polar group to give aqueous solubility) do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm or polyethylene. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3)) and an extended ethoxylate (-(OCH2CH2)n-) polar group in the form of a chain with seven or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (lermed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread and can be used in microgravity. We propose that the trisiloxane surfactants superspread when the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross sectional area of the disk is larger than that of the extended ethoxylate chain, the

  20. Extraction and Characterization of Surfactants from Atmospheric Aerosols.

    PubMed

    Nozière, Barbara; Gérard, Violaine; Baduel, Christine; Ferronato, Corinne

    2017-04-21

    Surface-active compounds, or surfactants, present in atmospheric aerosols are expected to play important roles in the formation of liquid water clouds in the Earth's atmosphere, a central process in meteorology, hydrology, and for the climate system. But because specific extraction and characterization of these compounds have been lacking for decades, very little is known on their identity, properties, mode of action and origins, thus preventing the full understanding of cloud formation and its potential links with the Earth's ecosystems. In this paper we present recently developed methods for 1) the targeted extraction of all the surfactants from atmospheric aerosol samples and for the determination of 2) their absolute concentrations in the aerosol phase and 3) their static surface tension curves in water, including their Critical Micelle Concentration (CMC). These methods have been validated with 9 references surfactants, including anionic, cationic and non-ionic ones. Examples of results are presented for surfactants found in fine aerosol particles (diameter <1 μm) collected at a coastal site in Croatia and suggestions for future improvements and other characterizations than those presented are discussed.

  1. Extraction and Characterization of Surfactants from Atmospheric Aerosols

    PubMed Central

    Baduel, Christine; Ferronato, Corinne

    2017-01-01

    Surface-active compounds, or surfactants, present in atmospheric aerosols are expected to play important roles in the formation of liquid water clouds in the Earth's atmosphere, a central process in meteorology, hydrology, and for the climate system. But because specific extraction and characterization of these compounds have been lacking for decades, very little is known on their identity, properties, mode of action and origins, thus preventing the full understanding of cloud formation and its potential links with the Earth's ecosystems. In this paper we present recently developed methods for 1) the targeted extraction of all the surfactants from atmospheric aerosol samples and for the determination of 2) their absolute concentrations in the aerosol phase and 3) their static surface tension curves in water, including their Critical Micelle Concentration (CMC). These methods have been validated with 9 references surfactants, including anionic, cationic and non-ionic ones. Examples of results are presented for surfactants found in fine aerosol particles (diameter <1 μm) collected at a coastal site in Croatia and suggestions for future improvements and other characterizations than those presented are discussed. PMID:28518073

  2. Surfactant-Induced Changes of Water Flow and Solute Transport in Soils

    NASA Astrophysics Data System (ADS)

    Kinsey, E. N.; Korte, C.; Peng, Z.; Yu, C.; Powelson, D.; Jacobson, A. R.; Baveye, P. C.; Darnault, C. J. G.

    2016-12-01

    Surfactants are present in the environment due to agricultural practices such as irrigation with wastewater, biosolid soil amendments, and/or environmental engineering remediation. Furthermore, surfactants occur widely in soils due to the application of pesticides in surfactant solution sprays, or the application of surfactants as soil wetting agents. Surfactants, because they are amphiphilic and impact the surface tension of aqueous solutions and the contact angle between aqueous and solid phases have the potential to influence water flow in porous media and the physicochemical properties of soils. The objective of this study was to assess the impact of surfactant on the soil infiltration process. Four different soils were used in this study: two sandy loam soils (Lewiston and Greenson series) and two loamy sand soils (Sparta and Gilford series). Rainfall was simulated to flow through different columns filled with the four different types of soil and effluent samples were collected at the end of each column. Each type of soil had two columns, one with a non-ionic surfactant Aerosol®22 at twice the critical micelle concentration, in the rainfall solution and one without. A conservative tracer, potassium bromide, was added to all rainfalls to monitor the infiltration process in soil. Tracer breakthrough curves were used to characterize flow in soils. Flow rates were also recorded for each soil. The presence of surfactant decreased the flow rate by a significant amount in most soil types. The decrease in flow rate can be attributed to the effects on the soil properties of hydraulic conductivity and soil aggregates. A decrease in pore space from the swelling of the soil particles can decrease the hydraulic conductivity. The properties in surfactants also decrease the surface tension and therefore soil particles are able to be dislodged from soil aggregates and cause potential soil clogging.

  3. EFFECTS OF SURFACTANTS ON FLUORANTHENE MINERALIZATION BY SPHINGOMONAS PAUCIMOBILIS STRAIN EPA 505

    EPA Science Inventory

    Past results from surfactant-enhanced biodegradation studies have been equivocal because of inhibitory effects of the surfactants and a poor understanding of the characteristics of PAH-degrading microorganisms that make them responsive to surfactants. We have studied the minerali...

  4. Electromagnetic scattering by impedance structures

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1987-01-01

    The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.

  5. Lithographic performance and dissolution behavior of novolac resins for various developer surfactant systems

    NASA Astrophysics Data System (ADS)

    Flores, Gary E.; Loftus, James E.

    1992-06-01

    The use of surfactants in today's society ranges over a wide variety of technologies, from soaps and detergents to house paints and electronic materials. In the semiconductor industry, surfactants are commonly used as coating additives in photoresists, as additives in wet chemical etchants, as additives in developer solutions, and in other areas where surface activity is desirable. In most applications, the mechanisms of surfactant chemistry are well established, yet there has been only a limited amount of published literature pertaining to characterizing the behavior of surfactants in developer systems for photoresists. This project explores the application of surfactants in an aqueous tetramethyl ammonium hydroxide (TMAH) based developer for two optical resists, one incorporating a 2,1,4- diazonaphthoquinone (DNQ) sensitizer, while the other incorporates a 2,1,5-DNQ sensitizer. In addition, each optical resist is based on different positive novolac resins with distinct structural properties. This feature aids in illustrating the improtance of matching the developer surfactant with the photoresist resin structure. Four distinct non-ionic surfactants with well published physical and chemical properties are examined. Properties of the surfactants explored include differences in structure, surfactant concentration, various degrees of hydrophilic versus lipophilic content (known as the HLB, or hydrophilic - lipophilic balance), and the differences in reported critical micelle concentration (CMC). Previous research investigated the performance characteristics of the 2,1,5-DNQ for these four surfactants. This investigation is an extension of the previous project by next considering a significantly different photoresist. A discussion of potential mechanisms of the solubilization and wetting effects is utilized to promote an understanding of surfactant effects in resist/developer systems. Also, because of the extensive characterization involved in screening surfactants, a

  6. Surfactant-Enhanced Aquifer Remediation (SEAR) Implementation Manual

    DTIC Science & Technology

    2003-04-01

    UTCHEM University of Texas Chemical Flooding Simulator VOC volatile organic compound wt% weight percent iv Section 1.0: INTRODUCTION 1.1...proper sample spacing that captures the peak breakthrough curve and tailing concentrations caused by post- surfactant water flooding. UTCHEM design...90 100 110 120 130 140 Time Since Surf. Injection, days D iss ol ve d PC E C on c. , m g/ l Field data UTCHEM (Run ISA26m) End of surfactant

  7. Cationic surfactants-modified natural zeolites: improvement of the excipients functionality.

    PubMed

    Krajisnik, Danina; Milojević, Maja; Malenović, Anđelija; Daković, Aleksandra; Ibrić, Svetlana; Savić, Snezana; Dondur, Vera; Matijasević, Srđan; Radulović, Aleksandra; Daniels, Rolf; Milić, Jela

    2010-10-01

    In this study an investigation of cationic surfactants-modified natural zeolites as drug formulation excipient was performed. The aim of this work was to carry out a study of the purified natural zeolitic tuff with high amount of clinoptilolite as a potential carrier for molecules of pharmaceutical interest. Two cationic surfactants (benzalkonium chloride and hexadecyltrimethylammonium bromide) were used for modification of the zeolitic surface in two levels (equal to and twice as external cation-exchange capacity of the zeolitic tuff). Prepared samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric, high-performance liquid chromatography analysis, and powder flow determination. Different surfactant/zeolite composites were used for additional investigation of three model drugs: diclofenac diethylamine, diclofenac sodium, and ibuprofen by means of adsorption isotherm measurements in aqueous solutions. The modified zeolites with two levels of surfactant coverage within the short activation time were prepared. Determination of flow properties showed that modification of zeolitic surface reflected on powder flow characteristics. Investigation of the model drugs adsorption on the obtained composites revealed that a variation between adsorption levels was influenced by the surfactant type and the amount present at the surface of the composites. In vitro release profiles of the drugs from the zeolite-surfactant-drug composites revealed that sustained drug release could be attained over a period of 8 hours. The presented results for drug uptake by surfactant-zeolite composites and the afterward drug release demonstrated the potential use of investigated modified natural zeolite as excipients for advanced excipients in drug formulations.

  8. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral blood...

  9. [Surfactants of the airways. Critical review and personal research].

    PubMed

    Mira, E; Benazzo, M; De Paoli, F; Casasco, A; Calligaro, A

    1997-02-01

    The literature proving the presence of a surface tension lowering substance (STLS) on the lining layer of mammalian Eustachian tube (ET) is critically reviewed. A further review of the chemical studies on tubal washings based on chromatographic analysis methods (TLC and HPLC) is performed, and is concluded that ET epithelium is coated by a mixture of phospholipids, similar but not identical to the pulmonary surfactant and with similar but less powerful surface activity. In both cases, and with minor differences between the different mammalian species, phosphatidylcholine (PC), and in particular its disaturated fraction, dipalmitoilphosphatidylcholine (DPPC), is the predominating and the most active compound. ET surfactant is synthesized by ET epithelium and secreted in form of osmiophilic multilamellar bodies into the tubal lumen. The exact function of the ET surfactant is not fully understood: it may play an important role in ET physiology by facilitating the tubal opening to allow for aeration of the middle ear and adequate drainage or could act as a release agent, preventing solid-to-solid adhesion of the tubal walls and contrasting the adhesive action of the glycoproteins of the mucous blanket. On the other hand a phospholipidic surfactant seems to be produced by the mucosa of the other parts of the upper airways, i.e. nose and trachea. In this case a surface active agent could act in preventing the transudation of serum into the lumen, in enhancing the phagocytosis or in facilitating the mucociliary transport. Recent data on humans, suggesting that a relative deficiency or an alterated production of tubal surfactant could play a role in the pathogenesis of secretory otitis media (SOM) or middle ear effusion (MEE), are reviewed. Administration of exogenous surfactant or pharmacological stimulation of the production of tubal surfactant could improve ET function and be of value in some cases of SOM. Personal data, suggesting than ambroxol (a drug stimulating the

  10. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  11. Development of Targeted Nonionic Surfactant Vesicles for Treatment of Vascular Injury

    DTIC Science & Technology

    2008-12-01

    antibody and containing drug atorvastatin (test substance-low drug concentration) Test (high) 2. Surfactant vesicle coated with antibody and...containing atorvastatin (test substance-high drug concentration) Control (targeted no drug) 3. Surfactant vesicle coated with antibody and containing...buffered saline solution Control (non targeted with drug) 4. Surfactant vesicle without antibody containing atorvastatin Control (free drug

  12. Biofilm prevention by dicephalic cationic surfactants and their interactions with DNA.

    PubMed

    Piecuch, A; Lamch, Ł; Paluch, E; Obłąk, E; Wilk, K A

    2016-09-01

    The studies were aimed to contribute to the elucidation of the relationships between structure of the double-headed cationic surfactants-N,N-bis[3,3'-(dimethylamine)- propyl]alkylamide dihydrochlorides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9 H19 , n-C11 H23 , n-C13 H27 , n-C15 H31 ) and their antibacterial and biofilm preventing activity. The minimal inhibitory and bactericidal concentrations (MIC and MBC) of dicephalic surfactants against Staphylococcus epidermidis and Pseudomonas aeruginosa were tested using standard methods. Pseudomonas aeruginosa was resistant to studied compounds but MBC values against Staph. epidermidis reached 0·48-0·01 mmol l(-1) . The influence of dicephalic surfactants on bacterial biofilm and adhesion to the various surfaces was investigated with crystal violet staining or colony counting. The reduction in bacterial adhesion was observed, especially in the case of glass and stainless steel. The condensation of the DNA was shown in the ethidium bromide intercalation assay. Dicephalic surfactants exhibited antibacterial activity against Staph. epidermidis. The activity of studied compounds depended on the hydrocarbon chain length and the counterion. Surfactants deposited on different materials reduced Staph. epidermidis adhesion, dependently on the surfactant structure and the substratum. Dicephalic surfactants showed the ability of DNA compaction. This study points the possibility of application of dicephalic surfactants as the surface-coating agents to prevent biofilm formation. These compounds efficiently condensed DNA and are potential candidates for further studies towards the transfection. © 2016 The Society for Applied Microbiology.

  13. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays.

    PubMed

    Gosso, Sara; Turturici, Marco; Franchino, Claudio; Colombo, Elisabetta; Pasquarelli, Alberto; Carbone, Emilio; Carabelli, Valentina

    2014-08-01

    Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose-response calibrations, set the lowest detectable concentration of adrenaline to ∼5 μm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12-27 μm2. In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The 'non-active' ('silent') zones covered 24% of the total and persisted for 6-8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  14. Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Junkuo; Ye, Kaiqi; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012

    Although it has been widely demonstrated that surfactants can efficiently control the size, shape and surface properties of micro/nanocrystals of metal–organic frameworks (MOFs) due to the strong interactions between surfactants and crystal facets of MOFs, the use of surfactants as reaction media to grow MOF single crystals is unprecedented. In addition, compared with ionic liquids, surfactants are much cheaper and can have multifunctional properties such as acidic, basic, neutral, cationic, anionic, or even block. These factors strongly motivate us to develop a new synthetic strategy: growing crystalline MOFs in surfactants. In this report, eight new two-dimensional (2D) or three-dimensional (3D)more » MOFs have been successfully synthesized in an industrially-abundant and environmentally-friendly surfactant: polyethylene glycol-200 (PEG-200). Eight different coordination modes of carboxylates, ranging from monodentate η{sup 1} mode to tetra-donor coordination µ{sub 3}-η{sup 1}:η{sup 2}:η{sup 1} mode, have been founded in our research. The magnetic properties of Co-based MOFs were investigated and MOF NTU-Z6b showed a phase transition with a Curie temperature (T{sub c}) at 5 K. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. - Graphical abstract: Surfactants have been used as reaction media to grow MOF single crystals for the first time. Eight new two-dimensional or three-dimensional MOFs were successfully synthesized in surfactant polyethylene glycol-200 (PEG-200). Coordination modes of carboxylates up to eight were founded. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. Display Omitted - Highlights: • Surfactant-thermal synthesis of crystalline metal–organic frameworks. • Eight new 2-D or 3-D metal

  15. Surfactant process for promoting gas hydrate formation and application of the same

    DOEpatents

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  16. Dose response of surfactants to attenuate gas embolism related platelet aggregation

    NASA Astrophysics Data System (ADS)

    Eckmann, David M.; Eckmann, Yonaton Y.; Tomczyk, Nancy

    2014-03-01

    Intravascular gas embolism promotes blood clot formation, cellular activation, and adhesion events, particularly with platelets. Populating the interface with surfactants is a chemical-based intervention to reduce injury from gas embolism. We studied platelet activation and platelet aggregation, prominent adverse responses to blood contact with bubbles. We examined dose-response relationships for two chemically distinct surfactants to attenuate the rise in platelet function stimulated by exposure to microbubbles. Significant reduction in platelet aggregation and platelet activation occurred with increasing concentration of the surfactants, indicating presence of a saturable system. A population balance model for platelet aggregation in the presence of embolism bubbles and surfactants was developed. Monte Carlo simulations for platelet aggregation were performed. Results agree qualitatively with experimental findings. Surfactant dose-dependent reductions in platelet activation and aggregation indicate inhibition of the gas/liquid interface's ability to stimulate cellular activation mechanically.

  17. Simulations of surfactant effects on the coalescence of drops and bubbles

    NASA Astrophysics Data System (ADS)

    Martin, David; Blanchette, Francois

    2012-11-01

    We present simulations of coalescence in the presence of surfactant. We assume axial symmetry, and consider a fluid-fluid interface on which surfactant concentration and mass are tracked as functions of arclength. Our model can account for two physically distinct setups: a soap bubble merging with a suspended soap film; and a surfactant covered liquid drop merging with a reservoir. In both cases, we describe the regime in which coalescence is only partial. Along with viscous effects, represented by the Ohnesorge number, the elasticity of the surface tension relative to the surfactant concentration is seen to play a key role, and exhibits a surprising nonmonotonic influence. Effects of gravity are also simulated, along with effects of differing initial conditions, including uneven initial surfactant concentration, as is likely to arise in physical applications. We acknowledge support from NSF grant DMS 0808129.

  18. Impact of C-reactive protein (CRP) on surfactant function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.J.; Sanders, R.L.; McAdam, K.P.

    1989-12-01

    Plasma levels of the acute-phase reactant, C-reactive protein (CRP), increase up to one thousand-fold as a result of trauma or inflammation. CRP binds to phosphorylcholine (PC) in a calcium-ion dependent manner. The structural homology between PC and the major phospholipid component of surfactant, dipalmitoyl phosphatidylcholine (DPPC), led to the present study in which we examined if CRP levels might be increased in patients with adult respiratory distress syndrome (ARDS), and subsequently interfere with surfactant function. Our results showed that CRP levels in the bronchoalveolar fluid (BALF) was increased in patients with ARDS (97.8 +/- 84.2 micrograms/mg total protein vs. 4.04more » +/- 2.2 micrograms/mg total protein in normals). Our results show that CRP binds to liposomes containing DPPC and phosphatidylglycerol (PG). As a result of this interaction, CRP inhibits the surface activity of a PG-DPPC mixture when tested with a Wilhelmy surfactometer or with the Enhorning pulsating bubble apparatus. Furthermore, the surface activity of a clinically used surfactant replacement, Surfactant TA (2 mg/ml), was also severely impaired by CRP in a dose-dependent manner (doses used ranging from 24.5 to 1,175 micrograms/ml). In contrast, human serum albumin (HSA) at 500 and 900 micrograms/ml had no inhibitory effect on Surfactant TA surface activity. These results suggest that CRP, although not an initiating insult in ARDS, may contribute to the subsequent abnormalities of surfactant function and thus the pathogenesis of the pulmonary dysfunction seen in ARDS.« less

  19. EFFECT OF INORGANIC CATIONS ON BACTERICIDAL ACTIVITY OF ANIONIC SURFACTANTS

    PubMed Central

    Voss, J. G.

    1963-01-01

    Voss, J. G. (Procter & Gamble Co., Cincinnati, Ohio). Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86:207–211. 1963.—The bactericidal effectiveness of two alkyl benzene sulfonates and of three other types of anionic surfactants against Staphylococcus aureus is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. The cations may act by decreasing the negative charge at the cell surface and increasing adsorption of the surfactant anions, leading to damage to the cytoplasmic membrane and death of the cell. Increased adsorption of surfactant is also found with Escherichia coli, but does not lead to death of the cell. PMID:14058942

  20. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  1. Impedance of a nanoantenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois

    2009-10-07

    We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.

  2. Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.

    PubMed

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-03-26

    The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.

  3. Surfactant-Enhanced Size-Excluded Transport of Bacteria Through Unsaturated Porous Media.

    NASA Astrophysics Data System (ADS)

    Zhu, J.

    2017-12-01

    US domestic waste water is rich in surfactants because of the intensive usage of surfactants-containing household product. It results in a surfactants presence environment when this untreated waste water released into subsurface. It was reported that surfactants enhance the colloidal transport in porous media, which have significant effect on issues such as subsurface pathogens contamination and biodegradation. In this study, soil column experiments were conducted. The soil column was remained unsaturated and with a steady flow passing through it. Escherichia coli K-12 transported in the soil column and its breakthrough data was collected in presence of surfactant anionic surfactant linear alkylbenzene sulfonate (LAS) concentration range over 0, 0.25, 0.5, 0.75, 1, and 2 times Critical Micelle Concentration (CMC). It was found that the increase in LAS concentration greatly increases breakthrough concentration C/C0 and decreases breakthrough time tb until LAS concentration reaches 1 xCMC. Numerical models were built simulating and investigating this phenomenon. The goodness of model fitting was greatly improved by adding exclusion factor into the model, which indicated that the presence of surfactant might enhance the exclusion effect. The relationships between LAS concentration and the two coefficients, deposition rate coefficient k and exclusion effect coefficient θim, were found can be fitted by a quasi-Langmuir equation. And the model validation with observed data showed that the model has an acceptable reliability.

  4. Home environmental consequences of commute travel impedance.

    PubMed

    Novaco, R W; Kliewer, W; Broquet, A

    1991-12-01

    The physical and perceptual dimensions of commuting travel impedance were again found to have stressful consequences in a study of 99 employees of two companies. This quasi-experimental replication study, which focuses here on home environment consequences, investigated the effects of physical impedance and subjective impedance on multivariate measures of residential satisfaction and personal affect in the home. Both sets of residential outcome measures were significantly related to the two impedance dimensions. As predicted, gender was a significant moderator of physical impedance effects. Women commuting on high physical impedance routes were most negatively affected. Previously found subjective impedance effects on negative home mood, regardless of gender, were strongly replicated with several methods and were buttressed by convergent results with objective indices. The theoretical conjecture that subjective impedance mediates the stress effects of physical impedance was supported by the personal affect cluster but only for one variable in the residential satisfaction cluster. Traffic congestion has increased in metropolitan areas nationwide, and commuters, families, and organizations are absorbing associated hidden costs. The results are reviewed in terms of our ecological model, and the moderating effects of gender are discussed in terms of choice and role constraints.

  5. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of the...

  6. Current applications of foams formed from mixed surfactant-polymer solutions.

    PubMed

    Bureiko, Andrei; Trybala, Anna; Kovalchuk, Nina; Starov, Victor

    2015-08-01

    Foams cannot be generated without the use of special foaming agents, as pure liquids do not foam. The most common foaming agents are surfactants, however often for foam stability one active agent is not enough, it is necessary to add other component to increase foam lifetime. Foams on everyday use are mostly made from mixture of different components. Properly chosen combinations of two active ingredients lead to a faster foam formation and increased foam stability. During the last decade polymers (mainly polyelectrolytes and proteins) have become frequently used additives to foaming solutions. Mixtures of surfactants and polymers often demonstrate different foaming properties in comparison to surfactant only or polymer only solutions. The nature of surfactant-polymer interactions is complicated and prediction of resulting foaming properties of such formulations is not straightforward. Properties and foaming of surfactant-polymer mixtures are discussed as well as current applications of foams and foaming agents as foams are widely used in cosmetics, pharmaceutics, medicine and the food industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants

    PubMed Central

    Guan, Qian; Noblitt, Scott D.; Henry, Charles S.

    2012-01-01

    The use of mixtures of ionic and zwitterionic surfactants in poly(dimethylsiloxane) (PDMS) microchips is reported. The effect of surfactant concentration on EOF was studied for a single anionic surfactant (sodium dodecyl sulfate, SDS), a single zwitterionic surfactant (N-tetradecylammonium-N,N-dimethyl-3-ammonio-1-propanesulfonate, TDAPS), and a mixed SDS/TDAPS surfactant system. SDS increased the EOF as reported previously while TDAPS showed an initial increase in EOF followed by a reduction at higher concentrations. When TDAPS was added to a solution containing SDS, the EOF decreased in a concentration dependent manner. The EOF for all three surfactant systems followed expected pH trends, with increasing EOF at higher pH. The mixed surfactant system allowed tuning of the EOF across a range of pH and concentration conditions. After establishing the EOF behavior, the adsorption/desorption kinetics were measured and showed a slower adsorption/desorption rate for TDAPS than SDS. Finally, the separation and electrochemical detection of model catecholamines in buffer and reduced glutathione (GSH) in red blood cell lysate using the mixed surfactant system were explored. The mixed surfactant system provided shorter analysis times and/or improved resolution when compared to the single surfactant systems. PMID:22222982

  8. Surfactant-induced electroosmotic flow in microfluidic capillaries.

    PubMed

    Azadi, Glareh; Tripathi, Anubhav

    2012-07-01

    Control of EOF in microfluidic devices is essential in applications such as protein/DNA sizing and high-throughput drug screening. With the growing popularity of poly(methyl methacrylate) (PMMA) as the substrate for polymeric-based microfludics, it is important to understand the effect of surfactants on EOF in these devices. In this article, we present an extensive investigation exploring changes in EOF rate induced by SDS, polyoxyethylene lauryl ether (Brij35) and CTAB in PMMA microfluidic capillaries. In a standard protein buffer (Tris-Glycine), PMMA capillaries exhibited a cathodic EOF with measured mobility of 1.54 ± 0.1 (× 10⁻⁴ cm²/V.s). In the presence of surfactant below a critical concentration, EOF was independent of surfactant concentration. At high concentrations of surfactants, the electroosmotic mobility was found to linearly increase/decrease as the logarithm of concentration before reaching a constant value. With SDS, the EOF increased by 257% (compared to buffer), while it was decreased by 238% with CTAB. In the case of Brij35, the electroosmotic mobility was reduced by 70%. In a binary surfactant system of SDS/CTAB and SDS/Brij35, addition of oppositely charged CTAB reduced the SDS-induced EOF more effectively compared to nonionic Brij35. We propose possible mechanisms that explain the observed changes in EOF and zeta potential values. Use of neutral polymer coatings in combination with SDS resulted in 50% reduction in the electroosmotic mobility with 0.1% hydroxypropyl methyl cellulose (HPMC), while including 2% poly (N,N-dimethylacrylamide) (PDMA) had no effect. These results will potentially contribute to the development of PMMA-based microfluidic devices. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A review of shampoo surfactant technology: consumer benefits, raw materials and recent developments.

    PubMed

    Cornwell, P A

    2018-02-01

    Surfactants form the core of all shampoo formulations, and contribute to a wide range of different benefits, including cleansing, foaming, rheology control, skin mildness and the deposition of benefit agents to the hair and scalp. The purpose of this review was to assist the design of effective, modern, shampoo surfactant technologies. The mechanisms through which surfactants help deliver their effects are presented, along with the appraisal techniques through which surfactant options can be tested and screened for product development. The steps that should be taken to select the most appropriate blend of surfactants are described, and useful information on the most widely used surfactants is provided. The review concludes with an examination of recent developments in 'greener' surfactants, 'sulphate-free' technologies and structured liquid phases for novel sensory properties and for suspending benefit agents. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Surfactant Effect on the Average Flow Generation Near Curved Interface

    NASA Astrophysics Data System (ADS)

    Klimenko, Lyudmila; Lyubimov, Dmitry

    2018-02-01

    The present work is devoted to the average flow generation near curved interface with a surfactant adsorbed on the surface layer. The investigation was carried out for a liquid drop embedded in a viscous liquid with a different density. The liquid flows inside and outside the drop are generated by small amplitude and high frequency vibrations. Surfactant exchange between the drop surface and the surrounding liquid is limited by the process of adsorption-desorption. It was assumed that the surfactant is soluble in the surrounding liquid, but not soluble in the liquid drop. Surrounding liquid and the liquid in the drop are considered incompressible. Normal and shear viscous stresses balance at the interface is performed under the condition that the film thickness of the adsorbed surfactant is negligible. The problem is solved under assumption that the shape of the drop in the presence of adsorbed surfactant remains spherical symmetry. The effective boundary conditions for the tangential velocity jump and shear stress jump, describing the above generation have been obtained by matched asymptotic expansions method. The conditions under which the drop surface can be considered as a quasi-solid are determined. It is shown that in the case of the significant effect of surfactant on the surface tension, the dominant mechanism for the generation is the Schlichting mechanisms under vibrations.

  11. Effect of ethyleneoxide groups of anionic surfactants on lipase activity.

    PubMed

    Magalhães, Solange S; Alves, Luís; Sebastião, Marco; Medronho, Bruno; Almeida, Zaida L; Faria, Tiago Q; Brito, Rui M M; Moreno, Maria J; Antunes, Filipe E

    2016-09-01

    The use of enzymes in laundry and dish detergent products is growing. Such tendency implies dedicated studies to understand surfactant-enzyme interactions. The interactions between surfactants and enzymes and their impact on the catalytic efficiency represent a central problem and were here evaluated using circular dichroism, dynamic light scattering, and enzyme activity determinations. This work focuses on this key issue by evaluating the role of the ethyleneoxide (EO) groups of anionic surfactants on the structure and activity of a commercial lipase, and by focusing on the protein/surfactant interactions at a molecular level. The conformational changes and enzymatic activity of the protein were evaluated in the presence of sodium dodecyl sulfate (SDS also denoted as SLE 0 S) and of sodium lauryl ether sulfate with two EO units (SLE 2 S). The results strongly suggest that the presence of EO units in the surfactant polar headgroup determines the stability and the activity of the enzyme. While SDS promotes enzyme denaturation and consequent loss of activity, SLE 2 S preserves the enzyme structure and activity. The data further highlights that the electrostatic interactions among the protein groups are changed by the presence of the adsorbed anionic surfactants being such absorption mainly driven by hydrophobic interactions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1276-1282, 2016. © 2016 American Institute of Chemical Engineers.

  12. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  13. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.

    PubMed

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-04-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.

  14. Induction of Virulence Gene Expression in Staphylococcus aureus by Pulmonary Surfactant

    PubMed Central

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi

    2014-01-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal. PMID:24452679

  15. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  16. Effects of anthropogenic surfactants on the conversion of marine dissolved organic carbon and microgels.

    PubMed

    Shiu, Ruei-Feng; Lee, Chon-Lin

    2017-04-15

    The possible impact of three types of anthropogenic surfactants on the ability of marine dissolved organic carbon (DOC) to form self-assembled microgels was evaluated. The behavior of existing native microgels was also examined in the presence of surfactants. These results reveal that the release of surfactants even at low concentrations into the aquatic environment could effectively hinder the self-assembly of DOC polymers. The extent of the size reduction had the following order: anionic, cationic, and non-ionic. Furthermore, charged surfactants can disrupt existing native microgels, converting large assemblies into smaller particles. One possible mechanisms is that surfactants are able to enhance the stability of DOC polymers and disrupt aggregates due to their surface charges and protein-denaturing activities. These findings suggest that the ecological system is altered by anthropogenic surfactants, and provide useful information for ecological assessments of different types of surfactants and raise warnings about surfactant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.

    2009-01-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599

  18. Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.

    PubMed

    Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A

    2009-05-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.

  19. Synthesis, surface properties and antimicrobial activity of some germanium nonionic surfactants.

    PubMed

    Zaki, Mohamed F; Tawfik, Salah M

    2014-01-01

    Esterification reaction between different fatty acid namely; lauric, stearic, oleic and linoleic acids and polyethylene glycol-400 were performed. The produced polyethylene glycol ester were reacted with p-amine benzoic acid followed by condensation reaction with germanium dioxide in presence of sodium carbonate to form desired germinate surfactants. The chemical structures of the synthesized surfactants were determined using different spectra tools. The surface parameter including: the critical micelle concentration (CMC), effectiveness (π(cmc)), efficiency (Pc20), maximum surface excess (Γ(max)) and minimum surface area (A(min)), were calculated from the surface tension measurements. The synthesized surfactants showed higher surface activity. The thermodynamic parameters showed that adsorption and micellization processes are spontaneous. It is clear that the synthesized nonionic surfactants showed their tendency towards adsorption at the interfaces and also micellization in the bulk of their solutions. The synthesized surfactants were tested against different strain of bacteria using inhibition zone diameters. The synthesized surfactants showed good antimicrobial activities against the tested microorganisms including Gram positive, Gram negative as well as fungi. The promising inhibition efficiency of these compounds against the sulfate reducing bacteria facilitates them to be applicable as new categories of sulfate reducing bacteria biocides.

  20. Mechanisms of dynamic wetting failure in the presence of soluble surfactants

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Liu, Chen-Yu; Carvalho, Marcio S.

    2017-11-01

    A hydrodynamic model and flow visualization experiments are used to understand the mechanisms through which soluble surfactants can influence the onset of dynamic wetting failure. In the model, a Newtonian liquid displaces air in a rectangular channel in the absence of inertia. A Navier-slip boundary condition and constant contact angle are used to describe the dynamic contact line, and surfactants are allowed to adsorb to the interface and moving channel wall (substrate). The Galerkin finite element method is used to calculate steady states and identify the critical capillary number Cacrit at which wetting failure occurs. It is found that surfactant solubility weakens the influence of Marangoni stresses, which tend to promote the onset of wetting failure. The experiments indicate that Cacrit increases with surfactant concentration. For the more viscous solutions used, this behaviour can largely be explained by accounting for changes to the mean surface tension and static contact angle produced by surfactants. For the lowest-viscosity solution used, comparison between the model predictions and experimental observations suggests that other surfactant-induced phenomena such as Marangoni stresses may play a more important role.

  1. Surfactant-laden drop jellyfish-breakup mode induced by the Marangoni effect

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2017-03-01

    Drop breakup is a familiar event in both nature and technology. In this study, we find that the bag breakup mode can be replaced by a new breakup mode: jellyfish breakup, when the surfactant concentration of a surfactant-laden drop is high. This new breakup mode has a morphology resembling a jellyfish with many long tentacles. This is due to the inhomogeneous distribution of surfactant in the process of drop deformation and breakup. The thin film of liquid can remain stable as a result of the Marangoni effect. Finally, we propose that the dimensionless surfactant concentration can serve as a criterion for breakup mechanisms.

  2. Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush.

    PubMed

    Wang, Hua; Zhang, Heng; Yuan, Shiling; Liu, Chengbu; Xu, Zhen

    2014-06-01

    The adsorption of the anionic surfactant, sodium dodecylsulfate (SDS) in poly(ethylene oxide) (PEO) brush was studied by molecular dynamics simulations. Our simulations revealed that surfactant can adsorb in polymer brush as micellar aggregates and the polymer would reside at the hydrocarbon-water interface of SDS micelles. This association between surfactant and polymer was mainly driven by the hydrophobic interaction between the polymer and surfactant tails. In the simulation, with the increasing of surfactant concentration, a plateau value representing saturated adsorption was observed. The height of polymer brush was mainly affected by the adsorbed surfactant at low grafting density of polymer; however, it was primarily controlled by the grafting density at high grafting density. Our conclusions at the molecular level were in close agreement with experiment about the adsorption of surfactant in polymer brushes.

  3. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants

    EPA Science Inventory

    One-step green synthesis of gold (Au) nanostructures is described using naturally occurring biodegradable plant surfactants such as VeruSOL-3™ (mixture of d-limonene and plant-based surfactants), VeruSOL-10™, VeruSOL-11™ and VeruSOL-12™ (individual plant-based surfactants deri...

  4. Wettability of Complex Fluids and Surfactant Capped Nanoparticle-Induced Quasi-Universal Wetting Behavior.

    PubMed

    Harikrishnan, A R; Dhar, Purbarun; Agnihotri, Prabhat K; Gedupudi, Sateesh; Das, Sarit Kumar

    2017-06-22

    Even though there are quite large studies on wettability of aqueous surfactants and a few studies on effects of nanoparticles on wettability of colloids, to the best of authors' knowledge, there is no study reported on the combined effect of surfactant and nanoparticles in altering the wettability. The present study, for the first time, reports an extensive experimental and theoretical study on the combined effect of surfactants and nanoparticles on the wettability of complex fluids such as nanocolloids on different substrates, ranging from hydrophilic with a predominantly polar surface energy component (silicon wafer and glass) to near hydrophobic range with a predominantly dispersive component of surface energy (aluminum and copper substrates). Systematically planned experiments are carried out to segregate the contributing effects of surfactants, particles, and combined particle and surfactants in modulating the wettability. The mechanisms and the governing parameters behind the interactions of nanocolloids alone and of surfactant capped nanocolloids with different surfaces are found to be grossly different. The article, for the first time, also analyzes the interplay of the nature of surfaces, surfactant and particle concentrations on contact angle, and contact angle hysteresis (CAH) of particle and surfactant impregnated colloidal suspensions. In the case of nanoparticle suspensions, the contact angle is observed to decrease for the hydrophobic system and increase for the hydrophilic systems considered. On the contrary, the combined particle and surfactant colloidal system shows a quasi-unique wetting behavior of decreasing contact angle with particle concentration on all substrates. Also interestingly, the combined particle surfactant system at all particle concentrations shows a wetting angle much lower than that of the only-surfactant case at the same surfactant concentration. Such counterintuitive observations have been explained based on the near

  5. Comparative insight into surfactants mediated amyloidogenesis of lysozyme.

    PubMed

    Chaturvedi, Sumit K; Khan, Javed M; Siddiqi, Mohammad K; Alam, Parvez; Khan, Rizwan H

    2016-02-01

    Electrostatic and hydrophobic interactions have an important role in the protein aggregation. In this study, we have investigated the effect of charge and hydrophobicity of oppositely charged surfactants i.e., anionic (AOT and SDS) and cationic (CTAB and DTAB) on hen egg white lysozyme at pH 9.0 and 13.0, respectively. We have employed various methods such as turbidity measurements, Rayleigh light scattering, ThT, Congo red and ANS dye binding assays, far-UV CD, atomic force microscopy, transmission electron and fluorescence microscopy. At lower molar ratio, both anionic and cationic surfactants promote amyloid fibril formation in lysozyme at pH 9.0 and 13.0, respectively. The aggregation was proportionally increased with respect to protein concentration and hydrophobicity of surfactant. The morphology of aggregates at both the pH was fibrillar in structure, as visualized by dye binding and microscopic imaging techniques. Initially, the interaction between surfactants and lysozyme was electrostatic and then hydrophobic as investigated by ITC. This study demonstrates the crucial role of charge and hydrophobicity during amyloid fibril formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Multi-frequency bioelectrical impedance: a comparison between the Cole-Cole modelling and Hanai equations with the classical impedance index approach.

    PubMed

    Deurenberg, P; Andreoli, A; de Lorenzo, A

    1996-01-01

    Total body water and extracellular water were measured by deuterium oxide and bromide dilution respectively in 23 healthy males and 25 healthy females. In addition, total body impedance was measured at 17 frequencies, ranging from 1 kHz to 1350 kHz. Modelling programs were used to extrapolate impedance values to frequency zero (extracellular resistance) and frequency infinity (total body water resistance). Impedance indexes (height2/Zf) were computed at all 17 frequencies. The estimation errors of extracellular resistance and total body water resistance were 1% and 3%, respectively. Impedance and impedance index at low frequency were correlated with extracellular water, independent of the amount of total body water. Total body water showed the greatest correlation with impedance and impedance index at high frequencies. Extrapolated impedance values did not show a higher correlation compared to measured values. Prediction formulas from the literature applied to fixed frequencies showed the best mean and individual predictions for both extracellular water and total body water. It is concluded that, at least in healthy individuals with normal body water distribution, modelling impedance data has no advantage over impedance values measured at fixed frequencies, probably due to estimation errors in the modelled data.

  7. Relating surfactant properties to activity and solubilization of the human adenosine a3 receptor.

    PubMed

    Berger, Bryan W; García, Roxana Y; Lenhoff, Abraham M; Kaler, Eric W; Robinson, Clifford R

    2005-07-01

    The effects of various surfactants on the activity and stability of the human adenosine A3 receptor (A3) were investigated. The receptor was expressed using stably transfected HEK293 cells at a concentration of 44 pmol functional receptor per milligram membrane protein and purified using over 50 different nonionic surfactants. A strong correlation was observed between a surfactant's ability to remove A3 from the membrane and the ability of the surfactant to remove A3 selectively relative to other membrane proteins. The activity of A3 once purified also correlates well with the selectivity of the surfactant used. The effects of varying the surfactant were much stronger than those achieved by including A3 ligands in the purification scheme. Notably, all surfactants that gave high efficiency, selectivity and activity fall within a narrow range of hydrophile-lipophile balance values. This effect may reflect the ability of the surfactant to pack effectively at the hydrophobic transmembrane interface. These findings emphasize the importance of identifying appropriate surfactants for a particular membrane protein, and offer promise for the development of rapid, efficient, and systematic methods to facilitate membrane protein purification.

  8. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants.

    PubMed

    Zhou, Chengcheng; Wang, Fengyan; Chen, Hui; Li, Meng; Qiao, Fulin; Liu, Zhang; Hou, Yanbo; Wu, Chunxian; Fan, Yaxun; Liu, Libing; Wang, Shu; Wang, Yilin

    2016-02-17

    This work reports that cationic micelles formed by cationic trimeric, tetrameric, and hexameric surfactants bearing amide moieties in spacers can efficiently kill Gram-negative E. coli with a very low minimum inhibitory concentration (1.70-0.93 μM), and do not cause obvious toxicity to mammalian cells at the concentrations used. With the increase of the oligomerization degree, the antibacterial activity of the oligomeric surfactants increases, i.e., hexameric surfactant > tetrameric surfactant > trimeric surfactant. Isothermal titration microcalorimetry, scanning electron microscopy, and zeta potential results reveal that the cationic micelles interact with the cell membrane of E. coli through two processes. First, the integrity of outer membrane of E. coli is disrupted by the electrostatic interaction of the cationic ammonium groups of the surfactants with anionic groups of E. coli, resulting in loss of the barrier function of the outer membrane. The inner membrane then is disintegrated by the hydrophobic interaction of the surfactant hydrocarbon chains with the hydrophobic domains of the inner membrane, leading to the cytoplast leakage. The formation of micelles of these cationic oligomeric surfactants at very low concentration enables more efficient interaction with bacterial cell membrane, which endows the oligomeric surfactants with high antibacterial activity.

  9. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  10. Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals

    DOE PAGES

    McDaniel, Jesse G.; Yethiraj, Arun

    2017-04-26

    Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those withmore » longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ~20–50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.« less

  11. Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals.

    PubMed

    McDaniel, Jesse G; Yethiraj, Arun

    2017-05-18

    Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those with longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ∼20-50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.

  12. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    EPA Science Inventory

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  13. Elution of viruses by ionic and nonionic surfactants.

    PubMed Central

    Fujito, B T; Lytle, C D

    1996-01-01

    The ionic and nonionic surfactants sodium dodecyl sulfate and Triton X-100, respectively, eluted two viruses, phi X174 and PRD1, which were adsorbed to the ionic and nonionic binding membranes cationic polysulfone and nitrocellulose, respectively. Results indicated that complete elution was readily achieved only when combinations of surfactants and binding membranes were matched (i.e., ionic-ionic or nonionic-nonionic). PMID:8795240

  14. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.

    1996-01-01

    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional

  15. Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers

    PubMed Central

    Schief, William R.; Antia, Meher; Discher, Bohdana M.; Hall, Stephen B.; Vogel, Viola

    2003-01-01

    During exhalation, the surfactant film of lipids and proteins that coats the alveoli in the lung is compressed to high surface pressures, and can remain metastable for prolonged periods at pressures approaching 70 mN/m. Monolayers of calf lung surfactant extract (CLSE), however, collapse in vitro, during an initial compression at ∼45 mN/m. To gain information on the source of this discrepancy, we investigated how monolayers of CLSE collapse from the interface. Observations with fluorescence, Brewster angle, and light scattering microscopies show that monolayers containing CLSE, CLSE-cholesterol (20%), or binary mixtures of dipalmitoyl phosphatidylcholine(DPPC)-dihydrocholesterol all form bilayer disks that reside above the monolayer. Upon compression and expansion, lipids flow continuously from the monolayer into the disks, and vice versa. In several respects, the mode of collapse resembles the behavior of other amphiphiles that form smectic liquid-crystal phases. These findings suggest that components of surfactent films must collapse collectively rather than being squeezed out individually. PMID:12770885

  16. Flavonoid-surfactant interactions: A detailed physicochemical study

    NASA Astrophysics Data System (ADS)

    Singh, Onkar; Kaur, Rajwinder; Mahajan, Rakesh Kumar

    2017-01-01

    The aim of this article is to study the interactions between flavonoids and surfactants with attention of finding the probable location of flavonoids in micellar media that can be used for controlling their antioxidant behavior. In present study, the micellar and interfacial behavior of twin tailed anionic surfactants viz. sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and sodium bis(2-ethylhexyl)phosphate (NaDEHP) in the presence of two flavonoids, namely quercetin (QUE) and kaempferol (KFL) have been studied by surface tension measurements. UV-visible, fluorescence and differential pulse voltammetric (DPV) measurements have been employed to predict the probable location of flavonoids (QUE/KFL) within surfactant (AOT/NaDEHP) aggregates. Dynamic light scattering (DLS) measurements further confirmed the solubilization of QUE/KFL in AOT/NaDEHP aggregates deduced from increased hydrodynamic diameter (Dh) of aggregates in the presence of flavonoids. Both radical scavenging activity (RSA) and degradation rate constant (k) of flavonoids are found to be higher in NaDEHP micelles as compared to AOT micelles.

  17. The Influence of Electrolytes on the Mixed Micellization of Equimolar (Monomeric and Dimeric) Surfactants

    NASA Astrophysics Data System (ADS)

    Alam, Md. Sayem; Siddiq, A. Mohammed; Mandal, Asit Baran

    2018-01-01

    The influence of halide ions of (sodium salt) electrolytes on the mixed micellization of a cationic gemini (dimeric) surfactant, hexanediyl-1,6-bis(dimethylcetylammonium) bromide (16-6-16) and a cationic conventional (monomeric) surfactant, cetyltrimethylammonium bromide (CTAB) have been investigated. The critical micelle concentration (CMC) of the mixed (16-6-16+CTAB) surfactants was measured by the surface tension measurements. The surface properties: viz., the surfactant concentration required to reduce the surface tension by 20 mN/m ( C 20), the surface pressure at the CMC (ΠCMC), the maximum surface excess concentration at the air/water interface (Γmax), the minimum area per surfactant molecule at the air/water interface ( A min), etc. of the mixed micellar surfactant systems were evaluated. In the absence and presence of electrolytes, the thermodynamic parameters of the mixed micellar surfactant systems were also evaluated.

  18. Tuning metal-carboxylate coordination in crystalline metal-organic frameworks through surfactant media

    NASA Astrophysics Data System (ADS)

    Gao, Junkuo; Ye, Kaiqi; He, Mi; Xiong, Wei-Wei; Cao, Wenfang; Lee, Zhi Yi; Wang, Yue; Wu, Tom; Huo, Fengwei; Liu, Xiaogang; Zhang, Qichun

    2013-10-01

    Although it has been widely demonstrated that surfactants can efficiently control the size, shape and surface properties of micro/nanocrystals of metal-organic frameworks (MOFs) due to the strong interactions between surfactants and crystal facets of MOFs, the use of surfactants as reaction media to grow MOF single crystals is unprecedented. In addition, compared with ionic liquids, surfactants are much cheaper and can have multifunctional properties such as acidic, basic, neutral, cationic, anionic, or even block. These factors strongly motivate us to develop a new synthetic strategy: growing crystalline MOFs in surfactants. In this report, eight new two-dimensional (2D) or three-dimensional (3D) MOFs have been successfully synthesized in an industrially-abundant and environmentally-friendly surfactant: polyethylene glycol-200 (PEG-200). Eight different coordination modes of carboxylates, ranging from monodentate η1 mode to tetra-donor coordination μ3-η1:η2:η1 mode, have been founded in our research. The magnetic properties of Co-based MOFs were investigated and MOF NTU-Z6b showed a phase transition with a Curie temperature (Tc) at 5 K. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties.

  19. Study on the surfactants present in atmospheric aerosols collected in the Okinawa Japan

    NASA Astrophysics Data System (ADS)

    Kamegawa, A.; Kasaba, T.; Shimabukuro, W.; Arakaki, T.

    2017-12-01

    The main constituent of atmospheric aerosols is organic substances, which occupy 20 to 70% of the mass. Organic matters in the aerosols contain organic acids, protein and humic acid, which behave similar to surfactants. Since surfactants contain both hydrophobic and hydrophilic functional groups in the molecule, they can play important roles in cloud formation and can affect climate change, but detailed mechanisms and magnitude are not well understood. In addition, surfactants can cause asthma, allergy, dry eye and so on. In this study, our aim is to characterize surfactants in the aerosols collected in different seasons in Okinawa, Japan. Atmospheric aerosols were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) during Sep. 2013 and July 2014. Surfactants in the environment are comprised of artificially synthesized compounds and naturally derived organics so we only differentiate them into anionic and cationic surfactants. Colorimetric methods were used to determine the concentrations of anionic surfactants as methylene blue active substance (MBAS). Cationic surfactants were also measured by colorimetric method as disulfine blue active substance (DBAS) and showed always below detection limit. Thus, we only discuss anionic surfactants measured as MBAS. Water soluble organic carbon (WSOC) and metal concentrations were also measured for the same aerosol samples. Concentrations of MBAS in the studied samples were 2-3 times higher in spring, fall and winter than those collected in summer. MBAS concentration in the aerosols showed strong correlation with sulfate ion and WSOC, and slightly weaker correlation with nss-sulfate ion. Among the metals, only sodium ion showed a relatively strong correlation with MBAS concentrations. It is suggested that the anionic surfactants in the studied aerosols are mainly derived from marine sources.

  20. Control of stain geometry by drop evaporation of surfactant containing dispersions.

    PubMed

    Erbil, H Yildirim

    2015-08-01

    Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of natural and synthetic surfactants on crude oil biodegradation by indigenous strains.

    PubMed

    Tian, Wei; Yao, Jun; Liu, Ruiping; Zhu, Mijia; Wang, Fei; Wu, Xiaoying; Liu, Haijun

    2016-07-01

    Hydrocarbon pollution is a worldwide problem. In this study, five surfactants containing SDS, LAS, Brij 30, Tween 80 and biosurfactant were used to evaluate their effect on crude oil biodegradation. Hydrocarbon degrading bacteria were isolated from oil production water. The biosurfactant used was a kind of cyclic lipopeptide produced by Bacillus subtilis strain WU-3. Solubilization test showed all the surfactants could apparently increase the water solubility of crude oil. The microbial adhesion to the hydrocarbon (MATH) test showed surfactants could change cell surface hydrophobicity (CSH) of microbiota, depending on their species and concentrations. Microcalorimetric experiments revealed these surfactants exhibited toxicity to microorganisms at high concentrations (above 1 CMC), except for SDS which showed low antibacterial activity. Surfactant supplementation (about 0.1 and 0.2 CMC) could improve degradation rate of crude oil slightly, while high surfactant concentration (above 1 CMC) may decrease the degradation rate from 50.5% to 28.9%. Those findings of this work could provide guidance for the application of surfactants in bioremediation of oil pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Surfactant for dye-penetrant inspection is insensitive to liquid oxygen

    NASA Technical Reports Server (NTRS)

    1966-01-01

    LOX insensitive solvent is blended into a mixture of commercially available surfactants to clean metal surfaces which are to be investigated by the dye-penetrant method. The surfactant mixture is applied before and after application of the dye.

  3. Effects of surfactants on fluoranthene mineralization by Sphingomonas paucimobilis strain EPA 505

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, S.; Mueller, J.G.; Lin, J.E.

    Past results from surfactant-enriched biodegradation studies have been equivocal because of inhibitory effects of the surfactants and a poor understanding of the characteristics of PAH-degrading microorganisms that make them responsive to surfactants. The authors have studied the mineralization of {sup 14}C-radiolabeled fluoranthene by high cell masses of Sphingomonas paucimobilis, strain EPA 505, and have shown that initial rates of mineralization can be enhanced by concentrations of the surfactant Triton X-100 as high as 2%. Mass balances are reported that show complete degradation of fluoranthene. The presence of soil stimulated biodegradation of fluoranthene in the same manner as surfactants, presumably becausemore » of increased dissolution rates from soil particulates. The usefulness of this bacterium in the bioremediation of PAH-contaminated soil is discussed.« less

  4. Activated carbon oxygen content influence on water and surfactant adsorption.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  5. Influence of surfactant on the drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2016-05-01

    The deformation and breakup of surfactant-laden drops is a common phenomenon in nature and numerous practical applications. We investigate influence of surfactant on the drop bag breakup in a continuous air jet stream. The airflow would induce the advection diffusion of surfactant between interface and bulk of drop. Experiments indicate that the convective motions of deforming drop would induce the non-equilibrium distribution of surfactant, which leads to the change of surface tension. When the surfactant concentration is smaller than critical micelle concentration (CMC), with the increase of surface area of drop, the surface tension of liquid-air interface and the critical Weber number will increase. When the surfactant concentration is bigger than CMC, the micelle can be considered as the source term, which can supply the monomers. So in the presence of surfactant, there would be the significant nonlinear variation on the critical Weber number of bag breakup. We build the dynamic non-monotonic relationship between concentrations of surfactant and critical Weber number theoretically. In the range of parameters studied, the experimental results are consistent with the model estimates.

  6. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    PubMed

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Surfactant induced stabilization of nano liquid crystalline (dodecane-phytantriol) droplet

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Saha, Debasish; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2018-04-01

    The study of formation and stabilization of dodecane-phytantriol (DPT) microemulsions using ionic and nonionic surfactants are investigated. Small Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) techniques have been employed to study the resulting structures of the micro emulsion droplets. We show the formation of stable microemulsion droplets with absence of lyotropic liquid crystalline phase on addition of nonionic surfactant C12E10. The oil to surfactant ratio plays the crucial role in formation of stable droplet and its size. The dense presence of C12E10 molecules between microemulsion droplets protect them from coalescence while less number of C12E10 between the surface of droplets easily triggers the coalescence process. The interaction with both anionic (SDS) as well as cationic (DTAB) surfactants with DPT phase leads to formation of microemulsion droplets with lyotropic liquid crystalline phase.

  8. Postmortem stability of lung surfactant phospholipids.

    PubMed

    Lorente, J A; Lorente, M; Villanueva, E

    1992-09-01

    The postmortem stability of the main phospholipids of lung surfactant-phosphatidyl choline (PC), phosphatidyl ethanolamine (PE), phosphatidyl inositol (PI), phosphatidyl serine (PS) and sphingomyelin (S) in three different deaths; one caused by fresh-water drowning, one by salt-water drowning, and one from a sodium-pentobarbital overdose has been studied. The drug overdose was considered the control because there was no surfactant involvement. The results show the stability of these kinds of lipids in the first 24 h, with a progressive decrease from 48 h on until 96 h, with a significant correlation to the time of P less than 0.01 in most cases.

  9. Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity.

    PubMed

    Mohamed, Azmi; Ardyani, Tretya; Abu Bakar, Suriani; Sagisaka, Masanobu; Umetsu, Yasushi; Hamon, J J; Rahim, Bazura Abdul; Esa, Siti Rahmah; Abdul Khalil, H P S; Mamat, Mohamad Hafiz; King, Stephen; Eastoe, Julian

    2018-04-15

    Graphene nanoplatelets (GNPs) can be dispersed in natural rubber matrices using surfactants. The stability and properties of these composites can be optimized by the choice of surfactants employed as stabilizers. Surfactants can be designed and synthesized to have enhanced compatibility with GNPs as compared to commercially available common surfactants. Including aromatic groups in the hydrophobic chain termini improves graphene compatibility of surfactants, which is expected to increase with the number of aromatic moieties per surfactant molecule. Hence, it is of interest to study the relationship between molecular structure, dispersion stability and electrical conductivity enhancement for single-, double-, and triple-chain anionic graphene-compatible surfactants. Graphene-philic surfactants, bearing two and three chains phenylated at their chain termini, were synthesized and characterized by proton nuclear magnetic resonance ( 1 H NMR) spectroscopy. These were used to formulate and stabilize dispersion of GNPs in natural rubber latex matrices, and the properties of systems comprising the new phenyl-surfactants were compared with commercially available surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). Raman spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM) were used to study structural properties of the materials. Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between surfactant architecture and nanocomposite properties. Small-angle neutron scattering (SANS) was used to study self-assembly structure of surfactants. Of these different surfactants, the tri-chain aromatic surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly graphene-compatible (nanocomposite electrical conductivity

  10. Facile Modification of Reverse Osmosis Membranes by Surfactant-Assisted Acrylate Grafting for Enhanced Selectivity.

    PubMed

    Baransi-Karkaby, Katie; Bass, Maria; Levchenko, Stanislav; Eitan, Shahar; Freger, Viatcheslav

    2017-02-21

    The top polyamide layer of composite reverse osmosis (RO) membranes has a fascinatingly complex structure, yet nanoscale nonuniformities inherently present in polyamide layer may reduce selectivity, e.g., for boron rejection. This study examines improving selectivity by in situ "caulking" such nonuniformities using concentration polarization-enhanced graft-polymerization with a surfactant added to the reactive solution. The surfactant appears to enhance both polarization (via monomer solubilization in surfactant micelles) and adherence of graft-polymer to the membrane surface, which facilitates grafting and reduces monomer consumption. The effect of surfactant was particularly notable for a hydrophobic monomer glycidyl methacrylate combined with a nonionic surfactant Triton X-100. With Triton added at an optimal level, close to critical micellization concentration (CMC), monomer gets solubilized and highly concentrated within micelles, which results in a significantly increased degree of grafting and uniformity of the coating compared to a procedure with no surfactant added. Notably, no improvement was obtained for an anionic surfactant SDS or the cationic surfactant DTAB, in which cases the high CMC of surfactant precludes high monomer concentration within micelles. The modification procedure was also up-scalable to membranes elements and resulted in elements with permeability comparable to commercial brackish water RO elements with superior boric acid rejection.

  11. Reactanceless synthesized impedance bandpass amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1985-01-01

    An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.

  12. Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices.

    PubMed

    Josephides, Dimitris N; Sajjadi, Shahriar

    2015-01-27

    Glass capillary based microfluidic devices are able to create extremely uniform droplets, when formed under the dripping regime, at low setup costs due to their ease of manufacture. However, as they are rarely parallelized, simple methods to increase droplet production from a single device are sought. Surfactants used to stabilize drops in such systems often limit the maximum flow rate that highly uniform drops can be produced due to the lowering interfacial tension causing jetting. In this paper we show that by simple design changes we can limit the interactions of surfactants and maximize uniform droplet production. Three flow-focused configurations are explored: a standard glass capillary device (consisting of a single round capillary inserted into a square capillary), a nozzle fed device, and a surfactant shielding device (both consisting of two round capillaries inserted into either end of a square capillary). In principle, the maximum productivity of uniform droplets is achieved if surfactants are not present. It was found that surfactants in the standard device greatly inhibit droplet production by means of interfacial tension lowering and tip-streaming phenomena. In the nozzle fed configuration, surfactant interactions were greatly limited, yielding flow rates comparable to, but lower than, a surfactant-free system. In the surfactant shielding configuration, flow rates were equal to that of a surfactant-free system and could make uniform droplets at rates an order of magnitude above the standard surfactant system.

  13. Leptin does not influence surfactant synthesis in fetal sheep and mice lungs

    PubMed Central

    Sato, Atsuyasu; Schehr, Angelica

    2011-01-01

    In the fetus, leptin in the circulation increases at late gestation and likely influences fetal organ development. Increased surfactant by leptin was previously demonstrated in vitro using fetal lung explant. We hypothesized that leptin treatment given to fetal sheep and pregnant mice might increase surfactant synthesis in the fetal lung in vivo. At 122–124 days gestational age (term: 150 days), fetal sheep were injected with 5 mg of leptin or vehicle using ultrasound guidance. Three and a half days after injection, preterm lambs were delivered, and lung function was studied during 30-min ventilation, followed by pulmonary surfactant components analyses. Pregnant A/J mice were given 30 or 300 mg of leptin or vehicle by intraperitoneal injection according to five study protocols with different doses, number of treatments, and gestational ages to treat. Surfactant components were analyzed in fetal lung 24 h after the last maternal treatment. Leptin injection given to fetal sheep increased fetal body weight. Control and leptin-treated groups were similar in lung function (preterm newborn lamb), surfactant components pool sizes (lamb and fetal mice), and expression of genes related to surfactant synthesis in the lung (fetal mice). Likewise, saturated phosphatidylcholine and phospholipid were normal in mice lungs with absence of circulating leptin (ob/ob mice) at all ages. These studies coincided in findings that neither exogenously given leptin nor deficiency of leptin influenced fetal lung maturation or surfactant pool sizes in vivo. Furthermore, the key genes critically required for surfactant synthesis were not affected by leptin treatment. PMID:21216976

  14. Properties of a Soybean Oil-based Surfactant and Its Application in Microbubble Preparation

    USDA-ARS?s Scientific Manuscript database

    Since microbubbles are thermodynamically unstable, surfactants are usually added to improve their stability. Demand for the use of vegetable oil-based surfactants has been increasing due to safety and environmental concerns. This work investigates a soybean oil-based surfactant and its application...

  15. Diarmed (adamantyl/alkyl) surfactants from nitrilotriacetic acid.

    PubMed

    Trillo, Juan V; Vázquez Tato, José; Jover, Aida; de Frutos, Santiago; Soto, Victor H; Galantini, Luciano; Meijide, Francisco

    2014-11-01

    The compounds presented here constitute a clear example of molecular biomimetics as their design is inspired on the structure and properties of natural phospholipids. Thus novel double-armed surfactants have been obtained in which nitrilotriacetic acid plays the role of glycerol in phospholipids. The hydrophobic arms are linked to the head group through amide bonds (which is also the case of sphingomyelin): (R1NHCOCH2)(R2NHCOCH2)NCH2CO2H (R1 being CH3(CH2)11, CH3(CH2)17, CH3(CH2)7CHCH(CH2)8, and adamantyl, and R2=adamantyl). The dependence of the surface tension with concentration shows the typical profile of surfactants since a breaking point, which corresponds to the critical aggregation concentration (cac), is observed in all cases. The cac of these diarmed derivatives are about 1-3 orders of magnitude lower than those of classical monoalkyl derivatives used as reference compounds. In contrast to conventional surfactants, reversed trends in cac values and molecular areas at the solution-air interface have been observed. This anomalous behavior is tied to the structure of the surfactants and suggests that long and flexible alkyl chains should self-coil previous to the aggregation or adsorption phenomena. Above cac all compounds form large aggregates, globular in shape, which tend to associate forming giant aggregates. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Factors affecting responses of infants with respiratory distress syndrome to exogenous surfactant therapy.

    PubMed

    Ho, N K

    1993-02-01

    Approximately 20% to 30% of infants with respiratory distress syndrome (RDS) do not respond to surfactant replacement therapy. Unfortunately there is no uniform definition of 'response' or 'non-response' to surfactant therapy. Response was based on improvement in a/A PO2 and/or mean airway pressure (MAP) by some and on improvement in FIO2 and/or MAP by others. Even the point of time at which evaluation of response was done is different in various reports. There is an urgent need to adopt an uniform definition. Most premature babies are surfactant deficient which is the aetiological factor of RDS. Generally good antenatal care and perinatal management are essential in avoidance of premature birth. Babies with lung hypoplasia and who are extremely premature (less than 24 weeks of gestation) do not respond well to exogenous surfactant replacement because of structural immaturity. Prompt management of asphyxiated birth and shock are necessary as there may be negative response to surfactant replacement. Foetal exposure to glucocorticoids improves responsiveness to postnatal administration of surfactant. Antenatal steroid therapy has become an important part of management of RDS with surfactant replacement. The premature lungs with high alveolar permeability tend to develop pulmonary oedema. With the presence of plasma-derived surfactant inhibitors, the response to exogenous surfactant may be affected. These inhibitors may also be released following ventilator barotrauma. The standard of neonatal intensive care such as ventilatory techniques has an important bearing on the outcome of the RDS babies.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Hyaluronan based materials with catanionic sugar-derived surfactants as drug delivery systems.

    PubMed

    Roig, F; Blanzat, M; Solans, C; Esquena, J; García-Celma, M J

    2018-04-01

    In the present work novel drug delivery systems consisting in highly porous Hyaluronan foams for the administration of a non-steroidal anti-inflammatory drug (NSAID), ketoprofen, have been obtained. A sugar-derived surfactant associated with ketoprofen was prepared and incorporated into the porous hyaluronan materials. The association between a lactose derived surfactant, Lhyd 12 , and ketoprofen was obtained by acid-base reaction and its physicochemical properties were studied. Tensiometric and dynamic light scattering (DLS) determinations showed the formation of catanionic surfactant aggregates, Lhyd 12 /ketoprofen, in aqueous solution. Furthermore, the catanionic surfactants allowed greater solubilisation of ketoprofen. Hyaluronan porous materials were developed using butanediol diglycidyl ether as crosslinking agent. The profile release of Lhyd 12 /ketoprofen from hyaluronan based materials shows differences as a function of the aggregation state of catanionic surfactant. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Surfactant Effect on Hydrate Crystallization at the Oil-Water Interface.

    PubMed

    Dann, Kevin; Rosenfeld, Liat

    2018-05-29

    Gas hydrates pose economic and environmental risks to the oil and gas industry when plug formation occurs in pipelines. A novel approach was applied to understand cyclopentane clathrate hydrate formation in the presence of nonionic surfactant to achieve hydrate inhibition at low percent weight compared to thermodynamic inhibitors. The hydrate-inhibiting performance of low (CMC) concentrations of Span 20, Span 80, Pluronic L31, and Tween 65 at 2 °C on a manually nucleated 2 μL droplet showed a morphological shift in crystallization from planar shell growth to conical growth. Monitoring the internal pressure of the water droplet undergoing hydrate crystallization provides information on the change in interfacial tension during the crystallization process. The results of this study will provide information on the surfactant effect on hydrate crystallization and inhibition. At low surfactant concentrations (below CMC), a planar hydrate crystal was formed. Decreasing interfacial tension was observed, which can be related to the shrinking area of the water-cyclopentane interface. At high surfactant concentration, the crystal morphology was shifted to conical. Interfacial tension measurements reveal oscillations of the interfacial tension during the crystallization process. The oscillations of the interfacial tension result from the fact that once the crystal has reached a critical size a portion of the cone breaks free from the droplet surface, which results in a sudden increase in the available surface for the surfactant molecules. Hence, a temporary increase in the interfacial tension can be observed. The oscillatory behavior of the interfacial tension is a result of the growth and release of the hydrate cones from the surface of the droplet. We have found that the most efficient surfactant in hydrate inhibition would be the one with HLB closest to 10 (equal hydrophilic-hydrophobic parts). In this way, the surfactant molecules

  19. Influence of polymer-surfactant aggregates on fluid flow.

    PubMed

    Malcher, Tadeusz; Gzyl-Malcher, Barbara

    2012-10-01

    This paper describes the influence of interactions of poly(ethylene oxide) (PEO) with cationic cetyltrimethylammonium bromide (CTAB) micelles on drag reduction. Since the interactions between PEO and CTAB micelles alone are weak, salicylate ions were used as CTAB counterions. They facilitate formation of polymer-micelle aggregates by screening the electrostatic repulsions between the charged surfactant headgroups. The influence of polymer-surfactant interactions on drag reduction is of biomedical engineering importance. Drag reducing additives introduced to blood produce beneficial effects on blood circulation, representing a novel way to treat cardiovascular disorders. PEO is a blood-compatible polymer. However, it quickly mechanically degrades when subjected to high shear stresses. Thus, there is a need to search for other additives able to reduce drag, which would be more mechanically stable, e.g. polymer-surfactant aggregates. Numerical simulations of the flow were performed using the CFX software. Based on the internal structure of the polymer-surfactant solution, a hypothesis explaining the reason of increase of drag reduction and decrease in dynamic viscosity with increasing shear rate was proposed. It was suggested that the probable reason for the abrupt increase in friction factor, observed when the critical Reynolds number was exceeded, was the disappearance of the difference in the dynamic viscosity. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Surfactant-assisted atomic-level engineering of spin valves

    NASA Astrophysics Data System (ADS)

    Chopra, Harsh Deep; Yang, David X.; Chen, P. J.; Egelhoff, W. F.

    2002-03-01

    Surfactant Ag is successfully used to atomically engineer interfaces and nanostructure in NiO-Co-Cu-based bottom spin valves. At a Cu spacer thickness of 1.5 nm, a strong net ferromagnetic (or positive) coupling >13.92 kA/m (>175 Oe) between NiO-pinned and ``free'' Co layers leads to a negligible ``giant'' magnetoresistance (GMR) effect (<0.7%) in Ag-free samples. In contrast, the net ferromagnetic coupling could be reduced by a factor of 2 or more in spin valves deposited in the presence of ~1-3 ML of surfactant Ag, and such samples exhibit more than an order of magnitude increase in GMR (8.5-13 %). Based on transmission electron microscopy (TEM), a large contribution to net ferromagnetic coupling in Ag-free samples could be directly attributed to the presence of numerous pinholes. In situ x-ray photoelectron spectroscopy and TEM studies show that surfactant Ag floats out to the surface during deposition of successive Co and Cu overlayers, leaving behind smooth interfaces and continuous layers that are less prone to intermixing and pinholes. The use of surfactants in the present study also illustrates their potential use in atomic engineering of magnetoelectronics devices and other multilayer systems.

  1. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  2. Coverage area and fading time of surfactant-amended herbicidal droplets on cucurbitaceous leaves

    USDA-ARS?s Scientific Manuscript database

    Proper use of appropriate surfactants to control droplet behaviors on leaf surfaces is critical to improve herbicide application efficacy for controlling paddy melons. An esterified seed oil surfactant and a petroleum oil surfactant were investigated to modify spread areas and fading times of water ...

  3. Scattering by a groove in an impedance plane

    NASA Technical Reports Server (NTRS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-01-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  4. CMC determination of nonionic surfactants in protein formulations using ultrasonic resonance technology.

    PubMed

    Horiuchi, Shohei; Winter, Gerhard

    2015-05-01

    Biological products often contain surfactants as stabilizers in their formulations to avoid surface adsorption, interfacial denaturation and aggregation of the protein drug and thereby improve the overall pharmaceutical quality of the product. On the other hand, when the surfactant concentration exceeds the critical micelle concentration (CMC) in a protein formulation, protein-loaded micelles could be formed which could potentially be the cause of immunogenicity. Therefore, the actual CMC and the presence of micelles generally need to be confirmed for each protein formulation because the CMC is affected by the presence of protein and other formulation factors. In this study, the ultrasonic resonance technology (URT) was applied to determine CMC of surfactants in pharmaceutical protein solutions in comparison with surface tensiometry (TE) and dynamic light scattering (DLS). According to our results, the ultrasonic resonance technology can easily and precisely provide CMCs of surfactants in protein formulations while it is not working for protein-free formulations. This indicates that the signal we measure with ultrasonic velocity comes from complex micelles composed of surfactant and protein molecules. DLS did not provide reliable data for protein/surfactant systems. Interestingly, a protein formulation with arginine and polysorbate 20 behaved differently when studied with TE and URT allowing us to see that arginine is bound to protein and that the complex interacts with the surfactant. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of surfactants on weight gain in mice.

    PubMed

    Kaneene, J B; Ross, R W

    1986-03-01

    A study was conducted to determine if four surfactants can induce increased weight gain in the mouse. Basic-H, Triton X-100, Amway All Purpose Adjuvant and X-77 were put in water and fed to various groups of ICR 21 day old female mice for a period of 43 days. All the mice were clinically normal throughout the study period. Pathological examination of a random sample of the mice revealed no gross pathological changes. Similarly, histopathological examination of the lungs, livers and intestines did not reveal any visible lesions. Basic-H and Amway surfactants induced weight gain, though not significantly, better at 0.1% (V/V) concentration while X-77 and Triton X-100 induced weight gain better at 0.4% (V/V) concentration. Overall results show that none of the surfactants tested induced significant weight gain.

  6. Molecular self assembly of mixed comb-like dextran surfactant polymers for SPR virus detection.

    PubMed

    Mai-Ngam, Katanchalee; Kiatpathomchai, Wansika; Arunrut, Narong; Sansatsadeekul, Jitlada

    2014-11-04

    The synthesis of two comb-like dextran surfactant polymers, that are different in their dextran molecular weight (MW) distribution and the presence of carboxylic groups, and their characterization are reported. A bimodal carboxylic dextran surfactant polymer consists of poly(vinyl amine) (PVAm) backbone with carboxyl higher MW dextran, non-functionalized lower MW dextran and hydrophobic hexyl branches; while a monomodal dextran surfactant polymer is PVAm grafted with non-functionalized lower MW dextran and hexyl branches. Layer formation of non-covalently attached dextran chains with bimodal MW distributions on a surface plasmon resonance (SPR) chip was investigated from the perspective of mixed physisorption of the bimodal and monomodal surfactant polymers. Separation distances between the carboxylic longer dextran side chains within the bimodal surfactant polymer and between the whole bimodal surfactant molecules on the chip surface could be well-controlled. SPR analysis of shrimp yellow head virus using our mixed surfactant chips showed dependence on synergetic adjustment of these separation distances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. ILK and cytoskeletal architecture: an important determinant of AQP2 recycling and subsequent entry into the exocytotic pathway

    PubMed Central

    Mamuya, Fahmy A.; Cano-Peñalver, Jose Luis; Li, Wei; Rodriguez Puyol, Diego; Rodriguez Puyol, Manuel; Brown, Dennis; de Frutos, Sergio

    2016-01-01

    Within the past decade tremendous efforts have been made to understand the mechanism behind aquaporin-2 (AQP2) water channel trafficking and recycling, to open a path toward effective diabetes insipidus therapeutics. A recent study has shown that integrin-linked kinase (ILK) conditional-knockdown mice developed polyuria along with decreased AQP2 expression. To understand whether ILK also regulates AQP2 trafficking in kidney tubular cells, we performed in vitro analysis using LLCPK1 cells stably expressing rat AQP2 (LLC-AQP2 cells). Upon treatment of LLC-AQP2 cells with ILK inhibitor cpd22 and ILK-siRNA, we observed increased accumulation of AQP2 in the perinuclear region, without any significant increase in the rate of endocytosis. This perinuclear accumulation did not occur in cells expressing a serine-256-aspartic acid mutation that retains AQP2 in the plasma membrane. We then examined clathrin-mediated endocytosis after ILK inhibition using rhodamine-conjugated transferrin. Despite no differences in overall transferrin endocytosis, the endocytosed transferrin also accumulated in the perinuclear region where it colocalized with AQP2. These accumulated vesicles also contained the recycling endosome marker Rab11. In parallel, the usual vasopressin-induced AQP2 membrane accumulation was prevented after ILK inhibition; however, ILK inhibition did not measurably affect AQP2 phosphorylation at serine-256 or its dephosphorylation at serine-261. Instead, we found that inhibition of ILK increased F-actin polymerization. When F-actin was depolymerized with latrunculin, the perinuclear located AQP2 dispersed. We conclude that ILK is important in orchestrating dynamic cytoskeletal architecture during recycling of AQP2, which is necessary for its subsequent entry into the exocytotic pathway. PMID:27760768

  8. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain

    PubMed Central

    González-Jamett, Arlek M.; Guerra, María J.; Olivares, María J.; Haro-Acuña, Valentina; Baéz-Matus, Ximena; Vásquez-Navarrete, Jacqueline; Momboisse, Fanny; Martinez-Quiles, Narcisa; Cárdenas, Ana M.

    2017-01-01

    Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells. PMID:28522963

  9. Oil-water interfaces with surfactants: A systematic approach to determine coarse-grained model parameters

    NASA Astrophysics Data System (ADS)

    Vu, Tuan V.; Papavassiliou, Dimitrios V.

    2018-05-01

    In order to investigate the interfacial region between oil and water with the presence of surfactants using coarse-grained computations, both the interaction between different components of the system and the number of surfactant molecules present at the interface play an important role. However, in many prior studies, the amount of surfactants used was chosen rather arbitrarily. In this work, a systematic approach to develop coarse-grained models for anionic surfactants (such as sodium dodecyl sulfate) and nonionic surfactants (such as octaethylene glycol monododecyl ether) in oil-water interfaces is presented. The key is to place the theoretically calculated number of surfactant molecules on the interface at the critical micelle concentration. Based on this approach, the molecular description of surfactants and the effects of various interaction parameters on the interfacial tension are investigated. The results indicate that the interfacial tension is affected mostly by the head-water and tail-oil interaction. Even though the procedure presented herein is used with dissipative particle dynamics models, it can be applied for other coarse-grained methods to obtain the appropriate set of parameters (or force fields) to describe the surfactant behavior on the oil-water interface.

  10. A New Mass Spectrometry-compatible Degradable Surfactant for Tissue Proteomics

    PubMed Central

    Chang, Ying-Hua; Gregorich, Zachery R.; Chen, Albert J.; Hwang, Leekyoung; Guner, Huseyin; Yu, Deyang; Zhang, Jianyi; Ge, Ying

    2015-01-01

    Tissue proteomics is increasingly recognized for its role in biomarker discovery and disease mechanism investigation. However, protein solubility remains a significant challenge in mass spectrometry (MS)-based tissue proteomics. Conventional surfactants such as sodium dodecyl sulfate (SDS), the preferred surfactant for protein solubilization, are not compatible with MS. Herein, we have screened a library of surfactant-like compounds and discovered an MS-compatible degradable surfactant (MaSDeS) for tissue proteomics that solubilizes all categories of proteins with performance comparable to SDS. The use of MaSDeS in the tissue extraction significantly improves the total number of protein identifications from commonly used tissues, including tissue from the heart, liver, and lung. Notably, MaSDeS significantly enriches membrane proteins, which are often under-represented in proteomics studies. The acid degradable nature of MaSDeS makes it amenable for high-throughput mass spectrometry-based proteomics. In addition, the thermostability of MaSDeS allows for its use in experiments requiring high temperature to facilitate protein extraction and solubilization. Furthermore, we have shown that MaSDeS outperforms the other MS-compatible surfactants in terms of overall protein solubility and the total number of identified proteins in tissue proteomics. Thus, the use of MaSDeS will greatly advance tissue proteomics and realize its potential in basic biomedical and clinical research. MaSDeS could be utilized in a variety of proteomics studies as well as general biochemical and biological experiments that employ surfactants for protein solubilization. PMID:25589168

  11. Dicationic Alkylammonium Bromide Gemini Surfactants. Membrane Perturbation and Skin Irritation

    PubMed Central

    Almeida, João A. S.; Faneca, Henrique; Carvalho, Rui A.; Marques, Eduardo F.; Pais, Alberto A. C. C.

    2011-01-01

    Dicationic alkylammonium bromide gemini surfactants represent a class of amphiphiles potentially effective as skin permeation enhancers. However, only a limited number of studies has been dedicated to the evaluation of the respective cytotoxicity, and none directed to skin irritation endpoints. Supported on a cell viability study, the cytotoxicity of gemini surfactants of variable tail and spacer length was assessed. For this purpose, keratinocyte cells from human skin (NCTC 2544 cell line), frequently used as a model for skin irritation, were employed. The impact of the different gemini surfactants on the permeability and morphology of model vesicles was additionally investigated by measuring the leakage of calcein fluorescent dye and analyzing the NMR spectra of 31P, respectively. Detail on the interaction of gemini molecules with model membranes was also provided by a systematic differential scanning calorimetry (DSC) and molecular dynamics (MD) simulation. An irreversible impact on the viability of the NCTC 2544 cell line was observed for gemini concentrations higher than 25 mM, while no cytotoxicity was found for any of the surfactants in a concentration range up to 10 mM. A higher cytotoxicity was also found for gemini surfactants presenting longer spacer and shorter tails. The same trend was obtained in the calorimetric and permeability studies, with the gemini of longest spacer promoting the highest degree of membrane destabilization. Additional structural and dynamical characterization of the various systems, obtained by 31P NMR and MD, provide some insight on the relationship between the architecture of gemini surfactants and the respective perturbation mechanism. PMID:22102870

  12. Effect of selected non-ionic surfactants on the flow behavior of aqueous veegum suspensions.

    PubMed

    Kennedy, Ross A; Kennedy, Michelle L

    2007-03-30

    The aim of this work was to investigate the influence of some non-ionic surfactants, Tween 80 and Brij 98, on the viscosity and flow behavior of a commercial montmorillonite clay, Veegum Granules. The effect of different concentrations of the surfactants on the shear stress-shear rate rheograms of hydrated concentrated clay suspensions was determined by shear viscometry. The addition of either surfactant increased the plastic viscosity and the yield stress of the suspensions. Furthermore, both surfactants altered the thixotropy of the suspensions to an extent that depended on both the surfactant concentration and the time of equilibration of the surfactant and Veegum. Brij 98 had a greater and more rapid effect. It is proposed that the surfactant polar head-groups anchor at the tetrahedral sheet surface, leaving the alkyl chains extending away from the edges and faces. Consequently, the alkyl chains undergo hydrophobic interactions that facilitate the association between the platelets and increase the physical structure within the suspension. Stereochemical differences between the polar groups may lead to differences in the way the surfactants associate with the tetrahedral sheet and hence their ultimate effect on the rheological behavior. There is a significant interaction between these surfactants and montmorillonite clays, and the rheological changes that occur could have a major impact on any pharmaceutical formulation that uses these ingredients.

  13. Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced Subsurface Remediation.

    PubMed

    Wang, Li; Peng, Libin; Xie, Liling; Deng, Peiyan; Deng, Dayi

    2017-06-20

    Limited aqueous availability of hydrophobic organic contaminants and nonaqueous phase liquids in subsurface environment may seriously impair the effectiveness of traditional in situ chemical oxidation (ISCO). To tackle the issue, a combination of surfactants and thermally activated persulfate was proposed to enhance the aqueous availability and consequent oxidation of organic contaminants. The compatibility of eight representative nonionic, monovalent anionic, and divalent anionic surfactants with persulfate at various temperatures was first studied, to identify suitable surfactants that have high aqueous stability and low oxidant demands to couple with thermally activated persulfate. C 12 -MADS (sodium dodecyl diphenyl ether disulfonate, a representative divalent anionic surfactant) stands out as the most compatible surfactant. Batch treatability study with coal tar, an example of challenging scenarios for traditional ISCO, was then conducted. The results show that C 12 -MADS can significantly enhance not only the oxidation of polyaromatic hydrocarbons contained in coal tar but also oxidant utilization efficiency, indicating the potential of the proposed coupling process for the treatment of organic contaminants with low aqueous availability.

  14. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xianglin; Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074; Toh, Yong Siang

    2015-12-15

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA){sub 3}[Co{sub 3}(BTC){sub 3}] (NTU-Z33) and (HTEA)[Co{sub 3}(HBTC){sub 2}(BTC)] (NTU-Z34) (H{sub 3}BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co{sub 3}(COO){sub 9}] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) havemore » been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.« less

  15. Monsoonal variations in atmospheric surfactants at different coastal areas of the Malaysian Peninsula.

    PubMed

    Jaafar, Shoffian Amin; Latif, Mohd Talib; Razak, Intan Suraya; Shaharudin, Muhammad Zulhilmi; Khan, Md Firoz; Wahid, Nurul Bahiyah Abd; Suratman, Suhaimi

    2016-08-15

    This study determined the effect of monsoonal changes on the composition of atmospheric surfactants in coastal areas. The composition of anions (SO4(2-), NO3(-), Cl(-), F(-)) and the major elements (Ca, K, Mg, Na) in aerosols were used to determine the possible sources of surfactants. Surfactant compositions were determined using a colorimetric method as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS). The anion and major element compositions of the aerosol samples were determined by ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results indicated that the concentrations of surfactant in aerosols were dominated by MBAS (34-326pmolm(-3)). Monsoonal changes were found to significantly affect the concentration of surfactants. Using principal component analysis-multiple linear regressions (PCA-MLR), major possible sources for surfactants in the aerosols were motor vehicle emissions, secondary aerosol and the combustion of biomass along with marine aerosol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  17. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties.

    PubMed

    Brown, Erika P; Koh, Carolyn A

    2016-01-07

    Investigating the effect of surfactants on clathrate hydrate growth and morphology, especially particle shell strength and cohesion force, is critical to advancing new strategies to mitigate hydrate plug formation. In this study, dodecylbenzenesulfonic acid and polysorbate 80 surfactants were included during the growth of cyclopentane hydrates at several concentrations above and below the critical micelle concentration. A novel micromechanical method was applied to determine the force required to puncture the hydrate shell using a glass cantilever (with and without surfactants), with annealing times ranging from immediately after the hydrate nucleated to 90 minutes after formation. It was shown that the puncture force was decreased by the addition of both surfactants up to a maximum of 79%. Over the entire range of annealing times (0-90 minutes), the thickness of the hydrate shell was also measured. However, there was no clear change in shell thickness with the addition of surfactants. The growth rate of the hydrate shell was found to vary less than 15% with the addition of surfactants. The cohesive force between two hydrate particles was measured for each surfactant and found to be reduced by 28% to 78%. Interfacial tension measurements were also performed. Based on these results, microscopic changes to the hydrate shell morphology (due to the presence of surfactants) were proposed to cause the decrease in the force required to break the hydrate shell, since no macroscopic morphology changes were observed. Understanding the hydrate shell strength can be critical to reducing the capillary bridge interaction between hydrate particles or controlling the release of unconverted water from the interior of the hydrate particle, which can cause rapid hydrate conversion.

  18. Surfactants: their critical role in enhancing drug delivery to the lungs.

    PubMed

    Morales, Javier O; Peters, Jay I; Williams, Robert O

    2011-05-01

    For local lung conditions and diseases, pulmonary drug delivery has been widely used for more than 50 years now. A more recent trend involves the pulmonary route as a systemic drug-delivery target. Advantages such as avoidance of the gastrointestinal environment, different enzyme content compared with the intestine, and avoidance of first-pass metabolism make the lung an alternative route for the systemic delivery of actives. However, the lung offers barriers to absorption such as a surfactant layer, epithelial surface lining fluid, epithelial monolayer, interstitium and basement membrane, and capillary endothelium. Many delivery strategies have been developed in order to overcome these limitations. The use of surfactants is one of these approaches and their role in enhancing pulmonary drug delivery is reviewed in this article. A systematic review of the literature relating to the effect of surfactants on formulations for pulmonary delivery was conducted. Specifically, research reporting enhancement of in vivo performance was focused on. The effect of the addition of surfactants such as phospholipids, bile salts, non-ionic, fatty acids, and liposomes as phospholipid-containing carriers on the enhancement of therapeutic outcomes of drugs for pulmonary delivery was compiled. The main use attributed to surfactants in pulmonary drug delivery is as absorption enhancers by mechanisms of action not yet fully understood. Furthermore, surfactants have been used to improve the delivery of inhaled drugs in various additional strategies discussed herein.

  19. Synthesis and Crystallization Behavior of Surfactants with Hexamolybdate as the Polar Headgroup

    DOE PAGES

    Zhu, Li; Chen, Kun; Hao, Jian; ...

    2015-06-12

    For this paper, alkyl chains with different lengths were covalently grafted onto the surface of hexamolybdate through the postfunctionalization protocol of polyoxometalates. The obtained compounds represent typical structures of the so-called giant surfactants. Unexpectedly, those surfactants with hexamolybdates as polar headgroups are able to crystallize, while single-crystal X-ray diffraction reveals that the crystallization behavior of the surfactants is highly dependent on the length of the alkyl chains. For surfactants with comparatively short alkyl chains (C6 and C10), the alkyl chains prefer to interact with tetrabutylammonium, the countercation of hexamolybdate. However, the alkyl chains tend to pack with each other tomore » form a domain of alkyl chains in the surfactant with a longer alkyl chain (C18). Finally, the possible mechanism is that a long alkyl chain cannot be fully compatible with the short chain (C4) of tetrabutylammonium.« less

  20. Stabilizing two IgG1 monoclonal antibodies by surfactants: Balance between aggregation prevention and structure perturbation.

    PubMed

    Wang, Shujing; Wu, Guoliang; Zhang, Xinyi; Tian, Zhou; Zhang, Ning; Hu, Tao; Dai, Weiguo; Qian, Feng

    2017-05-01

    Surfactants are widely used as stabilizers in the biopharmaceutical formulations to minimize protein aggregation. Under a fixed stress condition, the protecting and destabilizing effects of surfactants are hypothesized to be highly dependent on the species and concentrations of surfactants and mAb. Therefore, we here studied the aggregation-prevention and structure-perturbation effects of eight commonly used surfactants (Tw20, Tw80, Brij35, Chaps, TrX-100, SDS, Pluronic F68 and F127) on two IgG1 solution formulations under agitation, using analytical methodologies including visual inspection, OD 350 measurement, HPLC-SEC, circular dicroism, fluorescence spectroscopy and differential scanning calorimetry. We found that: (1) With concentrations range from 0.02 to 2mg/mL, nonionic surfactants were found to offer efficient aggregation-prevention effect, which is superior than the ionic surfactants; and higher surfactant concentration prevented mAb aggregation better especially under prolonged stability test under stress conditions. (2) The surfactant induced structure-perturbation emerged when even higher surfactant concentration (≥2mg/mL) was used, and such effect was surfactant-property dependent; and (3) the two IgG1 demonstrated different aggregation mechanisms and surfactant dependency, especially at high mAb concentrations. In conclusion, surfactants usage in mAb formulations, including the types and concentrations, should strike an optimal balance between the desirable aggregation-prevention and the detrimental structure-perturbation effects, while the consideration of mAb aggregation mechanism and concentration is also required for surfactant assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  2. Surfactants as microbicides and contraceptive agents: a systematic in vitro study.

    PubMed

    Vieira, Otilia V; Hartmann, Diego O; Cardoso, Carla M P; Oberdoerfer, Daniel; Baptista, Marta; Santos, Manuel A S; Almeida, Luis; Ramalho-Santos, João; Vaz, Winchil L C

    2008-08-06

    The urgent need for cheap and easy-to-use protection against both unwanted pregnancies and sexually transmitted diseases has stimulated considerable interest in the use of surfactants as microbicides, anti-viral, and contraceptive agents in recent years. In the present study we report a systematic in vitro evaluation of the microbicidal, anti-viral and contraceptive potential of cationic, anionic, zwitterionic, and non-ionic surfactants. Toxicity was evaluated in mammalian columnar epithelial (MDCK) cells, human sperm cells, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Streptococcus agalactiae and Enterococcus faecalis. The inhibition of adenovirus and lentivirus infection of MDCK cells was also tested. A homologous series of cationic surfactants, alkyl-N,N,N-trimethylammonium bromides (C(n)TAB), with varying alkyl chains were shown to be bactericidal and fungicidal at doses that were related to the surfactant critical micelle concentrations (CMC), all of them at concentrations significantly below the CMC. In general, bacteria were more susceptible to this surfactant group than C. albicans and this organism, in turn, was more susceptible than MDCK cells. This suggests that the C(n)TAB may be useful as vaginal disinfectants only in so far as bacterial and fungal infections are concerned. None of the surfactants examined, including those that have been used in pre-clinical studies, showed inhibition of adenovirus or lentivirus infection of MDCK cells or spermicidal activity at doses that were sub-toxic to MDCK cells. The results of this study lead us to propose that systematic analysis of surfactant toxicity, such as we report in the present work, be made a mandatory pre-condition for the use of these substances in pre-clinical animal and/or human studies.

  3. Investigations of the kinetics of surfactant-assisted growth of cobalt/copper multilayers

    NASA Astrophysics Data System (ADS)

    Peterson, Brennan Lovelace

    Surfactants---a term given to a broad family of surface additives used in thin film growth---provide a potentially useful tool for the deposition engineer. A long history of work on the field has produced a sometimes conflicting view of what surfactants do, and while their efficacy in improving magnetic films is well established, the attendant structural changes remain unclear. Early work on surfactant-assisted growth was generally confined to deposition at near equilibrium conditions: high temperature and very slow deposition rates on very smooth (single crystal) substrates. In the case of low temperature sputter deposition, the kinetic phenomena differ greatly from the near-equilibrium case: high rate, more interlayer diffusive pathways, high grain boundary density, and few well defined atomic steps. There are two major ideas which underlie and explain the use of surfactants. First, they are used to alter growth kinetics of a single material by changing the diffusion barriers on the growing surface. Second, surfactants alter the initial nucleation parameters in heteroepitaxial growth, which is often explained with reference to changes in the surface energy, gamma. Changes to these parameters result, in turn, to variations of the roughness and conformality of thin films grown with the assistance of surfactants. Finally, the roughness and conformality are critical for determining the performance of modern thin film magnetic sensors. As surfactants offer a way to alter the nucleation and growth kinetics, they offer tremendous potential benefits. However, before surfactants are trustworthy deposition tool, a better understanding of their structural effects and underlying surface energy and kinetic changes is necessary. In order to investigate these phenomena, DC magnetron sputtered [Co/Cu] multilayers were deposited on Si/SiO2 substrates using O2 , Ag, Pb, and In as surfactants. Oxygen was introduced during growth at partial pressures ranging from 10-9 to 10-6 Torr

  4. Distribution of surfactant protein A in rat lung.

    PubMed

    Doyle, I R; Barr, H A; Nicholas, T E

    1994-10-01

    Although surfactant protein A (SP-A) is an integral component of alveolar surfactant, its relative abundance in lamellar bodies, regarded as the intracellular storage organelles for surfactant, remains contentious. We have previously shown that lamellar bodies, isolated from rat lung by upward flotation on a sucrose gradient, can be subfractionated into classic-appearing lamellar bodies (Lb-A) and a vesicular fraction (Lb-B), which we have speculated may be a second release form of surfactant. In the present study, we have used two-dimensional protein electrophoresis and immunochemical analysis to clarify the origin and the composition of these two subcellular fractions. In addition, we have examined the hypothesis that the secretion of SP-A and surfactant phospholipids occurs by independent pathways by examining the distribution of SP-A, total protein, and disaturated phospholipids (DSP) in the tubular myelin-rich (Alv-1) and tubular myelin-poor (Alv-2) fractions separated from lavaged material and in Lb-A and Lb-B isolated from both lung homogenate and purified alveolar type II cells. Our findings indicate that Lb-B is derived from type II cells, although they do not indicate whether it is a secretory form of surfactant, a reuptake vesicle, or a mixture of both. We found that the lung has a large tissue pool of immunoreactive SP-A. The %SP-A/DSP of total lamellar bodies isolated from type II cells was 0.96 +/- 0.1 (mean +/- SE), intermediate between that in Lb-A (1.67 +/- 0.13) and in Lb-B (0.65 +/- 0.04). In contrast, the %SP-A/DSP was 11.16 +/- 0.84 in whole lung homogenate and 13.14 +/- 1.71 in whole type II cells. In the alveolar compartment, the %SP-A/DSP was 17.38 +/- 3.40 in Alv-1, 6.34 +/- 0.31 in Alv-2, and 10.49 +/- 1.43 in macrophages, values an order of magnitude greater than found with the lamellar bodies. Our results indicate that only a relatively small portion of alveolar SP-A is derived from lamellar bodies, and we suggest that secretion of SP

  5. Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration.

    PubMed

    Inoue, Tohru; Yamakawa, Haruka

    2011-04-15

    Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Dynamics of contracting surfactant-covered filaments

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Thete, Sumeet; Xu, Qi; Basaran, Osman

    2013-11-01

    When drops are produced from a nozzle, a thin liquid thread connects the primary drop that is about to form to the rest of the liquid in the nozzle. Often, the thread becomes disconnected from both the primary drop and the remnant liquid mass hanging from the nozzle and thereby gives rise to a free filament. Due to surface tension, the free filament then contracts or recoils. During recoil, the filament can either contract into a single satellite droplet or break up into several small satellites. Such satellite droplets are undesirable in applications where they can, for example, cause misting in a manufacturing environment and mar product quality in ink-jet printing. In many applications, the filaments are coated with a monolayer of surfactant. In this work, we study the dynamics of contraction of slender filaments of a Newtonian fluid that are covered with a monolayer of surfactant when the surrounding fluid is a passive gas. Taking advantage of the fact that the filaments are long and slender, we use a 1D-slender-jet approximation of the governing system of equations consisting of the Navier-Stokes system and the convection-diffusion equation for surfactant transport. We solve the 1D system of equations by a finite element based numerical method.

  7. Dynamic wetting failure in surfactant solutions

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Yu; Vandre, Eric; Carvalho, Marcio; Kumar, Satish

    2015-11-01

    The influence of insoluble surfactants on dynamic wetting failure during displacement of Newtonian fluids in a rectangular channel is studied in this work. A hydrodynamic model for steady Stokes flows of dilute surfactant solutions is developed and evaluated using three approaches: (i) a one-dimensional (1D) lubrication-type approach, (ii) a novel hybrid of a 1D description of the receding phase and a 2D description of the advancing phase, and (iii) an asymptotic theory of Cox. Steady-state solution families in the form of macroscopic contact angles as a function of the capillary number are determined and limit points are identified. When air is the receding fluid, Marangoni stresses are found to increase the receding-phase pressure gradients near the contact line by thinning the air film without significantly changing the capillary-pressure gradients there. As consequence, the limit points shift to lower capillary numbers and the onset of wetting failure is promoted. The model predictions are then used to interpret decades-old experimental observations concerning the influence of surfactants on air entrainment. The hybrid modeling approach developed here can readily be extended to more complicated geometries where a thin air layer is present near a contact line.

  8. Adsorption of hydrophobic organic compounds onto a hydrophobic carbonaceous geosorbent in the presence of surfactants.

    PubMed

    Wang, Peng; Keller, Arturo A

    2008-06-01

    The adsorption of hydrophobic organic compounds (HOCs; atrazine and diuron) onto lampblack was studied in the presence of nonionic, cationic, and anionic surfactants (Triton(R) X-100), benzalkonium chloride [BC], and linear alkylbenzene sulfonate [LAS]) to determine the effect of the surfactant on HOC adsorption onto a hydrophobic carbonaceous geosorbent. Linear alkylbenzene sulfonate showed an adsorption capacity higher than that of BC but similar to that of Triton X-100, implying the charge property of a surfactant is not a useful indicator for predicting the surfactant's adsorption onto a hydrophobic medium. The results also indicated that the octanol-water partition coefficient (K(OW)) of a surfactant is not a good predictor of that surfactant's sorption onto a hydrophobic medium. Under subsaturation adsorption conditions (i.e., before sorption saturation is reached), surfactant adsorption reduced HOC adsorption to a significant extent, with the reduction in HOC adsorption increasing monotonically with the amount of surfactant adsorbed. Among the three surfactants, Triton X-100 was the most effective in reducing HOC adsorption, whereas BC and LAS showed similar effectiveness in this regard. Under the same amount of the surfactant sorbed, the reduction in atrazine adsorption was consistently greater than that for diuron because of atrazine's lower hydrophobicity. No significant difference was observed in the amount of the HOC adsorbed under different adsorption sequences. Our results showed that the presence of surfactant can significantly decrease HOC adsorption onto hydrophobic environmental media and, thus, is important in predicting HOC fate and transport in the environment.

  9. Factors confounding impedance catheter volume measurements in vitro.

    PubMed

    Bielefeld, M R; Cabreriza, S E; Spotnitz, H M

    1993-06-01

    The impedance catheter allows continuous measurement of ventricular volume. External influences have been described as causing parallel shifts in impedance-measured volumes; however, factors affecting impedance measurements in a nonparallel manner have not been fully characterized. Accordingly, an impedance catheter was placed inside a latex balloon into which known volumes of normal saline solution were injected. Conductive and nonconductive materials were individually placed within the balloon. Impedance was measured with materials touching (T) or not touching (NT) the catheter. Impedance-measured volumes were plotted versus actual volumes. Compared with the line of identity (LID), a statistical difference (p < 0.05) was found in the slopes in the presence of metallic objects only. These included a pacing lead (T, NT) (mT = 1.32m mNT = 1.29 versus mLID = 1.00), titanium (T) (mT = 1.68 versus mLID = 1.00), and aluminum (NT) (mNT = 0.72 versus mLID = 1.00). These changes in slope indicate nonparallel effects on impedance that confound the ability of the impedance catheter to determine volumes in vitro. These observations imply that serial calibration of both the slope constant (alpha) and the intercept (parallel conductance) of impedance may be necessary for in vivo measurements of ventricular volume based on impedance in the presence of metallic objects.

  10. Evaluation of SLS: APG mixed surfactant systems as carrier for solid dispersion.

    PubMed

    Patel, Ashok R; Joshi, Vishal Y

    2008-01-01

    The present investigation aims at studying the effect of mixed surfactant system of sodium lauryl sulphate (SLS) and alkyl polyglucosides (C(10)APG, C(12)APG and C(12/14)APG) on dissolution rate enhancement of poorly water soluble drug. Aceclofenac--a non-steroidal anti-inflammatory agent was used as a model drug as it has limited water solubility. The influence of the surfactant concentration in various blends on dissolution rate of Solid Dispersion (SD), prepared using solution method with ethanol as the solvent was studied and the advantage of mixed surfactant systems over the individual surfactants was illustrated by differences in the in-vitro dissolution profiles of SD. Physico chemical evaluation (critical micellar concentration, zeta potential and beta-parameter calculations) was carried out to study the mixed surfactant systems. Solid mixtures were characterized by Infrared spectroscopy (FT-IR); X-ray diffraction studies (XRD) and scanning electron microscopy (SEM). It was seen that the dissolution rate of aceclofenac from SD increased with the increase in the APG proportion relative to SLS with the optimum ratio of 0.2 SLS:0.8 APG showing the best effect in all cases. Results obtained from physico-chemical evaluation (the decrease in the value of critical micelle concentration and higher negative value of beta-parameters) suggested the existence of synergism between surfactants blends. The observed results in the dissolution rate enhancement could be attributed to the drug--surfactant interactions as evident from FT-IR, SEM and XRD results.

  11. Spectral behaviour of eosin Y in different solvents and aqueous surfactant media.

    PubMed

    Chakraborty, Moumita; Panda, Amiya Kumar

    2011-10-15

    Photophysical behaviour of the anionic xanthene dye, eosin Y (EY) was investigated in solvents of different polarities as well as in the presence of aqueous cationic surfactants. From the correlation between E(T)(30) and Kosower Z values of EY in different solvents, subsequent parameters for EY were determined in the presence of surfactants. A red shift, both in the absorption and emission spectra of EY, was observed with decreasing solvent polarity. Dimerisation of EY was found to be dependent on solvent polarity. Cationic surfactants retarded the process of dimerisation, which were evident from the lower dimerisation constant (K(D)) values, compared to that of in pure water. Dye-surfactant interaction constants were determined at different temperatures (298-318 K) and subsequently the thermodynamic parameters, viz., ΔG°, ΔH° and ΔS° were evaluated using the interaction constant values. The fluorescence spectra of EY followed the same trend as in the absorption spectra, although with lesser extents. Stokes shifts were calculated and correlated with the polarity of the medium. Fluorescence of EY was initially quenched by the cationic surfactants in their pre-micellar region, which then followed a red shift with intensity enhancement. Fluorescence quenching was found to be of Stern-Volmer type where the excited state lifetime of EY remained unchanged in different surfactant media. However, the anisotropy value of EY was changed in the post micellar region of surfactants. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles.

    PubMed

    Kennedy, Patrick J; Perreira, Ines; Ferreira, Daniel; Nestor, Marika; Oliveira, Carla; Granja, Pedro L; Sarmento, Bruno

    2018-06-01

    Targeted drug delivery with nanoparticles (NPs) requires proper surface ligand presentation and availability. Surfactants are often used as stabilizers in the production of targeted NPs. Here, we evaluated the impact of surfactants on ligand functionalization and downstream molecular recognition. Our model system consisted of fluorescent poly(lactic-co-glycolic acid) (PLGA) NPs that were nanoprecipitated in one of a small panel of commonly-used surfactants followed by equivalent washes and conjugation of an engineered Fab antibody fragment. Size, polydispersity index and zeta potential were determined by dynamic light scattering and laser Doppler anemometry, and Fab presence on the NPs was assessed by enzyme-linked immunosorbent assay. Most importantly, Fab-decorated NP binding to the cell surface receptor was monitored by fluorescence-activated cell sorting. 2% polyvinyl alcohol, 1% sodium cholate, 0.5% Pluronic F127 (F127) and 2% Tween-80 were initially tested. Of the four surfactants tested, PLGA NPs in 0.5% F127 and 2% Tween-80 had the highest cell binding. These two surfactants were then retested in two different concentrations, 0.5% and 2%. The Fab-decorated PLGA NPs in 2% F127 had the highest cell binding. This study highlights the impact of common surfactants and their concentrations on the downstream targeting of ligand-decorated NPs. Similar principles should be applied in the development of future targeted nanosystems where surfactants are employed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effect of Four Commonly Used Dissolution Media Surfactants on Pancreatin Proteolytic Activity.

    PubMed

    Guncheva, Maya; Stippler, Erika

    2017-05-01

    Proteolytic enzymes are often used in dissolution testing of cross-linked gelatin capsules that do not conform to the dissolution specification. Their catalytic activity, however, can be affected when they are added to a dissolution media containing solubility enhancers, such as surfactants. The aim of this study was to assess the activity of pancreatic proteases in presence of four commonly used surfactants. We found that pancreatin exhibits remarkable proteolytic activity in the presence of Tween 80, even at the concentrations as high as 250 times its critical micelle concentration (cmc) in water, whereas, Triton X-100 enhanced the proteolytic activity of pancreatin when added at concentrations above its cmc in water. Both surfactants are non-ionic surfactants. On the other hand, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), which are ionic surfactants, have a detrimental effect on the proteolytic activity of pancreatin. For example, a 50% reduction of the pancreatin activity was found in samples which contain a minor amount of SDS (0.05% w/v) in comparison to a surfactant-free reaction. Additionally, no activity was observed for the pancreatin-SDS samples which were incubated for 30 min at 40°C prior to testing. CTAB had an impact on pancreatin activity at concentrations higher than its cmc. Data from this manuscript can be used as a benchmark for optimization of the dissolution procedures that require use of both surfactants and enzymes.

  14. Three-dimensional model of surfactant replacement therapy

    PubMed Central

    Filoche, Marcel; Tai, Cheng-Feng; Grotberg, James B.

    2015-01-01

    Surfactant replacement therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. It is widely successful for treating surfactant deficiency in premature neonates who develop neonatal respiratory distress syndrome (NRDS). However, when applied to adults with acute respiratory distress syndrome (ARDS), early successes were followed by failures. This unexpected and puzzling situation is a vexing issue in the pulmonary community. A pressing question is whether the instilled surfactant mixture actually reaches the adult alveoli/acinus in therapeutic amounts. In this study, to our knowledge, we present the first mathematical model of SRT in a 3D lung structure to provide insight into answering this and other questions. The delivery is computed from fluid mechanical principals for 3D models of the lung airway tree for neonates and adults. A liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug deposits a coating film on the airway wall and then splits unevenly at the bifurcation due to gravity. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published procedural methods, we show the neonatal lung is a well-mixed compartment, whereas the adult lung is not. The earlier, successful adult SRT studies show comparatively good index values implying adequate delivery. The later, failed studies used different protocols resulting in very low values of both indexes, consistent with inadequate acinar delivery. Reasons for these differences and the evolution of failure from success are outlined and potential remedies discussed. PMID:26170310

  15. Electrical Impedance Spectroscopy Study of Biological Tissues

    PubMed Central

    Dean, D.A.; Ramanathan, T.; Machado, D.; Sundararajan, R.

    2008-01-01

    The objective of this study was to investigate the electrical impedance properties of rat lung and other tissues ex vivo using Electrical Impedance Spectroscopy. Rat lungs (both electroporated and naïve (untreated)), and mesenteric vessels (naïve) were harvested from male Sprague-Dawley rats; their electrical impedance were measured using a Solartron 1290 impedance analyzer. Mouse lung and heart samples (naïve) were also studied. The resistance (Real Z, ohm) and the reactance (Im Z, negative ohm)) magnitudes and hence the Cole-Cole (Real Z versus Im Z) plots are different for the electroporated lung and the naive lung. The results confirm the close relationship between the structure and the functional characteristic. These also vary for the different biological tissues studied. The impedance values were higher at low frequencies compared to those at high frequencies. This study is of practical interest for biological applications of electrical pulses, such as electroporation, whose efficacy depends on cell type and its electrical impedance characteristics. PMID:19255614

  16. Whole-body impedance--what does it measure?

    PubMed

    Foster, K R; Lukaski, H C

    1996-09-01

    Although the bioelectrical impedance technique is widely used in human nutrition and clinical research, an integrated summary of the biophysical and bioelectrical bases of this approach is lacking. We summarize the pertinent electrical phenomena relevant to the application of the impedance technique in vivo and discuss the relations between electrical measurements and biological conductor volumes. Key terms in the derivation of bioelectrical impedance analysis are described and the relation between the electrical properties of tissues and tissue structure is discussed. The relation between the impedance of an object and its geometry, scale, and intrinsic electrical properties is also discussed. Correlations between whole-body impedance measurements and various bioconductor volumes, such as total body water and fat-free mass, are experimentally well established; however, the reason for the success of the impedence technique is much less clear. The bioengineering basis for the technique is critically presented and considerations are proposed that might help to clarify the method and potentially improve its sensitivity.

  17. Surfactants reduce platelet-bubble and platelet-platelet binding induced by in vitro air embolism.

    PubMed

    Eckmann, David M; Armstead, Stephen C; Mardini, Feras

    2005-12-01

    The effect of gas bubbles on platelet behavior is poorly characterized. The authors assessed platelet-bubble and platelet-platelet binding in platelet-rich plasma in the presence and absence of bubbles and three surface-active compounds. Platelet-rich plasma was prepared from blood drawn from 16 volunteers. Experimental groups were surfactant alone, sparging (microbubble embolization) alone, sparging with surfactant, and neither sparging nor surfactant. The surfactants were Pluronic F-127 (Molecular Probes, Eugene, OR), Perftoran (OJSC SPC Perftoran, Moscow, Russia), and Dow Corning Antifoam 1510US (Dow Corning, Midland, MI). Videomicroscopy images of specimens drawn through rectangular glass microcapillaries on an inverted microscope and Coulter counter measurements were used to assess platelet-bubble and platelet-platelet binding, respectively, in calcium-free and recalcified samples. Histamine-induced and adenosine diphosphate-induced platelet-platelet binding were measured in unsparged samples. Differences between groups were considered significant for P < 0.05 using analysis of variance and the Bonferroni correction. Sixty to 100 platelets adhered to bubbles in sparged, surfactant-free samples. With sparging and surfactant, few platelets adhered to bubbles. Numbers of platelet singlets and multimers not adherent to bubbles were different (P < 0.05) compared both with unsparged samples and sparged samples without surfactant. No significant platelet-platelet binding occurred in uncalcified, sparged samples, although 20-30 platelets adhered to bubbles. Without sparging, histamine and adenosine diphosphate provoked platelet-platelet binding with and without surfactants present. Sparging causes platelets to bind to air bubbles and each other. Surfactants added before sparging attenuate platelet-bubble and platelet-platelet binding. Surfactants may have a clinical role in attenuating gas embolism-induced platelet-bubble and platelet-platelet binding.

  18. Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells.

    PubMed

    Gärtner, Stefan; Clulow, Andrew J; Howard, Ian A; Gilbert, Elliot P; Burn, Paul L; Gentle, Ian R; Colsmann, Alexander

    2017-12-13

    Nanoparticle dispersions open up an ecofriendly route toward printable organic solar cells. They can be formed from a variety of organic semiconductors by using miniemulsions that employ surfactants to stabilize the nanoparticles in dispersion and to prevent aggregation. However, whenever surfactant-based nanoparticle dispersions have been used to fabricate solar cells, the reported performances remain moderate. In contrast, solar cells from nanoparticle dispersions formed by precipitation (without surfactants) can exhibit power conversion efficiencies close to those of state-of-the-art solar cells processed from blend solutions using chlorinated solvents. In this work, we use small-angle neutron scattering measurements and transient absorption spectroscopy to investigate why surfactant-free nanoparticles give rise to efficient organic solar cells. We show that surfactant-free nanoparticles comprise a uniform distribution of small semiconductor domains, similar to that of bulk-heterojunction films formed using traditional solvent processing. This observation differs from surfactant-based miniemulsion nanoparticles that typically exhibit core-shell structures. Hence, the surfactant-free nanoparticles already possess the optimum morphology for efficient energy conversion before they are assembled into the photoactive layer of a solar cell. This structural property underpins the superior performance of the solar cells containing surfactant-free nanoparticles and is an important design criterion for future nanoparticle inks.

  19. Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice.

    PubMed

    Huang, Liang-Ti; Yeh, Tsu-Fu; Kuo, Yu-Lin; Chen, Pin-Chuan; Chen, Chung-Ming

    2015-02-01

    Surfactant is a useful vehicle for the intratracheal delivery of medicine to the distal lung. The aim of this study was to analyze the effect of intratracheal surfactant and budesonide instillation on the pulmonary distribution of fluorescent dye in mice. Male athymic nude mice were assigned randomly as controls, fluorescent dye, fluorescent dye + surfactant (50 mg/kg), fluorescent dye + budesonide (0.25 mg/kg), and fluorescent dye + surfactant + budesonide groups. A total volume of 60 μL fluorescent solutions was intratracheally injected and followed by 60 μL of air. We photographed and measured fluorescence in the lungs, from the back, 15 minutes after intratracheal administration using an IVIS Xenogen imaging instrument. The fluorescent dye (1,1'-dioctadecyltetramethyl indotricarbocyanine iodide) was most strongly detected near the trachea and weakly detected in the lungs in mice administered with fluorescent solutions. Almost no fluorescence was seen in the lung region of control mice. Intratracheal administration of surfactant or budesonide increased fluorescent intensity compared with control mice. Combined administration of surfactant and budesonide further increased fluorescent intensity compared with mice given surfactant or budesonide alone. Surfactant and budesonide enhance the pulmonary distribution of fluorescent dye in mice. Copyright © 2014. Published by Elsevier B.V.

  20. Electrical potential modulation of dynamic film properties of aqueous surfactant solutions through a nanogap

    NASA Astrophysics Data System (ADS)

    Xie, Guoxin; Luo, Jianbin; Liu, Shuhai; Guo, Dan

    2011-01-01

    The effect of external electrical potentials (EEPs) on aqueous surfactant films nanoconfined in a ball-plate configuration has been investigated by measuring the dynamic film thickness with an interferometer. Experimental results indicate that the film formation properties of the surfactant solutions in the nanogap under applied EEPs are strongly dependent on the interfacial adsorbed surfactant structure. Effective control over the film formation properties by applying EEPs depends on the signs of the charges on the solid surface and the surfactant headgroups, the surfactant concentration, and the magnitude of EEPs. Remarkable alterations of the film formation properties in the nanogap by EEPs can be observed except when the surface charge is the same in sign as the headgroups and the surfactant concentration is above the critical micelle concentration. Mechanisms of these phenomena have been discussed in this work.

  1. Effect of curcumin on the binding of cationic, anionic and nonionic surfactants with myoglobin

    NASA Astrophysics Data System (ADS)

    Mondal, Satyajit; Ghosh, Soumen

    2017-04-01

    Interaction of a globular protein, myoglobin and different surfactants has been studied in the absence and presence of curcumin in phosphate buffer at pH = 7.4 by UV-VIS spectrophotometry, fluorimetry and fluorescence polarization anisotropy methods. Results show that heme environment of myoglobin is changed by cationic cetyltrimethylammonium bromide (CTAB) and sodium N-dodecanoyl sarcosinate (SDDS). In the presence of curcumin, CTAB cannot change the heme; but SDDS can make change. Nonionic surfactant N-decanoyl-N-methylglucamine (Mega 10) cannot change the heme environment. Protein is unfolded by the surfactant. Curcumin can prevent the unfolding of protein in the low concentration region of ionic surfactants such as CTAB and SDDS. In nonionic surfactant media, curcumin accelerates the denaturation process. Due to myoglobin-curcumin complex formation, rotational motion of curcumin decreases in surfactant media and so anisotropy increases.

  2. Surfactant-adsorption-induced initial depinning behavior in evaporating water and nanofluid sessile droplets.

    PubMed

    Zhong, Xin; Duan, Fei

    2015-05-19

    A surfactant-induced autophobic effect has been observed to initiate an intense depinning behavior at the initial stage of evaporation in both pure water and nanofluid sessile droplets. The cationic surfactant adsorbing to the negatively charged silicon wafer makes the solid surface more hydrophobic. The autophobing-induced depinning behavior, leading to an enlarged contact angle and a shortened base diameter, takes place only when the surfactant concentration is below its critical micelle concentration (cmc). The initial spreading degree right before the droplet retraction, the retracting velocity of the contact line, and the duration of the initial droplet retraction are shown to depend negatively on the surfactant concentration below the cmc. An unexpected enhancement in the initial depinning has been found in the nanofluid droplets, possibly resulting from the hydrophilic interplay between the graphite nanoparticle deposition and the surfactant molecules. Such promotion of the initial depinning due to the nanoparticle deposition makes the droplet retract even at a surfactant concentration higher than the cmc (1.5 cmc). The resulting deposition formed in the presence of the depinning behavior has great enhancement for coffee-ring formation as compared to the one free of surfactant, implying that the formation of a coffee ring does not require the pinning of the contact line during the entire drying process.

  3. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛsurfactant concentration is therefore attributed to the considerable cross links among micelles and polymers (transient network). In addition to substantial alteration of the transport properties, this weak interaction also influences the onset point of thermodynamic instability associated with polymer-surfactant solutions. The examples include the decrease of critical aggregation concentration for ionic surfactant and clouding point for nonionic surfactant due to PEG addition.

  4. New theoretical framework for designing nonionic surfactant mixtures that exhibit a desired adsorption kinetics behavior.

    PubMed

    Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel

    2010-12-21

    How does one design a surfactant mixture using a set of available surfactants such that it exhibits a desired adsorption kinetics behavior? The traditional approach used to address this design problem involves conducting trial-and-error experiments with specific surfactant mixtures. This approach is typically time-consuming and resource-intensive and becomes increasingly challenging when the number of surfactants that can be mixed increases. In this article, we propose a new theoretical framework to identify a surfactant mixture that most closely meets a desired adsorption kinetics behavior. Specifically, the new theoretical framework involves (a) formulating the surfactant mixture design problem as an optimization problem using an adsorption kinetics model and (b) solving the optimization problem using a commercial optimization package. The proposed framework aims to identify the surfactant mixture that most closely satisfies the desired adsorption kinetics behavior subject to the predictive capabilities of the chosen adsorption kinetics model. Experiments can then be conducted at the identified surfactant mixture condition to validate the predictions. We demonstrate the reliability and effectiveness of the proposed theoretical framework through a realistic case study by identifying a nonionic surfactant mixture consisting of up to four alkyl poly(ethylene oxide) surfactants (C(10)E(4), C(12)E(5), C(12)E(6), and C(10)E(8)) such that it most closely exhibits a desired dynamic surface tension (DST) profile. Specifically, we use the Mulqueen-Stebe-Blankschtein (MSB) adsorption kinetics model (Mulqueen, M.; Stebe, K. J.; Blankschtein, D. Langmuir 2001, 17, 5196-5207) to formulate the optimization problem as well as the SNOPT commercial optimization solver to identify a surfactant mixture consisting of these four surfactants that most closely exhibits the desired DST profile. Finally, we compare the experimental DST profile measured at the surfactant mixture condition

  5. Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.

    PubMed Central

    Lalchev, Z I; Todorov, R K; Christova, Y T; Wilde, P J; Mackie, A R; Clark, D C

    1996-01-01

    Certain physical properties of a range of foam film types that are believed to exist in vivo in the lung have been investigated. The contribution of different lung surfactant components found in porcine lung surfactant to molecular surface diffusion in the plane of foam films has been investigated for the first time. The influence of the type and thickness of black foam films, temperature, electrolyte concentration, and extract composition on surface diffusion has been studied using the fluorescence recovery after photobleaching technique. Fluorescent phospholipid probe molecules in foam films stabilized by porcine lung surfactant samples or their hydrophobic extracts consisting of surfactant lipids and hydrophobic lung surfactant proteins, SP-B and SP-C, exhibited more rapid diffusion than observed in films of its principal lipid component alone, L-alpha-phosphatidylcholine dipalmitoyl. This effect appears to be due to contributions from minor lipid components present in the total surfactant lipid extracts. The minor lipid components influence the surface diffusion in foam films both by their negative charge and by lowering the phase transition temperature of lung surfactant samples. In contrast, the presence of high concentrations of the hydrophillic surfactant protein A (SP-A) and non-lung-surfactant proteins in the sample reduced the diffusion coefficient (D) of the lipid analog in the adsorbed layer of the films. Hysteresis behavior of D was observed during temperature cycling, with the cooling curve lying above the heating curve. However, in cases where some surface molecular aggregation and surface heterogeneity were observed during cooling, the films became more rigid and molecules at the interfaces became immobilized. The thickness, size, capillary pressure, configuration, and composition of foam films of lung surfactant prepared in vitro support their investigation as realistic structural analogs of the surface films that exist in vivo in the lung

  6. Surfactants non-monotonically modify the onset of Faraday waves

    NASA Astrophysics Data System (ADS)

    Strickland, Stephen; Shearer, Michael; Daniels, Karen

    2017-11-01

    When a water-filled container is vertically vibrated, subharmonic Faraday waves emerge once the driving from the vibrations exceeds viscous dissipation. In the presence of an insoluble surfactant, a viscous boundary layer forms at the contaminated surface to balance the Marangoni and Boussinesq stresses. For linear gravity-capillary waves in an undriven fluid, the surfactant-induced boundary layer increases the amount of viscous dissipation. In our analysis and experiments, we consider whether similar effects occur for nonlinear Faraday (gravity-capillary) waves. Assuming a finite-depth, infinite-breadth, low-viscosity fluid, we derive an analytic expression for the onset acceleration up to second order in ɛ =√{ 1 / Re } . This expression allows us to include fluid depth and driving frequency as parameters, in addition to the Marangoni and Boussinesq numbers. For millimetric fluid depths and driving frequencies of 30 to 120 Hz, our analysis recovers prior numerical results and agrees with our measurements of NBD-PC surfactant on DI water. In both case, the onset acceleration increases non-monotonically as a function of Marangoni and Boussinesq numbers. For shallower systems, our model predicts that surfactants could decrease the onset acceleration. DMS-0968258.

  7. Molecular interaction studies of some Co(III)-surfactants with the transport protein.

    PubMed

    Vignesh, Gopalaswamy; Parthiban, Marimuthu; Senthilkumar, Rajendran; Arunachalam, Sankaralingam

    2018-05-08

    The present work describes the synthesis and the molecular interaction of two single-chain Co(III)-coordinated surfactant complexes with a plasma protein, human serum albumin by using various biophysical and in silico techniques. The experimental data reveals that like ordinary classical surfactants, our metallosurfactants also have the tendency to associate themselves and form micelles at critical micelle concentration. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) derived from the experiment demonstrates that the alkyl chain length and the head group of the Co(III)-surfactant complexes played a vital role in the binding process. Both the physico-chemical and computational docking results indicated that the Co(III)-surfactant complexes are stabilized by hydrogen bonding, hydrophobic and/or van der Waals forces. Thus, the data acquired herein for the interesting class of surfactant complexes will be of significance in metal-based drug discovery and developmental research. Copyright © 2018. Published by Elsevier B.V.

  8. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  9. Measurement of cytotoxicity and irritancy potential of sugar-based surfactants on skin-related 3D models.

    PubMed

    Lu, Biao; Miao, Yong; Vigneron, Pascale; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Pezron, Isabelle; Egles, Christophe; Vayssade, Muriel

    2017-04-01

    Sugar-based surfactants present surface-active properties and relatively low cytotoxicity. They are often considered as safe alternatives to currently used surfactants in cosmetic industries. In this study, four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or a maltose headgroup through an amide linkage, were synthesized and compared to two standard surfactants. The cytotoxic and irritant effects of surfactants were evaluated using two biologically relevant models: 3D dermal model (mouse fibroblasts embedded in collagen gel) and reconstituted human epidermis (RHE, multi-layered human keratinocytes). Results show that three synthesized surfactants possess lower cytotoxicity compared to standard surfactants as demonstrated in the 3D dermal model. Moreover, the IC50s of surfactants against the 3D dermal model are higher than IC50s obtained with the 2D dermal model (monolayer mouse fibroblasts). Both synthesized and standard surfactants show no irritant effects after 48h of topical application on RHE. Throughout the study, we demonstrate the difficulty to link the physico-chemical properties of surfactants and their cytotoxicity in complex models. More importantly, our data suggest that, prior to in vivo tests, a complete understanding of surfactant cytotoxicity or irritancy potential requires a combination of cellular and tissue models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Adsorptive removal of naphthalene induced by structurally different Gemini surfactants in a soil-water system.

    PubMed

    Wei, Jia; Li, Jun; Huang, Guohe; Wang, Xiujie; Chen, Guanghui; Zhao, Baihang

    2016-09-01

    A new generation of surfactant, Gemini surfactants, have been synthesized and have attracted the attention of various industrial and academic research groups. This study focused on the use of symmetric and dissymmetric quaternary ammonium Gemini surfactants to immobilize naphthalene onto soil particles, and is used as an example of an innovative application to remove HOC in situ using the surfactant-enhanced sorption zone. The sorption capacity of modified soils by Gemini surfactant and natural soils was compared and the naphthalene sorption efficiency, in the absence and presence of Gemini surfactants with different alkyl chain lengths, was investigated in the soil-water system. The results have shown that the increased added Gemini surfactant formed admicelles at the interface of soil/water having superior capability to retard contaminant. Symmetric and dissymmetric Gemini surfactants have opposite effect on the aspect of removing of PAH attributing to their solubilization and sorption behavior in soil-water system. Compared with the natural soil, sorption of naphthalene by Gemini-modified soil is noticeably enhanced following the order of C12-2-16 < C12-2-12 < C12-2-8. However, the symmetric Gemini surfactant C12-2-12 is the optimized one for in situ barrier remediation, which is not only has relative high retention ability but also low dosage.

  11. Surfactant-free Colloidal Particles with Specific Binding Affinity

    PubMed Central

    2017-01-01

    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles. PMID:28847149

  12. Amphiphilic Ferrocene-Containing PEG Block Copolymers as Micellar Nanocarriers and Smart Surfactants.

    PubMed

    Alkan, Arda; Wald, Sarah; Louage, Benoit; De Geest, Bruno G; Landfester, Katharina; Wurm, Frederik R

    2017-01-10

    An important and usually the only function of most surfactants in heterophase systems is stabilizing one phase in another, for example, droplets or particles in water. Surfactants with additional chemical or physical handles are promising in controlling the colloidal properties by external stimuli. The redox stimulus is an attractive feature; however, to date only a few ionic redox-responsive surfactants have been reported. Herein, the first nonionic and noncytotoxic ferrocene-containing block copolymers are prepared, carrying a hydrophilic poly(ethylene glycol) (PEG) chain and multiple ferrocenes in the hydrophobic segment. These amphiphiles were studied as redox-sensitive surfactants that destabilize particles as obtained in miniemulsion polymerization. Because of the nonionic nature of such PEG-based copolymers, they can stabilize nanoparticles even after the addition of ions, whereas particles stabilized with ionic surfactants would be destabilized by the addition of salt. The redox-active surfactants were prepared by the anionic ring-opening polymerization of ferrocenyl glycidyl ether, with PEG monomethyl ether as the macroinitiator. The resultant block copolymers with molecular weights (M n ) between 3600 and 8600 g mol -1 and narrow molecular weight distributions (M w /M n = 1.04-1.10) were investigated via 1 H nuclear magnetic resonance and diffusion ordered spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Furthermore, the block copolymers were used as building blocks for redox-responsive micelles and as redox-responsive surfactants in radical polymerization in miniemulsion to stabilize model polystyrene nanoparticles. Oxidation of iron to the ferrocenium species converted the amphiphilic block copolymers into double hydrophilic macromolecules, which led to the destabilization of the nanoparticles. This destabilization of nanoparticle dispersions may be useful for the formation of

  13. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  14. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution: effect of surfactant alkyl chain length.

    PubMed

    Bai, Guangyue; Nichifor, Marieta; Lopes, António; Bastos, Margarida

    2005-01-13

    We have used a precision isothermal titration microcalorimeter (ITC) to measure the enthalpy curves for the interaction of a hydrophobically modified polyelectrolyte (D40OCT30) with oppositely charged surfactants (SC(n)S) in aqueous solution. D40OCT30 is a newly synthesized polymer based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-octylammonium chloride groups randomly distributed along the polymer backbone with degree of substitution of 28.1%. The employed anionic surfactants are sodium octyl sulfate (SC(8)S) and sodium tetradecyl sulfate (SC(14)S). Microcalorimetric results along with turbidity and kinematic viscosity measurements demonstrate systematically the thermodynamic characterization of the interaction of D40OCT30/SC(n)S. A three-dimensional diagram with the derived phase boundaries is drawn to describe the effect of the alkyl chain length of surfactant and of the ratio between surfactant and pendant groups on the interaction. A more complete picture of the interaction mechanism for D40OCT30/SC(n)S systems is proposed here.

  15. Surfactant effects on interfacial flow and thermal transport processes during phase change in film boiling

    NASA Astrophysics Data System (ADS)

    Premnath, Kannan N.; Hajabdollahi, Farzaneh; Welch, Samuel W. J.

    2018-04-01

    The presence of surfactants in two-phase flows results in the transport and adsorption of surfactants to the interface, and the resulting local interfacial concentration significantly influences the surface tension between the liquid and vapor phases in a fluid undergoing phase change. This computational study is aimed at understanding and elucidating the mechanisms of enhanced flows and thermal transport processes in film boiling due to the addition of surfactants. A change in surface tension results in a change in the critical Rayleigh-Taylor wavelength leading to different bubble release patterns and a change in the overall heat transfer rates. Due to the presence of surfactants, an additional transport mechanism of the Marangoni convection arises from the resulting tangential gradients in the surfactant concentration along the phase interface. Our computational approach to study such phenomena consists of representing the interfacial motion by means of the coupled level set-volume-of-fluid method, the fluid motion via the classical marker-and-cell approach, as well as representations for the bulk transport of energy and surfactants, in conjunction with a phase change model and an interfacial surfactant model. Using such an approach, we perform numerical simulations of surfactant-laden single mode as well as multiple mode film boiling and study the effect of surfactants on the transport processes in film boiling, including bubble release patterns, vapor generation rates, and heat transfer rates at different surfactant concentrations. The details of the underlying mechanisms will be investigated and interpreted.

  16. Development of cost-effective surfactant flooding technology. Quarterly report, January 1, 1994--March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1994-09-01

    The objective of this research is to develop cost-effective surfactant flooding technology by using surfactant simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics, process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. The goal of Task 2 is to understand and generalize themore » impact of both process and reservoir characteristics on the optimal design of surfactant flooding. We have studied the effect of process parameters such as salinity gradient, surfactant adsorption, surfactant concentration, surfactant slug size, pH, polymer concentration and well constraints on surfactant floods. In this report, we show three dimensional field scale simulation results to illustrate the impact of one important design parameter, the salinity gradient. Although the use of a salinity gradient to improve the efficiency and robustness of surfactant flooding has been studied and applied for many years, this is the first time that we have evaluated it using stochastic simulations rather than simulations using the traditional layered reservoir description. The surfactant flooding simulations were performed using The University of Texas chemical flooding simulator called UTCHEM.« less

  17. A practicable process for phenol removal with liquid surfactant membrane permeation column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Takeshi; Osaki, Katsuhiko; Nishiki, Tadaaki

    1997-05-01

    A practicable liquid surfactant membrane process for phenol removal is proposed with a stirred countercurrent column used as the liquid membrane contact equipment. The constituents of liquid membranes, such as internal aqueous phase and surfactant, the type of column, and the operating conditions for efficient and continuous performance of the liquid surfactant membrane process, have been examined. When NaOH solution was used as the internal aqueous phase and ECA4360J was used as the surfactant, the W/O emulsion was stable for the duration of column operation. More than 97% phenol could be removed from the feed solution. Nearly complete demulsification wasmore » also achieved by gentle agitation with an electrostatic demulsifier.« less

  18. Mechanical Impedance Modeling of Human Arm: A survey

    NASA Astrophysics Data System (ADS)

    Puzi, A. Ahmad; Sidek, S. N.; Sado, F.

    2017-03-01

    Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.

  19. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    USDA-ARS?s Scientific Manuscript database

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  20. Influence of MWCNT/surfactant dispersions on the mechanical properties of Portland cement pastes

    NASA Astrophysics Data System (ADS)

    Rodríguez, B.; Quintero, J. H.; Arias, Y. P.; Mendoza-Reales, O. A.; Ochoa-Botero, J. C.; Toledo-Filho, R. D.

    2017-12-01

    This work studies the reinforcing effect of Multi Walled Carbon Nanotubes (MWCNT) on cement pastes. A 0.35% solid concentration of MWCNT in powder was dispersed in deionized water with sodium dodecyl sulfate (cationic surfactant), cetylpyridinium chloride (anionic surfactant) and triton X-100 (amphoteric surfactant) using an ultrasonic tip processor. Three concentrations of each surfactant (1mM, 10mM and 100mM) were tested, and all samples were sonicated until an adequate dispersion degree was obtained. Cement pastes with additions of carbon nanotubes of 0.15% by mass of cement were produced in two steps; first the dispersions of MWCNT were combined with the mixing water using an ultrasonic tip processor to guarantee homogeneity, and then cement was added and mixed until a homogeneous paste was obtained. Direct tensile strength, apparent density and open porosity of the pastes were measured after 7 days of curing. It was found that the MWCNT/surfactants dispersions decrease the mechanical properties of the cement based matrix due to an increased porosity caused by the presence of surfactants.

  1. The Influence of Segmental Impedance Analysis in Predicting Validity of Consumer Grade Bioelectrical Impedance Analysis Devices

    NASA Astrophysics Data System (ADS)

    Sharp, Andy; Heath, Jennifer; Peterson, Janet

    2008-05-01

    Consumer grade bioelectric impedance analysis (BIA) instruments measure the body's impedance at 50 kHz, and yield a quick estimate of percent body fat. The frequency dependence of the impedance gives more information about the current pathway and the response of different tissues. This study explores the impedance response of human tissue at a range of frequencies from 0.2 - 102 kHz using a four probe method and probe locations standard for segmental BIA research of the arm. The data at 50 kHz, for a 21 year old healthy Caucasian male (resistance of 180φ±10 and reactance of 33φ±2) is in agreement with previously reported values [1]. The frequency dependence is not consistent with simple circuit models commonly used in evaluating BIA data, and repeatability of measurements is problematic. This research will contribute to a better understanding of the inherent difficulties in estimating body fat using consumer grade BIA devices. [1] Chumlea, William C., Richard N. Baumgartner, and Alex F. Roche. ``Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectrical impedance.'' Am J Clin Nutr 48 (1998): 7-15.

  2. Surfactants as Microbicides and Contraceptive Agents: A Systematic In Vitro Study

    PubMed Central

    Vieira, Otilia V.; Oberdoerfer, Daniel; Baptista, Marta; Santos, Manuel A. S.; Almeida, Luis; Ramalho-Santos, João; Vaz, Winchil L. C.

    2008-01-01

    Background The urgent need for cheap and easy-to-use protection against both unwanted pregnancies and sexually transmitted diseases has stimulated considerable interest in the use of surfactants as microbicides, anti-viral, and contraceptive agents in recent years. In the present study we report a systematic in vitro evaluation of the microbicidal, anti-viral and contraceptive potential of cationic, anionic, zwitterionic, and non-ionic surfactants. Methodology/Principal Findings Toxicity was evaluated in mammalian columnar epithelial (MDCK) cells, human sperm cells, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Streptococcus agalactiae and Enterococcus faecalis. The inhibition of adenovirus and lentivirus infection of MDCK cells was also tested. A homologous series of cationic surfactants, alkyl-N,N,N-trimethylammonium bromides (CnTAB), with varying alkyl chains were shown to be bactericidal and fungicidal at doses that were related to the surfactant critical micelle concentrations (CMC), all of them at concentrations significantly below the CMC. In general, bacteria were more susceptible to this surfactant group than C. albicans and this organism, in turn, was more susceptible than MDCK cells. This suggests that the CnTAB may be useful as vaginal disinfectants only in so far as bacterial and fungal infections are concerned. None of the surfactants examined, including those that have been used in pre-clinical studies, showed inhibition of adenovirus or lentivirus infection of MDCK cells or spermicidal activity at doses that were sub-toxic to MDCK cells. Conclusions/Significance The results of this study lead us to propose that systematic analysis of surfactant toxicity, such as we report in the present work, be made a mandatory pre-condition for the use of these substances in pre-clinical animal and/or human studies. PMID:18682796

  3. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil.

    PubMed

    Pei, Guangpeng; Zhu, Yuen; Cai, Xiatong; Shi, Weiyu; Li, Hua

    2017-10-01

    Surfactant-enhanced remediation is used to treat dichlorobenzene (DCB) contaminated soil. In this study, soil column experiments were conducted to investigate the removal efficiencies of o-dichlorobenzene (o-DCB) and p-dichlorobenzene (p-DCB) from contaminated soil using micellar solutions of biosurfactants (saponin, alkyl polyglycoside) compare to a chemically synthetic surfactant (Tween 80). Leachate was collected and analyzed for o-DCB and p-DCB content. In addition, soil was analyzed to explore the effect of surfactants on soil enzyme activities. Results showed that the removal efficiency of o-DCB and p-DCB was highest for saponin followed by alkyl polyglycoside and Tween 80. The maximum o-DCB and p-DCB removal efficiencies of 76.34% and 80.43%, respectively, were achieved with 4 g L -1 saponin solution. However, an opposite result was observed in the cumulative mass of o-DCB and p-DCB in leachate. The cumulative extent of o-DCB and p-DCB removal by the biosurfactants saponin and alkyl polyglycoside was lower than that of the chemically synthetic surfactant Tween 80 in leachate. Soil was also analyzed to explore the effect of surfactants on soil enzyme activities. The results indicated that surfactants were potentially effective in facilitating soil enzyme activities. Thus, it was confirmed that the biosurfactants saponin and alkyl polyglycoside could be used for remediation of o-DCB and p-DCB contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Liquefaction Of Coal With Surfactant And Disposable Catalyst

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1996-01-01

    Fuels derived from coal more competitive with petroleum products. Improved coal-liquefaction process exploits synergistic effects of disposable iron oxide catalyst and cheap anionic surfactant. Efficiency of conversion achieved in significantly higher than efficiencies obtained with addition of either surfactant or catalyst alone. No costly pretreatment necessary, and increase in conversion achieved under processing conditions milder than those used heretofore in liquefaction of coal. Quality of distillates obtained after liquefaction in process expected superior to distillates obtained after liquefaction by older techniques.

  5. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  6. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-06-21

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  7. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, R.J.

    1996-10-22

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

  8. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, Rodney J.

    1996-01-01

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

  9. Molecular Analysis of Surfactant-Driven Microbial Population Shifts in Hydrocarbon-Contaminated Soil†

    PubMed Central

    Colores, Gregory M.; Macur, Richard E.; Ward, David M.; Inskeep, William P.

    2000-01-01

    We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC′) (determined to be 13 mg g−1). Addition of the surfactant at a concentration below the CMC′ (2 mg g−1) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC′ (10 mg g−1), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC′ (40 mg g−1) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulated Rhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenes populations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas and Alcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization. PMID:10877792

  10. The role of various surfactants on the release of salbutamol from suppositories.

    PubMed

    Hanaee, J; Javadzadeh, Y; Taftachi, S; Farid, D; Nokhodchi, A

    2004-11-01

    Salbutamol is a selective beta(2)-adrenoreceptor agonist with different pharmacological effects. In this research because of the simplicity of suppository application in elderly and its higher plasma concentration than tablets as well as its particular indication in premature labour, salbutamol suppositories were prepared. The suppositories were formulated containing 10 mg of the drug and Witepsol H15, the oleaginous soluble base using melting method. To optimize the release rate of drug, different surfactants namely, sodium lauryl sulphate (SLS) as an ionic surfactant and Tween 80 as well as Arlacel 60 as non-ionic surfactants with different HLBs were chosen. The effect of surfactant concentration on the release rate of salbutamol from suppositories were also investigated. All prepared formulations fulfilled the specifications set down in British Pharmacopoeia. The results showed that Tween 80 (2%w/w) and SLS (0.75%w/w) caused an increase in dissolution rate of salbutamol from suppositories. As anionic surfactants, such as SLS, cause greater damage on mucosa than non-ionic surfactant, such as Tween 80, this study recommended that Tween 80 could be added in suppository formulation in order to increase the dissolution rate of salbutamol. It was also shown that the release rate of salbutamol altered linearly with the amount of Tween 80 in suppository formulations.

  11. A Computational Study of the Rheology and Structure of Surfactant Covered Droplets

    NASA Astrophysics Data System (ADS)

    Maia, Joao; Boromand, Arman

    Using different types of surface-active agents are ubiquitous in different industrial applications ranging from cosmetic and food industries to polymeric nano-composite and blends. This allows to produce stable multiphasic systems like foams and emulsions whose stability and shelf-life are directly determined by the efficiency and the type of the surfactant molecules. Moreover, presence and self-assembly of these species on an interface will display complex dynamics and structural evolution under different processing conditions. Analogous to bulk rheology of complex systems, surfactant covered interfaces will response to an external mechanical forces or deformation differently depends on the molecular configuration and topology of the system constituents. Although the effect of molecular configuration of the surface-active molecules on the planar interfaces has been studied both experimentally and computationally, it remains challenging from both experimental and computational aspects to track efficiency and effectiveness of different surfactant molecules with different molecular geometries on curved interfaces. Using Dissipative Particle Dynamics, we have studies effectiveness and efficiency of different surfactant molecules on a curved interface in equilibrium and far from equilibrium. Interfacial tension is calculated for linear and branched surfactant with different hydrophobic and hydrophilic tail and head groups with different branching densities. Deformation parameter and Taylor plots are obtained for individual surfactant molecules under shear flow.

  12. Impact of self-assembled surfactant structures on rheology of concentrated nanoparticle dispersions.

    PubMed

    Zaman, A A; Singh, P; Moudgil, B M

    2002-07-15

    Rheological behavior of surfactant-stabilized colloidal dispersions of silica particles under extreme conditions (low pH, high ionic strength) has been investigated in relation to interparticle forces and stability of the dispersion. The surfactant used as the dispersing agent was C(12)TAB, a cationic surfactant. Stability analysis through turbidity measurements indicated that there is a sharp increase in the stability of the dispersion when the surfactant concentration is in the range of 8 to 10 mM in the system. The state of the dispersion changes from an unstable regime to a stable regime above a critical concentration of C(12)TAB in the system. In the case of interaction forces measured between the silica substrate and AFM tip, no repulsive force was observed up to a surfactant concentration of 8 mM and a transition from no repulsive forces to steric repulsive forces occurred between 8 and 10 mM. Rheological measurements as a function of C(12)TAB concentration indicated a significant decrease in the viscosity and linear viscoelastic functions of the dispersion over the same range of surfactant concentration (8 to 10 mM C(12)TAB), showing a strong correlation between the viscosity behavior, interparticle forces, and structure development in the dispersion.

  13. Release of metals from metal-amended soil treated with a sulfosuccinamate surfactant: effects of surfactant concentration, soil/solution ratio, and pH.

    PubMed

    Hernández-Soriano, Maria del Carmen; Peña, Aránzazu; Dolores Mingorance, Ma

    2010-01-01

    Anionic surfactants, mainly sulfosuccinamates, can be found in soils as the result of sludge application, wastewater irrigation, and remediation processes. Relatively high concentrations of surfactants together with multimetals can represent an environmental risk. A study was performed to assess the potential of the anionic surfactant Aerosol 22 (A22) for release of Cd, Cu, Pb, and Zn from a metal-amended soil representative of a Mediterranean area. Metal desorption was performed by batch experiments and release kinetics were assessed. Response surface methodology was applied to determine the influence of A22 concentration and the surfactant/soil ratio, as extraction key factors. An increase in solution/soil ratio to 100 (mL g(-1)) caused higher metal release. Leaching predictions found Pb to have the lowest and Cd the highest hazard. Metal release was highly dependent on pH. When extraction was made at pH less than 7, low or negligible amounts of metals were leached, whereas an increase to pH 7 caused desorption rates of 50 to 55% for Cd, Cu, and Zn but only 35% for Pb. Complexed metal-carboxylic groups from A22 were mainly responsible for its higher extractive capacity, especially of Cd and Cu.

  14. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the...

  15. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the...

  16. The effects of non-ionic polymeric surfactants on the cleaning of biofouled hydrogel materials.

    PubMed

    Guan, Allan; Li, Zhenyu; Phillips, K Scott

    2015-01-01

    Block co-polymer surfactants have been used for cleaning hydrogel medical devices that contact the body (e.g., contact lenses) because of their biocompatibility. This work examined the relationship between concentration and detergency of two non-ionic polymeric surfactants (Pluronic F127 and Triton X-100) for cleaning protein soil, with anionic surfactants (sodium dodecyl sulfate and sodium laureth sulfate) as positive controls. Surface plasmon resonance was used to quantify removal of simulated tear soil from self-assembled monolayer surfaces, and a microplate format was used to study the removal of fluorescently labeled soil proteins from contact lenses. While detergency increased as a function of concentration for anionic surfactants, it decreased with concentration for the two polymeric surfactants. The fact that the protein detergency of some non-ionic polymeric surfactants did not increase with concentration above the critical micelle concentration could have implications for optimizing the tradeoff between detergency and biocompatibility.

  17. Functional significance and control of release of pulmonary surfactant in the lizard lung.

    PubMed

    Wood, P G; Daniels, C B; Orgeig, S

    1995-10-01

    The amount of pulmonary surfactant in the lungs of the bearded dragon (Pogona vitticeps) increases with increasing body temperature. This increase coincides with a decrease in lung compliance. The relationship between surfactant and lung compliance and the principal stimuli for surfactant release and composition (temperature, ventilatory pattern, and autonomic neurotransmitters) were investigated. We chose to investigate ventilatory pattern (which causes mechanical deformation of the type II cells) and adrenergic agents, because they are the major stimuli for surfactant release in mammals. To examine the effects of body temperature and ventilatory pattern, isolated lungs were ventilated at either 18 or 37 degrees C at different ventilatory regimens. An isolated perfused lung preparation at 27 degrees C was used to analyze the effects of autonomic neurotransmitters. Ventilatory pattern did not affect surfactant release, composition, or lung compliance at either 18 or 37 degrees C. An increase in temperature increased phospholipid reuptake and disproportionately increased cholesterol degradation/uptake. Epinephrine and acetylcholine stimulated phospholipid but not cholesterol release. Removal of surfactant caused a decrease in compliance, regardless of the experimental temperature. Temperature appears to be the principal determinant of lung compliance in the bearded dragon, acting directly to increase the tone of the smooth muscle. Increasing the ambient temperature may result in greater surfactant turnover by increasing cholesterol reuptake/degradation directly and by increasing circulating epinephrine, thereby indirectly increasing phospholipid secretion. We suggest that changing ventilatory pattern may be inadequate as a mechanism for maintaining surfactant homeostasis, given the discontinuous, highly variable reptilian breathing pattern.

  18. Efficacy of surfactant at different gestational ages for infants with respiratory distress syndrome

    PubMed Central

    Wang, Li; Chen, Long; Li, Renjun; Zhao, Jinning; Wu, Xiushuang; Li, Xue; Shi, Yuan

    2015-01-01

    Since exogenous surfactant replacement therapy was first used to prevent respiratory distress syndrome (RDS), it has become the main method for treatment of RDS. However, in some infants, death is inevitable despite intensive care and surfactant replacement therapy, especially in near-term and term infants. The main purpose of this study was to compare the therapeutic effect of pulmonary surfactant for infants at different gestational ages and to investigate whether exogenous surfactant replacement therapy is effective for all newborns with RDS. Data on surfactant replacement therapy, including blood gas, oxygenation function parameters and therapy results, were collected from 135 infants who were diagnosed with RDS during three years at a tertiary neonatal intensive care unit. According to gestational age, the subjects were classified into three groups as follows: group 1: gestational age <35 weeks (n=54); group 2: 35 weeks ≤ gestational age <37 weeks (n=35); group 3: gestational age ≥37 weeks (n=46). Six hours after surfactant was given, there were significantly better blood gas results in group 1 and worse results in groups 2 and 3. Similar oxygenation function parameter results were observed in the three groups. In addition, there was a trend toward an increased rate of repeated surfactant administration with increasing gestational age. For near-term and term infants, the efficacy of surfactant therapy was not as good as it was for preterm infants. The causes of RDS in near-term and term infants might be different from those in preterm infants and should be studied further. PMID:26550326

  19. Starbursts and Wispy Drops : Surfactants Spreading on Gel Substrates

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Daniels, Karen; Behringer, Robert

    2005-11-01

    We report a phase diagram for a novel instability seen in drops of nonionic surfactant solution (Triton X-305) spreading on viscoelastic agar gel substrate . This system allows us to examine the effect of varying the effective fluidity/stiffness of aqueous substrates. The morphology is strongly affected by the substrate fluidity, ranging from spreading starbursts of arms on weak gels, to wispy drops on intermediate strength gels, to circular drops on stiff gels. We analyze the dynamics of spreading in the starburst phase, where the arm length grows as t ^3/4 at early times, independent of the gel strength and surfactant concentration. The number of arms is proportional to the surfactant concentration and inversely proportional to the gel strength. Ongoing work is exploring the effects of changing the drop volume.

  20. Study of surfactant mediated growth of Ni/V superlattices

    NASA Astrophysics Data System (ADS)

    Amir, S. M.; Gupta, Mukul; Potdar, Satish; Gupta, Ajay; Stahn, Jochen

    2013-07-01

    The Ni/V multilayers are useful as soft x-ray mirrors, polarizers, and phase retarders. For these applications, it is necessary that the interfaces roughness and interdiffusion must be as small as possible. The V-on-Ni and Ni-on-V interfaces are asymmetric due to the difference in the surface free energy of Ni and V. In this work, we report Ag surfactant mediated growth of Ni/V superlattices prepared using ion beam sputter deposition technique. These superlattices were studied using x-ray and neutron scattering techniques. It was found that when added in an optimum amount, Ag surfactant results in reduced interface roughness and interdiffusion across the interfaces. Obtained results can be understood with the surfactant floating-off mechanism leading to a balance in the surface free energy of Ni and V.

  1. Structural and electrical study of ZrO{sub 2} nanoparticles modified with surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidhu, Gaganpreet Kaur; Kumar, Rajesh, E-mail: rajeshbaboria@gmail.com; Tripathi, S. K.

    2015-06-24

    Zirconia ceramic is one of the most investigated materials for its outstanding mechanical properties and ionic conduction properties, due to its high oxygen ion conduction. In order to achieve novel properties of zirconia nanoparticles, nanoparticles of zirconia are modified by using two different surfactants (SDS and CTAB) were prepared by in-situ method using zirconia/surfactant dispersions. Zirconia nanoparticles with surfactant (SDS or CTAB) were synthesized by hydrothermal method. The structural and optical properties of Zirconia/surfactant nanoparticles were investigated comprehensively by X-Ray diffraction (XRD), and electrical measurements. XRD highlights the crystalline behavior of nanoparticles.

  2. Factors influencing the mechanism of surfactant catalyzed reaction of vitamin C-ferric chloride hexahydrate system

    NASA Astrophysics Data System (ADS)

    Farrukh, Muhammad Akhyar; Kauser, Robina; Adnan, Rohana

    2013-09-01

    The kinetics of vitamin C by ferric chloride hexahydrate has been investigated in the aqueous ethanol solution of basic surfactant viz. octadecylamine (ODA) under pseudo-first order conditions. The critical micelle concentration (CMC) of surfactant was determined by surface tension measurement. The effect of pH (2.5-4.5) and temperature (15-35°C) in the presence and absence of surfactant were investigated. Activation parameters, Δ E a, Δ H #, Δ S #, Δ G ≠, for the reaction were calculated by using Arrhenius and Eyring plot. Surface excess concentration (Γmax), minimum area per surfactant molecule ( A min), average area occupied by each molecule of surfactant ( a), surface pressure at the CMC (Πmax), Gibb's energy of micellization (Δ G M°), Gibb's energy of adsorption (Δ G ad°), were calculated. It was found that the reaction in the presence of surfactant showed faster oxidation rate than the aqueous ethanol solution. Reaction mechanism has been deduced in the presence and absence of surfactant.

  3. Surfactants in the sea-surface microlayer and atmospheric aerosol around the southern region of Peninsular Malaysia.

    PubMed

    Jaafar, Shoffian Amin; Latif, Mohd Talib; Chian, Chong Woan; Han, Wong Sook; Wahid, Nurul Bahiyah Abd; Razak, Intan Suraya; Khan, Md Firoz; Tahir, Norhayati Mohd

    2014-07-15

    This study was conducted to determine the composition of surfactants in the sea-surface microlayer (SML) and atmospheric aerosol around the southern region of the Peninsular Malaysia. Surfactants in samples taken from the SML and atmospheric aerosol were determined using a colorimetric method, as either methylene blue active substances (MBAS) or disulphine blue active substances (DBAS). Principal component analysis with multiple linear regressions (PCA-MLR), using the anion and major element composition of the aerosol samples, was used to determine possible sources of surfactants in atmospheric aerosol. The results showed that the concentrations of surfactants in the SML and atmospheric aerosol were dominated by anionic surfactants and that surfactants in aerosol were not directly correlated (p>0.05) with surfactants in the SML. Further PCA-MLR from anion and major element concentrations showed that combustion of fossil fuel and sea spray were the major contributors to surfactants in aerosol in the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Modification to the renneting functionality of casein micelles caused by nonionic surfactants.

    PubMed

    Ion Titapiccolo, G; Corredig, M; Alexander, M

    2010-02-01

    Nonionic emulsifiers of small molecular weight such as polysorbates are widely used in dairy products. Nevertheless, the mechanism of interaction between these surfactants and milk proteins is not yet fully understood. This work investigated the effect of Tween 20 on casein micelles by studying the renneting behavior of skim milk in the presence of different amounts of surfactant. The presence of Tween accelerated both the first and second phase of renneting in skim milk. The gel obtained showed a higher elastic modulus than that of a skim milk gel, but also showed similar brittleness. By varying the size of the surfactant (Tween 20 or Tween 80) as well as the colloidal state of the proteins in solution, it was possible to demonstrate that the surfactant did not have a direct effect on the activity of the enzyme, but rather had a direct effect on the casein micelles. The effect of surfactant on the gelation point was reduced by increasing surfactant size. The presence of Tween caused an increase in the size of the micelles without affecting their stability. In addition, Tween did not alter the amount of caseins free in the serum phase. These findings can contribute to improving our ability to custom design final structures in rennet-induced gels, though further studies are needed to fully understand the mechanism at play when casein micelles are enzymatically cleaved in the presence of nonionic surfactants of small molecular weight. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Anaerobic digestion of aircraft deicing fluid wastes: interactions and toxicity of corrosion inhibitors and surfactants.

    PubMed

    Gruden, Cyndee L; Hernandez, Mark

    2002-01-01

    Corrosion inhibitors and surfactants are present in aircraft deicing fluids (ADFs) at significant concentrations (> 1% w/w). The purpose of this research was to study the interactions of a common nonionic surfactant with the commercially significant corrosion inhibitors used in modern ADF (4- and 5-methylbenzotriazole [MeBT]), and to determine the effects of their mixture on the conventional anaerobic digestion process. In mesophilic anaerobic microcosms codigesting wastewater solids, propylene glycol, and MeBT, increasing surfactant levels resulted in enhanced MeBT sorption on digester solids. As judged by anaerobic toxicity assays, responses from digesters containing surfactant concentrations below their critical micelle concentration (CMC) suggested that low nonionic surfactant concentrations could facilitate a reduction in the apparent toxicity of MeBT. In microcosms exposed to surfactant concentrations above their CMC, no increase in MeBT solubility was observed, and the anaerobic toxicity response corresponded to control systems not containing surfactant. Direct microscopic measurements of digesting biomass using fluorescent phylogenetic probes (fluorescent in situ hybridization) revealed that members of the domain Bacteria were more sensitive to MeBT in the presence of surfactant than were members of the domain Archaea.

  6. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis.

    PubMed

    Koziróg, Anna; Kręgiel, Dorota; Brycki, Bogumił

    2017-11-22

    We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-( N,N -dimethyl- N -dodecylammonium bromide) (C6), synthesized by the reaction of N,N -dimethyl- N- dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis , a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.

  7. Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials.

    PubMed

    Guégan, Régis; Veron, Emmanuel; Le Forestier, Lydie; Ogawa, Makoto; Cadars, Sylvian

    2017-09-26

    The aggregation of surfactants on solid surfaces as they are adsorbed from solution is the basis of numerous technological applications such as colloidal stabilization, ore flotation, and floor cleaning. The understanding of both the structure and the dynamics of surfactant aggregates applies to the development of alternative ways of preparing hybrid layered materials. For this purpose, we study the adsorption of the triethylene glycol mono n-decyl ether (C 10 E 3 ) nonionic surfactant onto a synthetic montmorillonite (Mt), an aluminosilicate clay mineral for organoclay preparation with important applications in materials sciences, catalysis, wastewater treatment, or as drug delivery. The aggregation mechanisms follow those observed in an analogous natural Mt, with the condensation of C 10 E 3 in a bilayer arrangement once the surfactant self-assembles in a lamellar phase beyond the critical micelle concentration, underlining the importance of the surfactant state in solution. Solid-state 1 H nuclear magnetic resonance (NMR) at fast magic-angle spinning (MAS) and high magnetic field combined with 1 H- 13 C correlation experiments and different types of 13 C NMR experiments selectively probes mobile or rigid moieties of C 10 E 3 in three different aggregate organizations: (i) a lateral monolayer, (ii) a lateral bilayer, and (iii) a normal bilayer. High-resolution 1 H{ 27 Al} CP- 1 H- 1 H spin diffusion experiments shed light on the proximities and dynamics of the different fragments and fractions of the intercalated surfactant molecules with respect to the Mt surface. 23 Na and 1 H NMR measurements combined with complementary NMR data, at both molecular and nanometer scales, precisely pointed out the location of the C 10 E 3 ethylene oxide hydrophilic group in close contact with the Mt surface interacting through ion-dipole or van der Waals interactions.

  8. Effect of surfactants on dielectric strength of crude oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunusov, A.A.

    1995-09-01

    In all the methods used for crude oil demulsification, including electrodemulsification, surfactants are used to aid the demulsification. Therefore, the present work has been aimed at studying the character and degree of influence of surfactants on the dielectric strength of crude oil. Our experiments were performed with a standard discharger at an AC frequency of 50 Hz. The high-voltage source was a universal breakdown unit of the UPU-1 type.

  9. Switching wormlike micelles of selenium-containing surfactant using redox reaction.

    PubMed

    Zhang, Yongmin; Kong, Weiwei; Wang, Cheng; An, Pengyun; Fang, Yun; Feng, Yujun; Qin, Zhirong; Liu, Xuefeng

    2015-10-14

    A novel redox-switchable wormlike micellar system was developed based on a mixture of selenium-containing zwitterionic surfactant and commercially available anionic surfactant sodium dodecyl sulfate, which reversibly and quickly responds to H2O2 and vitamin C, and shows circulatory gel/sol transition, reflecting changes in aggregate morphology from entangled worms to vesicles.

  10. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  11. Effect of Dialkyl Ammonium Cationic Surfactants on the Microfluidity of Membranes Containing Raft Domains.

    PubMed

    Uyama, Makoto; Inoue, Kaori; Kinoshita, Koichi; Miyahara, Reiji; Yokoyama, Hirokazu; Nakano, Minoru

    2018-01-01

    It has been reported that a lot of receptors localize in lipid raft domains and that the microfluidity of these domains regulates the activation of these receptors. In this study, we focused on the lipid raft and in order to evaluate the physicochemical effects of surfactants on microfluidity of lipid membranes, we used liposomes comprising of egg-yolk L-α-phosphatidylcholine, egg-yolk sphingomyelin, and cholesterol as a model of cell membranes containing raft domains. The microfluidity of the domains was characterized by fluorescence spectrometry using 1,6-diphenyl-1,3,5-hexatriene and 2-dimethylamino-6-lauroylnaphthalene. Among several surfactants, dialkylammonium-type cationic surfactants most efficiently increased the microfluidity. It is therefore concluded that (1) the electrostatic interaction between the cationic surfactant and eggPC/eggSM/cholesterol liposome could be important, (2) surfactants with alkyl chains more effectively inserted into membranes than those with acyl chains, and (3) cationic surfactants with lower T m values have a greater ability to increase the fluidity.

  12. Probing Nanoscale Thermal Transport in Surfactant Solutions

    PubMed Central

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  13. Mass spectrometry compatible surfactant for optimized in-gel protein digestion.

    PubMed

    Saveliev, Sergei V; Woodroofe, Carolyn C; Sabat, Grzegorz; Adams, Christopher M; Klaubert, Dieter; Wood, Keith; Urh, Marjeta

    2013-01-15

    Identification of proteins resolved by SDS-PAGE depends on robust in-gel protein digestion and efficient peptide extraction, requirements that are often difficult to achieve. A lengthy and laborious procedure is an additional challenge of protein identification in gel. We show here that with the use of the mass spectrometry compatible surfactant sodium 3-((1-(furan-2-yl)undecyloxy)carbonylamino)propane-1-sulfonate, the challenges of in-gel protein digestion are effectively addressed. Peptide quantitation based on stable isotope labeling showed that the surfactant induced 1.5-2 fold increase in peptide recovery. Consequently, protein sequence coverage was increased by 20-30%, on average, and the number of identified proteins saw a substantial boost. The surfactant also accelerated the digestion process. Maximal in-gel digestion was achieved in as little as one hour, depending on incubation temperature, and peptides were readily recovered from gel eliminating the need for postdigestion extraction. This study shows that the surfactant provides an efficient means of improving protein identification in gel and streamlining the in-gel digestion procedure requiring no extra handling steps or special equipment.

  14. Susceptibility of entomopathgenic fungi to OMRI certified surfactants for biopesticide applications

    USDA-ARS?s Scientific Manuscript database

    Three entomopathgenic fungi, Beauveria bassiana, Metarhizium brunneum,and Isaria fumosorosea were evaluated for their compatibility with six surfactants. The surfactants are certified to comply with the U.S. National organic standards and are permitted to be used in organic production systems. The f...

  15. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  16. Limiting solubilizing capacity of some nonionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, L.S.C.

    1980-12-01

    This report gives an account of the attempts to solubilize corn oil. A fixed quantity of corn oil or oily dispersion containing corn oil and a sorbitan ester was added to a series of 25 ml of polysorbate solutions of increasing concentration. This investigation showed that corn oil is not solubilized by either aqueous solutions of polyoxyethylene sorbitan esters or by a combination of these surfactants with sorbitan esters. The findings suggest that nonionic surfactants of the polyoxyethylene sorbitan ester type as well as the sorbitan esters have limiting capacities to solubilize extremely hydrophobic substances such as corn oil. 19more » references.« less

  17. The Effect Of Organic Surfactants On The Properties Of Common Hygroscopic Particles: Effective Densities, Reactivity And Water Evaporation Of Surfactant Coated Particles

    NASA Astrophysics Data System (ADS)

    Cuadrarodriguez, L.; Zelenyuk, A.; Imre, D.; Ellison, B.

    2006-12-01

    Measurements of atmospheric aerosol compositions routinely show that organic compounds account for a very large fraction of the particle mass. The organic compounds that make up this aerosol mass represent a wide range of molecules with a variety of properties. Many of the particles are composed of hygroscopic salts like sulfates, nitrates and sea-salt internally mixed with organics. While the properties of the hygroscopic salts are known, the effect of the organic compounds on the microphysical and chemical properties which include CCN activity is not clear. .One particularly interesting class of internally mixed particles is composed of aqueous salts solutions that are coated with organic surfactants which are molecules with long aliphatic chain and a water soluble end. Because these molecules tend to coat the particles' surfaces, a monolayer might be sufficient to drastically alter their hygroscopic properties, their CCN activity, and reactivity. The aliphatic chains, being exposed to the oxidizing atmosphere are expected to be transformed through heterogeneous chemistry, yielding complex products with mixed properties. We will report the results from a series of observations on ammonium sulfate, sodium chloride and sea salt particles coated with three types of surfactant molecules: sodium lauryl sulfate, sodium oleate and laurtrimonium chloride. We have been able to measure the effective densities of internally mixed particles with a range of surfactant concentration that start below a monolayer and extend all the way to particles composed of pure surfactant. For many of the measurements the data reveal a rather complex picture that cannot be simply interpreted in terms of the known pure-compound densities. For unsaturated hydrocarbons we observed and quantified the effect of oxidation by ozone on particle size, effective density and individual particle mass spectral signatures. One of the more important properties of these surfactants is that they can form a

  18. Effect of Molecular Structure of Cationic Surfactants on Biophysical Interactions of the Surfactant-modified Nanoparticles with a Model Membrane and Cellular Uptake

    PubMed Central

    Peetla, Chiranjeevi; Labhasetwar, Vinod

    2009-01-01

    The aim of this study was to test the hypothesis that the molecular structure of cationic surfactants at the nanoparticle (NP)-interface influences the biophysical interactions of NPs with a model membrane and cellular uptake of NPs. Polystyrene NPs (surfactant free, 130 nm) were modified with cationic surfactants. These surfactants were of either dichained (didodecyldimethylammonium bromide [DMAB]) or single chained (cetyltrimethylammonium bromide [CTAB] and dodecyltrimethylammonium bromide [DTAB]) forms, the latter two with different hydrophobic chain lengths. Biophysical interactions of these surfactant-modified NPs with an endothelial cell model membrane (EMM) were studied using a Langmuir film balance. Changes in surface pressure (SP) of EMM as a function of time following interaction with NPs and in the compression isotherm (π - A) of the lipid mixture of EMM in the presence of NPs were analyzed. Langmuir-Schaeffer (LS) films, which are EMMs that have been transferred onto a suitable substrate, were imaged by atomic force microscopy (AFM), and the images were analyzed to determine the mechanisms of the NP-EMM interaction. DMAB-modified NPs showed a greater increase in SP and a shift towards higher mean molecular area (mmA) than CTAB- and DTAB-modified NPs, indicating stronger interactions of DMAB-modified NPs with the EMM. However, analysis of the AFM phase and height images of the LS films revealed that both DMAB- and CTAB-modified NPs interacted with the EMM but via different mechanisms: DMAB-modified NPs penetrated the EMM, thus explaining the increase in SP, whereas CTAB-modified NPs anchored onto the EMM's condensed lipid domains, and hence did not cause any significant change in SP. Human umbilical vein endothelial cells showed greater uptake of DMAB- and CTAB-modified NPs than of DTAB-modified or unmodified NPs. We conclude that (i) the dichained and single-chained cationic surfactants on NPs have different mechanisms of interaction with the model

  19. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  20. Surfactant-enhanced disinfection of the human norovirus surrogate, Tulane virus, with organic acids and surfactant

    USDA-ARS?s Scientific Manuscript database

    Combination treatments of surfactants and phenolic or short-chained organic acids (SCOA) may act synergistically or additively as sanitizers to inactive foodborne viruses and prevent outbreaks. The purpose of this study was to investigate the effect of gallic acid (GA), tannic acid (TA), p-coumaric ...

  1. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    NASA Astrophysics Data System (ADS)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  3. Probing Conformational Changes and Interfacial Recognition Site of Lipases With Surfactants and Inhibitors.

    PubMed

    Mateos-Diaz, E; Amara, S; Roussel, A; Longhi, S; Cambillau, C; Carrière, F

    2017-01-01

    Structural studies on lipases by X-ray crystallography have revealed conformational changes occurring in the presence of surfactants/inhibitors and the pivotal role played by a molecular "lid" of variable size and structure depending on the enzyme. Besides controlling the access to the enzyme active site, the lid is involved in lipase activation, formation of the interfacial recognition site (IRS), and substrate docking within the active site. The combined use of surfactants and inhibitors has been critical for a better understanding of lipase structure-function relationships. An overview of crystal structures of lipases in complex with surfactants and inhibitors reveals common structural features and shows how surfactants monomers interact with the lid in its open conformation. The location of surfactants, inhibitors, and hydrophobic residues exposed upon lid opening provides insights into the IRS of lipases. The mechanism by which surfactants promote the lid opening can be further investigated in solution by site-directed spin labeling of lipase coupled to electron paramagnetic resonance spectroscopy. These experimental approaches are illustrated here by results obtained with mammalian digestive lipases, fungal lipases, and cutinases. © 2017 Elsevier Inc. All rights reserved.

  4. Adsorption of sugar surfactants at the air/water interface.

    PubMed

    Varga, Imre; Mészáros, Róbert; Stubenrauch, Cosima; Gilányi, Tibor

    2012-08-01

    The adsorption isotherms of n-decyl-β-D-glucoside (β-C(10)G(1)) as well as various n-alkyl-β-D-maltosides (β-C(n)G(2)) with n=8, 10, 12 and 14 were determined from surface tension measurements. Based on the analysis of the adsorption isotherms, the total free energy change of adsorption was determined and a novel method was proposed to determine the maximum adsorbed amount of surfactant. It can be concluded that the driving force for adsorption first increases with increasing adsorbed amount of the sugar surfactants and then levels off in a plateau. This peculiar behaviour is interpreted as formation of a thin liquid-like alkane film of overlapping alkyl chains at the air/water interface once a certain adsorbed amount is exceeded. The driving force of adsorption depends on the alkyl chain length only and is not affected by the type of the head group. The hydrophobic contribution to the standard free energy change of adsorption was compared with the values of sodium alkylsulfate and alkyltrimethylammonium bromide surfactants. This comparison reveals that the hydrophobic driving force of adsorption is the largest for the sodium alkylsulfates, whereas it is the same for the sugar surfactants and the alkyltrimethylammonium bromides. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Reductive dechlorination of chlorobenzenes in surfactant-amended sediment slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoof, P.L.; Jafvert, C.T.

    1996-11-01

    Microbial anaerobic dechlorination of hexachlorobenzene (HCB) was examined in sediment slurries amended with two classes of nonionic surfactant, polyoxyethylene (POE) sorbitan fatty acid esters (Tweens) and POE alcohols (Brijs). The rationale for surfactant addition was to increase the bioavailability of highly sorbed organic pollutants to degrading microorganisms by enhancing their solubility. The solubility of HCB was initially enhanced via micellar partitioning; however, primary degradation of most surfactants occurred within 10 d. Dechlorination activity was significantly reduced at POE alcohol concentrations above the critical micelle concentration (cmc), with or without the occurrence of surfactant degradation. Tween 80 decreased HCB dechlorination atmore » concentrations significantly above the cmc. At concentrations closer to the cmc, Tween 80 increased dechlorination rate constants four- to fivefold in acclimated slurries. Additions of Tween 80 at or below the cmc stimulated dechlorination activity in unacclimated slurries that exhibited very little activity in unamended controls. An average of 89% of HCB was dechlorinated after 90 d, compared to 20% in unamended sediments. No effect was observed for POE alcohols at these sub-cmc levels. The lack of a stimulated response for the POE alcohols suggests that Tween 80 may not be acting simply as a source of carbon or energy.« less

  6. A PIV Study of Drop-interface Coalescence with Surfactants

    NASA Astrophysics Data System (ADS)

    Weheliye, Weheliye Hashi; Dong, Teng; Angeli, Panagiota

    2017-11-01

    In this work, the coalescence of a drop with an aqueous-organic interface was studied by Particle Image Velocimetry (PIV). The effect of surfactants on the drop surface evolution, the vorticity field and the kinetic energy distribution in the drop during coalescence were investigated. The coalescence took place in an acrylic rectangular box with 79% glycerol solution at the bottom and Exxsol D80 oil above. The glycerol solution drop was generated through a nozzle fixed at 2cm above the aqueous/oil interface and was seeded with Rhodamine particles. The whole process was captured by a high-speed camera. Different mass ratios of non-ionic surfactant Span80 to oil were studied. The increase of surfactant concentration promoted deformation of the interface before the rupture of the trapped oil film. At the early stages after film rupture, two counter-rotating vortices appeared at the bottom of the drop which then travelled to the upper part. The propagation rates, as well as the intensities of the vortices decreased at high surfactant concentrations. At early stages, the kinetic energy was mainly distributed near the bottom part of the droplet, while at later stages it was distributed near the upper part of the droplet. Programme Grant MEMPHIS, Chinese Scholarship Council (CSC).

  7. Interactions of structurally modified surfactants with reservoir minerals: Calorimetric, spectroscopic and electrokinetic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaran, P.; Sivakumar, A.; Xu, Q.

    1991-03-01

    The objective of this project is to elucidate mechanisms of adsorption of structurally modified surfactants on reservoir minerals and to develop a full understanding of the effect of the surfactant structure on the nature of the adsorbed layers at the molecular level. An additional aim is to study the adsorption of surfactant mixtures on simple well-characterized minerals and on complex minerals representing real conditions. The practical goal of these studies is the identification of the optimum surfactant structures and their combinations for micellar flooding. In this work, the experiments on adsorption were focussed on the position of sulfonate and methylmore » groups on the aromatic ring of alkyl xylene sulfonates. A multi-pronged approach consisting of calorimetry, electrokinetics, wettability and spectroscopy is planned to elucidate the adsorption mechanism of surfactants and their mixtures on minerals such as alumina and kaolinite. 32 refs., 15 figs., 7 tabs.« less

  8. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon; Morrison, Bill

    2018-02-14

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  9. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  10. Improving reseeding success after catastrophic wildfire with surfactant seed coating technology

    USDA-ARS?s Scientific Manuscript database

    The application of soil surfactants in wildfire-affected ecosystems has been limited due to logistical and economic constraints associated with the standard practice of using large quantities of irrigation water as the surfactant carrier. We tested a potential solution to this problem that uses seed...

  11. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  12. Enhanced waterflooding design with dilute surfactant concentrations for North Sea conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michels, A.M.; Djojosoeparto, R.S.; Haas, H.

    1996-08-01

    Efficient selection procedures for surfactants have been applied to design a low-concentration surfactant-flooding process for North Sea oilfield application. Anionic surfactants of the propoxy ethoxy glyceryl sulfonate type can be used at 0.1 wt% concentrations together with sacrificial agents and without a polymer drive. Currently estimated unit technical costs (UTC`s)--at 8%--for application in the North Sea oil fields range frommore » $81 to $$94/incremental m{sup 3}, without taking uncertainty factors into account. Including such factors would likely add another $$31/m{sup 3} to the costs.« less

  13. Changes in transthoracic electrical impedance at high altitude.

    PubMed

    Hoon, R S; Balasubramanian, V; Tiwari, S C; Mathew, O P; Behl, A; Sharma, S C; Chadha, K S

    1977-01-01

    Mean transthoracic electrical impedance (impedance) which is inversely related to intrathoracic extravascular fluid volume was measured in 121 normal healthy volunteers at sea-level and at 3658 metres altitude. Fifty (group A) reached the high altitude location after an hour's journey in a pressurised aircraft. Twenty-five (group D) underwent slow road ascent including acclimatisation en route. Thirty permanent residents (group B) and 16 temporary residents at high altitude (group C) were also studied. Serial studies in the 30 subjects of group A who developed symptoms of high altidue sickness showed a significant decrease of impedance up to the fourth day of exposure to high altitude which later returned to normal. The 4 volunteers who developed severe symptoms showed the largest drop in impedance. A case of acute pulmonary oedema developing at 4300 metres showed an impedance value of 24-1 ohms on admission. After effective treatment the impedance increased by 11-9 to 36-0 ohms. Twenty asymptomatic subjects of group A and 25 of group D showed a small average increase in impedance values at high altitude. These obstructions suggest that measurement of transthoracic electrical impedance may be a valuable means of detecting incipient high altitude pulmonary oedema.

  14. Geometric beam coupling impedance of LHC secondary collimators

    NASA Astrophysics Data System (ADS)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  15. Regulation of pulmonary surfactant secretion in the developing lizard, Pogona vitticeps.

    PubMed

    Sullivan, Lucy C; Orgeig, Sandra; Daniels, Christopher B

    2002-11-01

    Pulmonary surfactant is a mixture of lipids and proteins that is secreted by alveolar type II cells in the lungs of all air-breathing vertebrates. Pulmonary surfactant functions to reduce the surface tension in the lungs and, therefore, reduce the work of breathing. In mammals, the embryonic maturation of the surfactant system is controlled by a host of factors, including glucocorticoids, thyroid hormones and autonomic neurotransmitters. We have used a co-culture system of embryonic type II cells and lung fibroblasts to investigate the ability of dexamethasone, tri-iodothyronine (T(3)), adrenaline and carbamylcholine (carbachol) to stimulate the cellular secretion of phosphatidylcholine in the bearded dragon (Pogona vitticeps) at day 55 (approx. 92%) of incubation and following hatching. Adrenaline stimulated surfactant secretion both before and after hatching, whereas carbachol stimulated secretion only at day 55. Glucocorticoids and triiodothyronine together stimulated secretion at day 55 but did not after hatching. Therefore, adrenaline, carbachol, dexamethasone and T(3), are all involved in the development of the surfactant system in the bearded dragon. However, the efficacy of the hormones is attenuated during the developmental process. These differences probably relate to the changes in the cellular environment during development and the specific biology of the bearded dragon.

  16. Manipulating Hydrophobic Interactions in Associative Polymer Solutions via Surfactant-Cyclodextrin Complexation

    NASA Astrophysics Data System (ADS)

    Talwar, Sachin; Harding, Jonathon; Khan, Saad A.

    2008-07-01

    Associative polymers in combination with cyclodextrin (CD) provide a potent tool to manipulate the solution rheology of aqueous solutions. In this study, we discuss the viability and scope of employing surfactants in such systems to facilitate a more versatile and effective tailoring of rheological properties. A model hydrophobically modified alkali-soluble emulsion (HASE) polymer is used which forms a transient physical network of intra- and inter-molecular hydrophobic junctions in solution arising from the interactions between hydrophobic groups grafted on the polymer backbone. The presence of these hydrophobic junctions significantly enhances the solution rheological properties with both the steady state viscosity and dynamic moduli exhibiting an increase by several orders of magnitude. The ability of nonionic surfactants to modulate and recover the hydrophobic interactions in these polymer solutions in the presence of cyclodextrin is examined. The presence of either a- or β-CD results in a dramatic decrease in viscosity and viscoelastic properties of the HASE polymer solution resulting from the encapsulation of polymer hydrophobes by CDs. Addition of nonionic surfactants to such systems promotes a competition between CDs and surfactant molecules to complex with polymer hydrophobes thereby altering the hydrophobic interactions. In this regard, nonylphenol ethoxylates (NPe) with different ethylene oxide (EO) chain lengths, which determine the surfactant hydrophilic-lipophilic balance (HLB), are used.

  17. Surfactant-associated bacteria in the near-surface layer of the ocean.

    PubMed

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-12

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.

  18. Surfactant-associated bacteria in the near-surface layer of the ocean

    PubMed Central

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-01

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514

  19. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    PubMed

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Search of non-ionic surfactants suitable for micellar liquid chromatography.

    PubMed

    Peris-García, Ester; Rodríguez-Martínez, Jorge; Baeza-Baeza, Juan J; García-Alvarez-Coque, María Celia; Ruiz-Angel, María José

    2018-06-19

    Most reports in reversed-phase liquid chromatography (RPLC) with micellar mobile phases make use of the anionic sodium dodecyl sulfate. This surfactant masks efficiently the silanol groups that are the origin of the poor efficiencies and tailing peaks observed for basic compounds in conventional RPLC. However, it has the handicap of yielding excessive retention, which forces the addition of an organic solvent to reduce the retention times to practical values. Other surfactants, such as the non-ionic polyoxyethylene(23)lauryl ether (Brij-35), are rarely used. Brij-35 allows the separation of a large range of analytes in adequate retention times, without the need of adding an organic solvent to the mobile phase. However, this non-ionic surfactant shows irreversible adsorption on chromatographic columns and peak shape is poorer. Therefore, the search of non-ionic surfactants with similar properties to Brij-35, but showing reversible adsorption and better peak shape, can be of great interest. In this work, the adequacy of several non-ionic surfactants as modifiers in RPLC has been explored, being polyoxyethylene(10)tridecyl ether particularly attractive. The separation of different types of compounds was checked: sulfonamides (acidic), β-adrenoceptor antagonists and tricyclic antidepressants (basic with diverse polarity), and flavonoids (with and without hydroxyl groups on the aromatic rings). The chromatographic behaviors were examined in terms of retention and peak shape. The results were compared with those obtained with Brij-35.

  1. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  2. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    PubMed

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  3. Use of surfactants to control island size and density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrell, Jason; Liu, Feng; Stringfellow, Gerald B.

    Methods of controlling island size and density on an OMVPE growth film may comprise adding a surfactant at a critical concentration level, allowing a growth phase for a first period of time, and ending the growth phase when desired island size and density are achieved. For example, the island size and density of an OMVPE grown InGaN thin film may be controlled by adding an antimony surfactant at a critical concentration level.

  4. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia

    2017-07-01

    Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets

  5. Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface.

    PubMed

    Jin, Jingyu; Li, Xiaoyan; Geng, Jiafeng; Jing, Dengwei

    2018-06-06

    Combinations of nanoparticles and surfactants have been widely employed in many industrial processes, i.e., boiling and condensation in heat transfer and hydraulic fracturing in shale oil and gas production, etc. However, the underlying mechanism for various phenomena resulting from the addition of nanoparticles into the surfactant solutions is still unclear. For instance, there are contradictory conclusions from the literature regarding the variations of surface tension upon the addition of nanoparticles into surfactant solutions. In this work, the dominating factors determining if the surface activity of the surfactant solution will increase or conversely decrease when adding certain kinds of nanoparticles have been investigated. Two typical hydrophilic nanoparticles, SiO2 and TiO2 with anionic or cationic surfactants, respectively, have been considered. The surface tension has been measured in a wide range of nanoparticle and surfactant concentrations. It was found that the surface tension of the ionic surfactant solution can be further reduced only if nanoparticles of the same charge were added. For instance, a system containing 0.25 CMC SDS and 1 wt% SiO2 behaves similar to a 0.34 CMC SDS-only solution. Interestingly, the observed synergistic effect is found to be more significant if the surfactant concentration is much lower than its CMC for a given nanoparticle content. Moreover, the effect is perfectly reversible. When the nanoparticles were separated from the system, the surface tension values recovered fully to that of the pure surfactants. If nanoparticles of opposite charge were added, however, the surface tension of the surfactant solution increased. Zeta potential measurement and centrifugal treatment have been employed to reveal the interplay between nanoparticles and surfactants and the adsorption behavior of their assemblies at the liquid/air interface. Based on the experimental outcomes, a possible physical mechanism was proposed. It was concluded

  6. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Vishvakarma, Vijay K.; Kumari, Kamlesh; Patel, Rajan; Dixit, V. S.; Singh, Prashant; Mehrotra, Gopal K.; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-01

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation.

  7. A novel approach to the measurement of surfactant parameters in arthropod digestive juices.

    PubMed

    Romih, Tea; Kogej, Ksenija; Drobne, Damjana

    2016-05-01

    In arthropods, the determination of two important parameters of digestive juices, i.e. the total surfactant concentration and the critical micelle concentration (CMC), is challenging due to small sample volumes and low surfactant concentrations. In this work, we report a successful implementation of potentiometric titrations using the surfactant ion-selective electrode (SISE) and the pyrene fluorescence method (PFM) for the determination of the total surfactant concentration and CMC in the digestive juice of terrestrial isopod crustaceans Porcellio scaber. Pooled digestive juice extracts of four (SISE) or two (PFM) animals were used per measurement run. In both cases, digestive juice extracts in 100 μL of deionized water were sufficient for one measurement run. The total surfactant concentration of P. scaber digestive juice was determined to be 9.2 ± 3.5mM and the CMC was approximately 90 μM. Our work presents an important improvement towards easy CMC determination in small volume samples in comparison with the commonly used stalagmometric technique, where much larger sample volumes are usually needed. To date, the total surfactant concentration was not measured in the digestive juices of arthropods other than Homarus vulgaris, Astacus leptodactylus and Cancer pagurus, for which complex separation and analytical techniques were required. Our results obtained by SISE and PFM therefore present the first successful quantification of surfactants and their CMC in small volumes of arthropod digestive juice without prior separation or purification techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The fate of instilled pulmonary surfactant in normal and quartz-treated rats.

    PubMed Central

    Lewis, R W; Harwood, J L; Richards, R J

    1987-01-01

    Naturally prepared radiolabelled pulmonary surfactant can be rapidly cleared from the alveolar surface to the lung tissue after intratracheal instillation into experimental rats. This clearance is both time- and dose-dependent, a large dose (10 mg/animal) becoming associated with lung tissue more rapidly than a smaller more physiological dose (0.75 mg/animal). The data indicate that extracellular dipalmitoyl-phosphatidylcholine, the major component of pulmonary surfactant, is not catabolized at the alveolar surface. Alveolar free cells (mainly macrophages) appear to play a minor role in surfactant clearance. Quartz-induced phospholipidosis does not lead to an alteration in the rate of bulk surfactant clearance from the alveolar surface, although the initial distribution of the removed phospholipid complex may change in relation to the enlarged heterogenous free cell population. PMID:2821988

  9. Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations

    DOE PAGES

    Chien, Szu-Chia; Pérez-Sánchez, Germán; Gomes, José R. B.; ...

    2017-02-17

    Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant–water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems—in the concentration range where pure surfactant solutions yieldmore » a liquid crystal phase—the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phase-separated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S family of materials.« less

  10. Effect of Fluorocarbon and Hydrocarbon Chain Lengths in Hybrid Surfactants for Supercritical CO2.

    PubMed

    Sagisaka, Masanobu; Ono, Shinji; James, Craig; Yoshizawa, Atsushi; Mohamed, Azmi; Guittard, Frédéric; Rogers, Sarah E; Heenan, Richard K; Yan, Ci; Eastoe, Julian

    2015-07-14

    Hybrid surfactants containing both fluorocarbon (FC) and hydrocarbon (HC) chains have recently been shown to solubilize water and form elongated reversed micelles in supercritical CO2. To clarify the most effective FC and HC chain lengths, the aggregation behavior and interfacial properties of hybrid surfactants FCm-HCn (FC length m/HC length n = 4/2, 4/4, 6/2, 6/4, 6/5, 6/6, and 6/8) were examined in W/CO2 mixtures as functions of pressure, temperature, and water-to-surfactant molar ratio (W0). The solubilizing power of hybrid surfactants for W/CO2 microemulsions was strongly affected by not only the FC length but also by that of the HC. Although the surfactants having short FC and/or HC tails (namely, m/n = 4/2, 4/4, and 6/2) did not dissolve in supercritical CO2 (even at ∼17 mM, ≤400 bar, temperature ≤ 75 °C, and W0 = 0-40), the other hybrid surfactants were able to yield transparent single-phase W/CO2 mixtures identified as microemulsions. The solubilizing power of FC6-HCm surfactants reached a maximum (W0 ∼ 80 at 45 °C and 350 bar) with a hydrocarbon length, m, of 4. The W0 value of 80 is the highest for a HC-FC hybrid surfactant, matching the highest value reported for a FC surfactant which contained more FC groups. High-pressure small-angle neutron scattering measurements from FCm-HCn/D2O/CO2 microemulsions were consistent with growth of the microemulsion droplets with increasing W0. In addition, not only spherical reversed micelles but also nonspherical assemblies (rodlike or ellipsoidal) were found for the systems with FC6-HCn (n = 4-6). At fixed surfactant concentration and W0 (17 mM and W0 = 20), the longest reversed micelles were obtained for FC6-HC6 where a mean aspect ratio of 6.3 was calculated for the aqueous cores.

  11. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  12. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE PAGES

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie; ...

    2017-03-22

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  13. The effect of surfactants on path instability of a rising bubble

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshiyuki; Takagi, Shu; Matsumoto, Yoichiro

    2013-11-01

    We experimentally investigate the surfactant effect on path instability of an air bubble rising in quiescent water. An addition of surfactant varies the gas-water boundary condition from zero shear stress to non-zero shear stress. We report three main findings: firstly, while the drag force acting on the bubble increases with the surfactant concentration as expected, the lift force shows a non-monotonic behavior; secondly, the transient trajectory starting from helical to zigzag is observed, which has never been reported in the case of purified water; lastly, a bubble with the intermediate slip conditions between free-slip and no-slip show a helical motion for a broad range of the Reynolds number. Aforementioned results are rationalized by considering the adsorption-desorption kinetics of the surfactants on gas-water interface and the wake dynamics. Y.T. thanks for financial support from Grant-in-Aid for JSPS Fellows (20-10701). We also thank for Grant-in-Aid for Scientific Research (B) (21360079).

  14. Stable finite element approximations of two-phase flow with soluble surfactant

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2015-09-01

    A parametric finite element approximation of incompressible two-phase flow with soluble surfactants is presented. The Navier-Stokes equations are coupled to bulk and surfaces PDEs for the surfactant concentrations. At the interface adsorption, desorption and stress balances involving curvature effects and Marangoni forces have to be considered. A parametric finite element approximation for the advection of the interface, which maintains good mesh properties, is coupled to the evolving surface finite element method, which is used to discretize the surface PDE for the interface surfactant concentration. The resulting system is solved together with standard finite element approximations of the Navier-Stokes equations and of the bulk parabolic PDE for the surfactant concentration. Semidiscrete and fully discrete approximations are analyzed with respect to stability, conservation and existence/uniqueness issues. The approach is validated for simple test cases and for complex scenarios, including colliding drops in a shear flow, which are computed in two and three space dimensions.

  15. Synthesis and bio-physicochemical properties of amide-functionalized N-methylpiperazinium surfactants.

    PubMed

    Chauhan, Vinay; Singh, Sukhprit; Mishra, Rachana; Kaur, Gurcharan

    2014-12-15

    Four new amide functionalized N-methylpiperazinium amphiphiles having tetradecyl, hexadecyl alkyl chain lengths and counterions; chloride or bromide have been synthesized and characterized by various spectroscopic techniques. These new surfactants have been investigated in detail for their self-assembling behavior by surface tension, conductivity and fluorescence measurements. The thermodynamic parameters of these surfactants indicate that micellization is exothermic and entropy-driven. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) experiments have been performed to insight the aggregate size of these cationics. Thermal degradation of these new surfactants has also been evaluated by thermal gravimetric analysis (TGA). These new surfactants form stable complexes with DNA as acknowledged by agarose gel electrophoresis, ethidium bromide exclusion and zeta potential measurements. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    PubMed

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  17. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  18. Stimulation of surfactant phospholipid biosynthesis in the lungs of rats treated with silica.

    PubMed Central

    Miller, B E; Hook, G E

    1988-01-01

    The effects of intratracheally instilled silica (10 mg/rat) on the biosynthesis of surfactant phospholipids was investigated in the lungs of rats. The sizes of the intracellular and extracellular pools of surfactant phospholipids were measured 7, 14 and 28 days after silica exposure. The ability of lung slices to incorporate [14C]choline and [3H]palmitate into surfactant phosphatidylcholine (PC) and disaturated phosphatidylcholine (DSPC) was also investigated. Both intra- and extra-cellular pools of surfactant phospholipids were increased by silica treatment. The intracellular pool increased linearly over the 28-day time period, ultimately reaching a size 62-fold greater than controls. The extracellular pool also increased, but showed a pattern different from that of the intracellular pool. The extracellular pool increased non-linearly up to 14 days, and then declined. At its maximum, the extracellular pool was increased 16-fold over the control. The ability of lung slices to incorporate phospholipid precursors into surfactant-associated PC and DSPC was elevated at all time periods. The rate of incorporation of [14C]choline into surfactant PC and DSPC was maximal at 14 days and was nearly 3-fold greater than the rate in controls. The rate of incorporation of [3H]palmitate was also maximal at 14 days, approx. 5-fold above controls for PC and 3-fold for DSPC. At this same time point, the microsomal activity of cholinephosphate cytidylyltransferase was increased 4.5-fold above controls, but cytosolic activity was not significantly affected by silica treatment. These data indicate that biosynthesis of surfactant PC is elevated after treatment of lungs with silica and that this increased biosynthesis probably underlies the expansion of the intra- and extra-cellular pools of surfactant phospholipids. PMID:2845927

  19. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.

    PubMed

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-03-15

    The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.

  20. Adsorption of surfactant ions and binding of their counterions at an air/water interface.

    PubMed

    Tagashira, Hiroaki; Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki

    2009-01-01

    An expression for the surface tension of an aqueous mixed solution of surfactants and electrolyte ions in the presence of the common ions was derived from the Helmholtz free energy of an air/water surface. By applying the equation to experimental data for the surface tension, the adsorption constant of surfactant ions onto the air/water interface, the binding constant of counterions on the surfactants, and the surface potential and surface charge density of the interface were estimated. The adsorption constant and binding constant were dependent on the species of surfactant ion and counterion, respectively. Taking account of the dependence of surface potential and surface charge density on the concentration of electrolyte, it was suggested that the addition of electrolyte to the aqueous surfactant solution brings about the decrease in the surface potential, the increase in the surface density of surfactant ions, and consequently, the decrease in the surface tension. Furthermore, it was found that the configurational entropy plays a predominant role for the surface tension, compared to the electrical work.

  1. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    PubMed

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Catheter and Laryngeal Mask Endotracheal Surfactant Therapy: the CALMEST approach as a novel MIST technique.

    PubMed

    Vannozzi, Ilaria; Ciantelli, Massimiliano; Moscuzza, Francesca; Scaramuzzo, Rosa T; Panizza, Davide; Sigali, Emilio; Boldrini, Antonio; Cuttano, Armando

    2017-10-01

    Neonatal respiratory distress syndrome (RDS) is a major cause of mortality and morbidity among preterm infants. Although the INSURE (INtubation, SURfactant administration, Estubation) technique for surfactant replacement therapy is so far the gold standard method, over the last years new approaches have been studied, i.e. less invasive surfactant administration (LISA) or minimally invasive surfactant therapy (MIST). Here we propose an originally modified MIST, called CALMEST (Catheter And Laryngeal Mask Endotracheal Surfactant Therapy), using a particular laryngeal mask as a guide for a thin catheter to deliver surfactant directly in the trachea. We performed a preliminary study on a mannequin and a subsequent in vivo pilot trial. This novel procedure is quick, effective and well tolerated and might represent an improvement in reducing neonatal stress. Ultimately, CALMEST offers an alternative approach that could be extremely useful for medical staff with low expertise in laryngoscopy and intubation.

  3. SURFACTANT DYSFUNCTION IN LUNG CONTUSION WITH AND WITHOUT SUPERIMPOSED GASTRIC ASPIRATION IN A RAT MODEL

    PubMed Central

    Raghavendran, Krishnan; Davidson, Bruce A.; Knight, Paul R.; Wang, Zhengdong; Helinski, Jadwiga; Chess, Patricia R.; Notter, Robert H.

    2009-01-01

    This study investigates surfactant dysfunction in rats with lung contusion (LC) induced by blunt chest trauma. Rats at 24 h postcontusion had a decreased percent content of large surfactant aggregates in cell-free bronchoalveolar lavage (BAL) and altered large-aggregate composition with decreased phosphatidylcholine (PC), increased lyso-PC, and increased protein compared with uninjured controls. The surface activity of large aggregates on a pulsating bubble surfactometer was also severely impaired at 24 h postcontusion. Decreases in large surfactant aggregate content and surface activity were improved, but still apparent, at 48 and 72 h postcontusion compared with uninjured control rats and returned to normal by 96 h postcontusion. The functional importance of surfactant abnormalities in LC injury was documented in pilot studies showing that exogenous surfactant replacement at 24 h postcontusion improved inflation/deflation lung volumes. Additional experiments investigated a clinically relevant combination of LC plus gastric aspiration (combined acid and small gastric food particles) and found reductions in large surfactant aggregates in BAL similar to those for LC. However, rats given LC + combined acid and small gastric food particles versus LC had more severe surfactant dysfunction based on decreases in surface activity and alterations in large aggregate composition. Combined data for all animal groups had strong statistical correlations between surfactant dysfunction (increased minimum surface tension, decreased large aggregates in BAL, decreased aggregate PC, and increased aggregate lyso-PC) and the severity of inflammatory lung injury (increased total protein, albumin, protein/phospholipid ratio, neutrophils, and erythrocytes in BAL plus increased whole lung myeloperoxidase activity). These results show that surfactant dysfunction is important in the pathophysiology of LC with or without concurrent gastric aspiration and provides a rationale for surfactant

  4. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  5. Lung Surfactant Microbubbles Increase Lipophilic Drug Payload for Ultrasound-Targeted Delivery

    PubMed Central

    Sirsi, Shashank R.; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y.; Mountford, Paul A.; Borden, Mark A.

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta®, Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload. PMID:23781287

  6. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.

    PubMed

    Sirsi, Shashank R; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y; Mountford, Paul A; Borden, Mark A

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta(®), Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload.

  7. Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory.

    PubMed

    Schenk, H Jochen; Espino, Susana; Romo, David M; Nima, Neda; Do, Aissa Y T; Michaud, Joseph M; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Zuo, Yi Y; Steppe, Kathy; Jansen, Steven

    2017-02-01

    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. EVALUATION OF SUB-MICELLAR SYNTHETIC SURFACTANTS VERSUS BIOSURFACTANTS FOR ENHANCED LNAPL RECOVERY

    EPA Science Inventory

    Biosurfactants could potentially replace or be used in conjunction with synthetic surfactants to provide for more cost-effective subsurface remediation. To design effective biosurfactant/surfactant formulations, information about the surface-active agent and the targeted NAPL ...

  9. Recycling of surfactant template in mesoporous MCM-41 synthesis

    NASA Astrophysics Data System (ADS)

    Lai, J. Y.; Twaiq, F.; Ngu, L. H.

    2017-06-01

    The recycling of surfactant template is investigated through the reuse of the surfactant template in the mesoporous MCM-41 synthesis process. In the synthesis of MCM-41, tetraethylorthosilicate (TEOS) solution in water was utilized as the silica source while hexadecyltrimethylammonium bromide (CTAB) solution in ethyl alcohol was used as a surfactant template. The synthesized gel is formed thoroughly by mixing the two solutions under acid conditions with a pH value of 0.5 for 1 hour and kept for crystallization for 48 hours. The as-synthesized MCM-41 powder is recovered by filtration while the filtrate (mother liquor) was then reused for the second synthesis cycle. The synthesis procedure was repeated till no further solid product was formed. The synthesized gel was not produced in the unifying solution in the fifth cycle of MCM-41 synthesis. The quality of the calcined MCM-41 powder produced in each synthesis cycle was evaluated by calculating the amount of MCM-41 produced and the surface area of the powder product. The result showed that 1.28, 0.37, 1.64, 1.90 and 0.037 g were obtained in the 1st, 2nd, 3rd, 4th and 5th synthesis cycle, respectively. The surface area of the powder produced was found to be 1170, 916, 728, and 508 m2/g for 1st, 2nd, 3rd and 4th respectively. The concentration of the surfactant template has reached value lower than the critical micelle concentration (CMC) and remained constant after the 4th cycle. There was no further formation of gel due to low availability in the interaction between silicate anions and surfactant cations when the amount of TEOS was fixed for every synthesis cycle.

  10. Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants.

    PubMed

    Yoshimura, Tomokazu; Akiba, Kazuki

    2016-01-01

    Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants.

  11. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    PubMed

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance phlebograph. 870.2750 Section 870.2750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph...

  13. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance plethysmograph. 870.2770 Section 870.2770 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance...

  14. Formation of formaldehyde and peroxides by air oxidation of high purity polyoxyethylene surfactants.

    PubMed

    Bergh, M; Magnusson, K; Nilsson, J L; Karlberg, A T

    1998-07-01

    Ethoxylated alcohols are non-ionic surfactants. The majority are used in household cleaners, laundry products, toiletries and in industrial and institutional cleaners. In previous studies, an ethoxylated non-ionic surfactant of technical quality showed allergenic activity in guinea pig experiments. Chemical analysis revealed a content of formaldehyde, a well-known contact allergen, and peroxides in the surfactant. Most cases of occupational contact dermatitis are considered to be of irritant origin, caused by contact with water and surfactants, but if allergenic autoxidation products can be formed, allergic contact dermatitis cannot be excluded. The sensitizing potential of a chemically defined high purity ethoxylated alcohol was investigated and oxidation under various storage and handling conditions was studied for this and a homologous product. The pure surfactant showed no significant allergenic activity on predictive testing in guinea pigs. When ethoxylated alcohols were stored in the refrigerator, their deterioration was limited. At room temperature, their content of peroxides and formaldehyde increased with time. Levels of formaldehyde above those capable of causing positive patch test reactions were found. Since such surfactants have wide applications, resulting exposure to formaldehyde could be more frequent than is generally realized, contributing to persistence of dermatitis in individuals allergic to formaldehyde.

  15. Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05.

    PubMed

    Manickam, Natesan; Bajaj, Abhay; Saini, Harvinder S; Shanker, Rishi

    2012-09-01

    Environmental biodegradation of several chlorinated pesticides is limited by their low solubility and sorption to soil surfaces. To mitigate this problem we quantified the effect of three biosurfactant viz., rhamnolipid, sophorolipid and trehalose-containing lipid on the dissolution, bioavailability, and biodegradation of HCH-isomers in liquid culture and in contaminated soil. The effect of biosurfactants was evaluated through the critical micelle concentration (CMC) value as determined for each isomer. The surfactant increased the solubilization of HCH isomers by 3-9 folds with rhamnolipid and sophorolipid being more effective and showing maximum solubilization of HCH isomers at 40 μg/mL, compared to trehalose-containing lipid showing peak solubilization at 60 μg/mL. The degradation of HCH isomers by Sphingomonas sp. NM05 in surfactant-amended liquid mineral salts medium showed 30% enhancement in 2 days as compared to degradation in 10 days in the absence of surfactant. HCH-spiked soil slurry incubated with surfactant also showed around 30-50% enhanced degradation of HCH which was comparable to the corresponding batch culture experiments. Among the three surfactants, sophorolipid offered highest solubilization and enhanced degradation of HCH isomers both in liquid medium and soil culture. The results of this study suggest the effectiveness of surfactants in improving HCH degradation by increased bioaccessibility.

  16. Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae

    PubMed Central

    Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2015-01-01

    Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS) ], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO) ] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337

  17. An improved water-filled impedance tube.

    PubMed

    Wilson, Preston S; Roy, Ronald A; Carey, William M

    2003-06-01

    A water-filled impedance tube capable of improved measurement accuracy and precision is reported. The measurement instrument employs a variation of the standardized two-sensor transfer function technique. Performance improvements were achieved through minimization of elastic waveguide effects and through the use of sound-hard wall-mounted acoustic pressure sensors. Acoustic propagation inside the water-filled impedance tube was found to be well described by a plane wave model, which is a necessary condition for the technique. Measurements of the impedance of a pressure-release terminated transmission line, and the reflection coefficient from a water/air interface, were used to verify the system.

  18. Tuning Micellar Structures in Supercritical CO2 Using Surfactant and Amphiphile Mixtures.

    PubMed

    Peach, Jocelyn; Czajka, Adam; Hazell, Gavin; Hill, Christopher; Mohamed, Azmi; Pegg, Jonathan C; Rogers, Sarah E; Eastoe, Julian

    2017-03-14

    For equivalent micellar volume fraction (ϕ), systems containing anisotropic micelles are generally more viscous than those comprising spherical micelles. Many surfactants used in water-in-CO 2 (w/c) microemulsions are fluorinated analogues of sodium bis(2-ethylhexyl) sulfosuccinate (AOT): here it is proposed that mixtures of CO 2 -philic surfactants with hydrotropes and cosurfactants may generate elongated micelles in w/c systems at high-pressures (e.g., 100-400 bar). A range of novel w/c microemulsions, stabilized by new custom-synthesized CO 2 -phillic, partially fluorinated surfactants, were formulated with hydrotropes and cosurfactant. The effects of water content (w = [water]/[surfactant]), surfactant structure, and hydrotrope tail length were all investigated. Dispersed water domains were probed using high pressure small-angle neutron scattering (HP-SANS), which provided evidence for elongated reversed micelles in supercritical CO 2 . These new micelles have significantly lower fluorination levels than previously reported (6-29 wt % cf. 14-52 wt %), and furthermore, they support higher water dispersion levels than other related systems (w = 15 cf. w = 5). The intrinsic viscosities of these w/c microemulsions were estimated based on micelle aspect ratio; from this value a relative viscosity value can be estimated through combination with the micellar volume fraction (ϕ). Combining these new results with those for all other reported systems, it has been possible to "map" predicted viscosity increases in CO 2 arising from elongated reversed micelles, as a function of surfactant fluorination and micellar aspect ratio.

  19. Surfactant-Enhanced Desorption and Biodegradation of Polycyclic Aromatic Hydrocarbons in Contaminated Soil

    PubMed Central

    Zhu, Hongbo; Aitken, Michael D.

    2010-01-01

    We evaluated two nonionic surfactants, one hydrophobic (Brij 30) and one hydrophilic (C12E8), for their ability to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil after it had been treated in an aerobic bioreactor. The effects of each surfactant were evaluated at doses corresponding to equilibrium aqueous-phase concentrations well above the surfactant’s critical micelle concentration (CMC), slightly above the CMC, and below the CMC. The concentrations of all 3- and 4-ring PAHs were significantly lower in the soil amended with Brij 30 at the two lower doses compared to controls, whereas removal of only the 3-ring PAHs was significantly enhanced at the highest Brij 30 dose. In contrast, C12E8 did not enhance PAH removal at any dose. In the absence of surfactant, <5% of any PAH desorbed from the soil over an 18-d period. Brij 30 addition at the lowest dose significantly increased the desorption of most PAHs, whereas the addition of C12E8 at the lowest dose actually decreased the desorption of all PAHs. These findings suggest that the effects of the two surfactants on PAH biodegradation could be explained by their effects on PAH bioavailability. Overall, this study demonstrates that the properties of the surfactant and its dose relative to the corresponding aqueous-phase concentration are important factors in designing systems for surfactant-enhanced bioremediation of PAH-contaminated soils in which PAH bioavailability is limited. PMID:20586488

  20. Modeling and simulations of carbon nanotube (CNT) dispersion in water/surfactant/polymer systems

    NASA Astrophysics Data System (ADS)

    Uddin, Nasir Mohammad

    An innovative multiscale (atomistic to mesoscale) model capable of predicting carbon nanotube (CNT) interactions and dispersion in water/surfactant/polymer systems was developed. The model was verified qualitatively with available experimental data in the literature. It can be used to computationally screen potential surfactants, solvents, polymers, and CNT with appropriate diameter and length to obtain improved CNT dispersion in aqueous medium. Thus the model would facilitate the reduction of time and cost required to produce CNT dispersed homogeneous solutions and CNT reinforced materials. CNT dispersion in any water/surfactant/polymer system depends on interactions between CNTs and surrounding molecules. Central to the study was the atomistic scale model which used the atomic structure of the surfactant, solvent, polymer, and CNT. The model was capable of predicting the CNT interactions in terms of potential of mean force (PMF) between CNTs under the influence of surrounding molecules in an aqueous solution. On the atomistic scale, molecular dynamics method was used to compute the PMF as a function of CNT separation and CNT alignment. An adaptive biasing force (ABF) method was used to speed up the calculations. Correlations were developed to determine the effective interactions between CNTs as a function of their any inter-atomic distance and orientation angle in water as well as in water/surfactant by fitting the calculated PMF data. On the mesoscale, the fitted PMF correlations were used as input in the Monte Carlo simulations to determine the degree of dispersion of CNTs in water and water/surfactant system. The distribution of CNT cluster size was determined for the CNTs dispersed in water with and without surfactant addition. The entropie and enthalpie contributions to the CNT interactions in water were determined to understand the dispersion mechanism of CNTs in water. The effects of CNT orientation, length, diameter, chirality and surfactant