Science.gov

Sample records for implicit solution framework

  1. An Implicit Solution Framework for Reactor Fuel Performance Simulation

    SciTech Connect

    Glen Hansen; Chris Newman; Derek Gaston; Cody Permann

    2009-08-01

    The simulation of nuclear reactor fuel performance involves complex thermomechanical processes between fuel pellets, made of fissile material, and the protective cladding that surrounds the pellets. An important design goal for a fuel is to maximize the life of the cladding thereby allowing the fuel to remain in the reactor for a longer period of time to achieve higher degrees of burnup. This presentation presents an initial approach for modeling the thermomechanical response of reactor fuel, and details of the solution method employed within INL's fuel performance code, BISON. The code employs advanced methods for solving coupled partial differential equation systems that describe multidimensional fuel thermomechanics, heat generation, and oxygen transport within the fuel. This discussion explores the effectiveness of a JFNK-based solution of a problem involving three dimensional fully coupled, nonlinear transient heat conduction and that includes pellet displacement and oxygen diffusion effects. These equations are closed using empirical data that is a function of temperature, density, and oxygen hyperstoichiometry. The method appears quite effective for the fuel pellet / cladding configurations examined, with excellent nonlinear convergence properties exhibited on the combined system. In closing, fully coupled solutions of three dimensional thermomechanics coupled with oxygen diffusion appear quite attractive using the JFNK approach described here, at least for configurations similar to those examined in this report.

  2. Implicit solution of large-scale radiation diffusion problems

    SciTech Connect

    Brown, P N; Graziani, F; Otero, I; Woodward, C S

    2001-01-04

    In this paper, we present an efficient solution approach for fully implicit, large-scale, nonlinear radiation diffusion problems. The fully implicit approach is compared to a semi-implicit solution method. Accuracy and efficiency are shown to be better for the fully implicit method on both one- and three-dimensional problems with tabular opacities taken from the LEOS opacity library.

  3. Explicit and Implicit Emotion Regulation: A Dual-Process Framework

    PubMed Central

    Gyurak, Anett; Gross, James J.; Etkin, Amit

    2012-01-01

    It is widely acknowledged that emotions can be regulated in an astonishing variety of ways. Most research to date has focused on explicit (effortful) forms of emotion regulation. However, there is growing research interest in implicit (automatic) forms of emotion regulation. To organize emerging findings, we present a dual-process framework that integrates explicit and implicit forms of emotion regulation, and argue that both forms of regulation are necessary for well-being. In the first section of this review, we provide a broad overview of the construct of emotion regulation, with an emphasis on explicit and implicit processes. In the second section, we focus on explicit emotion regulation, considering both neural mechanisms that are associated with these processes and their experiential and physiological consequences. In the third section, we turn to several forms of implicit emotion regulation, and integrate the burgeoning literature in this area. We conclude by outlining open questions and areas for future research. PMID:21432682

  4. Research on a Modified Framework of Implicit Personality Theories

    ERIC Educational Resources Information Center

    Ziegler, Albert; Stoeger, Heidrun

    2010-01-01

    There is ample evidence that labeled gifted students exhibit maladaptive behavior patterns. According to Carol Dweck those students who subscribe to a fixed view of their abilities are particularly at risk. In this contribution we extended Dweck's framework and distinguished two aspects of the implicit theory of one's own abilities. We…

  5. Implicit versus explicit momentum relaxation time solution for semiconductor nanowires

    SciTech Connect

    Marin, E. G. Ruiz, F. G. Godoy, A. Tienda-Luna, I. M.; Gámiz, F.

    2015-07-14

    We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicit approach inaccuracies on the total mobility of Si and III-V NWs are studied.

  6. Implicit versus explicit momentum relaxation time solution for semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Marin, E. G.; Ruiz, F. G.; Godoy, A.; Tienda-Luna, I. M.; Gámiz, F.

    2015-07-01

    We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicit approach inaccuracies on the total mobility of Si and III-V NWs are studied.

  7. Implicit Space-Time Conservation Element and Solution Element Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Wang, Xiao-Yen

    1999-01-01

    Artificial numerical dissipation is in important issue in large Reynolds number computations. In such computations, the artificial dissipation inherent in traditional numerical schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of practical size. In the present work, the space-time conservation element and solution element method is used to construct new and accurate implicit numerical schemes such that artificial numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes have the property that numerical dissipation vanishes when the physical viscosity goes to zero. These new schemes therefore accurately model the physical dissipation even when it is extremely small. The new schemes presented are two highly accurate implicit solvers for a convection-diffusion equation. The two schemes become identical in the pure convection case, and in the pure diffusion case. The implicit schemes are applicable over the whole Reynolds number range, from purely diffusive equations to convection-dominated equations with very small viscosity. The stability and consistency of the schemes are analysed, and some numerical results are presented. It is shown that, in the inviscid case, the new schemes become explicit and their amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, their principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.

  8. Implicit solution of three-dimensional internal turbulent flows

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Liou, M.-S.; Povinelli, Louis A.; Martelli, F.

    1991-01-01

    The scalar form of the approximate factorization method was used to develop a new code for the solution of three dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form were iterated in time until a steady solution was reached. Evidence was given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at the domain boundaries was proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects were accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. The flow in a developing S-duct was then solved in the laminar regime in a Reynolds number (Re) of 790 and in the turbulent regime at Re equals 40,000 by using the Baldwin-Lomax model. The Stanitz elbow was then solved by using an invicid version of the same code at M sub inlet equals 0.4. Grid dependence and convergence rate were investigated, showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re equals 2.5 times 10(exp 6) was solved with the Baldwin-Lomax and the q-omega models. Both approaches show satisfactory agreement with experiments, although the q-omega model was slightly more accurate.

  9. Implicit solution of three-dimensional internal turbulent flows

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Liou, M.-S.; Povinelli, L. A.

    1990-01-01

    The scalar form of the approximate factorization method was used to develop a new code for the solution of three-dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form are iterated in time until a steady solution is reached. Evidence is given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at domain boundaries is proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects are accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. For the first, an investigation on the model behavior in case of multiple boundaries is performed. The flow in a developing S-duct is then solved in the laminar regime at Reynolds number (Re) 790 and in the turbulent regime at Re=40,000 using the Baldwin-Lomax model . The Stanitz elbow is then solved using an inviscid version of the same code at M(sub inlet)=0.4. Grid dependence and convergence rate are investigated showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re=2.5x10(exp 6) is solved with the Baldwin-Lomax and the q-omega models. Both approaches showed satisfactory agreement with experiments, although the q-omega model is slightly more accurate.

  10. An implicit semianalytic numerical method for the solution of nonequilibrium chemistry problems

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.; Gnoffo, P. A.; Boughner, R. E.

    1974-01-01

    The first order differential equation form systems of equations. They are solved by a simple and relatively accurate implicit semianalytic technique which is derived from a quadrature solution of the governing equation. This method is mathematically simpler than most implicit methods and has the exponential nature of the problem embedded in the solution.

  11. Implicit Theoretical Leadership Frameworks of Higher Education Administrators.

    ERIC Educational Resources Information Center

    Lees, Kimberly; And Others

    Colleges and universities have a unique organizational culture that influences the decision-making processes used by leaders of higher education. This paper presents findings of a study that attempted to identify the theoretical frameworks that administrators of higher education use to guide their decision-making processes. The following…

  12. Implicit solution of the material transport in Stokes flow simulation: Toward thermal convection simulation surrounded by free surface

    NASA Astrophysics Data System (ADS)

    Furuichi, Mikito; May, Dave A.

    2015-07-01

    We present implicit time integration schemes suitable for modeling free surface Stokes flow dynamics with marker in cell (MIC) based spatial discretization. Our target is for example thermal convection surrounded by deformable surface boundaries to simulate the long term planetary formation process. The numerical system becomes stiff when the dynamical balancing time scale for the increasing/decreasing load by surface deformation is very short compared with the time scale associated with thermal convection. Any explicit time integration scheme will require very small time steps; otherwise, serious numerical oscillation (spurious solutions) will occur. The implicit time integration scheme possesses a wider stability region than the explicit method; therefore, it is suitable for stiff problems. To investigate an efficient solution method for the stiff Stokes flow system, we apply first (backward Euler (BE)) and second order (trapezoidal method (TR) and trapezoidal rule-backward difference formula (TR-BDF2)) accurate implicit methods for the MIC solution scheme. The introduction of implicit time integration schemes results in nonlinear systems of equations. We utilize a Jacobian free Newton Krylov (JFNK) based Newton framework to solve the resulting nonlinear equations. In this work we also investigate two efficient implicit solution strategies to reduce the computational cost when solving stiff nonlinear systems. The two methods differ in how the advective term in the material transport evolution equation is treated. We refer to the method that employs Lagrangian update as "fully implicit" (Imp), whilst the method that employs Eulerian update is referred to as "semi-implicit" (SImp). Using a finite difference (FD) method, we have performed a series of numerical experiments which clarify the accuracy of solutions and trade-off between the computational cost associated with the nonlinear solver and time step size. In comparison with the general explicit Euler method

  13. Solution of dynamic contact problems by implicit/explicit methods. Final report

    SciTech Connect

    Salveson, M.W.; Taylor, R.L.

    1996-10-14

    The solution of dynamic contact problems within an explicit finite element program such as the LLNL DYNA programs is addressed in the report. The approach is to represent the solution for the deformation of bodies using the explicit algorithm but to solve the contact part of the problem using an implicit approach. Thus, the contact conditions at the next solution state are considered when computing the acceleration state for each explicit time step.

  14. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    SciTech Connect

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  15. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2016-06-01

    This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.

  16. Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1990-01-01

    An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.

  17. Efficient solution on solving 3D Maxwell equations using stable semi-implicit splitting method

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Gu, Ning

    2016-05-01

    In this paper, we propose an efficient solution on solving 3-dimensional (3D) time-domain Maxwell equations using the semi-implicit Crank-Nicholson (CN) method for time domain discretization with advantage of unconditional time stability. By applying the idea of fractional steps method (FSM) to the CN scheme, the proposed method provides a much simpler and efficient implementation than a direct implementation of the CN scheme. Compared with the alternating-direction implicit (ADI) method and explicit finite-difference time-domain approach (FDTD), it significantly saves the computational resource like memory and CPU time while remains similar numerical accuracy.

  18. Implicit numerical integration for periodic solutions of autonomous nonlinear systems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1982-01-01

    A change of variables that stabilizes numerical computations for periodic solutions of autonomous systems is derived. Computation of the period is decoupled from the rest of the problem for conservative systems of any order and for any second-order system. Numerical results are included for a second-order conservative system under a suddenly applied constant load. Near the critical load for the system, a small increment in load amplitude results in a large increase in amplitude of the response.

  19. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models

    PubMed Central

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson–Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation. PMID:24058213

  20. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    PubMed

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation. PMID:24058213

  1. Implicit approximate-factorization schemes for the efficient solution of steady transonic flow problems

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F.; Jameson, A.; Albert, J.

    1977-01-01

    Implicit approximate-factorization algorithms (AF) are developed for the solution of steady-state transonic flow problems. The performance of the AF solution method is evaluated relative to that of the standard solution method for transonic flow problems, successive line over-relaxation (SLOR). Both methods are applied to the solution of the nonlinear, two-dimensional transonic small-disturbance equation. Results indicate that the AF method requires substantially less computer time than SLOR to solve the nonlinear finite-difference matrix equation for a transonic flow field. This increase in computational efficiency is achieved with no appreciable increase in computer storage or coding complexity.

  2. A Solution Framework for Environmental Characterization Problems

    EPA Science Inventory

    This paper describes experiences developing a grid-enabled framework for solving environmental inverse problems. The solution approach taken here couples environmental simulation models with global search methods and requires readily available computational resources of the grid ...

  3. A matrix free implicit scheme for solution of resistive magneto-hydrodynamics equations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Sitaraman, H.; Raja, L. L.

    2013-10-01

    The resistive magneto-hydrodynamics (MHD) governing equations represent eight conservation equations for the evolution of density, momentum, energy and induced magnetic fields in an electrically conducting fluid, typically a plasma. A matrix free implicit method is developed to solve the conservation equations within the framework of an unstructured grid finite volume formulation. The analytic form of the convective flux Jacobian is derived on a general unstructured mesh and used in a Lower-Upper Symmetric Gauss Seidel (LU-SGS) technique developed as part of the implicit scheme. A grid coloring technique is also developed to create data parallelism in the algorithm. The computational efficiency of the matrix free method is compared with two common approaches: a global matrix solve technique that uses the GMRES (Generalized minimum residual) algorithm and an explicit method. The matrix-free method is observed to be overall computationally faster than the global matrix solve method and demonstrates excellent parallel scaling on multiple cores. The computational effort and memory requirements for the matrix free approach is comparable to the explicit approach which in turn is much lower than the global solve implicit approach. Both the matrix free and global solve implicit techniques exhibit superior steady state convergence compared to the explicit method.

  4. A Newton-Krylov Solver for Implicit Solution of Hydrodynamics in Core Collapse Supernovae

    SciTech Connect

    Reynolds, D R; Swesty, F D; Woodward, C S

    2008-06-12

    This paper describes an implicit approach and nonlinear solver for solution of radiation-hydrodynamic problems in the context of supernovae and proto-neutron star cooling. The robust approach applies Newton-Krylov methods and overcomes the difficulties of discontinuous limiters in the discretized equations and scaling of the equations over wide ranges of physical behavior. We discuss these difficulties, our approach for overcoming them, and numerical results demonstrating accuracy and efficiency of the method.

  5. Studies of implicit and explicit solution techniques in transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Robinson, J. C.

    1982-01-01

    Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.

  6. Application of implicit numerical techniques to the solution of the three-dimensional diffusion equation

    NASA Technical Reports Server (NTRS)

    Peltier, Leonard Joel; Biringen, Sedat; Chait, Arnon

    1990-01-01

    Implicit techniques for calculating three-dimensional, time-dependent heat diffusion in a cube are tested with emphasis on storage efficiency, accuracy, and speed of calculation. For this purpose, a tensor product technique with both Chebyshev collocation and finite differences and a generalized conjugate gradient technique with finite differences are used in conjunction with Crank-Nicolson discretization. An Euler explicit finite difference calculation is performed for use as a benchmark. The implicit techniques are found to be competitive with the Euler explicit method in terms of storage efficiency and speed of calculation and offer advantages both in accuracy and stability. Mesh stretching in the finite difference calculations is shown to markedly improve the accuracy of the solution.

  7. Parametric effects of CFL number and artificial smoothing on numerical solutions using implicit approximate factorization algorithm

    NASA Technical Reports Server (NTRS)

    Daso, E. O.

    1986-01-01

    An implicit approximate factorization algorithm is employed to quantify the parametric effects of Courant number and artificial smoothing on numerical solutions of the unsteady 3-D Euler equations for a windmilling propeller (low speed) flow field. The results show that propeller global or performance chracteristics vary strongly with Courant number and artificial dissipation parameters, though the variation is such less severe at high Courant numbers. Candidate sets of Courant number and dissipation parameters could result in parameter-dependent solutions. Parameter-independent numerical solutions can be obtained if low values of the dissipation parameter-time step ratio are used in the computations. Furthermore, it is realized that too much artificial damping can degrade numerical stability. Finally, it is demonstrated that highly resolved meshes may, in some cases, delay convergence, thereby suggesting some optimum cell size for a given flow solution. It is suspected that improper boundary treatment may account for the cell size constraint.

  8. A scalable and adaptable solution framework within components of the CCSM

    SciTech Connect

    Evans, Katherine J; Rouson, Damian; Salinger, Andy; Taylor, Mark; White III, James B; Weijer, Wilbert

    2009-01-01

    A framework for a fully implicit solution method is implemented into (1) the High Order Methods Modeling Environment (HOMME), which is a spectral element dynamical core option in the Community Atmosphere Model (CAM), and (2) the Parallel Ocean Program (POP) model of the global ocean. Both of these models are components of the Community Climate System Model (CCSM). HOMME is a development version of CAM and provides a scalable alternative when run with an explicit time integrator. However, it suffers the typical time step size limit to maintain stability. POP uses a time-split semi-implicit time integrator that allows larger time steps but less accuracy when used with scale interacting physics. A fully implicit solution framework allows larger time step sizes and additional climate analysis capability such as model steady state and spin-up efficiency gains without a loss in scalability. This framework is implemented into HOMME and POP using a new Fortran interface to the Trilinos solver library, ForTrilinos, which leverages several new capabilities in the current Fortran standard to maximize robustness and speed. The ForTrilinos solution template was also designed for interchangeability; other solution methods and capability improvements can be more easily implemented into the models as they are developed without severely interacting with the code structure. The utility of this approach is illustrated with a test case for each of the climate component models.

  9. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations.

    PubMed

    Zhou, Shenggao; Sun, Hui; Cheng, Li-Tien; Dzubiella, Joachim; Li, Bo; McCammon, J Andrew

    2016-08-01

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the "normal velocity" that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the inclusion of

  10. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations

    NASA Astrophysics Data System (ADS)

    Zhou, Shenggao; Sun, Hui; Cheng, Li-Tien; Dzubiella, Joachim; Li, Bo; McCammon, J. Andrew

    2016-08-01

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the "normal velocity" that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the inclusion of

  11. Salt-water-freshwater transient upconing - An implicit boundary-element solution

    USGS Publications Warehouse

    Kemblowski, M.

    1985-01-01

    The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.

  12. Implicit solution of large-scale radiation - material energy transfer problems

    SciTech Connect

    Brown, P. N.; Chang, B.; Graziani, F.; Woodward, C. S.

    1999-01-06

    Modeling of radiation-diffusion processes has traditionally been accomplished through simulations based on decoupling and linearizing the basic physics equations. By applying these techniques, physicists have simplified their model enough that problems of moderate sizes could be solved. However, new applications demand the simulation of larger problems for which the inaccuracies and nonscalability of current algorithms prevent solution. Recent work in iterative methods has provided computational scientists with new tools for solving these problems. In this paper, we present an algorithm for the implicit solution of the multi- group diffusion approximation coupled to an electron temperature equation. This algorithm uses a stiff ODE solver coupled with Newton's method for solving the implicit equations arising at each time step. The Jacobian systems are solved by applying GMRES preconditioned with a semicoarsening multigrid algorithm. By combining the nonlinear Newton iteration with a multigrid preconditioner, we take advantage of the fast, robust nonlinear convergence of Newton's method and the scalability of the linear multigrid method. Numerical results show that the method is accurate and scalable.

  13. Implicit scheme for Maxwell equations solution in case of flat 3D domains

    NASA Astrophysics Data System (ADS)

    Boronina, Marina; Vshivkov, Vitaly

    2016-02-01

    We present a new finite-difference scheme for Maxwell's equations solution for three-dimensional domains with different scales in different directions. The stability condition of the standard leap-frog scheme requires decreasing of the time-step with decreasing of the minimal spatial step, which depends on the minimal domain size. We overcome the conditional stability by modifying the standard scheme adding implicitness in the direction of the smallest size. The new scheme satisfies the Gauss law for the electric and magnetic fields in the final- differences. The approximation order, the maintenance of the wave amplitude and propagation speed, the invariance of the wave propagation on angle with the coordinate axes are analyzed.

  14. An Implicit Finite Difference Solution to the Viscous Radiating Shock Layer with Strong Blowing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1971-01-01

    An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.

  15. An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model

    USGS Publications Warehouse

    Kipp, K.L., Jr.; Konikow, L.F.; Hornberger, G.Z.

    1998-01-01

    This report documents an extension to the U.S. Geological Survey MOC3D transport model that incorporates an implicit-in-time difference approximation for the dispersive transport equation, including source/sink terms. The original MOC3D transport model (Version 1) uses the method of characteristics to solve the transport equation on the basis of the velocity field. The original MOC3D solution algorithm incorporates particle tracking to represent advective processes and an explicit finite-difference formulation to calculate dispersive fluxes. The new implicit procedure eliminates several stability criteria required for the previous explicit formulation. This allows much larger transport time increments to be used in dispersion-dominated problems. The decoupling of advective and dispersive transport in MOC3D, however, is unchanged. With the implicit extension, the MOC3D model is upgraded to Version 2. A description of the numerical method of the implicit dispersion calculation, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. Version 2 of MOC3D was evaluated for the same set of problems used for verification of Version 1. These test results indicate that the implicit calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the explicit calculation for transport problems that are characterized by a grid Peclet number less than about 1.0.

  16. Implicit time-integration method for simultaneous solution of a coupled non-linear system

    NASA Astrophysics Data System (ADS)

    Watson, Justin Kyle

    Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems

  17. Coefficient matrices for implicit finite difference solution of the inviscid fluid conservation law equations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.

    1978-01-01

    Although the Navier-Stokes equations describe most flows of interest in aerodynamics, the inviscid conservation law equations may be used for small regions with viscous forces. Thus, Euler equations and several time-accurate finite difference procedures, explicit and implicit, are discussed. Although implicit techniques require more computational work, they permit larger time steps to be taken without instability. It is noted that the Jacobian matrices for Euler equations in conservation-law form have certain eigenvalue-eigenvector properties which may be used to construct conservative-form coefficient matrices. This reduces the computation time of several implicit and semiimplicit schemes. Extensions of the basic approach to other areas are suggested.

  18. Multigrid solution for the compressible Euler equations by an implicit characteristic-flux-averaging

    NASA Astrophysics Data System (ADS)

    Kanarachos, A.; Vournas, I.

    A formulation of an implicit characteristic-flux-averaging method for the compressible Euler equations combined with the multigrid method is presented. The method is based on correction scheme and implicit Gudunov type finite volume scheme and is applied to two dimensional cases. Its principal feature is an averaging procedure based on the eigenvalue analysis of the Euler equations by means of which the fluxes are evaluated at the finite volume faces. The performance of the method is demonstrated for different flow problems around RAE-2922 and NACA-0012 airfoils and an internal flow over a circular arc.

  19. An implicit-iterative solution of the heat conduction equation with a radiation boundary condition

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, D. M.

    1977-01-01

    For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.

  20. Correlation operators based on the iterative solution of an implicitly formulated diffusion equation

    NASA Astrophysics Data System (ADS)

    Weaver, Anthony; Tshimanga, Jean; Piacentini, Andrea

    2015-04-01

    Correlation operators are used in variational data assimilation (VDA) for defining background error covariance models and in hybrid ensemble-VDA for localizing, via a Schur product, low-rank sample estimates of background error covariance matrices. This presentation describes new approaches for defining correlation operators based on diffusion operators. The starting point is a two dimensional (2D) implicitly formulated diffusion operator on the sphere, which has been shown in previous works to support symmetric and positive definite smoothing kernels that are closely related to those from the Matern correlation family. Different iterative and preconditioning methods are proposed for solving the 2D implicit diffusion problem, and are compared with respect to their efficiency, accuracy, memory cost, and parallel properties on high-performance computers. The algorithms described in this presentation are evaluated in a global ocean VDA system.

  1. An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq system

    SciTech Connect

    Christov, C.I.; Maugin, G.A.

    1995-01-01

    We consider the nonlinear system of equations built up from a generalized Boussinesq equation coupled with a wave equation which is a model for the one-dimensional dynamics of phases in martensitic alloys. The strongly implicit scheme employing Newton`s quasilinearisation allows us to track the long time evolution of the localized solutions of the system. Two distinct classes of solutions are encountered for the pure Boussinesq equation. The first class consists of oscillatory pulses whose envelopes are localized waves. The second class consists of smoother solutions whose shapes are either heteroclinic (kinks) or homoclinic (bumps). The homoclinics decrease in amplitude with time while their support increases. An appropriate self-similar scaling is found analytically and confirmed by the direct numerical simulations to high accuracy. The rich phenomenology resulting from the coupling with the wave equation is also investigated. 11 refs., 12 figs., 2 tabs.

  2. Solution of the Quiet Implicit Particle-In Moment Equations in Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Nystrom, William David

    A computer program, QIP3D, has been developed to solve the Quiet Implicit Particle- in-cell (QIP) moment equations in three-dimensional toroidal geometry. This model provides an efficient algorithm for computing the time evolution of the full two-fluid (ion/electron) plasma. The coordinate system is based on a conformal mapping of the poloidal plane from a circular outer boundary and origin coincident with the magnetic axis to form a logically polar computational mesh. A Fourier, pseudospectral representation is employed for the poloidal and toroidal angles and finite differencing for the radial coordinate. The QIP equations are differenced implicitly in time and solved using a predictor -corrector algorithm. The implicit electric field equation (and other elliptic equations) are solved using advanced iterative methods. Efficient algorithms implement the required matrix-vector product and preconditioner. Two series of calculations in toroidal geometry with q_0 = 0.9 establish the two -fluid physics of the m = 1 internal kink mode where q _0 is the safety factor at the magnetic axis and m is the poloidal mode number. In each series, the mode is excited and exhibits the proper eigenmode structure. With the aspect ratio, A = R_0/a, constant at 10 and beta_0 varying from 0.0 to 0.01, the growth rate of the kink is found to increase with beta_0 and to be in quantitative agreement with previous calculations. Here, R _0 is the distance of the magnetic axis from the axis of rotational symmetry for the torus, a is the minor radius of the torus and beta_0 is the ratio of kinetic pressure to magnetic field pressure at the magnetic axis. With beta _0 = 0.0 and A varied from 5 to 10, the growth rate is found to be independent of A in agreement with theory.

  3. Explicit and implicit solution of the Navier-Stokes equations on a massively parallel computer

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Jespersen, Dennis

    1988-01-01

    The design, implementation, and performance of a two-dimensional time-accurate Navier-Stokes solver for the CM2 supercomputer are described. The program uses a single processor for each grid point. Two different time-stepping methods have so far been implemented: an explicit third-order Runge-Kutta method and an implicit approximation-factorization method. The CM2 results are checked against those of a mature well-vectorized Cray 2 program, both for correctness and performance. The code is found to be correct, and the performance in some cases is up to several times that of the Cray 2.

  4. The Method of Space-time Conservation Element and Solution Element: Development of a New Implicit Solver

    NASA Technical Reports Server (NTRS)

    Chang, S. C.; Wang, X. Y.; Chow, C. Y.; Himansu, A.

    1995-01-01

    The method of space-time conservation element and solution element is a nontraditional numerical method designed from a physicist's perspective, i.e., its development is based more on physics than numerics. It uses only the simplest approximation techniques and yet is capable of generating nearly perfect solutions for a 2-D shock reflection problem used by Helen Yee and others. In addition to providing an overall view of the new method, we introduce a new concept in the design of implicit schemes, and use it to construct a highly accurate solver for a convection-diffusion equation. It is shown that, in the inviscid case, this new scheme becomes explicit and its amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, its principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.

  5. Framework solutions for complete collaborative environments

    NASA Astrophysics Data System (ADS)

    Saunders, Vance M.; Maddox, Derek

    2000-06-01

    Collaboration of experts from different domains within an enterprise has always posed logistical and knowledge management challenges to managers and members of the collaboration. Scheduling meetings, arranging travel, getting data and information into the right hands at the right time all require time, money and energy that could be better spent on product development. Advances in information technology have made it easier to communicate to solve, or at least mitigate, some of these problems using e-mail, audio conferencing, and database management software, but a great detail of human intervention is still required to make these collaborations operate smoothly. Over the past ten years enterprises have come to require more than just total asset visibility and human communication capabilities. To design and field products better, faster and cheaper more human creativity and energy must be focused on the products and less on the operation of the collaboration. The collaborative environment solutions of the future must not only provide the communication and knowledge management that exist today, but also provide seamless access to resources and information, product and process modeling and the advanced decision support that results from the availability of necessary resources and information.

  6. An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.; Smith, G. L.; Perkins, J. N.

    1972-01-01

    An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.

  7. Implicit Kalman filtering

    NASA Technical Reports Server (NTRS)

    Skliar, M.; Ramirez, W. F.

    1997-01-01

    For an implicitly defined discrete system, a new algorithm for Kalman filtering is developed and an efficient numerical implementation scheme is proposed. Unlike the traditional explicit approach, the implicit filter can be readily applied to ill-conditioned systems and allows for generalization to descriptor systems. The implementation of the implicit filter depends on the solution of the congruence matrix equation (A1)(Px)(AT1) = Py. We develop a general iterative method for the solution of this equation, and prove necessary and sufficient conditions for convergence. It is shown that when the system matrices of an implicit system are sparse, the implicit Kalman filter requires significantly less computer time and storage to implement as compared to the traditional explicit Kalman filter. Simulation results are presented to illustrate and substantiate the theoretical developments.

  8. Abstract framework for the theory of statistical solutions

    NASA Astrophysics Data System (ADS)

    Bronzi, A. C.; Mondaini, C. F.; Rosa, R. M. S.

    2016-06-01

    An abstract framework for the theory of statistical solutions is developed for general evolution equations, extending the theory initially developed for the three-dimensional incompressible Navier-Stokes equations. The motivation for this concept is to model the evolution of uncertainties on the initial conditions for systems which have global solutions that are not known to be unique. Both concepts of statistical solution in trajectory space and in phase space are given, and the corresponding results of existence of statistical solution for the associated initial value problems are proved. The wide applicability of the theory is illustrated with the very incompressible Navier-Stokes equations, a reaction-diffusion equation, and a nonlinear wave equation, all displaying the property of global existence of weak solutions without a known result of global uniqueness.

  9. Implicit and semi-implicit schemes: Algorithms

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Tóth, G.; Botchev, M. A.; van der Ploeg, A.

    1999-06-01

    This study formulates general guidelines to extend an explicit code with a great variety of implicit and semi-implicit time integration schemes. The discussion is based on their specific implementation in the Versatile Advection Code, which is a general purpose software package for solving systems of non-linear hyperbolic (and/or parabolic) partial differential equations, using standard high resolution shock capturing schemes. For all combinations of explicit high resolution schemes with implicit and semi-implicit treatments, it is shown how second-order spatial and temporal accuracy for the smooth part of the solutions can be maintained. Strategies to obtain steady state and time accurate solutions implicitly are discussed. The implicit and semi-implicit schemes require the solution of large linear systems containing the Jacobian matrix. The Jacobian matrix itself is calculated numerically to ensure the generality of this implementation. Three options are discussed in terms of applicability, storage requirements and computational efficiency. One option is the easily implemented matrix-free approach, but the Jacobian matrix can also be calculated by using a general grid masking algorithm, or by an efficient implementation for a specific Lax-Friedrich-type total variation diminishing (TVD) spatial discretization. The choice of the linear solver depends on the dimensionality of the problem. In one dimension, a direct block tridiagonal solver can be applied, while in more than one spatial dimension, a conjugate gradient (CG)-type iterative solver is used. For advection-dominated problems, preconditioning is needed to accelerate the convergence of the iterative schemes. The modified block incomplete LU-preconditioner is implemented, which performs very well. Examples from two-dimensional hydrodynamic and magnetohydrodynamic computations are given. They model transonic stellar outflow and recover the complex magnetohydrodynamic bow shock flow in the switch-on regime

  10. Fully implicit solutions of the benchmark backward facing step problem using finite element discretization and inexact Newton's method

    SciTech Connect

    McHugh, P.R.; Knoll, D.A.

    1992-01-01

    A fully implicit solution algorithm based on Newton's method is used to solve the steady, incompressible Navier-Stokes and energy equations. An efficiently evaluated numerical Jacobian is used to simplify implementation, and mesh sequencing is used to increase the radius of convergence of the algorithm. We employ finite volume discretization using the power law scheme of Patankar to solve the benchmark backward facing step problem defined by the ASME K-12 Aerospace Heat Transfer Committee. LINPACK banded Gaussian elimination and the preconditioned transpose-free quasi-minimal residual (TFQMR) algorithm of Freund are studied as possible linear equation solvers. Implementation of the preconditioned TFQMR algorithm requires use of the switched evolution relaxation algorithm of Mulder and Van Leer to ensure convergence. The preconditioned TFQMR algorithm is more memory efficient than the direct solver, but our implementation is not as CPU efficient. Results show that for the level of grid refinement used, power law differencing was not adequate to yield the desired accuracy for this problem.

  11. A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation

    NASA Astrophysics Data System (ADS)

    Wu, Yuqi; Cai, Xiao-Chuan

    2014-02-01

    Due to the rapid advancement of supercomputing hardware, there is a growing interest in parallel algorithms for modeling the full three-dimensional interaction between the blood flow and the arterial wall. In [4], Barker and Cai developed a parallel framework for solving fluid-structure interaction problems in two dimensions. In this paper, we extend the idea to three dimensions. We introduce and study a parallel scalable domain decomposition method for solving nonlinear monolithically coupled systems arising from the discretization of the coupled system in an arbitrary Lagrangian-Eulerian framework with a fully implicit stabilized finite element method. The investigation focuses on the robustness and parallel scalability of the Newton-Krylov algorithm preconditioned with an overlapping additive Schwarz method. We validate the proposed approach and report the parallel performance for some patient-specific pulmonary artery problems. The algorithm is shown to be scalable with a large number of processors and for problems with millions of unknowns.

  12. High-Accuracy, Implicit Solution of the Extended-MHD Equations using High-Continuity Finite Elements

    NASA Astrophysics Data System (ADS)

    Jardin, Stephen C.

    2004-11-01

    It has been recognized for some time that it is necessary to go beyond the simple ``resistive MHD'' description of the plasma in order to get the correct quantitative results for the growth and saturation of global dissipative modes in a fusion device. The inclusion of a more complete ``generalized Ohms law'' and the off-diagonal terms in the ion pressure tensor introduce Whistler waves, Kinetic Alfven waves, and gyro-viscous waves, all of which are dispersive and require special numerical treatment. We have developed a new numerical approach to solving these Extended-MHD equations using a compact representation that is specifically designed to yield efficient high-order-of-accuracy, implicit solutions of a general formulation of the compressible Extended-MHD equations. The representation is based on a triangular finite element with fifth order accuracy that is constructed to have continuous derivatives across element boundaries, allowing its use with systems of equations containing complex spatial derivative operators of up to 4th order. The final set of equations are solved using the parallel sparse direct solver, SuperLU, which makes linear solutions exceptionally efficient, since only a one-time LU decomposition is required. The magnetic and velocity fields are decomposed without loss of generality in in a potential, stream function form. Subsets of the full set of 6 equations describing unreduced compressible extended MHD yield (1) the two variable reduced MHD equations, and (2) the 4-field Fitzpatrick-Porcelli equations. Applications are presented in straight and toroidal geometry showing the accuracy and efficiency of the method in computing highly anisotropic heat conduction, toroidal equilibrium, and the effect of ``two-fluid'' effects on resistive instabilities.

  13. Assessment of solution uncertainties in single-column modeling frameworks

    SciTech Connect

    Hack, J.J.; Pedretti, J.A.

    2000-01-15

    Single-column models (SCMs) have been extensively promoted in recent years as an effective means to develop and test physical parameterizations targeted for more complex three-dimensional climate models. Although there are some clear advantages associated with single-column modeling, there are also some significant disadvantages, including the absence of large-scale feedbacks. Basic limitations of an SCM framework can make it difficult to interpret solutions, and at times contribute to rather striking failures to identify even first-order sensitivities as they would be observed in a global climate simulation. This manuscript will focus on one of the basic experimental approaches currently exploited by the single-column modeling community, with an emphasis on establishing the inherent uncertainties in the numerical solutions. The analysis will employ the standard physics package from the NCAR CCM3 and will illustrate the nature of solution uncertainties that arise from nonlinearities in parameterized physics. The results of this study suggest the need to make use of an ensemble methodology when conducting single-column modeling investigations.

  14. Alternating-direction implicit numerical solution of the time-dependent, three-dimensional, single fluid, resistive magnetohydrodynamic equations

    SciTech Connect

    Finan, C.H. III

    1980-12-01

    Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are solved simultaneously to avoid syncronization errors.

  15. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    SciTech Connect

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  16. Nonadiabatic dynamics of electron transfer in solution: explicit and implicit solvent treatments that include multiple relaxation time scales.

    PubMed

    Schwerdtfeger, Christine A; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  17. Implicit CAPTCHAs

    NASA Astrophysics Data System (ADS)

    Baird, Henry S.; Bentley, Jon L.

    2004-12-01

    We propose a design methodology for "implicit" CAPTCHAs to relieve drawbacks of present technology. CAPTCHAs are tests administered automatically over networks that can distinguish between people and machines and thus protect web services from abuse by programs masquerading as human users. All existing CAPTCHAs' challenges require a significant conscious effort by the person answering them -- e.g. reading and typing a nonsense word -- whereas implicit CAPTCHAs may require as little as a single click. Many CAPTCHAs distract and interrupt users, since the challenge is perceived as an irrelevant intrusion; implicit CAPTCHAs can be woven into the expected sequence of browsing using cues tailored to the site. Most existing CAPTCHAs are vulnerable to "farming-out" attacks in which challenges are passed to a networked community of human readers; by contrast, implicit CAPTCHAs are not "fungible" (in the sense of easily answerable in isolation) since they are meaningful only in the specific context of the website that is protected. Many existing CAPTCHAs irritate or threaten users since they are obviously tests of skill: implicit CAPTCHAs appear to be elementary and inevitable acts of browsing. It can often be difficult to detect when CAPTCHAs are under attack: implicit CAPTCHAs can be designed so that certain failure modes are correlated with failed bot attacks. We illustrate these design principles with examples.

  18. Implicit CAPTCHAs

    NASA Astrophysics Data System (ADS)

    Baird, Henry S.; Bentley, Jon L.

    2005-01-01

    We propose a design methodology for "implicit" CAPTCHAs to relieve drawbacks of present technology. CAPTCHAs are tests administered automatically over networks that can distinguish between people and machines and thus protect web services from abuse by programs masquerading as human users. All existing CAPTCHAs' challenges require a significant conscious effort by the person answering them -- e.g. reading and typing a nonsense word -- whereas implicit CAPTCHAs may require as little as a single click. Many CAPTCHAs distract and interrupt users, since the challenge is perceived as an irrelevant intrusion; implicit CAPTCHAs can be woven into the expected sequence of browsing using cues tailored to the site. Most existing CAPTCHAs are vulnerable to "farming-out" attacks in which challenges are passed to a networked community of human readers; by contrast, implicit CAPTCHAs are not "fungible" (in the sense of easily answerable in isolation) since they are meaningful only in the specific context of the website that is protected. Many existing CAPTCHAs irritate or threaten users since they are obviously tests of skill: implicit CAPTCHAs appear to be elementary and inevitable acts of browsing. It can often be difficult to detect when CAPTCHAs are under attack: implicit CAPTCHAs can be designed so that certain failure modes are correlated with failed bot attacks. We illustrate these design principles with examples.

  19. Technical report series on global modeling and data assimilation. Volume 2: Direct solution of the implicit formulation of fourth order horizontal diffusion for gridpoint models on the sphere

    NASA Technical Reports Server (NTRS)

    Li, Yong; Moorthi, S.; Bates, J. Ray; Suarez, Max J.

    1994-01-01

    High order horizontal diffusion of the form K Delta(exp 2m) is widely used in spectral models as a means of preventing energy accumulation at the shortest resolved scales. In the spectral context, an implicit formation of such diffusion is trivial to implement. The present note describes an efficient method of implementing implicit high order diffusion in global finite difference models. The method expresses the high order diffusion equation as a sequence of equations involving Delta(exp 2). The solution is obtained by combining fast Fourier transforms in longitude with a finite difference solver for the second order ordinary differential equation in latitude. The implicit diffusion routine is suitable for use in any finite difference global model that uses a regular latitude/longitude grid. The absence of a restriction on the timestep makes it particularly suitable for use in semi-Lagrangian models. The scale selectivity of the high order diffusion gives it an advantage over the uncentering method that has been used to control computational noise in two-time-level semi-Lagrangian models.

  20. An implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Dutta, Vimala

    1993-07-01

    An implicit finite volume nodal point scheme has been developed for solving the two-dimensional compressible Navier-Stokes equations. The numerical scheme is evolved by efficiently combining the basic ideas of the implicit finite-difference scheme of Beam and Warming (1978) with those of nodal point schemes due to Hall (1985) and Ni (1982). The 2-D Navier-Stokes solver is implemented for steady, laminar/turbulent flows past airfoils by using C-type grids. Turbulence closure is achieved by employing the algebraic eddy-viscosity model of Baldwin and Lomax (1978). Results are presented for the NACA-0012 and RAE-2822 airfoil sections. Comparison of the aerodynamic coefficients with experimental results for the different test cases presented here establishes the validity and efficiency of the method.

  1. A Newton-Krylov method with approximate Jacobian for implicit solution of Navier-Stokes on staggered overset-curvilinear grids with immersed boundaries

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Borazjani, Iman

    2014-11-01

    Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  2. Time-asymptotic solutions of the Navier-Stokes equation for free shear flows using an alternating-direction implicit method

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.; Morris, D. J.

    1976-01-01

    An uncoupled time asymptotic alternating direction implicit method for solving the Navier-Stokes equations was tested on two laminar parallel mixing flows. A constant total temperature was assumed in order to eliminate the need to solve the full energy equation; consequently, static temperature was evaluated by using algebraic relationship. For the mixing of two supersonic streams at a Reynolds number of 1,000, convergent solutions were obtained for a time step 5 times the maximum allowable size for an explicit method. The solution diverged for a time step 10 times the explicit limit. Improved convergence was obtained when upwind differencing was used for convective terms. Larger time steps were not possible with either upwind differencing or the diagonally dominant scheme. Artificial viscosity was added to the continuity equation in order to eliminate divergence for the mixing of a subsonic stream with a supersonic stream at a Reynolds number of 1,000.

  3. Implicit Solution of the Four-field Extended-magnetohydroynamic Equations using High-order High-continuity Finite Elements

    SciTech Connect

    S.C. Jardin; J.A. Breslau

    2004-12-17

    Here we describe a technique for solving the four-field extended-magnetohydrodynamic (MHD) equations in two dimensions. The introduction of triangular high-order finite elements with continuous first derivatives (C{sup 1} continuity) leads to a compact representation compatible with direct inversion of the associated sparse matrices. The split semi-implicit method is introduced and used to integrate the equations in time, yielding unconditional stability for arbitrary time step. The method is applied to the cylindrical tilt mode problem with the result that a non-zero value of the collisionless ion skin depth will increase the growth rate of that mode. The effect of this parameter on the reconnection rate and geometry of a Harris equilibrium and on the Taylor reconnection problem is also demonstrated. This method forms the basis for a generalization to a full extended-MHD description of the plasma with six, eight, or more scalar fields.

  4. A Parallel, Fully Coupled, Fully Implicit Solution to Reactive Transport in Porous Media Using the Preconditioned Jacobian-Free Newton-Krylov Method

    SciTech Connect

    Luanjing Guo; Hai Huang; Derek Gaston; Cody Permann; David Andrs; George Redden; Chuan Lu; Don Fox; Yoshiko Fujita

    2013-03-01

    Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.

  5. An implicit solution of the three-dimensional Navier-Stokes equations for an airfoil spanning a wind tunnel. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Moitra, A.

    1982-01-01

    An implicit finite-difference algorithm is developed for the numerical solution of the incompressible three dimensional Navier-Stokes equations in the non-conservative primitive-variable formulation. The flow field about an airfoil spanning a wind-tunnel is computed. The coordinate system is generated by an extension of the two dimensional body-fitted coordinate generation techniques of Thompson, as well as that of Sorenson, into three dimensions. Two dimensional grids are stacked along a spanwise coordinate defined by a simple analytical function. A Poisson pressure equation for advancing the pressure in time is arrived at by performing a divergence operation on the momentum equations. The pressure at each time-step is calculated on the assumption that continuity be unconditionally satisfied. An eddy viscosity coefficient, computed according to the algebraic turbulence formulation of Baldwin and Lomax, simulates the effects of turbulence.

  6. Implicit Monte Carlo with a linear discontinuous finite element material solution and piecewise non-constant opacity

    DOE PAGESBeta

    Wollaeger, Ryan T.; Wollaber, Allan B.; Urbatsch, Todd J.; Densmore, Jeffery D.

    2016-05-04

    Here, the non-linear thermal radiative-transfer equations can be solved in various ways. One popular way is the Fleck and Cummings Implicit Monte Carlo (IMC) method. The IMC method was originally formulated with piecewise-constant material properties. For domains with a coarse spatial grid and large temperature gradients, an error known as numerical teleportation may cause artificially non-causal energy propagation and consequently an inaccurate material temperature. Source tilting is a technique to reduce teleportation error by constructing sub-spatial-cell (or sub-cell) emission profiles from which IMC particles are sampled. Several source tilting schemes exist, but some allow teleportation error to persist. We examinemore » the effect of source tilting in problems with a temperature-dependent opacity. Within each cell, the opacity is evaluated continuously from a temperature profile implied by the source tilt. For IMC, this is a new approach to modeling the opacity. We find that applying both source tilting along with a source tilt-dependent opacity can introduce another dominant error that overly inhibits thermal wavefronts. We show that we can mitigate both teleportation and under-propagation errors if we discretize the temperature equation with a linear discontinuous (LD) trial space. Our method is for opacities ~ 1/T3, but we formulate and test a slight extension for opacities ~ 1/T3.5, where T is temperature. We find our method avoids errors that can be incurred by IMC with continuous source tilt constructions and piecewise-constant material temperature updates.« less

  7. Second-order non-iterative ADI solution of non-linear partial differential equations. [Alternating Direction Implicit scheme

    NASA Technical Reports Server (NTRS)

    Wolfshtein, M.; Hirsh, R. S.; Pitts, B. H.

    1975-01-01

    A new method for the solution of non-linear partial differential equations by an ADI procedure is described. Although the method is second order accurate in time, it does not require either iterations or predictor corrector methods to overcome the nonlinearity of the equations. Thus the computational effort required for the solution of the non-linear problem becomes similar to that required for the linear case. The method is applied to a two-dimensional 'extended Burgers equation'. Linear stability is studied, and some numerical solutions obtained. The improved accuracy obtained by the 2nd order truncation error is clearly manifested.

  8. A rapid implicit-explicit solution to the two-dimensional time dependent incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Davis, J. E.

    1980-01-01

    A second-order time-accurate and spatially factored algorithm was used in a finite difference scheme for the numerical solution of the time-dependent, incompressible, two dimensional Navier-Stokes equations in conservation-law form using vorticity and stream function variables. The systems of equations are solved at each time step by an iterative technique. Numerical results were obtained for a circular cylinder at a Reynolds number of 15, and an NACA 0012 airfoil at zero angle of attack at Reynolds numbers of 10 to the third and 10 to the fourth powers. The results are in agreement with another numerical technique, and the computing time required to obtain the steady state solution at the Reynolds number of 10 to the 4th power was 49.7 sec on CDC 7600 computer using a 65 x 84 computational grind.

  9. ALPS: A framework for parallel adaptive PDE solution

    NASA Astrophysics Data System (ADS)

    Burstedde, Carsten; Burtscher, Martin; Ghattas, Omar; Stadler, Georg; Tu, Tiankai; Wilcox, Lucas C.

    2009-07-01

    Adaptive mesh refinement and coarsening (AMR) is essential for the numerical solution of partial differential equations (PDEs) that exhibit behavior over a wide range of length and time scales. Because of the complex dynamic data structures and communication patterns and frequent data exchange and redistribution, scaling dynamic AMR to tens of thousands of processors has long been considered a challenge. We are developing ALPS, a library for dynamic mesh adaptation of PDEs that is designed to scale to hundreds of thousands of compute cores. Our approach uses parallel forest-of-octree-based hexahedral finite element meshes and dynamic load balancing based on space-filling curves. ALPS supports arbitrary-order accurate continuous and discontinuous finite element/spectral element discretizations on general geometries. We present scalability and performance results for two applications from geophysics: seismic wave propagation and mantle convection.

  10. Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    2010-01-01

    The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.

  11. A frequency averaging framework for the solution of complex dynamic systems

    PubMed Central

    Lecomte, Christophe

    2014-01-01

    A frequency averaging framework is proposed for the solution of complex linear dynamic systems. It is remarkable that, while the mid-frequency region is usually very challenging, a smooth transition from low- through mid- and high-frequency ranges is possible and all ranges can now be considered in a single framework. An interpretation of the frequency averaging in the time domain is presented and it is explained that the average may be evaluated very efficiently in terms of system solutions. PMID:24910518

  12. A theoretical framework for modeling dilution enhancement of non-reactive solutes in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    de Barros, F. P. J.; Fiori, A.; Boso, F.; Bellin, A.

    2015-04-01

    Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data.

  13. A theoretical framework for modeling dilution enhancement of non-reactive solutes in heterogeneous porous media.

    PubMed

    de Barros, F P J; Fiori, A; Boso, F; Bellin, A

    2015-01-01

    Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. PMID:25795562

  14. Implicit solution of Navier-Stokes equations on staggered curvilinear grids using a Newton-Krylov method with a novel analytical Jacobian.

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Asgharzadeh, Hafez

    2015-11-01

    Flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates with explicit and semi-implicit schemes. Implicit schemes can be used to overcome these restrictions. However, implementing implicit solver for nonlinear equations including Navier-Stokes is not straightforward. Newton-Krylov subspace methods (NKMs) are one of the most advanced iterative methods to solve non-linear equations such as implicit descritization of the Navier-Stokes equation. The efficiency of NKMs massively depends on the Jacobian formation method, e.g., automatic differentiation is very expensive, and matrix-free methods slow down as the mesh is refined. Analytical Jacobian is inexpensive method, but derivation of analytical Jacobian for Navier-Stokes equation on staggered grid is challenging. The NKM with a novel analytical Jacobian was developed and validated against Taylor-Green vortex and pulsatile flow in a 90 degree bend. The developed method successfully handled the complex geometries such as an intracranial aneurysm with multiple overset grids, and immersed boundaries. It is shown that the NKM with an analytical Jacobian is 3 to 25 times faster than the fixed-point implicit Runge-Kutta method, and more than 100 times faster than automatic differentiation depending on the grid (size) and the flow problem. The developed methods are fully parallelized with parallel efficiency of 80-90% on the problems tested.

  15. An implicit Smooth Particle Hydrodynamic code

    SciTech Connect

    Charles E. Knapp

    2000-04-01

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  16. Haptics-based dynamic implicit solid modeling.

    PubMed

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback. PMID:15794139

  17. Catchment travel and residence time distributions: a theoretical framework for solute transport modeling

    NASA Astrophysics Data System (ADS)

    Botter, G.; Bertuzzo, E.; Rinaldo, A.

    2011-12-01

    The probability density functions (pdf's) of travel and residence times are key descriptors of the mechanisms through which catchments retain and release old and event water, transporting solutes to receiving water bodies. In this contribution we derive a general stochastic framework applicable to arbitrary catchment control volumes, where time-variable precipitation, evapotranspiration and discharge are assumed to be the major hydrological drivers for water and solutes. A master equation for the residence time pdf is derived and solved analytically, providing expressions for travel and residence time pdf's as a function of input/output fluxes and of the relevant mixing processes occurring along streamflow production and plant upatke. Our solutions suggest intrinsically time variant travel and residence time pdf's through a direct dependence on the underlying hydrological forcings and soil vegetation dynamics. The proposed framework highlights the dependence of water/solute travel times on eco-hydrological processes (especially transpiration and uptake), and integrates age-dating and tracer hydrology techniques by providing a coherent framework for catchment transport models. An application to the release of pesticides from an agricultural watershead is also discussed.

  18. Supramolecular chemistry: from aromatic foldamers to solution-phase supramolecular organic frameworks.

    PubMed

    Li, Zhan-Ting

    2015-01-01

    This mini-review covers the growth, education, career, and research activities of the author. In particular, the developments of various folded, helical and extended secondary structures from aromatic backbones driven by different noncovalent forces (including hydrogen bonding, donor-acceptor, solvophobicity, and dimerization of conjugated radical cations) and solution-phase supramolecular organic frameworks driven by hydrophobically initiated aromatic stacking in the cavity of cucurbit[8]uril (CB[8]) are highlighted. PMID:26664626

  19. Supramolecular chemistry: from aromatic foldamers to solution-phase supramolecular organic frameworks

    PubMed Central

    2015-01-01

    Summary This mini-review covers the growth, education, career, and research activities of the author. In particular, the developments of various folded, helical and extended secondary structures from aromatic backbones driven by different noncovalent forces (including hydrogen bonding, donor–acceptor, solvophobicity, and dimerization of conjugated radical cations) and solution-phase supramolecular organic frameworks driven by hydrophobically initiated aromatic stacking in the cavity of cucurbit[8]uril (CB[8]) are highlighted. PMID:26664626

  20. State-Based Implicit Coordination and Applications

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2011-01-01

    In air traffic management, pairwise coordination is the ability to achieve separation requirements when conflicting aircraft simultaneously maneuver to solve a conflict. Resolution algorithms are implicitly coordinated if they provide coordinated resolution maneuvers to conflicting aircraft when only surveillance data, e.g., position and velocity vectors, is periodically broadcast by the aircraft. This paper proposes an abstract framework for reasoning about state-based implicit coordination. The framework consists of a formalized mathematical development that enables and simplifies the design and verification of implicitly coordinated state-based resolution algorithms. The use of the framework is illustrated with several examples of algorithms and formal proofs of their coordination properties. The work presented here supports the safety case for a distributed self-separation air traffic management concept where different aircraft may use different conflict resolution algorithms and be assured that separation will be maintained.

  1. Implicit solution of Stokes flow equation with material transport: toward thermal convection simulation under the self-gravitating field with free surface

    NASA Astrophysics Data System (ADS)

    Furuichi, M.; Nakagawa, T.; May, D.

    2013-12-01

    Stabilizing a numerical oscillation in free surface treatment is chagrining topic for a geodynamics simulation [e.g. Kaus et al. 2010, Duretz et al., 2011]. It is especially important for the Stokes flow simulation under the self-gravitating field based on 'Spherical Cartesian' method [Gerya et al., 2007], which is useful for simulating a long time scale dynamics of sinking metal rich materials to construct planetary core. The conventional explicit time stepping algorithm, which solves Stokes flow equation for a given material distribution at a previous time step, however has a difficulty for simulating dynamics such as a thermal convection, after the construction of layered structure in the planetary interior because of numerical oscillation. One effective approach for such numerically problematic behavior is an implicit treatment of advection term. In this study, three types of implicit strategy are discussed. First is the full implicit treatment with iterative non-linear solver which uses transported density by maker-in-cell method as nonlinear update. The maker-in-cell method is commonly used as low diffusive advection method, but is computationally expensive with makers to mesh interpolation. Second approach uses semi-Lagrangian method for nonlinear update instead of the maker-in-cell method to reduce computational cost. Third approach is to solve the Stokes flow equation combined with the linearized advection term in central-difference discretization to avoid the nonlinear update by the transport. In the second and third algorithms, physical value at the next time step is still transported by low diffusive maker-in-cell method. These three types of implicit method are examined by numerical experiment.

  2. A modern solver framework to manage solution algorithms in the Community Earth System Model

    SciTech Connect

    Evans, Katherine J; Worley, Patrick H; Nichols, Dr Jeff A; WhiteIII, James B; Salinger, Andy; Price, Stephen; Lemieux, Jean-Francois; Lipscomb, William; Perego, Mauro; Vertenstein, Mariana; Edwards, Jim

    2012-01-01

    Global Earth-system models (ESM) can now produce simulations that resolve ~50 km features and include finer-scale, interacting physical processes. In order to achieve these scale-length solutions, ESMs require smaller time steps, which limits parallel performance. Solution methods that overcome these bottlenecks can be quite intricate, and there is no single set of algorithms that perform well across the range of problems of interest. This creates significant implementation challenges, which is further compounded by complexity of ESMs. Therefore, prototyping and evaluating new algorithms in these models requires a software framework that is flexible, extensible, and easily introduced into the existing software. We describe our efforts to create a parallel solver framework that links the Trilinos library of solvers to Glimmer-CISM, a continental ice sheet model used in the Community Earth System Model (CESM). We demonstrate this framework within both current and developmental versions of Glimmer-CISM and provide strategies for its integration into the rest of the CESM.

  3. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes.

    PubMed

    Ateshian, Gerard A; Maas, Steve; Weiss, Jeffrey A

    2013-11-01

    Computational tools are often needed to model the complex behavior of biological tissues and cells when they are represented as mixtures of multiple neutral or charged constituents. This study presents the formulation of a finite element modeling framework for describing multiphasic materials in the open-source finite element software febio.1 Multiphasic materials may consist of a charged porous solid matrix, a solvent, and any number of neutral or charged solutes. This formulation proposes novel approaches for addressing several challenges posed by the finite element analysis of such complex materials: The exclusion of solutes from a fraction of the pore space due to steric volume and short-range electrostatic effects is modeled by a solubility factor, whose dependence on solid matrix deformation and solute concentrations may be described by user-defined constitutive relations. These solute exclusion mechanisms combine with long-range electrostatic interactions into a partition coefficient for each solute whose value is dependent upon the evaluation of the electric potential from the electroneutrality condition. It is shown that this electroneutrality condition reduces to a polynomial equation with only one valid root for the electric potential, regardless of the number and valence of charged solutes in the mixture. The equation of charge conservation is enforced as a constraint within the equation of mass balance for each solute, producing a natural boundary condition for solute fluxes that facilitates the prescription of electric current density on a boundary. It is also shown that electrical grounding is necessary to produce numerical stability in analyses where all the boundaries of a multiphasic material are impermeable to ions. Several verification problems are presented that demonstrate the ability of the code to reproduce known or newly derived solutions: (1) the Kedem-Katchalsky model for osmotic loading of a cell; (2) Donnan osmotic swelling of a charged

  4. TF4SM: A Framework for Developing Traceability Solutions in Small Manufacturing Companies.

    PubMed

    Bordel Sánchez, Borja; Alcarria, Ramón; Martín, Diego; Robles, Tomás

    2015-01-01

    Nowadays, manufacturing processes have become highly complex. Besides, more and more, governmental institutions require companies to implement systems to trace a product's life (especially for foods, clinical materials or similar items). In this paper, we propose a new framework, based on cyber-physical systems, for developing traceability systems in small manufacturing companies (which because of their size cannot implement other commercial products). We propose a general theoretical framework, study the requirements of these companies in relation to traceability systems, propose a reference architecture based on both previous elements and build the first minimum functional prototype, to compare our solution to a traditional tag-based traceability system. Results show that our system reduces the number of inefficiencies and reaction time. PMID:26610509

  5. TF4SM: A Framework for Developing Traceability Solutions in Small Manufacturing Companies

    PubMed Central

    Bordel Sánchez, Borja; Alcarria, Ramón; Martín, Diego; Robles, Tomás

    2015-01-01

    Nowadays, manufacturing processes have become highly complex. Besides, more and more, governmental institutions require companies to implement systems to trace a product’s life (especially for foods, clinical materials or similar items). In this paper, we propose a new framework, based on cyber-physical systems, for developing traceability systems in small manufacturing companies (which because of their size cannot implement other commercial products). We propose a general theoretical framework, study the requirements of these companies in relation to traceability systems, propose a reference architecture based on both previous elements and build the first minimum functional prototype, to compare our solution to a traditional tag-based traceability system. Results show that our system reduces the number of inefficiencies and reaction time. PMID:26610509

  6. Implicit plasma simulation

    SciTech Connect

    Langdon, A.B.

    1985-03-03

    Implicit time integration methods have been used extensively in numerical modelling of slowly varying phenomena in systems that also support rapid variation. Examples include diffusion, hydrodynamics and reaction kinetics. This article discussed implementation of implicit time integration in plasma codes of the ''particle-in-cell'' family, and the benefits to be gained.

  7. The Existence of Implicit Racial Bias in Nursing Faculty

    ERIC Educational Resources Information Center

    Fitzsimmons, Kathleen A.

    2009-01-01

    This study examined the existence of implicit racial bias in nursing faculty using the Implicit Association Test (IAT). It was conducted within a critical race theory framework where race was seen as a permanent, pervasive, and systemic condition, not an individual process. The study was fueled by data showing continued disparate academic and…

  8. Awareness of Implicit Attitudes

    PubMed Central

    Hahn, Adam; Judd, Charles M.; Hirsh, Holen K.; Blair, Irene V.

    2013-01-01

    Research on implicit attitudes has raised questions about how well people know their own attitudes. Most research on this question has focused on the correspondence between measures of implicit attitudes and measures of explicit attitudes, with low correspondence interpreted as showing that people have little awareness of their implicit attitudes. We took a different approach and directly asked participants to predict their results on upcoming IAT measures of implicit attitudes toward five different social groups. We found that participants were surprisingly accurate in their predictions. Across four studies, predictions were accurate regardless of whether implicit attitudes were described as true attitudes or culturally learned associations (Studies 1 and 2), regardless of whether predictions were made as specific response patterns (Study 1) or as conceptual responses (Studies 2–4), and regardless of how much experience or explanation participants received before making their predictions (Study 4). Study 3 further suggested that participants’ predictions reflected unique insight into their own implicit responses, beyond intuitions about how people in general might respond. Prediction accuracy occurred despite generally low correspondence between implicit and explicit measures of attitudes, as found in prior research. All together, the research findings cast doubt on the belief that attitudes or evaluations measured by the IAT necessarily reflect unconscious attitudes. PMID:24294868

  9. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  10. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1).

    PubMed

    Conde-González, J E; Peña-Méndez, E M; Rybáková, S; Pasán, J; Ruiz-Pérez, C; Havel, J

    2016-05-01

    Silver nanoparticles (AgNP) are emerging pollutants. The use of novel materials such as Cu-(benzene 1,3,5-tricarboxylate, BTC) Metal-Organic Framework (MOFs), for AgNP adsorption and their removal from aqueous solutions has been studied. The effect of different parameters was followed and isotherm model was suggested. MOFs adsorbed fast and efficiently AgNP in the range C0 < 10 mg L(-1), being Freundlich isotherm (R = 0.993) these data fitted to. Among studied parameters a remarkable effect of chloride on sorption was found, thus their possible interactions were considered. The high adsorption efficiency of AgNP was achieved and it was found to be very fast. The feasibility of adsorption on Cu-(BTC) was proved in spiked waters. The results showed the potential interest of new material as adsorbent for removing AgNP from environment. PMID:26879292

  11. Age Differences in Implicit Interference

    PubMed Central

    Ikier, Simay; Hasher, Lynn

    2006-01-01

    We assessed age differences in interference effects in priming by using fragment completion. In Experiment 1, noninterfering filler words preceded critical targets at study, and priming was age invariant. In Experiment 2, the same target items had interfering competitors at the beginning of the list, such that both the target and the competitor were legitimate solutions to a fragment. Having two responses to a cue was disruptive for older adults, but not for younger adults. Younger and older adults differ in their susceptibility to interference in implicit tasks, and interference may play a role in influencing the magnitude of age differences in priming. PMID:16960231

  12. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  13. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    SciTech Connect

    Lv, Yao-Kang; Feng, Yun-Long; Liu, Ji-Wei; Jiang, Zhan-Guo

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.

  14. Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67.

    PubMed

    Pan, Yong; Li, Zhi; Zhang, Zhe; Tong, Xiong-Shi; Li, Hai; Jia, Chong-Zhi; Liu, Bei; Sun, Chang-Yu; Yang, Lan-Ying; Chen, Guang-Jin; Ma, De-Yun

    2016-03-15

    ZIF-67(zinc-methylimidazolate framework-67), one of the zeolitic imidazolate frameworks (ZIFs), was used for the removal of phenol from aqueous solutions via adsorption and shows high adsorption capacity for phenol. The thermodynamic and kinetic adsorption behavior of ZIF-67 for phenol in water with concentration ranging from 50 to 300 ppm were investigated in a batch reactor and a ZIF-67 packed column, respectively. The effects of pH, contact time, zeta potential of the adsorbent and temperature on the adsorption behavior were evaluated, and the results demonstrated that the adsorption is primarily brought about by a specific favorable interaction (electrostatic interaction) between phenol and ZIF-67 surface. The suitability of the Langmuir adsorption model to the equilibrium data was investigated for each phenol-adsorbent system, which the results showed that the equilibrium data for all the phenol-sorbent systems fitted the Langmuir model. Thermodynamic parameters such as Gibbs free energy are calculated from the experimental data at different temperatures. The adsorbent could be perfectly regenerated at 120 °C with little loss in the adsorption ability. PMID:26745178

  15. The deegree framework - Spatial Data Infrastructure solution for end-users and developers

    NASA Astrophysics Data System (ADS)

    Kiehle, Christian; Poth, Andreas

    2010-05-01

    The open source software framework deegree is a comprehensive implementa­tion of standards as defined by ISO and Open Geospatial Consortium (OGC). It has been developed with two goals in mind: provide a uniform framework for implementing Spatial Data Infrastructures (SDI) and adhering to standards as strictly as possible. Although being open source software (Lesser GNU Public Li­cense, LGPL), deegree has been developed with a business model in mind: providing the general building blocks of SDIs without license fees and offer cus­tomization, consulting and tailoring by specialized companies. The core of deegree is a comprehensive Java Application Programming Inter­face (API) offering access to spatial features, analysis, metadata and coordinate reference systems. As a library, deegree can and has been integrated as a core module inside spatial information systems. It is reference implementation for several OGC standards and based on an ISO 19107 geometry model. For end users, deegree is shipped as a web application providing easy-to-set-up components for web mapping and spatial analysis. Since 2000, deegree has been the backbone of many productive SDIs, first and foremost for governmental stakeholders (e.g. Federal Agency for Cartography and Geodesy in Germany, the Ministry of Housing, Spatial Planning and the En­vironment in the Netherlands, etc.) as well as for research and development projects as an early adoption of standards, drafts and discussion papers. Be­sides mature standards like Web Map Service, Web Feature Service and Cata­logue Services, deegree also implements rather new standards like the Sensor Observation Service, the Web Processing Service and the Web Coordinate Transformation Service (WCTS). While a robust background in standardization (knowledge and implementation) is a must for consultancy, standard-compliant services and encodings alone do not provide solutions for customers. The added value is comprised by a sophistic­ated set of

  16. Implicit schemes and parallel computing in unstructured grid CFD

    NASA Technical Reports Server (NTRS)

    Venkatakrishnam, V.

    1995-01-01

    The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.

  17. Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Harten, A.

    1985-01-01

    The Harten (1983, 1984) total variation-diminishing (TVD) schemes, constituting a one-parameter explicit and implicit, second-order-accurate family, have the property of not generating spurious oscillations when applied to one-dimensional, nonlinear scalar hyperbolic conservation laws and constant coefficient hyperbolic systems. These methods are presently extended to the multidimensional hyperbolic conservation laws in curvilinear coordinates. Means by which to linearize the implicit operator and solution strategies, in order to improve the computation efficiency of the implicit algorithm, are discussed. Numerical experiments with steady state airfoil calculations indicate that the proposed linearized implicit TVD schemes are accurate and robust.

  18. Theoretical study of the formation of mercury (Hg2+) complexes in solution using an explicit solvation shell in implicit solvent calculations.

    PubMed

    Afaneh, Akef T; Schreckenbach, Georg; Wang, Feiyue

    2014-09-25

    The structures and harmonic vibrational frequencies of water clusters (H2O)n, n = 1-10, have been computed using the M06-L/, B3LYP/, and CAM-BLYP/cc-pVTZ levels of theories. On the basis of the literature and our results, we use three hexamer structures of the water molecules to calculate an estimated "experimental" average solvation free energy of [Hg(H2O)6](2+). Aqueous formation constants (log K) for Hg(2+) complexes, [Hg(L)m(H2O)n](2-mq), L = Cl(-), HO(-), HS(-), and S(2-), are calculated using a combination of experimental (solvation free energies of ligands and Hg(2+)) and calculated gas- and liquid-phase free energies. A combined approach has been used that involves attaching n explicit water molecules to the Hg(2+) complexes such that the first coordination sphere is complete, then surrounding the resulting (Hg(2+)-Lm)-(OH2)n cluster by a dielectric continuum, and using suitable thermodynamic cycles. This procedure significantly improves the agreement between the calculated log K values and experiment. Thus, for some neutral and anionic Hg(II) complexes, particularly Hg(II) metal ion surrounded with homo- or heteroatoms, augmenting implicit solvent calculations with sufficient explicit water molecules to complete the first coordination sphere is required-and adequate-to account for strong short-range hydrogen bonding interactions between the anion and the solvent. Calculated values for formation constants of Hg(2+) complexes with S(2-) and SH(-) are proposed. Experimental measurements of these log K values have been lacking or controversial. PMID:25076413

  19. Implicit Attitudes in Prosopagnosia

    PubMed Central

    Knutson, Kristine M.; DeTucci, Karen A.; Grafman, Jordan

    2011-01-01

    We studied a male with acquired prosopagnosia using a battery of implicit association tests (IATs) to investigate whether observing faces varying by social category would activate the patient’s implicit social biases. We also asked him to categorize faces explicitly by race, gender, and political party. The patient, G.B., was marginally slower to categorize black compared to white faces. He showed congruency effects in the race and celebrity IATs, but not in the gender or political IATs. These results indicate that G.B. possesses an implicit social sensitivity to certain facial stimuli despite an inability to overtly recognize familiar faces. The results demonstrate that social biases can be retrieved based on facial stimuli via pathways bypassing the fusiform gyri. Thus the IAT effect can be added to the list of covert recognition effects found in prosopagnosia. PMID:21414330

  20. Implicit Spacecraft Gyro Calibration

    NASA Technical Reports Server (NTRS)

    Harman, Richard; Bar-Itzhack, Itzhack Y.

    2003-01-01

    This paper presents an implicit algorithm for spacecraft onboard instrument calibration, particularly to onboard gyro calibration. This work is an extension of previous work that was done where an explicit gyro calibration algorithm was applied to the AQUA spacecraft gyros. The algorithm presented in this paper was tested using simulated data and real data that were downloaded from the Microwave Anisotropy Probe (MAP) spacecraft. The calibration tests gave very good results. A comparison between the use of the implicit calibration algorithm used here with the explicit algorithm used for AQUA spacecraft indicates that both provide an excellent estimation of the gyro calibration parameters with similar accuracies.

  1. The time course of explicit and implicit categorization.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A

    2015-10-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization. PMID:26025556

  2. Implicit solvent methods for free energy estimation

    PubMed Central

    Decherchi, Sergio; Masetti, Matteo; Vyalov, Ivan; Rocchia, Walter

    2014-01-01

    Solvation is a fundamental contribution in many biological processes and especially in molecular binding. Its estimation can be performed by means of several computational approaches. The aim of this review is to give an overview of existing theories and methods to estimate solvent effects giving a specific focus on the category of implicit solvent models and their use in Molecular Dynamics. In many of these models, the solvent is considered as a continuum homogenous medium, while the solute can be represented at the atomic detail and at different levels of theory. Despite their degree of approximation, implicit methods are still widely employed due to their trade-off between accuracy and efficiency. Their derivation is rooted in the statistical mechanics and integral equations disciplines, some of the related details being provided here. Finally, methods that combine implicit solvent models and molecular dynamics simulation, are briefly described. PMID:25193298

  3. Generic Procedure for Coupling the PHREEQC Geochemical Modeling Framework with Flow and Solute Transport Simulators

    NASA Astrophysics Data System (ADS)

    Wissmeier, L. C.; Barry, D. A.

    2009-12-01

    Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection

  4. A stiffly-stable implicit Runge-Kutta algorithm for CFD applications

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Iannelli, G. S.

    1988-01-01

    A stiffly-stable implicit Runge-Kutta integration algorithm is derived for CFD applications spanning the range of semidiscrete theories. The algorithm family contains the one-step 'theta' algorithms, including backwards Euler and the trapezoidal rule, and provides a versatile framework to identify expressions governing algorithm stability characteristics. Parameters of a Runge-Kutta optimal implicit algorithm, second-order accurate in time and stiffly-stable, are established. This algorithm is implemented within a weak statement finite element semidiscrete formulation for one- and two-dimensional conservation law systems. Numerical results are compared to theta-algorithm solutions, for unsteady quasi-one-dimensional Euler predictions with shocks, and for a specially derived two-dimensional conservation law system modeling the Euler equations.

  5. Dynamics of a Definition: A Framework to Analyse Student Construction of the Concept of Solution to a Differential Equation

    ERIC Educational Resources Information Center

    Raychaudhuri, Debasree

    2008-01-01

    In this note we develop a framework that makes explicit the inherent dynamic structure of certain mathematical definitions by means of the four facets of context-entity-process-object. These facets and their interrelations are then used to capture and interpret specific aspects of student constructions of the concept of solution to first order…

  6. Emotion and Implicit Timing

    PubMed Central

    Droit-Volet, Sylvie

    2016-01-01

    This study examined the effects of emotion on implicit timing. In the implicit timing task used, the participants did not receive any temporal instructions. Instead they were simply asked and trained to press a key as quickly as possible after a stimulus (response stimulus) that was separated from a preceding stimulus by a given temporal interval (reference interval duration). However, in the testing phase, the interval duration was the reference interval duration or a shorter or longer interval duration. In addition, the participants attended two sessions: a first baseline session in which no stimulus was presented during the inter-stimulus intervals, and a second emotional session in which emotional facial expressions (angry, neutral and sad facial expressions) were presented during these intervals. Results showed faster RTs for interval durations close to the reference duration in both the baseline and the emotional conditions and yielded a U-shaped curve. This suggests that implicit processing of time persists in emotional contexts. In addition, the RT was faster for the facial expressions of anger than for those of neutrality and sadness. However, the U-shaped RT curve did not peak clearly at a shorter interval duration for the angry than for the other facial expressions. This lack of time distortion in an implicit timing task in response to arousing emotional stimuli questions the idea of an automatic speeding-up of the interval clock system involved in the representation of time. PMID:27380409

  7. Sexual Murderers' Implicit Theories

    ERIC Educational Resources Information Center

    Beech, Anthony; Fisher, Dawn; Ward, Tony

    2005-01-01

    Interviews with 28 sexual murderers were subjected to grounded theory analysis. Five implicit theories (ITs) were identified: dangerous world, male sex drive is uncontrollable, entitlement, women as sexual objects, and women as unknowable. These ITs were found to be identical to those identified in the literature as being present in rapists. The…

  8. Implicit Learning as an Ability

    ERIC Educational Resources Information Center

    Kaufman, Scott Barry; DeYoung, Caroline G.; Gray, Jeremy R.; Jimenez, Luis; Brown, Jamie; Mackintosh, Nicholas

    2010-01-01

    The ability to automatically and implicitly detect complex and noisy regularities in the environment is a fundamental aspect of human cognition. Despite considerable interest in implicit processes, few researchers have conceptualized implicit learning as an ability with meaningful individual differences. Instead, various researchers (e.g., Reber,…

  9. Economic Values Implicit in the Social Construction of American Universities.

    ERIC Educational Resources Information Center

    Olson, Jeffery E.

    Five economic hypotheses of what American universities value (profit, production, prestige, faculty consumption, or academic resources and activities) were tested to illustrate the implicit value framework, a conceptual framework for inferring the objective economic values of an organization from the manner in which society has defined its…

  10. A conceptual framework for ground-water solute-transport studies with emphasis on physical mechanisms of solute movement

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Buxton, Herbert T.; Bennett, Gordon D.

    1987-01-01

    Analysis of solute transport in groundwater systems involves a complex, multi-discipline study that requires intensive and costly investigation. Groundwater contamination, particularly from point sources, has been growing in importance in recent years. This report examines the physical mechanisms of solute transport, advection and dispersion, and explains how they relate to one another and the scale of study. The approach uses a preliminary analysis prior to collection of new data to focus on the technical problems to be addressed and to direct the initial collection of new data if warranted. The field investigation (collection of new data) progresses in stages that use the new knowledge and understanding gained from the preceding data collection to aid in further data collection as the study proceeds. A major premise of the approach is that the foundation of any analysis is a detailed quantitative definition of: (1) the groundwater flow field in three dimensions, and (2) the distribution of solutes in the contaminant plume in three dimensions at one point in time, or preferably at more than features of the groundwater flow field, and is an important tool for analysis. However, the scale of analysis for solute transport studies is usually much finer than the scale of analysis for groundwater flow alone. Therefore, an increase in detail of the velocity field is needed to provide for accurate calculations of pathlines in three-dimensional heterogeneous groundwater systems. (Lantz-PTT)

  11. A comparison of implicit numerical methods for solving the transient spherical diffusion equation

    NASA Technical Reports Server (NTRS)

    Curry, D. M.

    1977-01-01

    Comparative numerical temperature results obtained by using two implicit finite difference procedures for the solution of the transient diffusion equation in spherical coordinates are presented. The validity and accuracy of these solutions are demonstrated by comparison with exact analytical solutions.

  12. NDTB-1: A Supertetrahedral Cationic Framework That Removes TcO4- from Solution

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Casey, William H.; Phillips, Brian L.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2010-02-01

    A cubic thorium borate possesses a porous supertetrahedral cationic framework with extraframework borate anions. These anions are readily exchanged with a variety of environmental contaminants, especially those from the nuclear industry, including chromate and pertechnetate.

  13. Implicit Extrapolation Methods for Variable Coefficient Problems

    NASA Technical Reports Server (NTRS)

    Jung, M.; Ruede, U.

    1996-01-01

    Implicit extrapolation methods for the solution of partial differential equations are based on applying the extrapolation principle indirectly. Multigrid tau-extrapolation is a special case of this idea. In the context of multilevel finite element methods, an algorithm of this type can be used to raise the approximation order, even when the meshes are nonuniform or locally refined. Here previous results are generalized to the variable coefficient case and thus become applicable for nonlinear problems. The implicit extrapolation multigrid algorithm converges to the solution of a higher order finite element system. This is obtained without explicitly constructing higher order stiffness matrices but by applying extrapolation in a natural form within the algorithm. The algorithm requires only a small change of a basic low order multigrid method.

  14. Extrapolated implicit-explicit time stepping.

    SciTech Connect

    Constantinescu, E. M.; Sandu, A.; Mathematics and Computer Science; Virginia Polytechnic Inst. and State Univ.

    2010-01-01

    This paper constructs extrapolated implicit-explicit time stepping methods that allow one to efficiently solve problems with both stiff and nonstiff components. The proposed methods are based on Euler steps and can provide very high order discretizations of ODEs, index-1 DAEs, and PDEs in the method-of-lines framework. Implicit-explicit schemes based on extrapolation are simple to construct, easy to implement, and straightforward to parallelize. This work establishes the existence of perturbed asymptotic expansions of global errors, explains the convergence orders of these methods, and studies their linear stability properties. Numerical results with stiff ODE, DAE, and PDE test problems confirm the theoretical findings and illustrate the potential of these methods to solve multiphysics multiscale problems.

  15. Implicitly modelled stratigraphic surfaces using generalized interpolation

    NASA Astrophysics Data System (ADS)

    Hillier, Michael; de Kemp, Eric; Schetselaar, Ernst

    2016-06-01

    Stratigraphic surfaces implicitly modelled using a generalized interpolation approach in various geological settings is presented to demonstrate its modelling capabilities and limitations. The generalized interpolation approach provides a useful mathematical framework in modelling continuous surfaces from scattered data consisting of the following geological constraints: contact locations and planar orientations. Examples are presented to show the effectiveness of the method in generating plausible representations of geological structures in sparse data environments. One of the major advantages of implicit surface modelling has long been claimed as its ability to model geometries with arbitrary topology. It is, however, demonstrated that this is in fact a disadvantage in robustly generating geologically realistic surfaces in structurally complex domains with a known topology.

  16. Satellite attitude dynamics and estimation with the implicit midpoint method

    NASA Astrophysics Data System (ADS)

    Hellström, Christian; Mikkola, Seppo

    2009-07-01

    We describe the application of the implicit midpoint integrator to the problem of attitude dynamics for low-altitude satellites without the use of quaternions. Initially, we consider the satellite to rotate without external torques applied to it. We compare the numerical solution with the exact solution in terms of Jacobi's elliptic functions. Then, we include the gravity-gradient torque, where the implicit midpoint integrator proves to be a fast, simple and accurate method. Higher-order versions of the implicit midpoint scheme are compared to Gauss-Legendre Runge-Kutta methods in terms of accuracy and processing time. Finally, we investigate the performance of a parameter-adaptive Kalman filter based on the implicit midpoint integrator for the determination of the principal moments of inertia through observations.

  17. Implicit measure for yoga research: Yoga implicit association test

    PubMed Central

    Ilavarasu, Judu V; Rajesh, Sasidharan K; Hankey, Alex

    2014-01-01

    Context: The implicit association test (IAT), a new tool for yoga research is presented. Implicit measures could be used in those situations where (1) The construct is difficult to self-report, (2) there is a threat of social desirability. Clinically, we can assess cognitive dissonance by evaluating incongruence between implicit and explicit measures. Explicit preferences are self-reported. Implicit preferences are what we inherently believe, often without our conscious awareness. Aims: The primary objective of this study is to provide a bird's eye view of the field, implicit cognition, with emphasis on the IAT and the secondary objective is to illustrate through an example of our study to develop an implicit tool to assess implicit preference toward yoga. Settings and Design: A total of 5 independent samples of total 69 students undergoing short and long-term yoga courses in a Yoga University were assessed for their implicit and explicit preferences towards yoga. Materials and Methods: The yoga-IAT (Y-IAT), explicit self-rating scale was administered through computers using the Inquisit program by Millisecond Software. Experimental and scoring materials are provided. Results: A moderate preference toward yoga was detected, with a lower implicit-explicit congruence, reflecting possible confound of social desirability in the self-report of preference toward yoga. Conclusions: Implicit measures may be used in the yoga field to assess constructs, which are difficult to self-report or may have social desirability threat. Y-IAT may be used to evaluate implicit preference toward yoga. PMID:25035621

  18. On the Dynamics of Implicit Linear Multistep Methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    Some new guidelines on the usage of implicit linear multistep methods (LMMs) as time-dependent approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) are explored. The commonly used implicit LMMs in CFD belong to the class of superstable time discretizations. It can be shown that the nonlinear asymptotic behavior in terms of bifurcation diagrams and basins of attractions of these schemes can provide an improved range of initial data and time step over the linearized stability limit.

  19. Pillared metal organic frameworks for the luminescence sensing of small molecules and metal ions in aqueous solutions.

    PubMed

    Liu, Fu-Hong; Qin, Chao; Ding, Yan; Wu, Han; Shao, Kui-Zhan; Su, Zhong-Min

    2015-01-28

    Two novel pillared MOFs (metal organic frameworks) [Zn2(trz)2(tda)]·DMA CH3OH (1) and [Zn2(trz)2(bpdc)]·DMA (2) were obtained under solvothermal conditions. The resulting MOFs show similar structures but with different interlayer distances based on the different carboxylate ligands. 1 and 2 display a certain degree of framework stability in both acid/base solutions and water. The luminescence intensities of the activated phases 1a and 2a are sensitive to metal ions, particularly Fe(3+) and Cd(2+) ions. Furthermore, the luminescent properties of 1a and 2a well dispersed in different solvents have also been investigated systematically, which demonstrate distinct solvent-dependent luminescent spectra with emission intensities that are significantly quenched by acetone, nitrobenzene and trinitrotoluene. PMID:25470577

  20. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.

    PubMed

    Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki

    2015-05-21

    A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide. PMID:25896867

  1. Implicit Sequence Learning in Children.

    ERIC Educational Resources Information Center

    Meulemans, Thierry; Van der Linden, Martial; Perruchet, Pierre

    1998-01-01

    Examined implicit learning ability in 6- and 10-year olds and adults as assessed by a serial reaction-time task, along with retention of knowledge after one week and explicit knowledge developed by children. Found no age-related difference in serial reaction-time performance, consistent with the idea that implicit learning abilities may be…

  2. The Neuropharmacology of Implicit Learning

    PubMed Central

    Uddén, Julia; Folia, Vasiliki; Petersson, Karl Magnus

    2010-01-01

    Two decades of pharmacologic research on the human capacity to implicitly acquire knowledge as well as cognitive skills and procedures have yielded surprisingly few conclusive insights. We review the empirical literature of the neuropharmacology of implicit learning. We evaluate the findings in the context of relevant computational models related to neurotransmittors such as dopamine, serotonin, acetylcholine and noradrenalin. These include models for reinforcement learning, sequence production, and categorization. We conclude, based on the reviewed literature, that one can predict improved implicit acquisition by moderately elevated dopamine levels and impaired implicit acquisition by moderately decreased dopamine levels. These effects are most prominent in the dorsal striatum. This is supported by a range of behavioral tasks in the empirical literature. Similar predictions can be made for serotonin, although there is yet a lack of support in the literature for serotonin involvement in classical implicit learning tasks. There is currently a lack of evidence for a role of the noradrenergic and cholinergic systems in implicit and related forms of learning. GABA modulators, including benzodiazepines, seem to affect implicit learning in a complex manner and further research is needed. Finally, we identify allosteric AMPA receptors modulators as a potentially interesting target for future investigation of the neuropharmacology of procedural and implicit learning. PMID:21629444

  3. Implicit Theories of Peer Relationships

    ERIC Educational Resources Information Center

    Rudolph, Karen D.

    2010-01-01

    This research investigated the role of children's implicit theories of peer relationships in their psychological, emotional, and behavioral adjustment. Participants included 206 children (110 girls; 96 boys; M age = 10.13 years, SD = 1.16) who reported on their implicit theories of peer relationships, social goal orientation, need for approval,…

  4. Functional Imaging of Implicit Marijuana Associations during performance on an Implicit Association Test (IAT)

    PubMed Central

    Ames, Susan L.; Grenard, Jerry L.; Stacy, Alan W.; Xiao, Lin; He, Qinghua; Wong, Savio W.; Xue, Gui; Wiers, Reinout W.; Bechara, Antoine

    2013-01-01

    This research evaluated the neural correlates of implicit associative memory processes (habit-based processes) through the imaging (fMRI) of a marijuana Implicit Association Test. Drug-related associative memory effects have been shown to consistently predict level of drug use. To observe differences in neural activity of associative memory effects, this study compared 13 heavy marijuana users and 15 non-using controls, ranging in age from 18 to 25, during performance of a marijuana Implicit Association Test (IAT). Group by condition interactions in the putamen, caudate, and right inferior frontal gyrus were observed. Relative to non-users, marijuana users showed greater bilateral activity in the dorsal striatum (caudate and putamen) during compatible trials focused on perceived positive outcomes of use. Alternatively, relative to the marijuana-using group, the non-users showed greater activity in the right inferior frontal gyrus during incompatible trials, which require more effortful processing of information. Further, relative to fixation, heavy users showed bilateral activity in the caudate and putamen, hippocampus and some frontal regions during compatible trials and no significant activity during incompatible trials. The non-using group showed greater activity in frontal regions during incompatible trials relative to fixation and no significant activity during compatible trials. These findings are consistent with a dual process framework of appetitive behaviors proposing that (1) implicit associations underlying habit are mediated through neural circuitry dependent on the striatum, and (2) deliberative/controlled behaviors are mediated through circuitry more dependent on the prefrontal cortex. PMID:24029699

  5. A diagonally inverted LU implicit multigrid scheme

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.; Caughey, David A.; Chima, Rodrick V.

    1988-01-01

    A new Diagonally Inverted LU Implicit scheme is developed within the framework of the multigrid method for the 3-D unsteady Euler equations. The matrix systems that are to be inverted in the LU scheme are treated by local diagonalizing transformations that decouple them into systems of scalar equations. Unlike the Diagonalized ADI method, the time accuracy of the LU scheme is not reduced since the diagonalization procedure does not destroy time conservation. Even more importantly, this diagonalization significantly reduces the computational effort required to solve the LU approximation and therefore transforms it into a more efficient method of numerically solving the 3-D Euler equations.

  6. Angular spectral framework to test full corrections of paraxial solutions: erratum.

    PubMed

    Mahillo-Isla, R; González-Morales, M J

    2016-09-01

    In our previous article [J. Opt. Soc. Am. A32, 1236 (2015)JOAOD60740-323210.1364/JOSAA.32.001236] there is an issue concerning the comparison of plane wave spectrum solutions of paraxial and Helmholtz equations. We compared the angular plane wave spectrum of Helmholtz solutions with the plane wave spectrum of the paraxial solutions in terms of normalized projections of paraxial wave vectors. We show that the proper comparison of plane wave spectra must be done in terms of angles. The results presented in our previous work are corrected accordingly. The most important change is that Wünsche's T2 operator leads to a valid method. PMID:27607494

  7. An advanced implicit solver for MHD

    NASA Astrophysics Data System (ADS)

    Udrea, Bogdan

    A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel

  8. Analysis of implicit second-order upwind-biased stencils

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Warren, Gary P.

    1993-01-01

    Truncation error and stability properties of several implicit upwind schemes for the two-dimensional Euler equations are examined. The schemes use linear data reconstruction methods to achieve second-order flux integrations where the implicit Jacobian operators are first order. The stability properties of the schemes are examined by a Von Neumann analysis of the linearized, constant-coefficient Euler equations. The choice of the data reconstruction method used to evaluate the flux integral has a dramatic effect on the convergence properties of the implicit solution method. In particular, the typical one-dimensional data reconstruction methods used with structured grids exhibit poor convergence properties compared to the unstructured grid method considered. Of the schemes examined, the one with the superior convergence properties is well-suited for both unstructured and structured grids, which has important implications for the design of implicit methods.

  9. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    SciTech Connect

    Jardin, S C

    2010-09-28

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  10. A fully-implicit model of the global ocean circulation

    NASA Astrophysics Data System (ADS)

    Weijer, Wilbert; Dijkstra, Henk A.; Öksüzoğlu, Hakan; Wubs, Fred W.; de Niet, Arie C.

    2003-12-01

    With the recent developments in the solution methods for large-dimensional nonlinear algebraic systems, fully-implicit ocean circulation models are now becoming feasible. In this paper, the formulation of such a three-dimensional global ocean model is presented. With this implicit model, the sensitivity of steady states to parameters can be investigated efficiently using continuation methods. In addition, the implicit formulation allows for much larger time steps than can be used with explicit models. To demonstrate current capabilities of the implicit global ocean model, we use a relatively low-resolution (4° horizontally and 12 levels vertically) version. For this configuration, we present: (i) an explicit calculation of the bifurcation diagram associated with hysteresis behavior of the ocean circulation and (ii) the scaling behavior of the Atlantic meridional overturning versus the magnitude of the vertical mixing coefficient of heat and salt.

  11. Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes

    NASA Astrophysics Data System (ADS)

    Rinaldo, Andrea; Benettin, Paolo; Harman, Ciaran J.; Hrachowitz, Markus; McGuire, Kevin J.; van der Velde, Ype; Bertuzzo, Enrico; Botter, Gianluca

    2015-06-01

    We discuss a recent theoretical approach combining catchment-scale flow and transport processes into a unified framework. The approach is designed to characterize the hydrochemistry of hydrologic systems and to meet the challenges posed by empirical evidence. StorAge Selection functions (SAS) are defined to represent the way catchment storage supplies the outflows with water of different ages, thus regulating the chemical composition of out-fluxes. Biogeochemical processes are also reflected in the evolving residence time distribution and thus in age-selection. Here we make the case for the routine use of SAS functions and look forward to areas where further research is needed.

  12. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    PubMed Central

    Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management. PMID:25538868

  13. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    USGS Publications Warehouse

    Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.

  14. Implicit emotion perception in schizophrenia.

    PubMed

    Trémeau, Fabien; Antonius, Daniel; Todorov, Alexander; Rebani, Yasmina; Ferrari, Kelsey; Lee, Sang Han; Calderone, Daniel; Nolan, Karen A; Butler, Pamela; Malaspina, Dolores; Javitt, Daniel C

    2015-12-01

    Explicit but not implicit facial emotion perception has been shown to be impaired in schizophrenia. In this study, we used newly developed technology in social neuroscience to examine implicit emotion processing. It has been shown that when people look at faces, they automatically infer social traits, and these trait judgments rely heavily on facial features and subtle emotion expressions even with neutral faces. Eighty-one individuals with schizophrenia or schizoaffective disorder and 62 control subjects completed a computer task with 30 well-characterized neutral faces. They rated each face on 10 trait judgments: attractive, mean, trustworthy, intelligent, dominant, fun, sociable, aggressive, emotionally stable and weird. The degree to which trait ratings were predicted by objectively-measured subtle emotion expressions served as a measure of implicit emotion processing. Explicit emotion recognition was also examined. Trait ratings were significantly predicted by subtle facial emotional expressions in controls and patients. However, impairment in the implicit emotion perception of fear, happiness, anger and surprise was found in patients. Moreover, these deficits were associated with poorer everyday problem-solving skills and were relatively independent of explicit emotion recognition. Implicit emotion processing is impaired in patients with schizophrenia or schizoaffective disorder. Deficits in implicit and explicit emotion perception independently contribute to the patients' poor daily life skills. More research is needed to fully understand the role of implicit and explicit processes in the functional deficits of patients, in order to develop targeted and useful remediation interventions. PMID:26473695

  15. Firedrake-Fluids v0.1: numerical modelling of shallow water flows using an automated solution framework

    NASA Astrophysics Data System (ADS)

    Jacobs, C. T.; Piggott, M. D.

    2015-03-01

    This model description paper introduces a new finite element model for the simulation of non-linear shallow water flows, called Firedrake-Fluids. Unlike traditional models that are written by hand in static, low-level programming languages such as Fortran or C, Firedrake-Fluids uses the Firedrake framework to automatically generate the model's code from a high-level abstract language called Unified Form Language (UFL). By coupling to the PyOP2 parallel unstructured mesh framework, Firedrake can then target the code towards a desired hardware architecture to enable the efficient parallel execution of the model over an arbitrary computational mesh. The description of the model includes the governing equations, the methods employed to discretise and solve the governing equations, and an outline of the automated solution process. The verification and validation of the model, performed using a set of well-defined test cases, is also presented along with a road map for future developments and the solution of more complex fluid dynamical systems.

  16. A simple versatile solution for collecting multidimensional clinical data based on the CakePHP web application framework.

    PubMed

    Biermann, Martin

    2014-04-01

    Clinical trials aiming for regulatory approval of a therapeutic agent must be conducted according to Good Clinical Practice (GCP). Clinical Data Management Systems (CDMS) are specialized software solutions geared toward GCP-trials. They are however less suited for data management in small non-GCP research projects. For use in researcher-initiated non-GCP studies, we developed a client-server database application based on the public domain CakePHP framework. The underlying MySQL database uses a simple data model based on only five data tables. The graphical user interface can be run in any web browser inside the hospital network. Data are validated upon entry. Data contained in external database systems can be imported interactively. Data are automatically anonymized on import, and the key lists identifying the subjects being logged to a restricted part of the database. Data analysis is performed by separate statistics and analysis software connecting to the database via a generic Open Database Connectivity (ODBC) interface. Since its first pilot implementation in 2011, the solution has been applied to seven different clinical research projects covering different clinical problems in different organ systems such as cancer of the thyroid and the prostate glands. This paper shows how the adoption of a generic web application framework is a feasible, flexible, low-cost, and user-friendly way of managing multidimensional research data in researcher-initiated non-GCP clinical projects. PMID:24507951

  17. Crystal phase competition by addition of a second metal cation in solid solution metal-organic frameworks.

    PubMed

    Castillo-Blas, C; Snejko, N; de la Peña-O'Shea, V A; Gallardo, J; Gutiérrez-Puebla, E; Monge, M A; Gándara, F

    2016-03-14

    Herein we report a synthetic study focused on the preparation of solid-solution metal-organic frameworks, MOFs, with the use of two kinds of linkers. In particular, we have explored the system composed by zinc, cobalt, 1,2,4-triazole and 4,4′-hexafluoroisopropylidenebisbenzoic acid (H2hfipbb). During this study, four new MOFs have been isolated, denoted TMPF-88 [M3(hfipbb)2(triazole)2(H2O)], TMPF-90 [M2(triazole)3(OCH2CH3)], TMPF-91 [M2(hfipbb)(triazole)2(H2O)] and TMPF-95 [M5(hfipbb)4(triazole)2(H2O)] (TMPF = transition metal polymeric framework, M = Zn, Co, or mixture of them). The study demonstrates that the addition of a second metal element during the MOF synthesis has a major effect in the formation of new phases, even at very high Zn/Co metal ratios. Furthermore, we show that during the MOF formation reaction, there is a competition among different crystal phases, where kinetically favoured phases of various compositions crystallize in short reaction times, precluding the formation of the pure solid-solution phases of other energetically more stable MOFs. PMID:26674593

  18. Evolution of an adenine-copper cluster to a highly porous cuboidal framework: solution-phase ripening and gas-adsorption properties.

    PubMed

    Venkatesh, V; Pachfule, Pradip; Banerjee, Rahul; Verma, Sandeep

    2014-09-15

    The synthesis and directed evolution of a tetranuclear copper cluster, supported by 8-mercapto-N9-propyladenine ligand, to a highly porous three-dimensional cubic framework in the solid state is reported. The structure of this porous framework was unambiguously characterized by X-ray crystallography. The framework contains about 62 % solvent-accessible void; the presence of a free exocyclic amino group in the porous framework facilitates reversible adsorption of gas and solvent molecules. Oriented growth of framework in solution was also tracked by force and scanning electron microscopy studies, leading to identification of an intriguing ripening process, over a period of 30 days, which also revealed formation of cuboidal aggregates in solution. The elemental composition of these cuboidal aggregates was ascertained by EDAX analysis. PMID:25112608

  19. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    PubMed

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-01

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity. PMID:26942867

  20. A framework for understanding and generating integrated solutions for residential peak energy demand.

    PubMed

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  1. Understanding the electromagnetic interaction of metal organic framework reactants in aqueous solution at microwave frequencies.

    PubMed

    Laybourn, Andrea; Katrib, Juliano; Palade, Paula A; Easun, Timothy L; Champness, Neil R; Schröder, Martin; Kingman, Samuel W

    2016-02-21

    Preparation of metal organic frameworks (MOFs) via microwave heating is becoming increasingly popular due to reduced reaction times and enhanced control of MOF particle size. However, there is little understanding about the detailed interaction of the electric field portion of the wave with reactants during the synthesis of MOFs. In order to overcome this lack of fundamental understanding, information about the dielectric properties of the reactants is required. In this work the dielectric constants (ε') and loss factors (ε'') of benzene-1,4-dicarboxylic acid (H2BDC; also known as terephthalic acid) and a number of M(III) (M = metal) salts dissolved in deionized water were measured as a function of frequency, temperature and concentration and with varying anions and cations. Dielectric data confirm the aqueous M(III) salts to be strong microwave absorbers, particularly at 915 MHz. M(III) salts with mono-anionic ligands (for example chlorides and nitrates) exhibit higher losses than di-anionic salts (sulfates) demonstrating that the former are heated more effectively in an applied microwave field. Of the M(III) salts containing either singly- or doubly-charged anions, those containing Fe(III) have the highest loss indicating that they will heat more efficiently than other M(III) salts such as Cr(III) and Al(III). Interestingly, H2BDC exhibits little interaction with the electric field at microwave frequencies. PMID:26822947

  2. Inverse electrocardiographic source localization of ischemia: An optimization framework and finite element solution

    NASA Astrophysics Data System (ADS)

    Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.

    2013-10-01

    With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization.

  3. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    PubMed Central

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  4. The ray tracing analytical solution within the RAMOD framework. The case of a Gaia-like observer

    NASA Astrophysics Data System (ADS)

    Crosta, M.; Vecchiato, A.; de Felice, F.; Lattanzi, M. G.

    2015-08-01

    This paper presents the analytical solution of the inverse ray tracing problem for photons emitted by a star and collected by an observer located in the gravitational field of the Solar System. This solution has been conceived to suit the accuracy achievable by the ESA Gaia satellite (launched on 19 December 2013) consistently with the measurement protocol in General Relativity adopted within the RAMOD framework. The aim of this study is to provide a general relativistic tool for the science exploitation of such a revolutionary mission, whose main goal is to trace back star directions from within our local curved space-time, therefore providing a three-dimensional map of our Galaxy. The calculations are performed assuming that the massive bodies of the Solar System move uniformly and have monopole and quadrupole structures. The results are useful for a thorough comparison and cross-checking validation of what already exists in the field of relativistic astrometry. Moreover, the analytical solutions presented here can be extended to model other measurements that require the same order of accuracy as that expected for Gaia.

  5. Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions.

    PubMed

    Zhang, Yujie; Xie, Zhiqiang; Wang, Zhuqing; Feng, Xuhui; Wang, Ying; Wu, Aiguo

    2016-08-01

    Among the heavy metal ions, copper(ii) can cause eye and liver damage at high uptake. The existence of copper ions (Cu(2+)) even with an ultralow concentration of less than 0.1 μg g(-1) can be toxic to living organisms. Thus, it is highly desirable to develop efficient adsorbents to remove Cu(2+) from aqueous solutions. In this work, without any surface functionalization or pretreatment, a water-stable zeolitic imidazolate framework (ZIF-8) synthesized at room temperature is directly used as a highly efficient adsorbent for removal of copper ions from aqueous solutions. To experimentally unveil the adsorption mechanism of Cu(2+) by using ZIF-8, we explore various effects from a series of important factors, such as pH value, contact time, temperature and initial Cu(2+) concentration. As a result, ZIF-8 nanocrystals demonstrate an unexpected high adsorption capacity of Cu(2+) and high removal efficiency for both high and low concentrations of Cu(2+) from water. Moreover, ZIF-8 nanocrystals possess fast kinetics for removing Cu(2+) with the adsorption time of less than 30 min. In addition, the pH of the solution ranging from 3 to 6 shows little effect on the adsorption of Cu(2+) by ZIF-8. The adsorption mechanism is proposed for the first time and systematically verified by various characterization techniques, such as TEM, FTIR, XPS, XRD and SEM. PMID:27396854

  6. How NASA Expanded its Innovation Framework to Find New Solutions to Old Problems

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2010-01-01

    A radio frequency engineer from rural New Hampshire contributed the best solution to a public challenge issued by NASA's Space Life Sciences Directorate. This is a clear example of what Aneesh Chopra, the US Federal Chief Technology Officer, describes as the notion that in our society, knowledge is widely dispersed. And if it s widely dispersed, how do we capture the insights from the American people?" Chopra later said, to a live audience at the 2010 Rethinking Government event: "A semi-retired radio frequency engineer was able to share his idea about how to solve this problem, and it so blew away other ideas that NASA said it exceeded their requirements! No complicated RFP, the need for lobbyists, some convoluted processes, etc. Just a smart person who was paid a modest fee for his insight."

  7. The convergence problem of collocation solutions in the framework of the stochastic interpretation

    NASA Astrophysics Data System (ADS)

    Sansò, F.; Venuti, G.

    2011-01-01

    The problem of the convergence of the collocation solution to the true gravity field was defined long ago (Tscherning in Boll Geod Sci Affini 39:221-252, 1978) and some results were derived, in particular by Krarup (Boll Geod Sci Affini 40:225-240, 1981). The problem is taken up again in the context of the stochastic interpretation of collocation theory and some new results are derived, showing that, when the potential T can be really continued down to a Bjerhammar sphere, we have a quite general convergence property in the noiseless case. When noise is present in data, still reasonable convergence results hold true. "Democrito che 'l mondo a caso pone" "Democritus who made the world stochastic" Dante Alighieri, La Divina Commedia, Inferno, IV - 136

  8. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  9. A SOA broker solution for standard discovery and access services: the GI-cat framework

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico

    2010-05-01

    GI-cat ideal users are data providers or service providers within the geoscience community. The former have their data already available through an access service (e.g. an OGC Web Service) and would have it published through a standard catalog service, in a seamless way. The latter would develop a catalog broker and let users query and access different geospatial resources through one or more standard interfaces and Application Profiles (AP) (e.g. OGC CSW ISO AP, CSW ebRIM/EO AP, etc.). GI-cat actually implements a broker components (i.e. a middleware service) which carries out distribution and mediation functionalities among "well-adopted" catalog interfaces and data access protocols. GI-cat also publishes different discovery interfaces: the OGC CSW ISO and ebRIM Application Profiles (the latter coming with support for the EO and CIM extension packages) and two different OpenSearch interfaces developed in order to explore Web 2.0 possibilities. An extended interface is also available to exploit all available GI-cat features, such as interruptible incremental queries and queries feedback. Interoperability tests performed in the context of different projects have also pointed out the importance to enforce compatibility with existing and wide-spread tools of the open source community (e.g. GeoNetwork and Deegree catalogs), which was then achieved. Based on a service-oriented framework of modular components, GI-cat can effectively be customized and tailored to support different deployment scenarios. In addition to the distribution functionality an harvesting approach has been lately experimented, allowing the user to switch between a distributed and a local search giving thus more possibilities to support different deployment scenarios. A configurator tool is available in order to enable an effective high level configuration of the broker service. A specific geobrowser was also naturally developed, for demonstrating the advanced GI-cat functionalities. This client

  10. An Implicit Characteristic Based Method for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.

  11. Simple framework for understanding the universality of the maximum drag reduction asymptote in turbulent flow of polymer solutions.

    PubMed

    Li, Chang-Feng; Sureshkumar, Radhakrishna; Khomami, Bamin

    2015-10-01

    Self-consistent direct numerical simulations of turbulent channel flows of dilute polymer solutions exhibiting friction drag reduction (DR) show that an effective Deborah number defined as the ratio of polymer relaxation time to the time scale of fluctuations in the vorticity in the mean flow direction remains O(1) from the onset of DR to the maximum drag reduction (MDR) asymptote. However, the ratio of the convective time scale associated with streamwise vorticity fluctuations to the vortex rotation time decreases with increasing DR, and the maximum drag reduction asymptote is achieved when these two time scales become nearly equal. Based on these observations, a simple framework is proposed that adequately describes the influence of polymer additives on the extent of DR from the onset of DR to MDR as well as the universality of the MDR in wall-bounded turbulent flows with polymer additives. PMID:26565339

  12. A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices

    SciTech Connect

    Welch, Gregory C.; Perez, Louis A.; Hoven, Corey V.; Zhang, Yuan; Dang, Xuan-Dung; Sharenko, Alexander; Toney, Michael F.; Kramer, Edward J.; Nguyen, Thuc-Quyen; Bazan, Guillermo C.

    2011-07-22

    We report on the design, synthesis and characterization of light harvesting small molecules for use in solution-processed small molecule bulk heterojunction (SM-BHJ) solar cell devices. These molecular materials are based upon an acceptor/donor/acceptor (A/D/A) core with donor endcapping units. Utilization of a dithieno(3,2-b;2',3'-d)silole (DTS) donor and pyridal[2,1,3]thiadiazole (PT) acceptor leads to strong charge transfer characteristics, resulting in broad optical absorption spectra extending well beyond 700 nm. SM-BHJ solar cell devices fabricated with the specific example 5,5'-bis{7-(4-(5-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (6) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor component showed short circuit currents above -10 mA cm-2 and power conversion efficiencies (PCEs) over 3%. Thermal processing is a critical factor in obtaining favorable active layer morphologies and high PCE values. A combination of UV-visible spectroscopy, conductive and photo-conductive atomic force microscopies, dynamic secondary mass ion spectrometry (DSIMS), and grazing incident wide angle X-ray scattering (GIWAXS) experiments were carried out to characterize how thermal treatment influences the active layer structure and organization.

  13. Glucose recovery from aqueous solutions by adsorption in metal–organic framework MIL-101: a molecular simulation study

    PubMed Central

    Gupta, Krishna M.; Zhang, Kang; Jiang, Jianwen

    2015-01-01

    A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery. PMID:26242874

  14. Glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101: a molecular simulation study

    NASA Astrophysics Data System (ADS)

    Gupta, Krishna M.; Zhang, Kang; Jiang, Jianwen

    2015-08-01

    A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery.

  15. [Using the Implicit Association Test (IAT) to measure implicit shyness].

    PubMed

    Aikawa, Atsushi; Fujii, Tsutomu

    2011-04-01

    Previous research has shown that implicitly measured shyness predicted spontaneous shy behavior in social situations, while explicit self-ratings of shyness predicted controlled shy behavior (Asendorpf, Banse, & Mücke, 2002). The present study examined whether these same results would be replicated in Japan. In Study 1, college students (N=47) completed a shyness Implicit Association Test (IAT for shyness) and explicit self-ratings of shyness. In Study 2, friends (N=69) of the Study 1 participants rated those participants on various personality scales. Covariance structure analysis, revealed that only implicit self-concept measured by the shyness IAT predicted other-rated high interpersonal tension (spontaneous shy behavior). Also, only explicit self-concept predicted other-rated low praise seeking (controlled shy behavior). The results of this study are similar to the findings of the previous research. PMID:21706822

  16. Adsorptive Separation of 1-Butanol from Aqueous Solutions Using MFI- and FER-Type Zeolite Frameworks: A Monte Carlo Study.

    PubMed

    DeJaco, Robert F; Bai, Peng; Tsapatsis, Michael; Siepmann, J Ilja

    2016-03-01

    Anaerobic fermentation can transform carbohydrates to yield a multicomponent mixture comprising mainly of acetone, 1-butanol, and ethanol (ABE) in a typical weight ratio of 3:6:1. Compared to ethanol, 1-butanol, the main product of ABE fermentation, offers significant advantages as a biofuel or a fuel additive. However, the toxicity of 1-butanol for cell cultures requires broth concentrations to be low in 1-butanol (≈1-2 wt %). An energy-efficient recovery method that performs well even at low 1-butanol concentrations is therefore necessary to ensure economic feasibility of the ABE fermentation process. In this work, configurational-bias Monte Carlo simulations in the Gibbs ensemble are performed to probe the adsorption of 1-butanol/water solutions onto all-siliceous zeolites with the framework types MFI and FER. At low solution concentration, the selectivity and capacity for 1-butanol in MFI are larger than those in FER, while the opposite is true for concentrations at or above those of ABE broths. Structural analysis at various loadings sheds light on the different sorbate-sorbate and sorbate-sorbent interactions that govern trends in adsorption in each zeolite. PMID:26818393

  17. NoC emulation framework based on Arteris NoC solution for multiprocessor system-on-chip

    NASA Astrophysics Data System (ADS)

    Mori, José A.; Tobajas, Félix; de Armas, Valentín; Sarmiento, Roberto

    2011-05-01

    The growth of complexity and the requirements of on-chip technologies create the need for new architectures which generate solutions representing a compromise between complexity and power consumption, and Quality of Service (QoS) of the communications between the cores of a System-on-Chip (SoC). Network-on-Chip (NoC) arises as a solution to implement efficient interconnections in SoC. This new technology, due to its complexity, creates the need of specialized engineers who can design the intricate circuits that NoC requires. It is possible to reduce those specialization needs by using CAD tools. In this paper, one of this tools, called Arteris NoC Solution, is used for developing the proposed framework for NoC emulation. This software includes three different tools: NoCexplorer, for high-level simulation of an abstract model of the NoC, NoCcompiler, in which the NoC is defined and generated in HDL language, and NoCverifier, which performs simulations of the HDL code. Furthermore, a validation and characterization infrastructure was developed for the created NoC, which can be completely emulated in FPGA. This environment is composed by OCP traffic generators and receptors, which also can perform measurements over the created traffic, and a store and communication module, which is responsible for storing the results obtained from the emulation of the entire system in the FPGA, and send it to a PC. Once the data is stored in the PC, statistical analyses are performed, including a comparison of mean latency from high level simulations, RTL simulations and FPGA emulations. The analysis of the results is obtained from three scenarios with different NoC topologies for the same SoC design.

  18. On the computational efficiency of particle dynamics simulations in the radiation belt: comparison between implicit and semi-implicit schemes

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Delzanno, G.; Zaharia, S. G.; Koller, J.

    2012-12-01

    The particle dynamics in the Earth's radiation belt is generally modeled by means of a two-dimensional diffusion equation for the particle distribution function in energy and pitch angle. In this work we survey and compare different numerical schemes for the solution of the diffusion equation, with the goal of outlining which is the optimal strategy from a numerical point of view. We focus on the general (and more computationally challenging) case where the mixed terms in the diffusion tensor are retained. We compare fully-implicit and semi-implicit schemes. For the former we have analyzed a direct solver based on a LU decomposition routine for sparse matrices, and an iterative ILU-preconditioned GMRES. For the semi-implicit scheme we have studied an Alternating Direction Implicit scheme. We present a convergence study for a realistic case that shows that the timestep and grid size are strongly constrained by the desired accuracy of the solution. We show that the fully-implicit scheme is to be preferred in most cases as the more computationally efficient.

  19. On the numerical simulation of particle dynamics in the radiation belt: 1. Implicit and semi-implicit schemes

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Delzanno, G. L.; Zaharia, S.; Koller, J.

    2013-06-01

    The particle dynamics in the Earth's radiation belt is generally modeled by means of a two-dimensional diffusion equation for the particle distribution function in energy and pitch angle. The goal of this paper is to survey and compare different numerical schemes for the solution of the diffusion equation, and to outline the optimal strategy from a numerical point of view. We focus on the general (and more computationally challenging) case where the mixed terms in the diffusion tensor are retained. In Part 1, we compare fully implicit and semi-implicit schemes. For the former, we have analyzed a direct solver based on a LU decomposition routine for sparse matrices, and an iterative incomplete LU preconditioned Generalized Minimal REsidual solver. For the semi-implicit scheme, we have studied an alternating direction implicit scheme. We present a convergence study for a realistic case that shows that the time step and grid size are strongly constrained by the desired accuracy of the solution. We show that the fully implicit scheme is to be preferred in most cases as the more computationally efficient.

  20. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Shinn, J. L.

    1986-01-01

    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the soruce terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.

  1. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Shinn, Judy L.

    1987-01-01

    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogeneous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.

  2. Implicit Knowledge, Explicit Knowledge, and General Language Proficiency.

    ERIC Educational Resources Information Center

    Han, Youngju; Ellis, Rod

    1998-01-01

    Explores ways of measuring implicit and explicit second language (L2) knowledge and examines the relationship between these measures and measures of general language proficiency. Factor analysis revealed a two-factor solution, reflecting a clear distinction between measures that incorporated a time constraint and those that did not. (Author/VWL)

  3. Implicit integration methods for dislocation dynamics

    SciTech Connect

    Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.

    2015-01-20

    In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.

  4. Implicit integration methods for dislocation dynamics

    DOE PAGESBeta

    Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.

    2015-01-20

    In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less

  5. Implicit integration methods for dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.

    2015-03-01

    In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. This paper investigates the viability of high-order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.

  6. Universal single level implicit algorithm for gasdynamics

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.; Venkatapthy, E.

    1984-01-01

    A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.

  7. Posture modulates implicit hand maps.

    PubMed

    Longo, Matthew R

    2015-11-01

    Several forms of somatosensation require that afferent signals be informed by stored representations of body size and shape. Recent results have revealed that position sense relies on a highly distorted body representation. Changes of internal hand posture produce plastic alterations of processing in somatosensory cortex. This study therefore investigated how such postural changes affect implicit body representations underlying position sense. Participants localised the knuckles and tips of each finger in external space in two postures: the fingers splayed (Apart posture) or pressed together (Together posture). Comparison of the relative locations of the judgments of each landmark were used to construct implicit maps of represented hand structure. Spreading the fingers apart produced increases in the implicit representation of hand size, with no apparent effect on hand shape. Thus, changes of internal hand posture produce rapid modulation of how the hand itself is represented, paralleling the known effects on somatosensory cortical processing. PMID:26117153

  8. Implicit Interaction: A Modality for Ambient Exercise Monitoring

    NASA Astrophysics Data System (ADS)

    Wan, J.; O'Grady, M. J.; O'Hare, G. M. P.

    Ambient Exercise refers to the implicit exercise that people undertake in the course of their everyday duties - a simple example being climbing stairs. Increasing awareness of the potential health benefits of such activities may well contribute to an increase in a person’s well-being. Initially, it is necessary to monitor and quantify such exercise so that personalized fitness plans may be constructed. In this paper, the implicit interaction modality is harnessed to enable the capturing of ambient exercise activity thereby facilitating its subsequent quantification and interpretation. The novelty of the solution proposed lies in its ubiquity and transparency.

  9. Bridging implicit and explicit solvent approaches for membrane electrostatics.

    PubMed Central

    Lin, Jung-Hsin; Baker, Nathan A; McCammon, J Andrew

    2002-01-01

    Conformations of a zwitterionic bilayer were sampled from a molecular dynamics simulation and their electrostatic properties analyzed by solution of the Poisson equation. These traditionally implicit electrostatic calculations were performed in the presence of varying amounts of explicit solvent to assess the magnitude of error introduced by a uniform dielectric description of water surrounding the bilayer. It was observed that membrane dipole potential calculations in the presence of explicit water were significantly different than wholly implicit solvent calculations with the calculated dipole potential converging to a reasonable value when four or more hydration layers were included explicitly. PMID:12202363

  10. Implicit B-spline surface reconstruction.

    PubMed

    Rouhani, Mohammad; Sappa, Angel D; Boyer, Edmond

    2015-01-01

    This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data. PMID:25373084

  11. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Gong, Wenpeng; Luo, Jing; Zou, Chentao; Yang, Yun; Yang, Shuijin

    2016-01-01

    A novel environmental friendly adsorbent H6P2W18O62/MOF-5 was synthesized by a simple one-step reaction under solvothermal conditions and characterized by XRD, FTIR, thermogravimetric analyses (TGA) and N2 adsorption-desorption isotherms. The removal rate of H6P2W18O62/MOF-5 was quite greater (85%) than that of MOF-5 (almost zero), showing that the adsorption performance of porous MOF-5 can be improved through the modification of H6P2W18O62. Further study revealed that H6P2W18O62/MOF-5 exhibited a fast adsorption rate and selective adsorption ability towards the cationic dyes in aqueous solution. The removal rate was up to 97% for cationic dyes methylene blue (MB) and 68% for rhodamine B(Rhb) within 10 min. However, anionicdye methyl orange(MO) can only reach to 10%. The influences including initial concentration, contact time, initial solution pH and temperature of MB adsorption onto H6P2W18O62/MOF-5 were investigated in detail. The kinetic study indicated that the adsorption of MB onto H6P2W18O62/MOF-5 followed the pseudo second-order model well. The isotherm obtained from experimental data fitted the Langmuir model, yielding maximum adsorption capacity of 51.81 mg/g. The thermodynamic parameters analysis illustrated that the MB adsorption onto H6P2W18O62 immobilized MOF-5 was spontaneous and endothermic process. Besides, these results implied that designing a novel material polyoxometalate-based metal-organic frameworks is great potential for removing cationic organic pollutants and even extended to improve other specific application.

  12. ISIS++Reference Guide (Iterative Scalable Implicit Solver in C++) Version 1.1

    SciTech Connect

    Alan B. Williams; Benjamin A. Allan; Kyran D. Mish; Robert L. Clay

    1999-04-01

    ISIS++ (Iterative Scalable Implicit Solver in C++) Version 1.1 is a portable, object-oriented framework for solving sparse linear systems of equations. It includes a collection of Krylov solution methods and preconditioners, as well as both uni-processor (serial) and multi-processor (scalable) matrix and vector classes. Though it was developed to solve systems of equations originating from large-scale, 3-D, finite element analyses, it has application in many other fields. This document supersedes the ISIS++ V1.0 Reference Guide, defines the V1. 1 interface specification, and includes the necessary instructions for building and running ISIS++ v 1.1 on Unix platforms. The interface is presented in annotated header format, along with background on design and implementation considerations. A finite difference modeling example problem is included to demonstrate the overall setup and use.

  13. Quasi-static response, implicit scheme and incremental problem in gradient plasticity

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc-Son

    2016-06-01

    This paper is devoted to the study of gradient plasticity at small strains. Some time-independent dissipative processes such as brittle damage can also be considered in the same framework. Our attention is focussed on the description of the constitutive equations, on the formulation of the governing equations in terms of the energy potential and the dissipation potential of the solid. A time-discretization by the implicit scheme of the evolution equation leads to the study of the incremental problem which is different from the rate problem. The increment of the response under an increment of the loads must satisfy a variational inequality and, if the energy potential is convex, an incremental minimum principle. In particular, a local minimum of the incremental minimum principle is a stable solution to the variational inequality.

  14. A Dual-Process Approach to the Role of Mother's Implicit and Explicit Attitudes toward Their Child in Parenting Models

    ERIC Educational Resources Information Center

    Sturge-Apple, Melissa L.; Rogge, Ronald D.; Skibo, Michael A.; Peltz, Jack S.; Suor, Jennifer H.

    2015-01-01

    Extending dual process frameworks of cognition to a novel domain, the present study examined how mothers' explicit and implicit attitudes about her child may operate in models of parenting. To assess implicit attitudes, two separate studies were conducted using the same child-focused Go/No-go Association Task (GNAT-Child). In Study 1, model…

  15. A Human-Dimensions Review of Human-WildlifeDisturbance: A Literature Review of Impacts, Frameworks, and Management Solutions

    USGS Publications Warehouse

    Cline, Robert; Sexton, Natalie; Stewart, Susan C.

    2007-01-01

    Preface The following report was prepared for the U.S. Fish and Wildlife Service National Refuge System in support of their Comprehensive Conservation Planning (CCP) efforts by the Policy Analysis and Science Assistance Branch (PASA), Fort Collins Science Center, U.S. Geological Survey. While this document provides a summary of contemporary recreation management literature and methodologies, relevant to the subject of managing wildlife disturbances on national wildlife refuges, this document should be viewed as a starting point for management administrators. This document identifies general issues relating to wildlife disturbance and visitor impacts including a description of disturbance, recreational impacts, related human dimensions applications, management frameworks, and a general summary of management solutions. The section on descriptions of wildlife disturbance and impacts draws heavily from the report entitled 'Managing the Impacts of Visitor Use on Waterbirds -- A Literature Review of Impacts and Mitigation' (DeLong, 2002; Delong and Adamcik, in press) and is referenced in the text. This document is more comprehensive in its review of wildlife response to disturbance. This document is intended to discuss the human-dimensions aspect of wildlife disturbance, summarizing human dimensions and recreation management literature as it applies to this topic.

  16. Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations.

    PubMed

    Zhang, Teng; Manna, Kuntal; Lin, Wenbin

    2016-03-01

    New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal-organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C-H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ∼2.5 × 10(6) and turnover frequencies of ∼1.1 × 10(5) h(-1). Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF)2 species in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy(•-))Co(I)(THF)2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis. PMID:26864496

  17. Challenges and Solutions in Optimizing Execution Performance of a Clinical Decision Support-Based Quality Measurement (CDS-QM) Framework

    PubMed Central

    Tippetts, Tyler J; Warner, Phillip B; Kukhareva, Polina V; Shields, David E; Staes, Catherine J; Kawamoto, Kensaku

    2015-01-01

    Given the close relationship between clinical decision support (CDS) and quality measurement (QM), it has been proposed that a standards-based CDS Web service could be leveraged to enable QM. Benefits of such a CDS-QM framework include semantic consistency and implementation efficiency. However, earlier research has identified execution performance as a critical barrier when CDS-QM is applied to large populations. Here, we describe challenges encountered and solutions devised to optimize CDS-QM execution performance. Through these optimizations, the CDS-QM execution time was optimized approximately three orders of magnitude, such that approximately 370,000 patient records can now be evaluated for 22 quality measure groups in less than 5 hours (approximately 2 milliseconds per measure group per patient). Several key optimization methods were identified, with the most impact achieved through population-based retrieval of relevant data, multi-step data staging, and parallel processing. These optimizations have enabled CDS-QM to be operationally deployed at an enterprise level. PMID:26958259

  18. Solution-Processed Large-Area Nanocrystal Arrays of Metal-Organic Frameworks as Wearable, Ultrasensitive, Electronic Skin for Health Monitoring.

    PubMed

    Fu, Xiaolong; Dong, Huanli; Zhen, Yonggang; Hu, Wenping

    2015-07-15

    Pressure sensors based on solution-processed metal-organic frameworks nanowire arrays are fabricated with very low cost, flexibility, high sensitivity, and ease of integration into sensor arrays. Furthermore, the pressure sensors are suitable for monitoring and diagnosing biomedical signals such as radial artery pressure waveforms in real time. PMID:25760306

  19. On state representations of nonlinear implicit systems

    NASA Astrophysics Data System (ADS)

    Pereira da Silva, Paulo Sergio; Batista, Simone

    2010-03-01

    This work considers a semi-implicit system Δ, that is, a pair (S, y), where S is an explicit system described by a state representation ? , where x(t) ∈ ℝ n and u(t) ∈ ℝ m , which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) ∈ ℝ l . An input candidate is a set of functions v = (v 1, …, v s ), which may depend on time t, on x, and on u and its derivatives up to a finite order. The problem of finding a (local) proper state representation ż = g(t, z, v) with input v for the implicit system Δ is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Δ. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Lévine, Martin, and Rouchon (1999) ('A Lie-Bäcklund Approach to Equivalence and Flatness of Nonlinear Systems', IEEE Transactions on Automatic Control, 44(5), (922-937)).

  20. Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD

    NASA Technical Reports Server (NTRS)

    Gropp, W. D.; Keyes, D. E.; McInnes, L. C.; Tidriri, M. D.

    1998-01-01

    Implicit solution methods are important in applications modeled by PDEs with disparate temporal and spatial scales. Because such applications require high resolution with reasonable turnaround, "routine" parallelization is essential. The pseudo-transient matrix-free Newton-Krylov-Schwarz (Psi-NKS) algorithmic framework is presented as an answer. We show that, for the classical problem of three-dimensional transonic Euler flow about an M6 wing, Psi-NKS can simultaneously deliver: globalized, asymptotically rapid convergence through adaptive pseudo- transient continuation and Newton's method-, reasonable parallelizability for an implicit method through deferred synchronization and favorable communication-to-computation scaling in the Krylov linear solver; and high per- processor performance through attention to distributed memory and cache locality, especially through the Schwarz preconditioner. Two discouraging features of Psi-NKS methods are their sensitivity to the coding of the underlying PDE discretization and the large number of parameters that must be selected to govern convergence. We therefore distill several recommendations from our experience and from our reading of the literature on various algorithmic components of Psi-NKS, and we describe a freely available, MPI-based portable parallel software implementation of the solver employed here.

  1. A semi-implicit gas-kinetic scheme for smooth flows

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Guo, Zhaoli

    2016-08-01

    In this paper, a semi-implicit gas-kinetic scheme (SIGKS) is derived for smooth flows based on the Bhatnagar-Gross-Krook (BGK) equation. As a finite-volume scheme, the evolution of the average flow variables in a control volume is under the Eulerian framework, whereas the construction of the numerical flux across the cell interface comes from the Lagrangian perspective. The adoption of the Lagrangian aspect makes the collision and the transport mechanisms intrinsically coupled together in the flux evaluation. As a result, the time step size is independent of the particle collision time and solely determined by the Courant-Friedrichs-Lewy (CFL) condition. An analysis of the reconstructed distribution function at the cell interface shows that the SIGKS can be viewed as a modified Lax-Wendroff type scheme with an additional term. Furthermore, the addition term coming from the implicitness in the reconstruction is expected to be able to enhance the numerical stability of the scheme. A number of numerical tests of smooth flows with low and moderate Mach numbers are performed to benchmark the SIGKS. The results show that the method has second-order spatial accuracy, and can give accurate numerical solutions in comparison with benchmark results. It is also demonstrated that the numerical stability of the proposed scheme is better than the original GKS for smooth flows.

  2. Semantic Generalization in Implicit Language Learning

    ERIC Educational Resources Information Center

    Paciorek, Albertyna; Williams, John N.

    2015-01-01

    Despite many years of investigation into implicit learning in nonlinguistic domains, the potential for implicit learning to deliver the kinds of generalizations that underlie natural language competence remains unclear. In a series of experiments, we investigated implicit learning of the semantic preferences of novel verbs, specifically, whether…

  3. Measuring individual differences in implicit cognition: the implicit association test.

    PubMed

    Greenwald, A G; McGhee, D E; Schwartz, J L

    1998-06-01

    An implicit association test (IAT) measures differential association of 2 target concepts with an attribute. The 2 concepts appear in a 2-choice task (2-choice task (e.g., flower vs. insect names), and the attribute in a 2nd task (e.g., pleasant vs. unpleasant words for an evaluation attribute). When instructions oblige highly associated categories (e.g., flower + pleasant) to share a response key, performance is faster than when less associated categories (e.g., insect & pleasant) share a key. This performance difference implicitly measures differential association of the 2 concepts with the attribute. In 3 experiments, the IAT was sensitive to (a) near-universal evaluative differences (e.g., flower vs. insect), (b) expected individual differences in evaluative associations (Japanese + pleasant vs. Korean + pleasant for Japanese vs. Korean subjects), and (c) consciously disavowed evaluative differences (Black + pleasant vs. White + pleasant for self-described unprejudiced White subjects). PMID:9654756

  4. Mind-Sets Matter: A Meta-Analytic Review of Implicit Theories and Self-Regulation

    ERIC Educational Resources Information Center

    Burnette, Jeni L.; O'Boyle, Ernest H.; VanEpps, Eric M.; Pollack, Jeffrey M.; Finkel, Eli J.

    2013-01-01

    This review builds on self-control theory (Carver & Scheier, 1998) to develop a theoretical framework for investigating associations of implicit theories with self-regulation. This framework conceptualizes self-regulation in terms of 3 crucial processes: goal setting, goal operating, and goal monitoring. In this meta-analysis, we included articles…

  5. Deferred Feedback Sharply Dissociates Implicit and Explicit Category Learning

    PubMed Central

    Smith, J. David; Boomer, Joseph; Zakrzewski, Alexandria; Roeder, Jessica; Church, Barbara A.; Ashby, F. Gregory

    2014-01-01

    The controversy over multiple category-learning systems is reminiscent of the controversy over multiple memory systems. Researchers continue to seek paradigms to sharply dissociate explicit category-learning processes (featuring verbalizeable category rules) from implicit category-learning processes (featuring learned stimulus-response associations that lie outside of declarative cognition). We contribute a new dissociative paradigm, adapting from comparative psychology the technique of deferred-rearranged reinforcement. Participants learned matched category tasks that had either a one-dimensional, rule-based solution or a multidimensional, information-integration solution. They received feedback only after each block of trials, with their positive outcomes grouped and their negative outcomes grouped. Deferred-rearranged reinforcement qualitatively eliminated implicit, information-integration category learning. It left intact explicit, rule-based category learning. Moreover, implicit category learners—facing deferred-rearranged reinforcement—turned by default and information-processing necessity to rule-based strategies that poorly suited their nominal category task. The results represent one of the strongest explicit-implicit dissociations yet seen in the categorization literature. PMID:24335605

  6. Deferred feedback sharply dissociates implicit and explicit category learning.

    PubMed

    Smith, J David; Boomer, Joseph; Zakrzewski, Alexandria C; Roeder, Jessica L; Church, Barbara A; Ashby, F Gregory

    2014-02-01

    The controversy over multiple category-learning systems is reminiscent of the controversy over multiple memory systems. Researchers continue to seek paradigms to sharply dissociate explicit category-learning processes (featuring category rules that can be verbalized) from implicit category-learning processes (featuring learned stimulus-response associations that lie outside declarative cognition). We contribute a new dissociative paradigm, adapting the technique of deferred-rearranged reinforcement from comparative psychology. Participants learned matched category tasks that had either a one-dimensional, rule-based solution or a multidimensional, information-integration solution. They received feedback either immediately or after each block of trials, with the feedback organized such that positive outcomes were grouped and negative outcomes were grouped (deferred-rearranged reinforcement). Deferred reinforcement qualitatively eliminated implicit, information-integration category learning. It left intact explicit, rule-based category learning. Moreover, implicit-category learners facing deferred-rearranged reinforcement turned by default and information-processing necessity to rule-based strategies that poorly suited their nominal category task. The results represent one of the strongest explicit-implicit dissociations yet seen in the categorization literature. PMID:24335605

  7. Implicit Working Memory: Implications for Assessment and Treatment.

    PubMed

    Joyce, Arthur W

    2016-01-01

    Working memory (WM) impacts a gamut of cognitive abilities, but implicit WM is typically not considered in assessment or treatment, which may explain the variability of results in reviews of WM training. The role of implicit WM in adaptive behavior is reviewed. All we do is action based. Explicit WM plays a major role when we are required to "think"; that is, when we apply previously learned perception-action linkages in new ways to unique situations. Implicit WM is involved in the automation of behavior, which occurs through interaction with cortical and subcortical systems that guide sensory-motor anticipation and the prediction of reward. This article reviews evidence that implicit WM interacts with cortical-cerebellar and cortical-basal ganglia connections to form perception-action linkages. The cerebellum forms an internal model of cortical WM, corrects the content of this internal model, and then projects the improved representation back to the cortex, where it is retained for future use. The basal ganglia also form an anticipatory system, controlling cortical access to WM by allowing or restricting the information that is released based on the probability of reward. This framework is applied to the assessment and treatment of individuals with WM deficits. The ability to automate behavior can be assessed through repeated trials of existing testing instruments, such as the Trails B and Stroop tasks. Application of skill learning emphasizing automation as an end goal offers a model for the development of new types of WM training. PMID:27191219

  8. Teachers' implicit personality theories about the gifted: an experimental approach.

    PubMed

    Baudson, Tanja Gabriele; Preckel, Franzis

    2013-03-01

    The implicit theories teachers hold about the gifted influence their perception of and behavior toward highly able students, thus impacting the latter's educational opportunities. Two persistent stereotypes about the gifted can be distinguished: the harmony hypothesis (gifted students are superior in almost all domains) and the disharmony hypothesis (giftedness implies maladaptive social behavior and emotional problems). The present study investigated whether teachers' implicit personality theories about the gifted are in line with the harmony or the disharmony hypothesis. Using an experimental vignette approach, we examined 321 prospective and practicing teachers' implicit personality theories (based on the big five personality framework) about students described along three dimensions (ability level, gender, and age, resulting in 8 different vignettes), controlling for teachers' age, gender, experience with gifted students, and knowledge about giftedness. Ability level had the strongest effect on teachers' ratings (partial η² = .60). Students described as gifted were perceived as more open to new experiences, more introverted, less emotionally stable, and less agreeable (all ps < .001). No differences were found for conscientiousness. Gender and its interaction with ability level had a small effect (partial η²s = .04 and .03). Thus, teachers' implicit personality theories about the gifted were in line with the disharmony hypothesis. Possible consequences for gifted identification and education are discussed. PMID:23356881

  9. A point implicit time integration technique for slow transient flow problems

    SciTech Connect

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.

  10. Revealing children's implicit spelling representations.

    PubMed

    Critten, Sarah; Pine, Karen J; Messer, David J

    2013-06-01

    Conceptualizing the underlying representations and cognitive mechanisms of children's spelling development is a key challenge for literacy researchers. Using the Representational Redescription model (Karmiloff-Smith), Critten, Pine and Steffler (2007) demonstrated that the acquisition of phonological and morphological knowledge may be underpinned by increasingly explicit levels of spelling representation. However, their proposal that implicit representations may underlie early 'visually based' spelling remains unresolved. Children (N = 101, aged 4-6 years) were given a recognition task (Critten et al., 2007) and a novel production task, both involving verbal justifications of why spellings are correct/incorrect, strategy use and word pattern similarity. Results for both tasks supported an implicit level of spelling characterized by the ability to correctly recognize/produce words but the inability to explain operational strategies or generalize knowledge. Explicit levels and multiple representations were also in evidence across the two tasks. Implications for cognitive mechanisms underlying spelling development are discussed. PMID:23659891

  11. On solving the momentum equations of dynamic sea ice models with implicit solvers and the elastic-viscous-plastic technique

    NASA Astrophysics Data System (ADS)

    Losch, Martin; Danilov, Sergey

    Experiments with idealized geometry are used to compare model solutions of implicit VP- and explicit EVP-solvers in two very different ice-ocean codes: the regular-grid, finite-volume Massachusetts Institute of Technology general circulation model (MITgcm) and the Alfred Wegener Institute Finite Element Ocean Model (FEOM). It is demonstrated that for both codes the obtained solutions of implicit VP-and EVP-solvers can differ significantly, because the EVP solutions tend to have smaller ice viscosities ("weaker" ice). EVP solutions tend to converge only slowly to implicit VP solutions for very small sub-cycling time steps. Variable resolution in the unstructured-grid model FEOM also affects the solution as smaller grid cell size leads to smaller viscosity in EVP solutions. Models with implicit VP-solvers can block narrow straits under certain conditions, while EVP-models are found to always allow flow as a consequence of lower viscosities.

  12. A Second-Order Iterative Implicit Explicit Hybrid Scheme for Hyperbolic Systems of Conservation Laws

    NASA Astrophysics Data System (ADS)

    Dai, Wenlong; Woodward, Paul R.

    1996-10-01

    An iterative implicit-explicit hybrid scheme is proposed for hyperbolic systems of conservation laws. Each wave in a system may be implicitly, or explicitly, or partially implicitly and partially explicitly treated depending on its associated Courant number in each numerical cell, and the scheme is able to smoothly switch between implicit and explicit calculations. The scheme is of Godunov-type in both explicit and implicit regimes, is in a strict conservation form, and is accurate to second-order in both space and time for all Courant numbers. The computer code for the scheme is easy to vectorize. Multicolors proposed in this paper may reduce the number of iterations required to reach a converged solution by several orders for a large time step. The feature of the scheme is shown through numerical examples.

  13. Ego depletion impairs implicit learning.

    PubMed

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  14. [Psychological theory and implicit sociology.].

    PubMed

    Sévigny, R

    1983-01-01

    This text is based on the hypothesis that every theory on the psychology of personality must inevitably, in one manner or another, have a sociological referent, that is to say, it must refer to a body of knowledge which deals with a diversity of social contexts and their relations to individuals. According to this working hypothesis, such a sociology is implicit. This text then discusses a group of theoretical approaches in an effort to verify this hypothesis. This approach allows the extrication of diverse forms or diverse expressions of this implicit sociology within this context several currents are rapidly explored : psychoanalysis, behaviorism, gestalt, classical theory of needs. The author also comments on the approach, inspired by oriental techniques or philosophies, which employs the notion of myth to deepen self awareness. Finally, from the same perspective, he comments at greater length on the work of Carl Rogers, highlighting the diverse form of implicit sociology. In addition to Carl Rogers, this text refers to Freud, Jung, Adler, Reich, Perls, Goodman, Skinner as well as to Ginette Paris and various analysts of Taoism. In conclusion, the author indicates the significance of his analysis from double viewpoint of psychological theory and practice. PMID:17093766

  15. An Implicit LU/AF FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    There has been some recent work to develop two and three-dimensional alternating direction implicit (ADI) FDTD schemes. These ADI schemes are based upon the original ADI concept developed by Peaceman and Rachford and Douglas and Gunn, which is a popular solution method in Computational Fluid Dynamics (CFD). These ADI schemes work well and they require solution of a tridiagonal system of equations. A new approach proposed in this paper applies a LU/AF approximate factorization technique from CFD to Maxwell s equations in flux conservative form for one space dimension. The result is a scheme that will retain its unconditional stability in three space dimensions, but does not require the solution of tridiagonal systems. The theory for this new algorithm is outlined in a one-dimensional context for clarity. An extension to two and threedimensional cases is discussed. Results of Fourier analysis are discussed for both stability and dispersion/damping properties of the algorithm. Results are presented for a one-dimensional model problem, and the explicit FDTD algorithm is chosen as a convenient reference for comparison.

  16. Fully implicit kinetic modelling of collisional plasmas

    SciTech Connect

    Mousseau, V.A.

    1996-05-01

    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method.

  17. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions.

    PubMed

    Wang, Yanlong; Liu, Zhiyong; Li, Yuxiang; Bai, Zhuanling; Liu, Wei; Wang, Yaxing; Xu, Xiaomei; Xiao, Chengliang; Sheng, Daopeng; Diwu, Juan; Su, Jing; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-05-20

    Searching for new chemically durable and radiation-resistant absorbent materials for actinides and their fission products generated in the nuclear fuel cycle remain highly desirable, for both waste management and contamination remediation. Here we present a rare case of 3D uranyl organic framework material built through polycatenating of three sets of graphene-like layers, which exhibits significant umbellate distortions in the uranyl equatorial planes studied thoroughly by linear transit calculations. This unique structural arrangement leads to high β and γ radiation-resistance and chemical stability in aqueous solutions within a wide pH range from 3 to 12. Being equipped with the highest surface area among all actinide compounds known to date and completely exchangeable [(CH3)2NH2](+) cations in the structure, this material is able to selectively remove cesium from aqueous solutions while retaining the polycatenated framework structure. PMID:25939750

  18. The Method of Manufactured Solutions for RattleSnake A SN Radiation Transport Solver Inside the MOOSE Framework

    SciTech Connect

    Yaqi Wang

    2012-06-01

    The Method of Manufactured Solutions (MMS) is an accepted technique to verify that a numerical discretization for the radiation transport equation has been implemented correctly. This technique offers a few advantages over other methods such as benchmark problems or analytical solutions. The solution can be manufactured such that properties for the angular flux are either stressed or preserved. For radiation transport, these properties can include desired smoothness, positiveness and arbitrary order of anisotropy in angle. Another advantage is that the angular flux solution can be manufactured for multidimensional problems where analytical solutions are difficult to obtain in general.

  19. Guiding without feeling guided: Implicit scaffolding through interactive simulation design

    NASA Astrophysics Data System (ADS)

    Paul, Ariel; Podolefsky, Noah; Perkins, Katherine

    2013-01-01

    While PhET interactive simulations (sims) were historically designed for college students, they are used at lower grade levels, and we are currently developing sims targeted at middle school (MS). In studying how MS students interact with and learn from these sims, we have been extracting insights about design for the middle-grade-levels and across K-16. This collection of work has highlighted the importance of implicit scaffolding, a design framework that reduces the amount of explicit instruction needed to facilitate learning. We present a case study of redesigning a sim - Energy Skate Park (ESP) - for effective use in MS. We conducted think-aloud interviews with MS students to identify successful features, sources of confusion or unproductive distraction, as well as features inconsistent with gradeappropriate learning goals. Drawing on these data and the principle of implicit scaffolding, we developed Energy Skate Park Basics (ESPB). Interviews on ESPB demonstrate increased usability and learning for MS students.

  20. Implicit STEALTH - a special version of STEALTH for low-speed fluid-flow analysis: implicit hydrodynamics versions. Final report

    SciTech Connect

    McKay, M.W.

    1982-05-01

    STEALTH is a family of computer codes that solve the equations of motion for a general continuum. These codes can be used to calculate a variety of dynamic physical processes associated with nuclear reaction design and analysis as well as other physical processes in which the dynamic behavior of a continuum is involved. The versions of STEALTH described in this volume were designed for the calculation of problems involving low-speed fluid flow. They employ an implicit finite difference technique to solve the one- and two-dimensional equations of motion, written for an arbitrary coordinate system, for both incompressible and compressible fluids. The solution technique involves an iterative solution of the implicit, Lagrangian, finite difference equations followed by a separate calculation of the convection terms resulting from the use of an arbitrarily-moving coordinate system.

  1. Exploring the factor structure of implicit and explicit cognitions associated with depression.

    PubMed

    Phillips, Wendy J; Hine, Donald W

    2013-08-01

    Dual-process models of cognitive vulnerability to depression propose that implicit (automatic) and explicit (effortful) processes are involved in depression. The current study investigated the underlying structure of four implicit and four explicit cognitive biases associated with depression in an undergraduate sample (N = 355). An exploratory principal-axis factor analysis of implicit and explicit measures of self-esteem, dysfunctional beliefs, and memory for positive and negative stimuli produced a three-factor solution that was inconsistent with the dual process (two factor) account. Subsequent confirmatory factor analyses of biases exhibited by a hold-out sample also failed to support the hypothesized dual-process model and supported a three-factor solution. Overall, the results indicate that the latent structure of measures investigated in this study is not characterized by a clear differentiation between implicit and explicit cognition and that alternative models and measurement strategies should be investigated. PMID:22357697

  2. GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules

    PubMed Central

    Bertelshofer, Franziska; Sun, Liping; Greiner, Günther; Böckmann, Rainer A.

    2015-01-01

    Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and, in particular, also their interactions with each other. Additionally, knowledge about solution electrostatics may also guide the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson–Boltzmann equation (PBE). Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss–Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and, thus, needs to be carefully considered, e.g., in design studies on membrane proteins. PMID:26636074

  3. Implicit Social Biases in People With Autism.

    PubMed

    Birmingham, Elina; Stanley, Damian; Nair, Remya; Adolphs, Ralph

    2015-11-01

    Implicit social biases are ubiquitous and are known to influence social behavior. A core diagnostic criterion of autism spectrum disorders (ASD) is abnormal social behavior. We investigated the extent to which individuals with ASD might show a specific attenuation of implicit social biases, using Implicit Association Tests (IATs) involving social (gender, race) and nonsocial (nature, shoes) categories. High-functioning adults with ASD showed intact but reduced IAT effects relative to healthy control participants. We observed no selective attenuation of implicit social (vs. nonsocial) biases in our ASD population. To extend these results, we supplemented our healthy control data with data collected from a large online sample from the general population and explored correlations between autistic traits and IAT effects. We observed no systematic relationship between autistic traits and implicit social biases in our online and control samples. Taken together, these results suggest that implicit social biases, as measured by the IAT, are largely intact in ASD. PMID:26386014

  4. Implicit Media Knowledge Experiments & Results

    NASA Astrophysics Data System (ADS)

    Ly, Muy-Chu; Germaneau, Alexis

    2011-08-01

    Implicit Media Knowledge aims to provide relevant information related to visual media without effort. It is based on the analysis of media usage from several users (e.g. a community). Algorithms based on clustering methods that extract relevant information (e.g. tags, taxonomy trees) related to a media from its usage are detailed. To validate our new approach, we propose to apply our concept and algorithms on a specific media use such as the analysis of how multiple users organize their media files. Significant results of two experiments will be highlighted. Perspectives of our work will be finally presented.

  5. MOOSE: A parallel computational framework for coupled systems of nonlinear equations.

    SciTech Connect

    Derek Gaston; Chris Newman; Glen Hansen; Damien Lebrun-Grandie

    2009-10-01

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in time scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.

  6. Implicit and explicit social mentalizing: dual processes driven by a shared neural network

    PubMed Central

    Van Overwalle, Frank; Vandekerckhove, Marie

    2013-01-01

    Recent social neuroscientific evidence indicates that implicit and explicit inferences on the mind of another person (i.e., intentions, attributions or traits), are subserved by a shared mentalizing network. Under both implicit and explicit instructions, ERP studies reveal that early inferences occur at about the same time, and fMRI studies demonstrate an overlap in core mentalizing areas, including the temporo-parietal junction (TPJ) and the medial prefrontal cortex (mPFC). These results suggest a rapid shared implicit intuition followed by a slower explicit verification processes (as revealed by additional brain activation during explicit vs. implicit inferences). These data provide support for a default-adjustment dual-process framework of social mentalizing. PMID:24062663

  7. The "exaptation" of linguistic implicit strategies.

    PubMed

    Lombardi Vallauri, Edoardo

    2016-01-01

    Implicit strategies are known to increase persuasion performances. Implicits of content (vagueness, implicatures) and implicits of responsibility (presuppositions, topics) will be compared semiotically to non-linguistic implicits such as images and sounds. The results of psycholinguistic and neurolinguistic experiments will be used to propose that presuppositions and topics arose in language as means to spare addressees processing effort on already known contents, but they were subsequently "exapted" to spare effort on unknown marginal contents, and eventually to reduce the probability for doubtful contents to be processed thoroughly and rejected. This will be shown by many examples from commercial advertising and political propaganda. PMID:27478723

  8. The development of implicit gender attitudes.

    PubMed

    Dunham, Yarrow; Baron, Andrew Scott; Banaji, Mahzarin R

    2016-09-01

    The development course of implicit and explicit gender attitudes between the ages of 5 and adulthood is investigated. Findings demonstrate that implicit and explicit own-gender preferences emerge early in both boys and girls, but implicit own-gender preferences are stronger in young girls than boys. In addition, female participants' attitudes remain largely stable over development, whereas male participants' implicit and explicit attitudes show an age-related shift towards increasing female positivity. Gender attitudes are an anomaly in that social evaluations dissociate from social status, with both male and female participants tending to evaluate female more positively than male. PMID:26260250

  9. Implicit dose-response curves.

    PubMed

    Pérez Millán, Mercedes; Dickenstein, Alicia

    2015-06-01

    We develop tools from computational algebraic geometry for the study of steady state features of autonomous polynomial dynamical systems via elimination of variables. In particular, we obtain nontrivial bounds for the steady state concentration of a given species in biochemical reaction networks with mass-action kinetics. This species is understood as the output of the network and we thus bound the maximal response of the system. The improved bounds give smaller starting boxes to launch numerical methods. We apply our results to the sequential enzymatic network studied in Markevich et al. (J Cell Biol 164(3):353-359, 2004) to find nontrivial upper bounds for the different substrate concentrations at steady state. Our approach does not require any simulation, analytical expression to describe the output in terms of the input, or the absence of multistationarity. Instead, we show how to extract information from effectively computable implicit dose-response curves, with the use of resultants and discriminants. We moreover illustrate in the application to an enzymatic network, the relation between the exact implicit dose-response curve we obtain symbolically and the standard hysteresis diagram provided by a numerical ode solver. The setting and tools we propose could yield many other results adapted to any autonomous polynomial dynamical system, beyond those where it is possible to get explicit expressions. PMID:25008963

  10. Error modes in implicit Monte Carlo

    SciTech Connect

    Martin, William Russell,; Brown, F. B.

    2001-01-01

    The Implicit Monte Carlo (IMC) method of Fleck and Cummings [1] has been used for years to analyze radiative transfer problems, such as those encountered in stellar atmospheres or inertial confinement fusion. Larsen and Mercier [2] have shown that the IMC method violates a maximum principle that is satisfied by the exact solution to the radiative transfer equation. Except for [2] and related papers regarding the maximum principle, there have been no other published results regarding the analysis of errors or convergence properties for the IMC method. This work presents an exact error analysis for the IMC method by using the analytical solutions for infinite medium geometry (0-D) to determine closed form expressions for the errors. The goal is to gain insight regarding the errors inherent in the IMC method by relating the exact 0-D errors to multi-dimensional geometry. Additional work (not described herein) has shown that adding a leakage term (i.e., a 'buckling' term) to the 0-D equations has relatively little effect on the IMC errors analyzed in this paper, so that the 0-D errors should provide useful guidance for the errors observed in multi-dimensional simulations.

  11. Four decades of implicit Monte Carlo

    DOE PAGESBeta

    Wollaber, Allan B.

    2016-04-25

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  12. Using Implicit Measures to Highlight Science Teachers' Implicit Theories of Intelligence

    ERIC Educational Resources Information Center

    Mascret, Nicolas; Roussel, Peggy; Cury, François

    2015-01-01

    Using an innovative method, a Single-Target Implicit Association Test (ST-IAT) was created to explore the implicit theories of intelligence among science and liberal arts teachers and their relationships with their gender. The results showed that for science teachers--especially for male teachers--there was a negative implicit association between…

  13. Measuring implicit attitudes: A positive framing bias flaw in the Implicit Relational Assessment Procedure (IRAP).

    PubMed

    O'Shea, Brian; Watson, Derrick G; Brown, Gordon D A

    2016-02-01

    How can implicit attitudes best be measured? The Implicit Relational Assessment Procedure (IRAP), unlike the Implicit Association Test (IAT), claims to measure absolute, not just relative, implicit attitudes. In the IRAP, participants make congruent (Fat Person-Active: false; Fat Person-Unhealthy: true) or incongruent (Fat Person-Active: true; Fat Person-Unhealthy: false) responses in different blocks of trials. IRAP experiments have reported positive or neutral implicit attitudes (e.g., neutral attitudes toward fat people) in cases in which negative attitudes are normally found on explicit or other implicit measures. It was hypothesized that these results might reflect a positive framing bias (PFB) that occurs when participants complete the IRAP. Implicit attitudes toward categories with varying prior associations (nonwords, social systems, flowers and insects, thin and fat people) were measured. Three conditions (standard, positive framing, and negative framing) were used to measure whether framing influenced estimates of implicit attitudes. It was found that IRAP scores were influenced by how the task was framed to the participants, that the framing effect was modulated by the strength of prior stimulus associations, and that a default PFB led to an overestimation of positive implicit attitudes when measured by the IRAP. Overall, the findings question the validity of the IRAP as a tool for the measurement of absolute implicit attitudes. A new tool (Simple Implicit Procedure:SIP) for measuring absolute, not just relative, implicit attitudes is proposed. (PsycINFO Database Record PMID:26075407

  14. Parallel Explicit and Implicit Control of Reaching

    PubMed Central

    Mazzoni, Pietro; Wexler, Nancy S.

    2009-01-01

    Background Human movement can be guided automatically (implicit control) or attentively (explicit control). Explicit control may be engaged when learning a new movement, while implicit control enables simultaneous execution of multiple actions. Explicit and implicit control can often be assigned arbitrarily: we can simultaneously drive a car and tune the radio, seamlessly allocating implicit or explicit control to either action. This flexibility suggests that sensorimotor signals, including those that encode spatially overlapping perception and behavior, can be accurately segregated to explicit and implicit control processes. Methodology/Principal Findings We tested human subjects' ability to segregate sensorimotor signals to parallel control processes by requiring dual (explicit and implicit) control of the same reaching movement and testing for interference between these processes. Healthy control subjects were able to engage dual explicit and implicit motor control without degradation of performance compared to explicit or implicit control alone. We then asked whether segregation of explicit and implicit motor control can be selectively disrupted by studying dual-control performance in subjects with no clinically manifest neurologic deficits in the presymptomatic stage of Huntington's disease (HD). These subjects performed successfully under either explicit or implicit control alone, but were impaired in the dual-control condition. Conclusion/Significance The human nervous system can exert dual control on a single action, and is therefore able to accurately segregate sensorimotor signals to explicit and implicit control. The impairment observed in the presymptomatic stage of HD points to a possible crucial contribution of the striatum to the segregation of sensorimotor signals to multiple control processes. PMID:19847295

  15. Large spatial, temporal, and algorithmic adaptivity for implicit nonlinear finite element analysis

    SciTech Connect

    Engelmann, B.E.; Whirley, R.G.

    1992-07-30

    The development of effective solution strategies to solve the global nonlinear equations which arise in implicit finite element analysis has been the subject of much research in recent years. Robust algorithms are needed to handle the complex nonlinearities that arise in many implicit finite element applications such as metalforming process simulation. The authors experience indicates that robustness can best be achieved through adaptive solution strategies. In the course of their research, this adaptivity and flexibility has been refined into a production tool through the development of a solution control language called ISLAND. This paper discusses aspects of adaptive solution strategies including iterative procedures to solve the global equations and remeshing techniques to extend the domain of Lagrangian methods. Examples using the newly developed ISLAND language are presented to illustrate the advantages of embedding temporal, algorithmic, and spatial adaptivity in a modem implicit nonlinear finite element analysis code.

  16. Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution.

    PubMed

    Zhuang, Jin-Liang; Ar, Deniz; Yu, Xiu-Jun; Liu, Jin-Xuan; Terfort, Andreas

    2013-09-01

    Flexible in many aspects: inkjet printing of metal-organic frameworks permits their larger area, high-resolution deposition in any desired pattern, even in the form of gradients or shades. When flexible substrates are used, many applications can be envisioned, such as sensing and capture of hazardous gases for personal safety measures. PMID:23813674

  17. A new numerical framework for solving conservation laws: The method of space-time conservation element and solution element

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; To, Wai-Ming

    1991-01-01

    A new numerical framework for solving conservation laws is being developed. It employs: (1) a nontraditional formulation of the conservation laws in which space and time are treated on the same footing, and (2) a nontraditional use of discrete variables such as numerical marching can be carried out by using a set of relations that represents both local and global flux conservation.

  18. An implicit logarithmic finite-difference technique for two dimensional coupled viscous Burgers’ equation

    SciTech Connect

    Srivastava, Vineet K.; Awasthi, Mukesh K.; Singh, Sarita

    2013-12-15

    This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM), for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.

  19. An implicit logarithmic finite-difference technique for two dimensional coupled viscous Burgers' equation

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Awasthi, Mukesh K.; Singh, Sarita

    2013-12-01

    This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM), for the numerical solution of two dimensional time-dependent coupled viscous Burgers' equation on the uniform grid points. As the Burgers' equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers' equation.

  20. Implicit solvers for large-scale nonlinear problems

    SciTech Connect

    Keyes, D E; Reynolds, D; Woodward, C S

    2006-07-13

    Computational scientists are grappling with increasingly complex, multi-rate applications that couple such physical phenomena as fluid dynamics, electromagnetics, radiation transport, chemical and nuclear reactions, and wave and material propagation in inhomogeneous media. Parallel computers with large storage capacities are paving the way for high-resolution simulations of coupled problems; however, hardware improvements alone will not prove enough to enable simulations based on brute-force algorithmic approaches. To accurately capture nonlinear couplings between dynamically relevant phenomena, often while stepping over rapid adjustments to quasi-equilibria, simulation scientists are increasingly turning to implicit formulations that require a discrete nonlinear system to be solved for each time step or steady state solution. Recent advances in iterative methods have made fully implicit formulations a viable option for solution of these large-scale problems. In this paper, we overview one of the most effective iterative methods, Newton-Krylov, for nonlinear systems and point to software packages with its implementation. We illustrate the method with an example from magnetically confined plasma fusion and briefly survey other areas in which implicit methods have bestowed important advantages, such as allowing high-order temporal integration and providing a pathway to sensitivity analyses and optimization. Lastly, we overview algorithm extensions under development motivated by current SciDAC applications.

  1. Implicit and Explicit Instruction of Spelling Rules

    ERIC Educational Resources Information Center

    Kemper, M. J.; Verhoeven, L.; Bosman, A. M. T.

    2012-01-01

    The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a pretest-intervention-posttest control group design. Experiment 1…

  2. Evidence for Implicit Learning in Syntactic Comprehension

    ERIC Educational Resources Information Center

    Fine, Alex B.; Jaeger, T. Florian

    2013-01-01

    This study provides evidence for implicit learning in syntactic comprehension. By reanalyzing data from a syntactic priming experiment (Thothathiri & Snedeker, 2008), we find that the error signal associated with a syntactic prime influences comprehenders' subsequent syntactic expectations. This follows directly from error-based implicit learning…

  3. Understanding Implicit Bias: What Educators Should Know

    ERIC Educational Resources Information Center

    Staats, Cheryl

    2016-01-01

    The desire to ensure the best for children is precisely why educators should become aware of the concept of implicit bias: the attitudes or stereotypes that affect our understanding, actions, and decisions in an unconscious manner. Operating outside of our conscious awareness, implicit biases are pervasive, and they can challenge even the most…

  4. Implicit and Explicit Exercise and Sedentary Identity

    ERIC Educational Resources Information Center

    Berry, Tanya R.; Strachan, Shaelyn M.

    2012-01-01

    We examined the relationship between implicit and explicit "exerciser" and "sedentary" self-identity when activated by stereotypes. Undergraduate participants (N = 141) wrote essays about university students who either liked to exercise or engage in sedentary activities. This was followed by an implicit identity task and an explicit measure of…

  5. Implicit and Explicit Learning of Languages.

    ERIC Educational Resources Information Center

    McDermott, James E.

    1999-01-01

    Discusses theoretical and practical issues connected with implicit and explicit learning of languages. Explicit learning is knowledge expressed in the form of rules or definitions; implicit knowledge can be inferred to exist because of observed performance but cannot be clearly described. Hypothesizes why explicit learning can lead to implicit…

  6. Altered Implicit Category Learning in Anorexia Nervosa

    PubMed Central

    Shott, Megan E.; Filoteo, J. Vincent; Jappe, Leah M.; Pryor, Tamara; Maddox, W. Todd; Rollin, Michael D.H.; Hagman, Jennifer O.; Frank, Guido K.W.

    2012-01-01

    Objective Recent research has identified specific cognitive deficits in patients with anorexia nervosa (AN), including impairment in executive functioning and attention. Another such cognitive process, implicit category learning has been less studied in AN. This study examined whether implicit category learning is impaired in AN. Method Twenty-one women diagnosed with AN and 19 control women (CW) were administered an implicit category learning task in which they were asked to categorize simple perceptual stimuli (Gabor patches) into one of two categories. Category membership was based on a linear integration (i.e., an implicit task) of two stimulus dimensions (orientation and spatial frequency of the stimulus). Results AN individuals were less accurate on implicit category learning relative to age-matched CW. Model-based analyses indicated that, even when AN individuals used the appropriate (i.e., implicit) strategy they were still impaired relative to CW who also used the same strategy. In addition, task performance in AN patients was worse the higher they were in self-reported novelty seeking and the lower they were in sensitivity to punishment. Conclusions These results indicate that AN patients have implicit category learning deficits, and given this type of learning is thought to be mediated by striatal dopamine pathways, AN patients may have deficits in these neural systems. The finding of significant correlations with novelty seeking and sensitivity to punishment suggests that feedback sensitivity is related to implicit learning in AN. PMID:22201300

  7. Psychometric Intelligence Dissociates Implicit and Explicit Learning

    ERIC Educational Resources Information Center

    Gebauer, Guido F.; Mackintosh, Nicholas J.

    2007-01-01

    The hypothesis that performance on implicit learning tasks is unrelated to psychometric intelligence was examined in a sample of 605 German pupils. Performance in artificial grammar learning, process control, and serial learning did not correlate with various measures of intelligence when participants were given standard implicit instructions.…

  8. Combined incomplete LU and strongly implicit procedure preconditioning

    SciTech Connect

    Meese, E.A.

    1996-12-31

    For the solution of large sparse linear systems of equations, the Krylov-subspace methods have gained great merit. Their efficiency are, however, largely dependent upon preconditioning of the equation-system. A family of matrix factorisations often used for preconditioning, is obtained from a truncated Gaussian elimination, ILU(p). Less common, supposedly due to it`s restriction to certain sparsity patterns, is factorisations generated by the strongly implicit procedure (SIP). The ideas from ILU(p) and SIP are used in this paper to construct a generalized strongly implicit procedure, applicable to matrices with any sparsity pattern. The new algorithm has been run on some test equations, and efficiency improvements over ILU(p) was found.

  9. Higher-Order Semi-Implicit Projection Methods

    SciTech Connect

    Minion, M L

    2001-09-06

    A semi-implicit form of the method of spectral deferred corrections is applied to the solution of the incompressible Navier-Stokes equations. A methodology for constructing semi-implicit projection methods with arbitrarily high order of temporal accuracy in both the velocity and pressure is presented. Three variations of projection methods are discussed which differ in the manner in which the auxiliary velocity and the pressure are calculated. The presentation will make clear that project methods in general need not be viewed as fractional step methods as is often the practice. Two simple numerical examples re used to demonstrate fourth-order accuracy in time for an implementation of each variation of projection method.

  10. Implicit solvers for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, Dimitri J.

    1991-01-01

    Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.

  11. Comparison of Implicit and Symbolic Implicit Monte Carlo Line Transport With Frequency Weight Vector Extension

    SciTech Connect

    McKinley, M S; Brooks III, E D; Szoke, A

    2002-03-20

    We compare the Implicit Monte Carlo (IMC) technique to the Symbolic IMC (SIMC) technique, with and without weight vectors in frequency space, for time-dependent line transport in the presence of collisional pumping. We examine the efficiency and accuracy of the IMC and SIMC methods for examples involving the evolution of a collisionally pumped trapping problem to steady-state, the surface heating of cold media by a beam, and the diffusion of energy from a localized region that is collisionally pumped. The importance of spatial biasing and teleportation for problems involving high opacity is demonstrated. Our numerical solution, along with its associated teleportation error, is checked against theoretical calculations for the last example.

  12. Comparison of Implicit and Symbolic Implicit Monte Carlo Line Transport with Frequency Weight Vector Extension

    SciTech Connect

    McKinley, M S; Brooks III, E D; Szoke, A

    2002-12-03

    We compare the Implicit Monte Carlo (IMC) technique to the Symbolic IMC (SIMC) technique, with and without weight vectors in frequency space, for time-dependent line transport in the presence of collisional pumping. We examine the efficiency and accuracy of the IMC and SIMC methods for test problems involving the evolution of a collisionally pumped trapping problem to its steady-state, the surface heating of a cold medium by a beam, and the diffusion of energy from a localized region that is collisionally pumped. The importance of spatial biasing and teleportation for problems involving high opacity is demonstrated. Our numerical solution, along with its associated teleportation error, is checked against theoretical calculations for the last example.

  13. Implicit restart Lanczos as an eigensolver

    NASA Astrophysics Data System (ADS)

    Rajaie Khorasani, Reza; Dumont, Randall S.

    2009-03-01

    This paper investigates the efficiency of the implicit restart Lanczos and simple (without reorthogonalization) Lanczos algorithms, as eigensolvers for large scale computations in molecular and chemical physics. Using the cardioid billiard and the hydrogen cyanide/hydrogen isocyanide (HCN/HNC) molecule as model systems we demonstrate superior efficiency of implicit restart Lanczos compared to the simple Lanczos algorithm. A modified implementation of implicit restart Lanczos is also presented which works with a smaller Krylov space—with associated savings in memory—and can handle larger basis sets than the usual implicit restart Lanczos. It also enables getting all eigenpairs of a matrix, or all eigenvalues below a threshold (where the number of such is not known before hand), which is more difficult with the usual implicit restart algorithm.

  14. Implicit restart Lanczos as an eigensolver.

    PubMed

    Rajaie Khorasani, Reza; Dumont, Randall S

    2009-03-01

    This paper investigates the efficiency of the implicit restart Lanczos and simple (without reorthogonalization) Lanczos algorithms, as eigensolvers for large scale computations in molecular and chemical physics. Using the cardioid billiard and the hydrogen cyanide/hydrogen isocyanide (HCN/HNC) molecule as model systems we demonstrate superior efficiency of implicit restart Lanczos compared to the simple Lanczos algorithm. A modified implementation of implicit restart Lanczos is also presented which works with a smaller Krylov space-with associated savings in memory-and can handle larger basis sets than the usual implicit restart Lanczos. It also enables getting all eigenpairs of a matrix, or all eigenvalues below a threshold (where the number of such is not known before hand), which is more difficult with the usual implicit restart algorithm. PMID:19392082

  15. Implicit social cognition: From measures to mechanisms

    PubMed Central

    Nosek, Brian A.; Hawkins, Carlee Beth; Frazier, Rebecca S.

    2011-01-01

    Most of human cognition occurs outside of conscious awareness or conscious control. Some of these implicit processes influence social perception, judgment and action. The last fifteen years of research in implicit social cognition can be characterized as the Age of Measurement because of a proliferation of measurement methods and research evidence demonstrating their practical value for predicting human behavior. Implicit measures assess constructs that are distinct, but related, to self-report assessments, and predict variation in behavior that is not accounted for by those explicit measures. The present state of knowledge provides a foundation for the next age of implicit social cognition – clarification of the mechanisms underlying implicit measurement and how the measured constructs influence behavior. PMID:21376657

  16. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  17. Implicit methods for efficient musculoskeletal simulation and optimal control

    PubMed Central

    van den Bogert, Antonie J.; Blana, Dimitra; Heinrich, Dieter

    2011-01-01

    The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers. PMID:22102983

  18. Functional imaging of an alcohol-Implicit Association Test (IAT)

    PubMed Central

    Ames, Susan L.; Grenard, Jerry L.; He, Qinghua; Stacy, Alan W.; Wong, Savio W.; Xiao, Lin; Xue, Gui; Bechara, Antoine

    2014-01-01

    This research assessed activation in neural substrates involved in implicit associative processes through the imaging (functional magnetic resonance imaging) of an alcohol-Implicit Association Test (IAT) focused on positive outcomes of alcohol use. Comparisons involved 17 heavy and 19 light drinkers, ranging in age from 18 to 22, during compatible and incompatible association task trials. Behaviorally, a significant IAT effect was found with heavy drinkers showing stronger positive implicit associations toward alcohol use than light drinkers. Imaging data revealed heavy drinkers showed greater activity during compatible trials relative to incompatible trials in the left putamen and insula while no significant difference in activity between conditions was found in the light drinkers. Light drinkers showed significantly more activity in the left orbital frontal cortex during both compatible and incompatible trials than heavy drinkers, and the dorsolateral prefrontal cortex was engaged more in both light and heavy drinkers during incompatible trials relative to compatible trials. Further, within-group analyses showed significant amygdala activity along with the putamen and insula among heavy drinkers during compatible trials relative to incompatible trials. These results are consistent with a dual process framework of appetitive behaviors proposing that (1) implicit associations underlying habit are mediated through neural circuitry dependent on the striatum, and (2) controlled behaviors are mediated through neural circuitry more dependent on the prefrontal cortex. This is the first study to evaluate the neural mechanisms elicited by an alcohol-IAT, providing an additional step toward increasing understanding of associative habit processes and their regulatory influence over addictive behaviors. PMID:23822813

  19. Hybrid, explicit-implicit, finite-volume schemes on unstructured grids for unsteady compressible flows

    NASA Astrophysics Data System (ADS)

    Timofeev, Evgeny; Norouzi, Farhang

    2016-06-01

    The motivation for using hybrid, explicit-implicit, schemes rather than fully implicit or explicit methods for some unsteady high-speed compressible flows with shocks is firstly discussed. A number of such schemes proposed in the past are briefly overviewed. A recently proposed hybridization approach is then introduced and used for the development of a hybrid, explicit-implicit, TVD (Total Variation Diminishing) scheme of the second order in space and time on smooth solutions in both, explicit and implicit, modes for the linear advection equation. Further generalizations of this finite-volume method for the Burgers, Euler and Navier-Stokes equations discretized on unstructured grids are mentioned in the concluding remarks.

  20. A New Framework and Prototype Solution for Clinical Decision Support and Research in Genomics and Other Data-intensive Fields of Medicine

    PubMed Central

    Evans, James P.; Wilhelmsen, Kirk C.; Berg, Jonathan; Schmitt, Charles P.; Krishnamurthy, Ashok; Fecho, Karamarie; Ahalt, Stanley C.

    2016-01-01

    Introduction: In genomics and other fields, it is now possible to capture and store large amounts of data in electronic medical records (EMRs). However, it is not clear if the routine accumulation of massive amounts of (largely uninterpretable) data will yield any health benefits to patients. Nevertheless, the use of large-scale medical data is likely to grow. To meet emerging challenges and facilitate optimal use of genomic data, our institution initiated a comprehensive planning process that addresses the needs of all stakeholders (e.g., patients, families, healthcare providers, researchers, technical staff, administrators). Our experience with this process and a key genomics research project contributed to the proposed framework. Framework: We propose a two-pronged Genomic Clinical Decision Support System (CDSS) that encompasses the concept of the “Clinical Mendeliome” as a patient-centric list of genomic variants that are clinically actionable and introduces the concept of the “Archival Value Criterion” as a decision-making formalism that approximates the cost-effectiveness of capturing, storing, and curating genome-scale sequencing data. We describe a prototype Genomic CDSS that we developed as a first step toward implementation of the framework. Conclusion: The proposed framework and prototype solution are designed to address the perspectives of stakeholders, stimulate effective clinical use of genomic data, drive genomic research, and meet current and future needs. The framework also can be broadly applied to additional fields, including other ‘-omics’ fields. We advocate for the creation of a Task Force on the Clinical Mendeliome, charged with defining Clinical Mendeliomes and drafting clinical guidelines for their use. PMID:27195307

  1. On the Modularity of Implicit Sequence Learning: Independent Acquisition of Spatial, Symbolic, and Manual Sequences

    ERIC Educational Resources Information Center

    Goschke, Thomas; Bolte, Annette

    2012-01-01

    Learning sequential structures is of fundamental importance for a wide variety of human skills. While it has long been debated whether implicit sequence learning is perceptual or response-based, here we propose an alternative framework that cuts across this dichotomy and assumes that sequence learning rests on associative changes that can occur…

  2. Kindergarten and Primary School Children's Implicit Theories of Learning to Write

    ERIC Educational Resources Information Center

    Scheuer, Nora; de la Cruz, Montserrat; Pozo, Juan Ignacio; Echenique, Monica; Marquez, Maria Silvina

    2009-01-01

    This paper studies the process of learning to write from an insider perspective, by adopting the framework of implicit theories of learning. We interviewed 160 children attending kindergarten or primary education in public schools in Argentina (20 children from each of the eight grades from kindergarten to seventh grade). Main questions explored…

  3. The Implicit Curriculum in an Urban University Setting: Pathways to Students' Empowerment

    ERIC Educational Resources Information Center

    Peterson, N. Andrew; Farmer, Antoinette Y.; Zippay, Allison

    2014-01-01

    Professional schools are developing conceptual frameworks that can be used to assess and improve implicit curricula. Students' professional empowerment, defined to include perceived professional competence and identity, may be considered a vital outcome of these efforts. Our study evaluated measures and tested a path model that included…

  4. Efficient Computational Research Protocol to Survey Free Energy Surface for Solution Chemical Reaction in the QM/MM Framework: The FEG-ER Methodology and Its Application to Isomerization Reaction of Glycine in Aqueous Solution.

    PubMed

    Takenaka, Norio; Kitamura, Yukichi; Nagaoka, Masataka

    2016-03-01

    In solution chemical reaction, we often need to consider a multidimensional free energy (FE) surface (FES) which is analogous to a Born-Oppenheimer potential energy surface. To survey the FES, an efficient computational research protocol is proposed within the QM/MM framework; (i) we first obtain some stable states (or transition states) involved by optimizing their structures on the FES, in a stepwise fashion, finally using the free energy gradient (FEG) method, and then (ii) we directly obtain the FE differences among any arbitrary states on the FES, efficiently by employing the QM/MM method with energy representation (ER), i.e., the QM/MM-ER method. To validate the calculation accuracy and efficiency, we applied the above FEG-ER methodology to a typical isomerization reaction of glycine in aqueous solution, and reproduced quite satisfactorily the experimental value of the reaction FE. Further, it was found that the structural relaxation of the solute in the QM/MM force field is not negligible to estimate correctly the FES. We believe that the present research protocol should become prevailing as one computational strategy and will play promising and important roles in solution chemistry toward solution reaction ergodography. PMID:26794718

  5. Analytic treatment of source photon emission times to reduce noise in implicit Monte Carlo calculations

    SciTech Connect

    Trahan, Travis J.; Gentile, Nicholas A.

    2012-09-10

    Statistical uncertainty is inherent to any Monte Carlo simulation of radiation transport problems. In space-angle-frequency independent radiative transfer calculations, the uncertainty in the solution is entirely due to random sampling of source photon emission times. We have developed a modification to the Implicit Monte Carlo algorithm that eliminates noise due to sampling of the emission time of source photons. In problems that are independent of space, angle, and energy, the new algorithm generates a smooth solution, while a standard implicit Monte Carlo solution is noisy. For space- and angle-dependent problems, the new algorithm exhibits reduced noise relative to standard implicit Monte Carlo in some cases, and comparable noise in all other cases. In conclusion, the improvements are limited to short time scales; over long time scales, noise due to random sampling of spatial and angular variables tends to dominate the noise reduction from the new algorithm.

  6. An HPLC chromatographic framework to analyze the β-cyclodextrin/solute complexation mechanism using a carbon nanotube stationary phase.

    PubMed

    Aljhni, Rania; Andre, Claire; Lethier, Lydie; Guillaume, Yves Claude

    2015-11-01

    A carbon nanotube (CNT) stationary phase was used for the first time to study the β-cyclodextrin (β-CD) solute complexation mechanism using high performance liquid chromatography (HPLC). For this, the β-CD was added at various concentrations in the mobile phase and the effect of column temperature was studied on both the retention of a series of aniline and benzoic acid derivatives with the CNT stationary phase and their complexation mechanism with β-CD. A decrease in the solute retention factor was observed for all the studied molecules without change in the retention order. The apparent formation constant KF of the inclusion complex β-CD/solute was determined at various temperatures. Our results showed that the interaction of β-CD with both the mobile phase and the stationary phase interfered in the complex formation. The enthalpy and entropy of the complex formation (ΔHF and ΔSF) between the solute molecule and CD were determined using a thermodynamic approach. Negative enthalpies and entropies indicated that the inclusion process of the studied molecule in the CD cavity was enthalpically driven and that the hydrogen bonds between carboxylic or aniline groups and the functional groups on the β-CD rim play an important role in the complex formation. PMID:26452814

  7. A series solution framework for finite-time optimal feedback control, H-infinity control and games

    NASA Astrophysics Data System (ADS)

    Sharma, Rajnish

    The Bolza-form of the finite-time constrained optimal control problem leads to the Hamilton-Jacobi-Bellman (HJB) equation with terminal boundary conditions and to-be-determined parameters. In general, it is a formidable task to obtain analytical and/or numerical solutions to the HJB equation. This dissertation presents two novel polynomial expansion methodologies for solving optimal feedback control problems for a class of polynomial nonlinear dynamical systems with terminal constraints. The first approach uses the concept of higher-order series expansion methods. Specifically, the Series Solution Method (SSM) utilizes a polynomial series expansion of the cost-to-go function with time-dependent coefficient gains that operate on the state variables and constraint Lagrange multipliers. A significant accomplishment of the dissertation is that the new approach allows for a systematic procedure to generate optimal feedback control laws that exactly satisfy various types of nonlinear terminal constraints. The second approach, based on modified Galerkin techniques for the solution of terminally constrained optimal control problems, is also developed in this dissertation. Depending on the time-interval, nonlinearity of the system, and the terminal constraints, the accuracy and the domain of convergence of the algorithm can be related to the order of truncation of the functional form of the optimal cost function. In order to limit the order of the expansion and still retain improved midcourse performance, a waypoint scheme is developed. The waypoint scheme has the dual advantages of reducing computational efforts and gain-storage requirements. This is especially true for autonomous systems. To illustrate the theoretical developments, several aerospace application-oriented examples are presented, including a minimum-fuel orbit transfer problem. Finally, the series solution method is applied to the solution of a class of partial differential equations that arise in robust

  8. Cognitive control: a role for implicit learning?

    PubMed

    Deroost, Natacha; Vandenbossche, Jochen; Zeischka, Peter; Coomans, Daphné; Soetens, Eric

    2012-09-01

    We investigated the influence of implicit learning on cognitive control. In a sequential Stroop task, participants implicitly learned a sequence placed on the color of the Stroop words. In Experiment 1, Stroop conflict was lower in sequenced than in random trials (learning-improved control). However, as these results were derived from an interaction between learning and conflict, they could also be explained by improved implicit learning (difference between random and sequenced trials), under incongruent compared with congruent trials (control-improved learning). Therefore, we further unraveled the direction of the interaction in 2 additional experiments. In Experiment 2, participants who learned the color sequence were no better at resolving conflict than participants who did not undergo sequence training. This shows that implicit knowledge does not directly reduce conflict (no learning-improved control). In Experiment 3, the amount of conflict did not directly improve learning either (no control-improved learning). However, conflict had a significant impact on the expression of implicit learning, as most knowledge was expressed under the highest amount of conflict. Thus, task-optimization was accomplished by an increased reliance on implicit sequence knowledge under high conflict. These findings demonstrate that implicit learning processes can be flexibly recruited to support cognitive control functions. PMID:22428719

  9. A Bayesian framework for active artificial perception.

    PubMed

    Ferreira, João Filipe; Lobo, Jorge; Bessière, Pierre; Castelo-Branco, Miguel; Dias, Jorge

    2013-04-01

    In this paper, we present a Bayesian framework for the active multimodal perception of 3-D structure and motion. The design of this framework finds its inspiration in the role of the dorsal perceptual pathway of the human brain. Its composing models build upon a common egocentric spatial configuration that is naturally fitting for the integration of readings from multiple sensors using a Bayesian approach. In the process, we will contribute with efficient and robust probabilistic solutions for cyclopean geometry-based stereovision and auditory perception based only on binaural cues, modeled using a consistent formalization that allows their hierarchical use as building blocks for the multimodal sensor fusion framework. We will explicitly or implicitly address the most important challenges of sensor fusion using this framework, for vision, audition, and vestibular sensing. Moreover, interaction and navigation require maximal awareness of spatial surroundings, which, in turn, is obtained through active attentional and behavioral exploration of the environment. The computational models described in this paper will support the construction of a simultaneously flexible and powerful robotic implementation of multimodal active perception to be used in real-world applications, such as human-machine interaction or mobile robot navigation. PMID:23014760

  10. Evidence for implicit learning in syntactic comprehension.

    PubMed

    Fine, Alex B; Florian Jaeger, T

    2013-04-01

    This study provides evidence for implicit learning in syntactic comprehension. By reanalyzing data from a syntactic priming experiment (Thothathiri & Snedeker, 2008), we find that the error signal associated with a syntactic prime influences comprehenders' subsequent syntactic expectations. This follows directly from error-based implicit learning accounts of syntactic priming, but it is unexpected under accounts that consider syntactic priming a consequence of temporary increases in base-level activation. More generally, the results raise questions about the principles underlying the maintenance of implicit statistical knowledge relevant to language processing, and about possible functional motivations for syntactic priming. PMID:23363004