Science.gov

Sample records for important chemical reactions

  1. Spectroscopy and reactions of molecules important in chemical evolution

    NASA Technical Reports Server (NTRS)

    Becker, R. S.

    1974-01-01

    The research includes: (1) hot hydrogen atom reactions in terms of the nature of products produced, mechanism of the reactions and the implication and application of such reactions for molecules existing in interstellar clouds, in planetary atmospheres, and in chemical evolution; (2) photochemical reactions that can lead to molecules important in chemical evolution, interstellar clouds and as constituents in planetary atmospheres; and (3) spectroscopic and theoretical properties of biomolecules and their precursors and where possible, use these to understand their photochemical behavior.

  2. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  3. Studies of Elementary Reactions of Chemical Importance in the Atmospheres of Planets

    NASA Technical Reports Server (NTRS)

    Nesbitt, Fred L.

    2003-01-01

    The paper discusses the following: 1. F + Cl2 Kinetics. Absolute rate constant for the reaction F(P-2) with Cl2 has been measured using the discharge flow kinetics technique coupled to mass spectrometric detection at T = 180 - 360 K and 1 Torr He nominal pressure. 2. Vapor pressure system. The main effort on the vapor pressure system involved the design and construction of an insulated enclosure ("Bakeout Box") to improve the uniformity of heating during the bakeout process. 3. Sunphotometer System. This period saw the completion of the two-channel sunphotometer, its calibration, and two field deployments. 4. Vibrational-to-translation (V-T) transfer rates for light hydrocarbons at low temperatures are important parameters in thermal-structure models of the upper atmospheres of the outer planets and their satellites. However, the required data are either simply not available or do not extend to the low temperatures found in those systems. Because methane is such an important constituent in outer planet atmospheres, we have initiated a program to measure the temperature dependence of (V-T) rates for its relaxation by appropriate collision partners. 5. The central focus of this research has been the vapor phase nucleation and growth of metals/refractory species into small particles and the aggregation of these primary particles into larger structures. These topics are part of the broader goal of understanding the conditions under which interstellar dust grains condense from stellar outflows and how these small dust grains coagulate into larger bodies such as planetesimals or planets.

  4. Studies of Elementary Reactions of Chemical Importance in the Atmospheres of Planets

    NASA Technical Reports Server (NTRS)

    Nesbitt, Fred L.

    2001-01-01

    The methyl self-reaction was studied at T = 298 K and 202 K and at three different pressures, P = 0.5, 1.0, and 2.1 Torr. The experimental measurements were performed in our discharge flow-mass spectrometer (DF-MS) apparatus. The methyl radicals were generated by the reaction of F with methane. Passing a mixture of molecular fluorine, F2, in helium through a microwave cavity generated the atomic fluorine reagent. The atomic F enters the flow tube through a rear port on the flow tube. The methane reagent enters the flow tube through a movable injector located coaxial in the flow tube. The decay of methyl radical signal was monitored at a mass/charge ratio (m/z) of 15 as a function of the injector distance. To minimize secondary chemistry from the reaction CH3 + F to CH2 + HF the initial [CH4](sub 0)/[F](sub 0) was above 37.0 and typically 100. This ensures a 1:1 relationship between initial [F] and [CH3]. A titration of F with excess Cl2 yields the initial [F](sub 0). Our experimental methodology to accurately measure the mass spectrometer scaling factor, i.e., the relationship between initial signal and [CH3](sub 0) has been improved. Now we measure the CH3 signal decay under exponential decay conditions at low initial [F](sub 0), 3x10(exp 11) molecule/cc, in the presence of Cl2. This minimizes the second-order decay contributed by the CH3 self-reaction and a simple extrapolation of the 1n(signal) vs time plot to t = 0 gives the initial signal. This provides the desired relationship between initial signal at 15 amu and [CH3](sub 0). The resulting calibration is then applied to the observed decay of the CH3 signal at high concentrations of CH3 assuming linearity of this scaling factor.

  5. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  6. Balancing Equations Chemical Reactions

    E-print Network

    Heller, Barbara

    Balancing Equations Chemical Reactions #12;Chemical Equations · A chemical equation describes what of the participants (solid, liquid, gas, aqueous) and the amount of each substance. #12;Balancing of Equations · To balance a chemical equation, you have to establish a mathematical relationship between the quantity

  7. Concordant Chemical Reaction Networks

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  8. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where

  9. Chemical reaction dynamics

    PubMed Central

    Crim, F. Fleming

    2008-01-01

    Understanding the motions of the constituent atoms in reacting molecules lies at the heart of chemistry and is the central focus of chemical reaction dynamics. The most detailed questions one can ask are about the evolution of molecules prepared in a single quantum state to products in individual states, and both calculations and experiments are providing such detailed understanding of increasingly complex systems. A central goal of these studies is uncovering the essential details of chemical change by removing the averaging over the initial conditions that occurs in many cases. Such information provides an exquisite test of theory and helps paint pictures of complicated chemical transformations. The goal of this Special Feature is to provide a snapshot of a portion of the field of chemical reaction dynamics. Much of the work presented here emphasizes a close interplay of experiment and theory in ways that sharpen the conclusions of both and animate future studies. The articles do not completely cover the rich field of chemical reaction dynamics but rather provide a glimpse of some of the emerging insights. PMID:18753626

  10. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  11. Ultrafast Laser Spectroscopyof Chemical Reactions

    E-print Network

    Zewail, Ahmed

    Ultrafast Laser Spectroscopyof Chemical Reactions - Joseph L. Kneeand AhmedH. Zewail California Instituteof Technology Ultrafast laser spectroscopy has extended reaction- tion, have been probed (very sensitively) by a variety of laser spec- troscopic techniques and have

  12. Classes of Chemical Reactions Reactions in aqueous media

    E-print Network

    Zakarian, Armen

    Classes of Chemical Reactions Reactions in aqueous media Precipitation reactions Acid-Base reactions Oxidation-Reduction reactions Reversible reactions Classes of Chemical Reactions Water (H2O;Classes of Chemical Reactions The solubility of ionic compounds: dissociation O H H + NaCl Cl- Cl- Cl- Na

  13. Finding Chemical Reaction Paths with a Multilevel Preconditioning Seyit Kale,,

    E-print Network

    Dinner, Aaron

    Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol Seyit Kale,, Olaseni for chemical reactions can be computationally costly owing to the level of quantum- chemical theory needed for the reaction path iteratively. These methods have yielded important insights in quantum chemical contexts9

  14. Chemical burn or reaction

    MedlinePLUS

    ... different products that contain toxic chemicals such as ammonia and bleach. The mixture can give off hazardous ... chemicals immediately after use. Use paints, petroleum products, ammonia, bleach, and other products that give off fumes ...

  15. Speeding chemical reactions by focusing

    E-print Network

    A. M. Lacasta; L. Ramirez-Piscina; J. M. Sancho; K. Lindenberg

    2012-12-13

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate (t to the power -1/2) to very close to the perfect mixing rate, (t to the power -1).

  16. Geometric description of chemical reactions

    E-print Network

    Hernando Quevedo; Diego Tapias

    2013-01-02

    We use the formalism of Geometrothermodynamics to describe chemical reactions in the context of equilibrium thermodynamics. Any chemical reaction in a closed system is shown to be described by a geodesic in a $2-$dimensional manifold that can be interpreted as the equilibrium space of the reaction. We first show this in the particular cases of a reaction with only two species corresponding to either two ideal gases or two van der Waals gases. We then consider the case of a reaction with an arbitrary number of species. The initial equilibrium state of the geodesic is determined by the initial conditions of the reaction. The final equilibrium state, which follows from a thermodynamic analysis of the reaction, is shown to correspond to a coordinate singularity of the thermodynamic metric which describes the equilibrium manifold.

  17. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  18. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  19. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical

  20. Programmability of Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Cook, Matthew; Soloveichik, David; Winfree, Erik; Bruck, Jehoshua

    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior.

  1. Homeostasis in Chemical Reaction Pathways

    E-print Network

    V. A. Malyshev; A. D. Manita; A. A. Zamyatin

    2011-12-25

    We consider stochastic models of chemical reaction networks with time dependent input rates and several types of molecules. We prove that, in despite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from input nodes the mean numbers of molecules of each type become approximately constant (do not depend on time).

  2. Homeostasis in Chemical Reaction Pathways

    E-print Network

    Malyshev, V A; Zamyatin, A A

    2011-01-01

    We consider stochastic models of chemical reaction networks with time dependent input rates and several types of molecules. We prove that, in despite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from input nodes the mean numbers of molecules of each type become approximately constant (do not depend on time).

  3. Visualization of chemical reaction dynamics: Toward understanding complex polyatomic reactions

    PubMed Central

    SUZUKI, Toshinori

    2013-01-01

    Polyatomic molecules have several electronic states that have similar energies. Consequently, their chemical dynamics often involve nonadiabatic transitions between multiple potential energy surfaces. Elucidating the complex reactions of polyatomic molecules is one of the most important tasks of theoretical and experimental studies of chemical dynamics. This paper describes our recent experimental studies of the multidimensional multisurface dynamics of polyatomic molecules based on two-dimensional ion/electron imaging. It also discusses ultrafast photoelectron spectroscopy of liquids for elucidating nonadiabatic electronic dynamics in aqueous solutions. PMID:23318678

  4. THEORY OF CHEMICAL REACTION ANTONIO LAGANA

    E-print Network

    Auzinsh, Marcis

    THEORY OF CHEMICAL REACTION DYNAMICS Edited by: ANTONIO LAGANA Department of Chemistry University Theoretical treatment of the dynamics of chemical reactions has undergone a spectacular development during the NATO Advanced Research Work- shop on the Theory of the Dynamics of Chemical Reactions in Balatonf

  5. Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  6. Theoretical studies of chemical reaction dynamics

    SciTech Connect

    Schatz, G.C.

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  7. Learning to Predict Chemical Reactions

    PubMed Central

    Kayala, Matthew A.; Azencott, Chlo-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system is generalizable, making reasonable predictions over reactants and conditions which the rule-based expert does not handle. A web interface to the machine learning based mechanistic reaction predictor is accessible through our chemoinformatics portal (http://cdb.ics.uci.edu) under the Toolkits section. PMID:21819139

  8. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1) Adsorption of dilute PFOS(aq) and PFOA(aq) to acoustically cavitating bubble interfaces was greater than equilibrium expectations due to high-velocity bubble radial oscillations; 2) Relative ozone oxidation kinetics of aqueous iodide, sulfite, and thiosulfate were at variance with previously reported bulk aqueous kinetics; 3) Organics that directly chelated with the anode surface were oxidized by direct electron transfer, resulting in immediate carbon dioxide production but slower overall oxidation kinetics. Chemical reactions at aqueous interfaces can be the rate-limiting step of a reaction network and often display novel mechanisms and kinetics as compared to homogeneous chemistry.

  9. Plasmon-driven sequential chemical reactions in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  10. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jlicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  11. Mineralogical and chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: Importance of thaumasite formation on reaction mechanisms

    SciTech Connect

    Rodrigues, A.; Duchesne, J.; Fournier, B.; Durand, B.; Rivard, P.; Shehata, M.

    2012-10-15

    Damages in concrete containing sulfide-bearing aggregates were recently observed in the Trois-Rivieres area (Quebec, Canada), characterized by rapid deterioration within 3 to 5 years after construction. A petrographic examination of concrete core samples was carried out using a combination of tools including: stereomicroscopic evaluation, polarized light microscopy, scanning electron microscopy, X-ray diffraction and electron microprobe analysis. The aggregate used to produce concrete was an intrusive igneous rock with different metamorphism degrees and various proportions of sulfide minerals. In the rock, sulfide minerals were often surrounded by a thin layer of carbonate minerals (siderite). Secondary reaction products observed in the damaged concrete include 'rust' mineral forms (e.g. ferric oxyhydroxides such as goethite, limonite (FeO (OH) nH{sub 2}O) and ferrihydrite), gypsum, ettringite and thaumasite. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste/aggregate and provokes the formation of sulfate minerals. Understanding both mechanisms, oxidation and internal sulfate attack, is important to be able to duplicate the damaging reaction in laboratory conditions, thus allowing the development of a performance test for evaluating the potential for deleterious expansion in concrete associated with sulfide-bearing aggregates.

  12. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  13. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different

  14. Stochastic flux analysis of chemical reaction networks

    PubMed Central

    2013-01-01

    Background Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. Results We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. Conclusions We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network. PMID:24314153

  15. 2005 Chemical Reactions at Surfaces

    SciTech Connect

    Cynthia M. Friend

    2006-03-14

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  16. Microfabricated electrochemiluminescence cell for chemical reaction detection

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Hsueh, Yun-Tai (Davis, CA); Smith, Rosemary L. (Davis, CA)

    2003-01-01

    A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  17. Chemical reactions in low-g

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.

    1978-01-01

    The Apollo-Soyuz flight experiment, 'Chemical Foams' demonstrated that foams and air/liquid dispersions are much more stable in low-gravity than on the ground. It thus should be possible to conduct unique chemical reactions in space foams. The low-g results and subsequent ground work on the formaldehyde clock reaction indicate that the reaction is strongly influenced by (1) dissociated and undissociated solution species being adsorbed at solid/liquid and gas/liquid surfaces and (2) chemical reaction rates apparently being affected by long-range forces determined by the liquid mass and the extent and nature of all surface interfaces.

  18. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  19. M. Bahrami ENSC 461 (S 11) Chemical Reactions 1 Chemical Reactions

    E-print Network

    Bahrami, Majid

    and formation of chemical bonds between the atoms. Thermodynamic analysis of reactive mixtures is primarilyM. Bahrami ENSC 461 (S 11) Chemical Reactions 1 Chemical Reactions When analyzing reacting systems, we need to consider the chemical internal energy, which is the energy associated with the destruction

  20. Microfabricated sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen (Berkeley, CA)

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  1. Kinetic studies of elementary chemical reactions

    SciTech Connect

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  2. The Smallest Multistationary Mass-Preserving Chemical Reaction Network

    E-print Network

    Rowell, Eric C.

    The Smallest Multistationary Mass-Preserving Chemical Reaction Network Anne Shiu Dept bistability are of interest to biologists and mathematicians alike. Chemical reaction network the- ory can state exists. Keywords: Chemical reaction network, bistability. 1 Introduction Bistable biochemical

  3. Probability 1 computation with chemical reaction networks Rachel Cummings

    E-print Network

    Probability 1 computation with chemical reaction networks Rachel Cummings David Doty David Soloveichik Abstract The computational power of stochastic chemical reaction networks (CRNs) varies signifi computation. How can chemical reactions process information, make decisions, and solve problems? A natural

  4. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A

  5. Fluid flow and chemical reaction kinetics in metamorphic systems

    SciTech Connect

    Lasaga, A.C.; Rye, D.M. )

    1993-05-01

    The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.

  6. Chemical kinetic reaction mechanism for the combustion of propane

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  7. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  8. Controlling chemical reactions of a single particle

    E-print Network

    Lothar Ratschbacher; Christoph Zipkes; Carlo Sias; Michael Khl

    2012-09-26

    The control of chemical reactions is a recurring theme in physics and chemistry. Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, physical methods such as laser or magnetic field control have emerged to provide completely new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing. For these undertakings, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer gas cooling of single ion clocks.

  9. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  10. Models for Multi-Specie Chemical Reactions Using Polynomial Stochastic Hybrid Systems

    E-print Network

    Hespanha, Joo Pedro

    Models for Multi-Specie Chemical Reactions Using Polynomial Stochastic Hybrid Systems Abhyudai for chemical reactions is presented. This is done by representing the population of various species involved in a chemical reaction as the continuous state of a polynomial Stochastic Hybrid System (pSHS). An important

  11. Entropy generation in a chemical reaction

    E-print Network

    E. N. Miranda

    2012-08-10

    Entropy generation in a chemical reaction is analyzed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first order reaction is used to show that entropy production is always positive. A second approach assumes that the reaction is near equilibrium to prove that the entropy generated is always greater than zero, without any reference to the kinetics of the reaction. Finally, it is shown that entropy generation is related to fluctuations in the number of particles at equilibrium, i.e. it is associated to a microscopic process.

  12. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  13. Fundamentals of heterogeneously catalyzed reactions of environmental importance

    NASA Astrophysics Data System (ADS)

    Deshmukh, Subodh Shrinivas

    Reaction kinetics and spectroscopic characterization are valuable tools for understanding heterogeneously catalyzed chemical reactions. The objective of this work was to apply the tools of catalysis and reaction kinetics to understand the fundamentals of chemical surface phenomena for environmentally important reactions. This thesis presents our work in two areas of catalytic reactions for pollution abatement---"chlorofluorocarbon (CFC) treatment chemistry" and "sulfur-tolerant auto exhaust catalysts." The ozone depletion potential of CFCs has resulted in a great interest in the academic and industrial communities to find replacements for these chemicals. Hydrofluorocarbons (HFCs) are amongst the best "environmentally benign" candidates for CFC replacement. One selective pathway for the synthesis of HFCs is via the hydrodechlorination of CFCs. This route has the added benefit of destroying harmful CFC stockpiles and converting them into more useful chemicals. The work in Chapter 3 shows that parallel hydrogenation pathways starting from a common CF2 species can explain the formation of the products CH2F2 and CH4 for the hydrodechlorination of CF2Cl2 over Pd/AlF3. Transient kinetics experiments using C2H4 as a trapping agent for surface carbenes have provided evidence for the presence of CH2 species on the catalyst surface during this reaction. The absence of either coupling products or trapped products containing F suggests that the rate of hydrogenation of surface CF2 species is faster than that of surface CH2 species. Another important class of CFC reactions is oxide-catalyzed disproportionations to control the number and position of halogen atoms in the CFC/HFC molecule. Chapter 4 combines the use of reaction kinetics tools and spectroscopic characterization techniques to understand the adsorption and reaction of CF3CFCl 2 over gamma-Al2O3. The CF3CFCl 2 reaction over gamma-Al2O3 lead to a modification of the gamma-Al2O3 surface due to fluorination and the modified surface possessed sites that readily catalyzed the disproportionation of CF3CFCl2 at 353 K. FTIR spectroscopy was used to monitor the remarkable transformations taking place on the surface of Al 2O3. The identity and reactivity of surface fluoroacetate intermediates was determined and correlated to the changes in the oxide surface properties. One of the biggest challenges for automotive exhaust catalysts is the deactivation caused by sulfur present in the exhaust gas. There is enormous interest in developing new materials and catalysts that can destroy tailpipe pollutants in the presence of SO2. Work presented in Chapter 5 shows the promise of formulating new molecularly-mixed oxide materials with improved tolerance to sulfur than conventional CeO2. Characterization of the CeO2 and CeO2-ZrO2 mixed oxides after using different sulfur-treatment protocols showed that crystallite growth was the dominant phenomenon, which lead to activity loss in CeO2, on exposure to SO2. The incorporation of ZrO2 into the CeO2 lattice provided stability against sintering and helped maintain the activity of CeO2-ZrO2 over short times on stream.

  14. 40 CFR 707.20 - Chemical substances import policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Chemical substances import policy. 707.20...CONTINUED) TOXIC SUBSTANCES CONTROL ACT CHEMICAL IMPORTS AND EXPORTS General Import Requirements and Restrictions 707.20 Chemical substances import policy. (a)...

  15. Stochastic thermodynamics of chemical reaction networks

    E-print Network

    Tim Schmiedl; Udo Seifert

    2006-12-19

    For chemical reaction networks described by a master equation, we define energy and entropy on a stochastic trajectory and develop a consistent nonequilibrium thermodynamic description along a single stochastic trajectory of reaction events. A first-law like energy balance relates internal energy, applied (chemical) work and dissipated heat for every single reaction. Entropy production along a single trajectory involves a sum over changes in the entropy of the network itself and the entropy of the medium. The latter is given by the exchanged heat identified through the first law. Total entropy production is constrained by an integral fluctuation theorem for networks arbitrarily driven by time-dependent rates and a detailed fluctuation theorem for networks in the steady state. Further exact relations like a generalized Jarzynski relation and a generalized Clausius inequality are discussed. We illustrate these results for a three-species cyclic reaction network which exhibits nonequilibrium steady states as well as transitions between different steady states.

  16. Mediating chemical reactions using polysaccharides

    NASA Astrophysics Data System (ADS)

    Tyler, Lauren E.

    We have studied the NaBH4-mediated hydrogenation of select alkenes catalyzed by polysaccharide-stabilized nanoparticles. We compared the catalytic properties of Ni-based nanoparticles or Au/Co-based nanoparticles on the hydrogenation of cinnamic acid, cinnamide, cinnamyl alcohol, and ethyl cinnamate. We evaluated the possibility that the type of stabilizing polysaccharide surrounding the nanoparticle may affect the selectivity towards the alkene compounds that undergo the hydrogenation reaction. We found that the hydrogenation of cinnamide or ethyl cinnamate proceeded readily to 100% completion independent of the type of polysaccharide stabilizing the nanoparticle. However, the extent of the hydrogenation of cinnamyl alcohol and cinnamic acid varied greatly depending on the type of polysaccharide stabilizing the nanoparticle. In the course of these studies, we observed that some polysaccharides by themselves promoted the hydrolysis of ethyl cinnamate. Thus, we have raised the hypothesis that some polysaccharides may act as "esterases" and explored the interaction between select polysaccharides and a variety of ester compounds.

  17. Decrease of Entropy and Chemical Reactions

    E-print Network

    Yi-Fang Chang

    2008-07-01

    The chemical reactions are very complex, and include oscillation, condensation, catalyst and self-organization, etc. In these case changes of entropy may increase or decrease. The second law of thermodynamics is based on an isolated system and statistical independence. If fluctuations magnified due to internal interactions exist in the system, entropy will decrease possibly. In chemical reactions there are various internal interactions, so that some ordering processes with decrease of entropy are possible on an isolated system. For example, a simplifying Fokker-Planck equation is solved, and the hysteresis as limit cycle is discussed.

  18. Acceleration of chemical reaction by chaotic mixing

    E-print Network

    M. Chertkov; V. Lebedev

    2003-01-27

    Theory of fast binary chemical reaction, ${\\cal A}+{\\cal B}\\to{\\cal C}$, in a statistically stationary chaotic flow at large Schmidt number ${Sc}$ and large Damk\\"ohler number ${Da}$ is developed. For stoichiometric condition we identify subsequent stages of the chemical reaction. The first stage corresponds to the exponential decay, $\\propto\\exp(-\\lambda t)$ (where $\\lambda$ is the Lyapunov exponent of the flow), of the chemicals in the bulk part of the flow. The second and the third stages are related to the chemicals remaining in the boundary region. During the second stage the amounts of ${\\cal A}$ and ${\\cal B}$ decay $\\propto 1/\\sqrt{t}$, whereas the decay law during the third stage is exponential, $\\propto\\exp(-\\gamma t)$, where $\\gamma\\sim\\lambda/\\sqrt{Sc}$.

  19. Tuning Bimolecular Chemical Reactions by Electric Fields

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Krems, Roman V.

    2015-07-01

    We develop a theoretical method for solving the quantum mechanical reactive scattering problem in the presence of external fields based on a hyperspherical coordinate description of the reaction complex combined with the total angular momentum representation for collisions in external fields. The method allows us to obtain converged results for the chemical reaction LiF +H ?Li +HF in an electric field. Our calculations demonstrate that, by inducing couplings between states of different total angular momenta, electric fields with magnitudes <150 kV /cm give rise to resonant scattering and a significant modification of the total reaction probabilities, product state distributions, and the branching ratios for reactive versus inelastic scattering.

  20. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    A color-change reaction is described in which two colorless solutions are combined to afford a black mixture. Two more colorless solutions are combined to afford a white mixture. The black and white mixtures are then combined to afford a clear, colorless solution. The reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, vinegar, ammonia, bleach, Epsom salt, and laundry starch.

  1. An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

    E-print Network

    Troina, Angelo

    An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions Roberto Barbuti, Andrea introduce a probabilistic algorithm for the simulation of chemical reactions, which can be used evolution of chemical reactive systems described by Gillespie. Moreover, we use our algorithm

  2. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2004-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HCl vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow-chemical ionization mass spectrometry and optical ellipsometry, among others.

  3. Classification of Chemical Reactions: Stages of Expertise

    ERIC Educational Resources Information Center

    Stains, Marilyne; Talanquer, Vicente

    2008-01-01

    In this study we explore the strategies that undergraduate and graduate chemistry students use when engaged in classification tasks involving symbolic and microscopic (particulate) representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention when classifying

  4. Deterministic Function Computation with Chemical Reaction Networks

    E-print Network

    Doty, David

    controllers for biochemical systems, "wet robots", smart drugs, etc. Need to understand theoretical principles1 Deterministic Function Computation with Chemical Reaction Networks David Doty (joint work with Ho for existing systems) #12;3 Cells are smart: controlled by signaling and regulatory networks source: David

  5. Computer Animation of a Chemical Reaction.

    ERIC Educational Resources Information Center

    Eaker, Charles W.; Jacobs, Edwin L.

    1982-01-01

    Taking a prototype chemical reaction (molecular hydrogen plus hydrogen atom), constructs an accurate semiempirical, generalized diatomics-in-molecules potential energy surface, calculates motions of these atoms on this surface using REACTS trajectory program, and presents results as moving picture on a microcomputer graphics system. Provides

  6. Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions

    E-print Network

    Anderson, James B.

    Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions Shannon D and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal

  7. Sensitivity of chemical reaction networks: a structural approach.

    E-print Network

    Fiedler, Bernold

    Sensitivity of chemical reaction networks: a structural approach. 2. Regular monomolecular systems sensitivity of steady states to perturbations of reaction rates in chemical reaction networks. Strong structure of the metabolic or chemical reaction network, only, we call our approach a structural sensitivity

  8. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W. (Kennewick, WA); Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA); Consani, Keith A. (Richland, WA)

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  9. Chemical computing with reaction-diffusion processes.

    PubMed

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed. PMID:26078345

  10. Concordant Chemical Reaction Networks and the Species-Reaction Graph

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate networks Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams. PMID:22940368

  11. A DFT analysis of thermal decomposition reactions important to natural products.

    PubMed

    Setzer, William N

    2010-07-01

    The thermal decomposition reactions of several important natural flavor and fragrance chemicals have been investigated using density functional theory (DFT, B3LYP/6-31G*). Retro-aldol reactions of glucose, fructose, hernandulcin, epihernandulcin, [3]-gingerol, and [4]-isogingerol; retro-carbonyl-ene reactions of isopulegol, lavandulol, isolyratol, and indicumenone; and pyrolytic syn elimination reactions of linalyl acetate, alpha-terpinyl acetate, and bornyl acetate, have been carried out. The calculations indicate activation enthalpies of around 30 kcal/mol for the retro-aldol reactions and for retro-carbonyl-ene reactions, comparable to pericyclic reactions such as the Cope rearrangement and electrocyclic reactions, and therefore important reactions at elevated temperatures (e.g., boiling aqueous solutions, gas-chromatograph injection ports). Activation enthalpies for pyrolytic eliminations are around 40 kcal/mol and are unlikely to occur during extraction or GC analysis. PMID:20734926

  12. Steady detonation problem for slow and fast chemical reactions

    E-print Network

    Ceragioli, Francesca

    Steady detonation problem for slow and fast chemical reactions F. Conforto1 , M. Groppi2 , R chemical reaction are discussed. The former consists in a system of balance laws for the case of a chemical is a system of conser- vation laws for the case of short chemical relaxation time (fast reaction). After

  13. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  14. Semiclassical approaches to controlling chemical reaction dynamics

    E-print Network

    Hiroshi Fujisaki; Yoshiaki Teranishi; Alexey Kondorskiy; Hiroki Nakamura

    2003-02-04

    We propose to use semiclassical methods to treat laser control problems of chemical reaction dynamics. Our basic strategy is as follows: Laser-driven chemical reactions are considered to consist of two processes. One is the wavepacket propagation on an adiabatic potential energy surface (PES), and the other is the electronic transition between PES's. Because the latter process is mathematically equivalent to nonadiabatic transitions between Floquet (dressed) states, we can control such a process using the semiclassical Zhu-Nakamura theory for nonadiabatic transitions. For the former process, we incorporate semiclassical propagation methods such as the Herman-Kluk propagator into optimization procedures like optimal control theory. We show some numerical examples for our strategies. We also develop a semiclassical direct algorithm to treat the adiabatic propagation and nonadiabatic transitions as a whole.

  15. 40 CFR 799.19 - Chemical imports and exports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Chemical imports and exports. 799.19 Section...CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS General Provisions 799.19 Chemical imports and exports. Persons...

  16. 40 CFR 799.19 - Chemical imports and exports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 true Chemical imports and exports. 799.19 Section...CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS General Provisions 799.19 Chemical imports and exports. Persons...

  17. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  18. Multiscale stochastic simulations of chemical reactions with regulated scale separation

    SciTech Connect

    Koumoutsakos, Petros; Feigelman, Justin

    2013-07-01

    We present a coupling of multiscale frameworks with accelerated stochastic simulation algorithms for systems of chemical reactions with disparate propensities. The algorithms regulate the propensities of the fast and slow reactions of the system, using alternating micro and macro sub-steps simulated with accelerated algorithms such as ? and R-leaping. The proposed algorithms are shown to provide significant speedups in simulations of stiff systems of chemical reactions with a trade-off in accuracy as controlled by a regulating parameter. More importantly, the error of the methods exhibits a cutoff phenomenon that allows for optimal parameter choices. Numerical experiments demonstrate that hybrid algorithms involving accelerated stochastic simulations can be, in certain cases, more accurate while faster, than their corresponding stochastic simulation algorithm counterparts.

  19. The role of chemical reactions in the Chernobyl accident

    SciTech Connect

    Grishanin, E. I.

    2010-12-15

    It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000 Degree-Sign C occurred in the core. The yield of fission products thus sharply increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.

  20. A Synthetic Reaction Network: Chemical Amplification Using Nonequilibrium Autocatalytic Reactions Coupled in Time

    E-print Network

    Ismagilov, Rustem F.

    reaction network that performs a function: it uses autocatalysis in a time- controlled microfluidic device the reactions in space and time.1-5 An example of a chemical network is an array of 16 coupled reactionsA Synthetic Reaction Network: Chemical Amplification Using Nonequilibrium Autocatalytic Reactions

  1. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores

    E-print Network

    Lisal, Martin

    Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit of confinement on chemical reaction equilibrium in nanoporous materials. We use the reaction ensemble Monte Carlo condensation on the nitric oxide dimerization reaction in a model carbon slit nanopore in equilibrium

  2. P MATRIX PROPERTIES, INJECTIVITY AND STABILITY IN CHEMICAL REACTION SYSTEMS

    E-print Network

    Banaji,. Murad

    P MATRIX PROPERTIES, INJECTIVITY AND STABILITY IN CHEMICAL REACTION SYSTEMS MURAD BANAJI§, PETE. Chemical reactions; P matrices; Injectivity; Stability; Mass action AMS subject classifications. 80A30; 15A48; 34D30 1. Introduction. In this paper we will study chemical reaction systems, and systems derived

  3. CANARDS, BLACK SWANS AND CONTROL OF CHEMICAL REACTIONS Vladimir Sobolev

    E-print Network

    CANARDS, BLACK SWANS AND CONTROL OF CHEMICAL REACTIONS By Vladimir Sobolev and Elena Shchepakina: 612-626-7370 URL: http://www.ima.umn.edu #12;Canards, Black Swans and Control of Chemical Reactions V. The sense of criticality here is as follows. The critical regime corresponds to chemical reaction separating

  4. GRAPH THEORETIC APPROACHES TO INJECTIVITY IN CHEMICAL REACTION SYSTEMS

    E-print Network

    Craciun, Gheorghe

    GRAPH THEORETIC APPROACHES TO INJECTIVITY IN CHEMICAL REACTION SYSTEMS MURAD BANAJI AND GHEORGHE algebraic and graph theoretic conditions for injectivity of chemical reaction systems. After developing the possibility of multiple equilibria in the systems in question. Key words. Chemical reactions; Injectivity; SR

  5. Gamma and the chemical reaction model: fteen years after?

    E-print Network

    Fradet, Pascal

    Gamma and the chemical reaction model: fteen years after? Jean-Pierre Ban^atre1, Pascal Fradet2 the formalism is to describe computation as a form of chemical reaction on a collection of individual pieces on unexpected applications of the chemical reaction model, showing that this paradigm has been a source

  6. Analyzing Multistationarity in Chemical Reaction Networks using the Determinant

    E-print Network

    Rowell, Eric C.

    Analyzing Multistationarity in Chemical Reaction Networks using the Determinant Optimization Method which chemical reaction networks exhibit multistationarity, i.e. if they have the potential to exhibit a certain infinite family of chemical reaction networks Km,n to be of particular in- terest among networks

  7. Chemical Reaction Dynamics accompanying Electron-Transfer Osamu SUGINO

    E-print Network

    Katsumoto, Shingo

    Chemical Reaction Dynamics accompanying Electron-Transfer Osamu SUGINO Institute for Solid State Physics, the University of Tokyo 5-1-5 Kashiwanoha, Chiba 277-8581 1. Introduction Many chemical reactions and the dynamics goes nonadiabatically. The former appears typically in chemical reactions that accompany electron

  8. Molecular Dynamics Simulations of Chemical Reactions for Use in Education

    ERIC Educational Resources Information Center

    Qian Xie; Tinker, Robert

    2006-01-01

    One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations

  9. Sensitivity of chemical reaction networks: a structural approach.

    E-print Network

    Fiedler, Bernold

    Sensitivity of chemical reaction networks: a structural approach. 2. Regular monomolecular systems to perturbations of reaction rates in chemical reaction networks. Strong motivation for our study comes from recent For the deceptively innocent case of monomolecular reactions, only, we embark on a systematic mathematical analysis

  10. Mapping students' ideas about chemical reactions at different educational levels

    NASA Astrophysics Data System (ADS)

    Yan, Fan

    Understanding chemical reactions is crucial in learning chemistry at all educational levels. Nevertheless, research in science education has revealed that many students struggle to understand chemical processes. Improving teaching and learning about chemical reactions demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the discipline. Thus, we have carried out a qualitative study using semi-structured interviews as the main data collection tool to explore students reasoning about reaction mechanism and causality. The participants of this study included students at different levels of training in chemistry: general chemistry students (n=22), organic chemistry students (n=16), first year graduate students (n=13) and Ph.D. candidates (n=14). We identified major conceptual modes along critical dimensions of analysis, and illustrated common ways of reasoning using typical cases. Main findings indicate that although significant progress is observed in student reasoning in some areas, major conceptual difficulties seem to persist even at the more advanced educational levels. In addition, our findings suggest that students struggle to integrate important concepts when thinking about mechanism and causality in chemical reactions. The results of our study are relevant to chemistry educators interested in learning progressions, assessment, and conceptual development.

  11. Chemical Reaction due to Stronger Ramachandran Interaction

    E-print Network

    Andrew Das Arulsamy

    2013-12-26

    The origin of a chemical reaction between two reactant atoms is associated to the activation energy, with the assumption that, high-energy collisions between these atoms, are the ones that overcome the activation energy. Here, we (i) show that a stronger attractive van der Waals (vdW) and electron-ion Coulomb interactions between two polarized atoms are responsible to initiate a chemical reaction, either before or after the collision. We derive this stronger vdW attraction formula exactly using the quasi one-dimensional Drude model within the ionization energy theory and the energy-level spacing renormalization group method. Along the way, we (ii) expose the precise physical mechanism responsible for the existence of a stronger vdW interaction for both long and short distances, and also show how to technically avoid the electron-electron Coulomb repulsion between polarized electrons from these two reactant atoms. Finally, we properly and correctly associate the existence of this stronger attraction to Ramachandran's 'normal limits' (distance shorter than what is allowed by the standard vdW bond) between chemically nonbonded atoms.

  12. DSMC Predictions of Chemical Reaction Rates between Atmospheric Species

    NASA Astrophysics Data System (ADS)

    Gallis, M. A.; Bond, R. B.; Torczynski, J. R.

    2009-11-01

    A recently proposed chemical reaction model based solely on molecular-level information is applied to calculate equilibrium and non-equilibrium chemical reaction rates for atmospheric reactions in hypersonic flows. The DSMC model is capable of reproducing measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular-level properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. The DSMC-predicted chemical reaction rates are compared to theoretically calculated and experimentally measured reaction rates for non-equilibrium conditions. The observed agreement provides strong evidence that molecular-level modeling of chemical reactions provides an accurate method for predicting equilibrium and non-equilibrium chemical reaction rates. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  14. Quantum dynamics of fast chemical reactions

    SciTech Connect

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  15. On the geometrical thermodynamics of chemical reactions

    E-print Network

    Manuel Santoro; Albert S. Benight

    2005-07-08

    The formal structure of geometrical thermodynamics is reviewed with particular emphasis on the geometry of equilibria submanifolds. On these submanifolds thermodynamic metrics are defined as the Hessian of thermodynamic potentials. Links between geometry and thermodynamics are explored for single and multiple component, closed and open systems. For multi-component closed and open systems the Gibbs free energy is employed as the thermodynamic potential to investigate the connection between geometry and thermodynamics. The Gibbs free energy is chosen for the analysis of multicomponent systems and, in particular, chemical reactions.

  16. Stochastic Chemical Reactions in Micro-domains

    E-print Network

    D. Holcman; Z. Schuss

    2004-12-25

    Traditional chemical kinetics may be inappropriate to describe chemical reactions in micro-domains involving only a small number of substrate and reactant molecules. Starting with the stochastic dynamics of the molecules, we derive a master-diffusion equation for the joint probability density of a mobile reactant and the number of bound substrate in a confined domain. We use the equation to calculate the fluctuations in the number of bound substrate molecules as a function of initial reactant distribution. A second model is presented based on a Markov description of the binding and unbinding and on the mean first passage time of a molecule to a small portion of the boundary. These models can be used for the description of noise due to gating of ionic channels by random binding and unbinding of ligands in biological sensor cells, such as olfactory cilia, photo-receptors, hair cells in the cochlea.

  17. Computed Potential Energy Surfaces for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A manuscript describing the calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction, which were described in the last progress report, has been accepted for publication in J. Chem. Phys., and a copy of the manuscript is included in the appendix. The production of (1)CH2 in this reaction is important in hydrocarbon combustion since (1)CH2 is highly reactive and would be expected to insert into N2, possibly leading to a new source for prompt NO(x) (vide infra). During the last six months new calculations have been carried out for the NH2 + NO system, which is important in the thermal de-NO(x) process.

  18. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2003-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HC1 vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow- chemical ionization mass spectrometry and optical ellipsometry, among others. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the second year.

  19. Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate

    SciTech Connect

    Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

    2010-01-22

    New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

  20. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  1. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  2. Chemical reaction fouling model for single-phase heat transfer

    SciTech Connect

    Panchal, C.B.; Watkinson, A.P.

    1993-08-01

    A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differ for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.

  3. Flossie Brown CHEMICAL REACTIONS FOR A HYDROGEN ECONOMY.

    E-print Network

    Lasenby, Joan

    Flossie Brown CHEMICAL REACTIONS FOR A HYDROGEN ECONOMY. At present, hydrogen production a chemical reaction must be found that allows hydrogen production to take place quickly, cheaply and safely reaction, the reasons for their shortcomings can be identified. In each process, a reactant, condition

  4. Uncertain dynamics in nonlinear chemical reactions Jichang Wang,a

    E-print Network

    Showalter, Kenneth

    Uncertain dynamics in nonlinear chemical reactions Jichang Wang,a Hongyan Sun,b Stephen K. Scottc a dissociation reaction of the autocatalytic species, B ! X + Y, followed by a recombination reaction, X + Y ! C evolution of the system. 1. Introduction The study of nonlinear chemical kinetics has flourished in the past

  5. Chemical attenuation reactions of selenium; Final report

    SciTech Connect

    Zachara, J.M.; Rai, D.; Moore, D.A.; Turner, G.D.; Felmy, A.R.

    1994-02-01

    This report summarizes research on the geochemical behavior of Se present in utility coal-combustion wastes. Laboratory experiments quantified select geochemical reactions that control the concentrations of selenite (SeO{sub 3}{sup 2{minus}}) and selenate (SeO{sub 4}{sup 2{minus}}) in soil solutions and groundwater and determined the magnitude and mechanisms of chemical attenuation of these species in soils and subsurface materials. Thermodynamic data, equilibrium constants, and modeling procedures were developed that to utilities to make improved predictions of the mobility of Se species from ponded and dry landfill sites. An adsorption-constant database for selenite and selenate on common soil minerals was developed. The database, which can be used to estimate the extent of Se attenuation by adsorption in utility soils, was used to determine the specific mineral phases control the adsorption of selenite (Fe oxides) and selenate (Al oxides). Solubility studies were performed with two Se solid phases that may form in the environment [BaSeO{sub 4}(c) and Fe{sub 2}(SeO{sub 3}){sub 3}{lg_bullet}6H{sub 2}0(c)] to establish upper limits on Se concentrations. New thermodynamic data were developed to allow prediction of aqueous Se concentrations where these phases may exist. Eleven soil and subsurface materials, collected nationally and representative of properties frequently encountered at waste sites, were used in experiments involving adsorption of selenite and selenate to assess their potential for Se chemical attenuation and to determine chemical and mineralogic factors that control Se adsorption. Selenite was far more strongly adsorbed by the geologic materials than the selenate. The adsorption of both Se species depended on the type of natural materials and showed positive correlation with Fe and Al oxides associated with particle surfaces. Procedures were developed to predict Se adsorption from comprehensive chemical and mineralogic characterization data.

  6. PROOF COPY 705507JCP Stochastic chemical reactions in microdomains

    E-print Network

    Holcman, David

    PROOF COPY 705507JCP PROOF COPY 705507JCP Stochastic chemical reactions in microdomains D. Holcman; accepted 24 November 2004 Traditional chemical kinetics may be inappropriate to describe chemical reactions dynamics of the molecules, we derive a master-diffusion equation for the joint probability density

  7. Reasoning and Representation: the Sketching of Organic Chemical Reaction Mechanisms

    E-print Network

    Marchese, Francis

    is standard chemical iconography of atoms (vertices) and bonds (edges) in which each two-dimensional drawingReasoning and Representation: the Sketching of Organic Chemical Reaction Mechanisms Position paper of sketching chemical reaction mechanisms in order to reason-out the structural transformations that convert

  8. Thermodynamic performance for a chemical reactions model

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Snchez-Salas, N.; Chimal-Egua, J. C.

    2015-01-01

    This paper presents the analysis efficiency of a chemical reaction model of four states, such that their activated states can occur at any point (fixed but arbitrary) of the transition from one state to another. This mechanism operates under a single heat reservoir temperature, unlike the internal combustion engines where there are two thermal sources. Different efficiencies are compared to this model, which operate at different optimum engine regimes. Thus, some analytical methods are used to give an approximate expression, facilitating the comparison between them. Finally, the result is compared with that obtained by other authors considered a general model of an isothermal molecular machine. Taking into account the above, the results seems to follow a similar behaviour for all the optimized engines, which resemble that observed in the case of heat engine efficiencies.

  9. Cellular Metabolic Network Analysis: Discovering Important Reactions in Treponema pallidum

    PubMed Central

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis. PMID:26495292

  10. Plasmon-assisted chemical reactions revealed by high-vacuum tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Shuaicheng; Sheng, Shaoxiang; Zhang, Zhenglong; Xu, Hongxing; Zheng, Hairong

    2014-08-01

    Tip-enhanced Raman spectroscopy (TERS) is the technique that combines the nanoscale spatial resolution of a scanning probe microscope and the highly sensitive Raman spectroscopy enhanced by the surface plasmons. It is suitable for chemical analysis at nanometer scale. Recently, TERS exhibited powerful potential in analyzing the chemical reactions at nanoscale. The high sensitivity and spatial resolution of TERS enable us to learn the reaction processes more clearly. More importantly, the chemical reaction in TERS is assisted by surface plasmons, which provides us an optical method to manipulate the chemical reactions at nanoscale. Here using our home-built high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup, we successfully observed the plasmon-assisted molecule dimerization and dissociation reactions. In HV-TERS system, under laser illumination, 4-nitrobenzenethiol (4NBT) molecules can be dimerized to p,p'-dimercaptoazobenzene (DMAB), and dissociation reaction occurs for malachite green (MG) molecules. Using our HV-TERS setup, the dynamic processes of the reactions are clearly revealed. The chemical reactions can be manipulated by controlling the plasmon intensity through changing the power of the incident laser, the tunneling current and the bias voltage. We also investigated the role of plasmonic thermal effect in the reactions by measuring both the Stokes and anti- Stokes Raman peaks. Our findings extend the applications of TERS, which can help to study the chemical reactions and understand the dynamic processes at single molecular level, and even design molecules by the plasmon-assisted chemical reactions.

  11. CONTINUOUS TIME MARKOV CHAIN MODELS FOR CHEMICAL REACTION NETWORKS

    E-print Network

    Anderson, David F.

    Chapter 1 CONTINUOUS TIME MARKOV CHAIN MODELS FOR CHEMICAL REACTION NETWORKS David F. Anderson of identifying the different time scales and deriving the reduced models. Keywords: Reaction network, Markov for the reaction is that the probability of the reaction occurring in a small time inter- val (t, t + t] should

  12. Continuous time Markov chain models for chemical reaction networks

    E-print Network

    Kurtz, Tom

    Continuous time Markov chain models for chemical reaction networks David F. Anderson Departments for the model for the reaction is that the probability of the reaction occurring in a small time interval (t and to the length of the time interval. In other words, since for the reaction to occur a molecule

  13. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    SciTech Connect

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

  14. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  15. Prediction and Prevention of Chemical Reaction Hazards: Learning by Simulation.

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Brauner, Neima; Cutlip, Michael B.

    2001-01-01

    Points out that chemical hazards are the major cause of accidents in chemical industry and describes a safety teaching approach using a simulation. Explains a problem statement on exothermic liquid-phase reactions. (YDS)

  16. 40 CFR 799.19 - Chemical imports and exports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the requirements of 40 CFR part 707. ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Chemical imports and exports. 799.19... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING...

  17. 40 CFR 799.19 - Chemical imports and exports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the requirements of 40 CFR part 707. ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Chemical imports and exports. 799.19... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING...

  18. 40 CFR 799.19 - Chemical imports and exports.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the requirements of 40 CFR part 707. ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Chemical imports and exports. 799.19... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING...

  19. 40 CFR 799.19 - Chemical imports and exports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the requirements of 40 CFR part 707. ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Chemical imports and exports. 799.19... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING...

  20. 40 CFR 799.19 - Chemical imports and exports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the requirements of 40 CFR part 707. ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Chemical imports and exports. 799.19... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING...

  1. Heterogeneous chemical reactions: Preparation of monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Sterk, A. A.; Bethke, G. W.

    1977-01-01

    It is demonstrated that a photoinitiated emulsion polymerization can be carried out to a significant conversion in a SPAR rocket prototype polymerization vessel within the six minutes allowed for the experiment. The percentage of conversion was determined by both dilatometry and gravimetric methods with good agreement. The experimental results lead to the following conclusions: (1) emulsion polymerizations can be carried out to conversions as high as 75%, using a stable micellized styrene-SLS system plus photoinitiator; (2) dilatometry can be used to accurately determine both the rate and conversion of polymerization; (3) thermal expansion due to the light source and heat of reaction is small and can be corrected for if necessary; (4) although seeded emulsion polymerizations are unfavorable in photoinitiation, as opposed to chemical initiation, polymerizations can be carried out to at least 15% conversion using 7940A seed particles, with 0.05% solids; and (5) photoinitiation should be used to initiate polymerization in the SPAR rocket experiments because of the mechanical simplicity of the experiment.

  2. Single-collision studies of energy transfer and chemical reaction

    SciTech Connect

    Valentini, J.J.

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  3. Chemical kinetics computer program for static and flow reactions

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    General chemical kinetics computer program for complex gas mixtures has been developed. Program can be used for any homogeneous reaction in either one dimensional flow or static system. It is flexible, accurate, and easy to use. It can be used for any chemical system for which species thermodynamic data and reaction rate constant data are known.

  4. On the rate of relativistic surface chemical reactions.

    PubMed

    Veitsman, E V

    2004-07-15

    On the basis of special relativity and the classical theory of chemical reaction rates it is shown how the surface chemical reaction rates vary as v --> c, where v is the velocity of the object under study and c is the velocity of light. PMID:15178286

  5. Incidents of chemical reactions in cell equipment

    SciTech Connect

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  6. Semiclassical methods in chemical reaction dynamics

    SciTech Connect

    Keshavamurthy, S.

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems.

  7. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    NASA Astrophysics Data System (ADS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-09-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.

  8. A Case Study in Chemical Kinetics: The OH + CO Reaction.

    ERIC Educational Resources Information Center

    Weston, Ralph E., Jr.

    1988-01-01

    Reviews some important properties of the bimolecular reaction between the hydroxyl radical and carbon monoxide. Investigates the kinetics of the reaction, the temperature and pressure dependence of the rate constant, the state-to-state dynamics of the reaction, and the reverse reaction. (MVL)

  9. Chemical reactions between muonium and porphyrins

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Ng, B. W.; Walker, D. C.

    1980-11-01

    The rate constants for reaction of muonium atoms with hemin and the protoporphyrin are found to be 2.7 10 9 and 6 10 8 M -1 s -1, respectively. The reaction mechanisms are mainly through the addition to the conjugated double bond for the protoporphyrin and by reductions or partial spin conversion processes for the hemin solutions. The point of reaction is suggested to be the peripheral site of the porphyrin molecules.

  10. Molecular dynamics study of phase separation in fluids with chemical reactions

    NASA Astrophysics Data System (ADS)

    Krishnan, Raishma; Puri, Sanjay

    2015-11-01

    We present results from the first d =3 molecular dynamics (MD) study of phase-separating fluid mixtures (AB) with simple chemical reactions (A ?B ). We focus on the case where the rates of forward and backward reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which characterizes the diffusive case. This has important consequences for the phase-separating structure, which we study in detail. In particular, the equilibrium length scale (?eq) in the steady state suggests a power-law dependence on the reaction rate ? :?eq?-? with ? ?1.0 .

  11. Analysis of weblike network structures of directed graphs for chemical reactions in methane plasmas

    NASA Astrophysics Data System (ADS)

    Sakai, Osamu; Nobuto, Kyosuke; Miyagi, Shigeyuki; Tachibana, Kunihide

    2015-10-01

    Chemical reactions of molecular gases like methane are so complicated that a chart of decomposed and/or synthesized species originating from molecules in plasma resembles a weblike network in which we write down species and reactions among them. Here we consider properties of the network structures of chemical reactions in methane plasmas. In the network, atoms/molecules/radical species are assumed to form nodes and chemical reactions correspond to directed edges in the terminology of graph theory. Investigation of the centrality index reveals importance of CH3 in the global chemical reaction, and difference of an index for each radical species between cases with and without electrons clarifies that the electrons are at an influential position to tighten the network structure.

  12. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  13. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes a dramatic chemical demonstration in which chemicals that are black and white combine to produce a colorless liquid. Reactants include tincture of iodine, bleach, white vinegar, Epsom salt, vitamin C tablets, and liquid laundry starch. (DDR)

  14. Nuclear Reactions Important in Alpha-Rich Freezeouts

    E-print Network

    G. C. Jordan IV; S. S. Gupta; B. S. Meyer; L. -S. The

    2002-11-08

    The alpha-rich freezeout from equilibrium occurs during the core-collapse explosion of a massive star when the supernova shock wave passes through the Si-rich shell of the star. The nuclei are heated to high temperature and broken down into nucleons and alpha particles. These subsequently reassemble as the material expands and cools, thereby producing new heavy nuclei, including a number of important supernova observables. In this paper we introduce two web-based applications. The first displays the results of a reaction-rate sensitivity study of alpha-rich freezeout yields. The second allows the interested reader to run paramaterized explosive silicon burning calculations in which the user inputs his own parameters. These tools are intended to aid in the identification of nuclear reaction rates important for experimental study. We then analyze several iron-group isotopes (59Ni, 57Co, 56Co, and 55Fe) in terms of their roles as observables and examine the reaction rates that are important in their production.

  15. Density functional study of chemical reaction equilibrium for dimerization reactions in slit and cylindrical nanopores

    E-print Network

    Lisal, Martin

    and cylindrical nanopores Alexandr Malijevsk1,2,a and Martin Lsal2,3 1 Department of Chemical Engineering a theoretical study of the effects of confinement on chemical reaction equilibrium in slit and cylindrical the nitric oxide dimerization reaction, 2NO NO 2, in carbonlike slit and cylindrical nanopores in equilibrium

  16. Non-equilibrium effects in high temperature chemical reactions

    NASA Technical Reports Server (NTRS)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  17. Morphological changes of amphiphilic molecular assemblies induced by chemical reaction

    E-print Network

    Koh M. Nakagawa; Hiroshi Noguchi

    2014-11-21

    Shape transformations of amphiphilic molecular assemblies induced by chemical reaction are studied using coarse-grained molecular simulations. A binding reaction between hydrophilic and hydrophobic molecules is considered. It is found that the reaction induces transformation of an oil droplet to a tubular vesicle via bicelles and vesicles with discoidal arms. The discoidal arms close into vesicles, which are subsequently fused into the tubular vesicle. Under the chemical reaction, the bicelle-to-vesicle transition occurs at smaller sizes than in the absence of the hydrophobic molecules. It is revealed that the enhancement of this transition is due to embedded hydrophobic particles that reduce the membrane bending rigidity.

  18. 4.0 Application of Chemical Reaction Models Computerized chemical reaction models based on thermodynamic principles may be used to calculate

    E-print Network

    4.0 Application of Chemical Reaction Models Computerized chemical reaction models based. The capabilities of a chemical reaction model depend on the models incorporated into its computer code is an equilibrium chemical reaction model. It was developed with EPA funding by originally combining

  19. Laboratory investigation of chemical reactions relevant in Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Franceschi, P.; Ascenzi, D.; Guella, G.; Scarduelli, G.; Tosi, P.

    Experimental data obtained by the Huygens-Cassini mission demonstrate the chemical complexity of the Titan's atmosphere. To rationalize such a complexity it is important to set-up laboratory investigations of the chemical processes occurring in the energetic processing of hydrocarbon nitrogen mixtures followed by the detailed study of selected key reactions. In laboratory, energetic conditions can be simulated in the plasma treatment of hydrocarbon-nitrogen samples and molecular synthesis as well as polymerization can be observed [1]. In the last months we investigated the dynamics of non equilibrium discharges containing benzene focusing on the growth of complex molecular systems [2]. Our study has been performed combining well established analytical methods for neutral product detection with mass spectrometric analysis of the ion population. In this communication, preliminary results on the molecular growth in nitrogen-hydrocarbon plasma processes will be presented and the dynamics of the C6 H+ + C6 H6 reaction will be discussed. 5 References [1] R. Hodyss, Methods for the analysis of organic chemistry on Titan, Phd Dissertation, California Institute of Technology (2005). [2] G. Guella, D. Ascenzi, P. Franceschi, P. Tosi, Rapid Commun. Mass Spectrom. 19, 1-6 (2005).

  20. Power law behavior in chemical reactions.

    PubMed

    Claycomb, J R; Nawarathna, D; Vajrala, V; Miller, J H

    2004-12-22

    Reactions between metals and chloride solutions have been shown to exhibit magnetic field fluctuations over a wide range of size and time scales. Power law behavior observed in these reactions is consistent with models said to exhibit self-organized criticality. Voltage fluctuations observed during the dissolution of magnesium and aluminum in copper chloride solution are qualitatively similar to the recorded magnetic signals. In this paper, distributions of voltage and magnetic peak sizes, noise spectra, and return times are compared for both reactions studied. PMID:15606263

  1. Developing Secondary Students' Conceptions of Chemical Reactions: The Introduction of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Van Driel, Jan H.; De Vos, Wobbe; Verloop, Nico; Dekkers, Hetty

    1998-01-01

    Describes an empirical study concerning the introduction of the concept of chemical equilibrium in chemistry classrooms in a way which challenges students' initial conceptions of chemical reactions. Contains 23 references. (DDR)

  2. FACILITATED CHEMICAL SYNTHESIS UNDER ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    The chemical research in the late 1990's witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into the atmo...

  3. The How and Why of Chemical Reactions

    ERIC Educational Resources Information Center

    Schubert, Leo

    1970-01-01

    Presents a discussion of some of the fundamental concepts in thermodynamics and quantum mechanics including entropy, enthalpy, free energy, the partition function, chemical kinetics, transition state theory, the making and breaking of chemical bonds, electronegativity, ion sizes, intermolecular energies and of their role in explaining the nature

  4. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  5. Bifurcations of dividing surfaces in chemical reactions

    NASA Astrophysics Data System (ADS)

    Iarrea, Manuel; Palacin, Jess F.; Pascual, Ana Isabel; Salas, J. Pablo

    2011-07-01

    We study the dynamical behavior of the unstable periodic orbit (NHIM) associated to the non-return transition state (TS) of the H2 + H collinear exchange reaction and their effects on the reaction probability. By means of the normal form of the Hamiltonian in the vicinity of the phase space saddle point, we obtain explicit expressions of the dynamical structures that rule the reaction. Taking advantage of the straightforward identification of the TS in normal form coordinates, we calculate the reaction probability as a function of the system energy in a more efficient way than the standard Monte Carlo method. The reaction probability values computed by both methods are not in agreement for high energies. We study by numerical continuation the bifurcations experienced by the NHIM as the energy increases. We find that the occurrence of new periodic orbits emanated from these bifurcations prevents the existence of a unique non-return TS, so that for high energies, the transition state theory cannot be longer applied to calculate the reaction probability.

  6. Log-domain circuit models of chemical reactions

    E-print Network

    Mandal, Soumyajit

    We exploit the detailed similarities between electronics and chemistry to develop efficient, scalable bipolar or subthreshold log-domain circuits that are dynamically equivalent to networks of chemical reactions. Our ...

  7. 29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH FORMER GENERAL OFFICE BUILDING IN BACKGROUND. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    USGS Publications Warehouse

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  9. Chemical pathways in ultracold reactions of SrF molecules

    NASA Astrophysics Data System (ADS)

    Meyer, Edmund R.; Bohn, John L.

    2011-03-01

    We present a theoretical investigation of the chemical reaction SrF + SrF ? products, focusing on reactions at ultralow temperatures. We find that bond swapping SrF + SrF ? Sr2 + F2 is energetically forbidden at these temperatures. Rather, the only energetically allowed reaction is SrF + SrF ? SrF2 + Sr, and even then only singlet states of the SrF2 trimer can form. A calculation along a reduced reaction path demonstrates that this abstraction reaction is barrierless and proceeds by one SrF molecule handing off a fluorine atom to the other molecule.

  10. APRIORI BOUNDS FOR REACTION-DIFFUSION SYSTEMS ARISING IN CHEMICAL JEFF S. MCGOUGH AND KYLE RILEY

    E-print Network

    McGough, Jeff S.

    APRIORI BOUNDS FOR REACTION-DIFFUSION SYSTEMS ARISING IN CHEMICAL KINETICS JEFF S. MCGOUGH AND KYLE RILEY Abstract. The authors investigate reaction diffusion equations which arise in chemical kinetics diffusion equations, gradient bounds, chemical kinetics, autocatalytic reactions AMS subject classifications

  11. Direct Monte Carlo simulation of chemical reaction systems: Dissociation and recombination

    E-print Network

    Anderson, James B.

    Direct Monte Carlo simulation of chemical reaction systems: Dissociation and recombination Shannon Carlo simulations of a chemical reaction system with bimolecular and termolecular dissociation8 to be well suited for treating chemical reaction systems with nonequilibrium distributions, coupled gas

  12. Analyzing Multistationarity in Chemical Reaction Networks using the Determinant Optimization Method

    E-print Network

    Rowell, Eric C.

    Analyzing Multistationarity in Chemical Reaction Networks using the Determinant Optimization Method Multistationary chemical reaction networks are of interest to scientists and mathematicians alike. While some, multistationary rates and steady states. Keywords: Mass-action kinetics, chemical reaction networks

  13. Determining Interconnections in Chemical Reaction Networks Antonis Papachristodoulou and Ben Recht

    E-print Network

    Recht, Ben

    Determining Interconnections in Chemical Reaction Networks Antonis Papachristodoulou and Ben Recht Abstract-- We present a methodology for robust determina- tion of chemical reaction network' dynamics. We illustrate our methodology on a hypothetical chemical reaction network under various

  14. Using chemical tracers in hillslope soils to estimate the importance of chemical denudation under

    E-print Network

    Mudd, Simon Marius

    Using chemical tracers in hillslope soils to estimate the importance of chemical denudation under mass. The model includes both sediment transport and chemical denudation. A simplified two-phase model is developed; the two phases are a chemically immobile phase, which has far lower solubility than the bulk soil

  15. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Walch, Stephen P.

    1992-01-01

    The work on the NH + NO system which was described in the last progress report was written up and a draft of the manuscript is included in the appendix. The appendix also contains a draft of a manuscript on an Ar + H + H surface. New work which was completed in the last six months includes the following: (1) calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction; (2) calculations for the NH2 + O reaction; (3) calculations for the CH3 + O2 reaction; and (4) calculations for CH3O and the two decomposition channels--CH2OH and H + H2CO. Detailed descriptions of this work will be given in manuscripts; however, brief descriptions of the CH3 + OH and CH3 + O2 projects are given.

  16. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to

  17. Synthesis and chemical reactions of the steroidal hormone 17?-methyltestosterone.

    PubMed

    El-Desoky, El-Sayed Ibrahim; Reyad, Mahmoud; Afsah, Elsayed Mohammed; Dawidar, Abdel-Aziz Mahmoud

    2016-01-01

    Structural modifications of natural products with complex structures like steroids require great synthetic effort. A review of literature is presented on the chemistry of the steroidal hormone 17?-methyltestosterone that is approved by Food and Drug Administration (FDA) in the United States as an androgen for estrogen-androgen hormone replacement therapy treatment. The analog also offers special possibilities for the prevention/treatment of hormone-sensitive cancers. The testosterone skeleton has important functionalities in the molecule that can act as a carbonyl component, an active methylene compound, ?,?-unsaturated enone and tertiary hydroxyl group in various chemical reactions to access stereoisomeric steroidal compounds with potent activity. In addition, microbiological methods of synthesis and transformation of this hormone are presented. PMID:26639430

  18. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    ERIC Educational Resources Information Center

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the

  19. Laboratory Studies of Homogeneous and Heterogeneous Chemical Processes of Importance in the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2003-01-01

    The objective of this study was to conduct measurements of chemical kinetics parameters for reactions of importance in the stratosphere and upper troposphere, and to study the interaction of trace gases with ice surfaces in order to elucidate the mechanism of heterogeneous chlorine activation processes, using both a theoretical and an experimental approach. The measurements were carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere. The main experimental technique employed was turbulent flow-chemical ionization mass spectrometry, which is particularly well suited for investigations of radical-radical reactions.

  20. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    PubMed

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu . PMID:24160861

  1. Basics of Chemical Kinetics -1 Rate of reaction = rate of disappearance of A =

    E-print Network

    Albert, Réka

    Basics of Chemical Kinetics - 1 Rate of reaction = rate of disappearance of A = # of moles of Chemical Kinetics - 3 Elementary Reaction: Reaction order of each species is identical reactions: Forward Reaction Backward Reaction CBA + 2 CBA + 2 CBA + 2 CBA + 2 #12;Basics of Chemical

  2. Effect of Finite-rate Chemical Reactions on Turbulence in Hypersonic Turbulent Boundary Layers

    E-print Network

    Martn, Pino

    Effect of Finite-rate Chemical Reactions on Turbulence in Hypersonic Turbulent Boundary Layers Lian reaction. The influence of chemical reactions on temperature fluctuation variance, Reynolds stresses that the recombination reaction enhances turbulence, while the dissociation reaction damps turbulence. Chemical reactions

  3. The 1st Law of Thermodynamics in Chemical Reactions

    E-print Network

    I. A. Stepanov

    2000-11-10

    In the previous papers of the author it has been shown that the 1st law of thermodynamics in chemical reactions is the following one: dU=dQ+PdV+SUM In the present paper this theory was developed and it has been shown that the 1st law of thermodynamics in chemical reactions has the following form: dC=-dU+dA and -dU=dQ where dC is the change in the chemical energy, dU is the change in the internal energy. Internal energy is the energy of thermal motion of molecules.

  4. Understanding chemical reactions within a generalized Hamilton-Jacobi framework

    E-print Network

    A. S. Sanz; X. Gimenez; J. M. Bofill; S. Miret-Artes

    2009-08-13

    Reaction paths and classical and quantum trajectories are studied within a generalized Hamilton-Jacobi framework, which allows to put on equal footing topology and dynamics in chemical reactivity problems. In doing so, we show how high-dimensional problems could be dealt with by means of Caratheodory plots or how trajectory-based quantum-classical analyses reveal unexpected discrepancies. As a working model, we consider the reaction dynamics associated with a Mueller-Brown potential energy surface, where we focus on the relationship between reaction paths and trajectories as well as on reaction probability calculations from classical and quantum trajectories.

  5. [Research on chemical reactions during ginseng processing].

    PubMed

    Zhang, Miao; Qin, Kun-Ming; Li, Wei-Dong; Yin, Fang-Zhou; Cai, Hao; Cai, Bao-Chang

    2014-10-01

    As a kind of commonly used traditional Chinese medicine, ginseng has a high reputation at home and abroad. The research of ginseng has been expanded to medicine, pharmacy, biology, food science and other fields, with great achievements in recent years. Ginseng contains ginsenosides, volatile oil, carbohydrates, amino acids, polypeptides, inorganic elements and othser chemical constituents. Each component has extensive physiological activity, and is the base of ginseng's effect. After processing, the complicated changes are taken place in the constituents of ginseng, and some new substances produced. This paper aims to review the studies on chemical constituents and their mechanisms during ginseng processing, and the ideas, methods and the direction of the development of traditional Chinese medicine processing in the future. PMID:25612424

  6. Quantifying chemical reactions by using mixing analysis.

    PubMed

    Jurado, Anna; Vzquez-Su, Enric; Carrera, Jess; Tubau, Isabel; Pujades, Estanislao

    2015-01-01

    This work is motivated by a sound understanding of the chemical processes that affect the organic pollutants in an urban aquifer. We propose an approach to quantify such processes using mixing calculations. The methodology consists of the following steps: (1) identification of the recharge sources (end-members) and selection of the species (conservative and non-conservative) to be used, (2) identification of the chemical processes and (3) evaluation of mixing ratios including the chemical processes. This methodology has been applied in the Bess River Delta (NE Barcelona, Spain), where the River Bess is the main aquifer recharge source. A total number of 51 groundwater samples were collected from July 2007 to May 2010 during four field campaigns. Three river end-members were necessary to explain the temporal variability of the River Bess: one river end-member is from the wet periods (W1) and two are from dry periods (D1 and D2). This methodology has proved to be useful not only to compute the mixing ratios but also to quantify processes such as calcite and magnesite dissolution, aerobic respiration and denitrification undergone at each observation point. PMID:25280248

  7. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, D.J.

    1992-11-17

    A method is described for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation. 1 figure.

  8. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, Donald J. (Los Alamos, NM)

    1992-01-01

    A method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  9. Laser cutting with chemical reaction assist

    SciTech Connect

    Gettemy, D.J.

    1991-04-08

    This invention is comprised of a method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  10. Ozone - plant surface reactions an important ozone loss term?

    NASA Astrophysics Data System (ADS)

    Hansel, Armin; Jud, Werner; Fischer, Lukas; Canaval, Eva; Wohlfahrt, Georg; Tissier, Alain

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants responsible for global crop losses with associated economic costs of several billions dollar per year. Plant injuries have been related to the uptake of ozone through stomatal pores and oxidative effects damaging the internal leaf tissue. But a striking question remains: How much ozone enters the plant through open stomata and how much ozone is lost by chemical reactions at the plant surface? Until now surface losses are estimated from measured total ozone deposition fluxes and calculated stomatal conductance values. While stomatal conductance of CO2 and H2O is well understood and extensively used in describing plant atmosphere gas exchange, stomatal conductance of ozone is not well known. Here we use different Nicotiana tabacum varieties and find that surface reactions of ozone with diterpenoids synthesized by glandular trichomes reduce ozone flux through open stomata. Our measurements reveal that fast ozone loss at the plant surface is accompanied with prompt release of oxygenated volatile compounds. In the ozone fumigation experiments of different Nicotiana tabacum varieties the release of specific volatile oxy-VOCs allowed to identify the semi volatile precursor compounds at the plant surface. Ozone fumigation experiments with Norway spruce (Picea abies) and Scots Pine (Pinus sylvestris), two common species in the Northern Hemisphere, show also a significant ozone loss at the plant surface for Picea abies. Fluid dynamic calculations of ozone transport in the diffusive leaf boundary layer reveal a vertical but no horizontal ozone gradient thus reducing ozone fluxes through the pores in case of efficient ozone scavenging plant surfaces. We explain this efficient ozone protection mechanism by the porous surface architecture of plants in combination with unsaturated semi-volatile compounds deposited at the plant surface. These results show that unsaturated semi-volatile compounds at the plant surface should be considered as oxygenated VOC source, impacting gas phase chemistry, as well as efficient ozone sink improving the plant's ozone tolerance

  11. Matrix isolation as a tool for studying interstellar chemical reactions

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  12. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    PubMed

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137

  13. International chemical identifier for reactions (RInChI)

    PubMed Central

    2013-01-01

    The IUPAC International Chemical Identifier (InChI) provides a method to generate a unique text descriptor of molecular structures. Building on this work, we report a process to generate a unique text descriptor for reactions, RInChI. By carefully selecting the information that is included and by ordering the data carefully, different scientists studying the same reaction should produce the same RInChI. If differences arise, these are most likely the minor layers of the InChI, and so may be readily handled. RInChI provides a concise description of the key data in a chemical reaction, and will help enable the rapid searching and analysis of reaction databases. PMID:24152584

  14. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  15. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, James R. (Kennewick, WA); Dodson, Michael G. (Richland, WA)

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  16. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, J.R.; Dodson, M.G.

    1999-05-25

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846. 8 figs.

  17. 5.0 Application of Chemical Reaction Codes 5.1. Background

    E-print Network

    5.1 5.0 Application of Chemical Reaction Codes 5.1. Background Determination of species analyses of water compositions and a competent chemical reaction model. Computerized chemical reaction that may leach from waste, an understanding of the capabilities and application of chemical reaction models

  18. Using hyperheuristics to improve the determination of the kinetic constants of a chemical reaction in

    E-print Network

    Gimnez, Domingo

    Using hyperheuristics to improve the determination of the kinetic constants of a chemical reaction constants of a chemical reaction Kinetic parameters of a chemical reaction are determined with metaheuristic of a chemical reaction that occurs in heterogeneous phase involves the simulation of the processes occurring

  19. Speed faults in computation by chemical reaction networks Ho-Lin Chen

    E-print Network

    Speed faults in computation by chemical reaction networks Ho-Lin Chen Rachel Cummings David Doty David Soloveichik Abstract Chemical reaction networks (CRNs) formally model chemistry in a well in natural sciences is that of chemical reaction networks (CRNs), i.e., (finite) sets of chemical reactions

  20. Simulation of chemical reaction dynamics on an NMR quantum computer

    E-print Network

    Dawei Lu; Nanyang Xu; Ruixue Xu; Hongwei Chen; Jiangbin Gong; Xinhua Peng; Jiangfeng Du

    2011-05-21

    Quantum simulation can beat current classical computers with minimally a few tens of qubits and will likely become the first practical use of a quantum computer. One promising application of quantum simulation is to attack challenging quantum chemistry problems. Here we report an experimental demonstration that a small nuclear-magnetic-resonance (NMR) quantum computer is already able to simulate the dynamics of a prototype chemical reaction. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future.

  1. Freezing of Spinodal Decompostion by Irreversible Chemical Growth Reaction

    E-print Network

    Michael Schulz; Benjamin Paul

    1998-08-10

    We present a description of the freezing of spinodal decomposition in systems, which contain simultaneous irreversible chemical reactions, in the hydrodynamic limit approximation. From own results we conclude, that the chemical reaction leads to an onset of spinodal decomposition also in the case of an initial system which is completely miscible and can lead to an extreme retardation of the dynamics of the spinodal decomposition, with the probability of a general freezing of this process, which can be experimetally observed in simultaneous IPN formation.

  2. Screening in Low Energy Nuclear Reactions of Importance to Astrophysics

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Hora, Heinz; Luo, Nie

    2004-05-01

    Recent experiments in the LUNAR (Laboratory for Underground Nuclear Astrophysics) project have shown anonymously high electron screening may occur during acceleration driven low energy (<400 kV) ion bombardment of solid targets [1]. These effects become particularly important for E/ Ue < 100 (here E= ion energy and Ue = electron-screening potential energy). Thus these effects become significant for the understanding of reactions involved in nucleosynthesis of the elements and the interpretation of astrophysical data [1]. Another example of the behavior is the surprising threshold behavior near 18 keV for deuterons stopping in 3He gas at energies below the Bragg peak [2]. As pointed out in ref [1], the theoretical explanation for these effects is still under debate. Several researchers have proposed variations of the Trojan Horse Method (THM) to explain these effects [3]. In this paper, we propose an alternate mechanism associated with electron charge accumulation around the target atoms arising from the solid-state structure of the host. This concept will be explained in terms of density functional calculations of charge density profiles in a target undergoing ion dynamic effects [4]. REFERENCES [1] F. Strieder, et al., Naturwissenschaften (2000)88:461-467 [2] A. Formicola, et al., (2000) Eur Phys J. A 8:443-446 [3] S. Typel and H H Wolter, (2000) Few-Body System 29:75-93 [4] G. Miley and H. Hora, (2000) Nuclear Reactions in Solids, APS mtg. Lansing, MI [5] G. Miley, A. Lipson, N. Luo, and H. Hora, (2003) IEEE NSS/MIC Conf., Portland, OR

  3. Photon Antibunching in a Cyclic Chemical Reaction Scheme.

    PubMed

    Vester, Michael; Staut, Tobias; Enderlein, Jrg; Jung, Gregor

    2015-04-01

    The direct observation of chemical reactions on the single-molecule level is an ultimate goal in single-molecule chemistry, which also includes kinetic analyses. To analyze the lifetime of reaction intermediates, very sophisticated excitation schemes are often required. Here we focus on the kinetic analysis of the ground-state proton transfer within the photocycle of a photoacid. In detail, we demonstrate the determination of the bimolecular rate constant of this process with nanosecond resolution. The procedure relies on the exploration of a purely quantum-optical effect, namely, photon antibunching, and thus on evaluating interphoton arrival times to extract the reaction rate constant. PMID:26262964

  4. Asymmetric chemical reactions by polarized quantum beams

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun-Ichi; Kobayashi, Kensei

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044 (2009). 4) V.I.Burkov, L.A.Goncharova, G.A.Gusev, H.Hashimoto, F.Kaneko, T.Kaneko, K. Kobayashi, H.Mita, E.V.Moiseenko, T.Ogawa, N.G.Poluhina, T.Saito, S.Shima, J.Takahashi, M.Tanaka, Y.Tao, V.A.Tsarev, J.Xu, H.Yabuta, K.Yagi-Watanabe, H.Yan, G.Zhang, Origins Life Evol. Biosphere, 39 295 (2009).

  5. Amplitude Equations and Chemical Reaction-Diffusion Systems

    E-print Network

    M. Ipsen; F. Hynne; P. G. Soerensen

    1997-11-03

    The paper discusses the use of amplitude equations to describe the spatio-temporal dynamics of a chemical reaction-diffusion system based on an Oregonator model of the Belousov-Zhabotinsky reaction. Sufficiently close to a supercritical Hopf bifurcation the reaction-diffusion equation can be approximated by a complex Ginzburg-Landau equation with parameters determined by the original equation at the point of operation considered. We illustrate the validity of this reduction by comparing numerical spiral wave solutions to the Oregonator reaction-diffusion equation with the corresponding solutions to the complex Ginzburg-Landau equation at finite distances from the bifurcation point. We also compare the solutions at a bifurcation point where the systems develop spatio-temporal chaos. We show that the complex Ginzburg-Landau equation represents the dynamical behavior of the reaction-diffusion equation remarkably well sufficiently far from the bifurcation point for experimental applications to be feasible.

  6. Chemical pathways in ultracold reactions of SrF molecules

    SciTech Connect

    Meyer, Edmund R.; Bohn, John L.

    2011-03-15

    We present a theoretical investigation of the chemical reaction SrF + SrF {yields} products, focusing on reactions at ultralow temperatures. We find that bond swapping SrF + SrF {yields} Sr{sub 2} + F{sub 2} is energetically forbidden at these temperatures. Rather, the only energetically allowed reaction is SrF + SrF {yields} SrF{sub 2} + Sr, and even then only singlet states of the SrF{sub 2} trimer can form. A calculation along a reduced reaction path demonstrates that this abstraction reaction is barrierless and proceeds by one SrF molecule ''handing off'' a fluorine atom to the other molecule.

  7. Program Helps To Determine Chemical-Reaction Mechanisms

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Radhakrishnan, K.

    1995-01-01

    General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.

  8. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    NASA Technical Reports Server (NTRS)

    Kinnison, Douglas E.; Wuebbles, Donald J.

    1994-01-01

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O3, NO(x), Cl(x), HCl, N2O5, ClONO2 are calculated.

  9. On some dynamical diagrams of chemical reaction engineering.

    PubMed

    Aris, Rutherford

    1999-03-01

    A brief historical survey of some of the influential types of diagrams that have been used in chemical reaction engineering is given. These include the phase plane, the simple autocatalytic diagram, and the stroboscopic phase plane. (c) 1999 American Institute of Physics. PMID:12779797

  10. 2011 Chemical Reactions at Surfaces Gordon Research Conference

    SciTech Connect

    Peter Stair

    2011-02-11

    The Gordon Research Conference on Chemical Reactions at Surfaces is dedicated to promoting and advancing the fundamental science of interfacial chemistry and physics by providing surface scientists with the foremost venue for presentation and discussion of research occurring at the frontiers of their fields.

  11. Molecular Codes in Biological and Chemical Reaction Networks

    PubMed Central

    Grlich, Dennis; Dittrich, Peter

    2013-01-01

    Shannons theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process meaningful information from those that do not. Here, we present a formal method to assess a systems semantic capacity by analyzing a reaction networks capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems posses different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life. PMID:23372756

  12. Molecular codes in biological and chemical reaction networks.

    PubMed

    Grlich, Dennis; Dittrich, Peter

    2013-01-01

    Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life. PMID:23372756

  13. Dissipation Scale Fluctuations and Chemical Reaction Rates in Turbulent Flows

    E-print Network

    Victor Yakhot

    2007-06-29

    Small separation between reactants, not exceeding $10^{-8}-10^{-7}cm$, is the necessary condition for various chemical reactions. It is shown that random advection and stretching by turbulence leads to formation of scalar-enriched sheets of {\\it strongly fluctuating thickness} $\\eta_{c}$. The molecular-level mixing is achieved by diffusion across these sheets (interfaces) separating the reactants. Since diffusion time scale is $\\tau_{d}\\propto \\eta_{c}^{2}$, the knowledge of probability density $Q(\\eta_{c},Re)$ is crucial for evaluation of chemical reaction rates. In this paper we derive the probability density $Q(\\eta_{c},Re,Sc)$ and predict a transition in the reaction rate behavior from ${\\cal R}\\propto \\sqrt{Re}$ ($Re\\leq 10^{4}$) to the high-Re asymptotics ${\\cal R}\\propto Re^{0}$. The theory leads to an approximate universality of transitional Reynolds number $Re_{tr}\\approx 10^{4}$. It is also shown that if chemical reaction involves short-lived reactants, very strong anomalous fluctuations of the length-scale $\\eta_{c}$ may lead to non-negligibly small reaction rates.

  14. Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions

    SciTech Connect

    Donald L. Thompson

    2006-04-27

    The purpose of this research was the development and application of theoretical/computational methods for accurate predictions of the rates of reactions in many-atom systems. The specific aim was to improve computational methods for studying the chemical dynamics of large, complex systems and to obtain a better understanding of the chemical reactions involving large polyatomic molecules and radicals. The focus was on the development an automatic potential energy surface generation algorithm that takes advantage of high-performance computing environments; e.g., software for rate calculations that direct quantum chemistry codes to produce ab initio predictions of reaction rates and related dynamics quantities. Specifically, we developed interpolative moving least-squares (IMLS) methods for accurately fitting ab initio energies to provide global PESs and for use in direct dynamics simulations.

  15. Students' Understandings of Chemical Bonds and the Energetics of Chemical Reactions.

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    1998-01-01

    Investigates Grade 12 students' understandings of the nature of chemical bonds and the energetics elicited across five familiar chemical reactions following a course of instruction. Discusses the many ways in which students can misconstruct concepts and principles. Contains 63 references. (DDR)

  16. Development of a chemical oxygen - iodine laser with production of atomic iodine in a chemical reaction

    SciTech Connect

    Censky, M; Spalek, O; Jirasek, V; Kodymova, J; Jakubec, I

    2009-11-30

    The alternative method of atomic iodine generation for a chemical oxygen - iodine laser (COIL) in chemical reactions with gaseous reactants is investigated experimentally. The influence of the configuration of iodine atom injection into the laser cavity on the efficiency of the atomic iodine generation and small-signal gain is studied. (lasers)

  17. Moment equations for chemical reactions on interstellar dust grains

    E-print Network

    Azi Lipshtat; Ofer Biham

    2002-12-09

    While most chemical reactions in the interstellar medium take place in the gas phase, those occurring on the surfaces of dust grains play an essential role. Chemical models based on rate equations including both gas phase and grain surface reactions have been used in order to simulate the formation of chemical complexity in interstellar clouds. For reactions in the gas phase and on large grains, rate equations, which are highly efficient to simulate, are an ideal tool. However, for small grains under low flux, the typical number of atoms or molecules of certain reactive species on a grain may go down to order one or less. In this case the discrete nature of the opulations of reactive species as well as the fluctuations become dominant, thus the mean-field approximation on which the rate equations are based does not apply. Recently, a master equation approach, that provides a good description of chemical reactions on interstellar dust grains, was proposed. Here we present a related approach based on moment equations that can be obtained from the master equation. These equations describe the time evolution of the moments of the distribution of the population of the various chemical species on the grain. An advantage of this approach is the fact that the production rates of molecular species are expressed directly in terms of these moments. Here we use the moment equations to calculate the rate of molecular hydrogen formation on small grains. It is shown that the moment equation approach is efficient in this case in which only a single reactive specie is involved. The set of equations for the case of two species is presented and the difficulties in implementing this approach for complex reaction networks involving multiple species are discussed.

  18. Beating polymer gels coupled with a nonlinear chemical reaction

    NASA Astrophysics Data System (ADS)

    Yoshida, Ryo; Kokufuta, Etsuo; Yamaguchi, Tomohiko

    1999-06-01

    We report on a beating polymer gel that exhibits periodical volume changes (swelling and deswelling) in a closed solution without external stimuli, like autonomous heartbeat. The mechanical oscillation is driven by the chemical energy of the oscillatory Belousov-Zhabotinsky (BZ) reaction. The gel is a copolymer gel of N-isopropylacrylamide (NIPAAm) in which ruthenium tris(2,2'-bipyridine) [Ru(bpy)3], known as a catalyst of the BZ reaction, is covalently bonded to the polymer chain. The poly[NIPAAm-co-Ru(bpy)3] gel provides an open system where the BZ reaction proceeds, when immersed in an aqueous solution containing the reactants of the BZ reaction (with the exception of a catalyst). The chemical oscillation in the BZ reaction generates the periodical changes of the charge of Ru(bpy)3 in the gel network between reduced [Ru(II)] and oxidized [Ru(III)] states. The gel swells at the oxidized state because the hydrophilicity of the polymer chains increases, while at the reduced state the gel deswells. Thus, the chemical energy is transduced into the mechanical energy to drive the polymer gel oscillation with a period of about 5 min, depending on the composition of the surrounding solution. The oscillation mode of the gel depends on its size scaled by the wavelength of the BZ pattern. Sufficiently small bead-like gels demonstrate isotropic beating. A large rectangular gel shows mechanical oscillation with a peristaltic motion coupled with the propagating chemical waves. The dynamic behavior of the chemical and mechanical oscillations have been analyzed with a model simulation.

  19. Single-molecule chemical reactions on DNA origami

    NASA Astrophysics Data System (ADS)

    Voigt, Niels V.; Trring, Thomas; Rotaru, Alexandru; Jacobsen, Mikkel F.; Ravnsbk, Jens B.; Subramani, Ramesh; Mamdouh, Wael; Kjems, Jrgen; Mokhir, Andriy; Besenbacher, Flemming; Gothelf, Kurt Vesterager

    2010-03-01

    DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally addressable solid supports.

  20. On the Influence of Uncertainties in Chemical Reaction Rates on Results of the Astrochemical Modelling

    E-print Network

    A. I. Vasyunin; A. M. Sobolev; D. S. Wiebe; D. A. Semenov

    2003-11-19

    With the chemical reaction rate database UMIST95 (Millar et al. 1997) we analyze how uncertainties in rate constants of gas-phase chemical reactions influence the modelling of molecular abundances in the interstellar medium. Random variations are introduced into the rate constants to estimate the scatter in theoretical abundances. Calculations are performed for dark and translucent molecular clouds where gas phase chemistry is adequate. Similar approach was used by Pineau des Forets & Roueff (2000) for the study of chemical bistability. All the species are divided into 6 sensitivity groups according to the value of the scatter in their model abundances computed with varied rate constants. It is shown that the distribution of species within these groups depends on the number of atoms in a molecule and on the adopted physical conditions. The simple method is suggested which allows to single out reactions that are most important for the evolution of a given species.

  1. PDF calculation of scalar mixing layer with simple chemical reactions

    NASA Astrophysics Data System (ADS)

    Kanzaki, Takao; Pope, Stephen B.

    1999-11-01

    A joint velocity-composition-turbulent frequency PDF(JPDF) model is used to simulate reactive mixing layer in a grid-generated turbulence with the influence of second-order irreversible chemical reactions. To investigate the effects of molecular mixing, a gas flow and a liquid flow are simulated. For a gas flow, the oxidation reaction (NO+ O3 arrow NO2 +O2 ) between nitricoxide (NO) and ozone (O3 ) is used. For a liquid flow, the saponification reaction(NaOH+HCOOCH3 arrow HCOONa+CH_3OH) between sodiumhydroxide(NaOH) and methylformate(HCOOCH_3) is used. The both cases are moderately fast reactions. Therefore, reactive scalar statistics are affected by turbulent mixing. The results of caliculation are compared with experimental data of Komori et al.(1994) and Bilger et al.(1991)

  2. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    PubMed

    Suleimanov, Yury V; Green, William H

    2015-09-01

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms-the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes. PMID:26575920

  3. The concept of chemical looping reactions has been widely applied in chemical industries. Fundamental research on chemical looping reactions has also been applied to energy systems. Fossil fuel chemical looping applications were used with the steam-iron p

    E-print Network

    The concept of chemical looping reactions has been widely applied in chemical industries. Fundamental research on chemical looping reactions has also been applied to energy systems. Fossil fuel chemical looping applications were used with the steam-iron process for coal processing from the 1900s

  4. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    NASA Astrophysics Data System (ADS)

    Huisken, Friedrich; Krasnokutski, Serge A.

    2012-11-01

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope 4He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O2. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

  5. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    SciTech Connect

    Huisken, Friedrich; Krasnokutski, Serge A.

    2012-11-27

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope {sup 4}He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O{sub 2}. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

  6. "Kinetics of Chemical Reactions in Environmental Systems: Research Needs and Challenges"

    E-print Network

    Sparks, Donald L.

    "Kinetics of Chemical Reactions in Environmental Systems: Research Needs and Challenges" Donald(oid)s, nutrients, radionuclides, and organic chemicals have shown that reaction rates are initially rapid followed by a slow approach to a steady state. The rapid reaction has been ascribed to chemical reactions and film

  7. Atoms of multistationarity in chemical reaction networks Badal Joshi and Anne Shiu

    E-print Network

    Rowell, Eric C.

    Atoms of multistationarity in chemical reaction networks Badal Joshi and Anne Shiu 13 July 2012 Abstract Chemical reaction systems are dynamical systems that arise in chemical engineering and systems) multistationary chemical reaction networks, which we propose to call `atoms of multistationarity,' characterize

  8. Chemistry 231 Fall 2013 Chemistry 231, Chemical Kinetics and Molecular Reaction Dynamics

    E-print Network

    Continetti, Robert E.

    Chemistry 231 Fall 2013 Chemistry 231, Chemical Kinetics and Molecular Reaction Dynamics Dept chemical kinetics, the connection between chemical kinetics and molecular reaction dynamics as well as some and Hase, Prentice Hall (1999) 4. Chemical Kinetics, K.J. Laidler, McGraw Hill (1965) 5. Gas Phase Reaction

  9. Spatial patterns and double diffusion in chemical reactions

    PubMed Central

    Dewel, G.; Borckmans, P.; Walgraef, D.

    1983-01-01

    Spatial ordering has been observed recently during various photochemical reactions. Convoluted concentration bands first appear near the surface of shallow irradiated solutions. They thereafter extend into the bulk, and finger-like structures spontaneously develop. We discuss here the possible role of double-diffusion effects in the onset of this phenomenon. Indeed, chemical reactions occurring near the surface or evaporation of the solvent, or both, induce in the bulk adverse gradients of a pair of properties (concentrations of solute or concentration and temperature) having different diffusivities. This difference can then destabilize the homogeneous solution and trigger the observed patterns. PMID:16593384

  10. Reaction Kinetics and Catalysis Letters, Vol. 1, No. 1, 113-117/1974/ STOCHASTIC SIMULATION OF CHEMICAL REACTION BY

    E-print Network

    Tóth, János

    Reaction Kinetics and Catalysis Letters, Vol. 1, No. 1, 113-117/1974/ STOCHASTIC SIMULATION OF CHEMICAL REACTION BY DIGITAL COMPUTER, I. THE MODEL T. Sipos, 1 j. T6th, 2 and P. l~rdi 1 1. Danube Oil Received November 9, 1972 A stochastic model of complex chemical reactions is outlined. A discrete

  11. Laser studies of chemical reaction and collision processes

    SciTech Connect

    Flynn, G.

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  12. Avalanche behavior in the dynamics of chemical reactions.

    PubMed

    Claycomb, J R; Bassler, K E; Miller, J H; Nersesyan, M; Luss, D

    2001-10-22

    Sudden bursts of chemical activity, displaying avalanche-like behavior, have been observed in reactions between metals and liquid electrolytes by measuring the time-dependent chemomagnetic fields with a high-T(c) SQUID. The observed intermittent chemomagnetic field pulses exhibit power-law behavior in the distributions of peak sizes, noise spectra, and return-time distributions. Such power-law behavior provides evidence for self-organized criticality occurring in the form of "chemical avalanches" over a wide range of size and time scales. PMID:11690317

  13. Implementation of a vibrationally linked chemical reaction model for DSMC

    NASA Technical Reports Server (NTRS)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  14. Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization

    NASA Astrophysics Data System (ADS)

    Khavrutskii, Ilja V.; Smith, Jason B.; Wallqvist, Anders

    2013-10-01

    Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM/molecular mechanical (QM/MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP/6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP/6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal/mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM/MM studies of reaction mechanisms.

  15. Controlling ultracold chemical reactions via Rydberg-dressed interactions

    E-print Network

    Jia Wang; Jason N. Byrd; Ion Simbotin; R. Ct

    2014-03-24

    We show that ultracold chemical reactions can be manipulated and controlled by using Rydberg-dressed interactions. Scattering in the ultracold regime is sensitive to long-range interactions, especially when weakly bound (or quasi-bound) states exist near the collision threshold. We investigate how, by Rydberg-dressing a reactant, one enhances its polarizability and modifies the long-range van der Waals collision complex, which can alter chemical reaction rates by shifting the position of near threshold bound states. We carry out a full quantum mechanical scattering calculation for the benchmark system H$_2$+D, and show that resonances can be moved substantially and that rate coefficients at cold and ultracold temperatures can be increased by several orders of magnitude.

  16. Potential for exothermic chemical reactions in waste tanks

    SciTech Connect

    Van Tuyl, H.H.

    1983-02-03

    The potential for exothermic chemical reactions in waste tanks at Hanford is discussed. Organic chemicals have been added to Hanford waste tanks, particularly as ferrocyanides and when processing sludges at B Plant. Recent planned or ongoing activities involving stored wastes have possibly increased the potential for reaction of these wastes with nitrate salts in the waste tanks. Risk evaluations appear to be deficient in assessing the consequences of a deflagration, and in determining the probability of either a deflagration or detonation. The present question is whether current plans and recent safety-related documentation have given proper consideration to the available information about organic compounds in waste tanks. The principal organic additions to Hanford waste tanks are 1200 tonnes of organic carbon'' and 500 tonnes of Ni{sub 2}Fe(CN){sub 6}. 13 refs.

  17. Tuning Ultracold Chemical Reactions via Rydberg-Dressed Interactions

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Byrd, Jason N.; Simbotin, Ion; Ct, R.

    2014-07-01

    We show that ultracold chemical reactions with an activation barrier can be tuned using Rydberg-dressed interactions. Scattering in the ultracold regime is sensitive to long-range interactions, especially when weakly bound (or quasibound) states exist near the collision threshold. We investigate how, by Rydberg dressing a reactant, one enhances its polarizability and modifies the long-range van der Waals collision complex, which can alter chemical reaction rates by shifting the position of near-threshold bound states. We carry out a full quantum mechanical scattering calculation for the benchmark system H2+D, and show that resonances can be moved substantially and that rate coefficients at cold and ultracold temperatures can be increased by several orders of magnitude.

  18. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P. (Bozeman, MT); Herbst, Ronald S. (Idaho Falls, ID)

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  19. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  20. Stochastic Generator of Chemical Structure. 3. Reaction Network Generation

    SciTech Connect

    FAULON,JEAN-LOUP; SAULT,ALLEN G.

    2000-07-15

    A new method to generate chemical reaction network is proposed. The particularity of the method is that network generation and mechanism reduction are performed simultaneously using sampling techniques. Our method is tested for hydrocarbon thermal cracking. Results and theoretical arguments demonstrate that our method scales in polynomial time while other deterministic network generator scale in exponential time. This finding offers the possibility to investigate complex reacting systems such as those studied in petroleum refining and combustion.

  1. Solution of Chemical Master Equations for Nonlinear Stochastic Reaction Networks

    PubMed Central

    Smadbeck, Patrick; Kaznessis, Yiannis N.

    2014-01-01

    Stochasticity in the dynamics of small reacting systems requires discrete-probabilistic models of reaction kinetics instead of traditional continuous-deterministic ones. The master probability equation is a complete model of randomly evolving molecular populations. Because of its ambitious character, the master equation remained unsolved for all but the simplest of molecular interaction networks. With the first solution of chemical master equations, a wide range of experimental observations of small-system interactions may be mathematically conceptualized. PMID:25215268

  2. Chemical reactions on metal oxide surfaces investigated by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yuemin; Wll, Christof

    2009-06-01

    The most successful method to unravel the microscopic mechanisms governing reactions in heterogeneous catalysis is the "surface science" approach which is based on well-controlled studies on model catalysts (usually single crystal surfaces) under ultrahigh vacuum (UHV) conditions [G. Ertl, Angew. Chem. 47 (2008) 3524]. In this review our recent vibrational spectroscopic studies on selected model reactions at various single-crystalline metal oxide surfaces are summarized. Two vibrational spectroscopic methods, high resolution electron energy loss spectroscopy (HREELS) and Fourier-transform infrared spectroscopy (FTIRS), were applied to characterize the adsorbed species and to elucidate the elementary processes of chemical reactions at oxide surfaces ranging from well-defined single crystals to modified surfaces with deliberately introduced defects. The combination of both methods allows us to extend the vibrational spectroscopic studies from ideal to complex systems.

  3. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect

    Gray, S.K.

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  4. Experimental and Theoretical Study of Reactions of OH Radicals with Hexenols: An Evaluation of the Relative Importance of the H-Abstraction Reaction Channel.

    PubMed

    Gai, Yanbo; Lin, Xiaoxiao; Ma, Qiao; Hu, Changjin; Gu, Xuejun; Zhao, Weixiong; Fang, Bo; Zhang, Weijun; Long, Bo; Long, Zhengwen

    2015-09-01

    C6 hexenols are one of the most significant groups of volatile organic compounds with biogenic emissions. The lack of corresponding kinetic parameters and product information on their oxidation reactions will result in incomplete atmospheric chemical mechanisms and models. In this paper, experimental and theoretical studies are reported for the reactions of OH radicals with a series of C6 hexenols, (Z)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (Z)-4-hexen-1-ol, (E)-2-hexen-1-ol, (E)-3-hexen-1-ol, and (E)-4-hexen-1-ol, at 298 K and 1.01 10(5) Pa. The corresponding rate constants were 8.53 1.36, 10.1 1.6, 7.86 1.30, 8.08 1.33, 9.10 1.50, and 7.14 1.20 (in units of 10(-11) cm(3) molecule(-1) s(-1)), respectively, measured by gas chromatography with a flame ionization detector (GC-FID), using a relative technique. Theoretical calculations concerning the OH-addition and H-abstraction reaction channels were also performed for these reactions to further understand the reaction mechanism and the relative importance of the H-abstraction reaction. By contrast to previously reported results, the H-abstraction channel is a non-negligible reaction channel for reactions of OH radicals with these hexenols. The rate constants of the H-abstraction channel are comparable with those for the OH-addition channel and contribute >20% for most of the studied alcohols, even >50% for (E)-3-hexen-1-ol. Thus, H-abstraction channels may have an important role in the reactions of these alcohols with OH radicals and must be considered in certain atmospheric chemical mechanisms and models. PMID:26274814

  5. Characterization of plastic deformation and chemical reaction in titanium-polytetrafluoroethylene mixture

    NASA Astrophysics Data System (ADS)

    Davis, Jeffery Jon

    1998-09-01

    The subject of this dissertation is the deformation process of a single metal - polymer system (titanium - polytetrafluoroethylene) and how this process leads to initiation of chemical reaction. Several different kinds of experiments were performed to characterize the behavior of this material to shock and impact. These mechanical conditions induce a rapid plastic deformation of the sample. All of the samples tested had an initial porosity which increased the plastic flow condition. It is currently believed that during the deformation process two important conditions occur: removal of the oxide layer from the metal and decomposition of the polymer. These conditions allow for rapid chemical reaction. The research from this dissertation has provided insight into the complex behavior of plastic deformation and chemical reactions in titanium - polytetrafluoroethylene (PTFE, Teflon). A hydrodynamic computational code was used to model the plastic flow for correlation with the results from the experiments. The results from this work are being used to develop an ignition and growth model for metal/polymer systems. Three sets of experiments were used to examine deformation of the 80% Ti and 20% Teflon materials: drop- weight, gas gun, and split-Hopkinson pressure bar. Recovery studies included post shot analysis of the samples using x-ray diffraction. Lagrangian hydrocode DYNA2D modeling of the drop-weight tests was performed for comparison with experiments. One of the reactions know to occur is Ti + C ? TiC (s) which results in an exothermic release. However, the believed initial reactions occur between Ti and fluorine which produces TixFy gases. The thermochemical code CHEETAH was used to investigate the detonation products and concentrations possible during Ti - Teflon reaction. CHEETAH shows that the Ti - fluorine reactions are thermodynamically favorable. This research represents the most comprehensive to date study of deformation induced chemical reaction in metal/polymers.

  6. Reaction Kinetics and Catalysis Letters, Vol. 1, No. 2/1974/209-213 STOCHASTIC SIMULATION OF CHEMICAL REACTIONS BY

    E-print Network

    Tóth, János

    Reaction Kinetics and Catalysis Letters, Vol. 1, No. 2/1974/209-213 STOCHASTIC SIMULATION OF CHEMICAL REACTIONS BY DIGITAL COMPUTER, H. APPLICATIONS T. Sipos1, J.TSth 2 and P. ~.rdi1 1. Danube Oil reactions/1/is described. Two applications of the program are given: (i) a reaction taking place

  7. Physio-chemical reactions in recycle aggregate concrete.

    PubMed

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes. PMID:18718710

  8. Chemical reaction dynamics using the Advanced Light Source

    SciTech Connect

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G. |; Lin, J.; Wodtke, A.M.

    1995-09-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10{sup 16} photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source.

  9. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  10. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  11. Faculty of Chemical Technology and Biotechnology IMPORTANT NOTES

    E-print Network

    Levente, Buttyn

    order reactions. Equilibrium reactions. Consecutive and parallel reactions. Temperature dependence liquid-liquid phase equilibrium. Critical temperature of miscibility; Electrochemical equilibrium. Relationship of molecular and macroscopic structure. Crystalline polymers. Melting, crystallization

  12. Microbial Biogeochemistry Chemical reactions occurring in the environment mediated by microbial communities

    E-print Network

    Vallino, Joseph J.

    Microbial Biogeochemistry Chemical reactions occurring in the environment mediated by microbial communities Outline Metabolic Classifications. Winogradsky columns, Microenvironments. Redox Reactions Chemical (Chemotrophs) Inorganic (Chemolithotrophs) Aerobic (majority) Anaerobic (few) Organic

  13. Influence of Chemical Reactions on the Nonlinear Dynamics of Dissipative Flows

    E-print Network

    A. R. Karimov; A. M. Korshunov; V. V. Beklemishev

    2015-04-16

    The nonlinear dynamics of resistive flow with a chemical reaction is studied. Proceeding from the Lagrangian description, the influence of a chemical reaction on the development of fluid singularities is considered.

  14. Automated microreactor system for reaction development and online optimization of chemical processes

    E-print Network

    McMullen, Jonathan Patrick

    2010-01-01

    Developing the optimal conditions for chemical reactions that are common in fine chemical and pharmaceutics is a difficult and expensive task. Because syntheses in these fields have multiple reaction pathways, a significant ...

  15. Photochemical reactions of biologically important quinoxaline n-oxides

    SciTech Connect

    Dvoryantseva, G.G.; Tetenchuk, K.P.; Pol'shakov, V.I.; Elina, A.S.

    1987-02-01

    The authors study the photochemical reactions of quinoxidine, dioxidine, and a number of related derivatives of quinoxaline 1,4-di-N-oxides containing methyl, halomethyl, and carboxamide groups in the pyrazine ring. Thin-layer chromatography, UV spectrophotometry, and NMR/sup 1/H and /sup 13/C spectroscopy were used as the main methods for monitoring the photolysis process and establishing the structure of the products formed. The investigation established that two types of photochemical reactions are observed in the series of compounds discussed: photoisomerization with migration of a substitutent to the nitrogen atom of the heterocycle, and photorearrangement with elimination of a substituent and the formation of the corresponding lactams.

  16. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  17. Building robust chemical reaction mechanisms : next generation of automatic model construction software

    E-print Network

    Song, Jing, 1972-

    2004-01-01

    Building proper reaction mechanisms is crucial to model the system dynamic properties for many industrial processes with complex chemical reaction phenomena. Because of the complexity of a reaction mechanism, computer-aided ...

  18. SENSITIVITY OF CHEMICAL REACTION NETWORKS: A STRUCTURALAPPROACH. 1. EXAMPLES AND THE CARBON METABOLIC NETWORK

    E-print Network

    Fiedler, Bernold

    -1- SENSITIVITY OF CHEMICAL REACTION NETWORKS: A STRUCTURALAPPROACH. 1. EXAMPLES AND THE CARBON of Theoretical Biology, June 21, 2014) #12;-2- Abstract In biological cells, chemical reaction pathways lead information on the network alone. We investigate how the sensitivity responses of chemicals in a reaction

  19. Log-Domain Circuit Models of Chemical Reactions Soumyajit Mandal and Rahul Sarpeshkar

    E-print Network

    Sarpeshkar, Rahul

    Log-Domain Circuit Models of Chemical Reactions Soumyajit Mandal and Rahul Sarpeshkar Department to networks of chemical reactions. Our circuits can be used for transient and steady-state simulations the energy barrier of a chemical reaction, exponentially changing its speed. In an analogous fashion, gate

  20. in Press, Physical Review Letters Predicting the progress of diffusively limited chemical reactions

    E-print Network

    Gollub, Jerry P.

    in Press, Physical Review Letters Predicting the progress of diffusively limited chemical reactions: December 9, 2005) The effects of chaotic advection and diffusion on fast chemical reactions in two, fast chemical reactions, numeri- cal studies have attempted to relate product concentra- tion growth

  1. Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models

    E-print Network

    Craciun, Gheorghe

    Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models G of complex chemical reaction networks, taken with mass-action kinetics, to admit multiple equilibria.) In both papers, it was understood that the reactions were taking place in the context of what chemical

  2. A Nonlinear Observer for Semidetectable Chemical Reactions with Application to Kinetic-Rate-Constant Estimation

    E-print Network

    Bernstein, Dennis S.

    A Nonlinear Observer for Semidetectable Chemical Reactions with Application to Kinetic]. For the class of polyno- mial systems that model the concentrations of species of a chemical reaction network that the reactions of chemical networks are semistable, that is, the concentrations converge to nonzero values

  3. A general method for the computation of probabilities in systems of first order chemical reactions

    E-print Network

    Djuri, Petar M.

    A general method for the computation of probabilities in systems of first order chemical reactions for the computation of molecular population distributions in a system of first-order chemical reactions. The method to model the chemical reactions in a stochastic way rather than with the traditional differential equations

  4. STRAIN-INDUCED STRUCTURAL CHANGES AND CHEMICAL REACTIONSII. MODELLING OF REACTIONS

    E-print Network

    Meyers, Marc A.

    STRAIN-INDUCED STRUCTURAL CHANGES AND CHEMICAL REACTIONSII. MODELLING OF REACTIONS IN SHEAR BAND V 1997; accepted in revised form 26 April 1998) AbstractThe problem on strain-induced chemical reaction is connected with the additional heating due to RIP. A kinetic criterion of chemical reaction is formulated

  5. SHEAR LOCALIZATION AND CHEMICAL REACTION IN HIGH-STRAIN, HIGH-STRAIN-RATE DEFORMATION OF

    E-print Network

    Meyers, Marc A.

    SHEAR LOCALIZATION AND CHEMICAL REACTION IN HIGH-STRAIN, HIGH-STRAIN-RATE DEFORMATION OF Ti regions can initiate chemical reaction inside a reac- tive powder mixture. The shear band spacing was H0-induced chemical reactions in silicide systems have been investigated in recent years. Vreeland and coworkers [7

  6. Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction I. Z. Kiss,1,

    E-print Network

    Kiss, Istvan Zoltan

    Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction I. Z dynamics corresponding to an oscillatory chemical reaction coupled with diffusion and chaotic advection as a synchronization of these local oscillators. The specific chemical reaction that we consider is the chlorine

  7. Toward Accurate Potentials for Condensed-Phase Chemical Reactions: Electrostatically Embedded Multi-Configuration Molecular Mechanics

    E-print Network

    Truhlar, Donald G

    Toward Accurate Potentials for Condensed-Phase Chemical Reactions: Electrostatically Embedded Multi and molecular mechanical (QM/MM) methods have provided powerful means for studying chemical reactions be used in QM/MM methods. The result is a key step toward studying chemical reactions in condensed phases

  8. Boundary Effects on Chaotic Advection-Diffusion Chemical Reactions M. Chertkov1

    E-print Network

    Lebedev, Vladimir

    Boundary Effects on Chaotic Advection-Diffusion Chemical Reactions M. Chertkov1 and V. Lebedev1,2 1 chemical reaction, A B ! C, in a statistically stationary bounded chaotic flow at large Peclet number Pe advection should essentially accelerate chemical reactions rate in fluid phase, since it should lead

  9. A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks

    E-print Network

    De Leenheer, Patrick

    A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks David Angeli, Patrick De not approach the boundary of this orthant. For chemical reaction networks and other models in biology as well as sufficient conditions for of chemical species in reaction networks, and the applicability

  10. Memory Switches in Chemical Reaction Space Naren Ramakrishnan1,2

    E-print Network

    Ramakrishnan, Naren

    Memory Switches in Chemical Reaction Space Naren Ramakrishnan1,2 , Upinder S. Bhalla3 * 1 and family relationships among such switches. We performed a systematic exploration of chemical reaction of bistable systems. Thus, our systematic exploration of chemical reaction space has produced a valuable

  11. A Petri net approach to the study of persistence in chemical reaction networks

    E-print Network

    Sontag, Eduardo

    A Petri net approach to the study of persistence in chemical reaction networks David Angeli Dip. di in the positive orthant do not approach the boundary of the orthant. For chemical reactions and population models checkable conditions for persistence of chemical species in reaction networks, using concepts and tools from

  12. Time-resolved UPS: a new experimental technique for the study of surface chemical reactions

    E-print Network

    Bauer, Michael

    Time-resolved UPS: a new experimental technique for the study of surface chemical reactions the dynamics of surface chemical reactions using photoemission spectroscopy. In this paper we describe details. Keywords: Visible and ultraviolet photoelectron spectroscopy; Surface chemical reaction; Oxygen; Platinum 1

  13. Chemical reactions between cold trapped Ba+ ions and neutral molecules in the gas phase

    E-print Network

    Schiller, Stephan

    Chemical reactions between cold trapped Ba+ ions and neutral molecules in the gas phase B. Roth, D-cooled ion trapping apparatus, we have investigated laser-induced chemical reactions between cold trapped Ba is to investigate chemical reactions between cold atomic and molecular ions trapped in radio-frequency traps

  14. Computational analysis of an instantaneous chemical reaction in a T-microreactor

    E-print Network

    Bothe, Dieter

    Computational analysis of an instantaneous chemical reaction in a T-microreactor Dieter Bothe 1 in liquid systems with very fast irreversible chemical reaction to the case of unequal diffusivities and energy transport. Hence, they are well suited for fast chemical reactions which are seriously affected

  15. State-Estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero De ciency Type

    E-print Network

    Chaves, Madalena

    State-Estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero De#12;ciency Type #3 for detectability for chemical reaction networks of the Feinberg-Horn-Jackson zero de#12;ciency type. Under. Keywords: observers, chemical reaction systems, detectability 1 Introduction One of the most interesting

  16. Explicit Collision Simulation of Chemical Reactions in a Graph Based Artifical Chemistry

    E-print Network

    Stadler, Peter F.

    Explicit Collision Simulation of Chemical Reactions in a Graph Based Artifical Chemistry Gil Benk¨uckel Theory method. Here we describe an extension of the model that models chemical reactions as the result, the reactions are simulated in a way that treats the formation and breakage of individual chemical bonds

  17. DNS of a Mach 4 Boundary Layer with Chemical Reactions M. Pino Martin

    E-print Network

    Martn, Pino

    DNS of a Mach 4 Boundary Layer with Chemical Reactions M. Pino Martin Graham V. Candler Aerospace understanding of the interaction between turbulent motion and chemical reactions in hypersonic flows is limited to perform a fundamental study of isotropic turbulence interacting with finite-rate chemical reactions

  18. A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks

    E-print Network

    Sontag, Eduardo

    A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks David Angeli, Patrick De not approach the boundary of this orthant. For chemical reaction networks and other models in biology as well as sufficient conditions for persistence of chemical species in reaction networks

  19. Modeling Chemical Reactions with Single Reactant Specie Abhyudai Singh and Jo~ao Pedro Hespanha

    E-print Network

    Hespanha, Joo Pedro

    Modeling Chemical Reactions with Single Reactant Specie Abhyudai Singh and Jo~ao Pedro Hespanha Abstract-- A procedure for constructing approximate stochastic models for chemical reactions involving involved in a chemical reaction as the continuous state of a polynomial Stochastic Hybrid System (p

  20. Predicting the Progress of Diffusively Limited Chemical Reactions in the Presence of Chaotic Advection

    E-print Network

    Gollub, Jerry P.

    Predicting the Progress of Diffusively Limited Chemical Reactions in the Presence of Chaotic chemical reactions in two-dimensional fluid flows are investigated using experimentally measured stretchingRevLett.96.024501 PACS numbers: 47.52.+j, 05.45.a, 47.70.Fw, 82.40.Ck Chemical reactions in solution

  1. CHEMICAL REACTIONS AS -LIMIT OF DIFFUSION MARK A. PELETIER, GIUSEPPE SAVARE, AND MARCO VENERONI

    E-print Network

    Veneroni, Marco

    CHEMICAL REACTIONS AS -LIMIT OF DIFFUSION MARK A. PELETIER, GIUSEPPE SAVARE, AND MARCO VENERONI a rigorous proof of Kramers's formal derivation, and we show how chemical reactions and diffusion processes can be embedded in a common framework. This allows one to derive a chemical reaction as a singular

  2. Effect of chemical reactions on decaying isotropic turbulence M. Pino Martin and Graham V. Candler

    E-print Network

    Martn, Pino

    Effect of chemical reactions on decaying isotropic turbulence M. Pino Martin and Graham V. Candler combustion flows, however the interaction between turbulent motion and the chemical reactions that occur. In hypersonic flows the dominant chemical reactions are the dissociation and recombination of nitrogen

  3. Explicit Collision Simulation of Chemical Reactions in a Graph Based Artifical Chemistry

    E-print Network

    Stadler, Peter F.

    Explicit Collision Simulation of Chemical Reactions in a Graph Based Artifical Chemistry Gil Benk?uckel Theory method. Here we describe an extension of the model that models chemical reactions as the result, the reactions are simulated in a way that treats the formation and breakage of individual chemical bonds

  4. HOW TO AVOID OVERCOOKING: OPTIMAL YIELD OF B FROM THE CONSECUTIVE CHEMICAL REACTIONS ABC

    E-print Network

    Salamon, Peter

    HOW TO AVOID OVERCOOKING: OPTIMAL YIELD OF B FROM THE CONSECUTIVE CHEMICAL REACTIONS ABC Thor A the consecutive chemical reactions ABC both numerically and analytically using temperature as the control. Keywords: Optimal control, Chemical reactions, Temperature control, Optimal yield INTRODUCTION Already half

  5. Chemical Reaction of Cobalt Clusters with Ethanol by Using FT-ICR Mass Spectrometer

    E-print Network

    Maruyama, Shigeo

    1 * *1 *2 Chemical Reaction of Cobalt Clusters with Ethanol by Using FT-ICR Mass-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Chemical reaction of cobalt clusters with ethanol (1 CH3 2 CH2OH, and on methyl in case of dehydrogenated chemisorptions. Keyword: FT-ICR, Chemical Reaction, Cobalt, Cluster

  6. Chemical reaction network approaches to Biochemical Systems Theory.

    PubMed

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Mller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Mller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed. PMID:26363083

  7. What are proteins? Proteins are important; e.g. for catalyzing and regulating biochemical reactions,

    E-print Network

    Gerstein, Mark

    (or lack thereof) Proteins unfold or denature with increasing temperature or chemical denaturants reactions, transporting molecules, ... Linear polymer chain composed of tens (peptides) to thousands interactions, ... Unfolding: increase in conformational entropy, electric charge... H (hydrophobic) P (polar

  8. Surface Reaction Kinetics of Ga 1x In x P Growth During Pulsed Chemical Beam Epitaxy

    E-print Network

    Surface Reaction Kinetics of Ga 1x In x P Growth During Pulsed Chemical Beam Epitaxy N. Dietz 1 growth has been a slow process because little is known about chemical reaction properties and reaction into the surface reaction kinetics during an organometallic deposition process. These insights will allow us

  9. Holistic Metrics for Assessment of the Greenness of Chemical Reactions in the Context of Chemical Education

    ERIC Educational Resources Information Center

    Ribeiro, M. Gabriela T. C.; Machado, Adelio A. S. C.

    2013-01-01

    Two new semiquantitative green chemistry metrics, the green circle and the green matrix, have been developed for quick assessment of the greenness of a chemical reaction or process, even without performing the experiment from a protocol if enough detail is provided in it. The evaluation is based on the 12 principles of green chemistry. The

  10. Kinetics and thermodynamics of chemical reactions in Li/SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Hansen, Lee D.; Frank, Harvey

    1987-01-01

    Work is described that was designed to determine the kinetic constants necessary to extrapolate kinetic data on Li/SOCl2 cells over the temperature range from 25 to 75 C. A second objective was to characterize as far as possible the chemical reactions that occur in the cells since these reactions may be important in understanding the potential hazards of these cells. The kinetics of the corrosion processes in undischarged Li/SOCl2 cells were determined and separated according to their occurrence at the anode and cathode; the effects that switching the current on and off has on the corrosion reactions was determined; and the effects of discharge state on the kinetics of the corrosion process were found. A thermodynamic analysis of the current-producing reactions in the cell was done and is included.

  11. Review and analysis of high temperature chemical reactions and the effect of non-equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1986-01-01

    Chemical reactions at high temperatures have been considered extensively because of their importance to the heating effects on re-entry of space vehicles. Data on these reactions however, are not abundant and even when found there are discrepancies in data collected by various investigators. In particular, data for recombination reactions are calculated from the dissociation reactions or vice versa through the equilibrium constant. This involves the use of the principle of detailed balancing. This principle is discussed in reference to conditions where it is valid as well as to those where it is not valid. Related topics that merit further study or for which applicable information was available are briefly mentioned in an appendix to this report.

  12. Assessment of existing H2/O2 chemical reaction mechanisms at reheat gas turbine conditions

    E-print Network

    Weydahl, Torleif; Seljeskog, Morten; Haugen, Nils Erland L

    2011-01-01

    This paper provides detailed comparisons of chemical reaction mechanisms of H2 applicable at high preheat temperatures and pressures relevant to gas turbine and particularly Alstom's reheat gas turbine conditions. It is shown that the available reaction mechanisms exhibit large differences in several important elementary reaction coefficients. The reaction mechanisms are assessed by comparing ignition delay and laminar flame speed results obtained from CHEMKIN with available data, however, the amount of data at these conditions is scarce and a recommended candidate among the mechanisms can presently not be selected. Generally, the results with the GRI-Mech and Leeds mechanisms deviate from the Davis, Li, O'Conaire, Konnov and San Diego mechanisms, but there are also significant deviations between the latter five mechanisms that altogether are better adapted to hydrogen. The differences in ignition delay times between the dedicated hydrogen mechanisms (O'Conaire, Li and Konnov) range from approximately a maxim...

  13. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  14. Nature of the chemical reaction for furfural modified asphalt

    SciTech Connect

    Memon, G.M.; Chollar, B.H.

    1994-12-31

    Three of the most serious problems of asphalt pavements today are rutting, cracking, and susceptibility to moisture damage (stripping). Asphalt manufacturers have been mixing asphalts with polymers to produce polymer-modified asphalts with improved rheological properties. However, the costs for these improved polymer-modified asphalts are almost double that of regular asphalts. FHWA researchers have found that asphalt modified by the chemical, furfural (which is prepared by simple elimination reaction of aldopentoses obtained from oat hulls), exhibited better stripping properties and was less temperature susceptible than the virgin asphalt while costing less than polymer-modified asphalts. This paper discusses the possible structure of the furfural-modified asphalt, data for the virgin and furfural-modified asphalts and their Corbett fractions, data from a model reaction between phenol and furfural, and a possible explanation of this structure based on these data.

  15. Chemical characteristics of mineral trioxide aggregate and its hydration reaction.

    PubMed

    Chang, Seok-Woo

    2012-11-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  16. Thermal energy storage. [by means of chemical reactions

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.

  17. Dynamics and Kinetics Study of "In-Water" Chemical Reactions by Enhanced Sampling of Reactive Trajectories.

    PubMed

    Zhang, Jun; Yang, Y Isaac; Yang, Lijiang; Gao, Yi Qin

    2015-11-12

    High potential energy barriers and engagement of solvent coordinates set challenges for in silico studies of chemical reactions, and one is quite commonly limited to study reactions along predefined reaction coordinate(s). A systematic protocol, QM/MM MD simulations using enhanced sampling of reactive trajectories (ESoRT), is established to quantitatively study chemical transitions in complex systems. A number of trajectories for Claisen rearrangement in water and toluene were collected and analyzed, respectively. Evidence was found that the bond making and breaking during this reaction are concerted processes in solutions, preferentially through a chairlike configuration. Water plays an important dynamic role that helps stabilize the transition sate, and the dipole-dipole interaction between water and the solute also lowers the transition barrier. The calculated rate coefficient is consistent with the experimental measurement. Compared with water, the reaction pathway in toluene is "narrower" and the reaction rate is slower by almost three orders of magnitude due to the absence of proper interactions to stabilize the transition state. This study suggests that the "in-water" nature of the Claisen rearrangement in aqueous solution influences its thermodynamics, kinetics, as well as dynamics. PMID:26485567

  18. EYE MOVEMENT AND REACTION TIME ARE BOTH IMPORTANT IN ASSESSMENT OF DIALOG BOX USABILITY

    E-print Network

    EYE MOVEMENT AND REACTION TIME ARE BOTH IMPORTANT IN ASSESSMENT OF DIALOG BOX USABILITY Bruce N and reaction time) were combined with eye movement patterns to study button placement and highlighting. Traditional measures and eye movement patterns yielded different results: Reaction time analyses suggested

  19. Method for detecting pollutants. [through chemical reactions and heat treatment

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Richards, R. R.; Conway, E. J. (inventors)

    1976-01-01

    A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.

  20. Transient assembly of active materials fueled by a chemical reaction

    NASA Astrophysics Data System (ADS)

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  1. Exploring chemical diversity via a modular reaction pairing strategy.

    PubMed

    Loh, Joanna K; Yoon, Sun Young; Samarakoon, Thiwanka B; Rolfe, Alan; Porubsky, Patrick; Neuenswander, Benjamin; Lushington, Gerald H; Hanson, Paul R

    2012-01-01

    The efficient synthesis of an 80-member library of unique benzoxathiazocine 1,1-dioxides by a microwave-assisted, intermolecular nucleophilic aromatic substitution (S(N)Ar) diversification pathway is reported. Eight benzofused sultam cores were generated by means of a sulfonylation/S(N)Ar/Mitsunobu reaction pairing protocol, and subsequently diversified by intermolecular S(N)Ar with ten chiral, non-racemic amine/amino alcohol building blocks. Computational analyses were employed to explore and evaluate the chemical diversity of the library. PMID:23019462

  2. On the chemical reaction of matter with antimatter.

    PubMed

    Lodi Rizzini, Evandro; Venturelli, Luca; Zurlo, Nicola

    2007-06-01

    A chemical reaction between the building block antiatomic nucleus, the antiproton (p or H- in chemical notation), and the hydrogen molecular ion (H2+) has been observed by the ATHENA collaboration at CERN. The charged pair interact via the long-range Coulomb force in the environment of a Penning trap which is purpose-built to observe antiproton interactions. The net result of the very low energy collision of the pair is the creation of an antiproton-proton bound state, known as protonium (Pn), together with the liberation of a hydrogen atom. The Pn is formed in a highly excited, metastable, state with a lifetime against annihilation of around 1 micros. Effects are observed related to the temperature of the H2+ prior to the interaction, and this is discussed herein. PMID:17492700

  3. Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-06-01

    A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  4. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  5. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  6. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Technical Reports Server (NTRS)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally adiabatic functions in various quantum scattering algorithms.

  7. A Multi-Time-Scale Analysis of Chemical Reaction Networks : II. Stochastic Systems

    E-print Network

    Ciocan-Fontanine, Ionut

    A Multi-Time-Scale Analysis of Chemical Reaction Networks : II. Stochastic Systems Xingye Kan1 reactions, and for which the time scales are widely separated. We develop a computational algorithm consider stochastic descriptions of chemical reaction networks in which there are both fast and slow

  8. Testing Thermodynamic Compliance of Chemical Reaction Networks in Polynomial Time on

    E-print Network

    Rowell, Eric C.

    Testing Thermodynamic Compliance of Chemical Reaction Networks in Polynomial Time on Average of thermodynamics often occur unde- tected in chemical reaction networks, leading to inaccuracy of the model. Beard vectors based on cycles of an oriented matroid derived from a reaction network's stoichiometric matrix

  9. On persistence of chemical reaction networks with time-dependent kinetics and no global conservation laws

    E-print Network

    Sontag, Eduardo

    On persistence of chemical reaction networks with time-dependent kinetics and no global work. The new results allow the consideration of reaction rates which are time-varying, thus for persistence of chemical reaction networks are proposed, which extend those obtained by the authors in previous

  10. Femtosecond Chemically Activated Reactions: Concept of Nonstatistical Activation at High Thermal Energies

    E-print Network

    Kim, Sang Kyu

    Femtosecond chemical activation of reactions at very high thermal energies, much above the bond energyFemtosecond Chemically Activated Reactions: Concept of Nonstatistical Activation at High Thermal Energies Sang Kyu Kim, Ju Guo, J. Spencer Baskin, and Ahmed H. Zewail* Arthur Amos Noyes Chemical Physics

  11. Luminescence from Collapsing Centimeter Bubbles Expanded by Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Duplat, Jrme; Villermaux, Emmanuel

    2015-08-01

    We report on a new method for realizing an exceptionally strong inertial confinement of a gas in a liquid: A centimetric spherical bubble filled with a reactive gaseous mixture in a liquid is expanded by an exothermic chemical reaction whose products condense in the liquid at the bubble wall. Hence, the cavity formed in this way is essentially empty as it collapses. The temperatures reached at maximum compression, inferred from the cavity radius dynamics and further confirmed by spectroscopic measurements exceed 20 000 K. Because the cavity is typically big, our findings also provide unique space and time resolved sequences of the events accompanying the collapse, notably the development of the inertial instability notoriously known to deter strong compression.

  12. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  13. Simulation of quantum interference by reactions of chemical type

    E-print Network

    Yuri Ozhigov

    2003-11-06

    A quantum unitary evolution alternated with measurements is simulated by a bubble filled with fictitious particles called amplitude quanta that move chaotically and can be transformed by the simple rules that look like chemical reactions. A basic state of simulated system is treated as a collision of the two corresponding amplitude quanta, that gives the quantum statistics of measurements. The movement of the external membrane of the bubble corresponds to the classical dynamics of the simulated system. Measurements are treated as the membrane perforations and they are completely determined by initial conditions. An identity of particles and an entanglement is simulated by the membranes touching. The required memory grows linearly where the number of particles increases, but entangled states of the big number of particles can be simulated. The method can be used for a visualization of quantum dynamics.

  14. DownloadedBy:[CanadianResearchKnowledgeNetwork]At:10:3327May2008 Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method

    E-print Network

    Lisal, Martin

    DownloadedBy:[CanadianResearchKnowledgeNetwork]At:10:3327May2008 Simulation of chemical reaction, the relationship between the RxMC method and other techniques that simulate chemical reaction behaviour is given; reaction; equilibria; simulation 1. Introduction The behaviour of chemical reactions in highly non

  15. Modeling chemical reactions in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Shabanov, S. V.; Gornushkin, I. B.

    2015-11-01

    Under the assumption of local thermal equilibrium, a numerical algorithm is proposed to find the equation of state for laser-induced plasmas (LIPs) in which chemical reactions are permitted in addition to ionization processes. The Coulomb interaction in plasma is accounted for by the Debye-Hckel method. The algorithm is used to calculate the equation of state for LIPs containing carbon, silicon, nitrogen, and argon. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules {N}_2, {C}_2, {Si}_2, {CN}, {SiN}, {SiC} and their ions. The algorithm is incorporated into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas. The dynamics of LIP plumes obtained by the ablation of SiC, solid silicon, or solid carbon in an ambient gas containing {N}_2 and Ar is simulated to study formation of molecules and molecular ions.

  16. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Ziaul Huque

    2007-08-31

    This is the final technical report for the project titled 'Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks'. The aim of the project was to develop an efficient chemistry model for combustion simulations. The reduced chemistry model was developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) was used via a new network topology known as Non-linear Principal Components Analysis (NPCA). A commonly used Multilayer Perceptron Neural Network (MLP-NN) was modified to implement NPCA-NN. The training rate of NPCA-NN was improved with the GEneralized Regression Neural Network (GRNN) based on kernel smoothing techniques. Kernel smoothing provides a simple way of finding structure in data set without the imposition of a parametric model. The trajectory data of the reaction mechanism was generated based on the optimization techniques of genetic algorithm (GA). The NPCA-NN algorithm was then used for the reduction of Dimethyl Ether (DME) mechanism. DME is a recently discovered fuel made from natural gas, (and other feedstock such as coal, biomass, and urban wastes) which can be used in compression ignition engines as a substitute for diesel. An in-house two-dimensional Computational Fluid Dynamics (CFD) code was developed based on Meshfree technique and time marching solution algorithm. The project also provided valuable research experience to two graduate students.

  17. Numerical solutions of several reflected shock-wave flow fields with nonequilibrium chemical reactions

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.; Presley, L. L.; Williams, E. V.

    1972-01-01

    The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.

  18. Multistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis

    E-print Network

    Zhao, Huimin

    as to more sustainable synthetic routes. In addition, multistep one-pot reactions can improve stereochemicalMultistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis are developed are generally fine-tuned for individual reactions. In a multistep synthesis, each reaction

  19. Progress in an oxygen-carrier reaction kinetics experiment for rotary-bed chemical looping combustion

    E-print Network

    Jester-Weinstein, Jack (Jack L.)

    2013-01-01

    The design process for an experimental platform measuring reaction kinetics in a chemical looping combustion (CLC) process is documented and justified. To enable an experiment designed to characterize the reaction kinetics ...

  20. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part addresses modeling of the arc process for fullerene and carbon nanotube production using O-D, 1-D and 2-D fluid flow models. The third part addresses simulations of the pulsed laser ablation process using time-dependent techniques in 2-D, and a steady state 2-D simulation of a continuous laser ablation process. The fourth part addresses steady state modeling in O-D and 2-D of the HiPco process. In each of the simulations, there is a variety of simplifications that are made that enable one to concentrate on one aspect or another of the process. There are simplifications that can be made to the chemical reaction models , e.g. reduction in number of species by lumping some of them together in a representative species. Other simulations are carried out by eliminating the chemistry altogether in order to concentrate on the fluid dynamics. When solving problems with a large number of species in more than one spatial dimension, it is almost imperative that the problem be decoupled by solving for the fluid dynamics to find the fluid motion and temperature history of "particles" of fluid moving through a reactor. Then one can solve the chemical rate equations with complex chemistry following the temperature and pressure history. One difficulty is that often mixing with an ambient gas is involved. Therefore, one needs to take dilution and mixing into account. This changes the ratio of carbon species to background gas. Commercially available codes may have no provision for including dilution as part of the input. One must the write special solvers for including dilution in decoupled problems. The article addresses both ful1erene production and single-walled carbon nanotube (SWNT) production. There are at least two schemes or concepts of SWNT growth. This article will only address growth in the gas phase by carbon and catalyst cluster growth and SW T formation by the addition of carbon. There are other models that conceive of SWNT growth as a phase separation process from clusters me up carbon and metal catalyst, with the carbon precipitating from the cluster as it co

  1. Massively parallel computation of 3D flow and reactions in chemical vapor deposition reactors

    SciTech Connect

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Moffat, H.K.

    1997-12-01

    Computer modeling of Chemical Vapor Deposition (CVD) reactors can greatly aid in the understanding, design, and optimization of these complex systems. Modeling is particularly attractive in these systems since the costs of experimentally evaluating many design alternatives can be prohibitively expensive, time consuming, and even dangerous, when working with toxic chemicals like Arsine (AsH{sub 3}): until now, predictive modeling has not been possible for most systems since the behavior is three-dimensional and governed by complex reaction mechanisms. In addition, CVD reactors often exhibit large thermal gradients, large changes in physical properties over regions of the domain, and significant thermal diffusion for gas mixtures with widely varying molecular weights. As a result, significant simplifications in the models have been made which erode the accuracy of the models` predictions. In this paper, the authors will demonstrate how the vast computational resources of massively parallel computers can be exploited to make possible the analysis of models that include coupled fluid flow and detailed chemistry in three-dimensional domains. For the most part, models have either simplified the reaction mechanisms and concentrated on the fluid flow, or have simplified the fluid flow and concentrated on rigorous reactions. An important CVD research thrust has been in detailed modeling of fluid flow and heat transfer in the reactor vessel, treating transport and reaction of chemical species either very simply or as a totally decoupled problem. Using the analogy between heat transfer and mass transfer, and the fact that deposition is often diffusion limited, much can be learned from these calculations; however, the effects of thermal diffusion, the change in physical properties with composition, and the incorporation of surface reaction mechanisms are not included in this model, nor can transitions to three-dimensional flows be detected.

  2. Sum over Histories Representation for Kinetic Sensitivity Analysis: How Chemical Pathways Change When Reaction Rate Coefficients Are Varied.

    PubMed

    Bai, Shirong; Davis, Michael J; Skodje, Rex T

    2015-11-12

    The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of how that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux. PMID:26493932

  3. A Prelude to Surface Chemical Reaction: Imaging the Induction Period of Sulfur Interaction with a Strained Cu Layer

    E-print Network

    Pohl, Karsten

    in material science. Ultrathin metal films play a significant role in science and technology: their reactivity#12;A Prelude to Surface Chemical Reaction: Imaging the Induction Period of Sulfur Interaction interaction with metal surfaces are important for understanding the poisoning in catalysis and corrosion

  4. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    2006-01-01

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  5. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  6. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering

    PubMed

    Hla; Bartels; Meyer; Rieder

    2000-09-25

    All elementary steps of a chemical reaction have been successfully induced on individual molecules with a scanning tunneling microscope (STM) in a controlled step-by-step manner utilizing a variety of manipulation techniques. The reaction steps involve the separation of iodine from iodobenzene by using tunneling electrons, bringing together two resultant phenyls mechanically by lateral manipulation and, finally, their chemical association to form a biphenyl molecule mediated by excitation with tunneling electrons. The procedures presented here constitute an important step towards the assembly of individual molecules out of simple building blocks in situ on the atomic scale. PMID:10991231

  7. Capillary Action may Cool Systems and Precisely balance Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-10-01

    It is well known that it takes no work for Water to rise in a Capillary tube against the force of Gravity. There is a precise balance in this system that resembles Robert Millikan's ``Oil Drop'' experiment, where mass was balanced against the electrostatic force. If at the top of the capillary tube there is evaporation, one can see that the system is cooled as another water molecule has room to move up the column. Furthermore, if the evaporation process can be controlled one photon at a time, a precise balance is created between a photon, and the height/mass of the column. If other molecules are place in the column, they can be moved up and down the column, in a chromatograph way, in a fairly precise manner, by controlling evaporation and molecular weight. If in addition to all of this, the interface of the solution against the walls of the column have Fermi levels, it can be seen as a very precise Electrochemical Device. In the situation of nanotubes, as opposed to trees and plants, these properties can be used to create measure environmental properties and to Balance Chemical Reactions. Forests, and Plants may cool themselves and their environment using this process, and using this process coupled with more energetic photons through photosynthesis.

  8. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2004-12-01

    This is an annual technical report for the work done over the last year (period ending 9/30/2004) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the development of a procedure to speed up the training of NPCA. The developed procedure is based on the non-parametric statistical technique of kernel smoothing. When this smoothing technique is implemented as a Neural Network, It is know as Generalized Regression Neural Network (GRNN). We present results of implementing GRNN on a test problem. In addition, we present results of an in house developed 2-D CFD code that will be used through out the project period.

  9. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2005-12-01

    This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the development of a novel procedure to speed up the training of NPCA. The same procedure termed L{sub 2}Boost can be used to increase the order of approximation of the Generalized Regression Neural Network (GRNN). It is pointed out that GRNN is a basic procedure for the emerging mesh free CFD. Also reported is an efficient simple approach of computing the derivatives of GRNN function approximation using complex variables or the Complex Step Method (CSM). The results presented demonstrate the significance of the methods developed and will be useful in many areas of applied science and engineering.

  10. Chemical reactions between Venus' surface and atmosphere - An update. (Invited)

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.

    2013-12-01

    The surface of Venus, at ~740K, is hot enough to allow relatively rapid chemical reactions between it and the atmosphere, i.e. weathering. Venus chemical weathering has been explored in detail [1], to the limits of available data. New data from Venus Express (VEx) and new ideas from exoplanets have sparked a modest renewal of interest in Venus weathering. Venus' surface cannot be observed in visible light, but there are several NIR ';windows' through its atmosphere that allow surface imaging. The VIRTIS spectrometer on VEx viewed the surface through one window [2]; emissivity variations among lava flows on Imdr and Themis Regios have been explained as varying degrees of weathering, and thus age [3]. The VMC camera on VEx also provides images through a NIR window, which suggest variable degrees of weathering on some basaltic plains [4]. Indirect evidence for weathering may come from varying SO2 abundance at Venus' cloud tops; repeated rapid increases and gradual declines may represent volcanic eruptions followed by weathering to form sulfate minerals [5]. Continued geochemical modeling relevant to Venus weathering is motivated by expolanet studies [6]. Models have been extended to hypothetical exo-Venuses of different temperatures and surface compositions [7]. The idea that Venus' atmosphere composition can be buffered by reaction with its surface was explored in detail, and the derived constraint extended to other types of planets [8]. Several laboratories are investigating Venus weathering, motivated in part by the hope that they can provide real constraints on timescales of Venus volcanism [3]. Aveline et al. [9] are extending early studies [10] by reacting rocks and minerals with concentrated SO2 (to accelerate reaction rates to allow detectability of products). Kohler et al. [11] are investigating the stability of metals and chalcogenides as possible causes of the low-emissivity surfaces at high elevations. Berger and Aigouy [12] studied rock alteration on a hypothetical early Venus with a water-rich atmosphere. Martin et al. [13] investigated the fate of weathered rock when heated (by igneous or impact events). Our understanding of Venus' geological history is stymied by a lack of data - spacecraft observations of and/or at its surface. VMC on VEx may continue to provide new data on surface emissivity, but their interpretation is inherently ambiguous. Laboratory experiments seem the most promising approach - attempting to quantify rates of weathering and thus volcanism [3], and (with luck) framing significant problems that can be directly answered by spacecraft observations. [1] Fegley B.Jr. et al. (1997) In Venus II. U. Ariz. Press. p. 591. [2] Helbert J. et al. (2008) GRL 35, L11201. [3] Smrekar S.E et al. (2010) Science 328, 605-608. [4] Basilevsky A.T. et al. (2012) Icarus 217, 434-450. [5] Marcq E. et al. (2013) Nature Geoscience 6, 25-28. [6] Kane S.R. et al. (2013) Astrophysical J. 770, L20. [7] Schaefer L. & Fegley B.Jr. (2011) Astrophysical J. 729, 6. [8] Treiman A.H. & Bullock M.A. (2012) Icarus 217, 534-541. [9] Aveline D.C. et al. (2011) Lunar Planet. Sci. Conf. 42, Abstr. #2165. [10] Fegley B.Jr. & Prinn R.G. (1989) Nature 337, 55-58. [11] Kohler E. et al. (2012) Lunar Planet. Sci. Conf. 43, Abstr. #2749. [12] Berger G. & Aigouy T. (2011) Lunar Planet. Sci. Conf. 42, Abstr. #1660. [13] Martin A.M. et al. (2012) Earth Planet. Sci. Lett. 331-332, 291-304.

  11. Studies in photochemical smog chemistry. 1. Atmospheric chemistry of toulene. 2. Analysis of chemical reaction mechanisms for photochemical smog

    SciTech Connect

    Leone, J.A.

    1985-01-01

    This study focuses on two related topics in the gas phase organic chemistry of importance in urban air pollution. An experimental effort aimed at developing a new explicit reaction mechanism for the atmospheric photooxidation of toluene is described. This mechanism is tested using experimental data from both indoor and outdoor smog chamber facilities. The predictions of the new reaction mechanism are found to be in good agreement with both sets of experimental data. Additional simulations performed with the new mechanism are used to investigate various mechanistic paths. A theoretical analysis of lumped chemical reaction mechanisms for photochemical smog is presented. Included is a description of a new counter species analysis technique which can be used to analyze any complex chemical reaction mechanism. When applied to mechanisms for photochemical smog, this analysis is shown capable of providing answers to previously inaccessible questions such as the relative contributions of individual organics to photochemical ozone formation.

  12. Polarization of molecular angular momentum in the chemical reactions Li + HF and F + HD.

    PubMed

    Krasilnikov, Mikhail B; Popov, Ruslan S; Roncero, Octavio; De Fazio, Dario; Cavalli, Simonetta; Aquilanti, Vincenzo; Vasyutinskii, Oleg S

    2013-06-28

    The quantum mechanical approach to vector correlation of angular momentum orientation and alignment in chemical reactions [G. Balint-Kurti and O. S. Vasyutinskii, J. Phys. Chem. A 113, 14281 (2009)] is applied to the molecular reagents and products of the Li + HF [L. Gonzalez-Sanchez, O. S. Vasyutinskii, A. Zanchet, C. Sanz-Sanz, and O. Roncero, Phys. Chem. Chem. Phys. 13, 13656 (2011)] and F + HD [D. De Fazio, J. Lucas, V. Aquilanti, and S. Cavalli, Phys. Chem. Chem. Phys. 13, 8571 (2011)] reactions for which accurate scattering information has become recently available through time-dependent and time-independent approaches. Application of the theory to two important particular cases of the reactive collisions has been considered: (i) the influence of the angular momentum polarization of reactants in the entrance channel on the spatial distribution of the products in the exit channel and (ii) angular momentum polarization of the products of the reaction between unpolarized reactants. In the former case, the role of the angular momentum alignment of the reactants is shown to be large, particularly when the angular momentum is perpendicular to the reaction scattering plane. In the latter case, the orientation and alignment of the product angular momentum was found to be significant and strongly dependent on the scattering angle. The calculation also reveals significant differences between the vector correlation properties of the two reactions under study which are due to difference in the reaction mechanisms. In the case of F + HD reaction, the branching ratio between HF and DF production points out interest in the insight gained into the detailed dynamics, when information is available either from exact quantum mechanical calculations or from especially designed experiments. Also, the geometrical arrangement for the experimental determination of the product angular momentum orientation and alignment based on a compact and convenient spherical tensor expression for the intensity of the resonance enhanced multiphoton ionization (REMPI 2 + 1) signal is suggested. PMID:23822239

  13. Motivational Factors Contributing to Turkish High School Students' Achievement in Gases and Chemical Reactions

    ERIC Educational Resources Information Center

    Kadioglu, Cansel; Uzuntiryaki, Esen

    2008-01-01

    This study aimed to investigate the contribution of motivational factors to 10th grade students' achievement in gases and chemical reactions in chemistry. Three hundred fifty nine 10th grade students participated in the study. The Gases and Chemical Reactions Achievement Test and the Motivated Strategies for Learning Questionnaire were

  14. Design criteria for extraction with chemical reaction and liquid membrane permeation

    NASA Technical Reports Server (NTRS)

    Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.

    1988-01-01

    The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.

  15. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John (Stanford, CA); Escher, Claus (Nieder-Ronstadt, DE)

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  16. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  17. Acid-Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols

    ERIC Educational Resources Information Center

    Goodney, David E.

    2006-01-01

    Examples of acid-base reactions from Robert Boyle's "The Sceptical Chemist" are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe the same reaction that can be done quite simply with a chemical equation. Reading or hearing the words, however, enriches the student's

  18. Introducing Stochastic Simulation of Chemical Reactions Using the Gillespie Algorithm and MATLAB: Revisited and Augmented

    ERIC Educational Resources Information Center

    Argoti, A.; Fan, L. T.; Cruz, J.; Chou, S. T.

    2008-01-01

    The stochastic simulation of chemical reactions, specifically, a simple reversible chemical reaction obeying the first-order, i.e., linear, rate law, has been presented by Martinez-Urreaga and his collaborators in this journal. The current contribution is intended to complement and augment their work in two aspects. First, the simple reversible

  19. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    ERIC Educational Resources Information Center

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen

  20. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,

  1. The influence of the "cage effect" on the mechanism of reversible bimolecular multistage chemical reactions in solutions

    NASA Astrophysics Data System (ADS)

    Doktorov, Alexander B.

    2015-08-01

    Manifestations of the "cage effect" at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a "cage complex." Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the "cage effect" leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  2. PUBLISHED ONLINE: 22 JULY 2012 | DOI: 10.1038/NPHYS2373 Controlling chemical reactions of a single particle

    E-print Network

    Loss, Daniel

    LETTERS PUBLISHED ONLINE: 22 JULY 2012 | DOI: 10.1038/NPHYS2373 Controlling chemical reactions, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products

  3. Thermal Science & Engineering Vol.7 No. 6 (1999) FT-ICR Study of Chemical Reaction of Silicon Clusters

    E-print Network

    Maruyama, Shigeo

    1999-01-01

    Thermal Science & Engineering Vol.7 No. 6 (1999) - 1 - FT-ICR Study of Chemical Reaction of Silicon Clusters * Shigeo MARUYAMA , Masamichi KOHNO and Shuhei INOUE Abstract Chemical reaction of small silicon the reaction as an ethylene molecule. Key Words: Silicon Cluster, Chemical Reaction, Ethylene, FT-ICR, Mass

  4. Phase and chemical equilibria in the transesterification reaction of vegetable oils with supercritical lower alcohols

    NASA Astrophysics Data System (ADS)

    Anikeev, V. I.; Stepanov, D. A.; Ermakova, A.

    2011-08-01

    Calculations of thermodynamic data are performed for fatty acid triglycerides, free fatty acids, and fatty acid methyl esters, participants of the transesterification reaction of vegetable oils that occurs in methanol. Using the obtained thermodynamic parameters, the phase diagrams for the reaction mixture are constructed, and the chemical equilibria of the esterification reaction of free fatty acids and the transesterification reaction of fatty acid triglycerides attained upon treatment with supercritical methanol are determined. Relying on our analysis of the obtained equilibria for the esterification reaction of fatty acids and the transesterification reaction of triglycerides attained upon treatment with lower alcohols, we select the optimum conditions for performing the reaction in practice.

  5. Measurements and analysis of alpha-induced reactions of importance for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    de Messieres, Genevieve Escande

    2011-11-01

    Reactions during stellar helium burning are of primary importance for understanding nucleosynthesis. A detailed understanding of the critical reaction chain 4He(2alpha, gamma)12C( alpha, gamma)16O(alpha, gamma) 20Ne is necessary both because it is the primary energy source and because it determines the ratio of 12C to 16O produced, which in turn significantly effects subsequent nucleosynthesis. Also during Helium burning, the reactions 22Ne(alpha, n)25Mg and 22Ne(alpha, gamma )26Mg are crucial in determining the amount of neutrons available for the astrophysical s-process. This thesis presents new experimental results concerning the 16O(alpha, gamma) 20Ne, 22Ne(alpha, n)25Mg, and 22Ne(alpha, gamma)26Mg reaction rates. These results are then applied to the calculation of the associated stellar reaction rates in order to achieve better accuracy.

  6. Importance of equilibrium fluctuations between most stable conformers in the control of the reaction mechanism.

    PubMed

    Souza, Bruno S; Nome, Faruk

    2010-11-01

    Hydrolysis of closely related compounds show how subtle structural differences markedly change reaction mechanisms. While in the hydrolysis of 3-acetoxy-2-naphthoic acid (3AC2NA) the reacting groups rotate freely, favoring intramolecular general base catalysis, the 1-acetoxy-2-naphthoic acid (1AC2NA) isomer is caged in an energy wall that freezes a conformation suitable for intramolecular nucleophilic attack, in contrast to the results expected for reactions governed largely by electronic effects. The results highlight the importance of the dynamics of equilibrium fluctuations between most stable conformers in the control of the reaction mechanism, (i) promoting the nucleophilic attack in 1AC2NA by allowing the most stable conformers to equilibrate only via rotation in a direction that intercepts the reaction coordinate and (ii) favoring a general base-catalyzed water attack in 3AC2NA by favoring equilibration via rotation that allows inclusion of a water molecule in a proper position for reaction. PMID:20931978

  7. Numerical study of chemical reactions in a surface microdischarge tube with mist flow based on experiment

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Nishiyama, H.

    2014-03-01

    Recently, a water treatment method of spraying solution into a discharge region has been developed and shows high energy efficiency. In this study, a simulation model of a water treatment method using a surface microdischarge (SMD) tube with mist flow is proposed for further understanding the detailed chemical reactions. Our model has three phases (plasma, gas and liquid) and three simulation steps. The carrier gas is humid air including 2% or 3% water vapour. The chemical species diffusion characteristics in the SMD tube and the concentrations in a droplet are clarified in a wide pH interval. The simulation results show that the chemical species generated on the SMD tube inner wall are diffused to the central axis and dissolved into fine droplets. Especially, OH radicals dissolve into droplets a few mm away from the SMD tube wall because of acidification of the droplets. Furthermore, the hydrogen peroxide density, which is the most important indicator of a radical reaction in water, is influenced by the initial solution pH. This pH dependence results from ozone self-decomposition in water.

  8. Two-scale large deviations for chemical reaction kinetics through second quantization path integral

    E-print Network

    Tiejun Li; Feng Lin

    2015-08-26

    Motivated by the study of the rare event for a typical genetic switching model in systems biology, we aim to establish the general two-scale large deviations for chemical reaction kinetic systems in this paper. We build a formal approach to explicitly obtain the large deviation rate functionals of the considered two-scale processes based upon the second-quantization path integral technique. This approach is shown to be superior than the well-known WKB asymptotics in giving the correct large deviation rate functionals rather than a non-unique Hamilton-Jacobi equation for the quasi-potential. We get three important types of large deviation results when the underlying two times scales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by path integral. We find that the three regimes correspond to the same mean-field deterministic limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit in chemical reaction kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes.

  9. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.

    1993-01-01

    The main focus was the development, implementation, and calibration of methods for performing molecular electronic structure calculations to high accuracy. These various methods were then applied to a number of chemical reactions and species of interest to NASA, notably in the area of combustion chemistry. Among the development work undertaken was a collaborative effort to develop a program to efficiently predict molecular structures and vibrational frequencies using energy derivatives. Another major development effort involved the design of new atomic basis sets for use in chemical studies: these sets were considerably more accurate than those previously in use. Much effort was also devoted to calibrating methods for computing accurate molecular wave functions, including the first reliable calibrations for realistic molecules using full CI results. A wide variety of application calculations were undertaken. One area of interest was the spectroscopy and thermochemistry of small molecules, including establishing small molecule binding energies to an accuracy rivaling, or even on occasion surpassing, the experiment. Such binding energies are essential input to modeling chemical reaction processes, such as combustion. Studies of large molecules and processes important in both hydrogen and hydrocarbon combustion chemistry were also carried out. Finally, some effort was devoted to the structure and spectroscopy of small metal clusters, with applications to materials science problems.

  10. A modified next reaction method for simulating chemical systems with time dependent propensities and delays

    E-print Network

    Anderson, David F.

    A modified next reaction method for simulating chemical systems with time dependent propensities method. In this paper we make explicit use of the fact that the initiation times of the reactions can introduce our representation of the reaction times as the fir- ing times of independent,

  11. A metabolism is a complex chemical reaction system, whose metabolic genotype the DNA encoding the

    E-print Network

    Wagner, Andreas

    A metabolism is a complex chemical reaction system, whose metabolic genotype the DNA encoding the enzymes catalyzing these reactions can be compactly represented by its complement of metabolic reactions. Here, we analyze a space of such metabolic genotypes. Specifically, we study nitrogen metabolism

  12. Weber's Law for Biological Responses in Autocatalytic Networks of Chemical Reactions Masayo Inoue1

    E-print Network

    Kaneko, Kunihiko

    's law in a system of chained or parallel-connected autocatalytic reactions. In addition, we explore oscWeber's Law for Biological Responses in Autocatalytic Networks of Chemical Reactions Masayo Inoue1 in the external input. In this study, we demonstrate that a system involving a simple autocatalytic reaction shows

  13. Chemical reaction model for oil and gas generation from type 1 and type 2 kerogen

    SciTech Connect

    Braun, R.L.; Burnham, A.K.

    1993-06-01

    A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate-pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of pyrolysis data are given for both type I and type II kerogen. Use of the chemical reaction model is illustrated for typical geologic conditions.

  14. Probing Isotope Effects in Chemical Reactions Using Single Ions

    NASA Astrophysics Data System (ADS)

    Staanum, Peter F.; Hjbjerre, Klaus; Wester, Roland; Drewsen, Michael

    2008-06-01

    Isotope effects in reactions between Mg+ in the 3p P3/22 excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only 250 reactions with HD, the branching ratio between formation of MgD+ and MgH+ is found to be larger than 5. From an additional 65 reactions with H2 and D2 we find that the overall fragmentation probability of the intermediate MgH2+, MgHD+, or MgD2+ complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  15. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2006-09-21

    This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the significant development made in developing a truly meshfree computational fluid dynamics (CFD) flow solver to be coupled to NPCA. First, the procedure of obtaining nearly analytic accurate first order derivatives using the complex step method (CSM) is extended to include computation of accurate meshfree second order derivatives via a theorem described in this report. Next, boosted generalized regression neural network (BGRNN), described in our previous report is combined with CSM and used to obtain complete solution of a hard to solve wave dominated sample second order partial differential equation (PDE): the cubic Schrodinger equation. The resulting algorithm is a significant improvement of the meshfree technique of smooth particle hydrodynamics method (SPH). It is suggested that the demonstrated meshfree technique be termed boosted smooth particle hydrodynamics method (BSPH). Some of the advantages of BSPH over other meshfree methods include; it is of higher order accuracy than SPH; compared to other meshfree methods, it is completely meshfree and does not require any background meshes; It does not involve any construction of shape function with their associated solution of possibly ill conditioned matrix equations; compared to some SPH techniques, no equation for the smoothing parameter is required; finally it is easy to program.

  16. CHEMICAL SYNTHESIS USING 'GREENER' ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The chemical research during the last decade has witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into ...

  17. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in

  18. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions

    E-print Network

    Minnesota, University of

    -mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computedAccurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions Howard Salis and Yiannis Kaznessisa) Department of Chemical Engineering and Materials Science

  19. ONCE MORE ON DG OF CHEMICAL REACTION E.B. Rudnyi, L.N. Sidorov

    E-print Network

    Rudnyi, Evgenii B.

    in equations 2 and 3 arose early on in the history of chemical thermodynamics, where two approaches to DG described by introducing a chemical variable x defined by the equation n = n + xn (6) i o,i i or dn = n dxONCE MORE ON DG OF CHEMICAL REACTION E.B. Rudnyi, L.N. Sidorov Department of Chemistry, Moscow

  20. SUBSTITUTION REACTIONS FOR THE DETOXIFICATION OF HAZARDOUS CHEMICALS

    EPA Science Inventory

    Chemical Treatment is one of several treatment techniques used for the remediation of toxic and hazardous chemicals. Chemical treatment in this report is defined as substitution of halogens by hydrogens for the conversion of halogenated organic toxicant into its native hydrocarb...

  1. Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Leonard, Andy D.; Hill, James C.

    1992-01-01

    Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.

  2. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  3. Product studies of the atmospherically-important reactions of alkenes and aromatic hydrocarbons. Final report

    SciTech Connect

    Atkinson, R.; Arey, J.; Tuazon, E.C.

    1997-05-01

    Alkenes and aromatic hydrocarbons are important constituents of ambient air in polluted urban areas, and their atmospheric reactions in the presence of oxides of nitrogen lead to the formation of ozone and other manifestations of photochemical air pollution. During this Contract, the products and mechanisms of the gas-phase OH radical-initiated and O3 reactions of a series of alkenes and of the gas-phase OH radical- and NO3 radical-initiated reactions of four two-ring aromatic hydrocarbons have been investigated. The two-ring aromatic hydrocarbons were studied because it was anticipated that their reaction products would be more amenable to analysis using conventional gas chromatographic techniques than would the corresponding products formed from the monocyclic aromatic hydrocarbons such as benzene, toluene and the xylenes.

  4. Control of Mass Transport and Chemical Reaction Kinetics in Ultrasmall Volumes

    NASA Astrophysics Data System (ADS)

    Collier, Charles

    2012-02-01

    This talk will describe means for triggering chemical reactions for studying reaction kinetics under extreme confinement with sub-millisecond temporal resolution, including on-demand generation and fusion of femtoliter (10-15 L) volume water-in-oil droplets, and triggering reactions in femtoliter chambers microfabricated in poly(dimethylsiloxane) (PDMS). We demonstrated a reversible chemical toggle switch, which lays the groundwork for exploring more complex chemical and biochemical reaction sequences triggered and monitored in real time in discrete ultrasmall reactors, such as sequential and coupled enzymatic reactions. We are also developing methods to vary confinement and macromolecular crowding in ultrasmall, water-in-oil droplets and chambers micromolded in PDMS as biomimetic reaction vessels containing minimal synthetic gene circuits, in order to better understand how confinement, reduced dimensionality and macromolecular crowding affect molecular mechanisms involved in the operation and regulation of genetic circuits in living cells.

  5. New chemical reactions in methane at high temperatures and pressures

    SciTech Connect

    Culler, T.S.; Schiferl, D. )

    1993-01-21

    The authors have used a Merrill-Bassett diamond anvil cell and Raman spectroscopy to study methane at high pressures (up to 13 GPa) and high temperatures (up to 912 K). At 2.5-5.0 GPa and 912 K, methane photoreacts with the laser light used for Raman spectroscopy and forms a graphitelike soot compound. At room temperature and pressure the Raman spectrum of the new material has an intense peak with a frequency of 1597 cm[sup [minus]1]. At higher pressures and temperatures (10-13 GPa and 948 K) a sample of [sup 13]CD[sub 4] methane photoreacted with the laser light and formed a hard, clear, solid film. At 0.34 GPa and 300 K, this film had Raman peaks at 541 and 1605 cm[sup [minus]1]. The 541-cm[sup [minus]1] peak may correspond to the 550-cm[sup [minus]1] peak found in some diamondlike carbon (DLC) films formed by chemical vapor deposition (CVD), but the 1605-cm[sup [minus]1] peak does not appear to have any such counterpart. Other possible Raman peaks were masked by interference from the diamond anvils. Thus, while the hard, clear film has some similarities to CVD DLC films, some important differences and questions remain. 35 refs., 5 figs.

  6. FT-ICR Study of Chemical Reaction of Precursor Clusters of SWNT Masamichi Kohno, Shuhei Inoue and Shigeo Maruyama

    E-print Network

    Maruyama, Shigeo

    FT-ICR Study of Chemical Reaction of Precursor Clusters of SWNT Masamichi Kohno, Shuhei Inoue and Shigeo Maruyama Chemical reaction of carbon clusters and metal-carbon binary clusters (MCn , M = Ni or Co

  7. Product-state control of bi-alkali-metal chemical reactions

    NASA Astrophysics Data System (ADS)

    Meyer, Edmund R.; Bohn, John L.

    2010-10-01

    We consider ultracold, chemically reactive scattering collisions of the diatomic molecules KRb. When two such molecules collide in an ultracold gas, we find that they are energetically forbidden from reacting to form the trimer species K2Rb or Rb2K, and hence can only react via the bond-swapping reaction 2KRb?K2+Rb2. Moreover, the tiny energy released in this reaction can in principle be set to zero by applying electric or microwave fields, implying a means of controlling the available reaction channels in a chemical reaction.

  8. Product-state control of bi-alkali-metal chemical reactions

    SciTech Connect

    Meyer, Edmund R.; Bohn, John L.

    2010-10-15

    We consider ultracold, chemically reactive scattering collisions of the diatomic molecules KRb. When two such molecules collide in an ultracold gas, we find that they are energetically forbidden from reacting to form the trimer species K{sub 2}Rb or Rb{sub 2}K, and hence can only react via the bond-swapping reaction 2KRb{yields}K{sub 2}+Rb{sub 2}. Moreover, the tiny energy released in this reaction can in principle be set to zero by applying electric or microwave fields, implying a means of controlling the available reaction channels in a chemical reaction.

  9. Control of a chemical reaction (photodegradation of the p3ht polymer) with nonlocal dielectric environments

    NASA Astrophysics Data System (ADS)

    Peters, V. N.; Tumkur, T. U.; Zhu, G.; Noginov, M. A.

    2015-10-01

    Proximity to metallic surfaces, plasmonic structures, cavities and other inhomogeneous dielectric environments is known to control spontaneous emission, energy transfer, scattering, and many other phenomena of practical importance. The aim of the present study was to demonstrate that, in spirit of the Marcus theory, the rates of chemical reactions can, too, be influenced by nonlocal dielectric environments, such as metallic films and metal/dielectric bilayer or multilayer structures. We have experimentally shown that metallic, composite metal/dielectric substrates can, indeed, control ordering as well as photodegradation of thin poly-3-hexylthiophene (p3ht) films. In many particular experiments, p3ht films were separated from metal by a dielectric spacer, excluding conventional catalysis facilitated by metals and making modification of the nonlocal dielectric environment a plausible explanation for the observed phenomena. This first step toward understanding of a complex relationship between chemical reactions and nonlocal dielectric environments is to be followed by the theory development and a broader scope of thorough experimental studies.

  10. Control of a chemical reaction (photodegradation of the p3ht polymer) with nonlocal dielectric environments

    PubMed Central

    Peters, V. N.; Tumkur, T. U.; Zhu, G.; Noginov, M. A.

    2015-01-01

    Proximity to metallic surfaces, plasmonic structures, cavities and other inhomogeneous dielectric environments is known to control spontaneous emission, energy transfer, scattering, and many other phenomena of practical importance. The aim of the present study was to demonstrate that, in spirit of the Marcus theory, the rates of chemical reactions can, too, be influenced by nonlocal dielectric environments, such as metallic films and metal/dielectric bilayer or multilayer structures. We have experimentally shown that metallic, composite metal/dielectric substrates can, indeed, control ordering as well as photodegradation of thin poly-3-hexylthiophene (p3ht) films. In many particular experiments, p3ht films were separated from metal by a dielectric spacer, excluding conventional catalysis facilitated by metals and making modification of the nonlocal dielectric environment a plausible explanation for the observed phenomena. This first step toward understanding of a complex relationship between chemical reactions and nonlocal dielectric environments is to be followed by the theory development and a broader scope of thorough experimental studies. PMID:26434679

  11. Control of a chemical reaction (photodegradation of the p3ht polymer) with nonlocal dielectric environments.

    PubMed

    Peters, V N; Tumkur, T U; Zhu, G; Noginov, M A

    2015-01-01

    Proximity to metallic surfaces, plasmonic structures, cavities and other inhomogeneous dielectric environments is known to control spontaneous emission, energy transfer, scattering, and many other phenomena of practical importance. The aim of the present study was to demonstrate that, in spirit of the Marcus theory, the rates of chemical reactions can, too, be influenced by nonlocal dielectric environments, such as metallic films and metal/dielectric bilayer or multilayer structures. We have experimentally shown that metallic, composite metal/dielectric substrates can, indeed, control ordering as well as photodegradation of thin poly-3-hexylthiophene (p3ht) films. In many particular experiments, p3ht films were separated from metal by a dielectric spacer, excluding conventional catalysis facilitated by metals and making modification of the nonlocal dielectric environment a plausible explanation for the observed phenomena. This first step toward understanding of a complex relationship between chemical reactions and nonlocal dielectric environments is to be followed by the theory development and a broader scope of thorough experimental studies. PMID:26434679

  12. Role of Conformational Structures and Torsional Anharmonicity in Controlling Chemical Reaction Rates and Relative Yields: Butanal + HO2 Reactions

    SciTech Connect

    Zheng, Jingjing; Seal, Prasenjit; Truhlar, Donald G.

    2013-01-01

    Aldehyderadical reactions are important in atmospheric and combustion chemistry, and the reactions studied here also serve more generally to illustrate a fundamental aspect of chemical kinetics that has been relatively unexplored from a quantitative point of view, in particular the roles of multiple structures and torsional anharmonicity in determining the rate constants and branching ratios (product yields). We consider hydrogen abstraction from four carbon sites of butanal (carbonyl-C, a-C, b-C and g-C) by hydroperoxyl radical. We employed multi-structural variational transition state theory for studying the first three channels; this uses a multi-faceted dividing surface and allows us to include the contributions of multiple structures of both reacting species and transition states. Multiconfigurational Shepard interpolation (MCSI) was used to obtain the geometries and energies of the potential energy surface along the minimum-energy paths, with gradients and Hessians calculated by the M08-HX/maug-cc-pVTZ method. We find the numbers of structures obtained for the transition states are 46, 60, 72 and 76respectively for the H abstraction at the carbonyl C, the a position, the b position and the g position. Our results show that neglecting the factors arising from multiple structures and torsional anharmonicity would lead to errors at 300, 1000 and 2400 K of factors of 8, 11 and 10 for abstraction at the carbonyl-O, 2, 11 and 25 at the a-C position, 2, 23 and 47 at the b-C position, and 0.6, 8 and 18 at the g-C position. The errors would be even larger at high temperature for the reverse of the H abstraction at the b-C. Relative yields are changed as much as a factor of 7.0 at 200 K, a factor of 5.0 at 298 K, and a factor of 3.7 in the other direction at 2400 K. The strong dependence of the product ratios on the multi-structural anharmonicity factors shows that such factors play an important role in controlling branching ratios in reaction mechanism networks.

  13. Researcher breaks new ground in understanding chemical reaction process

    E-print Network

    Glaser, Rainer

    texts, aids cancer research back tochemistry textbook authors have written in a variety of applications, including dyes, but also represent a basic chemical molecular structure found in nature. Now, a professor of chemistry has found that this chemical process has been incorrectly described

  14. Efficiency of a stirred chemical reaction in a closed vessel

    E-print Network

    Cristobal lopez; Davide Vergni; Angelo Vulpiani

    2002-01-22

    We perform a numerical study of the reaction efficiency in a closed vessel. Starting with a little spot of product, we compute the time needed to complete the reaction in the container following an advection-reaction-diffusion process. Inside the vessel it is present a cellular velocity field that transports the reactants. If the size of the container is not very large compared with the typical length of the velocity field one has a plateau of the reaction time as a function of the strength of the velocity field, $U$. This plateau appears both in the stationary and in the time-dependent flow. A comparison of the results for the finite system with the infinite case (for which the front speed, $v_f$, gives a simple estimate of the reacting time) shows the dramatic effect of the finite size.

  15. Study of chemical reactions under the influence of ultrasound

    SciTech Connect

    Lee, Kien-Yin

    1993-07-01

    At Los Alamos the author is interested in sonochemistry because there is potential for accelerating reactions involving the synthesis of certain nitro compounds and for reducing the possibility of decomposition under milder reaction conditions. The author has initiated the study of the nitration of 2,4-dihydro-3H-1,2,4-triazol-3-one with concentrated nitric acid under sonication. The preparation of 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine, and oxidation of 3,6-diamino-1,2,4,5-tetrazine were also studied. Sonication reaction conditions and results of these reactions under ultrasound are discussed in detail.

  16. THE JOURNAL OF CHEMICAL PHYSICS 133, 224101 (2010) Steepest descent reaction path integration using a first-order

    E-print Network

    Schlegel, H. Bernhard

    2010-01-01

    THE JOURNAL OF CHEMICAL PHYSICS 133, 224101 (2010) Steepest descent reaction path integration using; accepted 20 October 2010; published online 8 December 2010) The theoretical treatment of chemical reactions surface and five chemical reactions. The use of Hessian updating, as a means for reducing the overall

  17. A combined quantum-classical dynamics method for calculating thermal rate constants of chemical reactions in solution

    E-print Network

    Truong, Thanh N.

    -flux correlation function for calculating the thermal rate constants of chemical reactions in solution in this study would provide a complete tool for studying the quantum dynamics of chemical reactions the thermal chemical reaction rate constants. Furthermore, we also employ an efficient and accurate quantum

  18. Optimal behavior of consecutive chemical reactions Thor A. Bak1, Peter Salamon2, Bjarne Andresen2,3

    E-print Network

    Salamon, Peter

    Optimal behavior of consecutive chemical reactions ABC Thor A. Bak1, Peter Salamon2, Bjarne The consecutive chemical reactions ABC are analyzed both numerically and analytically using temperature-11] considered the question of improving the yield of a chemical reaction taking place in a tubular reactor

  19. Hybrid Quantum and Classical Methods for Computing Kinetic Isotope Effects of Chemical Reactions in Solution and in Enzymes

    E-print Network

    Minnesota, University of

    1 Hybrid Quantum and Classical Methods for Computing Kinetic Isotope Effects of Chemical Reactions for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble that enzymes accelerate the rates of chemical reactions has fascinated chemists and biochemists for nearly

  20. Thermal Consolidation with Chemical Dehydration Reactions: Pore Pressure Generation in the Slow Slip Region of Subduction Zones

    E-print Network

    Rempel, Alan W.

    Thermal Consolidation with Chemical Dehydration Reactions: Pore Pressure Generation in the Slow of fluids must be attributed to chemical dehydration reactions. Here we model the condsolidation of low source of fluids to the plate interface must be attributed to chemical dehydration reactions in the sub

  1. JOURNAL OF RESEARCH IN SCIENCE TEACHING VOL. 45, NO. 7, PP. 771793 (2008) Classification of Chemical Reactions: Stages of Expertise

    E-print Network

    Talanquer, Vicente A.

    2008-01-01

    of Chemical Reactions: Stages of Expertise Marilyne Stains, Vicente Talanquer Department of Chemistry attention when classifying chemical reactions at the symbolic and microscopic levels. We identified the categories that students create when classifying chemical reactions, and compared the performance in simple

  2. React. Kinet. Catal. Lett., Vol. 15, No. 2,245-250 (1980) DYNAMICS OF CHEMICAL REACTIONS AND NONPHYSICAL

    E-print Network

    Gorban, Alexander N.

    1980-01-01

    React. Kinet. Catal. Lett., Vol. 15, No. 2,245-250 (1980) DYNAMICS OF CHEMICAL REACTIONS behavior of chemical reactions,in particular,the reasonsfor slow relaxa- tions. IIoKa3aHo, qTO 14[HdpKcaum~. Prolonged transientregimes were found experimentally in chemical reactions in greatlydifferenthomogeneous

  3. CHEMICAL REACTION SYSTEMS WITH TORIC STEADY STATES MERCEDES PEREZ MILLAN, ALICIA DICKENSTEIN, ANNE SHIU, AND CARSTEN CONRADI

    E-print Network

    Rowell, Eric C.

    1 CHEMICAL REACTION SYSTEMS WITH TORIC STEADY STATES MERCEDES PEREZ MILLAN, ALICIA DICKENSTEIN, ANNE SHIU, AND CARSTEN CONRADI Abstract. Mass-action chemical reaction systems are frequently used that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction

  4. Stability of Traveling Waves for a Class of Reaction-diffusion Systems that Arise in Chemical Reaction Models

    E-print Network

    Schecter, Stephen

    that the perturbation be exponentially close at the right is natural: there are other traveling waves that approachStability of Traveling Waves for a Class of Reaction-diffusion Systems that Arise in Chemical North Carolina State University 1 #12;2 I. Combustion of a solid fuel in one space dimension Model: tu

  5. Coherent chemical kinetics as quantum walks I: Reaction operators for radical pairs

    E-print Network

    A. Chia; A. Gorecka; K. C. Tan; L. Pawela; P. Kurzynski; T. Paterek; D. Kaszlikowski

    2015-08-20

    Classical chemical kinetics use rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, or in other words, a reaction which contain only incoherent transitions. A prominent example reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator which determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts a recombination dephasing rate consistent with recent experiments [J. Chem. Phys. {\\bf 139}, 234309 (2013)], in contrast to previous work by Jones and Hore [Chem. Phys. Lett. {\\bf 488}, 90 (2010)]. The standard radical-pair reaction has conventionally been described by either a normalised density operator incorporating both the radical pair and reaction products, or by a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalised and refers only to radical-pair states. Generalisations to include additional dephasing processes and an arbitrary number of sites are also discussed.

  6. Descriptive Simulation: Combining Symbolic and Numerical Methods in the Analysis of Chemical Reaction Mechanisms

    E-print Network

    Eisenberg, Michael

    1989-09-01

    The Kineticist's Workbench is a computer program currently under development whose purpose is to help chemists understand, analyze, and simplify complex chemical reaction mechanisms. This paper discusses one module ...

  7. The Kineticist's Workbench: Combining Symbolic and Numerical Methods in the Simulation of Chemical Reaction Mechanisms

    E-print Network

    Eisenberg, Michael A.

    1991-05-01

    The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that ...

  8. Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed

    2015-11-01

    This paper deals with the boundary layer flow of nanofluid over power-law stretched surface. Analysis has been carried out in the presence of applied magnetic field and chemical reaction. Heat and mass transfer characteristics are studied using heat and mass convective conditions. The governing partial differential equations are transferred to the nonlinear ordinary differential equations. Convergent series solutions are obtained for fluid velocity, temperature and concentrations fields. Influences of pertinent parameters including Hartman number, thermal and concentration Biot numbers and chemical reaction parameters are discussed on the velocity, temperature and concentration profiles. Graphical result are presented and discussed. Computations for local Nusselt and Sherwood numbers are carried out. It is observed that the heat transfer rate is enhanced by increasing power-law index, thermal Biot number and chemical reaction parameter while mass transfer rate increases for power-law index and chemical reaction parameter.

  9. EVALUATION OF CHEMICAL REACTION MECHANISMS FOR PHOTOCHEMICAL SMOG. PART 2. QUANTITATIVE EVALUATION OF THE MECHANISMS (REVISED)

    EPA Science Inventory

    Six chemical reaction mechanisms for photochemical smog were analyzed to determine why, under identical conditions, they predict different maximum ozone concentrations. To perform the analysis, a counter species technique was used to determine the contributions of individual reac...

  10. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  11. Reaction operators for spin-selective chemical reactions of radical pairs

    E-print Network

    Jonathan A. Jones; Kiminori Maeda; Peter J. Hore

    2011-03-30

    Spin-selective reactions of radical pairs have traditionally been modelled theoretically by adding phenomenological rate equations to the quantum mechanical equation of motion of the radical pair spin density matrix. More recently an alternative set of rate expressions, based on a quantum measurement approach, has been suggested. Here we show how these two reaction operators can be seen as limiting cases of a more general reaction scheme.

  12. Light-induced nitrous acid (HONO) production from NO2 heterogeneous reactions on household chemicals

    NASA Astrophysics Data System (ADS)

    Gmez Alvarez, Elena; Srgel, Matthias; Gligorovski, Sasho; Bassil, Sabina; Bartolomei, Vincent; Coulomb, Bruno; Zetzsch, Cornelius; Wortham, Henri

    2014-10-01

    Nitrous acid (HONO) can be generated in various indoor environments directly during combustion processes or indirectly via heterogeneous NO2 reactions with water adsorbed layers on diverse surfaces. Indoors not only the concentrations of NO2 are higher but the surface to volume (S/V) ratios are larger and therefore the potential of HONO production is significantly elevated compared to outdoors. It has been claimed that the UV solar light is largely attenuated indoors. Here, we show that solar light (? > 340 nm) penetrates indoors and can influence the heterogeneous reactions of gas-phase NO2 with various household surfaces. The NO2 to HONO conversion mediated by light on surfaces covered with domestic chemicals has been determined at atmospherically relevant conditions i.e. 50 ppb NO2 and 50% RH. The formation rates of HONO were enhanced in presence of light for all the studied surfaces and are determined in the following order: 1.3109 molecules cm-2 s-1 for borosilicate glass, 1.7109 molecules cm-2 s-1 for bathroom cleaner, 1.01010 molecules cm-2 s-1 on alkaline detergent (floor cleaner), 1.31010 molecules cm-2 s-1 for white wall paint and 2.71010 molecules cm-2 s-1 for lacquer. These results highlight the potential of household chemicals, used for cleaning purposes to generate HONO indoors through light-enhanced NO2 heterogeneous reactions. The results obtained have been applied to predict the timely evolution of HONO in a real indoor environment using a dynamic mass balance model. A steady state mixing ratio of HONO has been estimated at 1.6 ppb assuming a contribution from glass, paint and lacquer and considering the photolysis of HONO as the most important loss process.

  13. Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Chemical Reactions

    E-print Network

    Daniel A. Beard; Hong Qian

    2006-11-22

    Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and re-verse fluxes and free energy for any chemical process operating in a steady state. This rela-tionship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.

  14. Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes

    PubMed Central

    Kabbani, Mohamad A.; Tiwary, Chandra Sekhar; Autreto, Pedro A.S.; Brunetto, Gustavo; Som, Anirban; Krishnadas, K.R.; Ozden, Sehmus; Hackenberg, Ken P.; Gong, Yongi; Galvao, Douglas S.; Vajtai, Robert; Kabbani, Ahmad T.; Pradeep, Thalappil; Ajayan, Pulickel M.

    2015-01-01

    Carbon nanotubes can be chemically modified by attaching various functionalities to their surfaces, although harsh chemical treatments can lead to their break-up into graphene nanostructures. On the other hand, direct coupling between functionalities bound on individual nanotubes could lead to, as yet unexplored, spontaneous chemical reactions. Here we report an ambient mechano-chemical reaction between two varieties of nanotubes, carrying predominantly carboxyl and hydroxyl functionalities, respectively, facilitated by simple mechanical grinding of the reactants. The purely solid-state reaction between the chemically differentiated nanotube species produces condensation products and unzipping of nanotubes due to local energy release, as confirmed by spectroscopic measurements, thermal analysis and molecular dynamic simulations. PMID:26073564

  15. Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes.

    PubMed

    Kabbani, Mohamad A; Tiwary, Chandra Sekhar; Autreto, Pedro A S; Brunetto, Gustavo; Som, Anirban; Krishnadas, K R; Ozden, Sehmus; Hackenberg, Ken P; Gong, Yongi; Galvao, Douglas S; Vajtai, Robert; Kabbani, Ahmad T; Pradeep, Thalappil; Ajayan, Pulickel M

    2015-01-01

    Carbon nanotubes can be chemically modified by attaching various functionalities to their surfaces, although harsh chemical treatments can lead to their break-up into graphene nanostructures. On the other hand, direct coupling between functionalities bound on individual nanotubes could lead to, as yet unexplored, spontaneous chemical reactions. Here we report an ambient mechano-chemical reaction between two varieties of nanotubes, carrying predominantly carboxyl and hydroxyl functionalities, respectively, facilitated by simple mechanical grinding of the reactants. The purely solid-state reaction between the chemically differentiated nanotube species produces condensation products and unzipping of nanotubes due to local energy release, as confirmed by spectroscopic measurements, thermal analysis and molecular dynamic simulations. PMID:26073564

  16. Influence of mineral weathering reactions on the chemical composition of soil water, springs, and ground water, Catoctin Mountains, Maryland

    USGS Publications Warehouse

    Katz, B.G.

    1989-01-01

    During 1983 and 1984, wet precipitation was primarily a solution of dilute sulphuric acid, whereas calcium and bicarbonate were the major ions in springs and ground water in two small watersheds with a deciduous forest cover in central Maryland. Dominant ions in soil water were calcium, magnesium, and sulphate. The relative importance of mineral weathering reactions on the chemical composition of these subsurface waters was compared to the contribution from wet precipitation, biological processes, and road deicing salts. -from Author

  17. Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws

    PubMed Central

    Halsz, dm M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.

    2014-01-01

    True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389

  18. Non-stationary filtration mode during chemical reactions with the gas phase

    NASA Astrophysics Data System (ADS)

    Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey

    2015-04-01

    An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 ?m in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damkhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.

  19. Temporal disorder and fluctuation theorem in chemical reactions David Andrieux and Pierre Gaspard

    E-print Network

    Andrieux, David

    the analytical study of a class of chemical reactions described as birth-and-death stochastic processes ruled surface of a given electronic state. Since these surfaces control both the vibra- tional and reactional appropriate extensions of the basic methods of statistical thermodynamics. At the mesoscopic level, the random

  20. STABILITY OF CHEMICAL REACTIONS IN A CSTR WITH DELAYED RECYCLE STREAM

    E-print Network

    Lehman, Brad

    STABILITY OF CHEMICAL REACTIONS IN A CSTR WITH DELAYED RECYCLE STREAM Brad Lehman' Departmentof. Severalof these papers alsoinclude the effectsof a recycle stream on the reactors dynamic response, and hence the cost of reaction, its use is widespread in industry. For example, recycling is almost always

  1. A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors

    E-print Network

    Epstein, Irving R.

    A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors Miles Dolnika (Received 13 July 1992; accepted 1 October 1992) The dynamical behavior of the chlorine dioxide, bursting behavior has been observed in the chlorine dioxide -iodide reaction in a CSTR." When the excitable

  2. Femtosecond electron diffraction and spectroscopic studies of a solid state organic chemical reaction

    NASA Astrophysics Data System (ADS)

    Jean-Ruel, Hubert

    Photochromic diarylethene molecules are excellent model systems for studying electrocyclic reactions, in addition to having important technological applications in optoelectronics. The photoinduced ring-closing reaction in a crystalline photochromic diarylethene derivative was fully resolved using the complementary techniques of transient absorption spectroscopy and femtosecond electron crystallography. These studies are detailed in this thesis, together with the associated technical developments which enabled them. Importantly, the time-resolved crystallographic investigation reported here represents a highly significant proof-of-principle experiment. It constitutes the first study directly probing the molecular structural changes associated with an organic chemical reaction with sub-picosecond temporal and atomic spatial resolution---to follow the primary motions directing chemistry. In terms of technological development, the most important advance reported is the implementation of a radio frequency rebunching system capable of producing femtosecond electron pulses of exceptional brightness. The temporal resolution of this newly developed electron source was fully characterized using laser ponderomotive scattering, confirming a 435 +/- 75 fs instrument response time with 0.20 pC bunches. The ultrafast spectroscopic and crystallographic measurements were both achieved by exploiting the photoreversibility of diarylethene. The transient absorption study was first performed, after developing a novel robust acquisition scheme for thermally irreversible reactions in the solid state. It revealed the formation of an open-ring excited state intermediate, following photoexcitation of the open-ring isomer with an ultraviolet laser pulse, with a time constant of approximately 200 fs. The actual ring closing was found to occur from this intermediate with a time constant of 5.3 +/- 0.3 ps. The femtosecond diffraction measurements were then performed using multiple crystal orientations and a large number of different samples. To analyse the results, an innovative method was developed in which the apparently complex ring-closing reaction is distilled down to a small number of basic rotations. Immediately following photoexcitation, sub-picosecond structural changes associated with the formation of the intermediate are observed. The rotation of the thiophene rings is identified as the key motion. Subsequently, on the few picosecond time scale, the time-resolved diffraction patterns are observed to converge towards those associated with the closed-ring photoproduct. The formation of the closed-ring molecule is thus unambiguously witnessed.

  3. Evolution of Autocatalytic Sets in Computational Models of Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Hordijk, Wim

    2015-10-01

    Several computational models of chemical reaction networks have been presented in the literature in the past, showing the appearance and (potential) evolution of autocatalytic sets. However, the notion of autocatalytic sets has been defined differently in different modeling contexts, each one having some shortcoming or limitation. Here, we review four such models and definitions, and then formally describe and analyze them in the context of a mathematical framework for studying autocatalytic sets known as RAF theory. The main results are that: (1) RAF theory can capture the various previous definitions of autocatalytic sets and is therefore more complete and general, (2) the formal framework can be used to efficiently detect and analyze autocatalytic sets in all of these different computational models, (3) autocatalytic (RAF) sets are indeed likely to appear and evolve in such models, and (4) this could have important implications for a possible metabolism-first scenario for the origin of life.

  4. Theoretical Studies of Chemical Reactions following Electronic Excitation

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2003-01-01

    The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.

  5. Exact Stochastic Simulation of Coupled Chemical Reactions Daniel T. Gillesple

    E-print Network

    Breitling, Rainer

    . As is evident from many of the papers in this symposium series, the art of reliably solving reaction. Introduction In this paper we shall be concerned with the following general problem: If a fixed volume V this problem begins by translating it into the mathematical language of ordinary differential equations. More

  6. Chemical Principles Revisited. Redox Reactions and the Electropotential Axis.

    ERIC Educational Resources Information Center

    Vella, Alfred J.

    1990-01-01

    This paper suggests a nontraditional pedagogic approach to the subject of redox reactions and electrode potentials suitable for freshman chemistry. Presented is a method for the representation of galvanic cells without the introduction of the symbology and notation of conventional cell diagrams. (CW)

  7. Theoretical studies of the dynamics of chemical reactions

    SciTech Connect

    Wagner, A.F.

    1993-12-01

    Recent research effort has focussed on several reactions pertinent to combustion. The formation of the formyl radical from atomic hydrogen and carbon monoxide, recombination of alkyl radicals and halo-alkyl radicals with halogen atoms, and the thermal dissociation of hydrogen cyanide and acetylene have been studied by modeling. In addition, the inelastic collisions of NCO with helium have been investigated.

  8. Exact Stochastic Simulation of Chemical Reactions with Cycle Leaping*

    E-print Network

    Bruck, Jehoshua (Shuki)

    no. P50 HG02370). phage [1] and the pap pili epigenetic response of bac- teria [20]. Modeling and simulating the probabilistic behavior of such systems is a challenging problem. On the one hand, macroscopic. As biochemical reactions fire, discrete state transitions occur. The behavior is that of a probabilistic

  9. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity.

    PubMed

    Schneider, Nadine; Lowe, Daniel M; Sayle, Roger A; Landrum, Gregory A

    2015-01-26

    Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information. PMID:25541888

  10. WORKSHOP ON STATUS OF TEST METHODS FOR ASSESSING POTENTIAL OF CHEMICALS TO INDUCE RESPIRATORY ALLERGIC REACTIONS

    EPA Science Inventory

    Because of the association between allergy and asthma and the increasing incidence of morbidity and mortality due to asthma, there is growing concern over the potential of industrial chemicals to produce allergic reactions in the respiratory tract. Two classes of chemicals have b...

  11. High temperature chemical kinetic study of the H2-CO-CO2-NO reaction system

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1975-01-01

    An experimental study of the kinetics of the H2-CO-CO2-NO reaction system was made behind incident shock waves at temperatures of 2460 and 2950 K. The overall rate of the reaction was measured by monitoring radiation from the CO + O yields CO2 + h upoilon reaction. Correlation of these data with a detailed reaction mechanism showed that the high-temperature rate of the reaction N + OH yields NO + H can be described by the low-temperature (320 K) rate coefficient. Catalytic dissociation of molecular hydrogen was an important reaction under the tests conditions.

  12. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  13. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    NASA Technical Reports Server (NTRS)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  14. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    SciTech Connect

    Yeh, G.T.; Iskra, G.A.; Szecsody, J.E.; Zachara, J.M.; Streile, G.P.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  15. Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy.

    PubMed

    McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R

    2015-10-14

    Entanglement is sometimes regarded as the quintessential measure of the quantum nature of a system and its significance for the understanding of coupled electronic and vibrational motions in molecules has been conjectured. Previously, we considered the entanglement developed in a spatially localized diabatic basis representation of the electronic states, considering design rules for qubits in a low-temperature chemical quantum computer. We extend this to consider the entanglement developed during high-energy processes. We also consider the entanglement developed using adiabatic electronic basis, providing a novel way for interpreting effects of the breakdown of the Born-Oppenheimer (BO) approximation. We consider: (i) BO entanglement in the ground-state wavefunction relevant to equilibrium thermodynamics, (ii) BO entanglement associated with low-energy wavefunctions relevant to infrared and tunneling spectroscopies, (iii) BO entanglement in high-energy eigenfunctions relevant to chemical reaction processes, and (iv) BO entanglement developed during reactive wavepacket dynamics. A two-state single-mode diabatic model descriptive of a wide range of chemical phenomena is used for this purpose. The entanglement developed by BO breakdown correlates simply with the diameter of the cusp introduced by the BO approximation, and a hierarchy appears between the various BO-breakdown correction terms, with the first-derivative correction being more important than the second-derivative correction which is more important than the diagonal correction. This simplicity is in contrast to the complexity of BO-breakdown effects on thermodynamic, spectroscopic, and kinetic properties. Further, processes poorly treated at the BO level that appear adequately treated using the Born-Huang adiabatic approximation are found to have properties that can only be described using a non-adiabatic description. For the entanglement developed between diabatic electronic states and the nuclear motion, qualitatively differently behavior is found compared to traditional properties of the density matrix and hence entanglement provides new information about system properties. For chemical reactions, this type of entanglement simply builds up as the transition-state region is crossed. It is robust to small changes in parameter values and is therefore more attractive for making quantum qubits than is the related fragile ground-state entanglement, provided that coherent motion at the transition state can be sustained. PMID:26204101

  16. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    SciTech Connect

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  17. EFFICIENT CHEMICAL TRANSFORMATIONS USING ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The diverse nature of chemical entities requires various green' strategic pathways in our quest towards attaining sustainability. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable...

  18. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    PubMed

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported. 2015 Wiley Periodicals, Inc. PMID:26487387

  19. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions

    E-print Network

    Kirol, L.

    1987-01-01

    have significant potential advantage over conventional tech nology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating characteristics. A waste... heat driven heat pump (temperature amplifier) using liquid-vapor chem1cal reactions- can oper ate with higher coefficient of performance and smaller heat exchangers than an absorption temp erature amplifying heat pump. Higher tempera tures...

  20. Real World of Industrial Chemistry: Ethylene: The Organic Chemical Industry's Most Important Building Block.

    ERIC Educational Resources Information Center

    Fernelius, W. Conrad, Ed.; And Others

    1979-01-01

    The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)

  1. X-ray imaging of chemically active valence electrons during a pericyclic reaction.

    PubMed

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-01-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions. PMID:25424639

  2. X-ray imaging of chemically active valence electrons during a pericyclic reaction

    PubMed Central

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-01-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions. PMID:25424639

  3. Thermochemical model for shock-induced chemical reactions in porous thermite: The heat detonation model

    SciTech Connect

    Boslough, M.B.

    1989-01-01

    A thermochemical model has been developed that treats a shock-induced solid state chemical reaction as a special type of detonation, called a ''heat detonation'' to distinguish it from an ordinary explosive detonation and describe the final form that the chemical energy takes. According to shock temperature measurements, chemical energy can be released from porous reactive solids on a time scale shorter than shock-transit times in laboratory samples. By comparing the experimental shock temperature for porous thermite to that calculated by the model, the amount of thermite reacted when shocked to about 4 GPa was estimated to be between 60 and 70%. Calculated shock temperatures are extremely strong functions of the extent of reaction, but are relatively insensitive to the initial porosity and amount of volatile impurities. Thus, shock temperature measurements are the most useful for real-time studies of shock-induced exothermic chemical reactions in solids. 11 refs., 5 figs., 1 tab.

  4. Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional excitation in controlling reactivity

    E-print Network

    Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional University, Stanford, California 94305 Received 3 August 1998; accepted 3 September 1998 The reactions products that are moving anomalously fast which energetically cannot result from the reaction of ground

  5. Numerical Modeling of Coupled Variably-Saturated Fluid Flow and Reactive Transport with Fast and Slow Chemical Reactions

    SciTech Connect

    LI, MING-HSU; SIEGEL, MALCOLM D.; YEH, GOUR-TSYH

    1999-09-20

    The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically-based numerical model for simulation of coupled fluid flow and reactive chemical transport including both fast and slow reactions invariably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation-dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  6. Theoretical study of thermodynamic properties and reaction rates of importance in the high-speed research program

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen; Bauschlicher, Charles; Jaffe, Richard

    1992-01-01

    One of the primary goals of NASA's high-speed research program is to determine the feasibility of designing an environmentally safe commercial supersonic transport airplane. The largest environmental concern is focused on the amount of ozone destroying nitrogen oxides (NO(x)) that would be injected into the lower stratosphere during the cruise portion of the flight. The limitations placed on NO(x) emission require more than an order of magnitude reduction over current engine designs. To develop strategies to meet this goal requires first gaining a fundamental understanding of the combustion chemistry. To accurately model the combustor requires a computational fluid dynamics approach that includes both turbulence and chemistry. Since many of the important chemical processes in this regime involve highly reactive radicals, an experimental determination of the required thermodynamic data and rate constants is often very difficult. Unlike experimental approaches, theoretical methods are as applicable to highly reactive species as stable ones. Also our approximation of treating the dynamics classically becomes more accurate with increasing temperature. In this article we review recent progress in generating thermodynamic properties and rate constants that are required to understand NO(x) formation in the combustion process. We also describe our one-dimensional modeling efforts to validate an NH3 combustion reaction mechanism. We have been working in collaboration with researchers at LeRC, to ensure that our theoretical work is focused on the most important thermodynamic quantities and rate constants required in the chemical data base.

  7. Kinetics of thermochemical gas-solid reactions important in the Venus sulfur cycle

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1988-01-01

    The thermochemical net reaction CaCO3 + SO2 yields CaSO4 + CO is predicted to be an important sink for incorporation of SO2 into the Venus crust. The reaction rate law was established to understand the dependence of rate on experimental variables such as temperature and partial pressure of SO2, CO2, and O2. The experimental approach was a variant of the thermogravimetric method often employed to study the kinetics of thermochemical gas-solid reactions. Clear calcite crystals were heated at constant temperature in SO2-bearing gas streams for varying time periods. Reaction rate was determined by three independent methods. A weighted linear least squares fit to all rate data yielded a rate equation. Based on the Venera 13, 14 and Vega 2 observations of CaO content of the Venus atmosphere, SO2 at the calculated rate would be removed from the Venus atmosphere in about 1,900,00 years. The most plausible endogenic source of the sulfur needed to replenish atmospheric SO2 is volcanism. The annual amount of erupted material needed for the replenishment depends on sulfur content; three ratios are used to calculate rates ranging from 0.4 to 11 cu km/year. This geochemically derived volcanism rate can be used to test if geophysically derived rates are correct. The work also suggests that Venus is less volcanically active than the Earth.

  8. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    SciTech Connect

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

  9. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-print Network

    Kirol, L. D.

    1986-01-01

    amplifier (HA). A bottoming cycle heat engine driving a heat pump is called a temperature amplifier (TA), and is driven by waste heat from the process or facility. Heat amplifiers are useful in reducing total energy con sumption of a process. Exergy... heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid is reactive, are consid...

  10. RPMDRATE: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    NASA Astrophysics Data System (ADS)

    Suleimanov, Yu. V.; Allen, J. W.; Green, W. H.

    2013-03-01

    We present RPMDRATE, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. Catalogue identifier: AENW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 94512 No. of bytes in distributed program, including test data, etc.: 1395674 Distribution format: tar.gz Programming language: Fortran 90/95, Python (version 2.6.x or later, including any version of Python 3, is recommended). Computer: Not computer specific. Operating system: Any for which Python, Fortran 90/95 compiler and the required external routines are available. Has the code been vectorized or parallelized?: The program can efficiently utilize 4096+ processors, depending on problem and available computer. At low temperatures, 110 processors are reasonable for a typical umbrella integration run with an analytic potential energy function and gradients on the latest x86-64 machines.

  11. The Modification of Biocellular Chemical Reactions by Environmental Physicochemicals

    NASA Astrophysics Data System (ADS)

    Ishido, M.

    Environmental risk factors affect human biological system to different extent from modification of biochemical reaction to cellular catastrophe. There are considerable public concerns about electromagnetic fields and endocrine disruptors. Their risk assessments have not been fully achieved because of their scientific uncertainty: electromagnetic fields just modify the bioreaction in the restricted cells and endocrine disruptors are quite unique in that their expression is dependent on the exposure periods throughout a life. Thus, we here describe their molecular characterization to establish the new risk assessments for environmental physicochemicals.

  12. Ca + HF - The anatomy of a chemical insertion reaction

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Pattengill, M. D.; Mascarello, F. G.; Zare, R. N.

    1987-01-01

    A comprehensive first-principles theoretical investigation of the gas phase reaction Ca + HF - CaF + H is reported. Ab initio potential energy calculations are first discussed, along with characteristics of the computed potential energy surface. Next, the fitting of the computed potential energy points to a suitable analytical functional form is described, and maps of the fitted potential surface are displayed. The methodology and results of a classical trajectory calculation utilizing the fitted potential surface are presented. Finally, the significance of the trajectory study results is discussed, and generalizations concerning dynamical aspects of Ca + HF scattering are drawn.

  13. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  14. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    NASA Astrophysics Data System (ADS)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems. In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways. We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.

  15. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    PubMed Central

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  16. A quantum chemical study of the ?-transaminase reaction mechanism.

    PubMed

    Cassimjee, Karim Engelmark; Manta, Bianca; Himo, Fahmi

    2015-08-21

    ?-Transaminases are valuable tools in biocatalysis due to their stereospecificity and their broad substrate range. In the present study, the reaction mechanism of Chromobacterium violaceum ?-transaminase is investigated by means of density functional theory calculations. A large active site model is designed based on the recent X-ray crystal structure. The detailed energy profile for the half-transamination of (S)-1-phenylethylamine to acetophenone is calculated and the involved transition states and intermediates are characterized. The model suggests that the amino substrate forms an external aldimine with the coenzyme pyridoxal-5'-phosphate (PLP), through geminal diamine intermediates. The external aldimine is then deprotonated in the rate-determining step, forming a planar quinonoid intermediate. A ketimine is then formed, after which a hemiaminal is produced by the addition of water. Subsequently, the ketone product is obtained together with pyridoxamine-5'-phosphate (PMP). In the studied half-transamination reaction the ketone product is kinetically favored. The mechanism presented here will be valuable to enhance rational and semi-rational design of engineered enzyme variants in the development of ?-transaminase chemistry. PMID:26154047

  17. Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions

    SciTech Connect

    Donald L. Thompson

    2009-09-30

    The objective of this research was to develop and apply methods for more accurate predictions of reaction rates based on high-level quantum chemistry. We have developed and applied efficient, robust methods for fitting global ab initio potential energy surfaces (PESs) for both spectroscopy and dynamics calculations and for performing direct dynamics simulations. Our approach addresses the problem that high-level quantum calculations are often too costly in computer time for practical applications resulting in the use of levels of theory that are often inadequate for reactions. A critical objective was to develop practical methods that require the minimum number of electronic structure calculations for acceptable fidelity to the ab initio PES. Our method does this by a procedure that determines the optimal configurations at which ab initio points are computed, and that ensures that the final fitted PES is uniformly accurate to a prescribed tolerance. Our fitting methods can be done automatically, with little or no human intervention, and with no prior knowledge of the topology of the PES. The methods are based on local fitting schemes using interpolating moving least-squares (IMLS). IMLS has advantages over the very effective modified-Shepard methods developed by Collins and others in that higher-order polynomials can be used and does not require derivatives but can benefit from them if available.

  18. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  19. Chemical reactions at the single molecule level Two molecules may have greater stability as a complex or as

    E-print Network

    Albert, Réka

    Chemical reactions at the single molecule level · Two molecules may have greater stability is the more favorable one · For two molecules to undergo a chemical reaction, they must encounter each other. · In a gaseous mixture of two molecular species the average probability that a reaction takes place is = (c dt

  20. Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution

    E-print Network

    Schiller, Stephan

    Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single images of the 9 Be+ ion ensemble. The observed reaction rates are in agreement with the Langevin ion-neutral. INTRODUCTION Chemical reactions between trapped molecular ions and neutral reactants are of significant

  1. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    PubMed

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ?CH2OO?) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ?CH2OO? and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ?CH2OO? across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO < CH3CHO < CH3COCH3 (the highest yield being 10(-4) times lower than the initial ?CH2OO? concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield. PMID:23958859

  2. 15 CFR 713.3 - Annual declaration and reporting requirements for exports and imports of Schedule 2 chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...and imports of Schedule 2 chemicals. 713.3 Section 713...Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...Schedule 2 chemical that was different than the Schedule 2...

  3. 15 CFR 713.3 - Annual declaration and reporting requirements for exports and imports of Schedule 2 chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...and imports of Schedule 2 chemicals. 713.3 Section 713...Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...Schedule 2 chemical that was different than the Schedule 2...

  4. Students' Dilemmas in Reaction Stoichiometry Problem Solving: Deducing the Limiting Reagent in Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia

    2009-01-01

    A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations

  5. 77 FR 40086 - Importer of Controlled Substances, Notice of Application, Chattem Chemicals Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... to import narcotic raw material are not appropriate. 72 FR 3417 (2007). Any bulk manufacturer who is...). As noted in a previous notice published in the Federal Register on September 23, 1975, 40 FR 43745-46... Enforcement Administration Importer of Controlled Substances, Notice of Application, Chattem Chemicals...

  6. 78 FR 69131 - Importer of Controlled Substances, Notice of Registration, Chattem Chemicals, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... Enforcement Administration Importer of Controlled Substances, Notice of Registration, Chattem Chemicals, Inc. By Notice dated August 15, 2013, and published in the Federal Register on August 26, 2013, 78 FR... requests for hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417...

  7. 77 FR 53874 - The Dow Chemical Company; Application for Blanket Authorization To Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ...country with the capacity to import LNG via ocean-going carrier and with which trade is...Dow is an international chemical and plastics manufacturing company with operations...country with the capacity to import LNG via ocean-going carrier and with which trade...

  8. 78 FR 52801 - Importer of Controlled Substances; Notice of Application; Chattem Chemicals, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... to import narcotic raw material are not appropriate. 72 FR 3417(2007). Any bulk manufacturer who is... (f). As noted in a previous notice published in the Federal Register on September 23, 1975, 40 FR... Enforcement Administration Importer of Controlled Substances; Notice of Application; Chattem Chemicals,...

  9. Electric field suppression of ultracold confined chemical reactions

    SciTech Connect

    Quemener, Goulven; Bohn, John L.

    2010-06-15

    We consider ultracold collisions of polar molecules confined in a one-dimensional optical lattice. Using a quantum scattering formalism and a frame transformation method, we calculate elastic and chemical quenching rate constants for fermionic molecules. Taking {sup 40}K{sup 87}Rb molecules as a prototype, we find that the rate of quenching collisions is enhanced at zero electric field as the confinement is increased but that this rate is suppressed when the electric field is turned on. For molecules with 500 nK of collision energy, for realistic molecular densities, and for achievable experimental electric fields and trap confinements, we predict lifetimes for KRb molecules to be 1 s. We find a ratio of elastic to quenching collision rates of about 100, which may be sufficient to achieve efficient evaporative cooling of polar KRb molecules.

  10. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  11. The Role of Comprehensive Detailed Chemical Kinetic Reaction Mechanisms in Combustion Research

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-07-16

    Recent developments by the authors in the field of comprehensive detailed chemical kinetic reaction mechanisms for hydrocarbon fuels are reviewed. Examples are given of how these mechanisms provide fundamental chemical insights into a range of combustion applications. Practical combustion consists primarily of chemical heat release from reactions between a fuel and an oxidizer, and computer simulations of practical combustion systems have become an essential tool of combustion research (Westbrook et al., 2005). At the heart of most combustion simulations, the chemical kinetic submodel frequently is the most detailed, complex and computationally costly part of a system model. Historically, the chemical submodel equations are solved using time-implicit numerical algorithms, due to the extreme stiffness of the coupled rate equations, with a computational cost that varies roughly with the cube of the number of chemical species in the model. While early mechanisms (c. 1980) for apparently simple fuels such as methane (Warnatz, 1980) or methanol (Westbrook and Dryer, 1979) included perhaps 25 species, current detailed mechanisms for much larger, more complex fuels such as hexadecane (Fournet et al., 2001; Ristori et al., 2001; Westbrook et al., 2008) or methyl ester methyl decanoate (Herbinet et al., 2008) have as many as 2000 or even 3000 species. Rapid growth in capabilities of modern computers has been an essential feature in this rapid growth in the size and complexity of chemical kinetic reaction mechanisms.

  12. Persistence of transition state structure in chemical reactions driven by fields oscillating in time

    E-print Network

    Galen T. Craven; Thomas Bartsch; Rigoberto Hernandez

    2014-04-29

    Chemical reactions subjected to time-varying external forces cannot generally be described through a fixed bottleneck near the transition state barrier or dividing surface. A naive dividing surface attached to the instantaneous, but moving, barrier top also fails to be recrossing-free. We construct a moving dividing surface in phase space over a transition state trajectory. This surface is recrossing-free for both Hamiltonian and dissipative dynamics. This is confirmed even for strongly anharmonic barriers using simulation. The power of transition state theory is thereby applicable to chemical reactions and other activated processes even when the bottlenecks are time-dependent and move across space.

  13. THE LIFETIME OF AEROSOLS IN AMBIENT AIR: CONSIDERATION OF THE EFFECTS OF SURFACTANTS AND CHEMICAL REACTIONS

    SciTech Connect

    Toossi, R.; Novakov, T.

    1984-04-01

    The relatively long lifetime of droplets in atmospheric haze and fog in comparison with similar droplets of pure water is attributed to the presence of a monolayer of surfactant film and to the accumulation Of soluble salts from chemical reactions. The lifetime of these droplets is a significant factor in the evaluation of the role of heterogeneous aqueous chemical reactions occurring in the troposphere. Several mechanisms of SO{sub 2} oxidation in the presence of liquid water are investigated. It is shown that soot-catalyzed oxidation of sulfur dioxide could be responsible for the high level of sulfate concentration observed in the coastal industrial areas.

  14. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    SciTech Connect

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that the contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.

  15. Studies in photochemical smog chemistry. I. Atmospheric chemistry of toluene. II. Analysis of chemical reaction mechanisms for photochemical smog

    SciTech Connect

    Leone, J.A.

    1985-01-01

    This study focuses on two related topics in the gas phase organic chemistry of importance in urban air pollution. Part I describes an experimental and modeling effort aimed at developing a new explicit reaction mechanism for the atmospheric photooxidation of toluene. This mechanism is tested using experimental data from both indoor and outdoor smog chamber facilities. The predictions of the new reaction mechanism are found to be in good agreement with both sets of experimental data. Additional simulations performed with the new mechanism are used to investigate various mechanistic paths, and to gain insight into areas where the understanding is not complete. The outdoor experimental facility, which was built to provide the second set of experimental data, consists of a 65 cubic meter teflon smog chamber together with full instrumentation capable of measuring ozone, nitrogen dioxide, nitric oxide, peroxyacetyl nitrate (PAN), carbon monoxide, relative humidity, temperature, aerosol size distributions, and of course toluene and its photooxidation products. In Part II, a theoretical analysis of lumped chemical reaction mechanisms for photochemical smog is presented. Included is a description of a new counter species analysis technique which can be used to analyze any complex chemical reaction mechanism. Finally, a new lumped mechanism for photochemical smog is developed and tested against experimental data from two smog chamber facilities. Advantages of this mechanism relative to the existing lumped mechanisms are discussed.

  16. Homodyne High-Harmonic Spectroscopy: Coherent Imaging of a Unimolecular Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Beaudoin Bertrand, Julien

    At the heart of high harmonic generation lies a combination of optical and collision physics entwined by a strong laser field. An electron, initially tunnel-ionized by the field, driven away then back in the continuum, finally recombines back to rest in its initial ground state via a radiative transition. The emitted attosecond (atto=10-18) XUV light pulse carries all the information (polarization, amplitude and phase) about the photorecombination continuum-to-ground transition dipolar field. Photorecombination is related to the time-reversed photoionization process. In this perspective, high-harmonic spectroscopy extends well-established photoelectron spectroscopy, based on charged particle detection, to a fully coherent one, based on light characterization. The main achievement presented in this thesis is to use high harmonic generation to probe femtosecond (femto=10-15) chemical dynamics for the first time. Thanks to the coherence imposed by the strong driving laser field, homodyne detection of attosecond pulses from excited molecules undergoing dynamics is achieved, the signal from unexcited molecules acting as the reference local oscillator. First, applying time-resolved high-harmonic spectroscopy to the photodissociation of a diatomic molecule, Br2 ? Br + Br, allows us to follow the break of a chemical bond occurring in a few hundreds of femtoseconds. Second, extending it to a triatomic (NO2) lets us observe both the previously unseen (but predicted) early femtosecond conical intersection dynamics followed by the late picosecond statistical photodissociation taking place in the reaction NO2 ? NO + O. Another important realization of this thesis is the development of a complementary technique to time-resolved high-harmonic spectroscopy called LAPIN, for Linked Attosecond Phase INterferometry. When combined together, time-resolved high-harmonic spectroscopy and LAPIN give access to the complex photorecombination dipole of aligned excited molecules. These achievements lay the basis for electron recollision tomographic imaging of a chemical reaction with unprecedented angstrom (1 angstrom= 0.1 nanometer) spatial resolution. Other contributions dedicated to the development of attosecond science and the generalization of high-harmonic spectroscopy as a novel, fully coherent molecular spectroscopy will also be presented in this thesis.

  17. Equilibrium-like behavior in far-from-equilibrium chemical reaction networks

    E-print Network

    David K. Lubensky

    2008-07-04

    In an equilibrium chemical reaction mixture, the number of molecules present obeys a Poisson distribution. We ask when the same is true of the steady state of a nonequilibrium reaction network and obtain an essentially complete answer. In particular, we show that networks with certain topological features must have a Poisson distribution, whatever the reaction rates. Such driven systems also obey an analog of the fluctuation-dissipation theorem. Our results may be relevant to biological systems and to the larger question of how equilibrium concepts might apply to nonequilibrium systems.

  18. O/S-1/ interactions - The product channels. [collisional electron quenching and chemical reaction pathway frequencies

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1978-01-01

    The first measurements are reported of the reaction pathways for the interaction between oxygen atoms in the 4.19 eV S-1 state, and four molecules, N2O, CO2, H2O, and NO. Distinction is made between three possible paths - quenching to O(D-1), quenching to O(P-3), and chemical reaction. With N2O, the most reasonable interpretation of the data indicates that there no reaction, in sharp contrast with the interaction between O(D-1) and N2O, which proceeds entirely by reaction. Similarly, there is no reaction with CO2. With H2O, the reactive pathway is the dominant one, although electronic quenching is not negligible. With NO, O(D-1) is the preferred product.

  19. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    PubMed

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 10(-5) to 3.6 J kg(-1) spring water, or 3.7 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. PMID:22443686

  20. Organo- and nano-catalyst in greener reaction medium: Microwave-assisted expedient synthesis of fine chemicals

    EPA Science Inventory

    The use of emerging microwave (MW) -assisted chemistry techniques is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. A brief account of our experiences in developing MW-assisted organic transformations, which invo...

  1. General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.

  2. Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow

    ERIC Educational Resources Information Center

    Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms

  3. The Effective Concepts on Students' Understanding of Chemical Reactions and Energy

    ERIC Educational Resources Information Center

    Ayyildiz, Yildizay; Tarhan, Leman

    2012-01-01

    The purpose of this study was to determine the relationship between the basic concepts related to the unit of "Chemical Reactions and Energy" and the sub-concepts underlying for meaningful learning of the unit and to investigate the effectiveness of them on students' learning achievements. For this purpose, the basic concepts of the unit were

  4. Facilitating High School Students' Use of Multiple Representations to Describe and Explain Simple Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro

    2011-01-01

    This study involved the evaluation of the efficacy of a planned instructional program to facilitate understanding of the macroscopic, submicroscopic and symbolic representational systems when describing and explaining chemical reactions by sixty-five Grade 9 students in a Singapore secondary school. A two-tier multiple-choice diagnostic instrument

  5. Turkish, Indian, and American Chemistry Textbooks Use of Inscriptions to Represent "Types of Chemical Reactions"

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Sinha, Somnath; Izci, Kemal; Volkmann, Mark

    2014-01-01

    The purpose of this study was to investigate inscriptions used in "Types of Chemical Reactions" topic in Turkish, Indian, and American chemistry textbooks. We investigated both the types of inscriptions and how they were used in textbooks to support learning. A conceptual analysis method was employed to determine how those textbooks use

  6. Effect of Transport and Reaction on the Shape Evolutionof Cavities during Wet Chemical Etching

    E-print Network

    Economou, Demetre J.

    Effect of Transport and Reaction on the Shape Evolutionof Cavities during Wet Chemical Etching Chee of two-dimensional cavities during wet chemi- cal etching was studied. Finite element methods were in cavities of arbitrary shape. A moving boundary scheme was developed to track the shape evolution

  7. Super-Resolution Fingerprinting Detects Chemical Reactions and Idiosyncrasies of Single DNA Pegboards

    E-print Network

    Walter, Nils G.

    Super-Resolution Fingerprinting Detects Chemical Reactions and Idiosyncrasies of Single DNA in nanoscale topography (PAINT) using site-specific DNA probes to acquire two-dimensional density maps of specific features patterned on nanoscale DNA origami pegboards. We show that PAINT has a localization

  8. Nuclear spin selection rules in chemical reactions by angular momentum algebra

    E-print Network

    Oka, Takeshi

    Nuclear spin selection rules in chemical reactions by angular momentum algebra Takeshi Oka of the representations of the permutationinversion group for both nuclear spin and rovibronic coordinate wavefunctions, those of the rotation group for nuclear spin wavefunction only are used. The method allows more

  9. Using Drawing Technology to Assess Students' Visualizations of Chemical Reaction Processes

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph

    2014-01-01

    In this study, we investigated how students used a drawing tool to visualize their ideas of chemical reaction processes. We interviewed 30 students using thinking-aloud and retrospective methods and provided them with a drawing tool. We identified four types of connections the students made as they used the tool: drawing on existing knowledge,

  10. Chemical reaction of metal-fullerene in gas phase (2) >Masamichi Konoa

    E-print Network

    Maruyama, Shigeo

    f18-068 Chemical reaction of metal-fullerene in gas phase (2) >Masamichi Konoa , Syuhei Inoueb.of Tokyo Since the discovery of macroscopic generation and purification procedure of fullerenes and endohedral fullerenes, the geometric structure and the formation mechanism of them has been one of the most

  11. Chemical reaction of metal-fullerene in gas phase ^

    E-print Network

    Maruyama, Shigeo

    Chemical reaction of metal-fullerene in gas phase ^Masamichi Kohno1 , Shuhei" `ZZOES ,QD"OEfullerenes-ray diffraction study has proven (1) that some metal-fullerenes such as Sc@C82 and Sc2@C84 that were prepared

  12. DEVELOPMENT AND TESTING OF A SURROGATE SPECIES CHEMICAL REACTION MECHANISM. VOLUME 2

    EPA Science Inventory

    A photochemical reaction mechanism has been updated and extensively evaluated. The testing and refinement of the surrogate species mechanism was performed in order to create an improved chemical mechanism for the atmospheric simulation models that are used to develop ozone contro...

  13. DEVELOPMENT AND TESTING OF A SURROGATE SPECIES CHEMICAL REACTION MECHANISM. VOLUME 1

    EPA Science Inventory

    A photochemical reaction mechanism has been updated and extensively evaluated. The testing and refinement of the surrogate species mechanism was performed in order to create an improved chemical mechanism for the atmospheric simulation models that are used to develop ozone contro...

  14. The Quantum Instanton (QI) Model for Chemical Reaction Rates: The "Simplest" QI with One Dividing Surface

    E-print Network

    Miller, William H.

    The Quantum Instanton (QI) Model for Chemical Reaction Rates: The "Simplest" QI with One Dividing: December 10, 2003 A new version of the quantum instanton (QI) approach to thermal rate constants) is presented, namely, the simplest QI (SQI) approximation with one dividing surface (DS), referred to here

  15. Chemical accelerator studies of reaction dynamics: Ar^+ + CH4 ? ArH^+ + CH3

    E-print Network

    Wyatt, J. R.; Strattan, L. W.; Snyder, S. C.; Hierl, Peter M.

    1975-01-01

    Chemical accelerator studies on isotopic variants of the reaction Ar+ + CH4 ? ArH+ + CH3 are reported. Velocity and angular distributions of the ionic product as a function of initial translational energy have been measured over the energy range 0...

  16. Chemical equilibrium and reaction modeling of arsenic and selenium in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical processes and soil factors that affect the concentrations of As and Se in soil solution were discussed. Both elements occur in two redox states differing in toxicity and reactivity. Methylation and volatilization reactions occur in soils and can act as detoxification pathways. Precip...

  17. Temperature-compensated chemical reactions Kanaka Rajan and L. F. Abbott

    E-print Network

    Abbott, Laurence

    Received 21 September 2006; published 23 February 2007 Circadian rhythms are daily oscillations oscillations in mRNA and protein levels, the question of how to construct a network of chemical reactions with respect to temperature vanish 1623 . This requires a cancelation between factors that increase

  18. Remarkable nanoconfinement effects on chemical equilibrium manifested in nucleotide dimerization and H-D exchange reactions.

    PubMed

    Polak, Micha; Rubinovich, Leonid

    2011-10-01

    Nanoconfinement entropic effects on chemical equilibrium involving a small number of molecules, which we term NCECE, are revealed by two widely diverse types of reactions. Employing statistical-mechanical principles, we show how the NCECE effect stabilizes nucleotide dimerization observed within self-assembled molecular cages. Furthermore, the effect provides the basis for dimerization even under an aqueous environment inside the nanocage. Likewise, the NCECE effect is pertinent to a longstanding issue in astrochemistry, namely the extra deuteration commonly observed for molecules reacting on interstellar dust grain surfaces. The origin of the NCECE effect is elucidated by means of the probability distributions of the reaction extent and related variations in the reactant-product mixing entropy. Theoretical modelling beyond our previous preliminary work highlights the role of the nanospace size in addition to that of the nanosystem size, namely the limited amount of molecules in the reaction mixture. Furthermore, the NCECE effect can depend also on the reaction mechanism, and on deviations from stoichiometry. The NCECE effect, leading to enhanced, greatly variable equilibrium "constants", constitutes a unique physical-chemical phenomenon, distinguished from the usual thermodynamical properties of macroscopically large systems. Being significant particularly for weakly exothermic reactions, the effects should stabilize products in other closed nanoscale structures, and thus can have notable implications for the growing nanotechnological utilization of chemical syntheses conducted within confined nanoreactors. PMID:21858361

  19. On chemical reactions in the laser-induced breakdown of a liquid

    NASA Astrophysics Data System (ADS)

    Margulis, M. A.; Ovchinnikov, O. B.; Margulis, I. M.

    2006-06-01

    It is shown experimentally that a laser-induced breakdown of a liquid is accompanied by chemical reactions initiated by radicals and excited species formed in the spark. It is found that, in water, the laser-induced breakdown is accompanied by the dissociation of water and dissolved nitrogen molecules with the formation of HNO2 and HNO3, while, in a FeSO4 aqueous solution, by the Fe2+ ? Fe3+ oxidation reaction. It is assumed that the mechanism of the process is analogous to that of the action of ionizing radiations and the chemical action of ultrasonically induced cavitation (it is proposed that this mechanism of chemical action of a laser-induced spark proposed be termed indirect). Energy yields of these reactions are found to be of the same order of magnitude as for sonochemical redox reactions. It is shown that the laser-induced breakdown of an aqueous solution of maleic acid is accompanied by its stereoisomerization into fumaric acid, a process catalyzed by small amounts of an alkyl bromide. It is established that, for the formation of fumaric acid in a laser-induced spark, the energy yield is about five orders of magnitude higher than that typical of the above-mentioned redox reactions in the laser-induced spark.

  20. Detection of Medically Important Candida Species by Absolute Quantitation Real-Time Polymerase Chain Reaction

    PubMed Central

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2014-01-01

    Background: The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. Objectives: This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). Materials and Methods: The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. Results: All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 103 copies were achieved. Conclusions: A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised. PMID:25789129

  1. Gas-Phase Molecular Halogen Formation from NaCl and NaBr Aerosols: When Are Interface Reactions Important?

    E-print Network

    Dabdub, Donald

    Gas-Phase Molecular Halogen Formation from NaCl and NaBr Aerosols: When Are Interface Reactions at the surface of sea-salt particles have been suggested as an important source of photolyzable gas-phase halogen the influence of interface reactions on gas-phase molecular halogen production from pure NaCl and NaBr aerosols

  2. Child-Rearing Practices toward Children with Hemophilia: The Relative Importance of Clinical Characteristics and Parental Emotional Reactions.

    ERIC Educational Resources Information Center

    Banis, S.; Suurmeijer, Th. P. B. M.; van Peer, D. R.

    1999-01-01

    Addresses the relative importance of clinical characteristics of the child and parental emotional reactions, to child-rearing practices towards children with hemophilia. Results indicate that mother's emotional reactions appear to have a stronger influence on child-rearing uncertainty and overprotection than clinical characteristics of the child.

  3. On a theory of stability for nonlinear stochastic chemical reaction networks

    SciTech Connect

    Smadbeck, Patrick; Kaznessis, Yiannis N.

    2015-05-14

    We present elements of a stability theory for small, stochastic, nonlinear chemical reaction networks. Steady state probability distributions are computed with zero-information (ZI) closure, a closure algorithm that solves chemical master equations of small arbitrary nonlinear reactions. Stochastic models can be linearized around the steady state with ZI-closure, and the eigenvalues of the Jacobian matrix can be readily computed. Eigenvalues govern the relaxation of fluctuation autocorrelation functions at steady state. Autocorrelation functions reveal the time scales of phenomena underlying the dynamics of nonlinear reaction networks. In accord with the fluctuation-dissipation theorem, these functions are found to be congruent to response functions to small perturbations. Significant differences are observed in the stability of nonlinear reacting systems between deterministic and stochastic modeling formalisms.

  4. Stability of a laminar premixed supersonic free shear layer with chemical reactions

    NASA Technical Reports Server (NTRS)

    Menon, S.; Anderson, J. D., Jr.; Pai, S. I.

    1984-01-01

    The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.

  5. On a theory of stability for nonlinear stochastic chemical reaction networks

    PubMed Central

    Smadbeck, Patrick; Kaznessis, Yiannis N.

    2015-01-01

    We present elements of a stability theory for small, stochastic, nonlinear chemical reaction networks. Steady state probability distributions are computed with zero-information (ZI) closure, a closure algorithm that solves chemical master equations of small arbitrary nonlinear reactions. Stochastic models can be linearized around the steady state with ZI-closure, and the eigenvalues of the Jacobian matrix can be readily computed. Eigenvalues govern the relaxation of fluctuation autocorrelation functions at steady state. Autocorrelation functions reveal the time scales of phenomena underlying the dynamics of nonlinear reaction networks. In accord with the fluctuation-dissipation theorem, these functions are found to be congruent to response functions to small perturbations. Significant differences are observed in the stability of nonlinear reacting systems between deterministic and stochastic modeling formalisms. PMID:25978877

  6. A Spectroscopist's View of Energy States, Energy Transfers, and Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Moore, C. Bradley

    2007-05-01

    This chapter describes a research career beginning at Berkeley in 1960, shortly after Sputnik and the invention of the laser. Following thesis work on vibrational spectroscopy and the chemical reactivity of small molecules, we studied vibrational energy transfers in my own lab. Collision-induced transfers among vibrations of a single molecule, from one molecule to another, and from vibration to rotation and translation were elucidated. My research group also studied the competition between vibrational relaxation and chemical reaction for potentially reactive collisions with one molecule vibrationally excited. Lasers were used to enrich isotopes by the excitation of a predissociative transition of a selected isotopomer. We also tested the hypotheses of transition-state theory for unimolecular reactions of ketene, formaldehyde, and formyl fluoride by (a) resolving individual molecular eigenstates above a dissociation threshold, (b) locating vibrational levels at the transition state, (c) observing quantum resonances in the barrier region for motion along a reaction coordinate, and (d) studying energy release to fragments.

  7. Spatiotemporal regulation of chemical reaction kinetics of cell surface molecules by active remodeling of cortical actin

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Mayor, Satyajit; Rao, Madan

    2010-03-01

    Cell surface proteins such as lipid tethered GPI-anchored proteins and Ras-proteins are distributed as monomers and nanoclusters on the surface of living cells. Recent work from our laboratory suggests that the spatial distribution and dynamics of formation and breakup of these nanoclusters is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we propose a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. Here we study the consequences of such active actin based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that active remodeling of cortical actin, can give rise to a dramatic increase in the reaction efficiency and output levels. In general, such actin driven clustering of membrane proteins could be a cellular mechanism to spatiotemporally regulate and amplify local chemical reaction rates, in the context of signalling and endocytosis.

  8. Mass Spectroscopy of Chemical Reaction of 3d Metal Clusters Involved in Chemical Vapor Deposition Synthesis of Carbon Nanotubes

    E-print Network

    Maruyama, Shigeo

    nanotubes (CNTs), 1) which were discovered in 1991, are classified into two types: single-walled carbon Synthesis of Carbon Nanotubes Shuhei Inoue* and Shigeo Maruyama Department of Mechanical Engineering importance. For example, these reactions are involved in the synthesis of single-walled carbon nanotubes

  9. Progress toward Chemical Accuracy in the Computer Simulation of Condensed Phase Reactions

    NASA Astrophysics Data System (ADS)

    Bash, Paul A.; Ho, L. Lawrence; Mackerell, Alexander D.; Levine, David; Hallstrom, Philip

    1996-04-01

    We describe a procedure for the generation of chemically accurate computer-simulation models to study chemical reactions in the condensed phase. The process involves (i) the use of a coupled semiempirical quantum and classical molecular mechanics method to represent solutes and solvent, respectively; (ii) the optimization of semiempirical quantum mechanics (QM) parameters to produce a computationally efficient and chemically accurate QM model; (iii) the calibration of a quantum/classical microsolvation model using ab initio quantum theory; and (iv) the use of statistical mechanical principles and methods to simulate, on massively parallel computers, the thermodynamic properties of chemical reactions in aqueous solution. The utility of this process is demonstrated by the calculation of the enthalpy of reaction in vacuum and free energy change in aqueous solution for a proton transfer involving methanol, methoxide, imidazole, and imidazolium, which are functional groups involved with proton transfers in many biochemical systems. An optimized semiempirical QM model is produced, which results in the calculation of heats of formation of the above chemical species to within 1.0 kcal/mol (1 kcal = 4.18 kJ) of experimental values. The use of the calibrated QM and microsolvation QM/MM (molecular mechanics) models for the simulation of a proton transfer in aqueous solution gives a calculated free energy that is within 1.0 kcal/mol (12.2 calculated vs. 12.8 experimental) of a value estimated from experimental pKa values of the reacting species.

  10. Chemical reactions at metallic and metal/semiconductor interfaces stimulated by pulsed laser annealing

    NASA Astrophysics Data System (ADS)

    Petit, E. J.; Caudano, R.

    1992-01-01

    Multilayer Al/Sb thin films have been evaporated on GaSb single crystals in ultra-high vacuum and pulsed-laser irradiated in-situ above the energy density threshold for surface melting. Superficial and interfacial chemical reactions have been characterized in-situ by Auger electron spectroscopy; and later, by X-ray photoelectron spectroscopy profiling, Rutherford backscattering spectrometry and scanning electron microscopy. The chemical reaction between the Al and Sb films is considered as a model reaction for laser-assisted synthesis of high-purity intermetallic compounds. The observation of a strong interfacial reaction between the melted film and the substrate is also a subject of great concern for optical data recording and laser alloying of ohmic contacts on semiconductors. We show that a suitable choice of the substrate and adding a low surface tension element into the metallic film can improve its stability during melting, and prevent inhomogeneous reaction and formation of holes, cracks and particles. Finally, other solutions are suggested to improve the control of these reactions.

  11. Chemical kinetic analysis of hydrogen-air ignition and reaction times

    NASA Technical Reports Server (NTRS)

    Rogers, R. C.; Schexnayder, C. J., Jr.

    1981-01-01

    An anaytical study of hydrogen air kinetics was performed. Calculations were made over a range of pressure from 0.2 to 4.0 atm, temperatures from 850 to 2000 K, and mixture equivalence ratios from 0.2 to 2.0. The finite rate chemistry model included 60 reactions in 20 species of the H2-O2-N2 system. The calculations also included an assessment of how small amounts of the chemicals H2O, NOx, H2O2, and O3 in the initial mixture affect ignition and reaction times, and how the variation of the third body efficiency of H2O relative of N2 in certain key reactions may affect reaction time. The results indicate that for mixture equivalence ratios between 0.5 and 1.7, ignition times are nearly constant; however, the presence of H2O and NO can have significant effects on ignition times, depending on the mixture temperature. Reaction time is dominantly influenced by pressure but is nearly independent of initial temperature, equivalence ratio, and the addition of chemicals. Effects of kinetics on reaction at supersonic combustor conditions are discussed.

  12. The Quantum-Kinetic Chemical Reaction Model for Navier-Stokes Codes

    NASA Astrophysics Data System (ADS)

    Gallis, Michael A.; Wagnild, Ross M.; Torczynski, John R.

    2013-11-01

    The Quantum-Kinetic chemical reaction model of Bird is formulated as a non-equilibrium chemical reaction model for Navier-Stokes codes. The model is based solely on thermophysical, molecular-level information and is capable of reproducing measured equilibrium reaction rates without using any experimentally measured reaction-rate information. The model recognizes the principal role of vibrational energy in overcoming the reaction energy threshold. The effect of rotational non-equilibrium is introduced as a perturbation to the effect of vibrational non-equilibrium. Since the model uses only molecular-level properties, it is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. This ability is demonstrated in the context of both Navier-Stokes and DSMC codes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Chemical reaction directed oriented attachment: from precursor particles to new substances

    E-print Network

    Liu, Yongfei; Yang, Yong; Zeng, Zhi; Xin, Hongxing; Dai, Zhengfei; Song, Chunjun; Zhu, Xiaoguang; Li, Di; Zhang, Jian; Kawazoe, Yoshiyuki

    2015-01-01

    As a nonclassical crystal growth mode, oriented attachment (OA) plays an increasingly important role in materials science and nanotechnology, and has shown great significance in the development of crystal growth theory. The OA process usually involves the oriented self-assembly of primary nanoparticles and conversion to single crystals or pseudocrystals by interface fusion (Fig. 1a). It is theorized that the OA process is dominant in the early stage of crystal growth, driven by the Brownian motion or short-range interactions. Such oriented alignments usually can be achieved under hydrothermal/solvothermal conditions, or with the assistance of surfactants (Fig. 1b). In conventional OA growth, the constituent and phase structure of the formed crystals are identical to those of the precursor nanocrystals. Here we report a chemical reaction directed OA growth that can create new substances from the precursor nanoparticles (Fig. 1c). Specifically, we show that through such a new OA mechanism, Y2(CO3)3.2H2O nanopar...

  14. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    SciTech Connect

    Yokogawa, D.

    2015-04-28

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as the main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.

  15. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  16. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Solomon, Susan

    1991-01-01

    The rate of heating which occurs in the middle atmosphere due to four exothermic reactions involving members of the odd-hydrogen family is calculated. The following reactions are considered: O + OH yields O2 + H; H + O2 + M yields HO2 + M; H + O3 yields OH + O2; and O + HO2 yields OH + O2. It is shown that the heating rates due to these reactions rival the oxygen-related heating rates conventionally considered in middle-atmosphere models. The conversion of chemical potential energy into molecular translational energy (heat) by these odd-hydrogen reactions is shown to be a significant energy source in the middle atmosphere that has not been previously considered.

  17. Chemical Kinetic Reaction Mechanisms for Combustion of Hydrocarbon and Other Types of Chemical Fuels

    DOE Data Explorer

    Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). These kinetic models are used to examine a wide range of combustion systems.

  18. Chemical Reaction Fronts in Ordered and Disordered Cellular Flows with Opposing Winds M. E. Schwartz* and T. H. Solomon

    E-print Network

    Solomon, Tom

    Chemical Reaction Fronts in Ordered and Disordered Cellular Flows with Opposing Winds M. E of chemical fronts in ordered and disordered vortex flows with imposed uniform winds. Fronts in a chain simply propagates at its reaction-diffusion (no flow) velocity minus the wind speed. If the same wind

  19. Slow Hydrogen Transfer Reactions of Oxo and Hydroxo Vanadium Compounds: the Importance of Intrinsic Barriers

    PubMed Central

    Waidmann, Christopher R.; Zhou, Xin; Tsai, Erin A.; Kaminsky, Werner; Hrovat, David A.; Borden, Weston Thatcher; Mayer, James M.

    2009-01-01

    Reactions are described that interconvert vanadium(IV) oxo-hydroxo complexes [VIVO(OH)(R2bpy)2]BF4 (1a-c) and vanadium(V) dioxo complexes [VVO2(R2bpy)2]BF4 (2a-c) [R2bpy = 4,4?-di-t-butyl-2,2?-bipyridine (tBu2bpy), a; 4,4?-dimethyl-2,2?-bipyridine (Me2bpy), b; 2,2?-bipyridine (bpy), c]. These are rare examples of pairs of isolated, sterically unencumbered, first-row metal-oxo/hydroxo complexes that differ by a hydrogen atom (H+ + e?). The VIV tBu2bpy derivative 1a has a useful 1H NMR spectrum, despite being paramagnetic. Complex 2a abstracts H from organic substrates with weak OH and CH bonds, converting 2,6-tBu2-4-MeO-C6H2OH (ArOH) and 2,2,6,6-tetramethyl-N-hydroxy-piperidine (TEMPOH) to their corresponding radicals ArO and TEMPO, hydroquinone to benzoquinone, and dihydroanthracene to anthracene. The equilibrium constant for 2a + ArOH ? 1a + ArO is (4 2) 10?3, implying that the VOH bond dissociation free energy (BDFE) is 70.6 1.2 kcal mol?1. Consistent with this value, 1a is oxidized by 2,4,6-tBu3C6H2O. All of these reactions are surprisingly slow, typically occurring over hours at ambient temperatures. The net hydrogen-atom pseudo-self-exchange 1a + 2b ? 2a + 1b, using the tBu- and Me-bpy substituents as labels, also occurs slowly, with kse = 1.3 10?2 M?1 s?1 at 298 K, ?H = 15 2 kcal mol?1, and ?S= 16 5 cal mol?1 K. Using this kse and the BDFE, the vanadium reactions are shown to follow the Marcus cross relation moderately well, with calculated rate constants within 102 of the observed values. The vanadium self-exchange reaction is ca. 106 slower than that for the related RuIVO(py)(bpy)22+ / RuIIIOH(py)(bpy)22+ self-exchange. The origin of this dramatic difference has been probed with DFT calculations on the self-exchange reactions of 1c + 2c and on mono-cationic ruthenium complexes with pyrrolate or fluoride in place of the py ligands. The calculations reproduce the difference in barrier heights and show that transfer of a hydrogen atom involves more structural reorganization for vanadium than the Ru analogs. The vanadium complexes have larger changes in the metaloxo and metalhydroxo bond lengths, which is traced to the difference in d-orbital occupancy in the two systems. This study thus highlights the importance of intrinsic barriers in the transfer of a hydrogen atom, in addition to the thermochemical (bond strength) factors that have been previously emphasized. PMID:19292442

  20. Spectator Ions ARE Important! A Kinetic Study of the Copper-Aluminum Displacement Reaction

    ERIC Educational Resources Information Center

    Sobel, Sabrina G.; Cohen, Skyler

    2010-01-01

    Surprisingly, spectator ions are responsible for unexpected kinetics in the biphasic copper(II)-aluminum displacement reaction, with the rate of reaction dependent on the identity of the otherwise ignored spectator ions. Application of a published kinetic analysis developed for a reaction between a rotating Al disk and a Cu(II) ion solution to the

  1. Monitoring the inorganic chemical reaction by surface-enhanced Raman spectroscopy: A case of Fe(3+) to Fe(2+) conversion.

    PubMed

    Qin, Suhua; Meng, Juan; Tang, Xianghu; Yang, Liangbao

    2016-01-01

    Monitoring the process of organic chemical reactions to study the kinetics by surface-enhanced Raman spectroscopy (SERS) is currently of immense interest. However, monitoring the inorganic chemical reaction is still an extremely difficulty for researchers. This study exactly focused on the monitor of inorganic chemical reaction. Capillary coated with silver nanoparticles was introduced, which was an efficient platform for monitoring reactions with SERS due to the advantages of sensitivity and excellent reproducibility. The photoreduction of [Fe(phen)3](3+) to [Fe(phen)3](2+) was used as model reaction to demonstrated the feasibility of SERS monitoring inorganic chemical reaction by involving in metal-organic complexes. Moreover, the preliminary implementation demonstrated that the kinetics of photoreduction can be real-time monitored by in situ using the SERS technique on a single constructed capillary, which may be useful for the practical application of SERS technique. PMID:26695289

  2. A coupled mechanical and chemical damage model for concrete affected by alkalisilica reaction

    SciTech Connect

    Pignatelli, Rossella; Lombardi Ingegneria S.r.l., Via Giotto 36, 20145 Milano ; Comi, Claudia; Monteiro, Paulo J.M.

    2013-11-15

    To model the complex degradation phenomena occurring in concrete affected by alkalisilica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: Concrete degradation due to ASR in variable environmental conditions is modeled. Two isotropic internal variables chemical and mechanical damage are introduced. The value of the swelling pressure is estimated by the diffuse double layer theory. A simplified scheme is proposed to relate macro- and microscopic properties. The chemo-mechanical damage model is validated by simulating tests in literature.

  3. 75 FR 36306 - Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ...phosphorus is stabilized against chemical reactions prior to its use by industry...matrix that protects it from chemical reactions. The amount of red phosphorus...plays an important role in the chemical reaction to produce...

  4. Rate of Mixing Controls Rate and Outcome of Autocatalytic Processes: Theory and Microfluidic Experiments with Chemical Reactions and

    E-print Network

    Ismagilov, Rustem F.

    Experiments with Chemical Reactions and Blood Coagulation Rebecca R. Pompano, Hung-Wing Li, and Rustem F of both biological and nonbiological autocatalytic reaction systems that display a threshold response to the concentration of an activator. Plug-based microfluidics was used to control the timing of reactions, the rate

  5. Thursday, January 27, 2011 and Tuesday, February 1 These two lectures are on some basics of chemical reaction

    E-print Network

    Toohey, Darin W.

    of chemical reaction rate theory, as applied to the atmosphere. This information is not found in many-71 (lifetimes and cycles) Chapter 9 page 140-143 (see, especially, Table 9.1) #12;Bimolecular Reactions Typically, there are two types of reactions between molecules in the atmosphere that concern us

  6. A Microscale Approach to Chemical Kinetics in the General Chemistry Laboratory: The Potassium Iodide Hydrogen Peroxide Iodine-Clock Reaction

    ERIC Educational Resources Information Center

    Sattsangi, Prem D.

    2011-01-01

    A microscale laboratory for teaching chemical kinetics utilizing the iodine clock reaction is described. Plastic pipets, 3 mL volume, are used to store and deliver precise drops of reagents and the reaction is run in a 24 well plastic tray using a total 60 drops of reagents. With this procedure, students determine the rate of reaction and the

  7. A saddle in a corner - a model of collinear triatomic chemical reactions

    E-print Network

    L. Lerman; V. Rom-Kedar

    2011-11-08

    A geometrical model which captures the main ingredients governing atom-diatom collinear chemical reactions is proposed. This model is neither near-integrable nor hyperbolic, yet it is amenable to analysis using a combination of the recently developed tools for studying systems with steep potentials and the study of the phase space structure near a center-saddle equilibrium. The nontrivial dependence of the reaction rates on parameters, initial conditions and energy is thus qualitatively explained. Conditions under which the phase space transition state theory assumptions are satisfied and conditions under which these fail are derived.

  8. Simulations of isoprene: Ozone reactions for a general circulation/chemical transport model

    NASA Technical Reports Server (NTRS)

    Makar, P. A.; Mcconnell, J. C.

    1994-01-01

    A parameterized reaction mechanism has been created to examine the interactions between isoprene and other tropospheric gas-phase chemicals. Tests of the parameterization have shown that its results match those of a more complex reaction set to a high degree of accuracy. Comparisons between test runs have shown that the presence of isoprene at the start of a six day interval can enhance later ozone concentrations by as much as twenty-nine percent. The test cases used no input fluxes beyond the initial time, implying that a single input of a biogenic hydrocarbon to an airmass can alter its ozone chemistry over a time scale on the order of a week.

  9. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    PubMed

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on isolated defects where it involves formation of H3O(+)-acid anion contact ion pairs. This behavior is found in simulations of a model of the ice quasi-liquid layer corresponding to large defect concentrations in crystalline ice. The results are in accord with experiments. (iv) Ionization of acids on wet quartz. A monolayer of water on hydroxylated silica is ordered even at room temperature, but the surface lattice constant differs significantly from that of crystalline ice. The ionization processes of HCl and H2SO4 are of high yield and occur in a few picoseconds. The results are in accord with experimental spectroscopy. (v) Photochemical reactions on water and ice. These simulations require excited state quantum chemical methods. The electronic absorption spectrum of methyl hydroperoxide adsorbed on a large ice cluster is strongly blue-shifted relative to the isolated molecule. The measured and calculated adsorption band low-frequency tails are in agreement. A simple model of photodynamics assumes prompt electronic relaxation of the excited peroxide due to the ice surface. SEMD simulations support this, with the important finding that the photochemistry takes place mainly on the ground state. In conclusion, dynamics simulations using quantum chemical potentials are a useful tool in atmospheric chemistry of water media, capable of comparison with experiment. PMID:25647299

  10. Role of impact parameter in branching reactions: Chemical accelerator studies of the reaction Xe++CH4?XeCH3 ++H

    E-print Network

    Miller, G. D.; Strattan, L. W.; Hierl, Peter M.

    1981-01-01

    Integral reaction cross sections and product velocity distributions have been measured for the ionmolecule reaction Xe+(CH4,H)XeCH3 + over the relative reactant translational energy range of 0.75.5 eV by chemical accelerator ...

  11. Self-propelled motion of a fluid droplet under chemical reaction

    E-print Network

    Shunsuke Yabunaka; Takao Ohta; Natsuhiko Yoshinaga

    2012-03-03

    We study self-propelled dynamics of a droplet due to a Marangoni effect and chemical reactions in a binary fluid with a dilute third component of chemical product which affects the interfacial energy of a droplet. The equation for the migration velocity of the center of mass of a droplet is derived in the limit of an infinitesimally thin inter- face. We found that there is a bifurcation from a motionless state to a propagating state of droplet by changing the strength of the Marangoni effect.

  12. Numerical simulation of the interaction of transport, diffusion and chemical reactions in an urban plume

    NASA Technical Reports Server (NTRS)

    Vogel, Bernhard; Vogel, Heike; Fiedler, Franz

    1994-01-01

    A model system is presented that takes into account the main physical and chemical processes on the regional scale here in an area of 100x100 sq km. The horizontal gridsize used is 2x2 sq km. For a case study, it is demonstrated how the model system can be used to separate the contributions of the processes advection, turbulent diffusion, and chemical reactions to the diurnal cycle of ozone. In this way, typical features which are visible in observations and are reproduced by the numerical simulations can be interpreted.

  13. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure.

    PubMed

    Bender, Andreas; Scheiber, Josef; Glick, Meir; Davies, John W; Azzaoui, Kamal; Hamon, Jacques; Urban, Laszlo; Whitebread, Steven; Jenkins, Jeremy L

    2007-06-01

    Preclinical Safety Pharmacology (PSP) attempts to anticipate adverse drug reactions (ADRs) during early phases of drug discovery by testing compounds in simple, in vitro binding assays (that is, preclinical profiling). The selection of PSP targets is based largely on circumstantial evidence of their contribution to known clinical ADRs, inferred from findings in clinical trials, animal experiments, and molecular studies going back more than forty years. In this work we explore PSP chemical space and its relevance for the prediction of adverse drug reactions. Firstly, in silico (computational) Bayesian models for 70 PSP-related targets were built, which are able to detect 93% of the ligands binding at IC(50) < or = 10 microM at an overall correct classification rate of about 94%. Secondly, employing the World Drug Index (WDI), a model for adverse drug reactions was built directly based on normalized side-effect annotations in the WDI, which does not require any underlying functional knowledge. This is, to our knowledge, the first attempt to predict adverse drug reactions across hundreds of categories from chemical structure alone. On average 90% of the adverse drug reactions observed with known, clinically used compounds were detected, an overall correct classification rate of 92%. Drugs withdrawn from the market (Rapacuronium, Suprofen) were tested in the model and their predicted ADRs align well with known ADRs. The analysis was repeated for acetylsalicylic acid and Benperidol which are still on the market. Importantly, features of the models are interpretable and back-projectable to chemical structure, raising the possibility of rationally engineering out adverse effects. By combining PSP and ADR models new hypotheses linking targets and adverse effects can be proposed and examples for the opioid mu and the muscarinic M2 receptors, as well as for cyclooxygenase-1 are presented. It is hoped that the generation of predictive models for adverse drug reactions is able to help support early SAR to accelerate drug discovery and decrease late stage attrition in drug discovery projects. In addition, models such as the ones presented here can be used for compound profiling in all development stages. PMID:17477341

  14. Quantum adiabatic theorem for chemical reactions and systems with time-dependent orthogonalization

    E-print Network

    Andrew Das Arulsamy

    2011-09-09

    A general quantum adiabatic theorem with and without the time-dependent orthogonalization is proven, which can be applied to understand the origin of activation energies in chemical reactions. Further proofs are also developed for the oscillating Schwinger Hamiltonian to establish the relationship between the internal (due to time-dependent eigenfunctions) and external (due to time-dependent Hamiltonian) time scales. We prove that this relationship needs to be taken as an independent quantum adiabatic approximation criterion. We give four examples, including logical expositions based on the spin-1/2 two-level system to address the gapped and gapless (due to energy level crossings) systems, as well as to understand how does this theorem allows one to study dynamical systems such as chemical reactions.

  15. Amplification of Pressure Waves during Vibrational Equilibration of Excited Chemical Reaction Products

    SciTech Connect

    Tarver, C M

    2004-05-11

    The Non-Equilibrium Zeldovich - von Neumann - Doring (NEZND) theory of self-sustaining detonation identified amplification of pressure wavelets during equilibration of vibrationally excited reaction products in the reaction zone as the physical mechanism by which exothermic chemical energy release sustains detonation waves. This mechanism leads to the formation of the well-known, complex three-dimensional structure of a self-sustaining detonation wave. This amplification mechanism is postulated to be a general property of subsonic and supersonic reactive flows occurring during: shock to detonation transition (SDT); hot spot ignition and growth; deflagration to detonation transition (DDT); flame acceleration by shock or compression waves; and acoustic (sound) wave amplification. The existing experimental and theoretical evidence for pressure wave amplification by chemical energy release into highly vibrationally excited product molecules under these reactive flow conditions is reviewed in this paper.

  16. Chemical reaction at ferromagnet/oxide interface and its influence on anomalous Hall effect

    SciTech Connect

    Liu, Yi-Wei; Teng, Jiao E-mail: ghyu@mater.ustb.edu.cn; Zhang, Jing-Yan; Liu, Yang; Chen, Xi; Li, Xu-Jing; Feng, Chun; Wang, Hai-Cheng; Li, Ming-Hua; Yu, Guang-Hua E-mail: ghyu@mater.ustb.edu.cn; Wu, Zheng-Long

    2014-09-08

    Chemical reactions at the ferromagnet/oxide interface in [Pt/Fe]{sub 3}/MgO and [Pt/Fe]{sub 3}/SiO{sub 2} multilayers before and after annealing were investigated by X-ray photoelectron spectroscopy. The results show that Fe atoms at the Fe/MgO interface were completely oxidized in the as-grown state and significantly deoxidized after vacuum annealing. However, only some of the Fe atoms at the Fe/SiO{sub 2} interface were oxidized and rarely deoxidized after annealing. The anomalous Hall effect was modified by this interfacial chemical reaction. The saturation anomalous Hall resistance (R{sub xy}) was greatly increased in the [Pt/Fe]{sub 3}/MgO multilayers after annealing and was 350% higher than that in the as-deposited film, while R{sub xy} of the [Pt/Fe]{sub 3}/SiO{sub 2} multilayer only increased 10% after annealing.

  17. Tabletop imaging of structural evolutions in chemical reactions demonstrated for the acetylene cation.

    PubMed

    Ibrahim, Heide; Wales, Benji; Beaulieu, Samuel; Schmidt, Bruno E; Thir, Nicolas; Fowe, Emmanuel P; Bisson, ric; Hebeisen, Christoph T; Wanie, Vincent; Gigure, Mathieu; Kieffer, Jean-Claude; Spanner, Michael; Bandrauk, Andr D; Sanderson, Joseph; Schuurman, Michael S; Lgar, Franois

    2014-01-01

    The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging, we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using vacuum ultraviolet light from a free-electron laser. Here we show that 266 nm ultrashort laser pulses are capable of initiating rich dynamics through multiphoton ionization. With our generally applicable tabletop approach that can be used for other small organic molecules, we have investigated two basic chemical reactions simultaneously: proton migration and C=C bond breaking, triggered by multiphoton ionization. The experimental results are in excellent agreement with the timescales and relaxation pathways predicted by new and quantitative ab initio trajectory simulations. PMID:25034613

  18. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots

    PubMed Central

    Kazemi, Masoud; qvist, Johan

    2015-01-01

    Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies. PMID:26028237

  19. A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface

    E-print Network

    Senkan, Selim M.

    A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface Sezen Soyer a , Alper Uzun a , Selim Senkan b , Isik Onal a,* a Department of Chemical Engineering, Middle East Technical University, Ankara 06531, Turkey b Department of Chemical Engineering, University

  20. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.