Science.gov

Sample records for important geologic process

  1. Seafloor Eruptions Offer a Teachable Moment to Help SEAS Students Understand Important Geological and Ecological Processes

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Williams, C. S.

    2006-12-01

    In education parlance, a teachable moment is an opportunity that arises when students are engaged and primed to learn, typically in response to some memorable event. Earthquakes, volcanic eruptions, even natural disasters, if meaningful to the student, often serve to catalyze intense learning. Recent eruptions at the East Pacific Rise offer a potential teachable moment for students and teachers involved with SEAS, a Ridge 2000 education outreach program. SEAS uses a combination of web-facilitated and teacher-directed activities to make the remote deep-sea environment and the process of science relevant and meaningful. SEAS is a web-based, inquiry-oriented education program for middle and high school students. It features the science associated with Ridge 2000 research. Since 2003, SEAS has focused on the integrated study site at the East Pacific Rise (EPR) to help students understand geological and ecological processes at mid-ocean ridges and hydrothermal vents. SEAS students study EPR bathymetry maps, images of lava formations, photomosaics of diffuse flow communities, succession in the Bio-Geo Transect, as well as current research conducted during spring cruises. In the Classroom to Sea Lab, students make direct comparisons between shallow-water mussels and vent mussels (from the EPR) to understand differences in feeding strategies. The recent eruptions and loss of seafloor fauna at this site offer the Ridge 2000 program the opportunity to help students better understand the ephemeral and episodic nature of ridge environments, as well as the realities and processes of science (particularly field science). In January 2007, the SEAS program will again sail with a Ridge 2000 research team, and will work with scientists to report findings through the SEAS website. The eruptions at the EPR covered much of the study site, and scientists' instruments and experiments, in fresh lava. We intend to highlight the recency and effect of the eruptions, using the students' anticipated response as a motivator to deepen their understanding of the environment. SEAS depends on the contributions of many scientists within the Ridge 2000 community, and serves as an outreach channel for the whole community. Scientists can help field student questions during the Ask-a- Scientist email forum, serve as Report Reviewers, be featured in Scientist Spotlights, and help develop new Classroom to Sea labs and curricular materials. In the next four years, SEAS will integrate with the international GLOBE education program (www.globe.gov), and help our community reach even more students and teachers, worldwide.

  2. Geological processes and evolution

    USGS Publications Warehouse

    Head, J.W.; Greeley, R.; Golombek, M.P.; Hartmann, W.K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L.E.; Carr, M.H.

    2001-01-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  3. The importance of both geological and pedological processes in control of grain size and sedimentation rates in Peoria Loess

    USGS Publications Warehouse

    Wang, Hongfang; Mason, J.A.; Balsam, W.L.

    2006-01-01

    The loess-paleosol succession in the Peoria Loess in southern Illinois is characterized as alternating loess layers and weathering bands, known as paleosol A horizons. The fast loess accumulation during the late Wisconsin glaciation interacted with the incipient pedogenesis and caused unclear boundaries of loess-paleosol alternations in soil horizonation and mineralogy. Parameters of grain size distribution, sedimentation rate, matrix carbonate content and diffuse reflectance (i.e. soil colors and iron oxides) are used in this paper to discuss the geological and pedological influences for the Peoria Loess in Keller Farm section in southern Illinois. The multi-proxy analysis revealed that many paleosol A horizons, defined by the diffuse reflectance variability, contain finer-grained materials with a relatively higher sedimentation rate. It suggests that glaciofluvial sediments were available in the source areas for uploading eolian dust during the temporary ice sheet retreats. The denser vegetation and wetter surface soils on the loess deposit area could increase the dust trapping efficiency and caused a greater accumulation rate of loess deposits. The coarser-grained materials and slower sedimentation rate are often found in loess layers. It suggests that strong surface winds transported the coarser-grained materials from local dust sources and sparse vegetation and dry surface soils reduced the dust trapping efficiency during the ice sheet readvance. The strong interactions between the geological and pedological processes played an important role on the loess-paleosol alternations in southern Illinois during the late Wisconsin glaciation. ?? 2006 Elsevier B.V. All rights reserved.

  4. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  5. Planetary geological processes

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Solomonidou, Anezina

    2014-11-01

    In this introduction to planetary geology, we review the major geologic processes affecting the solid bodies of the solar system, namely volcanism, tectonism, impact cratering, and erosion. We illustrate the interplay of these processes in different worlds, briefly reviewing how they affect the surfaces of the Earth's Moon, Mercury, Venus and Mars, then focusing on two very different worlds: Jupiter's moon Io, the most volcanically active object in the solar system, and Saturn's moon Titan, where the interaction between a dense atmosphere and the surface make for remarkably earth-like landscapes despite the great differences in surface temperature and composition.

  6. Important geological properties of unconventional resource shales

    NASA Astrophysics Data System (ADS)

    Slatt, Roger

    2011-12-01

    The revelation of vast global quantities of potentially productive gas and oil-prone shales has led to advancements in understanding important geological properties which impact reservoir performance. Based upon research on a variety of shales, several geological properties have been recognized as being common and important to hydrocarbon production. (1) transport/depositional processes include hemipelagic `rain', hyperpycnal flows, turbidity current flows, tempestites, wave-reworking, and contour currents in both shallow and deep water settings. (2) Common shale minerals include clays, quartz, calcite, dolomite, apatite, and pyrite; organic constituents include spores (Tasmanites), plant remains, biogenic quartz and calcite, and arenaceous foraminifera. (3) Porosity and permeability are characteristically low with pore sizes ranging down to the nanoscale. Main pore types include intergranular (including pores within clay floccules), porous organic matter, porous fecal pellets, and microfractures. (4) Important geochemical characteristics include organic richness (>3%), maturity (>1.1%Ro for shale gas and 0.6-0.9% for shale oil) and type (I-IV), in addition to certain biomarkers which are indicators of bottom water oxicity during deposition. Remaining hydrocarbon potential [RHP = (S1 + S2)/TOC] also reflects temporal environmental changes. `Isotopic reversals' can be used to detect best producing areas in shale-gas plays. (5) Lithofacies stacking patterns and sequence stratigraphy are the result of eustatic depositional history. A general sequence stratigraphic model is presented here that highlights this commonality. (6) Geomechanical properties are key to drilling, fracturing and production of hydrocarbons. Brittle-ductile couplets at several scales occur in shale sequences. (7) Geophysical properties, when calibrated to rock properties, provide a means of regionally to locally mapping the aforementioned properties. (8) Economic and societal considerations in the exploration and development of resource shales are garnering attention. Many potentially economic shale-gas and shale-oil plays are being identified globally. Risks and uncertainties associated with gas- and oil-rich shales include the lack of long-term production histories, environmental concerns related to hydraulic fracturing, uncertainty in calculating hydrocarbons-in-place, and fluctuations in supply, demand, and price.

  7. Important geological properties of unconventional resource shales

    NASA Astrophysics Data System (ADS)

    Slatt, Roger M.

    2011-12-01

    The revelation of vast global quantities of potentially productive gas and oil-prone shales has led to advancements in understanding important geological properties which impact reservoir performance. Based upon research on a variety of shales, several geological properties have been recognized as being common and important to hydrocarbon production. (1) transport/depositional processes include hemipelagic `rain', hyperpycnal flows, turbidity current flows, tempestites, wave-reworking, and contour currents in both shallow and deep water settings. (2) Common shale minerals include clays, quartz, calcite, dolomite, apatite, and pyrite; organic constituents include spores ( Tasmanites), plant remains, biogenic quartz and calcite, and arenaceous foraminifera. (3) Porosity and permeability are characteristically low with pore sizes ranging down to the nanoscale. Main pore types include intergranular (including pores within clay floccules), porous organic matter, porous fecal pellets, and microfractures. (4) Important geochemical characteristics include organic richness (>3%), maturity (>1.1%Ro for shale gas and 0.6-0.9% for shale oil) and type (I-IV), in addition to certain biomarkers which are indicators of bottom water oxicity during deposition. Remaining hydrocarbon potential [RHP = (S1 + S2)/TOC] also reflects temporal environmental changes. `Isotopic reversals' can be used to detect best producing areas in shale-gas plays. (5) Lithofacies stacking patterns and sequence stratigraphy are the result of eustatic depositional history. A general sequence stratigraphic model is presented here that highlights this commonality. (6) Geomechanical properties are key to drilling, fracturing and production of hydrocarbons. Brittle-ductile couplets at several scales occur in shale sequences. (7) Geophysical properties, when calibrated to rock properties, provide a means of regionally to locally mapping the aforementioned properties. (8) Economic and societal considerations in the exploration and development of resource shales are garnering attention. Many potentially economic shale-gas and shale-oil plays are being identified globally. Risks and uncertainties associated with gas- and oil-rich shales include the lack of long-term production histories, environmental concerns related to hydraulic fracturing, uncertainty in calculating hydrocarbons-in-place, and fluctuations in supply, demand, and price.

  8. Processes of Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 16 July 2003

    This THEMIS visible image captures a complex process of deposition, burial and exhumation. The crater ejecta in the top of the image is in the form of flow lobes, indicating that the crater was formed in volatile-rich terrain. While a radial pattern can be seen in the ejecta, the pattern is sharper in the lower half of the ejecta. This is because the top half of the ejecta is still buried by a thin layer of sediment. It is most likely that at one time the entire area was covered. Wind, and perhaps water erosion have started to remove this layer, once again exposing the what was present underneath.

    Image information: VIS instrument. Latitude -34.3, Longitude 181.2 East (178.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Computer image processing: Geologic applications

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1978-01-01

    Computer image processing of digital data was performed to support several geological studies. The specific goals were to: (1) relate the mineral content to the spectral reflectance of certain geologic materials, (2) determine the influence of environmental factors, such as atmosphere and vegetation, and (3) improve image processing techniques. For detection of spectral differences related to mineralogy, the technique of band ratioing was found to be the most useful. The influence of atmospheric scattering and methods to correct for the scattering were also studied. Two techniques were used to correct for atmospheric effects: (1) dark object subtraction, (2) normalization of use of ground spectral measurements. Of the two, the first technique proved to be the most successful for removing the effects of atmospheric scattering. A digital mosaic was produced from two side-lapping LANDSAT frames. The advantages were that the same enhancement algorithm can be applied to both frames, and there is no seam where the two images are joined.

  10. Health benefits of geologic materials and geologic processes

    USGS Publications Warehouse

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  11. Understanding Mars: The Geologic Importance of Returned Samples

    NASA Astrophysics Data System (ADS)

    Christensen, P. R.

    2011-12-01

    Our current scientific understanding of Mars has been established through a systematic sequence of missions, beginning 45 years ago with flybys, and followed by reconnaissance from orbiters and landers, detailed mapping from highly sophisticated orbiters, and, most recently, rovers that are capable of true geologic and geochemical exploration. The past fifteen years of intense exploration has revolutionized our knowledge and understanding of Mars, changing our view of Mars from a cold, dry planet in which the activity occurred billions of years ago, to one with an extensive inventory of near-surface snow and ice, recently-active aqueous processes, and a remarkable diversity of aqueous environments that show evidence for major differences in aqueous chemistry, conditions, and processes. The bulk of this knowledge has come from the analysis of global remote sensing data, which have provided elemental and mineralogic composition maps, morphology at sub-meter resolution, and information on the physical properties of the regolith. While these remote data sets provide a wealth of insight into past and present surface process, they are limited in the detection of potentially important minor phases, and cannot provide details at spatial scales that are often necessary to understand the details of formation mechanisms. The MER rovers demonstrated the tremendous utility of in situ investigations to ground truth the global remote sensing, and in many cases confirmed the discoveries from orbit. However, even in situ observations are limited, with severe restrictions on the set of experiments that can be performed because of the difficulty of miniaturizing state-of-the-art analytical tools within limited rover payload capacity. The recently published NRC Planetary Science Decadal Survey Report placed pursuing the questions of habitability and the potential origin and evolution of life on Mars as the highest priority Mars science goal. Among the key questions to be studied are what are the nature, ages, and origin of the diverse suite of aqueous environments, were any of them habitable, how, when, and why did environments vary through time, and finally, did any of them host life or its precursors? A critical next step toward answering these questions would be provided through the analysis of carefully selected samples from geologically diverse and well-characterized sites that are returned to Earth for detailed study. This sample return campaign is envisioned as a sequence of three missions that collect the samples, place them into Mars orbit, and return them to Earth. Our existing scientific knowledge of Mars makes it possible to select a site at which specific, detailed hypotheses can be tested, and from which the orbital mapping can be validated and extended globally. Existing and future analysis techniques developed in laboratories around the world will provide the means to perform a wide array of tests on these samples, develop hypotheses for the origin of their chemical, isotopic, and morphologic signatures, and, most importantly, perform follow-up measurements to test and validate the findings. These analyses will dramatically improve our understanding of the geologic processes and history of Mars, and through their ties to the global geologic context, will once again revolutionize our understanding of this complex planet.

  12. Geologic Landforms and Processes on Icy Satellites

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Moore, Jeffrey M.

    1998-01-01

    During the first reconaissence of the satellites of the outer solar system conducted by the Voyager missions (1979-1989), a surprising diversity of unusual geologic landforms were observed, in some cases with bewildering complexity (e.g., Triton). Impact features were certainly expected but the variety of volcanic, diapiric, tectonic, impact, and erosional landforms was only remotely suggested by some early theoretical works. These diagnostic features are manifestations of the internal composition, thermal history, and dynamical evolution of these bodies. It is the job of the geologist to interpret the morphology, stratigraphy, and composition of these deposits and structures to ascertain what materials were mobilized in the interior, in what amount, and the mechanism and cause of their mobilization. In this chapter, we review what is know about these features and what constraints can be placed on composition and thermal history. Particular emphasis is placed on volcanic features, as these are most directly related to satellite composition and thermal history. The surface spectra, high albedos, and low bulk densities of the satellites of the outer solar system indicate that water and other ices are abundant on these bodies, particularly on their surfaces. Ices, particularly water ice, are less dense than silicates and will tend to float and form crusts during differentiation or partial melting of the interior. Ices therefore take the place of silicates as 'crust-forming' minerals and dominate geologic processes on icy satellites. Melted ices form magma bodies, and sometimes are extruded as lavas, an unusual but still valid perspective for terrestrial geologists. The unusual properties of some ices, including their low melting temperatures, and low strengths (as well as the decrease in density on the freezing of water ice), will ultimately be very important in interpreting this record.

  13. Geologic processes influence the effects of mining on aquatic ecosystems

    USGS Publications Warehouse

    Schmidt, Travis S.; Clements, William H.; Wanty, Richard B.; Verplanck, Philip L.; Church, Stanley E.; San Juan, Carma A.; Fey, David L.; Rockwell, Barnaby W.; DeWitt, Ed H.; Klein, Terry L.

    2012-01-01

    Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as “historically mined” or “unmined,” and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.

  14. Planetary geology: Impact processes on asteroids

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.; Greenberg, R.; Weidenschilling, S. J.

    1982-01-01

    The fundamental geological and geophysical properties of asteroids were studied by theoretical and simulation studies of their collisional evolution. Numerical simulations incorporating realistic physical models were developed to study the collisional evolution of hypothetical asteroid populations over the age of the solar system. Ideas and models are constrained by the observed distributions of sizes, shapes, and spin rates in the asteroid belt, by properties of Hirayama families, and by experimental studies of cratering and collisional phenomena. It is suggested that many asteroids are gravitationally-bound "rubble piles.' Those that rotate rapidly may have nonspherical quasi-equilibrium shapes, such as ellipsoids or binaries. Through comparison of models with astronomical data, physical properties of these asteroids (including bulk density) are determined, and physical processes that have operated in the solar system in primordial and subsequent epochs are studied.

  15. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  16. Will Somebody do the Dishes? Weathering Analogies, Geologic Processes and Geologic Time

    NASA Astrophysics Data System (ADS)

    Stelling, P.; Wuotila, S.; Giuliani, M.

    2006-12-01

    A good analogy is one of the most powerful tools in any instructors' arsenal, and encouraging students to explore the links between an analogy and a scientific concept can cement both ideas in a student's mind. A common analogy for weathering and erosion processes is doing the dishes. Oxidation, hydration, and solution reactions can be intimidating on the chalkboard but easily understood in the context of cleaning up after dinner. Rather than present this analogy as a lecture demonstration, students are encouraged to experimentally determine which type of weathering works best on their dirty dishes. The experiment must use at least four identically dirty dishes: three experimental dishes and one control dish. The experimental dishes are subjected to simulated weathering and erosion processes of the student's design. Common techniques developed by students are cold or warm water baths, baths with and without acid (lemon juice or soda), and freeze-thaw cycles. Occasionally creative experiments result in unexpected discoveries, such the inefficiency of abrasion from wind-blown sand, especially when compared to soaking dishes in Canadian Whiskey. The effectiveness of each experimental run is determined by comparison to the control plate after loose debris is removed from each. The dish with the smallest aerial extent of remaining food is the declared the most effective. Discussion sections of the experimental write-up includes a description of which geologic processes were being simulated in each experiment, comparisons of the effectiveness of each techniques, and statements of how these experiments differ from reality. In order to advance this project, a second stage of the assignment, a direct comparison of weathering and erosion techniques on food and on geologic materials, will be added this fall. Ideally, students will empirically derive erosion rates and calculate the time required to remove the volume of material represented by a geologically important feature, such as Mt. Rainier or the Grand Canyon. In the end, students completing this project gain an understanding of how geologic processes work, the time scales required, the differences between analogies and the real thing, and arguably the most important aspect, a best-practices approach to doing the dishes.

  17. Geologic processes on Venus: An update

    NASA Technical Reports Server (NTRS)

    Masursky, H.

    1985-01-01

    Studies of Venera 15 and 16 radar image and altimetry data and reevaluation of Pioneer Venus and earlier Venera data have greatly expanded the perception of the variety and complexity of geologic processes on Venus. PV data have discriminated four highland regions (each different in geomorphic appearance), a large upland rolling plains region, and smaller areas of lowland plains. Two highland volcanic centers were identified that may be presently active, as suggested by their geomorphologic appearance combined with positive gravity anomalies, lightning strike clusters, and a change in SO2 content in the upper atmosphere. Geochemical data obtained by the Venera landers have indicated that one upland area and nearby rolling plains are composed of volcanic rocks, probably basalts or syenites. New Venera radar images of the Ishtar Terra region show folded and/or faulted linear terrain and associated volcanic features that may have been deformed by both compressional and extensional forces. Lowland surfaces resemble the mare basaltic lava flows that fill basins on the Moon, Mars and Earth. Ubiquitous crater like forms may be of either volcanic or impact origin; the origin of similar lunar features was determined by the character of their ejecta deposits.

  18. Physical and geological processes of delta formation 

    E-print Network

    Bates, Charles Carpenter

    1953-01-01

    . Therefore, a strategy to aid cultural resource management (CRM) is needed. A geoscience strategy for CRM was developed by modifying engineering geological approaches. Evaluation of existing approaches revealed a common three or four phase strategy...

  19. Geologic process studies using Synthetic Aperture Radar (SAR) data

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.

    1992-01-01

    The use of SAR data to study geologic processes for better understanding of recent tectonic activity and climate change as well as the mitigation of geologic hazards and exploration for nonrenewable resources is discussed. The geologic processes that are particularly amenable to SAR-based data include volcanism; soil erosion, degradation, and redistribution; coastal erosion and inundation; glacier fluctuations; permafrost; and crustal motions. When SAR data are combined with data from other planned spaceborne sensors including ESA ERS, the Japanese Earth Resources Satellite, and the Canadian Radarsat, it will be possible to build a time-series view of temporal changes over many regions of earth.

  20. The Moon: Keystone to Understanding Planetary Geological Processes and History

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.

  1. Abstracts for the Planetary Geology Field Conference on Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, R. (editor); Black, D. (editor)

    1978-01-01

    The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.

  2. Geology of the Icy Galilean Satellites: Understanding Crustal Processes and Geologic Histories Through the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.

    2003-01-01

    Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.

  3. Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538

    SciTech Connect

    Crockett, Glenda; King, Samantha

    2013-07-01

    The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

  4. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  5. 76 FR 13207 - Announcement of the U.S. Geological Survey Science Strategy Planning Feedback Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    .... Geological Survey Announcement of the U.S. Geological Survey Science Strategy Planning Feedback Process AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of Feedback Process SUMMARY: The U.S. Geological... process involves gathering input from the public on draft strategy documents and questions that...

  6. Geology and Geophysics of Venus: Implications for Magmatic Processes

    E-print Network

    Treiman, Allan H.

    Geology and Geophysics of Venus: Implications for Magmatic Processes Walter S. Kiefer Lunar and Planetary Institute Venus Geochemistry Workshop Feb. 26, 2009 #12;#12;Basaltic Volcanism on Venus #12 decompression melting in plume head near base of lithosphere · Venus: Beta Regio, Atla Regio · Earth: Hawaii

  7. The importance of subsurface geology for water source and vegetation communities in Cherokee Marsh, Wisconsin

    USGS Publications Warehouse

    Kurtz, A.M.; Bahr, J.M.; Carpenter, Q.J.; Hunt, R.J.

    2007-01-01

    Restoration of disturbed wetland systems is an important component of wetland mitigation, yet uncertainty remains about how hydrologic processes affect biologic processes and wetlands patterns. To design more effective restoration strategies and re-establish native plant communities in disturbed wetlands, it is imperative to understand undisturbed systems. A site within Cherokee Marsh located in Madison, Wisconsin, USA, contains a relatively undisturbed area of wetland consisting of plant communities common within the prairie landscape including a fen, sedge meadow, and shallow marsh. These distinct communities are found within an area of minimal topographic relief, yet transitions from one community to the next occur over short distances. This study sought to characterize the geologic, hydrologic, and chemical gradients associated with these shifts in vegetation to gain insight into the factors controlling the spatial differences in dominant plant species, which could be critical for restoration success. Vegetation analyses revealed a transition of dominant sedge species, which appeared to correspond to changes in hydrology from a ground-water dominated to a surface-water dominated system (as determined by water isotopes). Along the same vegetation transect, subsurface coring results show a heterogeneous composition of peat and till with lateral and vertical variations in stratigraphy, which relates to variability in ground-water discharge as evidenced by hydroperiods and stable isotope composition. Applications of this type of approach throughout the glaciated terrains of the midwestern and northeastern United States and Canada can improve future wetland restoration and management. ?? 2007, The Society of Wetland Scientists.

  8. Graphics processing, video digitizing, and presentation of geologic information

    SciTech Connect

    Sanchez, J.D. )

    1990-02-01

    Computer users have unparalleled opportunities to use powerful desktop computers to generate, manipulate, analyze and use graphic information for better communication. Processing graphic geologic information on a personal computer like the Amiga used for the projects discussed here enables geoscientists to create and manipulate ideas in ways once available only to those with access to large budgets and large mainframe computers. Desktop video applications such as video digitizing and powerful graphic processing application programs add a new dimension to the creation and manipulation of geologic information. Videotape slide shows and animated geology give geoscientists new tools to examine and present information. Telecommunication programs such as ATalk III, which can be used as an all-purpose telecommunications program or can emulate a Tektronix 4014 terminal, allow the user to access Sun and Prime minicomputers and manipulate graphic geologic information stored there. Graphics information displayed on the monitor screen can be captured and saved in the standard Amiga IFF graphic format. These IFF files can be processed using image processing programs such as Butcher. Butcher offers edge mapping, resolution conversion, color separation, false colors, toning, positive-negative reversals, etc. Multitasking and easy expansion that includes IBM-XT and AT co-processing offer unique capabilities for graphic processing and file transfer between Amiga-DOS and MS-DOS. Digital images produced by satellites and airborne scanners can be analyzed on the Amiga using the A-Image processing system developed by the CSIRO Division of Mathematics and Statistics and the School of Mathematics and Computing at Curtin University, Australia.

  9. The consideration of geological uncertainty in the siting process for a Geological Disposal Facility for radioactive waste

    NASA Astrophysics Data System (ADS)

    Mathers, Steve; McEvoy, Fiona; Shaw, Richard

    2015-04-01

    Any decision about the site of a Geological Disposal Facility at depth for medium to high level radioactive waste is based on a safety case which in turn is based on an understanding of the geological environment which enables, for example, understanding groundwater flows and groundwater chemical composition. Because the information on which geological understanding is based cannot be fully understood, it is important to ensure that: i. Inferences are made from data in a way that is consistent with the data. ii. The uncertainty in the inferred information is described, quantitatively where this is appropriate. Despite these uncertainties decisions can and must be made, and so the implications of the uncertainty need to be understood and quantified. To achieve this it is important to ensure that: i. An understanding of how error propagates in all models and decision tools. Information which is collected to support the decision-making process may be used as input into models of various kinds to generate further information. For example, a process model may be used to predict groundwater flows, so uncertainty in the properties which are input to the model (e.g. on rock porosity and structure) will give rise to uncertainty in the model predictions. Understanding how this happens is called the analysis of error propagation. It is important that there is an understanding of how error propagates in all models and decision tools, and therefore knowledge of how much uncertainty remains in the process at any stage. As successive phases of data collection take place the analysis of error propagation shows how the uncertainty in key model outputs is gradually reduced. ii. The implications of all uncertainties can be traced through the process. A clear analysis of the decision-making process is necessary so that the implications of all uncertainties can be traced through the process. This means that, when a final decision is made, one can state with a high level of confidence that site conditions, while not known exactly, fall within an acceptable range.

  10. A Computational Environment for the Management, Processing, and Analysis of Geological Data

    E-print Network

    Ward, Matthew

    A Computational Environment for the Management, Processing, and Analysis of Geological Data Matthew. In this paper we attempt to create a generic model for a geological data processing task, identify some the analysis of data and the simulation of geological processes. Accordingly, a plethora of computer programs

  11. 77 FR 34062 - Announcement of the U.S. Geological Survey Science Strategy Planning Feedback Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    .... Geological Survey Announcement of the U.S. Geological Survey Science Strategy Planning Feedback Process AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of Feedback Process. ] SUMMARY: The U.S.... This process involves gathering input from the public on draft strategy documents. Feedback can...

  12. THE ROLE OF PORE PRESSURE IN DEFORMATION IN GEOLOGIC PROCESSES

    SciTech Connect

    Narasimhan, T. N.; Houston, W. N.; Nur, A. M.

    1980-03-01

    A Penrose Conference entitled, "The Role of Pore Pressure in Deformation in Geologic Processes" was convened by the authors at San Diego, California between November 9 and 13, 1979. The conference was sponsored by the Geological Society of America. This report is a summary of the highlights of the issues discussed during the conference. In addition, this report also includes a topical reference list relating to the different subject areas relevant to pore pressure and deformation. The references were compiled from a list suggested by the participants and were available for consultation during the conference. Although the list is far from complete, it should prove to be a good starting point for one who is looking for key papers in the field.

  13. Hydro-geological process chain for building a flood scenario

    NASA Astrophysics Data System (ADS)

    Longoni, Laura; Brambilla, Davide; Papini, Monica; Ivanov, Vladislav; Radice, Alessio

    2015-04-01

    Flash-flood events in mountain environments are often related to the transport of large amounts of sediment from the slopes through the stream network. As a consequence, significant morphological changes may occur in rivers during a single, short-duration event, with possibly significant effect on the water elevation. An appropriate hazard evaluation would therefore require the thorough modelling of the flood-related phenomena and of their interconnection. In this context, this work is focused on an attempt of integrated modelling of event-scale water and sediment transport processes for a reference case-study of the Mallero basin in the Italian Alps. The area of the catchments is about 320 square km, the main stream being almost 25 km long and having slopes in the range from 1 to 40 %. A town (Sondrio) is present at the downstream end of the river. In 1987, Sondrio was at risk of inundation due to a combined effect of relatively high discharge and aggradation of the river bed up to 5 m (almost equal to the bankfull depth in the in-town reach). A 100-year flood scenario was produced including (i) a sediment supply model, (ii) a one-dimensional, hydro-morphologic model of the river bed evolution, and (iii) an estimation of the outflowing discharge at river sections where the bank elevation was exceeded by water. Rainfall-runoff transformation was not included into the modelling chain as the 100-year water hydrograph was already available from previous studies. For the sediment production model, a downscaling in time of the Gavrilovic equation was attempted using rainfall estimation from depth-duration-frequency curves, which furnished values in reasonable agreement with some available data. The hydro-morphologic model, based on the Saint-Venant and Exner equations, was preliminarily calibrated against data for bed aggradation measured in 1987. A point of separation was chosen at an appropriate location in the basin, and the sediment yield estimated upstream of this point was used as an upstream boundary condition for the hydro-morphologic model, under a simplifying hypothesis of process separation that would be later discussed. Particular attention is indeed necessary when dealing with the interface between the geologic and hydraulic processes, where models lack consistency between their respective spatial and temporal scales. Uncertainty was dealt with by sensitivity analysis. Modelling results are discussed in terms of the validity of the separate models as well as of the approach for their integration. In general, the importance of antecedent conditions of the river reach is highlighted, which suggests to apply long-term analysis prior to short-term modelling of the event.

  14. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    USGS Publications Warehouse

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  15. Environmental quality and preservation; bedrock beneath reefs; the importance of geology in understanding biological decline in a modern reef ecosystem

    USGS Publications Warehouse

    Lidz, Barbara H.

    2000-01-01

    Environmental Quality and Preservation-Bedrock Beneath Reefs: the Importance of Geology in Understanding Biological Decline in a Modern Ecosystem' is a four-page and one-plate full-color discussion of the geologic framework and evolutionary history of the coral reef ecosystem that lines the outer shelf off the Florida Keys.

  16. Distribution And Interplay Of Geologic Processes On Titan: Analysis Using Cassini Data

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M.; Stofan, E. R.; Peckyno, R.; Mitri, G.; Mitchell, K. L.; Wood, C. A.; Radebaugh, J.; Kirk, R. L.; Wall, S. D.; Lorenz, R.; Lunine, J. I.; Craig, J.; Turtle, E. P.; Barnes, J. W.; Paganelli, F.; Cassini RADAR Team

    2007-10-01

    The major planetary geologic processes - volcanism, tectonism, impact cratering and erosion - have played a role in shaping Titan's complex surface. We use data obtained by Cassini's Titan Radar Mapper, in its Synthetic Aperture Radar (SAR) mode, to analyze the distribution of geologic processes on Titan, both endogenic and exogenic, and to derive temporal relationships between these processes, at least at local scales. We compare SAR data with those from the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS) to look for correlations that can extend our knowledge of both spatial distribution and temporal relationships. Although stratigraphic relationships are hard to establish from the available data, they are sufficiently clear in some places that a picture of Titan's geologic evolution is emerging. Erosional/depositional processes, both from fluvial and aeolian activity, play a major role modifying Titan's surface. Fluvial features are widespread in both latitude and longitude and are seen at many different scales. Lacustrine features are widespread at high northern latitudes and there are suggestions of similar features at high southern latitudes as well. Fluvial erosion may be the dominant modification process at high latitudes, while erosion and burial as a result of aeolian activity may dominate the lower latitudes. In at least one location near the equator, dunes overlay fluvial deposits. Cryovolcanic features are not widespread but show no preference for latitude or longitude given the current data. Tectonic features (mountains and ridges) appear more common at low latitudes and may be compressional in origin, though other features that may be fractures might indicate extension. The impact record on Titan seems to have been mostly obliterated by other processes. The distribution and interplay of geologic processes is important to provide constraints on models of the interior and of surface-atmosphere interactions.

  17. Using Springs to Study Groundwater Flow and Active Geologic Processes

    NASA Astrophysics Data System (ADS)

    Manga, Michael

    Spring water provides a unique opportunity to study a range of subsurface processes in regions with few boreholes or wells. However, because springs integrate the signal of geological and hydrological processes over large spatial areas and long periods of time, they are an indirect source of information. This review illustrates a variety of techniques and approaches that are used to interpret measurements of isotopic tracers, water chemistry, discharge, and temperature. As an example, a set of springs in the Oregon Cascades is considered. By using tracers, temperature, and discharge measurements, it is possible to determine the mean-residence time of water, infer the spatial pattern and extent of groundwater flow, estimate basin-scale hydraulic properties, calculate the regional heat flow, and quantify the rate of magmatic intrusion beneath the volcanic arc.

  18. Role of Wavelets in the Physical and Statistical Modelling of Complex Geological Processes

    E-print Network

    Vasilyev, Oleg V.

    Role of Wavelets in the Physical and Statistical Modelling of Complex Geological Processes D. A modelling, statistical modelling, geological processes 1. Introduction Today, there is an ongoing explosion massive amounts of data has precipitated an urgent need for novel tools to process data more efficiently

  19. The importance of geological data and derived information in seismic response assessment for urban sites. An example from the Island of Crete, Greece

    NASA Astrophysics Data System (ADS)

    Tsangaratos, Paraskevas; Loupasakis, Constantinos; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonios; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Nikos; Sarris, Apostolos

    2015-04-01

    The magnitude, frequency content and duration of an earthquake ground motion depends mainly on the surrounding geological, tectonic and geomorphological conditions. Numerous reports have been contacted illustrating the necessity of providing accurate geological information in order to estimate the level of seismic hazard. In this context, geological information is the outcome of processing primary, raw field data and geotechnical investigation data that are non - organized and associated with the geological model of the study area. In most cases, the geological information is provided as an advance element, a key component of the "function" that solves any geo-environmental problem and is primarily reflected on analogue or digital maps. The main objective of the present study is to illustrate the importance of accurate geological information in the thirteen (13) selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island, in order to estimate the seismic action according to Eurocode (EC8). As an example the detailed geological-geotechnical map of the area around HAN site in Rethymno city, Crete is presented. The research area covers a 250m radius surrounding the RTHE HAN-station at a scale of 1: 2000 with detail description of the geological and geotechnical characteristics of the formations as well as the tectonic features (cracks, upthrust, thrust, etc) of the rock mass. The field survey showed that the RTHE station is founded over limestones and dolomites formations. The formations exhibit very good geomechanical behaviour; however they present extensive fragmentation and karstification. At this particular site the identification of a fault nearby the station proved to be significant information for the geophysical research as the location and orientation of the tectonic setting provided new perspective on the models of seismic wave prorogation. So, the geological data and the induced information along with the tectonic structure of the area, revealed variations that could alter the seismic wave prorogation models as well as the ground type/soil category of the foundation formations. In conclusion, the produced geological-geotechnical maps are the main mean of communication and flow of geological information between different scientific disciplines providing the bases for defining the ground type at each HAN site and calibrating the corresponding code prescribed spectra. This study is part of the on-going project that has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

  20. Linking subsurface temperature and hillslope processes through geologic time

    NASA Astrophysics Data System (ADS)

    Barnhart, Katherine; Anderson, Robert

    2015-04-01

    Many periglacial hillslope processes - physical, chemical, and biological - depend on subsurface temperature and water availability. As the subsurface temperature field varies both in space and through time over many scales up to climate cycles, the dominant processes of mobile regolith production and transport and the rate at which they act will vary. These processes include the chemical weathering of minerals, cracking of rocks through frost action and tree roots, presence and impact of vegetation on soil cohesion, location and activity of burrowing and trampling animals, frost creep, and solifluction. In order to explore the interplay between these processes across a landscape over the geologic timescales on which such landscapes evolve, we explore the effects of slope, aspect, latitude, atmosphere, and time before present on the expected energy balance at the surface of the earth and the resulting subsurface temperature field. We begin by calculating top-of-atmosphere insolation at any time in the Quaternary, honoring the variations in orbit over Milankovitch timescales. We then incorporate spatial and temporal variations in incoming short-wave radiation on sub-daily timescales due to elevation, latitude, aspect, and shading. Outgoing long-wave radiation is taken to depend on the surface temperature and may be modified by allowing back-radiation from the atmosphere. We then solve for the subsurface temperature field using a numerical model that acknowledges depth-varying material properties, water content, and phase change. With these tools we target variations in regolith production and motion over the long timescales on which periglacial hillslopes evolve. We implement a basic parameterization of temperature-dependent chemical and physical weathering linked to mobile regolith generation. We incorporate multiple regolith transport processes including frost heave and creep. Our intention is not to parameterize all operative processes, but to include sufficient detail to identify how the different processes interact. We address questions that include: What governs contrasts in process rate on pole-ward vs. equator-ward slopes? Under what conditions should we expect temporal transitions between transport-limited and weathering-limited erosion? How does the legacy of past climate impact later hillslope activity?

  1. Role of Wavelets in the Physical and Statistical Modelling of Complex Geological Processes

    E-print Network

    Erlebacher, Gordon

    Role of Wavelets in the Physical and Statistical Modelling of Complex Geological Processes D. A wavelets, physical modelling, statistical modelling, geological processes 1 Introduction Today Carolina State University, Raleigh, NC. E-mail: fuentes@stat.ncsu.edu 1 #12;2 D. A. YUEN ET AL. involving

  2. 01 Mineral resources Geological processes on and within the

    E-print Network

    Fischlin, Andreas

    and industrial materials. 04 ­ Significance and use Natural resources play an important role for the economy of the exhibition #12;14 ­ Processing of metals How is mineral ore turned into pure metal? Let's take a step a resource become a reser- ve? 19 ­ Laws and regulations The raw material economy is international

  3. Beowulf Distributed Processing and the United States Geological Survey

    USGS Publications Warehouse

    Maddox, Brian G.

    2002-01-01

    Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing technology. It will describe the benefits of the technology. Real data about a distributed application will be presented as an example of the benefits that this technology can bring to USGS scientific programs. Finally, some of the issues with distributed processing that relate to USGS work will be discussed.

  4. Process for structural geologic analysis of topography and point data

    DOEpatents

    Eliason, Jay R. (Richland, WA); Eliason, Valerie L. C. (Richland, WA)

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  5. The importance of precise U-Pb ages in geological correlation

    SciTech Connect

    Krogh, T. )

    1992-01-01

    A reduction of lead laboratory background contamination by six orders of magnitude over the past two decades provides a similar reduction in the sample size required for the analysis. Single grains and parts of grains from growth stages in complex populations with a diameter like that of a human hair can now be precisely dated ([+-] 2 m.y., 2 sigma) without a need to average many grains or many spots as with previous conventional or ion microprobe techniques. New methods to eliminate discordance add to the reliability of the method. Precise ages for igneous events, metamorphism, deformation and mineralization provide a means of correlating geological processes at different structural levels and on a scale far greater than normally possible by proximal relationships. Ages of granulite formation and ductile flow in the Superior Province show that these deep level processes occurred more than 50 m.y. after volcanism at the same time as gold deposits formed in active faults at high structural levels. Episodes of isotopic resetting and new zircon growth due to overthrusting in the Grenville Front tectonic zone allow the ages of deformation to be compared for the 1,500 km length of this structure. Dating single zircons in sedimentary packages like the Toridonian sandstone gives the age of a continental source now removed by continental drift. Single zircon cores indicate the protolith age for 372 Ma and 30 Ma granites in Nova Scotia and Chile, respectively. Diabase dykes of the McKenzie dyke swarm separated by up to 2,000 Km can be shown to be coeval at 1,267 [+-] 2 Ma and hence to have formed by a common process of these dimensions. Precise dating of single zircons (microgram size) from the K-T boundary layer that show varying degrees of shock metamorphism define a circa 550 Ma age for the target rock and 65.5 [+-] 3 Ma age for the impact event.

  6. Impact craters: their importance in geologic record and implications for natural resource development

    SciTech Connect

    Levie, D. Jr.

    1986-05-01

    Impacting bodies of sufficient size traveling at hypervelocities carry tremendous potential energy. This relatively infrequent process results in the instantaneous formation of unique structures that are characterized by extensive fracturing and brecciation of the target material. Impacts onto continental shield areas can create rich ore deposits, such as the Sudbury mining district in Canada. Impacts into the sedimentary column can instantaneously create hydrocarbon reservoirs out of initially nonporous rocks, such as at Red Wing Creek and Viewfield in the Williston basin. Associated reservoirs are usually limited to a highly deformed central uplift in larger craters, or to the fractured rim facies in smaller craters. The presence of reservoirs and trapping mechanisms is largely dependent, however, upon the preservation state of the crater in the subsurface. A catastrophic extraterrestrial event (a large asteroid impact) has also been suggested as the cause for the extinction of the dinosaurs, but the latest theory proposes a companion star with a 26 m.y. periodicity as the cause for numerous lifeform extinctions over a similar time interval. Regardless of their magnitude and distribution over the earth, it is clear that catastrophic extraterrestrial events have been responsible for altering the geologic column locally, regionally, and quite possibly on a global scale.

  7. 76 FR 34656 - Taking and Importing Marine Mammals; Geological and Geophysical Exploration of Mineral and Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ...Marine Mammals; Geological and Geophysical Exploration of Mineral and Energy Resources on the Outer Continental Shelf in the...Management, Regulation, and Enforcement (BOEMRE), formerly Minerals Management Service (MMS), for authorization to take...

  8. Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons

    E-print Network

    Larsen, Isaac

    Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green are unknown. A recent episode of enhanced debris-flow and wildfire activity provided an opportunity to examine with recent debris flows to determine how surficial geology, wildfire, topography, bedrock strength

  9. Geology

    NASA Technical Reports Server (NTRS)

    Arvidson, R.

    1984-01-01

    Three objectives were outlined: (1) global distribution, geometry and composition of continental rock units; (2) morphology and structure of the continental crust; and (3) monitoring selected surface processes. Mapping soil, sediment and rock characteristics for land surfaces requires the use of visible, reflected, thermal and radio parts of the spectrum. Digital topographic data (elevation, slope angle, slope magnitude) are needed to correct reflectance, emission, and radar data. In addition, images of the topographic data provide fundamental information on the morphology and structure of the land.

  10. Constraining geologic properties and processes through the use of impact craters

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.

    2015-07-01

    Impact cratering is the one geologic process which is common to all solar system objects. Impact craters form by the resulting explosion between a solar system body and hypervelocity objects. Comparison with craters formed by chemical and nuclear explosions reveals that crater diameter is related to other morphometric characteristics of the crater, such as depth and rim height. These relationships allow scientists to use impact craters to probe the subsurface structure within the upper few kilometer of a planetary surface and to estimate the amounts and types of degradational processes which have affected the planet since crater formation. Crater size-frequency distribution analysis provides the primary mechanism for determining ages of planetary terrains and constraining the timing of resurfacing episodes. Thus, impact craters provide many important insights into the evolution of planetary surfaces.

  11. The Mars Express High Resolution Stereo Camera (HRSC): Mapping Mars and Implications for Geological Processes

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf; Tirsch, Daniela; Hauber, Ernst; Hoffmann, Harald; Neukum, Gerhard

    2015-04-01

    After 10 years of ESA's Mars Express orbiting the planet its High Resolution Stereo Camera (HRSC) covered about 90 % of the surface in stereo and color with resolutions up to 10 m/pixel. Digital elevation models of up to 50 m grid spacing [1], generated from all suitable datasets of the stereo coverage, currently cover about 40 % of the surface [2]. The geomorphological analysis of surface features, observed by the HRSC indicate major surface modifications by endogenic and exogenic processes on all scales. Endogenic landforms (e.g., tectonic rifts, small basaltic shield volcanoes) were found to be very similar to their equivalents on Earth, suggesting that no unique processes are required to explain their formation. Volcanism may have been active up to the very recent past or even to the present, putting important constraints on thermal evolution models [e.g., 3]. The analysis of diverse landforms produced by aqueous processes revealed that surface water activity was likely episodic, but ranged in age from very ancient to very recent [e.g., 3]. Particularly important is prominent glaciation and periglacial features at several latitudes, including mountain glaciers [e.g., 3]. The identification of aqueous alteration minerals and their geological context has enabled a better understanding of paleoenvironmental conditions and pedogenetic processes [e.g., 4]. Dark dunes contain volcanic material and are evidence for the significantly dynamic surface environment, characterized by widespread erosion, transport, and redeposition [e.g., 3, 5]. Since basically all geologic interpretations of extraterrestrial features require profound knowledge of the Earth as key reference, studies of terrestrial analogues are mandatory in planetary geology. Field work in Antarctica, Svalbard and Iceland [e.g., 6] provided a basis for the analysis of periglacial and volcanic processes, respectively. References: [1] Jaumann et al., 2007, PSS 55, 928-952; [2] Gwinner et al., 2010, EPSL 294, 506-519; [3] Jaumann et al., 2015, PSS, in press, [4] Jaumann et al., 2014, PSS 98, 128-145; [5] Tirsch et al., 2011, JGR 116, doi: 10.1029/2009je003562; [6] Hauber et al., 2011, Geol. Soc. Am. 483, 111-131

  12. Geology Field Trips as Performance Evaluations

    ERIC Educational Resources Information Center

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  13. Scaling filtering and multiplicative cascade information integration techniques for geological, geophysical and geochemical data processing and geological feature recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2013-12-01

    This paper introduces several techniques recently developed based on the concepts of multiplicative cascade processes and multifractals for processing exploration geochemical and geophysical data for recognition of geological features and delineation of target areas for undiscovered mineral deposits. From a nonlinear point of view extreme geo-processes such as cloud formation, rainfall, hurricanes, flooding, landslides, earthquakes, igneous activities, tectonics and mineralization often show singular property that they may result in anomalous amounts of energy release or mass accumulation that generally are confined to narrow intervals in space or time. The end products of these non-linear processes have in common that they can be modeled as fractals or multifractals. Here we show that the three fundamental concepts of scaling in the context of multifractals: singularity, self-similarity and fractal dimension spectrum, make multifractal theory and methods useful for geochemical and geophysical data processing for general purposes of geological features recognition. These methods include: a local singularity analysis based on a area-density (C-A) multifractal model used as a scaling high-pass filtering technique capable of extracting weak signals caused by buried geological features; a suite of multifractal filtering techniques based on spectrum density - area (S-A) multifractal models implemented in various domain including frequency domain can be used for unmixing geochemical or geophysical fields according to distinct generalized self-similarities characterized in certain domain; and multiplicative cascade processes for integration of diverse evidential layers of information for prediction of point events such as location of mineral deposits. It is demonstrated by several case studies involving Fe, Sn, Mo-Ag and Mo-W mineral deposits that singularity method can be utilized to process stream sediment/soil geochemical data and gravity/aeromagnetic data as high-pass filtering technique for delineating anomalies caused by mineralization or boundaries of mineralization-associated geological bodies; S-A method can be applied as high-pass, low-pass or band -pass filtering techniques for extracting patterns of interest from mixing data; and cascade processes can be implemented to integrate diverse layers of information for mineral resources predictive mapping.

  14. Digitizing rocks standardizing the geological description process using workstations

    SciTech Connect

    Saunders, M.R. , Windsor, Berkshire ); Shields, J.A. ); Taylor, M.R. )

    1993-09-01

    The preservation of geological knowledge in a standardized digital form presents a challenge. Data sources, inherently fuzzy, range in scale from the macroscopic (e.g., outcrop) through the mesoscopic (e.g., hand-specimen) core and sidewall core, to the microscopic (e.g., drill cuttings, thin sections, and microfossils). Each scale change results in increased heterogeneity and potentially contradictory data and the providers of such data may vary in experience level. To address these issues with respect to cores and drill cuttings, a geological description workstation has been developed and is undergoing field trials. Over 1000 carefully defined geological attributes are currently available within a depth-indexed, relational database. Attributes are stored in digital form, allowing multiple users to select familiar usage (e.g., diabase vs. dolerite). Data can be entered in one language and retrieved in other languages. The database structure allow groupings of similar elements (e.g., rhyolites in acidic, igneous or volcanics subgroups or the igneous rock group) permitting different uses to analyze details appropriate to the scale of the usage. Data entry uses a graphical user interface, allowing the geologist to make quick, logical selections in a standardized or custom-built format with extensive menus, on-screen graphics and help screens available. Description ranges are permissible. Entries for lithology, petrology, structures (sedimentary, organic and deformational), reservoir characteristics (porosity and hydrocarbon shows), and macrofossils are available. Sampling points for thin sections, core analysis, geochemistry, or micropaleontology studies are also recorded. Using digital data storage, geological logs using graphical, alphanumeric and symbolic depictions are possible. Data can be integrated with drilling and mud gas data, MWD and wireline data and off well-site analyses to produced composite formation evaluation logs and interpretational crossplots.

  15. The lively Aysén fjord, Chile: Records of multiple geological processes

    NASA Astrophysics Data System (ADS)

    Lastras, Galderic; Amblas, David; Calafat, Antoni; Canals, Miquel; Frigola, Jaime; Hermanns, Reginald L.; Lafuerza, Sara; Longva, Oddvar; Micallef, Aaron; Sepúlveda, Sergio A.; Vargas, Gabriel; Azpiroz, María; Bascuñán, Ignacio; Duhart, Paul; Iglesias, Olaia; Kempf, Philipp; Rayo, Xavier

    2014-05-01

    The Aysén fjord is a 65 km long, east-west oriented fjord in Chilean Patagonia, located approximately at 45.4ºS and 73.2ºW, with a maximum water depth of 345 m. The fjord receives at present the riverine input of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding up to 2000 m high Patagonian Andes. The fjord is crossed by a number of faults associated to the seismically active Liquiñe-Ofqui Fault Zone, a major trench parallel intra-arc fault system. After a four-month period of moderate seismicity, an Mw 6.2 earthquake on 21 April 2007 triggered dozens of subaerial landslides along the fjord flanks. Some of the landslides reached the fjord water mass, generating a series of tsunami-like displacement waves that impacted the adjacent coastlines with 3-12 m, locally over 50 m high run-ups, causing ten fatalities and severe damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013 mapped the submerged morphology of the fjord and gathered air-gun seismic profiles and sediment gravity cores in order to characterise the footprint of the landslides in the fjord floor. Very-high resolution multibeam bathymetry (4 m cell size) clearly shows the deformation structures created by the landslides in the inner fjord. The landslides descended and accelerated down the submerged fjord flanks, and reached the fjord floor at approx. 200 m water depth generating large, 1 to 10 m deep impact depressions. Sediment removed from these depressions moved radially and piled up in deformation rings formed by compressional ridges 10-15 m in height, block fields and a narrow frontal depression. Up to six >1.5 square km of these structures can be identified in the fjord. In addition, the DETSUFA survey extended beyond the SE-NW-oriented inner fjord past the Cuervo Ridge, located in front of the Cuervo river delta. The ridge, previously interpreted as a volcanic transverse structure, has most probably acted as a limit for grounding ice in the past, as suggested by the presence of melt-water channels lateral to the ridge. Beyond the ridge, the fjord smoothens and deepens to more than 330 m forming an enclosed basin before turning SW. There, it shallows back across a field of streamlined submerged hills of glacial origin. The external Aysén fjord, before joining to Canal Costa and Canal Moraleda, is characterized by three volcanic cones, one of them forming Isla Colorada - which also acted as a glacial limit - and the other two totally submerged and previously unknown. The largest one is 160 m high, 1.3 km in diameter and tops at 67 m water depth. This data set illustrates the complex interaction between fluvial, glacial, tectonic, volcanic and gravity processes and evidences the recent lively geological history of Aysén fjord.

  16. Mathematical Geology, Vol. 23, No. 3, 1991 Continuous-Time Markov Processes as a Stochastic

    E-print Network

    Rolke, Wolfgang A.

    Mathematical Geology, Vol. 23, No. 3, 1991 Continuous-Time Markov Processes as a Stochastic Model for Sedimentation | W. A. Rolke 2 Markov processes with a continuous-time parameter are more satisfacto process that happens continuously (i.e., which is unbroken in time)~ They also avoid certain

  17. Important geological and biological impacts of natural hydrocarbon seeps: Northern Gulf of Mexico continental slope

    SciTech Connect

    Roberts, H.H. )

    1993-11-01

    Large volumes of siliciclastic sediments, input especially during periods of lowered sea level, and compensating salt tectonics have produced a continental slope that is arguably the most complex in today's oceans. Faults associated with deformation of salt and shale provide the primary migration routes for hydrocarbon gases, crude oil, brines, and formation fluids to the modern sea floor. Since the mid 1980s, it has become increasingly clearer that this process has an extremely important impact on the geomorphology, sedimentology, and biology of the modern continental slope. Hydrocarbon source, flux rate, and water depth are important determinants of sea-floor response. Under rapid flux conditions mud volcanoes (to 1 km wide and 50 m high) result, and hydrate hills (rich with authigenic carbonates), carbonate lithoherms, and isolated communities of chemosymbiotic organisms with associated hardgrounds represent much slower flux responses. In numerous moderate- to low-flux cases, cold seep products function to support islands of productivity for communities of chemosymbiotic organisms that contribute both directly (shell material) and through chemical byproducts to the production of massive volumes of calcium-magnesium carbonate in the form of hardgrounds, stacked slabs, and discrete moundlike buildups (commonly >20m). Seep-related carbonates of the Gulf of Mexico continental slope, as well those formed through degassing of accretionary prisms along active margins, are now thought to create hardgrounds and discrete buildups that are excellent analogs for many problematic carbonate buildups in ancient deep-water siliciclastic rocks.

  18. Geology and genesis of NORM industrial links and depositional processes

    SciTech Connect

    Wilson, W.F.

    1995-12-31

    NORM (Naturally Occurring Radioactive Material) has now been found to be associated with many industrial activities that extends far beyond oil and gas production. There are approximately 59 naturally occurring radionuclides that might end up in a train of NORM contamination, which could impact at least 13 industries. It is appropriate and indeed necessary to examine the geological roots of NORM and its concentration in various industries. Impacted NORM industries and their associated problems are presented. Some plant and environmental managers may not even suspect they have NORM problems, because one cannot ``sense`` NORM without instrumentation, until it might be too late for the health and safety of the effected employees and surrounding community. Others want to ``see no evil, hear no evil or speak any evil`` until they are forced into ``reactive`` environmental management, rather than ``proactive`` management. It has been the experience of many that reactive management is far more costly than proactive management.

  19. Assessment of effectiveness of geologic isolation systems. Geologic factors in the isolation of nuclear waste: evaluation of long-term geomorphic processes and catastrophic events

    SciTech Connect

    Mara, S.J.

    1980-03-01

    SRI International has projected the rate, duration, and magnitude of geomorphic processes and events in the Southwest and Gulf Coast over the next million years. This information will be used by the Department of Energy`s Pacific Northwest Laboratory (PNL) as input to a computer model, which will be used to simulate possible release scenarios and the consequences of the release of nuclear waste from geologic containment. The estimates in this report, although based on best scientific judgment, are subject to considerable uncertainty. An evaluation of the Quaternary history of the two study areas revealed that each had undergone geomorphic change in the last one million years. Catastrophic events were evaluated in order to determine their significance to the simulation model. Given available data, catastrophic floods are not expected to occur in the two study areas. Catastrophic landslides may occur in the Southwest, but because the duration of the event is brief and the amount of material moved is small in comparison to regional denudation, such events need not be included in the simulation model. Ashfalls, however, could result in removal of vegetation from the landscape, thereby causing significant increases in erosion rates. Because the estimates developed during this study may not be applicable to specific sites, general equations were presented as a first step in refining the analysis. These equations identify the general relationships among the important variables and suggest those areas of concern for which further data are required. If the current model indicates that geomorphic processes (taken together with other geologic changes) may ultimately affect the geologic containment of nuclear waste, further research may be necessary to refine this analysis for application to specific sites.

  20. Refining Martian Ages and Understanding Geological Processes From Cratering Statistics

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    2005-01-01

    Senior Scientist William K. Hartman presents his final report on Mars Data Analysis Program grant number NAG5-12217: The third year of the three-year program was recently completed in mid-2005. The program has been extremely productive in research and data analysis regarding Mars, especially using Mars Global Surveyor and Mars Odyssey imagery. In the 2005 alone, three papers have already been published, to which this work contributed.1) Hartmann, W. K. 200.5. Martian cratering 8. Isochron refinement and the history of Martian geologic activity Icarus 174, 294-320. This paper is a summary of my entire program of establishing Martian chronology through counts of Martian impact craters. 2) Arfstrom, John, and W. K. Hartmann 2005. Martian flow features, moraine-like rieges, and gullies: Terrestrial analogs and interrelationships. Icarus 174,32 1-335. This paper makes pioneering connections between Martian glacier-like features and terrestrial glacial features. 3) Hartmann, W.K., D. Winterhalter, and J. Geiss. 2005 Chronology and Physical Evolution of Planet Mars. In The Solar System and Beyond: Ten Years of ISSI (Bern: International Space Science Institute). This is a summary of work conducted at the International Space Science Institute with an international team, emphasizing our publication of a conference volume about Mars, edited by Hartmann and published in 2001.

  1. Radiogenic Strontium-87 as an Index of Geologic Processes.

    PubMed

    Hedge, C E; Walthall, F G

    1963-06-14

    The abundance of radiogenic Sr(87) relative to Sr(86) at the time of crystallization has been determined for 45 rocks. The total range in the ratio Sr(87)/Sr(86) is less than 2 percent. Ratios for recent lavas range from 0.702 to 0.711. Oceanic basalts are closely grouped at 0.703, whereas ratios for continental volcanic rocks spread from 0.702 to 0.711. Among the volcanic rocks, ranging from basalt to rhyolite, no correlation was found between original ratio and rock type. Older mafic and felsic rocks that include both plutonic and extrusive types also cover this same range in original Sr(87)/Sr(86) ratios; however, there is a definite trend with geologic time. Precambrian rocks give values as low as 0.700. The data indicate that Sr(87)/Sr(86) of the weathering crust has changed 1.1 percent in 3000 million years, while the ratio in the mantle has changed no more than 0.5 percent. PMID:17837503

  2. Radiogenic strontium-87 as an index of geologic processes

    USGS Publications Warehouse

    Hedge, C.E.; Walthall, F.G.

    1963-01-01

    The abundance of radiogenic Sr87 relative to Sr86 at the time of crystallization has been determined for 45 rocks. The total range in the ratio Sr87/Sr86 is less than 2 percent. Ratios for recent lavas range from 0.702 to 0.711. Oceanic basalts are closely grouped at 0.703, whereas ratios for continental volcanic rocks spread from 0.702 to 0.711. Among the volcanic rocks, ranging from basalt to rhyolite, no correlation was found between original ratio and rock type. Older mafic and felsic rocks that include both plutonic and extrusive types also cover this same range in original Sr87/Sr86 ratios; however, there is a definite trend with geologic time. Pre-cambrian rocks give values as low as 0.700. The data indicate that Sr87/Sr86 of the weathering crust has changed 1.1 percent in 3000 million years, while the ratio in the mantle has changed no more than 0.5 percent.

  3. Molecular Modeling of Environmentally Important Processes: Reduction Potentials

    ERIC Educational Resources Information Center

    Lewis, Anne; Bumpus, John A.; Truhlar, Donald G.; Cramer, Christopher J.

    2004-01-01

    The increasing use of computational quantum chemistry in the modeling of environmentally important processes is described. The employment of computational quantum mechanics for the prediction of oxidation-reduction potential for solutes in an aqueous medium is discussed.

  4. Microprobe Monazite Geochronology: Understanding Geologic Processes by Integrating Composition and Chronology

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Jercinovic, Michael J.; Hetherington, Callum J.

    2007-05-01

    Monazite is a light rare earth element (LREE)-bearing phosphate mineral that is present in a wide variety of rock types, has an extremely variable composition reflecting host rock conditions, and is a robust geochronometer that can preserve crystallization ages through a long history of geological events. Monazite crystals typically contain distinct compositional domains that represent successive generations of monazite, which in turn, can provide a detailed record of the geologic history of its host rocks. The electron microprobe can be used to characterize the geometry of compositional domains, analyze the composition of each domain, and, when carefully configured, determine the U-Th-total Pb age for domains as small as 5 ?m in width. These data allow the monazite to be linked with, and place timing constraints on, silicate processes in the host rocks. Current applications span a broad range of geologic processes in igneous, metamorphic, hydrothermal, and sedimentary rocks.

  5. Processing of Neutron Diffraction Data for Strain Measurement in Geological Materials

    SciTech Connect

    Polsky, Yarom; An, Ke; Anovitz, Lawrence {Larry} M; Bingham, Philip R; Carmichael, Justin R; Dessieux Jr, Luc Lucius

    2014-01-01

    : Conventional rock mechanics testing techniques typically involve the loading of samples and measurement of displacements or strains on the outer boundary of the specimen surface. Neutron diffraction based strain measurement techniques represent a unique and powerful tool for measuring the strain within geological materials under load. The structural variability and non-uniform crystallinity of geological materials, however, create many complexities in the intensity patterns that must be analyzed to quantify strains within the material. The attenuating and scattering properties of the pressure cell housing the sample further add difficulties to the data analysis. This paper describes the methods and processes used to process neutron scattering data for strain measurement in geological materials. It is intended to provide a primer for those in the rock mechanics community that are interested in utilizing this technique along with additional discussion of neutron diffraction experimental factors that may affect data quality.

  6. Processes in karst systems, physics, chemistry, and geology

    SciTech Connect

    Dreybrodt, W.

    1988-01-01

    Dreybrodt deals quantitatively with many of the chemical and hydrological processes involved in the formation of karst systems. The book is divided into 3 major parts. The first part develops the basic chemical and fluid-flow principles needed in modeling karst systems. The second part investigates the experimental kinetics of calcite dissolution and precipitation and applies the resulting kinetic laws to the modeling of these processes in systems both open and closed to carbon dioxide. The last part of the book includes a qualitative examination of karst systems, quantitative modeling of the development of karst features, and an examination and modeling of the growth of spelotherms in caves.

  7. Lexico-Grammatical Features of Geology Textbooks: Process and Product Revisited.

    ERIC Educational Resources Information Center

    Love, Alison

    1993-01-01

    Examines lexico-grammatical features in an introductory textbook in relation to the thematic organization of the textbook. Comparison is made with a second textbook and the contribution of the lexico-grammatical feature to establish an epistemology of geology. Suggestions are made for supporting English-as-a-Second-Language students in processing

  8. Time-lapse motion picture technique applied to the study of geological processes

    USGS Publications Warehouse

    Miller, R.D.; Crandell, D.R.

    1959-01-01

    Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.

  9. 77 FR 43110 - Announcement of the U.S. Geological Survey Science Strategy Planning Feedback Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...The U.S. Geological Survey is creating 10-year strategies for each of its Mission Areas: Climate and Land Use Change, Core Science Systems, Ecosystems, Energy and Minerals, Environmental Health, Natural Hazards, and Water. This process involves gathering input from the public on draft strategy documents. Feedback can be offered at http://...

  10. The large impact process inferred from the geology of lunar multiring basins

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1992-01-01

    The nature of the impact process has been inferred through the study of the geology of a wide variety of impact crater types and sizes. Some of the largest craters known are the multiring basins found in ancient terrains of the terrestrial planets. Of these features, those found on the Moon possess the most extensive and diverse data coverage, including morphological, geochemical, geophysical, and sample data. The study of the geology of lunar basins over the past 10 years has given us a rudimentary understanding of how these large structures have formed and evolved. The topics covered include basin morphology, basin ejecta, basin excavation, and basin ring formation.

  11. Geologic characterization of shelf areas using usSEABED for GIS mapping, modeling processes and assessing marine sand and gravel resources

    USGS Publications Warehouse

    Williams, S.J.; Bliss, J.D.; Arsenault, M.A.; Jenkins, C.J.; Goff, J.A.

    2007-01-01

    Geologic maps depicting offshore sedimentary features serve many scientific and applied purposes. Such maps have been lacking, but recent computer technology and software offer promise in the capture and display of diverse marine data. Continental margins contain landforms which provide a variety of important functions and contain important sedimentary records. Some shelf areas also contain deposits regarded as potential aggregate resources. Because proper management of coastal and offshore areas is increasingly important, knowledge of the framework geology and marine processes is critical. Especially valuable are comprehensive and integrated digital databases based on high-quality information from original sources. Products of interest are GIS maps containing thematic information, such as sediment character and texture. These products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The U.S. Geological Survey is leading a national program to gather a variety of extant marine geologic data into the usSEABED database system. This provides centralized, integrated marine geologic data collected over the past 50 years. To date, over 340,000 sediment data points from the U.S. reside in usSEABED, which combines an array of physical data and analytical and descriptive information about the sea floor and are available to the marine community through three USGS data reports for the Atlantic, Gulf of Mexico, and Pacific published in 2006, and the project web sites: (http://woodshole.er.usg s.gov/project-pages/aggregates/ and http://walrus.wr.usgs.gov/usseabed/)

  12. Disribution and interplay of geologic processes on Titan from Cassini radar data

    USGS Publications Warehouse

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, G.; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.

  13. Distribution and interplay of geologic processes on Titan from Cassini radar data

    USGS Publications Warehouse

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, G.; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient. ?? 2009 Elsevier Inc.

  14. Distribution and interplay of geologic processes on Titan from Cassini radar data

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.; Stofan, E. R.; Peckyno, R.; Radebaugh, J.; Mitchell, K. L.; Mitri, G.; Wood, C. A.; Kirk, R. L.; Wall, S. D.; Lunine, J. I.; Hayes, A.; Lorenz, R.; Farr, T.; Wye, L.; Craig, J.; Ollerenshaw, R. J.; Janssen, M.; Legall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.; The Cassini Radar Team

    2010-02-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ˜350 m to ˜2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30°), with no dunes being present above 60°. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30° and 60° north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.

  15. Protein import into plant mitochondria: signals, machinery, processing, and regulation.

    PubMed

    Murcha, Monika W; Kmiec, Beata; Kubiszewski-Jakubiak, Szymon; Teixeira, Pedro F; Glaser, Elzbieta; Whelan, James

    2014-12-01

    The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis. PMID:25324401

  16. Linking Geologic Framework to Nearshore Processes and Shoreline Change: Results from the Outer Banks of North Carolina

    NASA Astrophysics Data System (ADS)

    McNinch, J. E.; Miselis, J. L.; Schupp, C. A.

    2002-12-01

    Within the coastal geology community, a consensus appears to have developed that the geologic framework of the inner-shelf plays an important role in shoreline change. It has yet to be determined, however, whether geology exerts a first-order control on shoreline dynamics and, if so, across what time and spatial scales. Furthermore, principal mechanisms that may link underlying geology and shoreline behavior remain poorly understood and untested. To this end, an extensive survey of the seafloor surface and shallow sub-bottom utilizing an interferometric swath bathymetry sonar system and a chirp sub-bottom profiler mounted on an amphibious vessel was conducted across the surf zone of the Outer Banks of North Carolina. Recent findings from a small region near Duck, North Carolina suggest a connection between partial exposure of pre-modern, non-sandy substrates in the surf zone and bar morphodynamics leading to the repeated occurrence of shoreline hotspots. Support from the US Geological Survey, US Army Corps of Engineers, and the Army Research Office has expanded this work to include a 40 km length of surf zone extending from Duck to Nags Head, North Carolina. Preliminary results from the larger survey are consistent with earlier findings at Duck which show: 1) an underlying ravinement surface with very irregular relief across the surf zone; 2) a thin cover of modern sand, ranging from 0 to a maximum of 2.5 m thick, with a surface morphology that does not necessarily mirror the underlying topography; 3) the presence of large transverse bars located beside exposures of non-sandy substrate; and 4) a spatial correlation between hotspots and regions with exposed non-sandy substrates and transverse bars in the surf zone. Future work will examine shoreline behavior and bar morphodynamics associated with the geologic framework of the nearshore over event and seasonal time scales. These observations will be designed to provide insight into the processes responsible for hotspot formation and to identify key geologic variables that could be incorporated into, and ultimately, improve shoreline evolution models.

  17. Protein unfolding an important process in vivo? Andreas Matouschek

    E-print Network

    Matouschek, Andreas

    is an important step in several cellular processes, most interestingly protein degradation by ATP translocation across some membranes; protein degradation by ATP-dependent proteases; and the pas- sive, chloroplasts, peroxisomes and the endoplasmic reticulum (ER) occurs through membrane channels, which are lined

  18. The MESSENGER mission to Mercury: new insights into geological processes and evolution

    NASA Astrophysics Data System (ADS)

    Head, James W., III; Solomon, Sean C.; McNutt, Ralph L., Jr.; Blewett, David T.; Chapman, Clark R.; Domingue, Deborah L.; Evans, Larry G.; Gillis-Davis, Jeffrey J.; Hawkins, S. Edward, III; Helbert, Jörn; Holsclaw, Gregory M.; Izenberg, Noam R.; McClintock, William E.; McCoy, Timothy J.; Merline, William J.; Murchie, Scott L.; Nittler, Larrz R.; Phillips, Roger J.; Prockter, Louise M.; Robinson, Mark S.; Sprague, Ann L.; Strom, Robert G.; Vilas, Faith; Watters, Thomas R.; Zuber, Maria T.

    2008-09-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, a part of NASA's Discovery Program, was designed to answer six questions [1]: (1) What planetary formational processes led to Mercury's high ratio of metal to silicate? (2) What is the geological history of Mercury? (3) What are the nature and origin of Mercury's magnetic field? (4) What are the structure and state of Mercury's core? (5) What are the radar-reflective materials at Mercury's poles? (6) What are the important volatile species and their sources and sinks near Mercury? MESSENGER is currently midway through a complex interplanetary cruise phase that involves three flybys of Mercury. The first of these, on 14 January 2008, provided important new information relating to several of the questions above [2-13]. Here we summarize observations made during the flyby that are most relevant to new insights about geological processes that have operated on Mercury and implications for the planet's history [3, 8-13]. The instruments that provided the most direct information on the geological history of Mercury during this first encounter were the Mercury Dual Imaging System (MDIS) [14], the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) [15], and the Mercury Laser Altimeter (MLA) [16]. Among the many specific questions remaining following the Mariner 10 mission to Mercury (1974- 1975) were (1) the level of mineralogical and compositional diversity of the crust, which appeared relatively bland in Mariner 10 data, (2) the nature of the rest of the huge Caloris impact basin seen only partially in Mariner 10 images, (3) the origin of the extensive plains observed on the surface (ponded impact ejecta or extrusive lava flows?), (4) the diversity and global distribution of tectonic features that have deformed the crust and their implications for strain as a function of time, and (5) the bombardment chronology and geological history of Mercury [1, 17-19]. The viewing geometry for the first MESSENGER encounter of Mercury [1] provided important information on these questions from image and remote sensing data on an additional 20% of the surface of Mercury not seen by Mariner 10, as well as comprehensive views of the Caloris basin and its surroundings. MESSENGER MDIS multi-spectral images [8-10] revealed a relatively low-reflectance surface with three broad units identified from reflectance and spectral slope in the wavelength range 0.4-1.0 ?m. These new data helped to confirm the diversity of color units detected in re-processed Mariner 10 color-ratio images [20] and to extend the analysis to larger areas of Mercury. One of these new units is higher in reflectance and forms relatively red plains material that corresponds to a distinct class of smooth plains; these plains, on the basis of their sharp contacts with other units, are interpreted to have been emplaced volcanically. A second unit is represented by lowerreflectance material with a lesser spectral slope and is interpreted to form a distinct crustal component enriched in opaque minerals and possibly more common at depth. A spectrally intermediate terrain appears to form the majority of the upper crust in the newly observed area. Several other spectrally distinct units are found in local regions: (1) moderately high-reflectance, relatively reddish material associated with rimless depressions and located at several places along the interior margin of the Caloris basin rim; (2) highreflectance deposits observed in some impact crater floors; and (3) fresh crater ejecta that is less modified by space weathering than older surface materials. MASCS spectrometer data [9,15] show absorption and spectral slope properties of resolved spectra that are indicative of differences in composition and regolith maturation processes among color units defined by MDIS. Mid-ultraviolet to near-infrared reflectance observations of the surface revealed the presence of a previously unobserved ultraviolet absorption feature that suggests a low FeO content (<2-3 weight %) in silicates in averag

  19. Agricultural geological importance of the depth and thickness of impermeable layers on south-eastern Hungary

    NASA Astrophysics Data System (ADS)

    Kuti, Laszlo; Kerek, Barbara; Muller, Tamas; Szentpetery, Ildiko

    2010-05-01

    For the examination of the infiltration and the direction and velocity of the groundwater flow we must determine the thickness and depth of the first impermeable level. Impermeable layers could slow down the groundwater movement, change its direction, and could separate the aquifer layers. In certain situations they can protect deeper layers and the groundwater moving in them from contaminations. At the same time they can also close water from the roots of different plants. We should handle every loose sediments which contains more than 60 percent of clay (all grains with size under 0,02 mm) as impermeable level. That is very important to know the situation of the first impermeable layer to the surface. The closer the impermeable level to the surface, the more intense sealing effect occurs. Impermeable layers deeper than four meters have almost no influence on the surface conditions. Permeability of the near surface layers is also influenced by the thickness of the impermeable layer. The best impermeable layers have a thickness more than four meters. We can represent the depth and thickness of the non-pervious sediments on the same map. The recognition of the impermeable layers makes easier to outline polluted groundwater bodies, to figure out the moving direction of the groundwater flow and the polluted groundwater, and we can also compile infiltration sensibility maps from these data. It is also possible to make a prognosis of vulnerability to inland water and it has an influence on land dessication too. The recognition of the impermeable layers with the information of the depth and the chemical type of the groundwater can help us to decide about irrigability and about thy type of that if necessary. The south-eastern part of the Great Hungarian Plain is very suitable for his kind of land evaluation because of its agricultural importance and because this area has more micro-lands (as the eolian dunes of the Danube-Tisza hilly region, the younger alluvial sediments of the Tisza-valley and the older alluvial sediments of the south part of the Transtisza region). At the meeting zone of the different micro-lands, there are impermeable layers with great variation in position to the surface and also in thickness.

  20. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    USGS Publications Warehouse

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures), permits use of geologic features on 1:500,000 to 1:100,000 scale maps. Geochemical databases for volcanic rocks are postulated to be more effective than databases for stream sediments or surface radioactivity, both of which tend to be inconsistent because of variable leaching of uranium from soils. Based on empirical associations, spatial associations with areas of wet paleoclimate, adjacent oil and gas fields, or evaporite beds are deemed positive. Most difficult to estimate is the location of depositional traps and reduction zones, in part because they are mere points at regional scale. Grade and tonnage data are reviewed and discussed for 32 deposits in the world. Experience of mining engineers and geologists in Asia suggests that tonnages could be higher than presently known in the Western Hemisphere. Geological analysis, and new data from Asia, suggest a typical or median deposit tonnage of about 5,000 tonnes U3O8, and an optimistic forecast of discoveries in the range of 5,000 to 20,000 tonnes U3O8. The likely grade of undiscovered deposits could be about 0.15 percent U3O8 , based on both western and eastern examples. Volcanic terrane is under-explored, relative to other kinds of uranium deposits, and is considered a favorable frontier area for new discoveries.

  1. Practical aspects of geological prediction

    SciTech Connect

    Mallio, W.J.; Peck, J.H.

    1981-11-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs.

  2. Understanding geological processes: Visualization of rigid and non-rigid transformations

    NASA Astrophysics Data System (ADS)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid reasoning within the panels of science experts. In a second study, individual differences in reasoning about brittle deformations were correlated with reasoning about ductile deformations (e.g., what a bent plastic sheet would look like when unbent). Students who were good at visualizing what something looked like before it was broken were also good at visualizing what something looked like before it was bent, and this skill was not correlated to reasoning about rigid rotations. These findings suggest the cognitive processes that support reasoning about rigid and non-rigid events may differ and thus may require different types of support and training. We do not know if differences between experts and novices result from experience or self-selection, or both. Nevertheless, the range of spatial skill evinced by novices and experts strongly argues for designing visualizations to support a variety of users.

  3. Importance of field scientific learning at the time of elementary and junior high school. - Introduction of geological field learning in Shimane Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.

    2014-12-01

    Importance of the scientific field learning is increasing since the disaster by the Tohoku-Earthquake and Tsunami at the 11th March 2011, in Japan. Effective enforcement of the environmental education from a kindergarten to a University student is very important educational tool for protecting future earth's environment. Practice of the geological field study at the time of elementary and junior high school is very important. This study reports the present situation and the practice example of field scientific learning of Japan. Particularly, I report practice of the geological field education in a class of Shimane prefecture. I point out that "Consciousness (In)", "knowledge (About)", and "action (For)" are important three factors not only environmental education but also geological field education (e.g. Matsumoto, 2014). However, the practice rate of field geological learning at the elementary and junior high school is very low in Japan (Miyashita and Matsumoto, 2010). I introduce the effective method of increasing the practice rate of field geological study. I discuss about pedagogy which improves especially a student's scientific literacy.

  4. A flexible importance sampling method for integrating subgrid processes

    NASA Astrophysics Data System (ADS)

    Raut, E. K.; Larson, V. E.

    2015-10-01

    Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is integration. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that contains both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.

  5. A flexible importance sampling method for integrating subgrid processes

    DOE PAGESBeta

    Raut, E. K.; Larson, V. E.

    2015-10-22

    Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is integration. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that contains bothmore »precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less

  6. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  7. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2004-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HCl vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow-chemical ionization mass spectrometry and optical ellipsometry, among others.

  8. Dark Carbon Fixation: An Important Process in Lake Sediments

    PubMed Central

    Santoro, Ana Lúcia; Bastviken, David; Gudasz, Cristian; Tranvik, Lars; Enrich-Prast, Alex

    2013-01-01

    Close to redox boundaries, dark carbon fixation by chemoautotrophic bacteria may be a large contributor to overall carbon fixation. Still, little is known about the relative importance of this process in lake systems, in spite the potentially high chemoautotrophic potential of lake sediments. We compared rates of dark carbon fixation, bacterial production and oxygen consumption in sediments from four Swedish boreal and seven tropical Brazilian lakes. Rates were highly variable and dark carbon fixation amounted up to 80% of the total heterotrophic bacterial production. The results indicate that non-photosynthetic carbon fixation can represent a substantial contribution to bacterial biomass production, especially in sediments with low organic matter content. PMID:23776549

  9. Martian planetwide crater distributions - Implications for geologic history and surface processes

    NASA Technical Reports Server (NTRS)

    Soderblom, L. A.; Condit, C. D.; West, R. A.; Herman, B. M.; Kreidler, T. J.

    1974-01-01

    Three different diameter size ranges are considered in connection with the Martian crater distribution, taking into account small craters from 0.6 to 1.2 km, intermediate-sized craters from 4 to 10 km, and large craters with diameters exceeding 20 km. One of the objectives of the investigation reported is to establish the effects of eolian processes in the modification of craters in the different size ranges. Another objective is concerned with a description of the genetic relationships among the three size ranges of craters. Observables related to the relative age of geologic provinces are to be separated from observables related to geographic variations in eolian transport and deposition. Lunar and Martian cratering histories are compared as a basis for establishing relative and absolute time scales for the geological evolution of Mars.

  10. Chemical Processes with Supercritical CO2 in Engineered Geologic Systems: Significance, Previous Study, and Path Forward (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, T.; Pruess, K.

    2009-12-01

    Chemical reactions with dissolved CO2 in the aqueous phase have long been considered in fundamental geosciences and practical applications. Recently, studies on geologic carbon sequestration and enhanced geothermal systems using CO2 as heat transmission fluid have brought new interests in chemical reaction processes directly with supercritical CO2 (scCO2, or gas phase). In the vicinity of a CO2 injection well, the aqueous fluid initially present in a geological formation would be quickly removed by dissolution (evaporation) into the flowing gas stream and by immiscible displacement by the scCO2, creating a gas phase dominant zone. In this zone, the water evaporation could cause formation dry-out and precipitation of salt near the injection well, reducing formation porosity, permeability, and injectivity. The scCO2 may directly attack well construction materials such as cement. Over time, the gas phase will tend to migrate upwards towards the caprock because the density of the scCO2 is lower than that of the aqueous phase. In the upper portions of the reservoir, the scCO2 will directly react with caprock minerals and alter the hydrological properties and mechanical strength. On the other hand, the scCO2 phase will maintain the dissolution into the aqueous phase, lowering pH, inducing mineral dissolution, complexing with dissolved cations, increasing CO2 solubility, increasing the density of the aqueous phase, and promoting “convective mixing”. Chemical processes are quite different in the scCO2 dominant geologic systems. The absence of an aqueous phase poses unique questions, as little is presently known about the chemistry of non-aqueous systems. Additional issues arise from the reactivity of water that is dissolved in the ScCO2 phase. In this presentation, the author will discuss the importance, state of the studies performed, and future research directions.

  11. The importance of sensory integration processes for action cascading.

    PubMed

    Gohil, Krutika; Stock, Ann-Kathrin; Beste, Christian

    2015-01-01

    Dual tasking or action cascading is essential in everyday life and often investigated using tasks presenting stimuli in different sensory modalities. Findings obtained with multimodal tasks are often broadly generalized, but until today, it has remained unclear whether multimodal integration affects performance in action cascading or the underlying neurophysiology. To bridge this gap, we asked healthy young adults to complete a stop-change paradigm which presented different stimuli in either one or two modalities while recording behavioral and neurophysiological data. Bimodal stimulus presentation prolonged response times and affected bottom-up and top-down guided attentional processes as reflected by the P1 and N1, respectively. However, the most important effect was the modulation of response selection processes reflected by the P3 suggesting that a potentially different way of forming task goals operates during action cascading in bimodal vs. unimodal tasks. When two modalities are involved, separate task goals need to be formed while a conjoint task goal may be generated when all stimuli are presented in the same modality. On a systems level, these processes seem to be related to the modulation of activity in fronto-polar regions (BA10) as well as Broca's area (BA44). PMID:25820681

  12. The importance of sensory integration processes for action cascading

    PubMed Central

    Gohil, Krutika; Stock, Ann-Kathrin; Beste, Christian

    2015-01-01

    Dual tasking or action cascading is essential in everyday life and often investigated using tasks presenting stimuli in different sensory modalities. Findings obtained with multimodal tasks are often broadly generalized, but until today, it has remained unclear whether multimodal integration affects performance in action cascading or the underlying neurophysiology. To bridge this gap, we asked healthy young adults to complete a stop-change paradigm which presented different stimuli in either one or two modalities while recording behavioral and neurophysiological data. Bimodal stimulus presentation prolonged response times and affected bottom-up and top-down guided attentional processes as reflected by the P1 and N1, respectively. However, the most important effect was the modulation of response selection processes reflected by the P3 suggesting that a potentially different way of forming task goals operates during action cascading in bimodal vs. unimodal tasks. When two modalities are involved, separate task goals need to be formed while a conjoint task goal may be generated when all stimuli are presented in the same modality. On a systems level, these processes seem to be related to the modulation of activity in fronto-polar regions (BA10) as well as Broca's area (BA44). PMID:25820681

  13. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    SciTech Connect

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah; Hamilton, Duncan; McKelvie, Jennifer

    2013-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safety and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)

  14. Quantifying geological processes on Mars-Results of the high resolution stereo camera (HRSC) on Mars express

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Tirsch, D.; Hauber, E.; Ansan, V.; Di Achille, G.; Erkeling, G.; Fueten, F.; Head, J.; Kleinhans, M. G.; Mangold, N.; Michael, G. G.; Neukum, G.; Pacifici, A.; Platz, T.; Pondrelli, M.; Raack, J.; Reiss, D.; Williams, D. A.; Adeli, S.; Baratoux, D.; de Villiers, G.; Foing, B.; Gupta, S.; Gwinner, K.; Hiesinger, H.; Hoffmann, H.; Deit, L. Le; Marinangeli, L.; Matz, K.-D.; Mertens, V.; Muller, J. P.; Pasckert, J. H.; Roatsch, T.; Rossi, A. P.; Scholten, F.; Sowe, M.; Voigt, J.; Warner, N.

    2015-07-01

    This review summarizes the use of High Resolution Stereo Camera (HRSC) data as an instrumental tool and its application in the analysis of geological processes and landforms on Mars during the last 10 years of operation. High-resolution digital elevations models on a local to regional scale are the unique strength of the HRSC instrument. The analysis of these data products enabled quantifying geological processes such as effusion rates of lava flows, tectonic deformation, discharge of water in channels, formation timescales of deltas, geometry of sedimentary deposits as well as estimating the age of geological units by crater size-frequency distribution measurements. Both the quantification of geological processes and the age determination allow constraining the evolution of Martian geologic activity in space and time. A second major contribution of HRSC is the discovery of episodicity in the intensity of geological processes on Mars. This has been revealed by comparative age dating of volcanic, fluvial, glacial, and lacustrine deposits. Volcanic processes on Mars have been active over more than 4 Gyr, with peak phases in all three geologic epochs, generally ceasing towards the Amazonian. Fluvial and lacustrine activity phases spread a time span from Noachian until Amazonian times, but detailed studies show that they have been interrupted by multiple and long lasting phases of quiescence. Also glacial activity shows discrete phases of enhanced intensity that may correlate with periods of increased spin-axis obliquity. The episodicity of geological processes like volcanism, erosion, and glaciation on Mars reflects close correlation between surface processes and endogenic activity as well as orbit variations and changing climate condition.

  15. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2003-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HC1 vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow- chemical ionization mass spectrometry and optical ellipsometry, among others. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the second year.

  16. Exhibit Development: The Importance of Process and Evaluation

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; McLain, B.

    2010-08-01

    The Space Science Institute (SSI) is a national leader in developing national traveling exhibitions on space science education (e.g. Electric Space, MarsQuest, Alien Earths, Giant Worlds, Asteroids, and Discover Space). It is also known for developing effective digital media programs (e.g. www.alienearths.org), education workshops for formal and informal educators, and educational films (e.g. Inspire Me: Weightless Flights of Discovery). This paper focuses on the exhibit development process, spanning conceptual planning, design development, fabrication and launch. SSI's exhibit programs also include education and outreach programming and the development of an online version of the exhibit. Examples from Giant Worlds and Asteroids will be used to illustrate these development phases especially the importance of evaluation/research in exhibit development using a logic model approach.

  17. A very important process of nucleosynthesis in stars

    NASA Technical Reports Server (NTRS)

    Yu, C.; Zhou, R.; Zhan, S.

    1985-01-01

    When some nuclei are free from strong gravitational field, they are unstable and will become stable nuclei by competitions of following processes: (1) neutron-evaporation; (2) spontaneous fission; and (3) beta prime 3-decay. At the initial stage, (1) and (2) are important and (3) can be ignored. The qualitative results are as follows: (1) it seems that nuclei with A 100 come from the spontaneous fission and beta prime decay of neutron-evaporated nuclei with A similiar to 140-440, which can replace the r-process; (2) the super-heavy elements with Z=114--126 (A similiar to 330--360) can be formed. They can be observed in cosmic rage if they have the halftime T 10 to the 7th poweer years; (3) the peak in the rare-earth elements comes from the symmetric fission of super-heavy elements; (4) there are more neutron-rich nuclei in the fragments; and (5) the abundances of a 83 elements in cosmic rays are one order of magnitude higher than that in the solar system.

  18. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Importation of tobacco products, cigarette papers and tubes, and processed tobacco. ...IMPORTATION OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope...Importation of tobacco products, cigarette papers and tubes, and processed tobacco....

  19. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Importation of tobacco products, cigarette papers and tubes, and processed tobacco. ...IMPORTATION OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope...Importation of tobacco products, cigarette papers and tubes, and processed tobacco....

  20. Physical geology

    SciTech Connect

    Skinner, B.; Porter, S.

    1987-01-01

    The book integrates current thinking on processes (plate techtonics, chemical cycles, changes throughout geologic time). It is an introduction to investigations into the way the earth works, how mountains are formed, how the atmosphere, hydrosphere, crust and mantle interact with each other. Treatments on climate, paleoclimatology and landscape evolution are included, as is a discussion on how human activity affects geological interactions.

  1. geological model by any method requires much analysis and redefinition and is not a fast or simple process.

    E-print Network

    process. The process of building a geological model is an iterative one. First, the geoscientist buildsgeological model by any method requires much analysis and redefinition and is not a fast or simple model is built using that analysis. This process may continue indefinitely. Be­ cause of the iterative

  2. The importance of aerobic metabolism in the renal concentrating process

    PubMed Central

    Weinstein, Edward; Manitius, Andrzej; Epstein, Franklin H.

    1969-01-01

    The extent to which the concentrating function of the kidney depends on oxidative processes was investigated by infusing cyanide into one renal artery of dogs undergoing mild mannitol diuresis while receiving an infusion of vasopressin. This produced an abrupt fall in concentrating capacity (TcH2O) that was reversed when the cyanide infusion was stopped. The change could not be accounted for by the accompanying solute diuresis, since it was not reproduced by increasing the rate of mannitol infusion. The reduction in TcH2O induced by cyanide did not result from increased delivery of dilute urine to the collecting ducts, since free water clearance (CH2O), studied in other dogs during water diuresis, was unchanged or decreased by cyanide. Cyanide produced renal vasodilatation, as did intraarterial acetylcholine, but in contrast to the striking reduction in concentrating capacity evoked by cyanide, TcH2O was not significantly changed by acetylcholine. The data indicate that concentrating ability is closely tied to oxidative metabolism in the kidney, and it is suggested that the region where this is critically important is the red medulla and the thick ascending limb of Henle's loop. PMID:5822590

  3. Laser ablation ICP-MS applications using the timescales of geologic and biologic processes

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.

    2003-04-01

    Geochemists commonly examine geologic processes on timescales of 10^4--10^9 years, and accept that often age relations, e.g., chemical zoning in minerals, can only be measured in a relative sense. The progression of a geologic process that involves geochemical changes may be assessed using trace element microbeam techniques, because the textural, and therefore spatial context, of the analytical scheme can be preserved. However, quantification requires appropriate calibration standards. Laser ablation ICP-MS (LA-ICP-MS) is proving particularly useful now that appropriate standards are becoming available. For instance, trace element zoning patterns in primary sulfides (e.g., pyrite, sphalerite, chalcopyrite, galena) and secondary phases can be inverted to examine relative changes in fluid composition during cycles of hydrothermal mineralization. In turn such information provides insights into fluid sources, migration pathways and depositional processes. These studies have only become possible with the development of appropriate sulfide calibration standards. Another example, made possible with the development of appropriate silicate calibration standards, is the quantitative spatial mapping of REE variations in amphibolite-grade garnets. The recognition that the trace and major elements are decoupled provides a better understanding of the various sources of elements during metamorphic re-equilibration. There is also a growing realization that LA-ICP-MS has potential in biochemical studies, and geochemists have begun to turn their attention in this direction, working closely with biologists. Unlike many geologic processes, the timescales of biologic processes are measured in years to centuries and are frequently amenable to absolute dating. Examples that can be cited where LA-ICP-MS has been applied include annual trace metal variations in tree rings, corals, teeth, bones, bird feathers and various animal vibrissae (sea lion, walrus, wolf). The aim of such studies is to correlate trace element variations with changes in environmental variables. Such studies are proving informative in climate change and habitat management. Again, such variations have been quantified with the availability of appropriate organic, carbonate and phosphate calibration standards.

  4. Fractal properties of isolines at varying altitude reveal different dominant geological processes on Earth

    E-print Network

    Baldassarri, Andrea; Prieto-Ballesteros, Olga; Manrubia, Susanna C; 10.1029/2007JE003066

    2008-01-01

    Geometrical properties of landscapes result from the geological processes that have acted through time. The quantitative analysis of natural relief represents an objective form of aiding in the visual interpretation of landscapes, as studies on coastlines, river networks, and global topography, have shown. Still, an open question is whether a clear relationship between the quantitative properties of landscapes and the dominant geomorphologic processes that originate them can be established. In this contribution, we show that the geometry of topographic isolines is an appropriate observable to help disentangle such a relationship. A fractal analysis of terrestrial isolines yields a clear identification of trenches and abyssal plains, differentiates oceanic ridges from continental slopes and platforms, localizes coastlines and river systems, and isolates areas at high elevation (or latitude) subjected to the erosive action of ice. The study of the geometrical properties of the lunar landscape supports the exist...

  5. US GEOLOGICAL SURVEY'S NATIONAL SYSTEM FOR PROCESSING AND DISTRIBUTION OF NEAR REAL-TIME HYDROLOGICAL DATA.

    USGS Publications Warehouse

    Shope, William G., Jr.

    1987-01-01

    The US Geological Survey is utilizing a national network of more than 1000 satellite data-collection stations, four satellite-relay direct-readout ground stations, and more than 50 computers linked together in a private telecommunications network to acquire, process, and distribute hydrological data in near real-time. The four Survey offices operating a satellite direct-readout ground station provide near real-time hydrological data to computers located in other Survey offices through the Survey's Distributed Information System. The computerized distribution system permits automated data processing and distribution to be carried out in a timely manner under the control and operation of the Survey office responsible for the data-collection stations and for the dissemination of hydrological information to the water-data users.

  6. The importance of new processing techniques in tissue engineering

    NASA Technical Reports Server (NTRS)

    Lu, L.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1996-01-01

    The use of polymer scaffolds in tissue engineering is reviewed and processing techniques are examined. The discussion of polymer-scaffold processing explains fiber bonding, solvent casting and particulate leaching, membrane lamination, melt molding, polymer/ceramic fiber composite-foam processing, phase separation, and high-pressure processing.

  7. Geologic nozzles

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner

    Sonic velocities of geologic fluids, such as volcanic magmas and geothermal fluids, can be as low as 1 m/s. Critical velocities in large rivers can be of the order of 1-10 m/s. Because velocities of fluids moving in these settings can exceed these characteristic velocities, sonic and supersonic gas flow and critical and supercritical shallow-water flow can occur. The importance of the low characteristic velocities of geologic fluids has not been widely recognized and, as a result, the importance of supercritical and supersonic flow in geological processes has generally been underestimated. The lateral blast at Mount St. Helens, Washington, propelled a gas heavily laden with dust into the atmosphere. Because of the low sound speed in this gas (about 100 m/s), the flow was internally supersonic. Old Faithful Geyser, Wyoming, is a converging-diverging nozzle in which liquid water refilling the conduit during the recharge cycle changes during eruption into a two-phase liquid-vapor mixture with a very low sound velocity. The high sound speed of liquid water determines the characteristics of harmonic tremor observed at the geyser during the recharge interval, whereas the low sound speed of the liquid-vapor mixture influences the fluid-flow characteristics of the eruption. At the rapids of the Colorado River in the Grand Canyon, Arizona, supercritical flow occurs where debris discharged from tributary canyons constricts the channel into the shape of a converging-diverging nozzle. The geometry of the channel in these regions can be used to interpret the flood history of the Colorado River over the past 103-105 years. The unity of fluid mechanics in these three natural phenomena is provided by the well-known analogy between gas flow and shallow-water flow in converging-diverging nozzles.

  8. Geologic Nozzles

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner

    1989-02-01

    Sonic velocities of geologic fluids, such as volcanic magmas and geothermal fluids, can be as low as 1 m/s. Critical velocities in large rivers can be of the order of 1-10 m/s. Because velocities of fluids moving in these settings can exceed these characteristic velocities, sonic and supersonic gas flow and critical and supercritical shallow-water flow can occur. The importance of the low characteristic velocities of geologic fluids has not been widely recognized, and as a result, the importance of supercritical and supersonic flow in geological processes has generally been underestimated. The lateral blast at Mount St. Helens, Washington, propelled a gas heavily laden with dust into the atmosphere. Because of the low sound speed in this gas (about 100 m/s), the flow was internally supersonic. Old Faithful Geyser, Wyoming, is a converging-diverging nozzle in which liquid water refilling the conduit during the recharge cycle changes during eruption into a two-phase liquid-vapor mixture with a very low sound velocity. The high sound speed of liquid water determines the characteristics of harmonic tremor observed at the gyeser during the recharge interval, whereas the low sound speed of the liquid-vapor mixture influences the fluid flow characteristics of the eruption. At the rapids of the Colorado River in the Grand Canyon, Arizona, the channel is constricted into the shape of a converging-diverging nozzle by debris flows that enter from tributary canyons. Both subcritical and supercritical flow occur within the rapids. The transport capacity in the rapids can be so great that the river contours the channel to a characteristic shape. This shape can be used to interpret the flood history of the Colorado River over the past 10³-105 years. The unity of fluid mechanics in these three natural phenomena is provided by the well-known analogy between gas flow and shallow-water flow in converging-diverging nozzles.

  9. Geoelectrical signals of geologic and hydrologic processes in a fringing reef lagoon setting

    NASA Astrophysics Data System (ADS)

    Befus, Kevin M.; Cardenas, M. Bayani; Tait, Douglas R.; Erler, Dirk V.

    2014-09-01

    Coastal groundwater may discharge into nearshore and offshore waters forced by terrestrial fluxes, controlled by local geology, and modulated by the hydrodynamics of littoral water. We investigated the electrical signature of these features with a dense, multiscale network of electrical resistivity tomography (ERT) surveys in the Muri Lagoon of Rarotonga, Cook Islands. The ERT surveys spanned from onshore to 400 m into the lagoon and used standard electrodes on land and across the foreshore, submerged electrodes in the shallow subtidal zone, and floating electrodes towed throughout the reef lagoon by a boat. ERT surveys on land mapped a typical freshwater lens underlain by a saltwater wedge, but with possible deviations from the classical model due to an adjacent tidal creek. Further inland, ERT surveys imaged a layer of lava flow deposits that is potentially a confining hydrogeologic unit; this unit was used to constrain the expected electrical resistivity of these deposits below the lagoon. ERT surveys across the intertidal zone and into the lagoon indicated fresh groundwater and porewater salinity patterns consistent with previous small-scale studies including the seaward extension of fresh groundwater pathways to the lagoon. Electrical resistivity (ER) variations in the lagoon subsurface highlighted heterogeneities in the lagoon structure that may focus submarine groundwater discharge (SGD) through previously unknown buried lava flow deposits in the lagoon. A transition to higher ER values near the reef crest is consistent with the ER signature of porosity reduction due to ongoing differential cementation of reef deposits across the lagoon. The imaged coastal hydrostratigraphic heterogeneity may thus control terrestrial and marine porewater mixing, support SGD, and provide the pathways for groundwater and the materials it transports into the lagoon. This hydrogeophysical investigation highlighted the spatial heterogeneity of submarine coastal geology and its hydrogeologic control in a reef lagoon setting, but is likely to occur in many similar coastal settings. Ignoring geologic complexity can result in mischaracterization of SGD and other coastal groundwater processes at many spatial scales.

  10. ASTRONAUT'S GUIDE TO TERRESTRIAL IMPACT CRATERS R. A. F. Grieve, Geological Survey of Canada

    E-print Network

    Rathbun, Julie A.

    but not particularly important phenomenon in the spectrum of geologic process. Our concept of the importance of impact was a dominant geologic process throughout the early solar system. For example, the oldest lunar surfaces#12;#12;ASTRONAUT'S GUIDE TO TERRESTRIAL IMPACT CRATERS R. A. F. Grieve, Geological Survey

  11. Titan's topography as a clue to geologic processes and landscape evolution

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.

    2012-12-01

    Cassini has revealed a diversity of surface features on Titan rivaled by few bodies in the Solar System. Some of these features are readily identified: dunes, channels, lakes, seas, fresh impact craters, and mountains. Others are enigmatic and in some cases have sparked debate about their mode of origin. Given the limited resolution of the Cassini images, at best 300 m for synthetic aperture RADAR (SAR) images, it can be difficult to identify details that might confirm a particular mode of origin. Supplementing the images with topographic information provides an important and sometimes crucial clue to the origin and evolution of landforms. Topographic profiles from altimetry and SARTopo analysis of the images can shed light on simpler features (e.g., dunes) and led to the surprising conclusion that Titan's largest feature, Xanadu, is not elevated as had been supposed. For more complex structures, digital topographic models (DTMs) provide a full three-dimensional view. About 10% of Titan's surface has been imaged in stereo by RADAR, and we have produced DTMs of about 2% by analyzing these stereopairs. Analysis of the results within the Cassini RADAR team has shed light on a number of geologic problems: * Some putative volcanic features (e.g., the supposed dome Ganesa Macula and various diffuse surface flows) have been shown to lack the expected relief, greatly weakening the case for their volcanic origin. * Conversely, flows in Hotei Regio have been shown to tower over nearby fluvial channels, and those near Sotra Facula are associated with multiple edifices and caldera-like pits, strengthening the case for a volcanic origin. * Depths of the handful of definite impact craters measured so far range from Ganymede-like to nearly zero, and are statistically consistent with a process such as eolian deposition that would steadily reduce the crater depth rather than a process such as surface erosion that would tend to leave craters only partially filled. * Clustering of the small north-polar lakes at a few discrete levels, all of which are hundreds of meters above the major seas, suggests that these bodies of liquid are connected locally but not (over relevant timescales) regionally by subsurface flow. * Evidence for topographic "benches" at multiple levels around the seas suggests that the liquid level has fluctuated over time, perhaps as a result of inter-hemispheric transport of volatiles over multi-seasonal timescales. These examples come primarily from Titan's northern hemisphere and equatorial zone. Cassini's extended mission to date has yielded extensive coverage of the southern hemisphere that we have recently integrated into a global control network, allowing us to begin producing DTMs of multiple southern hemisphere sites with consistent absolute elevations. Of particular interest are apparent basins, for the most part empty of surface liquid, near the South Pole. Are the basin floors or possible shoreline features at consistent elevations? How do the depths and absolute elevations compare to Ontario Lacus and the other small lakes (including transient ones) in the south, and to the lakes and seas of the northern hemisphere? Topomapping now under way will help address these and other questions about the evolution of Titan's southern hemisphere and its volatile distribution over time.

  12. Development of multiple source data processing for structural analysis at a regional scale. [digital remote sensing in geology

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique

    1990-01-01

    Various image processing techniques developed for enhancement and extraction of linear features, of interest to the structural geologist, from digital remote sensing, geologic, and gravity data, are presented. These techniques include: (1) automatic detection of linear features and construction of rose diagrams from Landsat MSS data; (2) enhancement of principal structural directions using selective filters on Landsat MSS, Spacelab panchromatic, and HCMM NIR data; (3) directional filtering of Spacelab panchromatic data using Fast Fourier Transform; (4) detection of linear/elongated zones of high thermal gradient from thermal infrared data; and (5) extraction of strong gravimetric gradients from digitized Bouguer anomaly maps. Processing results can be compared to each other through the use of a geocoded database to evaluate the structural importance of each lineament according to its depth: superficial structures in the sedimentary cover, or deeper ones affecting the basement. These image processing techniques were successfully applied to achieve a better understanding of the transition between Provence and the Pyrenees structural blocks, in southeastern France, for an improved structural interpretation of the Mediterranean region.

  13. A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes

    SciTech Connect

    J.T. Birkholzer

    2005-01-21

    Above-boiling temperature conditions, as encountered, for example, in geothermal reservoirs and in geologic repositories for the storage of heat-producing nuclear wastes, may give rise to strongly altered liquid and gas flow processes in porous subsurface environments. The magnitude of such flow perturbation is extremely hard to measure in the field. We therefore propose a simple temperature-profile method that uses high-resolution temperature data for deriving such information. The energy that is transmitted with the vapor and water flow creates a nearly isothermal zone maintained at about the boiling temperature, referred to as a heat pipe. Characteristic features of measured temperature profiles, such as the differences in the gradients inside and outside of the heat pipe regions, are used to derive the approximate magnitude of the liquid and gas fluxes in the subsurface, for both steady-state and transient conditions.

  14. A Temperature-Profile Method for Estimating Flow Processes inGeologic Heat Pipes

    SciTech Connect

    Birkholzer, Jens T.

    2004-12-06

    Above-boiling temperature conditions, as encountered, forexample, in geothermal reservoirs and in geologic repositories for thestorage of heat-producing nuclear wastes, may give rise to stronglyaltered liquid and gas flow processes in porous subsurface environments.The magnitude of such flow perturbation is extremely hard to measure inthe field. We therefore propose a simple temperature-profile method thatuses high-resolution temperature data for deriving such information. Theenergy that is transmitted with the vapor and water flow creates a nearlyisothermal zone maintained at about the boiling temperature, referred toas a heat pipe. Characteristic features of measured temperature profiles,such as the differences in the gradients inside and outside of the heatpipe regions, are used to derive the approximate magnitude of the liquidand gas fluxes in the subsurface, for both steady-state and transientconditions.

  15. Improved understanding of geologic CO{sub 2} storage processes requires risk-driven field experiments

    SciTech Connect

    Oldenburg, C.M.

    2011-06-01

    The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improve performance assessment and guide development of mitigation strategies.

  16. Geological Processes Affecting the Shallow Seafloor Temperature Fields: Results from 2D and 3D Seismic Reflection Data Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Chi, W. C.; Chen, L.; Liu, C. S.; Wang, Y.; Berndt, C.; Han, W. C.; Lin, S.

    2014-12-01

    Seafloor heat flow measurements provide fundamental geophysical information that can be used to better understand tectonic processes. Regional heat flow patterns have been successfully used to study the cooling of the oceanic lithosphere, exhumation of deep crustal materials, strength of the faults, and other geological processes. However, sometimes there are variations of heat flows within a small area, making the interpretation of the heat flows difficult. Here we study the geological processes that can cause such variations. Over the last two decades, we have collected many dense 2D and 3D seismic reflection data offshore SW Taiwan and there is a wide-spread bottom-simulating reflector (BSR) found in the seismic profiles. The BSR is interpreted as associated with the base of the gas hydrate stability zone, and can be used to infer the temperature fields at shallow oceanic crust using a hydrate phase diagram. Such a dense and wide-spread dataset provides an unprecedented opportunity to study processes that can affect temperature fields in scales less than a kilometer. Here we show evidence of bathymetry-induced temperature perturbations at shallow oceanic crust by comparing the BSR-based temperature data with the temperature derived from steady-state 3D finite element modeling. We have also documented focused fluid flow migration along faults and fissures based on elevated temperature fields near those geological features. We also found seismic evidence of abnormal high heat flows caused by rapid erosion. Our results demonstrate that sometimes it is necessary to correct those effects before the heat flow data can be used for regional studies. Our study is among the first to provide observational data to study small-scale geological processes affecting seafloor temperature fields. Such information might also be important for gas and oil reservoir studies.

  17. Product development processes and their importance to organizational capabilities

    E-print Network

    Liu, Bing, 1968 Oct. 25-

    2003-01-01

    Product development is a creative and interdisciplinary activity that transforms a market opportunity and technological innovation into successful products. It is a set of activity-based processes in a product-oriented ...

  18. Processes of lunar crater degradation - Changes in style with geologic time

    NASA Technical Reports Server (NTRS)

    Head, J. W.

    1975-01-01

    Relative age schemes of crater degradation are calibrated to radiometric dates obtained from lunar samples, changes in morphologic features are analyzed, and the style and rate of lunar surface degradation processes are modeled in relation to lunar geologic time. A comparison of radiometric age scales and the relative degradation of morphologic features for craters larger than about 5 km in diameter shows that crater degradation can be divided into two periods: Period I, prior to about 3.9 billion years ago and characterized by a high meteoritic influx rate and the formation of large multiringed basins, and Period II, from about 3.9 billion years ago to the present and characterized by a much lower influx rate and a lack of large multiringed basins. Diagnostic features for determining the relative ages of craters are described, and crater modification processes are considered, including primary impacts, lateral sedimentation, proximity weathering, landslides, and tectonism. It is suggested that the fundamental degradation of early Martian craters may be associated with erosional and depositional processes related to the intense bombardment characteristics of Period I.

  19. Significant achievements in the planetary geology program

    NASA Technical Reports Server (NTRS)

    Head, J. W. (editor)

    1984-01-01

    Recent developments in planetology research are summarized. Important developments are summarized in topics ranging from solar system evolution, comparative planetology, and geologic processes active on other planetary bodies, to techniques and instrument development for exploration.

  20. Identifying Cognitive Processes Important to Mathematics Learning but Often Overlooked

    ERIC Educational Resources Information Center

    Turner, Ross

    2011-01-01

    In August 2010, ACER held its annual conference in Melbourne. The theme of the 2010 conference--"Teaching Mathematics? Make It Count"--was chosen to highlight that mathematics education is an area of high priority in Australia. In the author's own presentation to the conference, he outlined research into an area that he believes is very important

  1. Collection & Processing of Medically Important Arthropods for Arbovirus Isolation.

    ERIC Educational Resources Information Center

    Sudia, W. Daniel; Chamberlain, Roy W.

    The methods given for collecting, preserving, and processing mosquitoes and other archropods for isolation of arboviruses are those used by the National Communicable Disease Center. Techniques of collecting mosquitoes as they bite, using light or bait traps, and from their daytime resting sites are described and illustrated. Details of subsequent…

  2. Neuronal deactivation is equally important for understanding emotional processing.

    PubMed

    Vigil, Jacob M; Dukes, Amber; Coulombe, Patrick

    2012-06-01

    In their analyses of the neural correlates of discrete emotionality, Lindquist et al. do not consider the numerous drawbacks to inferring psychological processes based on currently available cognitive neurometric technology. The authors also disproportionately emphasize the relevance of neuronal activation over deactivation, which, in our opinion, limits the scope and utility of their conclusions. PMID:22617677

  3. Geology, summary

    NASA Technical Reports Server (NTRS)

    Sabins, F. F., Jr.

    1975-01-01

    Trends in geologic application of remote sensing are identified. These trends are as follows: (1) increased applications of orbital imagery in fields such as engineering and environmental geology - some specific applications include recognition of active earthquake faults, site location for nuclear powerplants, and recognition of landslide hazards; (2) utilization of remote sensing by industry, especially oil and gas companies, and (3) application of digital image processing to mineral exploration.

  4. Physical and Chemical Processes Affecting Permeability during Geologic Carbon Sequestration in Arkose and Dolostone: Experimental Observations

    NASA Astrophysics Data System (ADS)

    Luhmann, A. J.; Kong, X.; Tutolo, B. M.; Saar, M. O.; Seyfried, W. E.

    2012-12-01

    Geologic carbon sequestration in saline sedimentary basins provides a promising option to reduce anthropogenic CO2 emissions. We are conducting experiments using a novel flow system at elevated temperatures and pressures to better understand the physical and chemical processes that result from CO2 injection into these basins and the effects of these processes on system permeability. Here we present experimental results on arkose (primarily K-feldspar and quartz) and dolostone, focusing on CO2 exsolution and fluid-mineral reactions. Following heating-induced CO2 exsolution in an arkose sediment (90-125 ?m) core, XRCT scans revealed abundant pores several times larger than the average grain size. The pores likely grew as exsolved CO2 accumulated in the pores and exerted outspread forces on the surrounding grains. These trapped CO2 accumulations blocked flow pathways, reducing measured permeability by 10,000 times. Another reported experiment on a solid arkose core and water with aqueous CO2 concentrations at 80% saturation dissolved K-feldspar, as evidenced by 3 to 1 ratios of Si to K in sampled fluids, and precipitated an Al-rich mineral, likely gibbsite. SEM images revealed extensive clay precipitation on K-feldspar mineral surfaces. Alteration reduced permeability from 5 × 10-14 m2 to 3 × 10-14 m2 during this 52-day experiment. The third reported experiment on a dolostone core and 1 molal NaCl brine with an aqueous CO2 concentration at 75% saturation caused extensive dissolution and a large increase in permeability. This three-day experiment produced a wormhole of 2 mm in diameter that penetrated the entire 2.6 cm long core with a diameter of 1.3 cm. High, initial Ca and Mg fluid concentrations that quickly receded imply early formation of the wormhole that grew in diameter with time. Our experimental results show that formation permeability can change dramatically from both physical and chemical processes, and these changes should be accounted for during geologic carbon sequestration.

  5. Convection phenomena of importance for materials processing in space

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1977-01-01

    The basic aspects of convection processes are delineated. It is shown that even in weak gravitational fields buoyancy can induce fluid motion. Furthermore, at reduced gravity, other nongravity forces such as surface or interfacial tensions, g jitter, thermal volume expansions, density differences due to phase changes, and magnetic and electric fields can induce fluid motions. The types of flows possible with these various driving forces are described, and criteria for determining the extent and nature of the resulting flows and heat transfer are presented. The different physical mechanisms that can occur separately and in combination are indicated, and the present state of knowledge of each of the phenomena is outlined. Specific research problems are described for many of the types of convection that are necessary to obtain greater understanding of their implications for space processing.

  6. The importance of green chemistry in process research and development.

    PubMed

    Dunn, Peter J

    2012-02-21

    Green Chemistry or Sustainable Chemistry is defined by the Environmental Protection Agency as "the design of chemical products that reduce or eliminate the use of hazardous substances" In recent years there is a greater societal expectation that chemists and chemical engineers should produce greener and more sustainable chemical processes and it is likely that this trend will continue to grow over the next few decades. This tutorial review gives information on solvents and solvent selection, basic environmental metrics collection and three industrial case histories. All three case histories involve enzymatic chemistry. Pregabalin (Lyrica®) is produced using a lipase based resolution and is extremely unusual in that all four manufacturing steps to make pregabalin are performed in water. Sitagliptin (Januvia®) uses a transaminase in the final chemical step. Finally a rosuvastatin (Crestor®) intermediate is produced using a deoxy ribose aldolase (DERA) enzyme in which two carbon-carbon bonds and two chiral centres are formed in the same process step. PMID:21562677

  7. Theoretical studies of important processes in planetary and comet atmospheres

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1991-01-01

    This is the fifth semi-annual progress report describing research on dissociative recombination reactions in planetary and comet atmospheres. The Appendix has two papers that describe NASA supported research. Both papers have been recently accepted for publication. The first paper, 'The Generation of O(S-1) from the Dissociative Recombination of O2(+)', describes in detail the Multichannel Quantum Defect (MQDT) theory used for the calculation of dissociative recombination (DR) cross sections and rates. The application to the generation of the upper state of the atomic oxygen green line emission is of great importance to the modelling of planetary atmospheres. The second paper in the Appendix, 'Dissociative Recombination of the Ground State of N2(+)', applies the methods described in the first paper to N2(+). We find remarkable agreement with the prior microwave afterglow experiments for both the total recombination rate and for its electron temperature dependence. However, the results disagree with recent merged beams results which gave cross sections that are a factor of five below the microwave afterglow experiments and the current results. DR of N2(+) is an important mechanism for generating energetic N atoms which can escape the atmosphere of Mars. Currently we are also continuing additional work on the DR of O2(+) which is aimed at calculating both the total DR rate as a function of ion vibrational level and the rate for production of O(D-1).

  8. Convection phenomena at reduced gravity of importance for materials processing

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1976-01-01

    The basic aspects of convection processes are delineated. It is shown that even in weak gravitational fields buoyancy can induce fluid motions. Furthermore, at reduced gravity other nongravity forces such as surface or interfacial tensions, g-jitter, therma-volume expansions, density differences due to phase changes, and magnetic and electric fields can induce fluid motions. The various types of flow possible with these various driving forces are described and criteria for determining the extent and nature of the resulting flows and heat transfer are presented. The various physical mechanisms that can occur separately and in combination are indicated and the present state of knowledge of each of the phenomena is outlined.

  9. The importance of cost considerations in the systems engineering process

    NASA Technical Reports Server (NTRS)

    Hodge, John D.

    1993-01-01

    This paper examines the question of cost, from the birth of a program to its conclusion, particularly from the point of view of large multi-center programs, and suggests how to avoid some of the traps and pitfalls. Emphasis is given to cost in the systems engineering process, but there is an inevitable overlap with program management. (These terms, systems engineering and program management, have never been clearly defined.) In these days of vast Federal budget deficits and increasing overseas competition, it is imperative that we get more for each research and development dollar. This is the only way we will retain our leadership in high technology and, in the long run, our way of life.

  10. The importance of quantum decoherence in brain processes

    E-print Network

    Max Tegmark

    1999-11-10

    Based on a calculation of neural decoherence rates, we argue that that the degrees of freedom of the human brain that relate to cognitive processes should be thought of as a classical rather than quantum system, i.e., that there is nothing fundamentally wrong with the current classical approach to neural network simulations. We find that the decoherence timescales ~10^{-13}-10^{-20} seconds are typically much shorter than the relevant dynamical timescales (~0.001-0.1 seconds), both for regular neuron firing and for kink-like polarization excitations in microtubules. This conclusion disagrees with suggestions by Penrose and others that the brain acts as a quantum computer, and that quantum coherence is related to consciousness in a fundamental way.

  11. Report of the second meeting of the consultants on coupled processes associated with geological disposal of nuclear waste

    SciTech Connect

    Tsang, Chin-Fu; Mangold, D.C.

    1985-09-01

    The second meeting of the Consultants on Coupled Processes Associated with Geological Disposal of Nuclear Waste occurred on January 15-16, 1985 at Lawrence Berkeley Laboratory (LBL). All the consultants were present except Dr. K. Kovari, who presented comments in writing afterward. This report contains a brief summary of the presentations and discussions from the meeting. The main points of the speakers' topics are briefly summarized in the report. Some points that emerged during the discussions of the presentations are included in the text related to the respective talks. These comments are grouped under the headings: Comments on Coupled Processes in Unsaturated Fractured Porous Media, Comments on Overview of Coupled Processes, Presentations by Consultants on Selected Topics of Current Interest in Coupled Processes, and Recommendations for Underground Field Tests with Applications to Three Geologic Environments.

  12. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    SciTech Connect

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches to important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done in collaboration with Drs. C.-K. Loong, N. de Souza, and A.I. Kolesnikov at the Intense Pulsed

  13. [Decision process in oncology: the importance of multidisciplinary meeting].

    PubMed

    Orgerie, M-B; Duchange, N; Pélicier, N; Chapet, S; Dorval, E; Rosset, P; Lemarié, E; Hervé, C; Moutel, G

    2010-02-01

    Multidisciplinary meeting (MDM) in oncology has been institutionalised in France by the Cancer Plan. This study aims to determine the place of MDM in the decision process. From November 2004 to July 2005, we observed 29 meetings at the Tours Hospital and 324 case presentations, 80 in orthopaedics, 151 in gastroenterology and 93 in chest medicine. Forty physicians attending the meetings answered a questionnaire exploring their opinions on MDM and the collegial decision. We found that MDM is mostly the place for technical discussions and that patients' wishes are rarely addressed. The different medical specialities are well represented but we observed that only physicians attend MDM. Decisions for straightforward cases are rapidly validated. For more complex clinical situations (25 to 40% of case presentations), the multidisciplinary approach allows to adapt guidelines or to choose alternative treatments. All the physicians interviewed express that MDM legitimates the medical decision. It occurs that they disagree with the RCP decision. We discuss how MDM impacts on the medical decision as well as the shift from the individual decision to the collective one, particularly in term of responsibility. PMID:19825531

  14. Rheology of petrolatum - paraffin oil mixtures: applications to analogue modelling of geological processes

    NASA Astrophysics Data System (ADS)

    Duarte, Joao; Schellart, Wouter; Cruden, Alexander

    2014-05-01

    Paraffins have been widely used in analogue modelling of geological processes. Petrolatum and paraffin oil are commonly used to lubricate model boundaries and to simulate weak layers. We present rheological tests of petrolatum, paraffin oil and several homogeneous mixtures of the two. The results show that petrolatum and all petrolatum-paraffin oil mixtures are strain, strain rate and temperature dependent under typical experimental strain rates (10-3 - 10-1 s-1). For the same conditions, pure paraffin oil is a slightly temperature-dependent, linear, Newtonian fluid. All mixtures have yield stress and flow stress (strain softening) values that decrease with decreasing shear rate, and with increasing relative amounts of paraffin oil. The degree of strain rate dependence (shear thinning) also decreases with increasing paraffin oil content. Because these materials have rheologies that can be characterized and controlled, they are suitable for use in a large number of analogue model settings, either as a lubricant or to simulate weak layers. When used as a lubricant, mixtures with higher paraffin oil content should perform better than pure petrolatum. In addition, we present results of 3D dynamical models of subduction in which these materials were used to lubricate the plate's interface and test different degrees of mechanical coupling.

  15. Rheology of petrolatum-paraffin oil mixtures: Applications to analogue modelling of geological processes

    NASA Astrophysics Data System (ADS)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2014-06-01

    Paraffins have been widely used in analogue modelling of geological processes. Petrolatum and paraffin oil are commonly used to lubricate model boundaries and to simulate weak layers. In this paper, we present rheological tests of petrolatum, paraffin oil and several homogeneous mixtures of the two. The results show that petrolatum and all petrolatum-paraffin oil mixtures are strain, strain rate and temperature dependent under typical experimental strain rates (10-3-10-1 s-1). For the same conditions, pure paraffin oil is a slightly temperature-dependent, linear, Newtonian fluid. All mixtures have yield stress and flow stress (strain softening) values that decrease with decreasing shear rate, and with increasing relative amounts of paraffin oil. The degree of strain rate dependence (shear thinning) also decreases with increasing paraffin oil content. Because these materials have rheologies that can be characterized and controlled, they are suitable for use in a large number of analogue model settings, either as a lubricant or to simulate weak layers. When used as a lubricant, mixtures with higher paraffin oil content should perform better than pure petrolatum.

  16. Modeling the Population-Level Processes of Biodiversity Gain and Loss at Geological Timescales.

    PubMed

    Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Raia, Pasquale; Toivonen, Jaakko

    2015-12-01

    The path of species diversification is commonly observed by inspecting the fossil record. Yet, how species diversity changes at geological timescales relate to lower-level processes remains poorly understood. Here we use mathematical models of spatially structured populations to show that natural selection and gradual environmental change give rise to discontinuous phenotype changes that can be connected to speciation and extinction at the macroevolutionary level. In our model, new phenotypes arise in the middle of the environmental gradient, while newly appearing environments are filled by existing phenotypes shifting their adaptive optima. Slow environmental change leads to loss of phenotypes in the middle of the extant environmental range, whereas fast change causes extinction at one extreme of the environmental range. We compared our model predictions against a well-known yet partially unexplained pattern of intense hoofed mammal diversification associated with grassland expansion during the Late Miocene. We additionally used the model outcomes to cast new insight into Cope's law of the unspecialized. Our general finding is that the rate of environmental change determines where generation and loss of diversity occur in the phenotypic and physical spaces. PMID:26655981

  17. Application of ERTS images and image processing to regional geologic problems and geologic mapping in northern Arizona

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H. (principal investigator); Billingsley, F. C.; Gillespie, A. R.; Abrams, M. J.; Squires, R. L.; Shoemaker, E. M.; Lucchitta, I.; Elston, D. P.

    1975-01-01

    The author has identified the following significant results. Computer image processing was shown to be both valuable and necessary in the extraction of the proper subset of the 200 million bits of information in an ERTS image to be applied to a specific problem. Spectral reflectivity information obtained from the four MSS bands can be correlated with in situ spectral reflectance measurements after path radiance effects have been removed and a proper normalization has been made. A detailed map of the major fault systems in a 90,000 sq km area in northern Arizona was compiled from high altitude photographs and pre-existing published and unpublished map data. With the use of ERTS images, three major fault systems, the Sinyala, Bright Angel, and Mesa Butte, were identified and their full extent measured. A byproduct of the regional studies was the identification of possible sources of shallow ground water, a scarce commodity in these regions.

  18. Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2014-12-01

    The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth's chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial ?Hf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic -time patterns are more complex, reflecting the interplay between early Sm/Nd fractionation processes as required by the 142Nd data, juvenile crustal growth and in some cases geologic disturbance of the whole rock Sm-Nd system. [1] Nutman, et al, (2013) Amer. Jour. Sci. 313, 877-911. [2] Naeraa et al.. (2012) Nature 485, 627-631. [3] Kemp et al., (2010) EPSL 296, 45-56. [4] Bennett et al., (20070 Science 318, 1907.

  19. Taking geoscience to the IMAX: 3D and 4D insight into geological processes using micro-CT

    NASA Astrophysics Data System (ADS)

    Dobson, Katherine; Dingwell, Don; Hess, Kai-Uwe; Withers, Philip; Lee, Peter; Pistone, Mattia; Fife, Julie; Atwood, Robert

    2015-04-01

    Geology is inherently dynamic, and full understanding of any geological system can only be achieved by considering the processes by which change occurs. Analytical limitations mean understanding has largely developed from ex situ analyses of the products of geological change, rather than of the processes themselves. Most methods essentially utilise "snap shot" sampling: and from thin section petrography to high resolution crystal chemical stratigraphy and field volcanology, we capture an incomplete view of a spatially and temporally variable system. Even with detailed experimental work, we can usually only analyse samples before and after we perform an experiment, as routine analysis methods are destructive. Serial sectioning and quenched experiments stopped at different stages can give some insight into the third and fourth dimension, but the true scaling of the processes from the laboratory to the 4D (3D + time) geosphere is still poorly understood. Micro computed tomography (XMT) can visualise the internal structures and spatial associations within geological samples non-destructively. With image resolutions of between 200 microns and 50 nanometres, tomography has the ability to provide a detailed sample assessment in 3D, and quantification of mineral associations, porosity, grain orientations, fracture alignments and many other features. This allows better understanding of the role of the complex geometries and associations within the samples, but the challenge of capturing the processes that generate and modify these structures remains. To capture processes, recent work has focused on developing experimental capability for in situ experiments on geological materials. Data presented will showcase examples from recent experiments where high speed synchrotron x-ray tomography has been used to acquire each 3D image in under 2 seconds. We present a suite of studies that showcase how it is now possible to take quantification of many geological processed into 3D and 4D. This will include tracking the interactions between bubbles and crystals in a deforming magma, the dissolution of individual mineral grains from low grade ores, and quantification of three phase flow in sediments and soils. Our aim is to demonstrate how XMT can provide new insight into dynamic processes in all geoscience disciplines, and give you some insight into where 4D geoscience could take us next.

  20. Geochemical Processes During Geological Carbon Storage: Lessons from Natural Analogues and Field Experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Kampman, N.; Wigley, M.; Dubacq, B.

    2013-12-01

    The nature, rates and consequences of reactions between CO2-charged brines and reservoir and caprock minerals for the long-term fate of geological carbon stores are uncertain. At worst it has been suggested that acid carbonated brines might corrode migration pathways through caprocks and fault zones allowing CO2 to escape and transporting metal contaminants. However there is a growing body of data from short term injection experiments, and sites where natural CO2 has been stored or actively leaking for 100,000's of years or more, which shows that the acid fluids are rapidly neutralised by reaction with carbonate and Fe-oxyhydroxide minerals, that the fluids precipitate carbonate minerals in caprocks and along migration pathways, and that caprocks have remained impermeable over millions of years. Limited observations from small scale injection experiments suggest that the natural heterogeneities in rock formations cause extensive fingering of the injected CO2, markedly increasing the rates of CO2 dissolution into formation brines. The resultant acidity drives the dissolution of carbonates and Fe-oxyhydroxide minerals which buffers pH, but the more sluggish dissolution of silicate minerals over time scales of months or more drives subsequent re-precipitation of carbonate minerals. Dissolution of Fe-oxide grain coatings is important in stabilizing Fe-Mg-Ca carbonate minerals. Reaction rates slow over 2 to 5 orders-of-magnitude as equilibrium is approached and in the longer term are controlled by the kinetic balance between the thermodynamic understep of the dissolution reactions of primary Si-Al phases (e.g. feldspars and micas in sandstone reservoirs) and the overstep driving the precipitation of clay minerals. Reservoir mineralogy imposes a key control on the fluid-mineral reactions where immature continental sandstones contain much higher fractions of reactive feldspars and micas than mature marine quartz sands. The major conclusion from observations to date is that fluid-mineral reactions are initially fast, are important in buffering fluid compositions and may cause important beneficial changes to formation and caprock permeabilities. However much more needs to be learnt. Many of the inferences on mineral dissolution and precipitation reactions are derived from modal decomposition calculations based on changes in sampled fluid chemistry and these suffer ambiguities arising from the limited number of soluble cations present in stoichiometric proportions in minerals and from the uncertainties in mineral compositions. The reservoirs and caprocks in natural analogues contain an inadequately sampled and exploited record of the fluid-mineral reactions but deciphering this requires careful petrographic, mineralogical and geochemical work to distinguish the response to CO2-charged fluids from earlier diagenetic episodes.

  1. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    SciTech Connect

    Prothro, L.B., Townsend, M.J.; Drellack, S.L. Jr.

    1997-09-01

    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1.

  2. User's manual for the National Water Information System of the U.S. Geological Survey: Automated Data Processing System (ADAPS)

    USGS Publications Warehouse

    U.S. Geological Survey

    2003-01-01

    The Automated Data Processing System (ADAPS) was developed for the processing, storage, and retrieval of water data, and is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey. NWIS is a distributed water database in which data can be processed over a network of computers at U.S. Geological Survey offices throughout the United States. NWIS comprises four subsystems: ADAPS, the Ground-Water Site Inventory System (GWSI), the Water-Quality System (QWDATA), and the Site-Specific Water-Use Data System (SWUDS). This section of the NWIS User's Manual describes the automated data processing of continuously recorded water data, which primarily are surface-water data; however, the system also allows for the processing of water-quality and ground-water data. This manual describes various components and features of the ADAPS, and provides an overview of the data processing system and a description of the system framework. The components and features included are: (1) data collection and processing, (2) ADAPS menus and programs, (3) command line functions, (4) steps for processing station records, (5) postprocessor programs control files, (6) the standard format for transferring and entering unit and daily values, and (7) relational database (RDB) formats.

  3. 40 CFR 761.187 - Reporting importers and by persons generating PCBs in excluded manufacturing processes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...excluded manufacturing process at § 761.3, PCB-generating manufacturing processes or importers of PCB-containing products shall be considered...NW., Washington, DC 20460-0001, ATTN: PCB Notification. (Sec. 6, Pub. L....

  4. GEOLOGICAL CONTROLS IN THE FORMATIONS AND EXPANSIONS OF GULLIES OVER HILLSLOPE HYDROLOGICAL PROCESSES IN THE

    E-print Network

    GEOLOGICAL CONTROLS IN THE FORMATIONS AND EXPANSIONS OF GULLIES OVER HILLSLOPE HYDROLOGICAL with several local structures and intrusive dykes. Volcanic morphological features and erosion has formed of gullies along hill slopes in a micro watershed in the Blue Nile River source region. Twenty

  5. Influence in the Policy Making Process: the Rise of Economics at the Expense of Geology

    NASA Astrophysics Data System (ADS)

    McCurdy, K. M.

    2007-12-01

    Scientific influence in resource policy making reached a zenith in the early 1970s during the legislative monopoly in the United States Congress that produced command and control regulatory protection policies. This congressional consensus began in 1879 with legislation producing the U.S. Geological Survey. Other scientific agencies followed. The Congresses of the first half of the 20th century merely strengthened the influence of science in policy outcomes that was present in the earliest congressional debates. What then happened at the turn of the 21st century when representatives in the administration frequently dismissed sound science in their policy deliberations? Policy monopolies arise from agreement in principle, and alternately decline as rival ideas gain hold in policy space. The science policy monopoly began to face competition from economics when cost benefit analysis was introduced into political parlance in 1936, again in the 1950s as a successful blocking tactic by the minority in opposition to western dams, and in 1961 when systems analysis was introduced to the Department of Defense under Robert McNamara. As businessmen replaced farmers as the modal profession of legislators, the language of politics increasingly contained economic terms and concepts. A ternary diagram and a budget simplex have the same shape, but have different theoretical meanings and imply different processes. Policy consensus is not dissimilar to a mineral phase diagram, with boundary conditions marked by election magnitudes and majority parties. The 1980 elections brought economic principles into all aspects of government decision-making, with a particular long-term interest in reducing the size and scope of government. Since then the shift in policy jargon from science to economics has been incremental. With the 1994 Republican legislative majority, scientists, their programs, and the funds required to maintain data collection projects became targets. The Conservative Consensus resulting from the 2000 elections has disregarded and even ridiculed scientific experts, their analyses, and their data. The first step in rebuilding an effective policy consensus based on sound science is recognizing the phase transition that privileges conservative policy solutions which minimize science and elevate economic principles.

  6. SMART-1 highlights and relevant studies on early bombardment and geological processes on rocky planets

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Racca, G. D.; Josset, J. L.; Koschny, D.; Frew, D.; Almeida, M.; Zender, J.; Heather, D.; Peters, S.; Marini, A.; Stagnaro, L.; Beauvivre, S.; Grande, M.; Kellett, B.; Huovelin, J.; Nathues, A.; Mall, U.; Ehrenfreund, P.; McCannon, P.

    2008-08-01

    We present results from SMART-1 science and technology payload, in the context of the Nobel symposium on 'Physics of Planetary Systems'. SMART-1 is Europe' first lunar mission (Foing et al 2000 LPSC XXXI Abstract #1677 (CDROM); Foing et al 2001 Earth, Moon Planets 85 86 523 31 Marini et al 2002 Adv. Space Res. 30 1895 900 Racca et al 2001 Earth Moon Planets 85 86 379 95, Racca et al 2002 Planet Space Sci. 50 1323 37) demonstrating technologies for future science and exploration missions, and providing advances in our understanding of lunar origin and evolution, and general planetary questions. The mission also contributes a step in developing an international program of lunar exploration. The spacecraft, launched on 27 September 2003 as an Ariane 5 Auxiliary passenger to geostationary transfer orbit (GTO), performed a 14-month long cruise using a tiny thrust of electric propulsion alone, reached lunar capture in November 2004, and lunar science orbit in March 2005. SMART-1 carried 7 hardware experiments (Foing et al 2003 Adv. Space Res. 31 2323, Foing et al 2005 LPI/LPSC XXXVI 2404 (CDROM)) performing 10 investigations, including 3 remote-sensing instruments, used during the cruise, the mission' nominal six-months and one-year extension in lunar science orbit. Three remote sensing instruments, D-CIXS, SIR and AMIE, have returned data that are relevant to a broad range of lunar studies. The mission provided regional and global x-ray measurements of the Moon, global high-spectral resolution NIR spectrometry, high spatial resolution colour imaging of selected regions. The South Pole-Aitken Basin (SPA) and other impact basins have been prime targets for studies using the SMART-1 suite of instruments. Combined, these should aid a large number of science studies, from bulk crustal composition and theories of lunar origin/evolution, the global and local crustal composition, to the search for cold traps at the lunar poles and the mapping of potential lunar resources. We present here SMART-1 results relevant to the study of the early bombardment and geological processes on rocky planets. Further information and updates on the SMART-1 mission can be found on the ESA Science and Technology web pages, at: http://sci.esa.int/smart-1/.

  7. The geological processes time scale of the Ingozersky block TTG complex (Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Nitkina, Elena

    2013-04-01

    Ingozersky block located in the Tersky Terrane of the Kola Peninsula is composed of Archean gneisses and granitoids [1; 5; 8]. The Archaean basement complexes on the regional geological maps have called tonalite-trondemit-gneisses (TTG) complexes [6]. In the previous studies [1; 3; 4; 5; 7] within Ingozersky block the following types of rocks were established: biotite, biotite-amphibole, amphibole-biotite gneisses, granites, granodiorites and pegmatites [2]. In the rocks of the complex following corresponding sequence of endogenous processes observed (based on [5]): stage 1 - the biotitic gneisses formation; 2 - the introduction of dikes of basic rocks; 3 phase - deformation and foliation; 4 stage - implementation bodies of granite and migmatization; 5 stage - implementation of large pegmatite bodies; stage 6 - the formation of differently pegmatite and granite veins of low power, with and without garnet; stage 7 - quartz veins. Previous U-Pb isotopic dating of the samples was done for biotite gneisses, amphibole-biotite gneisses and biotite-amphibole gneisses. Thus, some Sm-Nd TDM ages are 3613 Ma - biotite gnesses, 2596 Ma - amphibole-biotite gnesses and 3493 Ma biotite-amphibole gneisses.. U-Pb ages of the metamorphism processes in the TTG complex are obtained: 2697±9 Ma - for the biotite gneiss, 2725±2 and 2667±7 Ma - for the amphibole-biotite gneisses, and 2727±5 Ma for the biotite-amphibole gneisses. The age defined for the biotite gneisses by using single zircon dating to be about 3149±46 Ma corresponds to the time of the gneisses protolith formation. The purpose of these studies is the age establishing of granite and pegmatite bodies emplacement and finding a geological processes time scale of the Ingozerskom block. Preliminary U-Pb isotopic dating of zircon and other accessory minerals were held for granites - 2615±8 Ma, migmatites - 2549±30 Ma and veined granites - 1644±7 Ma. As a result of the isotope U-Pb dating of the different Ingozerskogo TTG complex rocks, the following age-formation stages are determined: protolith of the biotite gneisses - 3149±46 Ma; metamorphism, deformation of rocks, foliation - 2727±5 - 2725±2 - 2697±9 - 2667±7 Ma, granite bodies formation - 2615±8 Ma and biotite gneisses migmatization - 2549±30 Ma, formation of different pegmatite and granite veins -1644±7 Ma. Author are grateful to Akad. Mitrofanov F.P. and Bayanova T.B. for the consultations. The work is supported by RFBR 12-05-31063, 11-05-00570. 1.Batieva I.D., Belkov I.V. Granitoidnie formacii Kolskogo poluostrova. // Ocgerki po petrologiy, mineralogiy i metallogeniy Kolskogo poluostrova. L.: Nauka. 1968. p. 5-143. (in russian) 2. Belkov I.V., Zagorodny V.G., Predovsky A.A. et al. Stratigraficheskoe raschlenenie i korrelyacia dokembria severo-vostochoi chasty Baltiyskogo shita. L.: Nauka. 1971. p. 141-150. (in russian) 3. Docembriskaya tektonica severo-vostochoi chasty Baltiyskogo shita (Ob'asnitelnaya zapiska k tektonicheskoi karte severo-vostochoi chasty Baltiyskogo shita 1:500000) / ed.: F.P.Mitrofanov. Apatity: KFAN SSSR. 1992. 112 P. (in russian) 4. Zagorodny V.G., Radchenko A.T. Tectonika i glubinnoe stroenie severo-vostochoi chasty Baltiyskogo shita. Apatity: KFA SSSR. 1978. p. 3-12. (in russian) 5. Kozlov N.E., Sorohtin N.O., Glaznev V.N. et al. Geologia Arhea Baltiskogo shita. S.Pb.: Nauka. 2006. 329 p. (in russian) 6. Mitrofanov F.P. Sovremennie problemy i nekotorie resheniya dokembriskoy geologii kratonov. (2001) Litosphera.2001. V 1. P. 5-14. (in russian) 7. Ob'asnitelnaya zapiska k geologicheskoy karte severo-vostochoi chasty Baltiyskogo shita 1:500000 / ed.: F.P.Mitrofanov. Apatity: KFAN SSSR. 1994. 95 P. (in russian) 8. Haritonov L.Y. Structura i stratigraphia karelid vostoka Baltiskogo shita. M.: Nedra. 1966. 354 P. (in russian)

  8. Western Gulf of Mexico continental slope geology, hazards, and processes atlas

    SciTech Connect

    Hardin, N.S.

    1984-04-01

    An analysis of approximately 18,074 km (11,231 mi) of high-resolution geophysical records (3.5 kHz and 1000-joule sparker) in the western Gulf of Mexico has delineated relationships between sedimentation patterns, diapiric activity, tensional tectonic features, and sediment instability. The continental slope of the Gulf of Mexico is the most promising petroleum frontier on the conterminous United States continental margin. However, adequate regional geologic information with which to conduct lease sales and manage lease operations does not exist. Mapping was done at 1:250,000 and selected features were synthesized on a regional scale of 1:1,000,000 as part of the US Geological Survey Continental Margin Mapping Project. Because the reconnaissance spacing of the tracklines makes topical investigations difficult, in a few areas the US Geological Survey has gathered more closely spaced lines to examine particular features. Analysis of one of these areas near the large slide reported by Lehner in 1969 indicates a possible relationship between rapid sediment loading and diapiric rise.

  9. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    NASA Astrophysics Data System (ADS)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  10. Genesis of karren in Kentucky Lake, Tennessee: Interaction of geologic structure, weathering processes, and bioerosion

    SciTech Connect

    Gibson, M.A.; Smith, W.L. )

    1993-03-01

    While karst features formed along marine coastlines are commonly reported, shoreline karst features produced within lacustrine systems have received little attention. The shoreline of Bond Island'' in Kentucky Lake has evolved a distinctive karren geomorphology not recognized elsewhere in the lake. The karren consist of well-developed clint and grike topography, trench formation, solution pits, flutes, and runnels, and pit and tunnel development. Two processes are responsible for the karren. First, freshwater dissolution and wave action on structurally fractured Decatur Limestone (Silurian) mechanically and chemically weaken the entire exposed surface. Second, a seasonal cycle of winter freeze-thaw and frost wedging followed by spring bioerosion overprints the first set of processes. Bioerosion by chemical dissolution involving a complex association of predominantly chironomids, algae, fungi, and bryozoa results in preferential dissolution along joints, stylolites, and bedding planes to form shallow spindle-shaped solution pits over the entire surface and sides of the karren. The solution pits average 1 cm length by 0.4 cm depth densely covering rock surfaces. This study suggests that seasonal bioerosion may constitute a more important geomorphic factor in lacustrine systems than previously recognized.

  11. Digital processing of orbital radar data to enhance geologic structure - Examples from the Canadian Shield

    NASA Technical Reports Server (NTRS)

    Masuoka, Penny M.; Harris, Jeff; Lowman, Paul D., Jr.; Blodget, Herbert W.

    1988-01-01

    Various digital enhancement techniques for SAR are compared using SIR-B and Seasat images of the Canadian Shield. The three best methods for enhancing geological structure were found to be: (1) a simple linear contrast stretch; (2) a mean or median low-pass filter to reduce speckle prior to edge enhancement or a K nearest-neighbor average to cosmetically reduce speckle; and (3) a modification of the Moore-Waltz (1983) technique. Three look directions were coregistered and several means of data display were investigated as means of compensating for radar azimuth biasing.

  12. Significant achievements in the planetary geology program, 1980

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (editor)

    1980-01-01

    Recent developments in planetology research as reported at the 1980 NASA Planetology Program Principal Investigators meeting are summarized. Important developments are summarized in topics ranging from solar system evolution and comparative planetology to geologic processes active on other planetary bodies.

  13. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet s surface, and it is the first order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics or remote sensing. These allied sciences, as important as they are, derive the basis of their understanding from the knowledge of the geology of a given location. When we go back to the Moon, and on to Mars, the surface systems we deploy will need to support the conduct of field geology if these endeavors are to be scientifically useful. This lecture will consider what field geology is about - why it s important, how we do it, how the conduct of field geology informs many other sciences, and how it will affect the design of surface systems and implementation of operations in the future.

  14. Using Snow to Teach Geology.

    ERIC Educational Resources Information Center

    Roth, Charles

    1991-01-01

    A lesson plan, directed at middle school students and older, describes using snow to study the geological processes of solidification of molten material, sedimentation, and metamorphosis. Provides background information on these geological processes. (MCO)

  15. Venus: Vertical accretion of crust and depleted mantle and implications for geological history and processes

    NASA Technical Reports Server (NTRS)

    Head, James W.; Parmentier, E. M.; Hess, P. C.

    1994-01-01

    Models for the vertical accretion of a basaltic crust and depleted mantle layer on Venus over geologic time predict the eventual development of a net negatively buoyant depleted mantle layer, its foundering and its remixing with the underlying mantle. The consequences of the development of this layer, its loss, and the aftermath are investigated and compared to the geologic record of Venus revealed by Magellan. The young average age of the surface of Venus (several hundred million years), the formation of the heavily deformed tessera regions, the subsequent emplacement of widespread volcanic plains, the presently low rate of volcanic activity, and impact crater population that cannot be distinguished from a completely spatially random distribution, and the small number of impact craters embayed by volcanism, are all consistent with the development of a depleted mantle layer, its relatively rapid loss followed by large-scale volcanic flooding, and its subsequent reestablishment. We outline a 'catastrophic' tectonic resurfacing model in which the foundering of the depleted mantle layer several hundred million years ago caused globally extensive tectonic deformation and obliteration of the cratering record, accompanied by upwelling of warm fertile mantle and its pressure-release melting to produce extensive surface volcanism in the following period. Venus presently appears to be characterized by a relatively thick depleted mantle layer and lithosphere reestablished over the last several hundred million years following the previous instability event inferred to have produced the tessera terrain.

  16. Geological Survey research 1976

    USGS Publications Warehouse

    U.S. Geological Survey

    1976-01-01

    This U.S. Geological Survey activities report includes a summary of recent (1976 fiscal year) scientific and economic results accompanied by a list of geologic and hydrologic investigations in progress and a report on the status of topographic mapping. The summary of results includes: (1) Mineral resources, Water resources, (2) Engineering geology and hydrology, (3) Regional geology, (4) Principles and processes, (5) Laboratory and field methods, (6) Topographic surveys and mapping, (7) Management of resources on public lands, (8) Land information and analysis, and (9) Investigations in other countries. Also included are lists of cooperating agencies and Geological Survey offices. (Woodard-USGS)

  17. Geological Survey research 1978

    USGS Publications Warehouse

    U.S. Geological Survey

    1978-01-01

    This U.S. Geological Survey activities report includes a summary of 1978 fiscal year scientific and economic results accompanied by a list of geologic and hydrologic investigations in progress and a report on the status of topographic mapping. The summary of results includes: (1) Mineral and water resources, (2) Engineering geology and hydrology, (3) Regional geology, (4) Principles and processes, (5) Laboratory and field methods, (6) Topographic surveys and mapping, (7) Management of resources on public lands, (8) Land information and analysis, and (9) Investigations in other countries. Also included are lists of cooperating agencies and Geological Survey offices. (Woodard-USGS)

  18. 77 FR 38033 - Notice of Establishment of a Commodity Import Approval Process Web Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...Establishment of a Commodity Import Approval Process Web Site AGENCY: Animal and Plant Health Inspection...of a new Plant Protection and Quarantine Web site that will provide stakeholders with...comment on draft risk assessments. This Web site will make the commodity import...

  19. Redesigning and Transforming: A Case Study of the Role of Semiotic Import in Early Composing Processes

    ERIC Educational Resources Information Center

    Ranker, Jason

    2009-01-01

    In this article, I explore the role of semiotic import (Van Leeuwen, 2005) in the composing processes of three bilingual students (six to seven years old) emerging as writers of English. Using social semiotic (Van Leeuwen, 2005) and design (New London Group, 2000) frameworks, I trace a qualitative "micro-history" of how the students imported

  20. A Retrospective: Active Volatile-Driven Geologic Processes Across the Solar System—Lessons for Planetary Explorers

    NASA Astrophysics Data System (ADS)

    Soderblom, L. A.

    2014-12-01

    When Voyagers 1 and 2 left Earth in 1977, we had little clue as to the rich variety of activity we'd find on the outer Solar System moons. The moons of Jupiter, Saturn, Uranus, and Neptune would likely exhibit little geologic evolution¾much less even than our Moon. We expected battered, cratered, dead worlds. Like the Moon, Mars had showed volcanic activity in the geologic past, but ancient, heavily crater highlands dominated both surfaces. It seemed unlikely that we'd find even extinct volcanism in the cold, dead reaches of the outer Solar System. Voyager 1 shocked us by revealing Io's prolific ongoing volcanism. (Not all were surprised: just days earlier, Peale, Cassen, and Reynolds published a prediction that Io could be volcanically active). Europa, too, was a Voyager surprise; only a small handful of impact craters pocked its surface. It too had to be a geologically young body—likely still actively evolving. We have even found very recent geological activity on tiny cometary nuclei, where young flows have oozed forth across their surfaces. At Neptune, incredibly, Voyager 2 found eruptions on Triton's 37K polar cap—plumes driven by solar-heated nitrogen gas blasting dark dust and bright ice in 8-km-high columns. On Mars, "dark spiders" near the pole signaled similar active eruptions, in this case driven by pressurized carbon dioxide. Cassini witnessed a myriad of jets near tiny Enceladus' south pole, arising from an internal ocean evidently driven by active chemical processes and modulated by Saturn's proximity. Cassini revealed Titan to be Earth's alien twin, with a host of processes borrowed from textbooks on terrestrial geomorphology and meteorology. Akin to Earth's global hydrological cycle, Titan's runs on methane—methane rivers, seas, and rain abound. What lessons can we take from these active places into the next phase of exploration? When the Voyagers were launched, our naiveté allowed that only planet Earth was dynamically active. But exploring our cosmic backyard has awed us with unforeseen complexity, scientific beauty, and rich activity. We are now far better armed in our nascent exploration of the worlds beyond that backyard.

  1. 77 FR 38033 - Notice of Establishment of a Commodity Import Approval Process Web Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Import Approval Process Web Site AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are announcing the creation of a new Plant Protection and Quarantine Web site that will... approval process and the opportunity to comment on draft risk assessments. This Web site will make...

  2. Sand resources, regional geology, and coastal processes for shoreline restoration: case study of Barataria shoreline, Louisiana

    USGS Publications Warehouse

    Kindinger, Jack L.; Flocks, James G.; Kulp, Mark; Penland, Shea; Britsch, Louis D.

    2002-01-01

    The Louisiana barrier shoreline of Barataria Basin, which lies within the western Mississippi River delta, has undergone significant retreat during the past 100 years. The most practical restoration method to rebuild these shorelines is sand nourishment. Seismic and sonar interpretations verified with geologic samples (vibracores and borings) indicate that there are nine sand targets within the Barataria study area that meet or exceed the minimum criteria for potential resource sites. However, the near surface lithology in the basin is typically silts and clays. Locating suitable sand resources for shoreline restoration is challenging. The sand units are associated with geologic depositional systems such as ebb-tidal deltas, distributary mouth bars, and channel fill (undifferentiated fluvial or tidal inlet channels). The nine potential sand targets consist primarily of fine sand and can be delineated into three surficial and six buried features. The surficial features contain approximately 10% of the total sand resources identified. At least 90% of the sand resources need overburden sediment removed prior to use; almost 570 million yd3 (438.5 mil m3) of overburden will need to be removed if the entire resource is mined. In this study, we identified 396 to 532 mil yd3 (305.8 to 410.8 mil m3) of potential sand deposits for shoreline restoration. Previous studies using less dense survey methods greatly over-estimated sand resources available in this area. Many fluvial channels reported previously as sand-filled are mud-filled. Contrary to these previous studies, few fluvial subsystems in this region have abundant sand resources.

  3. 9 CFR 95.4 - Restrictions on the importation of processed animal protein, offal, tankage, fat, glands, certain...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...on the importation of processed animal protein, offal, tankage, fat, glands, certain...on the importation of processed animal protein, offal, tankage, fat, glands, certain...this chapter: (i) Processed animal protein, tankage, offal, and tallow...

  4. 9 CFR 95.4 - Restrictions on the importation of processed animal protein, offal, tankage, fat, glands, certain...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...on the importation of processed animal protein, offal, tankage, fat, glands, certain...on the importation of processed animal protein, offal, tankage, fat, glands, certain...this chapter: (i) Processed animal protein, tankage, offal, and tallow...

  5. 9 CFR 95.4 - Restrictions on the importation of processed animal protein, offal, tankage, fat, glands, certain...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...on the importation of processed animal protein, offal, tankage, fat, glands, certain...on the importation of processed animal protein, offal, tankage, fat, glands, certain...this chapter: (i) Processed animal protein, tankage, offal, and tallow...

  6. GIS-project: geodynamic globe for global monitoring of geological processes

    NASA Astrophysics Data System (ADS)

    Ryakhovsky, V.; Rundquist, D.; Gatinsky, Yu.; Chesalova, E.

    2003-04-01

    A multilayer geodynamic globe at the scale 1:10,000,000 was created at the end of the nineties in the GIS Center of the Vernadsky Museum. A special soft-and-hardware complex was elaborated for its visualization with a set of multitarget object directed databases. The globe includes separate thematic covers represented by digital sets of spatial geological, geochemical, and geophysical information (maps, schemes, profiles, stratigraphic columns, arranged databases etc.). At present the largest databases included in the globe program are connected with petrochemical and isotopic data on magmatic rocks of the World Ocean and with the large and supperlarge mineral deposits. Software by the Environmental Scientific Research Institute (ESRI), USA as well as ArcScan vectrorizator were used for covers digitizing and database adaptation (ARC/INFO 7.0, 8.0). All layers of the geoinformational project were obtained by scanning of separate objects and their transfer to the real geographic co-ordinates of an equiintermediate conic projection. Then the covers were projected on plane degree-system geographic co-ordinates. Some attributive databases were formed for each thematic layer, and in the last stage all covers were combined into the single information system. Separate digital covers represent mathematical descriptions of geological objects and relations between them, such as Earth's altimetry, active fault systems, seismicity etc. Some grounds of the cartographic generalization were taken into consideration in time of covers compilation with projection and co-ordinate systems precisely answered a given scale. The globe allows us to carry out in the interactive regime the formation of coordinated with each other object-oriented databases and thematic covers directly connected with them. They can be spread for all the Earth and the near-Earth space, and for the most well known parts of divergent and convergent boundaries of the lithosphere plates. Such covers and time series reflect in diagram form a total combination and dynamics of data on the geological structure, geophysical fields, seismicity, geomagnetism, composition of rock complexes, and metalloge-ny of different areas on the Earth's surface. They give us possibility to scale, detail, and develop 3D spatial visualization. Information filling the covers could be replenished as in the existing so in newly formed databases with new data. The integrated analyses of the data allows us more precisely to define our ideas on regularities in development of lithosphere and mantle unhomogeneities using some original technologies. It also enables us to work out 3D digital models for geodynamic development of tectonic zones in convergent and divergent plate boundaries with the purpose of integrated monitoring of mineral resources and establishing correlation between seismicity, magmatic activity, and metallogeny in time-spatial co-ordinates. The created multifold geoinformation system gives a chance to execute an integral analyses of geoinformation flows in the interactive regime and, in particular, to establish some regularities in the time-spatial distribution and dynamics of main structural units in the lithosphere, as well as illuminate the connection between stages of their development and epochs of large and supperlarge mineral deposit formation. Now we try to use the system for prediction of large oil and gas concentration in the main sedimentary basins. The work was supported by RFBR, (grants 93-07-14680, 96-07-89499, 99-07-90030, 00-15-98535, 02-07-90140) and MTC.

  7. Process Consistency in Models: the Importance of System Signatures, Expert Knowledge and Process Complexity

    NASA Astrophysics Data System (ADS)

    Hrachowitz, Markus; Fovet, Ophelie; Ruiz, Laurent; Gascuel-Odoux, Chantal; Savenije, Hubert

    2014-05-01

    Hydrological models are frequently characterized by what is often considered to be adequate calibration performances. In many cases, however, these models experience a substantial uncertainty and performance decrease in validation periods, thus resulting in poor predictive power. Besides the likely presence of data errors, this observation can point towards wrong or insufficient representations of the underlying processes and their heterogeneity. In other words, right results are generated for the wrong reasons. Thus ways are sought to increase model consistency and to thereby satisfy the contrasting priorities of the need a) to increase model complexity and b) to limit model equifinality. In this study a stepwise model development approach is chosen to test the value of an exhaustive and systematic combined use of hydrological signatures, expert knowledge and readily available, yet anecdotal and rarely exploited, hydrological information for increasing model consistency towards generating the right answer for the right reasons. A simple 3-box, 7 parameter, conceptual HBV-type model, constrained by 4 calibration objective functions was able to adequately reproduce the hydrograph with comparatively high values for the 4 objective functions in the 5-year calibration period. However, closer inspection of the results showed a dramatic decrease of model performance in the 5-year validation period. In addition, assessing the model's skill to reproduce a range of 20 hydrological signatures including, amongst others, the flow duration curve, the autocorrelation function and the rising limb density, showed that it could not adequately reproduce the vast majority of these signatures, indicating a lack of model consistency. Subsequently model complexity was increased in a stepwise way to allow for more process heterogeneity. To limit model equifinality, increase in complexity was counter-balanced by a stepwise application of "realism constraints", inferred from expert knowledge (e.g. unsaturated storage capacity of hillslopes should exceed the one of wetlands) and anecdotal hydrological information (e.g. long-term estimates of actual evaporation obtained from the Budyko framework and long-term estimates of baseflow contribution) to ensure that the model is well behaved with respect to the modeller's perception of the system. A total of 11 model set-ups with increased complexity and an increased number of realism constraints was tested. It could be shown that in spite of largely unchanged calibration performance, compared to the simplest set-up, the most complex model set-up (12 parameters, 8 constraints) exhibited significantly increased performance in the validation period while uncertainty did not increase. In addition, the most complex model was characterized by a substantially increased skill to reproduce all 20 signatures, indicating a more suitable representation of the system. The results suggest that a model, "well" constrained by 4 calibration objective functions may still be an inadequate representation of the system and that increasing model complexity, if counter-balanced by realism constraints, can indeed increase predictive performance of a model and its skill to reproduce a range of hydrological signatures, but that it does not necessarily result in increased uncertainty. The results also strongly illustrate the need to move away from automated model calibration towards a more general expert-knowledge driven strategy of constraining models if a certain level of model consistency is to be achieved.

  8. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  9. Do geological or climatic processes drive speciation in dynamic archipelagos? The tempo and mode of diversification in Southeast Asian shrews.

    PubMed

    Esselstyn, Jacob A; Timm, Robert M; Brown, Rafe M

    2009-10-01

    Geological and climatic processes potentially alter speciation rates by generating and modifying barriers to dispersal. In Southeast Asia, two processes have substantially altered the distribution of land. Volcanic uplift produced many new islands during the Miocene-Pliocene and repeated sea level fluctuations during the Pleistocene resulted in intermittent land connections among islands. Each process represents a potential driver of diversification. We use a phylogenetic analysis of a group of Southeast Asian shrews (Crocidura) to examine geographic and temporal processes of diversification. In general, diversification has taken place in allopatry following the colonization of new areas. Sulawesi provides an exception, where we cannot reject within-island speciation for a clade of eight sympatric and syntopic species. We find only weak support for temporally declining diversification rates, implying that neither volcanic uplift nor sea level fluctuations had a strong effect on diversification rates. We suggest that dynamic archipelagos continually offer new opportunities for allopatric diversification, thereby sustaining high speciation rates over long periods of time, or Southeast Asian shrews represent an immature radiation on a density-dependent trajectory that has yet to fill geographic and ecological space. PMID:19500148

  10. The Cerro Negro accumulation of Venezuela's Orinoco Belt - the favorable convergence of several geological processes

    SciTech Connect

    Swanson, D.C. ); Tarache, C. )

    1993-02-01

    The Cerro Negro Area is a major part of eastern Venezuela's Orinoco Belt. Here upper Eocene fluvial-deltaic deposits of the Oficina Fm. reservoir billions of barrels of heavy oil, much of which is in valley-fill deposits. Maturation, migration and accumulation of these hydrocarbons in thick, porous and permeable sandstones were the logical conclusion to several major geological events in eastern Venezuela during the Tertiary. In the Cerro Negro Area, Cretaceous clastics were deposited on an igneous and metamorphic basement after which the sea withdrew northward toward the axial part of the Eastern Venezuelan Basin. The basement and Cretaceous deposits were weathered and eroded during the Eocene, Oligocene, and early Miocene, forming the unconformity on which the Oficina Fm. is deposited. Historic reconstruction begins with this unconformity, a paleotopographic surface strongly influencing the character and distribution of the overlying Oficina Fm. As relative sea level fell and gradients increased, streams incised into the shelf while transporting great amounts of coarse clastic load northward. At Cerro Negro, a mature topography of low ridges and hills were developed with differential elevations of several hundred feet. During the Miocene, a sea transgressed across the stream-etched unconformity. Streams carrying large amounts of clastic load encountered an elevating sea level. They consequently dropped their coarse load, forming long, linear, transgressive, valley-fill deposits. By Late Miocene, hydrocarbons generated in the deeper basin began to migrate southward through the long linear fluvial-deltaic clastic conduits that were separated laterally and vertically into complex [open quotes]plumbing systems.[close quotes] As the hydrocarbons moved shelfward, normal faults cut the conduits into numerous reservoir segments. The timing between migration and faulting is critical to present-day hydrocarbon distribution in these segments.

  11. Geology Before Pluto: Pre-encounter Considerations

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity in the form of tectonics and cryo-volcanism.

  12. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the prospects for endogenic activity in the form of tectonics and cryovolcanism.

  13. Sea Level Change, A Fundamental Process When Interpreting Coastal Geology and Geography.

    ERIC Educational Resources Information Center

    Zeigler, John M.

    1985-01-01

    Discusses the meaning of sea level change and identifies the major factors responsible for this occurrence. Elaborates on the theory and processes involved in indirect measurement of changes in sea volume. Also explains how crustal movement affects sea level. (ML)

  14. Abstract --Image segmentation plays an important role in medical image processing. The aim of conventional hard

    E-print Network

    Abstract -- Image segmentation plays an important role in medical image processing. The aim spatial resolution of medical imaging equipment and the complex anatomic structure of soft tissues, a single voxel in a medical image may be composed of several tissue types, which is called partial volume

  15. Otolith microstructure reveals ecological and oceanographic processes important to ecosystem-based management

    E-print Network

    Sponaugle, Su

    Otolith microstructure reveals ecological and oceanographic processes important to ecosystem.V. 2010 Abstract Information obtained from fish otoliths has been a critical component of fisheries stages, where otolith microstructure resolved on a daily basis has become a valuable tool. As management

  16. Mutation is arguably the most important of all genetic processes, generating genetic variation between indi-

    E-print Network

    Eyre-Walker, Adam

    Mutation is arguably the most important of all genetic processes, generating genetic variation between indi- viduals within a species and between cells within an individual. In doing so, mutation the very first investigations into the pat- tern of mutation -- conducted on the rII region

  17. Predation is an important process reg-ulating egg survival in marine systems

    E-print Network

    655 Predation is an important process reg- ulating egg survival in marine systems (Bailey and Houde, 1989). Pacific her- ring (Clupea pallasi) spawn demersal adherent eggs on shallow subtidal and intertidal substrates. Consequently, their eggs are available to a variety of predators throughout incubation

  18. Chemistry in Combustion Processes II Introduce and discuss some important topics and

    E-print Network

    Zevenhoven, Ron

    Chemistry in Combustion Processes II Introduce and discuss some important topics and methods of today's combustion chemistry research - Burning of biomass based fuels in large scale boilers - Black to ash - "Toolbox" for combustion chemistry analysis #12;Schedule CCP2-2012 #12;CCP2 2012 part B #12

  19. The Importance of Phonological Processing Skills for Older Low-Progress Readers

    ERIC Educational Resources Information Center

    Pogorzelski, Simmone; Wheldall, Kevin

    2005-01-01

    The important role of phonological awareness in learning to read has become widely accepted. The purpose of this paper is to examine the role of phonological processing skills when attempting to assist older low-progress readers to develop literacy skills. While researchers generally agree that the key variables in reading acquisition (letter…

  20. sea level, understanding the linkages between ice sheet processes and subglacial geology is key. Bell,

    E-print Network

    Lance, Veronica P.

    are changing. Mapping the Source of Great Alaskan Earthquakes Donna Shillington, Lamont Assistant Research Professor, Marine Geophysics Subduction zones create the largest, most destructive earthquakes on the planet an important part of the solution to the global rise of carbon dioxide. Deadzones and Ghosts of Oil Plumes Ajit

  1. Results From an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-08-02

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  2. Geological Survey research 1981

    USGS Publications Warehouse

    U.S. Geological Survey

    1982-01-01

    This U.S. Geological Survey activities report includes a summary of 1981 fiscal year scientific and economic results accompanied by a list of geologic, hydrologic, and cartographic investigations in progress. The summary of results includes: (1) Mineral, (2) Water resources, (3) Engineering geology and hydrology, (4) Regional geology, (5) Principles and processes, (6) Laboratory and field methods, (7) Topographic surveys and mapping, (8) Management of resources on public lands, (9) Land information and analysis, and (10) Investigations in other countries. Also included are lists of investigations in progress. (USGS)

  3. Collaborative web-based annotation of video footage of deep-sea life, ecosystems and geological processes

    NASA Astrophysics Data System (ADS)

    Kottmann, R.; Ratmeyer, V.; Pop Ristov, A.; Boetius, A.

    2012-04-01

    More and more seagoing scientific expeditions use video-controlled research platforms such as Remote Operating Vehicles (ROV), Autonomous Underwater Vehicles (AUV), and towed camera systems. These produce many hours of video material which contains detailed and scientifically highly valuable footage of the biological, chemical, geological, and physical aspects of the oceans. Many of the videos contain unique observations of unknown life-forms which are rare, and which cannot be sampled and studied otherwise. To make such video material online accessible and to create a collaborative annotation environment the "Video Annotation and processing platform" (V-App) was developed. A first solely web-based installation for ROV videos is setup at the German Center for Marine Environmental Sciences (available at http://videolib.marum.de). It allows users to search and watch videos with a standard web browser based on the HTML5 standard. Moreover, V-App implements social web technologies allowing a distributed world-wide scientific community to collaboratively annotate videos anywhere at any time. It has several features fully implemented among which are: • User login system for fine grained permission and access control • Video watching • Video search using keywords, geographic position, depth and time range and any combination thereof • Video annotation organised in themes (tracks) such as biology and geology among others in standard or full screen mode • Annotation keyword management: Administrative users can add, delete, and update single keywords for annotation or upload sets of keywords from Excel-sheets • Download of products for scientific use This unique web application system helps making costly ROV videos online available (estimated cost range between 5.000 - 10.000 Euros per hour depending on the combination of ship and ROV). Moreover, with this system each expert annotation adds instantaneous available and valuable knowledge to otherwise uncharted material.

  4. Radiometric Dating in Geology.

    ERIC Educational Resources Information Center

    Pankhurst, R. J.

    1980-01-01

    Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

  5. The Large Impact Process Inferred from the Geology of Lunar Multiring Basins

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1994-01-01

    The study of the geology of multiring impact basins on the Moon over the past ten years has given us a rudimentary understanding of how these large structures have formed and evolved on the Moon and other bodies. Two-ring basins on the Moon begin to form at diameters of about 300 km; the transition diameter at which more than two rings appear is uncertain, but it appears to be between 400 and 500 km in diameter. Inner rings tend to be made up of clusters or aligned segments of massifs and are arranged into a crudely concentric pattern; scarp-like elements may or may not be present. Outer rings are much more scarp-like and massifs are rare to absent. Basins display textured deposits, interpreted as ejecta, extending roughly an apparent basin radius exterior to the main topographic rim. Ejecta may have various morphologies, ranging from wormy and hummocky deposits to knobby surfaces; the causes of these variations are not known, but may be related to the energy regime in which the ejecta are deposited. Outside the limits of the textured ejecta are found both fields of satellitic craters (secondaries) and light plains deposits. Impact melt sheets are observed on the floors of relatively unflooded basins. Samples of impact melts from lunar basins have basaltic major-element chemistry, characterized by K, rare-earth elements (REE), P, and other trace elements of varying concentration (KREEP); ages are between 3.8 and 3.9 Ga. These lithologies cannot be produced through the fusion of known pristine (plutonic) rock types, suggesting the occurrence of unknown lithologies within the Moon. These melts were probably generated at middle to lower crustal levels. Ejecta compositions, preservation of pre-basin topography, and deposit morphologies all indicate that the excavation cavity of multiring basins is between about 0.4 and 0.6 times the diameter of the apparent crater diameter. Basin depths of excavation can be inferred from the composition of basin ejecta. A variety of mechanisms has been proposed to account for the formation of basin rings but none of them are entirely plausible. Mechanisms can be divided into two broad groups: (1) forcible uplift due to fluidization of the target; (2) concentric, brittle, fracturing and failure of the target, on regional (megaterraces) to global scales (lithospheric fracturing). Most basin rings are spaced at a constant factor on all planets. Evidence supports divergent ringforming models, so it may be that the ring-locating mechanism differs from the ring-forming mechanism. Thus, large-scale crustal foundering (megaterracing) could occur along concentric zones of weakness created by some type of resonant wave mechanism (fluidization and uplift); such immediate crustal adjustment could then be followed by long-term adjustment of the fractured lithosphere.

  6. Ecology of Caribbean Sponges: Are Top-Down or Bottom-Up Processes More Important?

    PubMed Central

    Lesser, Michael P.; Slattery, Marc

    2013-01-01

    Benthic-pelagic coupling and the role of bottom-up versus top-down processes are recognized as having a major impact on the structure of marine communities. While the roles of bottom-up processes are better appreciated they are still viewed as principally affecting the outcome of top-down processes. Sponges on coral reefs are important members of the benthic community and provide a critically important functional linkage between water-column productivity and the benthos. As active suspension feeders sponges utilize the abundant autotrophic and heterotrophic picoplankton in the water column. As a result sponges across the Caribbean basin exhibit a consistent and significant pattern of greater biomass, tube extension rate, and species numbers with increasing depth. Likewise, the abundance of their food supply also increases along a depth gradient. Using experimental manipulations it has recently been reported that predation is the primary determinant of sponge community structure. Here we provide data showing that the size and growth of the sponge Callyspongia vaginalis are significantly affected by food availability. Sponges increased in size and tube extension rate with increasing depth down to 46 m, while simultaneously exposed to the full range of potential spongivores at all depths. Additionally, we point out important flaws in the experimental design used to demonstrate the role of predation and suggest that a resolution of this important question will require well-controlled, multi-factorial experiments to examine the independent and interactive effects of predation and food abundance on the ecology of sponges. PMID:24244563

  7. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones

    SciTech Connect

    Houseknecht, D.W.

    1987-06-01

    At the depositional surface, well-sorted sand has approximately 40% porosity. During burial diagenesis, that porosity is reduced by mechanical compaction, intergranular pressure solution, and cementation. Mechanical compaction and intergranular pressure solution can both be considered compactional processes because they irreversibly reduce the intergranular volume of sand. In contrast, cementation occludes, but does not reduce, intergranular volume. The relative importance of compactional processes and cementation to porosity reduction can be quantified using a graph of intergranular volume vs. cement. This diagram can be used to evaluate which diagenetic processes have been most influential to intergranular porosity reduction and to determine why some sandstones retain better reservoir quality than others. The diagram can also be used to reconstruct pathways taken by sandstones during burial diagenesis. Results of applying this technique to data from the Nugget Sandstone and Bromide sandstone (Simpson Group) indicate that mechanical compaction and intergranular pressure solution were much more important than cementation in determining ultimate porosity. Moreover, the best porosity is preserved in samples that have undergone the least intergranular pressure solution. These conclusions emphasize the importance of integrating an evaluation of these compactional processes into analyses of reservoir sandstones and into models of burial diagenesis. 6 figures.

  8. Fluid flow in the earth's crust plays an important role in a number of geologic processes. In carbonate reservoirs, fluid

    E-print Network

    in the fractured media results in changes in the pore pressure and consequently causes changes in the effective of fluids is accompanied by substantial change in the pore pressure field. As fluids drain, pore pressure velocities) and decreasing permeability (Schoenberg, 2002). Conversely, pore pressure buildup due

  9. Geologic Map of North America

    USGS Multimedia Gallery

    The Geologic Map of North America is a product of GSA's Decade of North American Geology (DNAG) project. At a scale of 1:5,000,000, this map covers ~15% of Earth's surface and differs from previous maps in several important respects: it is the first such map to depict the geology of the seafloor, th...

  10. Application of HydroGeoSphere to model the response to anthropogenic climate change of three-dimensional hydrological processes in the geologically, geothermally, and topographically complex Valles Caldera super volcano, New Mexico: Preliminary results

    NASA Astrophysics Data System (ADS)

    Wine, M.; Cadol, D. D.

    2014-12-01

    Anthropogenic climate change is expected to reduce streamflow in the southwestern USA due to reduction in precipitation and increases in evaporative demand. Understanding the effects of climate change in this region is particularly important for mountainous areas since these are primary sources of recharge in arid and semi-arid environments. Therefore we undertook to model effects of climate change on the hydrological processes in Valles Caldera (448 km2), located in the Jemez Mountains of northern New Mexico. In Valles Caldera modeling the surficial, hydrogeological, and geothermal processes that influence hydrologic fluxes each present challenges. The surficial dynamics of evaporative demand and snowmelt both serve to control recharge dynamics, but are complicated by the complex topography and spatiotemporal vegetation dynamics. Complex factors affecting evaporative demand include leaf area index, temperature, albedo, and radiation affected by topographic shading; all of these factors vary in space and time. Snowmelt processes interact with evaporative demand and geology to serve as an important control on streamflow generation, but modeling the effects of spatiotemporal snow distributions on streamflow generation remains a challenge. The complexity of Valles Caldera's geology—and its associated hydraulic properties—rivals that of its surficial hydrologic forcings. Hydrologically important geologic features that have formed in the Valles Caldera are three-dimensionally intricate and include a dense system of faults, alluvium, landslides, lake deposits, and features associated with the eruption and collapse of this super volcano. Coupling geothermally-driven convection to the hydrologic cycle in this still-active geothermal system presents yet an additional challenge in modeling Valles Caldera. Preliminary results from applying the three-dimensional distributed hydrologic finite element model HydroGeoSphere to a sub-catchment of Valles Caldera will be presented.

  11. Tectonomagmatic evolution of the terrestrial planets: importance for understanding of processes of their formation and subsequent development

    NASA Astrophysics Data System (ADS)

    Sharkov, E.; Bogatikov, O.

    2009-04-01

    Our knowledge about formation and evolution of the terrestrial planets (the Earth, Venus, Mars, Mercury and, possibly, the Moon) based on different physical and geochemical speculations and models. The main disadvantage of such hypotheses is their abstract character and ignoring any data on tectonomagmatic evolution of those planets. At the same time, just this type of data provide an important information, which is necessary for elaborating of a present-day theory of their formation and evolution. The Earth has been much better studied compared to the other planets, therefore we will discuss the main questions of planetary tectonomagmatic evolution using the Earth as example plus involve other data on the Moon and the terrestrial planets. Two dominating hypotheses about composition of the primordial Earth's crust exist now: (1) traditional implies that the primordial crust had basic composition, whereas the sialic crust resulted from a geosyncline process or, in modern terms, from processes at convergent plate margins, and (2) primordial crust was sialic; the plate tectonic mechanisms started in the Middle Paleoproterozoic and resulted in oceanic spreading and formation of the secondary oceanic crust. Both models require a global melting of a primary chondritic material to form the primordial crust. The final result depends on the degree of melt differentiation during solidification of a magmatic ocean. Such a solidification, due to differences between adiabatic and melting-points gradients had to proceed in bottom-top direction (Jeffries, 1929) and resulted in accumulation of low-temperature derivates in the primordial crust. Geological data, namely granite-dominated Archean crust, and results of studying of detrital zircon from Australia supports the primordial-sialic crust hypothesis. The Moon which is four times smaller than Earth has a basic primordial crust. Such a difference can be explained by different depths of their magmatic oceans. The Early Precambrian (Archean, Early Paleoproterozoic) tectonomagmatic activity on the Earth was rather different from the Phanerozoic: the major features then were huge granite-greenstone terranes (GGTs) and their separating granulite belts; mantle melts were derived from a depleted source. The GGTs consisting of greenstone belts with komatiite-basaltic magmatism in Archean, "submerged" in granite gneiss matrix, probably, strong reworked primordial sialic crust, and by siliceous high-Mg series (SHMS) in early Paleoproterozoic. GGTs were areas of extension, uplifting and denudation, whereas the granulite belts were dominated by compression, sinking and sedimentation. Generally, the Early Precambrian geological pattern was rather different from the modern plate tectonics and can be described in plumetectonics terms. A drastic change of the tectonomagamtic and ecology processes on it's surface occurred at ca. 2.3-2.0 Ga: instead of high-Mg magmas appeared geochemical enriched Fe-Ti pucrites and basalts, and the plume tectonic was changed by plate tectonics, which is still active now, as well as ecologic situation on the surface. Since that time the primordial sialic continental crust has been gradually replaced by the secondary basaltic oceanic crust. Systematic consumption of the ancient crust in subduction zones obviously started at ~2 Ga and led to gradually replacing it by the secondary mafic (oceanic) crust. The crustal materials has stored in the "slab cemeteries", revealed in the mantle by seismic tomography. Tectonomagmatic evolution of the Moon began4.4-4.0 Ga in lunar highlands with low-Ti magnesium suite, analogous to the terrestrial Paleoproterozoic SHMS. Cardinal change of tectonomagmatic processes, close to that on the Earth, happed on the Moon ~3.9 Ga to form large depressions of lunar maria with thinned crust and vast basaltic volcanism with signatures of plume magmatism (high-Ti basalts). The lunar maria were, probably, specific analogues of Earth's oceans. On Venus and Mars also two main types of morphostructures, which are vast fields of basal

  12. Insights into Titan's geology and hydrology based on enhanced image processing of Cassini RADAR data

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Aharonson, Oded; Deledalle, Charles; Hayes, Alexander G.; Kirk, Randolph; Howington-Kraus, Elpitha

    2014-10-01

    The Cassini Synthetic Aperture Radar has been acquiring images of Titan's surface since October 2004. To date, 59% of Titan's surface has been imaged by radar, with significant regions imaged more than once. Radar data suffer from speckle noise hindering interpretation of small-scale features and comparison of reimaged regions for change detection. We present here a new image analysis technique that combines a denoising algorithm with mapping and quantitative measurements that greatly enhance the utility of the data and offers previously unattainable insights. After validating the technique, we demonstrate the potential improvement in understanding of surface processes on Titan and defining global mapping units, focusing on specific landforms including lakes, dunes, mountains, and fluvial features. Lake shorelines are delineated with greater accuracy. Previously unrecognized dissection by fluvial channels emerges beneath shallow methane cover. Dune wavelengths and interdune extents are more precisely measured. A significant refinement in producing digital elevation models is shown. Interactions of fluvial and aeolian processes with topographic relief is more precisely observed and understood than previously. Benches in bathymetry are observed in northern sea Ligeia Mare. Submerged valleys show similar depth suggesting that they are equilibrated with marine benches. These new observations suggest a liquid level increase in the northern sea, which may be due to changes on seasonal or longer timescales.

  13. Environmental Geology

    ERIC Educational Resources Information Center

    Dunn, James R.

    1977-01-01

    Discusses ways that geologic techniques can be used to help evaluate our environment, make economic realities and environmental requirements more compatible, and expand the use of geology in environmental analyses. (MLH)

  14. Rounded boulders on Itokawa as clues to geological processes in the early solar system

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Rizk, B.

    2015-12-01

    Large rounded boulders on Itokawa are a surprising find and may be evidence of forceful inter-boulder collisions occurring over protracted periods of time. Surface textures of some boulders are reminiscent of those on terrestrial aeolian sand grains despite five orders of magnitude difference in scale. Using Hertzian analysis and fracture strength data, we calculate that the maximum collisional velocities involved in the comminution process are ~6-7 m/s. We hypothesise that boulder rounding could be a product of collisions in a gravitationally stable orbiting debris field in which boulders acquire collisional energy from YORP spin. Collisional paths may be instigated by Yarkovsky drift and gyroscopic effects of rotation. Collisional energy is dissipated by elastic damping, but rapidly renewed by YORP spinup that takes only hundreds to thousands of years to regenerate comminution-strength collisions. The rounded boulders on Itokawa are found amongst angular, unworn material which suggests a mixed origin for Itokawa's regolith.

  15. The geomorphology of Rhea - Implications for geologic history and surface processes

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Horner, V. M.; Greeley, R.

    1985-01-01

    Morphological analyses of landforms on Rhea are used to define three physiographic provinces: cratered terrain 1 undifferentiated; cratered terrain 1 lineated; and cratered terrain 2. The important statigraphic relationships between the different provinces are examined with respect to major impact basins and tectonic features. It is shown that the formation of multiringed basins may have caused, or at least controlled the locations of major resurfacing and mantling events. The diameters of the central peaks relative to the impact crater diameters are found to be significantly larger than those within the craters of the moon or Mercury. Both cratered and noncrater lineaments have regional orientations which do not fit current global or regional stress models. On the basis of the morphological analysis, a chronological order is established for the origin of the three provinces: the cratered terrain 1 province was formed first; and cratered terrain 1 lineated and cratered terrain 2 were formed second, and last, respectively. It is shown that the chronological order is generally consistent with current theoretical models of the evolution of Rhea.

  16. Environmental Geology

    ERIC Educational Resources Information Center

    Passero, Richard N.

    1978-01-01

    1977 was a year of continued and expanding efforts in the application of the geosciences to land-use planning, especially as they relate to geologic hazards, and elucidating the role of geology in public policy. The work of environmental geological programs is reviewed. (Author/MA)

  17. Importance of joint efforts for balanced process of designing and education

    NASA Astrophysics Data System (ADS)

    Mayorova, V. I.; Bannova, O. K.; Kristiansen, T.-H.; Igritsky, V. A.

    2015-06-01

    This paper discusses importance of a strategic planning and design process when developing long-term space exploration missions both robotic and manned. The discussion begins with reviewing current and/or traditional international perspectives on space development at the American, Russian and European space agencies. Some analogies and comparisons will be drawn upon analysis of several international student collaborative programs: Summer International workshops at the Bauman Moscow State Technical University, International European Summer Space School "Future Space Technologies and Experiments in Space", Summer school at Stuttgart University in Germany. The paper will focus on discussion about optimization of design and planning processes for successful space exploration missions and will highlight importance of the following: understanding connectivity between different levels of human being and machinery; simultaneous mission planning approach; reflections and correlations between disciplines involved in planning and executing space exploration missions; knowledge gained from different disciplines and through cross-applying and re-applying design approaches between variable space related fields of study and research. The conclusions will summarize benefits and complications of applying balanced design approach at all levels of the design process. Analysis of successes and failures of organizational efforts in space endeavors is used as a methodological approach to identify key questions to be researched as they often cause many planning and design processing problems.

  18. GRADUATE PROGRAM IN GEOLOGICAL ENGINEERING

    E-print Network

    5342 Geological Engineering: Soils and Weak Rocks 3 2 EOSC 535 Transport Processes in Porous Media 3 2GRADUATE PROGRAM IN GEOLOGICAL ENGINEERING 2013-2014 Prior to registering for courses, students.Sc. (non-thesis) program supervised in Geological Engineering should register for EOSC 548 instead

  19. How important is vehicle safety in the new vehicle purchase process?

    PubMed

    Koppel, Sjaanie; Charlton, Judith; Fildes, Brian; Fitzharris, Michael

    2008-05-01

    Whilst there has been a significant increase in the amount of consumer interest in the safety performance of privately owned vehicles, the role that it plays in consumers' purchase decisions is poorly understood. The aims of the current study were to determine: how important vehicle safety is in the new vehicle purchase process; what importance consumers place on safety options/features relative to other convenience and comfort features, and how consumers conceptualise vehicle safety. In addition, the study aimed to investigate the key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase. Participants recruited in Sweden and Spain completed a questionnaire about their new vehicle purchase. The findings from the questionnaire indicated that participants ranked safety-related factors (e.g., EuroNCAP (or other) safety ratings) as more important in the new vehicle purchase process than other vehicle factors (e.g., price, reliability etc.). Similarly, participants ranked safety-related features (e.g., advanced braking systems, front passenger airbags etc.) as more important than non-safety-related features (e.g., route navigation systems, air-conditioning etc.). Consistent with previous research, most participants equated vehicle safety with the presence of specific vehicle safety features or technologies rather than vehicle crash safety/test results or crashworthiness. The key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase were: use of EuroNCAP, gender and education level, age, drivers' concern about crash involvement, first vehicle purchase, annual driving distance, person for whom the vehicle was purchased, and traffic infringement history. The findings from this study are important for policy makers, manufacturers and other stakeholders to assist in setting priorities with regard to the promotion and publicity of vehicle safety features for particular consumer groups (such as younger consumers) in order to increase their knowledge regarding vehicle safety and to encourage them to place highest priority on safety in the new vehicle purchase process. PMID:18460367

  20. A Domain Decomposition Approach for Large-Scale Simulations of Flow Processes in Hydrate-Bearing Geologic Media

    SciTech Connect

    Zhang, Keni; Moridis, G.J.; Wu, Y.-S.; Pruess, K.

    2008-07-01

    Simulation of the system behavior of hydrate-bearing geologic media involves solving fully coupled mass- and heat-balance equations. In this study, we develop a domain decomposition approach for large-scale gas hydrate simulations with coarse-granularity parallel computation. This approach partitions a simulation domain into small subdomains. The full model domain, consisting of discrete subdomains, is still simulated simultaneously by using multiple processes/processors. Each processor is dedicated to following tasks of the partitioned subdomain: updating thermophysical properties, assembling mass- and energy-balance equations, solving linear equation systems, and performing various other local computations. The linearized equation systems are solved in parallel with a parallel linear solver, using an efficient interprocess communication scheme. This new domain decomposition approach has been implemented into the TOUGH+HYDRATE code and has demonstrated excellent speedup and good scalability. In this paper, we will demonstrate applications for the new approach in simulating field-scale models for gas production from gas-hydrate deposits.

  1. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  2. Geologic mapping of Vesta

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-11-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  3. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  4. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Cleaning of imported seed and processing of certain... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain...

  5. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Cleaning of imported seed and processing of certain... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain...

  6. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Cleaning of imported seed and processing of certain... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain...

  7. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Cleaning of imported seed and processing of certain... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain...

  8. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Cleaning of imported seed and processing of certain... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain...

  9. Ground Penetrating Radar Field Studies of Lunar-Analog Geologic Settings and Processes: Barringer Meteor Crater and Northern Arizona Volcanics

    NASA Astrophysics Data System (ADS)

    Russell, P. S.; Grant, J. A.; Williams, K. K.; Bussey, B.

    2010-12-01

    Ground-Penetrating Radar (GPR) data from terrestrial analog environments can help constrain models for evolution of the lunar surface, aid in interpretation of orbital SAR data, and help predict what might be encountered in the subsurface during future, landed, scientific or engineering operations on the Moon. GPR can yield insight into the physical properties, clast-size distribution, and layering of the subsurface, granting a unique view of the processes affecting an area over geologic time. The purpose of our work is to demonstrate these capabilities at sites at which geologic processes, settings, and/or materials are similar to those that may be encountered on the moon, especially lava flows, impact-crater ejecta, and layered materials with varying properties. We present results from transects obtained at Barringer Meteor Crater, SP Volcano cinder cone, and Sunset Crater Volcano National Monument, all in northern Arizona. Transects were taken at several sites on the ejecta of Meteor Crater, all within a crater radius (~400 m) of the crater rim. Those taken across ejecta lobes or mounds reveal the subsurface contact of the ejecta upper surface and overlying, embaying sediments deposited by later alluvial, colluvial, and/or aeolian processes. Existing mine shafts and pits on the south side of the crater provide cross sections of the subsurface against which we compare adjacent GPR transects. The ‘actual’ number, size, and depth of clasts in the top 1-2 m of the subsurface are estimated from photos of the exposed cross sections. In GPR radargrams, reflections attributed to blocks in the top 2-5 m of the subsurface are counted, and their depth distribution noted. Taking GPR measurements along a transect at two frequencies (200 and 400 MHz) and to various depths, we obtain the ratio of the actual number of blocks in the subsurface to the number detectable with GPR, as well as an assessment of how GPR detections in ejecta decline with depth and depend on antenna frequency. This work allows calibration of GPR-based interpretations of ejecta processes. Work at SP volcano focuses on the northern, lower slopes of the cinder cone, from beneath which a basalt lava flow extends onto surrounding terrain. Layering within cinders is visible in GPR radargrams in the upper ~0.5 m. A small pit reveals that such layering may be due to significant, stratified variation in cinder size, relative moisture content of a fine, loess-like matrix, and fraction of inter-cinder voids, or pore space, filled with matrix. The subsurface cinder-lava contact, as well as some variation within the lava flow (possibly due to varying degrees of coherence and fracturing), is detected by the GPR. Our work will help frame tractable scientific questions in lunar mission development, and aid in interpretation of future returned data. A non-invasive alternative and complement to digging and drilling, GPR is also potentially useful in exploration of other terrestrial bodies.

  10. Isotope Tracer Studies of Diffusion in Sillicates and of Geological Transport Processes Using Actinide Elements

    SciTech Connect

    Wasserburg, Gerald J

    2008-07-31

    The objectives were directed toward understanding the transport of chemical species in nature, with particular emphasis on aqueous transport in solution, in colloids, and on particles. Major improvements in measuring ultra-low concentrations of rare elements were achieved. We focused on two areas of studies: (1) Field, laboratory, and theoretical studies of the transport and deposition of U, Th isotopes and their daughter products in natural systems; and (2) Study of calcium isotope fractionation effects in marine carbonates and in carbonates precipitated in the laboratory, under controlled temperature, pH, and rates of precipitation. A major study of isotopic fractionation of Ca during calcite growth from solution has been completed and published. It was found that the isotopic shifts widely reported in the literature and attributed to biological processes are in fact due to a small equilibrium fractionation factor that is suppressed by supersaturation of the solution. These effects were demonstrated in the laboratory and with consideration of the solution conditions in natural systems, where [Ca{sup 2+}] >> [CO{sub 3}{sup 2-}] + [HCO{sub 3}{sup -}]. The controlling rate is not the diffusion of Ca, as was earlier proposed, but rather the rate of supply of [CO{sub 3}{sup 2-}] ions to the interface. This now opens the issues of isotopic fractionation of many elements to a more physical-chemical approach. The isotopic composition of Ca {Delta}({sup 44}Ca/{sup 40}Ca) in calcite crystals has been determined relative to that in the parent solutions by TIMS using a double spike. Solutions were exposed to an atmosphere of NH{sub 3} and CO{sub 2}, provided by the decomposition of (NH4)2CO3. Alkalinity, pH, and concentrations of CO{sub 3}{sup 2-}, HCO{sub 3}{sup -}, and CO{sub 2} in solution were determined. The procedures permitted us to determine {Delta}({sup 44}Ca/{sup 40}Ca) over a range of pH conditions, with the associated ranges of alkalinity. Two solutions with greatly different Ca concentrations were used, but, in all cases, the condition [Ca] >> [CO{sub 3}{sup 2-}] was met. A wide range in {Delta}({sup 44}Ca/{sup 40}Ca) was found for the calcite crystals, extending from 0.04 {+-} 0.13 to -1.34 {+-} 0.15 {per_thousand}, generally anticorrelating with the amount of Ca removed from the solution. The results show that {Delta}({sup 44}Ca/{sup 40}Ca) is a linear function of the saturation state of the solution with respect to calcite ({Omega}). The two parameters are very well correlated over a wide range in {Omega} for each solution with a given [Ca]. Solutions, which were vigorously stirred, showed a much smaller range in {Delta}({sup 44}Ca/{sup 40}Ca) and gave values of -0.42 {+-} 0.14 {per_thousand}, with the largest effect at low {Omega}. It is concluded that the diffusive flow of CO{sub 3}{sup 2-} into the immediate neighborhood of the crystal-solution interface is the rate-controlling mechanism and that diffusive transport of Ca{sup 2+} is not a significant factor. The data are simply explained by the assumptions that: (a) the immediate interface of the crystal and the solution is at equilibrium with {Delta}({sup 44}Ca/{sup 40}Ca) {approx} -1.5 {+-} 0.25 {per_thousand}, and (b) diffusive inflow of CO{sub 3}{sup 2-} causes supersaturation, thus precipitating Ca from the regions, exterior to the narrow zone of equilibrium. We consider this model to be a plausible explanation of the available data reported in the literature. The well-resolved but small and regular isotope fractionation shifts in Ca are thus not related to the diffusion of very large hydrated Ca complexes, but rather due to the ready availability of Ca in the general neighborhood of the crystal solution interface. The largest isotopic shift which occurs is a small equilibrium effect which is then subdued by supersaturation precipitation for solutions where [Ca{sup 2+}] >> [CO{sub 3}{sup 2-}] + [HCO{sub 3}{sup -}]. It is shown that there is a clear temperature dependence of the net isotopic shifts, which is simply due to changes in {Omega}

  11. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Importation of dried, cured, or processed fruits... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits...

  12. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Importation of dried, cured, or processed fruits... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits...

  13. Geology of California. Second Edition

    SciTech Connect

    Norris, R.M.; Webb, R.W.

    1990-01-01

    Two introductory chapters familiarize readers with basic geologic concepts. The following chapters describe the geology of each of California's 11 geomorphic provinces; the San Andreas fault and offshore geology are discussed in two separate chapters. Four appendices acquaint readers with technical words and terms, common minerals and rocks in California, geologic time, and geologic theories that pertain to California. During the 1960s evidence collected from the east Pacific sea floor off the western coast of North America gave scientists supporting data for Alfred Wegener's 1910 theory of continental drift. In addition to the confirmation of continental drift, since the 1960s scientists have discovered paleomagnetism, sea-floor spreading, exotic and suspect terranes, and polar wandering. These important concepts have had far reaching effects about how we understand the geology of California and how this region has evolved through geologic time. Improved investigative procedures enable earth scientists to comprehend previously puzzling aspects of California's geology.

  14. Laboratory Studies of Homogeneous and Heterogeneous Chemical Processes of Importance in the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2003-01-01

    The objective of this study was to conduct measurements of chemical kinetics parameters for reactions of importance in the stratosphere and upper troposphere, and to study the interaction of trace gases with ice surfaces in order to elucidate the mechanism of heterogeneous chlorine activation processes, using both a theoretical and an experimental approach. The measurements were carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere. The main experimental technique employed was turbulent flow-chemical ionization mass spectrometry, which is particularly well suited for investigations of radical-radical reactions.

  15. Do you have the nerves to regenerate? The importance of neural signalling in the regeneration process.

    PubMed

    Pirotte, Nicky; Leynen, Nathalie; Artois, Tom; Smeets, Karen

    2016-01-01

    The importance of nerve-derived signalling for correct regeneration has been the topic of research for more than a hundred years, but we are just beginning to identify the underlying molecular pathways of this process. Within the current review, we attempt to provide an extensive overview of the neural influences during early and late phases of both vertebrate and invertebrate regeneration. In general, denervation impairs limb regeneration, but the presence of nerves is not essential for the regeneration of aneurogenic extremities. This observation led to the "neurotrophic factor(s) hypothesis", which states that certain trophic factors produced by the nerves are necessary for proper regeneration. Possible neuron-derived factors which regulate regeneration as well as the denervation-affected processes are discussed. PMID:26586202

  16. Testing the Late Noachian Icy Highlands Model: Geological Observations, Processes and Origin of Fluvial and Lacustrine Features.

    NASA Astrophysics Data System (ADS)

    Head, James; Wordsworth, Robin; Forget, Francis; Madeleine, Jean-Baptiste; Halvey, Italy

    2014-05-01

    A new reconstruction of the Late Noachian Mars atmosphere and climate shows atmosphere-surface thermal coupling and an adiabatic cooling effect producing preferential distribution of snow and ice in the highlands. In this Late Noachian Icy Highlands (LNIH) scenario, snow and ice accumulate in the south circumpolar region and in the higher altitudes of the southern uplands, but the mean annual temperature is everywhere below freezing. How can the abundant evidence for water-related fluvial and lacustrine activity (valley networks, VN; open-basin lakes, OBL; closed-basin lakes; CBL) be reconciled with the icy highlands model? We investigate the nature of geologic processes operating in the icy highlands and use the Antarctic McMurdo Dry Valleys (MDV) as guidance in understanding and assessing how melting might be taking place. In the MDV, mean annual temperatures (MAT) are well below freezing. This results in a thick regional permafrost layer, the presence of an ice-table at shallow depths, and an overlying dry active layer. This configuration produces a perched aquifer and a horizontally stratified hydrologic system, where any melting results in local saturation of the dry active layer and channelized flow on top of the ice table. Top-down melting results in the dominance of lateral water transport, in contrast to temperate climates with vertical infiltration and transport to the groundwater table. Despite subzero MAT, MDV peak seasonal and peak daytime temperatures can exceed 273K and have a strong influence on the melting of available water ice. We present maps of the predicted distribution of LNIH snow and ice, compare these to the distribution of VN, OBL and CBL, and assess how top-down and bottom-up melting processes might explain the formation of these features in an otherwise cold and icy LN Mars. We assess the global near-surface water budget, analyze thickness estimates to distinguish areas of cold-based and wet-based glaciation, analyze the state of the ice cover and its susceptibility to melting and runoff, and describe top-down melting and fluvial channel formation processes in a LNIH environment. We find that: 1) episodic top-down melting of the LNIH is a robust mechanism to produce the observed fluvial and lacustrine features; 2) the characteristics and distribution of features in the Dorsa Argentea Formation are consistent with an extensive circum-polar ice cap during LNIH time; and 3) the nature of preserved LN impact craters is consistent with impact cratering processes in the LNIH environment. 393 words.

  17. Process-orientated psychoanalytic work in initial interviews and the importance of the opening scene.

    PubMed

    Wegner, Peter

    2014-06-01

    From the very first moment of the initial interview to the end of a long course of psychoanalysis, the unconscious exchange between analysand and analyst, and the analysis of the relationship between transference and countertransference, are at the heart of psychoanalytic work. Drawing on initial interviews with a psychosomatically and depressively ill student, a psychoanalytic understanding of initial encounters is worked out. The opening scene of the first interview already condenses the central psychopathology - a clinging to the primary object because it was never securely experienced as present by the patient. The author outlines the development of some psychoanalytic theories concerning the initial interview and demonstrates their specific importance as background knowledge for the clinical situation in the following domains: the 'diagnostic position', the 'therapeutic position', the 'opening scene', the 'countertransference' and the 'analyst's free-floating introspectiveness'. More recent investigations refer to 'process qualities' of the analytic relationship, such as 'synchronization' and 'self-efficacy'. The latter seeks to describe after how much time between the interview sessions constructive or destructive inner processes gain ground in the patient and what significance this may have for the decision about the treatment that follows. All these factors combined can lead to establishing a differential process-orientated indication that also takes account of the fact that being confronted with the fear of unconscious processes of exchange is specific to the psychoanalytic profession. PMID:24571347

  18. Geologic Resource Evaluation of Kaloko-Honokohau National Historical Park, Hawai'i: Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Gibbs, Ann E.; Cochran, Susan A.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues that link the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Kaloko-Honokohau National Historical Park (KAHO) was established in 1978 in order to preserve and protect traditional native Hawaiian culture and cultural sites. The park is the site of an ancient Hawaiian settlement, occupies 469 ha and is considered a locale of considerable cultural and historical significance. Cultural resources include fishponds, petroglyphs and a heiau (religious site). The fishponds are also recognized as exceptional birding areas and are important wetlands for migratory birds. The ocean and reef have been designated as a Marine Area Reserve, where green sea turtles commonly come ashore to rest. The park is also a valuable recreational resource, with approximately 4 km of coastline and a protective cove ideal for snorkeling and swimming. KAHO park boundaries extend beyond the mean high tide line and include the adjacent marine environment. An accompanying report for KAHO presents the results of benthic habitat mapping of the offshore waters, from the shoreline to approximately 40 m water depth. Ground-water quality and potential downslope impacts created by development around the park are of concern to Park management.

  19. Geologic guide to the island of Hawaii: A field guide for comparative planetary geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (editor)

    1974-01-01

    With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.

  20. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  1. Venus geology and tectonics - Hotspot and crustal spreading models and questions for the Magellan mission

    NASA Technical Reports Server (NTRS)

    Head, James W.; Crumpler, L. S.

    1990-01-01

    Spacecraft and ground-based observations of Venus have revealed a geologically young and active surface - with volcanoes, rift zones, orogenic belts and evidence for hotspots and crustal spreading - yet the processes responsible for these features cannot be identified from the available data. The Magellan spacecraft will acquire an unprecedented global data set which will provide a comprehensive and well resolved view of the planet. This will permit global geological mapping, an assessment of the style and relative importance of geological processes, and will help in the understanding of links between the surface geology and mantle dynamics of this earth-like planet.

  2. Heterogeneous Reservoir Characterization Utilizing Efficient Geology Preserving Reservoir Parameterization through Higher Order Singular Value Decomposition (HOSVD) 

    E-print Network

    Afra, Sardar

    2015-01-21

    , the process of estimating a large number of unknowns in an inverse problem lead to a very costly computational effort. Moreover, it is very important to perform geologically consistent reservoir parameter adjustments as data is being assimilated in the history...

  3. Importance of associative learning processes for one-trial behavioral sensitization of preweanling rats.

    PubMed

    McDougall, Sanders A; Pothier, Alexandria G; Der-Ghazarian, Taleen; Herbert, Matthew S; Kozanian, Olga O; Castellanos, Kevin A; Flores, Ana T

    2011-10-01

    During adulthood, associative learning is necessary for the expression of one-trial behavioral sensitization; however, it is uncertain whether the same associative processes are operative during the preweanling period. Two strategies were used to assess the importance of associative learning for one-trial behavioral sensitization of preweanling rats. In the initial experiments, we varied both the sequence and time interval between presentation of the conditioned stimulus (CS, novel environment) and unconditioned stimulus (US, cocaine). In the final experiment, we determined whether electroconvulsive shock-induced retrograde amnesia would disrupt one-trial behavioral sensitization. Results showed that robust-sensitized responding was apparent regardless of the sequence in which cocaine and the novel environment (the presumptive CS) were presented. Varying the time between CS and US presentation (0, 3, or 6 h) was also without effect. Results from experiment 3 showed that single or multiple electroconvulsive shock treatments did not alter the expression of the sensitized response. Therefore, these data indicated that one-trial behavioral sensitization of preweanling rats was exclusively mediated by nonassociative mechanisms and that associative processes did not modulate sensitized responding. These findings are in contrast to what is observed during adulthood, as adult rats exhibit one-trial behavioral sensitization only when associative processes are operative. PMID:21897205

  4. New insights into embayed beach rotation: The importance of wave exposure and cross-shore processes

    NASA Astrophysics Data System (ADS)

    Harley, M. D.; Turner, I. L.; Short, A. D.

    2015-08-01

    Although embayed beach rotation has been viewed and modeled as an alongshore sediment transport process acting on a uniform beach profile, recent research suggests a more complex response whereby alongshore variability in cross-shore sediment fluxes may be more significant. This study utilizes 5 years of fully three-dimensional beach surveys at Narrabeen-Collaroy Beach (SE Australia) to quantify the control of alongshore nonuniform wave exposure and cross-shore processes on embayed beach rotation. Empirical orthogonal function analysis of the alongshore variability in subaerial beach volume/width and berm slope confirms that the dominant mode of subaerial beach variability is an onshore/offshore sediment exchange that is strongly controlled (R > 0.8) by the alongshore gradient in breaker wave height and coincides with a uniform flattening/steepening of the berm slope. A secondary rotation-like signal is observed in both the subaerial beach volume/width data and, significantly, the berm slope. This inverse flattening/steepening of the berm slope between beach extremities is most likely a proxy for differing cross-shore processes within the surf zone between the exposed and sheltered ends of the embayment, particularly with regards to dissipation of storm wave energy by offshore sandbars and beach recovery following storms. Analysis of the corresponding wave data reveals two distinct time scales of wave forcing characteristic of short-term erosion and longer-term recovery processes. A new conceptual model is presented of three differing modes of embayed beach rotation, with the newly identified beach rotation mode controlled by offshore sandbars considered of particular importance at embayments where headland sheltering of oblique waves is pronounced.

  5. Advances in planetary geology

    SciTech Connect

    Not Available

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  6. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Grant, John A., III; Nedell, Susan S.

    1987-01-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  7. Can Optogenetic Tools Determine the Importance of Temporal Codes to Sensory Information Processing in the Brain?

    PubMed Central

    Baranauskas, Gytis

    2015-01-01

    There is no doubt that optogenetic tools caused a paradigm shift in many fields of neuroscience. These tools enable rapid and reversible intervention with a specific neuronal circuit and then the impact on the remaining circuit and/or behavior can be studied. However, so far the ability of these optogenetic tools to interfere with neuronal signal transmission in the time scale of milliseconds has been used much less frequently although they may help to answer a fundamental question of neuroscience: how important temporal codes are to information processing in the brain. This perspective paper examines why optogenetic tools were used so little to perturb or imitate temporal codes. Although some technical limitations do exist, there is a clear need for a systems approach. More research about action potential pattern formation by interactions between several brain areas is necessary in order to exploit the full potential of optogenetic methods in probing temporal codes.

  8. Biological nitrogen fixation is a much more important process in the nitrogen cycle of the oceans than previously thought.

    E-print Network

    Capone, Douglas G.

    341 Biological nitrogen fixation is a much more important process in the nitrogen cycle Introduction A revolution in our understanding of the marine nitrogen cycle and the role of microorganisms revise our view of the quantitative importance of this process in the nitrogen cycle of the present

  9. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  10. Isotopic Heterogeneity and Mantle Stirring: Importance of Early Versus Late Processes

    NASA Astrophysics Data System (ADS)

    Jacobsen, S. B.; O'Connell, R. J.; Ranen, M. C.; Kellogg, J. B.

    2007-12-01

    Mid-ocean ridge basalts (MORBs) that make up the bulk of the oceanic crust (OC) exhibit a relatively uniform isotopic composition. In particular, Sm-Nd isotopic results, suggests that their mantle source had been depleted (the depleted mantle or DM) by melt extraction to form the continental crust (CC) over geologic time with a mean age of extraction of 1.8 Ga. With reservoir models that take into account mantle heterogeneities by keeping track of all sub-reservoirs in DM we have established that the most frequent MORB isotopic compositions faithfully record the average isotopic composition of DM. Mass balance considerations based on Nd and Sr isotopic thus still suggest that mass of the DM is only about 30 % of the mantle. The lower mantle could thus in principle have a composition close to the bulk silicate Earth. We have a good model for sampling the DM but need a better understanding of its location/distribution in the mantle. It is now well established that 146Sm was live in the early Solar System and that samples from Isua, W. Greenland (~ 3.8 Ga old) have high 142Nd/144Nd values when compared to normal terrestrial Nd. This demonstrates that the earliest mantle differentiation (likely in a magma ocean) happened within 100 Myr of Solar System formation and has opened up possibilities for better understanding the earliest part of mantle evolution. Basalts from ocean islands show a much wider range in isotopic composition than MORBs. Their (and MORB) Nd, Sr and Pb isotope data can be described rather well by four isotopic components: DMM, HIMU, EMI, EMII. Many of the OIB data arrays point toward an isotopic component called FOZO or C. Our current analysis shows that these apparent isotopic components are non-existent or fictitious components/reservoirs. The real components are never seen because of the averaging that happens when basaltic melts sample the mantle. In particular, the isotopic composition of FOZO corresponds closely to the average composition of the matrix in the DM, which consists of small length- scale sub-reservoirs (<15km). Part of OIB or plume isotopic signatures are likely to originate in the lower mantle or the D" layer. The isotopic evidence suggests that the lower mantle was completely molten during part of the early magma ocean stage. Recent suggestions that the D" layer formed by foundering of a very early enriched crust is incompatible with the fact that the mean age of differentiation of the DM-CC system is on the order of 2 Ga (as shown by long-lived chronometers). Long-lived chronometers are of course much more reliable in giving us the long-term evolution of major earth reservoirs. However, extinct nuclides can give us a view into early processes that are not at all or only poorly recorded by the long-lived chronometers. We need better models for how plumes sample the mantle to make good use of the isotopic data on plume basalts.

  11. Geologic Time.

    ERIC Educational Resources Information Center

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  12. Archeological Geology.

    ERIC Educational Resources Information Center

    Gifford, John A.

    1983-01-01

    Discusses some of the publication outlets, from international to relatively esoteric, used in archeological geology and comments on a possible future trend in publication of archeological-geology research. Publication outlets considered include books (including those published by university presses), journals, and government publications.…

  13. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  14. The Importance of Snow and Ice Surface Roughness in Ablation Processes

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Box, J. E.; Steffen, K.; Mayer, H.; Caine, N.; Losleben, M. V.

    2002-12-01

    The influence of surface roughness of snow and ice on melt energy has been greatly underestimated to date. Surface roughness has usually been included in climatological, meteorological, and snow-hydrological models as a one-dimensional parameter, roughness length, than has been estimated rather than measured. We define surface roughness as a spatial variable and measure it with the Glacier Roughness Sensor (GRS). GRS data from a part of the ablation area in the Greenland Ice Sheet (ice surfaces) and from a continental alpine environment (snow surfaces) are analyzed using geostatistical classification. A mathematical relationship between aerodynamic roughness length and spatial surface roughness is developed. Using this relationship, roughness length of a range of snow and ice surfaces is calculated from the GRS measurements, and the resultant values are input in energy balance calculations. As a result, melt energy varies by a factor of two or more dependent on surface roughness. Consequently, it is important to measure snow and ice surface roughness and include it more accurately in climatological, meteorological, and snow-hydrological models. Applications are the assessment of ablation and surface processes on glaciers and ice sheets in general, and in response to global warming in particular, resultant changes in sea level, study of changes in alpine glaciers and snowfields, and modeling of snow-hydrological processes.

  15. Effect of processing on nutritionally important starch fractions in rice varieties.

    PubMed

    Rashmi, S; Urooj, Asna

    2003-01-01

    In the present study the effect of processing on starch fractions (rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch) were measured, using controlled enzymic hydrolysis with pancreatin and amyloglucidase, in six rice varieties; namely, BT rice, Gauri rice, Sona masoori, parboiled rice, Salem parboiled rice, and steamed rice. The processes studied were pressure cooking, boiling, steaming and straining. Rapidly available glucose (RAG) was also measured to derive a Starch Digestion Index (SDI). Cooking of rice by different methods decreased the amylose content. The degree of gelatinization ranged from 56 to 95, with pressure cooking resulting in the maximum degree. The starch fractions varied depending on the cooking method. Significant inverse correlations were seen between RDS and SDS (r = 0.40, P < 0.05), and between amylose and SDI (r = 0.60, P < 0.01). RAG and RDS related positively (r = 0.90, P < 0.01). The SDI of rice varieties cooked by the boiling and straining method were significantly higher (P < 0.05). The results emphasize that cooking methods influence the nutritionally important starch fractions in rice varieties. PMID:12701235

  16. Geological Mapping of Impact Melt Deposits at Lunar Complex Craters: New Insights into Morphological Diversity, Distribution and the Cratering Process

    NASA Astrophysics Data System (ADS)

    Dhingra, D.; Head, J. W., III; Pieters, C. M.

    2014-12-01

    We have completed high resolution geological mapping of impact melt deposits at the young lunar complex craters (<1 billion years) Copernicus, Jackson and Tycho using data from recent missions. Crater floors being the largest repository of impact melt, we have mapped their morphological diversity expressed in terms of varied surface texture, albedo, character and occurrence of boulder units as well as relative differences in floor elevation. Examples of wall and rim impact melt units and their relation to floor units have also been mapped. Among the distinctive features of these impact melt deposits are: 1) Impact Melt Wave Fronts: These are extensive (sometimes several kilometers in length) and we have documented their occurrence and distribution in different parts of the crater floor at Jackson and Tycho. These features emphasize melt mobility and style of emplacement during the modification stage of the craters. 2) Variations in Floor Elevations: Spatially extensive and coherent sections of crater floors have different elevations at all the three craters. The observed elevation differences could be caused by subsidence due to cooling of melt and/or structural failure, together with a contribution from regional slope. 3) Melt-Covered Megablocks: We also observe large blocks/rock-fragments (megablocks) covered in impact melt, which could be sections of collapsed wall or in some cases, subdued sections of central peaks. 4) Melt-Covered Central Peaks: Impact melt has also been mapped on the central peaks but varies in spatial extent among the craters. The presence of melt on peaks must be taken into account when interpreting peak mineralogy as exposures of deeper crust. 5) Boulder Distribution: Interesting trends are observed in the distribution of boulder units of various sizes; some impact melt units have spatially extensive boulders, while boulder distribution is very scarce in other units on the floor. We interpret these distributions to be influenced by a) the differential collapse of the crater walls during the modification stage, and b) the amount of relative melt volume retained in different parts of the crater floor. These observations provide important documentation of the morphological diversity and better understanding of the emplacement and final distribution of impact melt deposits.

  17. Importance of basal processes in simulations of a surging Svalbard outlet glacier

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Schäfer, M.; Zwinger, T.; Gong, Y.; Strozzi, T.; Mottram, R.; Boberg, F.; Moore, J. C.

    2014-08-01

    The outlet glacier of Basin 3 (B3) of Austfonna ice cap, Svalbard, is one of the fastest outlet glaciers in Svalbard, and shows dramatic changes since 1995. In addition to previously observed seasonal summer speed-up associated with the melt season, the winter speed of B3 has accelerated approximately fivefold since 1995. We use the Elmer/Ice full-Stokes model for ice dynamics to infer spatial distributions of basal drag for the winter seasons of 1995, 2008 and 2011. This "inverse" method is based on minimising discrepancy between modelled and observed surface velocities, using satellite remotely sensed velocity fields. We generate steady-state temperature distributions for 1995 and 2011. Frictional heating caused by basal sliding contributes significantly to basal temperatures of the B3 outlet glacier, with heat advection (a longer-timescale process than frictional heating) also being important in the steady state. We present a sensitivity experiment consisting of transient simulations under present-day forcing to demonstrate that using a temporally fixed basal drag field obtained through inversion can lead to thickness change errors of the order of 2 m year-1. Hence it is essential to incorporate the evolution of basal processes in future projections of the evolution of B3. Informed by a combination of our inverse method results and previous studies, we hypothesise a system of processes and feedbacks involving till deformation and basal hydrology to explain both the seasonal accelerations (short residence time pooling of meltwater at the ice-till interface) and the ongoing interannual speed-up (gradual penetration of water into the till, reducing till strength).

  18. Environmental Studies, Section III: Processes Through Time. Learning Carrel Lesson 6.7: Geologic Time. Study Guide and Script.

    ERIC Educational Resources Information Center

    Boyer, Robert; And Others

    This is one of a series of 14 instructional components of a semester-long, environmental earth science course developed for undergraduate students. The course includes lectures, discussion sessions, and individualized learning carrel lessons. Presented are the study guide and script for a learning carrel lesson on geologic time. The slides,…

  19. Universal and important physical process in space plasmas: electric charge separation

    NASA Astrophysics Data System (ADS)

    Veselovsky, Igor

    One of the scientific IHY aims is the study of universal physical processes that affect the interplanetary and terrestrial environment. Separation of electric charges (ions and electrons) plays an important, but poorly investigated role in space physics and in space plasmas especially. This universal physical process and the opposite phenomenon of charge neutralization coexist and lead to formation and removal of appreciable potential electric fields and discharges on the Sun, in the heliosphere, magnetosphere, ionosphere and atmosphere. In this paper, examples will be presented of estimated potential electric fields on the Sun and in the heliosphere based on theoretical arguments and available observational indications. Electric charge is a fundamental property of matter. The regimes of electric charge separation and accumulation are different in solids, liquids, plasmas and gaseous media. In plasmas around thermodynamic equilibrium potential electric fields experience the Debye-H¨ckel screening, but it is often strongly violated u in situations outside of equilibrium. Inductive electric fields are divergent-less and have no sources by definition. They arise due time variable magnetic fields (Faraday induction). Potential (Coulomb) fields have the sources - electric charges. The physical role and relative importance of inductive and potential fields can be delimited by the dimensionless parameter - the Faraday number, which is formed by electric current density, electric charge density, the lengthand the timescales of the problem. Induction dominated situations are well known and investigated in space plasma physics, for example, in solar flares and coronal mass ejections (CMEs). Coulomb dominated cases are also clearly occurred especially for small space scales (thin sheets, double layers, discharges etc.) and in case of slowly varying magnetic fields. Solar flares and coronal mass ejections represent specific types of electric discharges. The potential electric fields in solar flares and CMEs are not measured as yet. As a consequence, solar flares and CMEs can be not properly understood without this information. Knowledge of electric charges, potential electric fields, as well as electric currents and magnetic fields is necessary together with plasma parameters for this purpose. Electric charges and Coulomb fields are still elusive in the solar atmosphere. Only one known way to improve the situation can be indicated: Stark effect measurements. But they are difficult and not performed in a regular way on the Sun. As a result, our understanding of solar activity processes and their consequences remains incomplete and limited by available MHD cartoons and simplified kinetic models, which are not always justified by observations and appear to be far from reality in many instances. This study was supported by the RFBR grants 07-02-00147, 06-05-64500, INTAS 03-51-6202 and MSU Interdisciplinary Scientific Project. It is also fulfilled as a part of the Programs of the Russian Academy of Sciences: "Origin and evolution of stars and galaxies" (P-04), "Solar activity and physical processes in the Sun-Earth system" (P-16, Part 3) and "Plasma processes in the Solar system (OFN-16)".

  20. The encyclopedia of applied geology

    SciTech Connect

    Finkl, C.W.

    1984-01-01

    This compendium of engineering geology data includes contributions by experts from many countries. Topics center around the field of engineering geology, with special focus on landscapes, earth materials, and the ''management'' of geological processes. How to use geology to serve man is given particular attention. More than 80 entries deal with hydrology, rock structure monitoring, soil mechanics, and engineering geology. Facts are provided on earth science information and sources, electrokinetics, forensic geology, geogryology, nuclear plant siting, photogrammetry, tunnels and tunneling, urban geomorphology, and well data systems. This guide explains the geology of alluvial plains, arid lands, beaches and coasts, delataic plains, cold regions, glacial landscapes, and urban environments. Detailed analyses are given of the geotechnical properties of caliche, clay, duricrust, soil, laterite, marine sediments, and rocks.

  1. Geologic time

    USGS Publications Warehouse

    Newman, William L.

    2000-01-01

    The Earth is very old 4 1/2 billion years or more according to recent estimates. This vast span of time, called geologic time by earth scientists, is difficult to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and our centuries-old search for the key led to the beginning and nourished the growth of geologic science.

  2. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    NASA Astrophysics Data System (ADS)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  3. ATOMIC PHYSICS PROCESSES IMPORTANT TO THE UNDERSTANDING OF THE SCRAPE-OFF LAYER OF TOKAMAKS

    SciTech Connect

    WEST, W.P.; GOLDSMITH,; B. EVANS,T.E.; OLSON, R.J.

    2002-05-01

    The region between the well-confined plasma and the vessel walls of a magnetic confinement fusion research device, the scrape-off layer (SOL), is typically rich in atomic and molecular physics processes. The most advanced magnetic confinement device, the magnetically diverted tokamak, uses a magnetic separatrix to isolate the confinement zone (closed flux surfaces) from the edge plasma (open field lines). Over most of their length the open field lines run parallel to the separatrix, forming a thin magnetic barrier with the nearby vessel walls. In a poloidally-localized region, the open field lines are directed away from the separatrix and into the divertor, a region spatially separated from the separatrix where intense plasma wall interaction can occur relatively safely. Recent data from several tokamaks indicate that particle transport across the field lines of the SOL can be somewhat faster than previously thought. In these cases, the rate at which particles reach the vessel wall is comparable to the rate to the divertor from parallel transport. The SOL can be thin enough that the recycling neutrals and sputtered impurities from the wall may refuel or contaminate the confinement zone more efficiently than divertor plasma wall interaction. Just inside the SOL is a confinement barrier that produces a sharp pedestal in plasma density and temperature. Understanding neutral transport through the SOL and into the pedestal is key to understanding particle balance and particle and impurity exhaust. The SOL plasma is sufficiently hot and dense to excite and ionize neutrals. Ion and neutral temperatures are high enough that charge exchange between the neutrals and fuel and impurity ions is fast. Excitation of neutrals can be fast enough to lead to nonlinear behavior in charge exchange and ionization processes. In this paper the detailed atomic physics important to the understanding of the neutral transport through the SOL will be discussed.

  4. 40 CFR 761.187 - Reporting importers and by persons generating PCBs in excluded manufacturing processes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...generating PCBs in excluded manufacturing processes. 761.187 Section...generating PCBs in excluded manufacturing processes. In addition to meeting...the definition of excluded manufacturing process at § 761.3,...

  5. Importance of chip selection and elaboration process on the aromatic composition of finished wines.

    PubMed

    Rodríguez-Bencomo, Juan J; Ortega-Heras, Miriam; Pérez-Magariño, Silvia; González-Huerta, Carlos; González-San José, M Luisa

    2008-07-01

    The evolution of volatile compounds extracted from wood while being macerated for 1 month with four different commercial chips (different geographical origins and toasting degrees) was studied. Furthermore, the effect of the microoxygenation process between alcoholic and malolactic fermentation also was studied. The wood volatile compounds in wines macerated with the four types of chips evolved in the same way. However, the amounts of compounds extracted depended on the type of chip used. There were differences in the levels of vanillin, cis-whiskey lactone, furfural, trans-isoeugenol, and cis-isoeugenol in wines in accordance with the type of wood chips (French or American), and the last two compounds along with 5-methyl furfural presented differences that were directly related to the toast level. However, no effects of microoxygenation treatment on the extraction of volatile compounds extracted from chips were observed. Therefore, the results obtained in this study highlight the importance of chip selection on the aromatic characteristics of finished wines. PMID:18553914

  6. Use of Library Readings to Augment Conventional Geology Instruction.

    ERIC Educational Resources Information Center

    Nold, John Lloyd

    1989-01-01

    Examples of sets of questions on library readings designed to lead students into articles and emphasize important information and associated literature are presented for introductory geology courses, historical geology, structural geology, mineralogy, and petrology. (Author/CW)

  7. Integrated remote sensing, geological and geophysical data processing and analysis for hydrocarbon prospection in the Parana Basin, Brazil

    SciTech Connect

    Amaral, G.; Filho, A.P.; Crosta, A.P.

    1982-06-01

    The extensive basaltic lava flows of the Serra Geral Formation (Lower Cretaceous), in the upper portions of the Parana sedimentary basin, are a severe obstacle for hydrocarbon prospecting. Its thickness and physical characteristics make difficult the general application of conventional geophysical methods. In order to overcome this problem a research program was developed for PETROBRAS in order to obtain the maximum geological information from remote sensing data and integrate it with field and geophysical data. Automated analysis of LANDSAT data with visual inspection of LANDSAT and SLAR imagery resulted in a large amount of lithological and structural information, which were integrated with geological and geophysical data for the selection of target areas for future investigation.

  8. Geologic Evolution of Eastern Hellas, Mars: Styles and Timing of Volatile-driven Activity

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Bleamaster, Leslie F., III; Mest, Scott C.

    2004-01-01

    The east rim of the Hellas basin and the surrounding highlands comprise a geologically significant region for evaluating volatile abundance, volatile distribution and cycling, and potential changes in Martian environmental conditions. This region of the Martian surface exhibits landforms shaped by a diversity of geologic processes and has a well-preserved geologic record, with exposures of Noachian, Hesperian, and Amazonian units, as well as spans a wide range in both latitude and elevation due to the magnitude of Hellas basin. In addition, geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide important ingredients for creating habitats for potential Martian life.

  9. Engineering Geology

    ERIC Educational Resources Information Center

    Lee, Fitzhugh T.

    1974-01-01

    Briefly reviews the increasing application of geologic principles, techniques and data to engineering practices in the areas of land use and zoning controls, resource management energy programs and other fields. (BR)

  10. Environmental Geology

    ERIC Educational Resources Information Center

    Everett, A. Gordon

    1972-01-01

    Briefly summarizes the major applications, during 1971, of geology to environmental problems in the United States and mentions some of the related literature from professional meetings and from other publications. (PR)

  11. Process-Response Numerical Modeling in Carbonate Systems - Current Status and Importance (Invited)

    NASA Astrophysics Data System (ADS)

    Sarg, J.; Jenkins, C. J.; Burgess, P. M.; Budd, D. A.; Rankey, E. C.; Demicco, R. V.

    2009-12-01

    Developing predictive models of carbonate systems has important implications for monitoring and managing global climate change affecting societies around the world. Carbonate sediments and rocks form an important part of the global carbon cycle. More than 80% of Earth’s carbon is locked up in carbonate rocks, and is the primary ultimate sink for CO2 introduced into the atmosphere. Reefs and carbonate platforms, in general, are sensitive climatic indicators, and contain important records of past climate change. Ancient carbonate platforms and systems play a significant role in the global economy. They are the raw material for construction, and through their high permeability’s and porosities, carbonate rocks serve as important fresh water aquifers and petroleum reservoirs. They host more than half of the world’s petroleum. The systems that produce carbonate sediments have multiple interacting biologic, chemical, and hydrodynamic elements. Carbonate sediments are originally and predominantly derived from biological mineralization directly from seawater. Waves, tides, and marine currents can redistribute these sediments landward into lagoons or tidal flats, send them seaward into the deep or sea, or trap them within the hydraulic regime in which they originated. The characteristics of carbonate sediments are thus sensitive to environmental parameters like light, bathymetry, temperature, salinity, turbidity, nutrient and oxygen levels, hydrodynamics, and mineral saturation states. Localized buildups of carbonate sediments can alter the local hydraulic regime and change the nature of surrounding sediments. The prospect of modeling carbonates in detail has been daunting. Existing carbonate models are a class of rule-based ‘simulations’ with limited predictive qualities. The earliest computer models of carbonate deposition were 1-D and 2-D, and essentially modeled carbonates as “in-place” accumulations of sediment. In most cases, sediment production in these models was directly related to water depth based on assumptions that carbonate production is a function of light attenuation with depth. These models were followed by so-called “geometric” models (SedPak), where sediment transport was allowed, and models were based on simply depositing sediment vertically into assumed shoreline geometries. There are computer models of carbonate deposition that model wave and current dynamics over platforms and then base sediment erosion, transport and deposition on the results of the circulation modeling: Carb3D and Carb3D+, Dionysus and Carbonate GPM. In addition, Carb3D+ approximates some diagenetic processes as a function of hydrologic residence times. New types of rule-based models, such as cellular automata have also been developed that model the interaction of many different elements of carbonate deposition. Based on this progress, and with recent advances in ecological modeling, treating uncertainty in models, high performance computing, and handling heterogeneous and linguistic data types, the time is right to tackle the challenges of mathematically modeling carbonate sediments.

  12. Spatial distribution of seafloor bio-geological and geochemical processes as proxies of fluid flux regime and evolution of a carbonate/hydrates mound, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Macelloni, Leonardo; Brunner, Charlotte A.; Caruso, Simona; Lutken, Carol B.; D'Emidio, Marco; Lapham, Laura L.

    2013-04-01

    Woolsey Mound, a carbonate/hydrate complex of cold seeps, vents, and seafloor pockmarks in Mississippi Canyon Block 118, is the site of the Gulf of Mexico Hydrates Research Consortium's (GOMHRC) multi-sensor, multi-disciplinary, permanent seafloor observatory. In preparation for installing the observatory, the site has been studied through geophysical, biological, geological, and geochemical surveys. By integrating high-resolution, swath bathymetry, acoustic imagery, seafloor video, and shallow geological samples in a morpho-bio-geological model, we have identified a complex mound structure consisting of three main crater complexes: southeast, northwest, and southwest. Each crater complex is associated with a distinct fault. The crater complexes exhibit differences in morphology, bathymetric relief, exposed hydrates, fluid venting, sediment accumulation rates, sediment diagenesis, and biological community patterns. Spatial distribution of these attributes suggests that the complexes represent three different fluid flux regimes: the southeast complex seems to be an extinct or quiescent vent; the northwest complex exhibits young, vigorous activity; and the southwest complex is a mature, fully open vent. Geochemical evidence from pore-water gradients corroborates this model suggesting that upward fluid flux waxes and wanes over time and that microbial activity is sensitive to such change. Sulfate and methane concentrations show that microbial activity is patchy in distribution and is typically higher within the northwest and southwest complexes, but is diminished significantly over the southeast complex. Biological community composition corroborates the presence of distinct conditions at the three crater complexes. The fact that three different fluid flux regimes coexist within a single mound complex confirms the dynamic nature of the plumbing system that discharges gases into bottom water. Furthermore, the spatial distribution of bio-geological processes appears to be a valid indicator of multiple fluid flux regimes that coexist at the mound.

  13. Status report on the geology of the Oak Ridge Reservation

    SciTech Connect

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  14. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei

    SciTech Connect

    Gualdrón-López, Melisa; Michels, Paul A.M.

    2013-02-01

    Highlights: ? Most eukaryotic cells have a single gene for the peroxin PEX5. ? PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ? TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ? Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ? PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M{sub r} of 100 kDa and 72 kDa. 5?-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M{sub r} of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and {sup 35}S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed.

  15. Panel Review Report United States Geological Survey

    E-print Network

    Anderson, Charles W.

    Panel Review Report United States Geological Survey Biological Resources Discipline Wildlife from senior United States Geological Survey (USGS), Department of the Interior (DOI), and Congressional. · Determine the optimal level of reimbursable funding using a structured decision process, with the objective

  16. The Challenges of Standardized Planetary Geologic Mapping

    NASA Astrophysics Data System (ADS)

    Skinner, J. A.

    2015-06-01

    The process and product of creating standardized geologic maps of planetary bodies has been met with particular challenges. Addressing these challenges helps ensure that benchmark contextual geologic map products remain a reliable community resource.

  17. The Global Geology of Titan from Cassini RADAR data

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly; Malaska, Michael J.

    The variety of geological processes on Titan is rivaled in our Solar System only on Earth. Results from the Cassini-Huygens mission obtained so far have revealed a wide range of geologic and climatological processes. We use data obtained by Cassini’s Titan Radar Mapper (13.78 GHz, lambda=2.17 cm) to analyze the distribution of different types of geologic processes occurring on Titan’s surface, both endogenic and exogenic, and to derive temporal relationships between these processes, at least at local scales. The distribution and interplay of geologic processes is important to provide constraints on models of the interior and of surface-atmosphere interactions. We mapped the SAR images in terms of characteristic morphology of geological features and their radar backscatter in order to determine possible emplacement sequences and the overall distribution of geologic processes. All the major planetary geologic processes - volcanism, tectonism, impact cratering and erosion - appear to have played a role in shaping Titan’s complex surface. This paper will review the distribution and relative ages of different geomorphologic units. While some units (craters, dunes, mountains, channels, lakes and seas) are well established in the literature, the presence of cryovolcanic features is still somewhat controversial, and the origin of undifferentiated plains (known as blandlands) is still mysterious. We now have over half of Titan’s surface imaged by SAR and the interpretation of these and other terrains is better constrained. The results from our latest analyses suggest that a sedimentary origin for the undifferentiated plains is the most likely. Cryovolcanism appears to have occurred on Titan, but it is not ubiquitous, and the major cryovolcanic area appears to be old, now partly covered by dunes. Titan’s surface shows a complex interaction between the surface and atmosphere, with erosional processes being driven by wind, liquids and dissolution.

  18. Exploring the Williams Syndrome Face-Processing Debate: The Importance of Building Developmental Trajectories

    ERIC Educational Resources Information Center

    Karmiloff-Smith, Annette; Thomas, Michael; Annaz, Dagmara; Humphreys, Kate; Ewing, Sandra; Brace, Nicola; Van Duuren, Mike; Pike, Graham; Grice, Sarah; Campbell, Ruth

    2004-01-01

    Background: Face processing in Williams syndrome (WS) has been a topic of heated debate over the past decade. Initial claims about a normally developing ("intact") face-processing module were challenged by data suggesting that individuals with WS used a different balance of cognitive processes from controls, even when their behavioural scores fell…

  19. Critical Issues Geologic mapping

    E-print Network

    Polly, David

    -bed methane, and geothermal energy. The IGS's important sources of information--geologic maps, rock and core technologies of energy production, such as integrated gasification combined cycle systems and underground coal understand the water cycle in Indiana, information that is vital to responsible water management

  20. Instant HR April 21, 2010 TOPIC: Important Fingerprint Check Update and Training Available on the Hiring Process Register

    E-print Network

    Hammack, Richard

    Instant HR ­ April 21, 2010 TOPIC: Important Fingerprint Check Update and Training Available on the Hiring Process ­ Register Now! To Personnel Administrators: ** Temporary Change in Fingerprinting will not be able to process applicant fingerprint checks from April 28 through May 4, as this service

  1. The preparation of illustrations for reports of the United States Geological survey : with brief descriptions of processes of reproduction

    USGS Publications Warehouse

    Ridgway, John L.

    1920-01-01

    There has been an obvious need in the Geological Survey o£ a paper devoted wholly to illustrations. No complete paper on the character, use, and mode of preparation of illustration has been published by the Survey, though brief suggestions concerning certain features of their use have been printed in connection wit other suggestions pertaining to publications. The present paper includes matter which it is hoped will be of service to authors in their work of making up original drafts of illustrations and to drafsmen who are using these originals in preparing more finished drawing but it is not a technical treatise on drafting.

  2. Proterozoic Geology

    NASA Astrophysics Data System (ADS)

    Sims, P. K.

    1984-04-01

    This book and its companion, Early Proterozoic Geology of the Great Lakes Region (Mem. 160 Geological Society of America, 1984), edited by L.G. Medaris, Jr., are the products of an International Proterozoic symposium held at the University of Wisconsin, Madison, May 18-21, 1981. This volume contains 23 papers that present the current thinking of experts on many aspects of Proterozoic evolution of the earth; it is divided into five broad categories: tectonics, magmatism and metamorphism, mineral resources, evolution of life and the atmosphere, and glaciation.The Proterozoic is a distinctive interval in the geologic history of the earth, encompssing the transition from Archean conditions to those of the Phanerozoic. By Early Proterozoic time, extensive stable continental plates existed, and deformation, deposition, and intrusion styles were comparable to those of today. Also, the amount of free oxygen in the atmosphere and hydrosphere continuously increased during the Proterozoic and eventually reached levels supportive of metazoan evolution.

  3. GEOLOGY, September 2010 847 INTRODUCTION

    E-print Network

    Garneau, Michelle

    materials. Volatiles in the mantle allow plate tectonics to operate by lowering the strength of the upper). It is likely that changes in ocean water chem- istry over geological time have had an impor- tant impact insights into the processes that shape our planet and the changes therein over geological time. The key

  4. Reports of planetary geology program, 1983

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (compiler)

    1984-01-01

    Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.

  5. Geological flows

    E-print Network

    Yu. N. Bratkov

    2008-11-19

    In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

  6. Reports of Planetary Geology Program, 1982

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (compiler)

    1982-01-01

    Work conducted in the Planetary Geology program is summarized. The following categories are presented: outer solar system satellites; asteroids and comets; Venus; cratering processes and landform development; volcanic processes and landforms; aolian processes and landforms; fluvial processes and landform development; periglacial and permafrost processes; structure, tectonics and stratigraphy; remote sensing and regolith studies; geologic mapping, cartography and geodesy.

  7. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...products or by products, organisms, vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial...Import or In Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2...

  8. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...products or by products, organisms, vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial...Import or In Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2...

  9. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...products or by products, organisms, vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial...Import or In Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2...

  10. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...products or by products, organisms, vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial...Import or In Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2...

  11. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...products or by products, organisms, vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial...Import or In Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2...

  12. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  13. The Geological information and modelling Thematic Core Service of EPOS

    NASA Astrophysics Data System (ADS)

    Robida, François; Wächter, Joachim; Tulstrup, Jørgen; Lorenz, Henning; Carter, Mary; Cipolloni, Carlo

    2015-04-01

    Geological data and models are important assets for the EPOS community. The Geological information and modelling Thematic Core Service of EPOS will be designed and implemented in an efficient and sustainable access system for geological multi-scale data assets for EPOS through the integration of distributed infrastructure components (nodes) of geological surveys, research institutes and the international drilling community (ICDP) . The TCS will develop and take benefit of the synergy between the existing data infrastructures of the Geological Surveys of Europe (EuroGeoSurveys / OneGeology-Europe / EGDI) and on the large amount of information produced by the research organisations. These nodes will offer a broad range of resources including: digitised geological maps, borehole data, geophysical data (seismic data, borehole log data), archived information on physical material (samples, cores), geochemical and other analyses of rocks, soils and minerals, and Geological models (3D, 4D). The services will be implemented on international standards (such as INSPIRE, IUGS/CGI, OGC, W3C, ISO) in order to guarantee their interoperability with other EPOS TCS as well as their compliance with INSPIRE European Directive or international initiatives (such as OneGeology). This will provide future virtual research environments with means to facilitate the use of existing information for future applications. In addition, workflows will be established that allow the integration of other existing and new data and applications. Processing and the use of simulation and visualization tools will subsequently support the integrated analysis and characterization of complex subsurface structures and their inherent dynamic processes. This will in turn aid in the overall understanding of complex multi-scale geo-scientific questions. This TCS will work alongside other EPOS TCSs to create an efficient and comprehensive multidisciplinary research platform for the Earth Sciences in Europe.

  14. Directions of the US Geological Survey Landslide Hazards Reduction Program

    USGS Publications Warehouse

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  15. Gamma-rays as new important instrument of atmospheric discharge processes investigation

    NASA Astrophysics Data System (ADS)

    Mitko, G.; Ryabov, V.; Thunderstorm Collaboration on Tien-Shan Mountain Cosmic Ray Station

    2011-12-01

    Fine features of gamma-ray radiation registered during a thunderstorm at Tien-Shan Mountain Cosmic Ray Station are presented. The experimental facility "Thunderstorm" at Tien-Shan consists of the following separate setups: an EAS registration system, a system of scintillation NaI detectors, two independent radio systems, a recorder of the quasistatic electric field and its variations. The maximum distance between detectors of the facility in horizontal plane reaches 2-2.5 km which circumstance allows us to study not only temporal but also spatial distributions of the intensity of various radiation types inside thunderclouds. The mountain relief in the vicinity of the Station is very convenient for such a study: due to the two neighboring slopes around the mountain pass where the Station is situated, it is possible to install radiation detectors at different altitudes (from 3.4 to 4 km above the sea level) and to obtain the radiation distribution profiles inside thunderclouds in not only the horizontal plane but also in the vertical one. This is one of the major advantages of the "Thunderstorm" facility in comparison with the other setups for the gamma-radiation study. The gamma-ray emission was recorded by using trigger signals of the three different types. First trigger was a randomly coming signal indicating the passing of extensive atmospheric shower. Another trigger indicated the strong electromagnetic pulse, the third one indicated the rapid change of the electrostatic field (jump). The last two types of triggers are never formed in the absence of a thunderstorm. Each record of the gamma-ray emission radiation was 0.8 s long. It contained 4000 values of the gamma-quanta numbers registered during each of 200 ?s intervals. The number of gamma-quanta in each time interval was recorded. The measurements were performed simultaneously by four detectors situated at different heights. It is established that the atmospheric discharge is accompanied by the burst of gamma radiation which lasts during all the time of the discharge. Long duration (100-600 ms) gamma-ray bursts are found. They are for the first time identified with atmospheric discharges (lighting). Gamma-ray emission lasts all the time of the discharge and is extremely non-uniform consisting of numerous flashes. Its peak intensity in the flashes exceeds the gamma-ray background up to two orders of magnitude. Really dramatic is the dependence of the gamma-ray emission intensity on the height of the observational level: at the highest detection point at the height of 3880 m a.s.l. an increase in radiation intensity is 20-50 times stronger than in lower points, its value being also very sensitive to the change of the electric field. The observation of gamma radiation at the height 4-8 km could serve as a new important method of atmospheric discharge processes investigation.

  16. Measuring Student Understanding of Geological Time

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    There have been few discoveries in geology more important than "deep time"--the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology, and…

  17. Geologic Time.

    ERIC Educational Resources Information Center

    Albritton, Claude C., Jr.

    1984-01-01

    Discusses the historical development of the concept of geologic time. Develops the topic by using the major discoveries of geologists, beginning with Steno and following through to the discovery and use of radiometric dating. An extensive reference list is provided. (JM)

  18. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...tobacco products and cigarette papers and tubes from customs custody...removing the words “and cigarette papers and tubes” where they first appear in the text and adding in...place, the words “, cigarette papers and tubes, and processed...

  19. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...tobacco products and cigarette papers and tubes from customs custody...removing the words “and cigarette papers and tubes” where they first appear in the text and adding in...place, the words “, cigarette papers and tubes, and processed...

  20. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...tobacco products and cigarette papers and tubes from customs custody...removing the words “and cigarette papers and tubes” where they first appear in the text and adding in...place, the words “, cigarette papers and tubes, and processed...

  1. Rehabilitation between institutional and non-institutional forensic psychiatric care: important influences on the transition process.

    PubMed

    Gustafsson, E; Holm, M; Flensner, G

    2012-10-01

    All patients cared for in forensic psychiatric care (FPC) have some kind of psychiatric disorder and most of them have committed one or more criminal acts. One part of the patient's rehabilitation is the transition from institutional to non-institutional FPC, but a number of patients do not succeed. The aim of this study was to elucidate different caregivers' experiences of aspects that influence the patients' ability to manage this rehabilitation. A qualitative approach was chosen. Data were collected by interviews in two focus groups, each group comprising of six caregivers representing both institutional and non-institutional FPC. The transcribed interviews were analysed using a qualitative content analysis. Important aspects influencing the patients' transition described were a well-planned care plan, together with a suitable non-institutional dwelling and a tailored occupation. Other important areas were having a well-functioning and trusting social network and a good relationship with a contact person/advocate. A major barrier to a successful transition was whether the patients managed their own finances or not. It was stated that it is important that the patients participate in the care and that different authorities create individual conditions and flexible solutions. All of these factors are important to focus on when caring for patients during their stay in the institutional FPC. PMID:22182281

  2. Structural Geology Personal Computers

    E-print Network

    Cattin, Rodolphe

    Structural Geology and Personal Computers #12;Struetura1 Geology and Personal Computers Edited of Congress. British Library Cataloguing in Publication Data Structural geology and personal computers. Furthermore, a 167 #12;Structural Geology and Personal Computers classification ofmantle textures and related

  3. Developing an Assessment of Learning Process: The Importance of Pre-Testing

    ERIC Educational Resources Information Center

    Sheran, Michelle; Sarbaum, Jeffrey

    2012-01-01

    Colleges and universities are increasingly being held accountable for assessing and reporting student learning. Recently there has been increased focus on using assessment to improve learning over time. In this paper we present a simple, step-by-step assessment process that will deliver meaningful results to achieve these ends. We emphasize the…

  4. Measuring Edge Importance: A Quantitative Analysis of the Stochastic Shielding Approximation for Random Processes on Graphs

    PubMed Central

    2014-01-01

    Mathematical models of cellular physiological mechanisms often involve random walks on graphs representing transitions within networks of functional states. Schmandt and Galán recently introduced a novel stochastic shielding approximation as a fast, accurate method for generating approximate sample paths from a finite state Markov process in which only a subset of states are observable. For example, in ion-channel models, such as the Hodgkin–Huxley or other conductance-based neural models, a nerve cell has a population of ion channels whose states comprise the nodes of a graph, only some of which allow a transmembrane current to pass. The stochastic shielding approximation consists of neglecting fluctuations in the dynamics associated with edges in the graph not directly affecting the observable states. We consider the problem of finding the optimal complexity reducing mapping from a stochastic process on a graph to an approximate process on a smaller sample space, as determined by the choice of a particular linear measurement functional on the graph. The partitioning of ion-channel states into conducting versus nonconducting states provides a case in point. In addition to establishing that Schmandt and Galán’s approximation is in fact optimal in a specific sense, we use recent results from random matrix theory to provide heuristic error estimates for the accuracy of the stochastic shielding approximation for an ensemble of random graphs. Moreover, we provide a novel quantitative measure of the contribution of individual transitions within the reaction graph to the accuracy of the approximate process. PMID:24742077

  5. Leaching the Poison--The Importance of Process and Partnership in Working with Yolngu

    ERIC Educational Resources Information Center

    Marika, Rarriwuy; Yunupingu, Yalmay; Marika-Mununggiritj, Raymattja; Muller, Samantha

    2009-01-01

    The popular construction of rural places as "white" spaces has significant repercussions for ethnic, Indigenous and "other" groups who do not always fit within prescribed dominant processes. This paper provides new insights for rural scholarship through an engagement with Indigenous specific experiences of governance and decision making in rural…

  6. Tenure: An Important Due Process Right or a Hindrance to Change in the Schools?

    ERIC Educational Resources Information Center

    Coleman, Julianne; Schroth, Stephen T.; Molinaro, Lisa; Green, Mark

    2005-01-01

    Teacher tenure is a hotly contested concept in today's' school reform battles. Many discussions of tenure, however, use the term in incorrect ways that add little to the concepts that should be debated. Historically, tenure represents due process rights teachers acquire after several years of successful service. Other procedures, such as teacher…

  7. The importance of establishing an international network of tissue banks and regional tissue processing centers.

    PubMed

    Morales Pedraza, Jorge

    2014-03-01

    During the past four decades, many tissue banks have been established across the world with the aim of supplying sterilized tissues for clinical use and research purposes. Between 1972 and 2005, the International Atomic Energy Agency supported the establishment of more than sixty of these tissue banks in Latin America and the Caribbean, Asia and the Pacific, Africa and Eastern Europe; promoted the use of the ionizing radiation technique for the sterilization of the processed tissues; and encouraged cooperation between the established tissue banks during the implementation of its program on radiation and tissue banking at national, regional and international levels. Taking into account that several of the established tissue banks have gained a rich experience in the procurement, processing, sterilization, storage, and medical use of sterilized tissues, it is time now to strengthen further international and regional cooperation among interested tissue banks located in different countries. The purpose of this cooperation is to share the experience gained by these banks in the procurement, processing, sterilization, storage, and used of different types of tissues in certain medical treatments and research activities. This could be done through the establishment of a network of tissue banks and a limited number of regional tissue processing centers in different regions of the world. PMID:23765095

  8. 2009 The Psychonomic Society, Inc. 644 Processing numbers is an important cognitive skill.

    E-print Network

    Jonides, John

    . For example, the number 3 can be used to describe a specific quantity or magnitude (e.g., There are Processing to the ordinal properties of numbers (e.g., the fact that 5 is the fifth integer). In the present study, we the stimuli crossed a boundary (i.e., when numbers crossed a decade or months crossed the year boundary

  9. The Importance of Language in Students' Reasoning about Heat in Thermodynamic Processes

    ERIC Educational Resources Information Center

    Brookes, David T.; Etkina, Eugenia

    2015-01-01

    Researchers believe that the way that students talk, specifically the language that they use, can offer a window into their reasoning processes. Yet the connection between what students are saying and what they are actually thinking can be ambiguous. We present the results of an exploratory interview study with 10 participants, designed to…

  10. Cold plasma processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.; Bullard, D.; Ortega, R.

    1990-01-01

    The utilization of a cold plasma in chlorination processing is described. Essential equipment and instruments were received, the experimental apparatus assembled and tested, and preliminary experiments conducted. The results of the latter lend support to the original hypothesis: a cold plasma can both significantly enhance and bias chemical reactions. In two separate experiments, a cold plasma was used to reduce TiCl4 vapor and chlorinate ilmenite. The latter, reacted in an argon-chlorine plasma, yielded oxygen. The former experiment reveals that chlorine can be recovered as HCl vapor from metal chlorides in a hydrogen plasma. Furthermore, the success of the hydrogen experiments has lead to an analysis of the feasibility of direct hydrogen reduction of metal oxides in a cold plasma. That process would produce water vapor and numerous metal by-products.

  11. The Importance of Sample Processing in Analysis of Asbestos Content in Rocks and Soils

    NASA Astrophysics Data System (ADS)

    Neumann, R. D.; Wright, J.

    2012-12-01

    Analysis of asbestos content in rocks and soils using Air Resources Board (ARB) Test Method 435 (M435) involves the processing of samples for subsequent analysis by polarized light microscopy (PLM). The use of different equipment and procedures by commercial laboratories to pulverize rock and soil samples could result in different particle size distributions. It has long been theorized that asbestos-containing samples can be over-pulverized to the point where the particle dimensions of the asbestos no longer meet the required 3:1 length-to-width aspect ratio or the particles become so small that they no longer can be tested for optical characteristics using PLM where maximum PLM magnification is typically 400X. Recent work has shed some light on this issue. ARB staff conducted an interlaboratory study to investigate variability in preparation and analytical procedures used by laboratories performing M435 analysis. With regard to sample processing, ARB staff found that different pulverization equipment and processing procedures produced powders that have varying particle size distributions. PLM analysis of the finest powders produced by one laboratory showed all but one of the 12 samples were non-detect or below the PLM reporting limit; in contrast to the other 36 coarser samples from the same field sample and processed by three other laboratories where 21 samples were above the reporting limit. The set of 12, exceptionally fine powder samples produced by the same laboratory was re-analyzed by transmission electron microscopy (TEM) and results showed that these samples contained asbestos above the TEM reporting limit. However, the use of TEM as a stand-alone analytical procedure, usually performed at magnifications between 3,000 to 20,000X, also has its drawbacks because of the miniscule mass of sample that this method examines. The small amount of powder analyzed by TEM may not be representative of the field sample. The actual mass of the sample powder analyzed by PLM is about six orders of magnitude greater than that analyzed by TEM and, thus, more likely to be representative of the field sample. TEM results do not always match those of PLM from the same sample because TEM examines smaller fibers/particles than PLM, analyzes less subsample mass, and has results typically expressed in different units (e.g., percent by weight, visual estimate, or point count). Paired PLM and TEM analyses of field samples taken by the California Department of Toxic Substances Control (DTSC) illustrate this point. Processing quality control (QC) checks could be implemented to limit the number of artificial PLM non-detects. Example QC processing checks include properly calibrating processing equipment and periodic particle size analysis, such as dry sieving of the powdered samples. In addition, some government agencies use a combination of analytical techniques when analyzing for asbestos. For instance, the State of New York prescribes the use of PLM but requires TEM to verify non-detects by PLM for non-friable organically bound materials. Homogenization after sample pulverization is another appropriate processing element that should garner more attention. Homogenization equipment currently exist that, when used properly, could greatly improve the accuracy, precision, and representativeness of sample results.

  12. A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

    2011-01-01

    The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

  13. Influence of Introgression and Geological Processes on Phylogenetic Relationships of Western North American Mountain Suckers (Pantosteus, Catostomidae)

    PubMed Central

    Unmack, Peter J.; Dowling, Thomas E.; Laitinen, Nina J.; Secor, Carol L.; Mayden, Richard L.; Shiozawa, Dennis K.; Smith, Gerald R.

    2014-01-01

    Intense geological activity caused major topographic changes in Western North America over the past 15 million years. Major rivers here are composites of different ancient rivers, resulting in isolation and mixing episodes between river basins over time. This history influenced the diversification of most of the aquatic fauna. The genus Pantosteus is one of several clades centered in this tectonically active region. The eight recognized Pantosteus species are widespread and common across southwestern Canada, western USA and into northern Mexico. They are typically found in medium gradient, middle-elevation reaches of rivers over rocky substrates. This study (1) compares molecular data with morphological and paleontological data for proposed species of Pantosteus, (2) tests hypotheses of their monophyly, (3) uses these data for phylogenetic inferences of sister-group relationships, and (4) estimates timing of divergence events of identified lineages. Using 8055 base pairs from mitochondrial DNA protein coding genes, Pantosteus and Catostomus are reciprocally monophyletic, in contrast with morphological data. The only exception to a monophyletic Pantosteus is P. columbianus whose mtDNA is closely aligned with C. tahoensis because of introgression. Within Pantosteus, several species have deep genetic divergences among allopatric sister lineages, several of which are diagnosed and elevated to species, bringing the total diversity in the group to 11 species. Conflicting molecular and morphological data may be resolved when patterns of divergence are shown to be correlated with sympatry and evidence of introgression. PMID:24619087

  14. pH Influences the Importance of Niche-Related and Neutral Processes in Lacustrine Bacterioplankton Assembly

    PubMed Central

    Ren, Lijuan; Jeppesen, Erik; He, Dan; Wang, Jianjun; Liboriussen, Lone; Xing, Peng

    2015-01-01

    pH is an important factor that shapes the structure of bacterial communities. However, we have very limited information about the patterns and processes by which overall bacterioplankton communities assemble across wide pH gradients in natural freshwater lakes. Here, we used pyrosequencing to analyze the bacterioplankton communities in 25 discrete freshwater lakes in Denmark with pH levels ranging from 3.8 to 8.8. We found that pH was the key factor impacting lacustrine bacterioplankton community assembly. More acidic lakes imposed stronger environmental filtering, which decreased the richness and evenness of bacterioplankton operational taxonomic units (OTUs) and largely shifted community composition. Although environmental filtering was determined to be the most important determinant of bacterioplankton community assembly, the importance of neutral assembly processes must also be considered, notably in acidic lakes, where the species (OTU) diversity was low. We observed that the strong effect of environmental filtering in more acidic lakes was weakened by the enhanced relative importance of neutral community assembly, and bacterioplankton communities tended to be less phylogenetically clustered in more acidic lakes. In summary, we propose that pH is a major environmental determinant in freshwater lakes, regulating the relative importance and interplay between niche-related and neutral processes and shaping the patterns of freshwater lake bacterioplankton biodiversity. PMID:25724952

  15. [Contractile Tone and Contraction as Important Physiological Properties of Terminals on the Processes of Living Neurons].

    PubMed

    Sotnikov, O S; Vasyagina, N Yu; Podol'skaya, L A

    2015-01-01

    An attempt to summarize some static morphological renderings of reversible structural alterations of nervous processes, as well as receptor and synaptic terminals, to compare them with the mechanisms of actual transformation of living neurons and to find a common kinetic characteristic for these phenomena has been made. The contractile tone and contraction of processes of living isolated neurons are reported. The dependence of the direction of retraction on the localization of the adhesion site of the isolated cell has been detected. The retraction bulb has been identified as an indicator of all contractions of motor and sensory terminals, both alive and fixed. The process of transformation of growth cones into retraction bulbs has been investigated. The presence of mechanical tension in preterminals and interneuronal contacts has been demonstrated in vitro. Similarity of the kinetics of tissue receptor sensory terminals and growth cones has been detected during in vivo experiments. The kinetics of asynaptic dendrite contraction has been compared to the well-characterized structural variability of dendritic spines. The hypothesis of a common origin of the contractile tone of all nervous elements as one of the principal nonelectrophysiological properties of a neuron has been put forward. PMID:26415280

  16. Momentum transfer by an internal source of ionizing radiation - an important feedback process during galaxy formation ?!

    E-print Network

    Martin G. Haehnelt

    1994-10-25

    The role of momentum transfer (``radiation pressure'') due to an internal source of ionizing radiation for the formation of baryonic structures is investigated. Fully-ionized self-gravitating gaseous objects can be radiation-pressure supported on a characteristic length scale $D_{\\rm rp} \\sim 100 \\pc - 3 \\kpc$. On smaller scales momentum transfer due to ionizing radiation will be the dominant force and for spherical collapsing objects of mass $\\la 10^{10}\\Msol$ a complete bounce is possible. A population of massive stars and/or accretion onto a central compact object are natural sources of ionizing radiation in newly-forming baryonic structures. Radiation pressure is therefore likely to play an important role for the dynamical and thermal evolution of the intergalactic medium and the mass-to-light ratio of small galaxies. The effect will be especially important for hierarchical cosmogonies where galactic structures build up by merging of smaller objects. Radiation pressure due to ionizing radiation might furthermore be responsible for substructures of size $D_{\\rm rp}$ in the stellar component of large galaxies.

  17. The emerging Medical and Geological Association.

    USGS Publications Warehouse

    Finkelman, R.B.; Centeno, J.A.; Selinus, O.

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort.

  18. The Emerging Medical and Geological Association

    PubMed Central

    Finkelman, Robert B; Centeno, Jose A; Selinus, Olle

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort. PMID:16555612

  19. The Importance of a Class of Secondary Relaxation Process in Glass-Forming Liquids

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Kaminska, E.; Kaminski, K.; Ngai, K. L.

    2006-05-01

    Broadband dielectric spectroscopy was employed to study the relaxation dynamics of glass-forming isoeugenol. Above Tg, the dielectric spectra exhibit an excess wing on the high-frequency side of the primary ?-relaxation as well as an additional faster (?) process. As the temperature is lowered below Tg, the excess wing is transformed into a distinctly resolved ?-peak. Analysis of the spectra using the Coupling Model confirms that the ?-peak and its parent excess wing is the genuine Johari-Goldstein relaxation of isoeugenol.

  20. Competition between Diffusion and Fragmentation: An Important Evolutionary Process of Nature

    NASA Astrophysics Data System (ADS)

    Ferkinghoff-Borg, Jesper; Jensen, Mogens H.; Mathiesen, Joachim; Olesen, Poul; Sneppen, Kim

    2003-12-01

    We investigate systems of nature where the common physical processes diffusion and fragmentation compete. We derive a rate equation for the size distribution of fragments. The equation leads to a third order differential equation which we solve exactly in terms of Bessel functions. The stationary state is a universal Bessel distribution described by one parameter, which fits perfectly experimental data from two very different systems of nature, namely, the distribution of ice-crystal sizes from the Greenland ice sheet and the length distribution of ? helices in proteins.

  1. On the Importance of an Automated and Modular Solar Image Processing Tool

    NASA Astrophysics Data System (ADS)

    Shahamatnia, E.; Dorotovi?, I.; Fonseca, J.; Ribeiro, R.

    2014-04-01

    Developing sophisticated software tools is essential to support studies of solar activity evolution, climate change understanding and space weather prediction. With new space missions such as SDO, solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools, which enable automatic and efficient data processing and manipulation. In this work, we argue that a modular system design is required to achieve a stable, extendable and comprehensive solar feature tracking tool.

  2. Introduction to ore geology

    SciTech Connect

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

  3. GEOLOGY, B.S.G. GEOLOGY OPTION

    E-print Network

    Hamburger, Peter

    GEOLOGY, B.S.G. GEOLOGY OPTION (Fall 2015-Summer 2016) IPFW Residency Requirements: ____ 32 credits GEOLOGY BSG CORE COURSES (66 credits) *Note: grades of C- or better required in GEOL courses/2.0 GPA ______ 3 - 5 Credits in Geology or Geography with Laboratory (Select 1 of the following): ___3 GEOL G103

  4. Cold plasma processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.; Bullard, D.; Ortega, R.

    1991-01-01

    The utilization of a cold or nonequilibrium plasma in chlorination processing is discussed. Titanium dioxide (TiO2) was successfully chlorinated at temperatures between 700 and 900 C without the aid of carbon. In addition to these initial experiments, a technique was developed for determining the temperature of a specimen in a plasma. Development of that technique has required evaluating the emissivity of TiO2, ZrO2, and FeOTiO2 and analyzing the specimen temperature in a plasma as a function of both power absorbed by the plasma and the pressure of the plasma. The mass spectrometer was also calibrated with TiCl4 and CCl4 vapor.

  5. The Importance of Water for High Fidelity Information Processing and for Life

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Pohorille, Andrew

    2011-01-01

    Is water an absolute prerequisite for life? Life depends on a variety of non-covalent interactions among molecules, the nature of which is determined as much by the solvent in which they occur as by the molecules themselves. Catalysis and information processing, two essential functions of life, require non-covalent molecular recognition with very high specificity. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g ., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity > 107 : 1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. An electrostatic molecular complex representing 3 units of information (e.g., 3 base pairs) with specificity > 107 per unit has a stability in non-polar solvent comparable to that of a carbon-carbon bond at room temperature. These considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing, and can therefore be considered a critical prerequisite for life.

  6. The importance of water for high fidelity information processing and for life

    NASA Astrophysics Data System (ADS)

    Hoehler, T. M.; Pohorille, A.

    2011-12-01

    Is water an absolute prerequisite for life? Life depends on a variety of non-covalent interactions among molecules, the nature of which is determined as much by the solvent in which they occur as by the molecules themselves. Catalysis and information processing, two essential functions of life, require non-covalent molecular recognition with very high specificity. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity of approximately 10^7:1 at each position, for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. An electrostatic molecular association representing 3 units of information (e.g., 3 base pairs) with specificity of 10^7 per unit has a stability in non-polar solvent comparable to that of a carbon-carbon bond at room temperature. These considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing, and can therefore be considered a critical prerequisite for life.

  7. Spray granulation: importance of process parameters on in vitro and in vivo behavior of dried nanosuspensions.

    PubMed

    Figueroa, Carlos E; Bose, Sonali

    2013-11-01

    The use of fluid bed granulation for drying of pharmaceutical nanoparticulates on micron-sized granule substrates is a relatively new technique, with limited understanding in the current literature of the effects of process parameters on the physical properties of the dried nanoparticle powders. This work evaluated the effects of spray mode, spray rate and atomizing pressure for spray granulation of drug nanosuspensions through a systematic study. Naproxen and a proprietary Novartis compound were converted into nanosuspensions through wet media milling and dried onto a mannitol based substrate using spray granulation. For naproxen, various physical properties of the granules, as well as the in vitro re-dispersion and dissolution characteristics of the nano-crystals, were measured. It was found that the spray mode had the most drastic effect, where top spray yielded smaller re-dispersed particle sizes and faster release rates of drug from granules than bottom spray. This was attributed to the co-current spraying in bottom spray resulting in denser, homogenous films on the substrate. Similar in vitro results were obtained for the proprietary molecule, Compound A. In vivo studies in beagle dogs with Compound A showed no significant difference between the liquid and the dried forms of the nanosuspension in terms of overall AUC, differences were observed in the tmax which correlated with the rank ordering observed from the in vitro dissolution profiles. These findings make spray granulation amenable to the production of powders with desired processing and handling properties, without compromising the overall exposure of the compound under investigation. PMID:23916460

  8. United States Geological Survey Geospatial Information Response

    E-print Network

    1 United States Geological Survey Geospatial Information Response Standard Operating Procedures May 20, 2013 Executive Summary The Geospatial, reporting requirements, and business processes for acquiring and providing geospatial

  9. Do geological or climatic processes drive speciation in dynamic archipelagos? The tempo and mode of diversification in Southeast Asian shrews

    E-print Network

    Esselstyn, Jacob Aaron; Timm, Robert M.; Brown, Rafe M.

    2009-10-01

    of Southeast Asian shrews (Crocidura) to examine geographic and temporal processes of diversification. In general, diversification has taken place in allopatry following the colonization of new areas. Sulawesi provides an exception, where we cannot reject...

  10. On the importance of being bilingual: word stress processing in a context of segmental variability.

    PubMed

    Abboub, Nawal; Bijeljac-Babic, Ranka; Serres, Josette; Nazzi, Thierry

    2015-04-01

    French-learning infants have language-specific difficulties in processing lexical stress due to the lack of lexical stress in French. These difficulties in discriminating between words with stress-initial (trochaic) and stress-final (iambic) patterns emerge by 10months of age in the easier context of low variability (using a single item pronounced with a trochaic pattern vs. an iambic pattern) as well as in the more challenging context of high segmental variability (using lists of segmentally different trochaic and iambic items). These findings raise the question of stress pattern perception in simultaneous bilinguals learning French and a second language using stress at the lexical level. Bijeljac-Babic, Serres, Höhle, and Nazzi (2012) established that at 10 months of age, in the simpler context of low variability, such bilinguals have better stress discrimination abilities than French-learning monolinguals. The current study explored whether this advantage extends to the more challenging context of high segmental variability. Results first establish stress pattern discrimination in a group of bilingual 10-month-olds learning French and one language with (variable) lexical stress, but not in French-learning 10-month-old monolinguals. Second, discrimination in bilinguals appeared not to be affected by the language balance of the infants, suggesting that sensitivity to stress patterns might be maintained in these bilingual infants provided that they hear at least 30% of a language with lexical stress. PMID:25644083

  11. Active processes on a mixed clastic carbonate Brazilian shelf margin: Importance for hydrocarbon exploration in turbidites

    SciTech Connect

    Cainelli, C. )

    1991-03-01

    The search for subtle hydrocarbon accumulations in turbidite systems requires additional approaches for more successful exploration, particularly when direct recognition on seismic lines is difficult. This includes the determination and understanding of processes controlling sand distribution on the shelf and the mapping of sand pathways from the shelf to the slop/basin that can guide efforts to look for more favorable sites for turbidite sandstone deposition. The approach can be exemplified in the Sergipe-Alagoas basin, on the Brazillian Atlantic passive margin. The section analyzed is the Piacabucu Formation, a thick seaward prograding wedge composed of coastal sandstones and shelf edge carbonates on a narrow shelf and slope-basin shales with turbidite lenses. Waves and currents control the redistribution of sediments transported to the shelf by rivers. More wave energy is expended in ten hours in the San Francisco delta than in an entire year in the Mississippi delta. Such environment precludes deposition of mud on the shelf, but it stimulates the development of shelf edge carbonates. Rimed carbonates along the shelf break serve as a barrier for downslope movements of coarse-grained sediment, where turbidites are oil targets. The search for gaps in the carbonate barrier which can tap the behind-barrier sands is critical for sand-rich turbidite development. It is believed that canyons create these gaps and act as active turbidity current routes.

  12. Results from an International Simulation Study on Coupled Thermal,Hydrological, and Mechanical (THM) Processes near Geological NuclearWaste Repositories

    SciTech Connect

    Rutqvist, Jonny; Rutqvist, J.; Barr, D.; Birkholzer, J.T.; Chijimatsu, M.; Kolditz, O.; Liu, Q.-S; Oda, Y.; Wang, W.; Zhang, C.-Y.

    2007-10-23

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  13. Brines in Crustal Processes: Important Roles Inferred From Experimental Studies (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, R. C.; Manning, C. E.

    2009-12-01

    Concentrated salt solutions are increasingly implicated as active agents in many fluid-mediated deep- and mid-crust processes, including rock-melting, charnockitic alteration, trace-element depletion and enrichment, regional metasomatism including dehydration and rehydration, albitization, deep-crustal oxidation, and formation of economic mineral deposits. Unique properties of saline aqueous fluids at high P and T, recently revealed by experimental work, provide new explanations for these metasomatic features and encourage further search for a brine connection in other outstanding problems of metamorphism. Specific properties of high P-T NaCl solutions favorable for deep-crustal metasomatism are high solubility for some rock-forming components, especially CaO and FeO, even at high salt concentration, very low H2O activity as a consequence of pressure-induced dissociation, allowing compatibility with anhydrous (granulite facies) mineral assemblages, and high ability to infiltrate mineral grain boundaries. The high affinity of alkali chloride brines for CaO can explain trace element mobility in high grade metamorphism, by virtue of the high solubility of apatite, and the puzzling phenomenon of subsolidus charnockitic alteration, as in South India, in which orthopyroxene is formed from the incongruent dissolution of calcic amphibole. The great pressure effect on lowering H2O activity in concentrated pore-fluid brines causes fluid-present melting points of crustal rocks to swerve sharply to higher temperatures with increasing depth, in contrast to the behavior in the presence of pure H2O. This fact could account for the formation of swarms of granite intrusions in shear-zone-related settings, such as the Caledonide granites of Scotland and northern Ireland. It is postulated that salty solutions of deep-seated origin inhibit melting as they rise through the lower crust, but induce large-scale melting at mid-crust levels because of increase of H2O activity by release of pressure. Sulfide ore deposits of various kinds including the porphyry Cu-Mo ores can be explained by the action of CaSO4-bearing brines of magmatic origin. The changes in composition of Cl-rich fluids in contact with feldspathic rocks with falling temperature could explain regional albitization in the lower grade portions of the great Precambrian metamorphic belts such as the Limpopo Belt of South Africa. Of the several possible sources of concentrated salty fluids, the most appealing for wide application is effluents from volatile-rich basaltic intrusions, which also provide heat for regional metamorphism and temperature gradients convenient for geochemical segregation and ore mineral accumulation.

  14. Principles of nuclear geology

    SciTech Connect

    Aswathanarayana, U.

    1985-01-01

    This book treats the basic principles of nuclear physics and the mineralogy, geochemistry, distribution and ore deposits of uranium and thorium. The application of nuclear methodology in radiogenic heat and thermal regime of the earth, radiometric prospecting, isotopic age dating, stable isotopes and cosmic-ray produced isotopes is covered. Geological processes, such as metamorphic chronology, petrogenesis, groundwater movement, and sedimentation rate are focussed on.

  15. Precise determination of ?88Sr in rocks, minerals, and waters by double-spike TIMS: A powerful tool in the study of chemical, geologic, hydrologic and biologic processes

    USGS Publications Warehouse

    Neymark, Leonid A.; Premo, Wayne R.; Mel'nikov, Nikolay N.; Emsbo, Poul

    2014-01-01

    We present strontium isotopic (88Sr/86Sr and 87Sr/86Sr) results obtained by 87Sr–84Sr double spike thermal ionization mass-spectrometry (DS-TIMS) for several standards as well as natural water samples and mineral samples of abiogenic and biogenic origin. The detailed data reduction algorithm and a user-friendly Sr-specific stand-alone computer program used for the spike calibration and the data reduction are also presented. Accuracy and precision of our ?88Sr measurements, calculated as permil (‰) deviations from the NIST SRM-987 standard, were evaluated by analyzing the NASS-6 seawater standard, which yielded ?88Sr = 0.378 ± 0.009‰. The first DS-TIMS data for the NIST SRM-607 potassium feldspar standard and for several US Geological Survey carbonate, phosphate, and silicate standards (EN-1, MAPS-4, MAPS-5, G-3, BCR-2, and BHVO-2) are also reported. Data obtained during this work for Sr-bearing solids and natural waters show a range of ?88Sr values of about 2.4‰, the widest observed so far in terrestrial materials. This range is easily resolvable analytically because the demonstrated external error (±SD, standard deviation) for measured ?88Sr values is typically ?0.02‰. It is shown that the “true” 87Sr/86Sr value obtained by the DS-TIMS or any other external normalization method combines radiogenic and mass-dependent mass-fractionation effects, which cannot be separated. Therefore, the “true” 87Sr/86Sr and the ?87Sr parameter derived from it are not useful isotope tracers. Data presented in this paper for a wide range of naturally occurring sample types demonstrate the potential of the ?88Sr isotope tracer in combination with the traditional radiogenic 87Sr/86Sr tracer for studying a variety of biological, hydrological, and geological processes.

  16. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network.

    PubMed

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-04-01

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835

  17. A Handbook for Geology Students Why study Geology?.............................................................................................3

    E-print Network

    Thaxton, Christopher S.

    1 A Handbook for Geology Students #12;2 Contents Why study Geology ..................................................................................7 Why Appalachian Geology?................................................................................10 Geology Faculty and Staff

  18. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    NASA Astrophysics Data System (ADS)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial nitrification-anammox may play an important role in anammox nitrogen removal in the Cape Fear River Estuary.

  19. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    SciTech Connect

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  20. PHYSICAL GEOLOGY LABORATORY MANUAL

    E-print Network

    Merguerian, Charles

    PHYSICAL GEOLOGY LABORATORY MANUAL Geology 001 Eleventh Edition by Professors Charles Merguerian and J Bret Bennington Department of Geology Hofstra University © 2010 #12;ii Table of Contents Lab and Find Out More about Geology at Hofstra Email: Geology professors can be contacted via Email: Full

  1. Radiometric dating in geology

    NASA Astrophysics Data System (ADS)

    Pankhurst, R. J.

    1980-11-01

    The method of dating rocks and minerals is known as geochronology. Although in principle this term could be applied to estimation of relative ages according to traditional geological observation, it is nowadays usually restricted to the quantitative measurement of geological time using the constant-rate natural process of radioactive decay. 14C dating is a technique based on measuring the residual radioactivity of this isotope which decays exponentially from the time of death of organisms which extract it from the atmosphere (e.g. when a living tree becomes simply 'wood'). The halflife of this decay is only 5600 years. Even using pre-concentration techniques and highly sensitive detectors, the practical range of the dating method does not extend back beyond about 100000 years-a period utterly insignificant in terms of the geological evolution of the Earth, which extends over the past 4500 million years. For geological dating one requires naturally occurring elements with much longer halflives. Most of the handful of appropriate decay schemes are listed. Most of the parent elements are rare metal constituents in the bulk chemical composition of the Earth. For such 'trace' elements it is generally convenient to express their concentration in natural materials in parts per million by weight (ppm) and even in the one case of a fairly common element (potassium) only a very small proportion occurs as the radioactive 40K. Also, some of the halflives are very long, even by geological reckoning, so that the actual level of natural radioactivity is rarely more than a few disintegrations per minute per gram.

  2. Surface roughness and geological mapping at sub-hectometer scale from the High

    E-print Network

    Cord, Aurélien

    at all scales provides insights into geological processes. Complementary of the analysis of local for different examples for which the geological processes are identified and the geological units are mapped and characterized in terms of roughness. Key words: Geological Processes, Impact Processes, Image Processing, Mars

  3. Geological pattern formation by growth and dissolution in aqueous systems

    SciTech Connect

    Paul Meakin

    2010-03-01

    Although many geological processes take place on time scales that are very long compared with the human experience, essentially all geological processes, fast or slow, are far from equilibrium processes. Surprisingly often, geological processes lead to the formation of quite simple and distinctive patterns, which hint at an underlying simplicity in many complex geological systems.. The ability to predict the seasons was critically important to early human society, and Halley’s prediction of the return of the comet that bears his name is still considered to be a scientific milestone. Spatial patterns have also attracted attention because of their aesthetic appeal, which depends in subtle ways on a combination of regularity and irregularity. In recent decades, rapid growth in the capabilities of digital computers has facilitated the simulation of pattern formation processes, and computer simulations have become an important tool for evaluating theoretical concepts and for scientific discovery. Computer technology in combination with other technologies such as high resolution digital cameras, scanning microprobes (atomic force microscopy AFM), confocal microscopy, and scanning tunneling microscopy (STM), for example) has facilitated the quantitative characterization of patterns over a wide range of scales and has enabled rapid advances in our ability to understand the links between large scale pattern formation and microscopic processes. The ability to quantitatively characterize patterns is important because it enables a more rigorous comparison between the predictions of computer models and real world patterns and their formation.In some cases, the idea that patterns with a high degree of regularity have simple origins appears to be justified, but in other cases, such as the formation of almost perfectly circular stone rings due to freeze-thaw cycles simple patterns appear to be the consequence of quite complex processes. In other cases, it has been shown that very simple non-linear processes can lead to extremely complicated patterns, and that some apparently complex disordered systems can be described quantitatively in terms of simple fractal models.

  4. Geological Survey research, 1975

    USGS Publications Warehouse

    U.S. Geological Survey

    1975-01-01

    'Geological Survey Research 1975 ' is the 16th annual synopsis of the results of U.S. Geological Survey investigations. These studies are largely directed toward the development of knowledge that will assist the Nation to use and conserve the land and its physical resources wisely. They are wide ranging in scope and deal with almost every facet of solid-earth science and fact finding. Many of the studies are continuations of investigations that have been in progress for several years. But others reflect the increased attention being given to problems that have assumed greater importance in recent years--problems relating to mineral fuels and mineral resources, water quality, environmental impact of mineral resources, land-use analysis, earthquake hazards reduction, subsidence, and the applications of LANDSAT data, to cite a few examples. (Woodard-USGS)

  5. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    USGS Publications Warehouse

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  6. Geologic Technician New Curriculum

    ERIC Educational Resources Information Center

    Karp, Stanley E.

    1970-01-01

    Describes a developing two-year geologic technician program at Bakersfield College in which a student may major in five areas - geologic drafting, land and legal, geologic assistant, engineering or paleontology. (RR)

  7. Community Perceptions of Geologic Sequestration

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, G. M.; Farrell, A.; Ray, I.

    2007-12-01

    Political momentum for mitigating climate change through the use of large-scale energy technologies such as geologic sequestration is growing. This paper explores the views of communities living near an actual or potential geologic sequestration project site. Given the potential importance of geologic sequestration to U.S. energy policy, what might explain and influence the views of this technology by the community-members. Through focus groups and one-on-one interviews, we gathered the views of two communities in California's Central Valley. One community close to a Department of Energy sponsored geologic sequestration pilot-project and another similarly located community that is not actually a project site. Our analysis combined a review of the history of the communities with other technologies and their social and economic indicators with the results of the focus groups and interviews. The results suggest that the sense of community empowerment, as contextualized by the history of the community and socio-economic indicators, is an important indicator of positive views of geologic sequestration. In addition, the results indicate community members prefer to be informed about geologic sequestration from a variety of sources (e.g., academia and industry).

  8. Genome-Wide Functional Profiling Identifies Genes and Processes Important for Zinc-Limited Growth of Saccharomyces cerevisiae

    PubMed Central

    Loguinov, Alex V.; Zimmerman, Ginelle R.; Vulpe, Chris D.; Eide, David J.

    2012-01-01

    Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ?4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency. PMID:22685415

  9. Geology of the Caribbean

    USGS Publications Warehouse

    Dillon, William P.; Edgar, N.T.; Scanlon, K.M.; Klitgord, Kim D.

    1987-01-01

    The Venezuelan and Colombian basins are located on the Caribbean Plate whilst the Yucatan basin is on the North American Plate. The processes occurring at the boundaries between the Caribbean Plate and the adjacent North American, South American and Cocos Plates, and the resulting surface features and patterns of volcanic and earthquake activity are described. Most of the Caribbean area is floored by atypical oceanic crust and its most valuable main geologic resources identified so far are petroleum, together with sand and gravel. Geological research is being carried out with techniques for broad-range swath imaging of the seafloor, such as GLORIA, and for directly measuring the movement between plates. -J.G.Harvey

  10. Magellan stereo images and Venusian geology

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Saunders, R. S.; Plaut, Jeffrey J.; Parker, T. J.

    1992-01-01

    Areas of Venus imaged by Magellan radar with multiple viewing conditions provide unique data that will contribute to the solution of venusian geologic problems and provide a basis for quantitative comparison of venusian landforms with those on other planetary bodies. Three sets of images with different viewing conditions have been acquired: (1) left-looking with variable incidence angles (cycle 1 profile), (2) right-looking with nearly constant incidence angles (cycle 2 profile), and (3) left-looking with variable incidence angles that are almost always smaller than those in (1) (cycle 3 profiles). The unique data provided by paired images of the same scene with different incidence angles arises from image displacements caused by the relief of individual landforms at scales comparable to the ground-range and azimuth resolutions of the images. There are two aspects of the data: (1) Stereopsis achieved by simultaneous viewing of paired left-looking images of the same scene permits three-dimensional perception and interpretation of the morphologies of landforms at resolutions much finer than the altimetry footprints. (2) Measurements of differences of image displacements (parallax) on paired images with known imaging geometries provide quantitative estimates of the relief and shapes of landforms. The potential scientific contributions of the data can be grouped into two interrelated classes: (A) geologic mapping, analysis, and interpretation and (B) topical studies that involve topographic measurements. Stereopsis, without quantitative measurements, enhances geologic mapping, analysis, and interpretation of the rock units of Venus to a degree that cannot be overestimated. In geologic mapping, assemblages of landforms, assessments of backscatter and variations in backscatter, and fine-scale topography are used to define and characterize geologic map units that represent laterally continuous deposits or rock units. Stereopsis adds the important dimension of local relief for characterization of geologic units at a scale that is not possible with Magellan altimetry or products derived from the altimetry. Relative ages of the geologic units are determined using the well-known principles of superposition and intersection. Here, the perception of relief is invaluable because superposition relations among the geological units are more readily and clearly established. The recognition of folds, faults, and fault systems, regardless of their orientations, is facilitated with stereopsis so that sequences of deformation of the geologic units can be determined and structural analyses vastly improved. Shapes of landforms are readily perceived so that they can be properly interpreted. The end result of the mapping, analyses, and interpretations is a geologic history of Venus that includes the sequences of formation and deformation of various geologic units. Measurements of relief at the finest scale possible are necessary for numerous topical studies. Standard altimetry will provide the necessary information on the relief of most large landforms, but it tends to underestimate the relief of small landforms and distorts their shapes. Although special processing of the altimeter echoes improves the estimates of the relief and shapes of some landforms, there are uncertainties in the interpretations of the echoes. Examples of topical studies requiring measurements of relief are given.

  11. Geodiversity: Exploration of 3D geological model space

    NASA Astrophysics Data System (ADS)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine important geometrical characteristics. The configuration of the model space is determined through identifying ‘outlier’ model examples, which potentially represent undiscovered model ‘species’.

  12. Evaluation of three electronic report processing systems for preparing hydrologic reports of the U.S Geological Survey, Water Resources Division

    USGS Publications Warehouse

    Stiltner, G.J.

    1990-01-01

    In 1987, the Water Resources Division of the U.S. Geological Survey undertook three pilot projects to evaluate electronic report processing systems as a means to improve the quality and timeliness of reports pertaining to water resources investigations. The three projects selected for study included the use of the following configuration of software and hardware: Ventura Publisher software on an IBM model AT personal computer, PageMaker software on a Macintosh computer, and FrameMaker software on a Sun Microsystems workstation. The following assessment criteria were to be addressed in the pilot studies: The combined use of text, tables, and graphics; analysis of time; ease of learning; compatibility with the existing minicomputer system; and technical limitations. It was considered essential that the camera-ready copy produced be in a format suitable for publication. Visual improvement alone was not a consideration. This report consolidates and summarizes the findings of the electronic report processing pilot projects. Text and table files originating on the existing minicomputer system were successfully transformed to the electronic report processing systems in American Standard Code for Information Interchange (ASCII) format. Graphics prepared using a proprietary graphics software package were transferred to all the electronic report processing software through the use of Computer Graphic Metafiles. Graphics from other sources were entered into the systems by scanning paper images. Comparative analysis of time needed to process text and tables by the electronic report processing systems and by conventional methods indicated that, although more time is invested in creating the original page composition for an electronically processed report , substantial time is saved in producing subsequent reports because the format can be stored and re-used by electronic means as a template. Because of the more compact page layouts, costs of printing the reports were 15% to 25% less than costs of printing the reports prepared by conventional methods. Because the largest report workload in the offices conducting water resources investigations is preparation of Water-Resources Investigations Reports, Open-File Reports, and annual State Data Reports, the pilot studies only involved these projects. (USGS)

  13. Old Geology and New Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 28 May 2003

    Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.

    Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Mass Wasting and Ground Collapse in Terrains of Volatile-Rich Deposits as a Solar System-Wide Geological Process: The Pre-Galileo View

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Mellon, Michael T.; Zent, Aaron P.

    1996-01-01

    The polar terrains of Mars are covered in many places with irregular pits and retreating scarps, as are some of the surfaces of the outer-planet satellites. These features are interpreted by us as diagnostic of exogenic degradation due to the loss of a volatile rock-forming matrix or cement. In this study we propose that sublimation degradation is a plausible Solar Systemwide geological process. Candidate examples have been identified on Mars, Io, and Triton, and possibly Europa and Ganymede. We envision this process as having two end-member expressions (pits and scarps), for which we hypothesize two end-member mechanisms (massive localized lenses and areally extensive basal layers). In this study we focus on the role this process may play on the surfaces of the galilean satellites. Our principle modeling results are that for these satellites, H2S, CO2, and NH3 are the only viable candidate volatiles for sublimation degradation of landforms, in light of galilean satellite cosmochemistry. For Io's polar regions only H2S, and then only from slopes that face the Sun and have thin lags, is volatile enough to cause the observed sublimation-induced erosion at those latitudes. SO2 is not a viable candidate as an agent of erosion, especially for these polar landforms. In the case of Europa, only CO2 and H2S are viable candidates (given surface age constraints). Both species could be efficient eroders in nonpolar regions. H2S could generate erosion within the polar regions if the deposition and erosion conditions were essentially identical as those we invoked for Io's polar regions. For Ganymede (and Callisto) NH3 might be an agent of erosion in equatorial terrains of great age. The sublimation of CO2 and H2S is much more robust than NH3. The much slower rate of sublimation degradation from NH3 might be detectable by Galileo and used as a compositional indicator.

  15. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China

    NASA Astrophysics Data System (ADS)

    Liu, Jiajun; Liu, Chonghao; Carranza, Emmanuel John M.; Li, Yujie; Mao, Zhihao; Wang, Jianping; Wang, Yinhong; Zhang, Jing; Zhai, Degao; Zhang, Huafeng; Shan, Liang; Zhu, Laimin; Lu, Rukui

    2015-05-01

    The western Qinling, belonging to the western part of the Qinling-Dabie-Sulu orogen between the North China Block and South China Block, is one of the most important gold regions in China. Isotopic dates suggest that the Mesozoic granitoids in the western Qinling region emplaced during the Middle-Late Triassic, and the deposits formed during the Late Triassic. Almost all gold deposits in the western Qinling region are classified as orogenic, Carlin-type, and Carlin-like gold deposits, and they are the products of Qinling Orogenesis caused by the final collision between the North China Block and the South China Block. The early subduction of the Mian-Lue oceanic crust and the latter collision between South Qinling Terrane and the South China Block along the Mian-Lue suture generated lithosphere-scale thermal anomalies to drive orogen-scale hydrothermal systems. The collision-related magmatism also provided heat source for regional ore-forming fluids in the Carlin-like gold deposits. Orogenic gold deposits such as Huachanggou, Liziyuan, and Baguamiao lie between the Shang-Dan and Mian-Lue sutures and are confined to WNW-trending brittle-ductile shear zones in Devonian and Carboniferous greenschist-facies metasedimentary rocks that were highly-deformed and regionally-metamorphosed. These deposits are typical orogenic gold deposits and formed within a Late Triassic age. The deposits show a close relationship between Au and Ag. Ores contain mainly microscopic gold, and minor electrum and visible gold, along with pyrite. The ore-forming fluids were main metamorphic fluids. Intensive tectonic movements caused by orogenesis created fluid-migrating channels for precipitation locations. Although some orogenic gold deposits occur adjacent to granitoids, mineralization is not synchronous with magmatism; that is, the granitoids have no genetic relations to orogenic gold deposits. As ore-forming fluids converged into dilated fractures during the extension stage of orogenesis, changes of physico-chemical conditions resulted in fluid immiscibility that played a key role in gold and sulfide deposition. The geochemical and mineralogical characteristics of the Carlin-type deposits in the western Qinling region are similar to those in the Carlin trend, Nevada, USA. Gold deposits such as La'erma and Jinlongshan occur mostly in the southeastern margin of the western Qinling regionic region whereas some deposits occur in its eastern part. These deposits are hosted in slightly metamorphosed Cambrian to Triassic sedimentary rocks, showing structurally- and stratigraphically-controlled features. The deposits mainly contain submicroscopic and microscopic gold in arsenian pyrite and arsenopyrite, with characteristic ore-forming elements of Au-As-Sb-Ba. The ore-forming fluids are early-stocked formation water and later-recharged meteoric water. Meteoric water apparently evolved in ore-forming fluids by circulation, indicating the extensional setting, and led to the deposition of Au and other elements in cool reactive permeable rocks at shallow levels, forming the disseminated ores. Carlin-like gold deposits occur between the Shang-Dan suture and the Fengxian-Zhen'an fault. The host rocks are mainly sedimentary rocks that underwent reconstruction through reworking by structural metamorphism. These deposits are structurally controlled by brittle-ductile shear zone and occur adjacent to granitoid plutons. The most important characteristic that differ to the orogenic and Carlin-type gold deposits is the genetic relationship with the synchronous magmatism. Gold occurs mainly as microscopic gold. Pyrite and arsenian pyrite can be recognized as gold-bearing minerals. The ore-forming fluids are main magmatic water mixed with metamorphic and/or formation water. Similar to orogenic gold deposits, fluid immiscibility caused the deposition of gold Carlin-like gold deposits.

  16. Quality assurance plan for the collection and processing of sediment data by the U.S. Geological Survey, Water Resources Division

    USGS Publications Warehouse

    Knott, J.M.; Glysson, G.D.; Malo, B.A.; Schroeder, L.J.

    1993-01-01

    The U.S. Geological Survey sediment data quality assurance plan identifies and explains required quality assurance and suggested quality control practices. The approach is to subdivide the process for obtaining sediment data into 3 parts: (1) field, (2) office, and (3) laboratory operations. The report also summarizes recommended goals for each subcategory. The quality assurance and quality control practices are described by stating the minimum acceptable activities that a district should conduct. For example, the plan describes field calibration of thermometers and standards used to calibrate a thermometer. The plan also proposes corrective actions if the quality control procedures identify a problem. The plan describes the formal reports prepared by a district that describe the completeness of sediment data and presents an evaluation of data obtained by the quality assurance program. Also described in the plan are the external (non-district) reviews that are needed to examine district sediment operations for conformity with district quality assurance plans and national quality assurance programs.

  17. GeoTemp™ 1.0: A MATLAB-based program for the processing, interpretation and modelling of geological formation temperature measurements

    NASA Astrophysics Data System (ADS)

    Ricard, Ludovic P.; Chanu, Jean-Baptiste

    2013-08-01

    The evaluation of potential and resources during geothermal exploration requires accurate and consistent temperature characterization and modelling of the sub-surface. Existing interpretation and modelling approaches of 1D temperature measurements are mainly focusing on vertical heat conduction with only few approaches that deals with advective heat transport. Thermal regimes are strongly correlated to rock and fluid properties. Currently, no consensus exists for the identification of the thermal regime and the analysis of such dataset. We developed a new framework allowing the identification of thermal regimes by rock formations, the analysis and modelling of wireline logging and discrete temperature measurements by taking into account the geological, geophysical and petrophysics data. This framework has been implemented in the GeoTemp software package that allows the complete thermal characterization and modelling at the formation scale and that provides a set of standard tools for the processing wireline and discrete temperature data. GeoTempTM operates via a user friendly graphical interface written in Matlab that allows semi-automatic calculation, display and export of the results. Output results can be exported as Microsoft Excel spreadsheets or vector graphics of publication quality. GeoTemp™ is illustrated here with an example geothermal application from Western Australia and can be used for academic, teaching and professional purposes.

  18. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  19. Objective Subsurface Geological Modeling using Geological Columns - A case study for the Kisarazu Distinct, Japan

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nakazawa, T.

    2013-12-01

    Geological models of subsurface structure play an important role in disaster assessment, environmental preservation, and underground utilization. These models are often constructed subjectively based on geological data obtained from field survey. However, reliability of subjective model depends on modeler's knowledge and experience as well as on quality of basic data. In order to ensure a more stable reliability of the model, objective approach is necessary. The purpose of this study is to establish an objective geological modeling method. For the purpose of this study, we constructed a subsurface geological model focusing on mathematical treatment of stratigraphy. Study area is the Kisarazu distinct, in the middle part of Chiba Prefecture, Japan. Basic data for modeling are 44 geological columns. In the modeling, firstly, we constructed a Logical Model of Geological Structure (LMGS) that defines a positional relation between geological boundary surfaces and geological units. The LMGS is objectively given by recurrence formula derived from a sequence of geological events arranged in chronological order. Secondly, we generated Digital Elevation Models (DEMs) of geological boundary surfaces using geological columns. Thirdly, we constructed an objective geological model using the LMGS and the DEMs. Finally, we visualized the model in 2D and 3D using GRASS GIS. As a result, in the areas with high number of geological columns, geological map and geological cross-sections derived from objective model were in good agreement with the ones derived from subjective model reported in other studies. In the areas with low number of geological columns, the objective map and cross-sections were somewhat different from subjective ones. In conclusion, the results indicate that objective model may give new findings about subsurface structure. In addition, the objective model gives a more stable reliability than the subjective model because the former ensures traceability of modeling procedures. The LMGS is unfit for complicated geological structures like lens. For the solution of this problem, we need to improve theoretical base of the LMGS.

  20. Arsenic in New Jersey Coastal Plain streams, sediments, and shallow groundwater: effects from different geologic sources and anthropogenic inputs on biogeochemical and physical mobilization processes

    USGS Publications Warehouse

    Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.

    2013-01-01

    Arsenic (As) concentrations in New Jersey Coastal Plain streams generally exceed the State Surface Water Quality Standard (0.017 micrograms per liter (µg/L)), but concentrations seldom exceed 1 µg/L in filtered stream-water samples, regardless of geologic contributions or anthropogenic inputs. Nevertheless, As concentrations in unfiltered stream water indicate substantial variation because of particle inputs from soils and sediments with differing As contents, and because of discharges from groundwater of widely varying chemistry. In the Inner Coastal Plain, streams draining to lower reaches of the Delaware River traverse As-rich glauconitic sediments of marine origin in which As contents typically are about 20 milligrams per kilogram (mg/kg) or greater. In some of these sedimentary units, As concentrations exceed the New Jersey drinking-water maximum contaminant level (5 µg/L) in shallow groundwater that discharges to streams. Microbes, fueled by organic carbon beneath the streambed, reduce iron (Fe) and As, releasing As and Fe into solution in the shallow groundwater from geologic materials that likely include (in addition to glauconite) other phyllosilicates, apatite, and siderite. When the groundwater discharges to the stream, the dissolved Fe and As are oxidized, the Fe precipitates as a hydroxide, and the As sorbs or co-precipitates with the Fe. Because of the oxidation/precipitation process, dissolved As concentrations measured in filtered stream waters of the Inner Coastal Plain are about 1 µg/L, but the total As concentrations (and loads) are greater, substantially amplified by As-bearing suspended sediment in stormflows. In the Outer Coastal Plain, streams draining to the Atlantic Ocean traverse quartz-rich sediments of mainly deltaic origin where the As content generally is low ( With a history of agriculture in the New Jersey Coastal Plain, anthropogenic inputs of As, such as residues from former pesticide applications in soils, can amplify any geogenic As in runoff. Such inputs contribute to an increased total As load to a stream at high stages of flow. As a result of yet another anthropogenic influence, microbes that reduce and mobilize As beneath the streambeds are stimulated by inputs of dissolved organic carbon (DOC). Although DOC is naturally occurring, anthropogenic contributions from wastewater inputs may deliver increased levels of DOC to subsurface soils and ultimately groundwater. Arsenic concentrations may increase with the increases in pH of groundwater and stream water in developed areas receiving wastewater inputs, as As mobilization caused by pH-controlled sorption and desorption reactions are likely to occur in waters of neutral or alkaline pH (for example, Nimick and others, 1998; Barringer and others, 2007b). Because of the difference in As content of the geologic materials in the two sub-provinces of the Coastal Plain, the amount of As that is mobile in groundwater and stream water is, potentially, substantially greater in the Inner Coastal Plain than in the Outer Coastal Plain. In turn, streams within the Inner and Outer Coastal Plain can receive substantially more As in groundwater discharge from developed areas than from environments where DOC appears to be of natural origin.

  1. The geology of Mars

    NASA Technical Reports Server (NTRS)

    Mutch, T. A.; Arvidson, R. E.; Head, J. W., III; Jones, K. L.; Saunders, R. S.

    1976-01-01

    The book constitutes a topographic/geologic atlas of Mars compiled on the basis of data from the various Mariner missions. A large number of maps has been included which systematically describe the character and distribution of the principal landforms: craters, channels, volcanoes, and faults; also related properties such as albedo, elevation, and wind streaks. Pictures of all the important topographic features have been included. The discussion of the material is carried out with a minimum of technical detail, and Mars is examined within a context of interplanetary comparisons.

  2. Structural and stratigraphic evolution of the central Mississippi Canyon Area: interaction of salt tectonics and slope processes in the formation of engineering and geologic hazards 

    E-print Network

    Brand, John Richard

    2006-04-12

    Approximately 720 square miles of digital 3-dimensional seismic data covering the eastern Mississippi Canyon area, Gulf of Mexico, continental shelf was used to examine the structural and stratigraphic evolution of the geology in the study area...

  3. USGS Western Coastal and Marine Geology Team

    USGS Publications Warehouse

    Johnson, Sam; Gibbons, Helen

    2007-01-01

    The Western Coastal and Marine Geology Team of the U.S. Geological Survey (USGS) studies the coasts of the western United States, including Alaska and Hawai‘i. Team scientists conduct research, monitor processes, and develop information about coastal and marine geologic hazards, environmental conditions, habitats, and energy and mineral resources. This information helps managers at all levels of government and in the private sector make informed decisions about the use and protection of national coastal and marine resources.

  4. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other components of the linear management formulation to form a complete linear formulation; the formulation is then solved by use of the simplex algorithm, which is incorporated into the RMS Package. Nonlinear formulations arise for simulated conditions that include water?table (unconfined) aquifers or head?dependent boundary conditions (such as streams, drains, or evapotranspiration from the water table). Nonlinear formulations are solved by sequential linear programming; that is, repeated linearization of the nonlinear features of the management problem. In this approach, response coefficients are recalculated for each iteration of the solution process. Mixed?binary linear (or mildly nonlinear) formulations are solved by use of the branch and bound algorithm, which is also incorporated into the RMS Package. Three sample problems are provided to demonstrate the use of GWM for typical ground?water flow management problems. These sample problems provide examples of how GWM input files are constructed to specify the decision variables, objective function, constraints, and solution process for a GWM run. The GWM Process runs with the MODFLOW?2000 Global and Ground?Water Flow Processes, but in its current form GWM cannot be used with the Observation, Sensitivity, Parameter?Estimation, or Ground?Water Transport Processes. The GWM Process is written with a modular structure so that new objective functions, constraint types, and solution algorithms can be added.

  5. High-Temperature Kinetic Isotope Fraction of Geological Materials (Invited)

    NASA Astrophysics Data System (ADS)

    Richter, F. M.

    2013-12-01

    Mass transport in gases, liquids, and minerals by diffusion, and between phases by evaporation, produce kinetic isotope fractionations that in many cases are very large compared to the precision with which these fractionations are now routinely measured. This together with the fact that kinetic isotope fractionation persist at high temperatures where equilibrium fractionations become very small is an important reason for the rapid increase in the number of studies involving kinetic isotope fractionation of geologically relevant materials. Another important consideration is that kinetic fractionations derive from non-equilibrium processes that retain information regarding the path that led to the preserved state of the system. The geologically-motivated study of high-temperature kinetic isotope fractionation of silicate materials has been rapidly evolving from what one might call an early laboratory-based discovery stage to the present greater emphasis on applying stable isotopes to identify the nature of processes responsible for chemical gradients preserved in geological materials. Because the record of mass transport in geological systems is often preserved in minerals, the focus of the laboratory experiments has also been evolving from an early emphasis on silicate melts towards quantifying isotope fractionations by diffusion in major minerals such as olivines and pyroxenes. Following a brief review of the range of high-temperature kinetic isotope fractionations relevant to geology that been measured to date, I will discuss a number of recent examples of how the experimental data has been or can be used to constrain mass transport processes in natural settings. I will especially focus on cases where we have good laboratory analogues for interpreting chemical and isotopic gradients across a once molten basalt-granite contacts, zoned pyroxene and olivine grains from a variety of different settings (e.g., lava lakes, lava flows on Earth and Mars, mantle nodules) and grain boundary diffusion.

  6. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; processing, taxonomy, and quality control of benthic macroinvertebrate samples

    USGS Publications Warehouse

    Moulton, Stephen R., II; Carter, James L.; Grotheer, Scott A.; Cuffney, Thomas F.; Short, Terry M.

    2000-01-01

    Qualitative and quantitative methods to process benthic macroinvertebrate (BMI) samples have been developed and tested by the U.S. Geological Survey?s National Water Quality Laboratory Biological Group. The qualitative processing method is based on visually sorting a sample for up to 2 hours. Sorting focuses on attaining organisms that are likely to result in taxonomic identifications to lower taxonomic levels (for example, Genus or Species). Immature and damaged organisms are also sorted when they are likely to result in unique determinations. The sorted sample remnant is scanned briefly by a second person to determine if obvious taxa were missed. The quantitative processing method is based on a fixed-count approach that targets some minimum count, such as 100 or 300 organisms. Organisms are sorted from randomly selected 5.1- by 5.1-centimeter parts of a gridded subsampling frame. The sorted remnant from each sample is resorted by a second individual for at least 10 percent of the original sort time. A large-rare organism search is performed on the unsorted remnant to sort BMI taxa that were not likely represented in the sorted grids. After either qualitatively or quantitatively sorting the sample, BMIs are identified by using one of three different types of taxonomic assessment. The Standard Taxonomic Assessment is comparable to the U.S. Environmental Protection Agency Rapid Bioassessment Protocol III and typically provides Genus- or Species-level taxonomic resolution. The Rapid Taxonomic Assessment is comparable to the U.S. Environmental Protection Agency Rapid Bioassessment Protocol II and provides Familylevel and higher taxonomic resolution. The Custom Taxonomic Assessment provides Species-level resolution whenever possible for groups identified to higher taxonomic levels by using the Standard Taxonomic Assessment. The consistent use of standardized designations and notes facilitates the interpretation of BMI data within and among water-quality studies. Taxonomic identifications are quality assured by verifying all referenced taxa and randomly reviewing 10 percent of the taxonomic identifications performed weekly by Biological Group taxonomists. Taxonomic errors discovered during this review are corrected. BMI data are reviewed for accuracy and completeness prior to release. BMI data are released phylogenetically in spreadsheet format and unprocessed abundances are corrected for laboratory and field subsampling when necessary.

  7. Probing astrophysically important states in $^{26}$Mg nucleus to study neutron sources for the $s$-Process

    E-print Network

    R. Talwar; T. Adachi; G. P. A. Berg; L. Bin; S. Bisterzo; M. Couder; R. J. deBoer; X. Fang; H. Fujita; Y. Fujita; J. Gorres; K. Hatanaka; T. Itoh; T. Kadoya; A. Long; K. Miki; D. Patel; M. Pignatari; Y. Shimbara; A. Tamii; M. Wiescher; T. Yamamoto; M. Yosoi

    2015-08-23

    The $^{22}$Ne($\\alpha$,n)$^{25}$Mg reaction is the dominant neutron source for the slow neutron capture process ($s$-process) in massive stars and contributes, together with the $^{13}$C($\\alpha$,n)$^{16}$O, to the production of neutrons for the $s$-process in Asymptotic Giant Branch (AGB) stars. However, the reaction is endothermic and competes directly with the $^{22}$Ne($\\alpha,\\gamma)^{26}$Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of $^{26}$Mg near the alpha and neutron separation energies. These uncertainties are affecting the s-process nucleosynthesis calculations in theoretical stellar models. Indirect studies in the past have been successful in determining the energies, $\\gamma$-ray and neutron widths of the $^{26}$Mg states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the $\\alpha$-widths for these states. The goal of the present experiments is to identify the critical resonance states and to precisely measure the $\\alpha$-widths by $\\alpha$ transfer techniques . Hence, the $\\alpha$-inelastic scattering and $\\alpha$-transfer measurements were performed on a solid $^{26}$Mg target and a $^{22}$Ne gas target, respectively, using the Grand Raiden Spectrometer at RCNP, Osaka, Japan. Six levels (E$_x$ = 10717 keV , 10822 keV, 10951 keV, 11085 keV, 11167 keV and 11317 keV) have been observed above the $\\alpha$-threshold in the region of interest (10.61 - 11.32 MeV). The rates are dominated in both reaction channels by the resonance contributions of the states at E$_x$ = 10951, 11167 and 11317 keV. The E$_x$ =11167 keV has the most appreciable impact on the ($\\alpha,\\gamma$) rate and therefore plays an important role for the prediction of the neutron production in s-process environments.

  8. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  9. 13 CFR 120.1821 - What is the process to obtain designation as a Systemically Important Secondary Market Broker...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Systemically Important Secondary Market Broker-Dealer? 120.1821 Section 120...Systemically Important Secondary Market Broker-Dealers (SISMBD Loan Program) ...Systemically Important Secondary Market Broker-Dealer? (a) SBA will...

  10. Geology for a changing world 2010-2020-Implementing the U.S. Geological Survey science strategy

    USGS Publications Warehouse

    Gundersen, Linda C.S.; Belnap, Jayne; Goldhaber, Martin; Goldstein, Arthur; Haeussler, Peter J.; Ingebritsen, S.E.; Jones, John W.; Plumlee, Geoffrey S.; Thieler, E. Robert; Thompson, Robert S.; Back, Judith M.

    2011-01-01

    This report describes a science strategy for the geologic activities of the U.S. Geological Survey (USGS) for the years 2010-2020. It presents six goals with accompanying strategic actions and products that implement the science directions of USGS Circular 1309, 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017.' These six goals focus on providing the geologic underpinning needed to wisely use our natural resources, understand and mitigate hazards and environmental change, and understand the relationship between humans and the environment. The goals emphasize the critical role of the USGS in providing long-term research, monitoring, and assessments for the Nation and the world. Further, they describe measures that must be undertaken to ensure geologic expertise and knowledge for the future. The natural science issues facing today's world are complex and cut across many scientific disciplines. The Earth is a system in which atmosphere, oceans, land, and life are all connected. Rocks and soils contain the answers to important questions about the origin of energy and mineral resources, the evolution of life, climate change, natural hazards, ecosystem structures and functions, and the movements of nutrients and toxicants. The science of geology has the power to help us understand the processes that link the physical and biological world so that we can model and forecast changes in the system. Ensuring the success of this strategy will require integration of geological knowledge with the other natural sciences and extensive collaboration across USGS science centers and with partners in Federal, State, and local agencies, academia, industry, nongovernmental organizations and, most importantly, the American public. The first four goals of this report describe the scientific issues facing society in the next 10 years and the actions and products needed to respond to these issues. The final two goals focus on the expertise and infrastructure needed to ensure the long-term sustainability of the geological sciences in the USGS. The ultimate goal of USGS science and of the strategy laid out in this document is to contribute to the development of a sustainable society that operates in harmony with the Earth systems that society depends upon. As we begin the second decade of the 21st century, our Nation faces growing challenges in resource availability, climate and environmental change, and natural hazards. Meeting these challenges will require strong collaboration across the natural and social sciences and extensive partnerships with both the public and private sectors. The six goals described in this document represent a mix of scientific focus areas and operational necessities that together provide a comprehensive roadmap for USGS geologic science to effectively contribute to the USGS mission, providing science for a changing world.

  11. Geologic Measurements using Rover Images: Lessons from Pathfinder with Application to Mars 2001

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Haldemann, A. F. C.; Herkenhoff, K. E.

    1999-01-01

    The Pathfinder Sojourner rover successfully acquired images that provided important and exciting information on the geology of Mars. This included the documentation of rock textures, barchan dunes, soil crusts, wind tails, and ventifacts. It is expected that the Marie Curie rover cameras will also successfully return important information on landing site geology. Critical to a proper analysis of these images will be a rigorous determination of rover location and orientation. Here, the methods that were used to compute rover position for Sojourner image analysis are reviewed. Based on this experience, specific recommendations are made that should improve this process on the '01 mission.

  12. The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol

    SciTech Connect

    Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

    2010-03-15

    The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Köhler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Köhler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Köhler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The biases associated with these simplifications are compared for different supersaturations, and the variation of the biases is examined as a function of aerosol age. The results show that the simplification of internally mixed, size-independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

  13. Classroom Strategies for Introductory Geology.

    ERIC Educational Resources Information Center

    Clemons, Joan

    1991-01-01

    The author describes her use of writing assignments, small-group discussions, note-taking strategies (learning logs), and professional simulations in an introductory geology course. The learning log process consists of note taking on one side of a divided page. After taking notes, students review the notes and record their questions, reactions,…

  14. Geological rhythms and cometary impacts

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Strothers, R. B.

    1984-01-01

    Time series analysis reveals two dominant, long-term periodicities approximately equal to 32 and 260 million years in the known series of geological and biological upheavals during the Phanerozoic Eon. The cycles of these episodes agree in period and phase with the cycles of impact cratering on Earth, suggesting that periodic comet impacts strongly influence Earth processes.

  15. The Importance of Simulating Changes in Topography in Process-based Soil Erosion Modelling: Implications for Landscape Evolution Modelling

    NASA Astrophysics Data System (ADS)

    Hewett, Caspar J. M.; Wainwright, John; Parsons, Anthony J.; Cooper, James R.; Kitchener, Ben; Hargrave, Graham K.; Long, Edward J.; Onda, Yuichi; Patin, Jeremy

    2014-05-01

    A model has been developed to begin to fill the gap between existing soil-erosion and landscape-evolution models. Most soil-erosion models are high resolution, run on short time scales and are based on realistic process dynamics but do not update topography. In contrast landscape-evolution models are typically run on large areas over long periods but use highly simplified process models. In the current study an existing process-based soil-erosion model has been adapted that has been adapted to allow prediction of changes in topography in order to begin to bring these two types of model together. The model, MAHLERAN (Model for Assessing Hillslope-Landscape Erosion, Runoff And Nutrients) employs a conceptualization of soil-erosion processes which takes account of the fact that interrill flow on hillslopes is dominated by rolling or sliding along surfaces or in short steps akin to movement of bedload. Parameterizations of the different soil detachment and transport mechanisms that occur under rainfall are used to better capture the reality of soil-erosion processes. Overland flow is modelled using a kinematic wave approximation to the 2D shallow water equations combined with the Darcy-Weisbach flow equation to calculate velocity. Flow is assumed to be in direction of steepest descent in cardinal directions on a simple finite difference grid. The model includes an infiltration component based on the Smith and Parlange approach. Sediment is divided into six size classes in order to account for differing behaviour of particles of different size and is transported by splash, flow (concentrated/unconcentrated) or in suspension. Detachment is assumed to occur in one of three ways: (1) as a function of raindrop detachment alone when there no overland flow; (2) raindrop detachment modified to account for surface layer effects in the case of unconcentrated overland flow; and (3) concentrated erosion when flow is turbulent. Deposition is modelled using a transport-distance approach described by an exponential distribution function. The initial, static version of the model has been modified so that surface topography during a storm event may be updated at regular intervals or at every time step. The dynamic version of the model makes it possible to test how important topographic change is in controlling runoff and erosion processes in events of different magnitudes or over a series of consecutive events. Results from field data under natural conditions in Japan and USA and experimental data from plot-scale rainfall simulation experiments at the University of Tsukuba Large Rainfall-Simulation Facility have been used to evaluate the model. Furthermore, sensitivity analysis is carried out to assess the impacts of dynamic changes in topography on flow and particle transport more generally. The introduction of topographic change during storms provides a more realistic model of what happens in heavy storm conditions especially on steep slopes and could be used to inform the development of improved landscape-evolution models over longer simulation periods.

  16. The Importance of Simulating Changes in Topography in Process-based Soil Erosion Modelling: Implications for Landscape-Evolution Modelling

    NASA Astrophysics Data System (ADS)

    Hewett, C. J.; Wainwright, J.; Parsons, A. J.; Cooper, J. R.; Kitchener, B.; Hargrave, G. K.; Long, E. J.; Onda, Y.; Patin, J.

    2013-12-01

    A model has been developed to begin to fill the gap between existing soil-erosion and landscape-evolution models. Most soil-erosion models are high resolution, run on short time scales and are based on realistic process dynamics but do not update topography. In contrast landscape-evolution models are typically run on large areas over long periods but use highly simplified process models. In the current study, an existing process-based soil-erosion model has been adapted to allow prediction of changes in topography in order to begin to bring these two types of model together. The model, MAHLERAN (Model for Assessing Hillslope-Landscape Erosion, Runoff and Nutrients), employs a conceptualization of soil-erosion processes which takes account of the fact that interrill flow on hillslopes is dominated by rolling or sliding along surface or in short steps akin to movement of bedload. Parameterizations of the different soil-detachment and transport mechanisms that occur under rainfall are used to better capture the reality of soil-erosion processes. Overland flow is modelled using a kinematic wave approximation to the 2D shallow water equations combined with the Darcy-Weisbach flow equation to calculate velocity. Flow is assumed to be in direction of steepest descent in one of the four cardinal directions on a simple finite difference grid. The model includes an infiltration component based on the Smith and Parlange approach. Sediment is divided into six size classes in order to account for differing behaviour of particles of different size and is transported by splash, flow (concentrated/unconcentrated) or in suspension. Detachment is assumed to occur in one of three ways: (1) as a function of raindrop detachment alone when there no overland flow; (2) raindrop detachment modified to account for surface layer effects in the case of unconcentrated overland flow; and (3) concentrated erosion when flow is turbulent. Deposition is modelled using a transport-distance approach described by an exponential distribution function. The initial, static version of the model has been modified so that surface topography during a storm event may be updated at regular intervals or at every time step. The dynamic version of the model makes it possible to test how important topographic change is in controlling runoff and erosion processes in events of different magnitudes or over a series of consecutive events. Results from field data under natural conditions in Japan and the USA and experimental data from plot-scale rainfall-simulation experiments at the University of Tsukuba Large Rainfall-Simulation Facility are used to evaluate the model. Furthermore sensitivity analysis is carried out to assess the impacts of dynamic changes in topography on flow and particle transport more generally. The introduction of topographic change during storms provides a more realistic model of what happens in heavy storm conditions especially on steep slopes and could be used to inform the development of improved landscape-evolution models over longer simulation periods.

  17. Geologic repository licensing strategy

    SciTech Connect

    Berkowitz, L.; Stern, M.E.; Roberts, J.P.; Desell, L.J.

    1993-12-31

    The U.S. Department of Energy Office of Civilian Radioactive Waste Management`s objective is to characterize and determine the suitability of the Yucca Mountain site and, if this site is found suitable, obtain authorization from the U.S. Nuclear Regulatory Commission to construct, operate, and eventually close a geologic repository at that site. The Department`s licensing strategy involves the application of a process, the licensing process, that addresses the achievement of each of the elements of this objective. The applicable laws and regulations with which the Department must comply, including the Nuclear Waste Policy Act, as amended, the Energy Policy Act of 1992, the Atomic Energy Act of 1954, the National Environmental Policy Act, and the administrative Procedure Act, provide insights into what DOE must do if it is to achieve its objective. The Department`s licensing strategy, discussed in this paper, is based on these insights.

  18. Serving Bay Area Geologic Hazard Information in Google Earth KML; a Network-Link Approach

    NASA Astrophysics Data System (ADS)

    Blair, J. L.; Ticci, M.

    2006-12-01

    We present a method to convert and provide San Francisco Bay Area geologic map information in Google Earth KML format. Google Earth software is an interactive, virtual globe that can be effective for communicating important geologic information to public and scientific audiences. The USGS, CGS, and other groups have collected a wealth of geologic information in the Bay Area, but little has been done to organize and provide this data in a single location and viewing format. Static maps and associated GIS files are the common output of such mapping efforts, but these are not easily obtained or viewed by the general public. Alternatively, geologic maps served in KML format can be downloaded from servers and viewed as overlays on the high-resolution static aerial imagery supplied by Google. Further, the software provides 3D terrain and the ability to search for a location by address or coordinates. Complex geologic maps result in large KML file sizes, which in turn, slows down network and CPU performance on the user's end. To provide for more efficiency, the method we present utilizes ESRI's ArcMap Model Builder software to automate the process of breaking a large GIS dataset into multiple KML tiles. An individual tile has the extent of a 7.5' USGS quadrangle and a file size small enough to be rapidly retrieved from a server and processed by Google Earth for viewing. A single KML file manages the visibility of all the tiles, retrieving only the necessary tile(s) to fill the field of view. We intend to use this method to present important geologic information such as bedrock geology and geologic hazard data, including liquefaction susceptibility, faults and fault zones, landslides, flood zones, and various shaking scenarios in the Bay Area.

  19. Petroleum geology of Tunisia

    SciTech Connect

    Burollet, P.F. ); Ferjami, A.B.; Mejri, F. )

    1990-05-01

    Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example of the contrast between Alpine folding, which typifies northern Tunisia and the African craton area of the Saharan part. Eastern Tunisia corresponds to an unstable platform forming plains or low hills and extending eastwards to the shallow Pelagian Sea. There are a wide variety of basins: central and northern Tunisia represents a front basin the Saharan Ghadames basin or the Chott trough are sag basins; the Gulf of Gabes was formed as a distension margin the Gulf of Hammamet is a composite basin and several transversal grabens cut across the country, including offshore, and are rift-type basins. All these features are known to be oil prolific throughout the world. Two large fields and many modest-size pools are known in Tunisia. Oil and gas fields in the surrounding countries, namely the Saharan fields of Algeria and Libya the large Bouri field offshore Tripolitania and discoveries in the Italian part of the Straits of Sicily, suggest a corresponding potential in Tunisia. Exposed paleogeographic and structural maps, balanced sections, and examples of fields and traps will support an optimistic evaluation of the future oil exploration in Tunisia.

  20. Geophysics & Geology Inspected.

    ERIC Educational Resources Information Center

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  1. Geology for the Masses

    ERIC Educational Resources Information Center

    Dickinson, William R.

    1970-01-01

    Describes environmental geology as including planning to avoid natural hazards, acquire natural resources, and use land wisely. Describes philosophy and strategies for developing interdisciplinary, environmental geology education at the high school, college, professional graduate, and doctoral research levels. (PR)

  2. Geologic Sequestration of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Benson, S. M.

    2003-04-01

    Geologic sequestration of carbon dioxide has emerged as one of the most promising options for making deep cuts in carbon dioxide emissions. Geologic sequestration involves the two-step process of first capturing carbon dioxide by separating it from stack emissions, followed by injection and long term storage in deep geologic formations. Sedimentary basins, including depleted oil and gas reservoirs, deep unminable coal seams, and brine-filled formations, provide the most attractive storage reservoirs. Over the past few years significant advances have been made in this technology, including development of simulation models and monitoring systems, implementation of commercial scale demonstration projects, and investigation of natural and industrial analogues for geologic storage of carbon dioxide. While much has been accomplished in a short time, there are many questions that must be answered before this technology can be employed on the scale needed to make significant reductions in carbon dioxide emissions. Questions such as how long must the carbon dioxide remain underground, to what extent will geochemical reactions completely immobilize the carbon dioxide, what can be done in the event that a storage site begins to leak at an unacceptable rate, what is the appropriate risk assessment, regulatory and legal framework, and will the public view this option favorably? This paper will present recent advances in the scientific and technological underpinnings of geologic sequestration and identify areas where additional information is needed.

  3. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...37 through 319.37-14 of this part. (c) Macadamia nuts . Macadamia nuts in the husk or shell are prohibited importation into the United States unless the macadamia nuts were produced in, and imported from, St....

  4. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...37 through 319.37-14 of this part. (c) Macadamia nuts . Macadamia nuts in the husk or shell are prohibited importation into the United States unless the macadamia nuts were produced in, and imported from, St....

  5. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...37 through 319.37-14 of this part. (c) Macadamia nuts . Macadamia nuts in the husk or shell are prohibited importation into the United States unless the macadamia nuts were produced in, and imported from, St....

  6. Differentiating the relative importance of land cover change and geomorphic processes on fine sediment sequestration in a logged watershed

    NASA Astrophysics Data System (ADS)

    Kasprak, Alan; Magilligan, Francis J.; Nislow, Keith H.; Renshaw, Carl E.; Snyder, Noah P.; Dade, W. Brian

    2013-03-01

    Timber harvest often results in accelerated soil erosion and subsequent elevated fine (< 2 mm) sediment delivery to channels causing deleterious effects to numerous aquatic species, particularly salmonid fishes. Here we determine, through sediment physical analyses (pebble counts, embeddedness surveys, and interstitial shelter space counts) and geochemical analyses (7Be and 210Pbex activities), the amount and timing of delivery of fine sediment currently found on streambeds of the Narraguagus River watershed in coastal Maine. The role of recent timber harvest, documented via aerial photo spatial analysis, on fine sediment delivery is contrasted with the ability of the glacially influenced topography and surficial geology to deliver fine sediment to streams and to influence channel substrate. Results show that of the land use and geomorphic variables examined, only 210Pbex activities were significantly correlated with the amount of upstream harvest (r2 = 0.49). Concurrently, we find that unit stream power (particularly the slope component) explains much of the variability in channel substrate and that slope and stream power are largely influenced by the legacy of Pleistocene glaciation on channel form. Results suggest a conceptual model whereby fine sediment delivery as a result of late twentieth century timber harvest is likely dampened because of the low gradient landscape of coastal Maine. While geochemical tracers indicate recent fine sediment delivery in harvested areas, channels are likely capable of quickly winnowing these fines from the channel bed. These results further suggest that under contemporary land use conditions, the geomorphic and geologic setting represents a first-order control on channel substrate and habitat suitability for salmonid fishes, including federally endangered Atlantic salmon (Salmo salar), in coastal drainages of northeastern Maine.

  7. GEOLOGY 619 ADVANCED PETROLEUM GEOLOGY Wayne M. Ahr, Professor, CPG

    E-print Network

    GEOLOGY 619 ­ ADVANCED PETROLEUM GEOLOGY Wayne M. Ahr, Professor, CPG Draft v.1 ­ October, 2008 Advanced Petroleum Geology is designed for graduate students in geology, geophysics, and engineering. This course differs from Geology 404 ­ Petroleum Geology ­ by its more rigorous treatment of subject matter

  8. MAJOR TO CAREER GUIDE B.S. Geology

    E-print Network

    Walker, Lawrence R.

    MAJOR TO CAREER GUIDE B.S. Geology College of Sciences geoscience.unlv.edu/ Mission of the College: MPE-A 130 www.unlv.edu/sciences/advising About the Geology Career Geoscientists are stewards understanding of Earth processes and history. Value of the Geology Degree Opportunities for interesting

  9. Inverse Modelling in Geology by Interactive Evolutionary Computation

    E-print Network

    Boschetti, Fabio

    Inverse Modelling in Geology by Interactive Evolutionary Computation Chris Wijns a,b,, Fabio of geological processes, in the absence of established numerical criteria to act as inversion targets, requires evolutionary computation provides for the inclusion of qualitative geological expertise within a rigorous

  10. Geology. Grade 6. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Anchorage School District, AK.

    This resource book introduces sixth-grade children to the environment by studying rocks and other geological features. Nine lessons are provided on a variety of topics including: (1) geologic processes; (2) mountain building; (3) weathering; (4) geologic history and time; (5) plate tectonics; (6) rocks and minerals; (7) mineral properties; (8)…

  11. Mineral Resources, Geological Structure and Landform Surveys

    NASA Technical Reports Server (NTRS)

    Short, M. N.

    1973-01-01

    Significant results are presented of ERTS-1 investigations of landform surveys, mineral resources, and geological structures. The report covers four areas: (1) mapping investigations; (2) dynamic surface processes and landforms; (3) structural elements; and (4) mineral deposits.

  12. Planetary Geology, Astrobiology, and Dusty Plasmas

    E-print Network

    Mojzsis, Stephen J.

    of planetary systems, including: · Geological processes on Mars · Evolution of Saturn's ring system biology Our faculty studies varied fields such as the history of water on Mars, the composition of Saturn

  13. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs have been determined by geological processes and climate change in the Late Cenozoic

    PubMed Central

    Ak?n, Çi?dem; Bilgin, C. Can; Beerli, Peter; Westaway, Rob; Ohst, Torsten; Litvinchuk, Spartak N.; Uzzell, Thomas; Bilgin, Metin; Hotz, Hansjürg; Guex, Gaston-Denis; Plötner, Jörg

    2010-01-01

    Aim Our aims were to assess the phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs and to estimate divergence times using different geological scenarios. We related divergence times to past geological events and discuss the relevance of our data for the systematics of eastern Mediterranean water frogs. Location The eastern Mediterranean region. Methods Genetic diversity and divergence were calculated using sequences of two protein-coding mitochondrial (mt) genes: ND2 (1038 bp, 119 sequences) and ND3 (340 bp, 612 sequences). Divergence times were estimated in a Bayesian framework under four geological scenarios representing alternative possible geological histories for the eastern Mediterranean. We then compared the different scenarios using Bayes factors and additional geological data. Results Extensive genetic diversity in mtDNA divides eastern Mediterranean water frogs into six main haplogroups (MHG). Three MHGs were identified on the Anatolian mainland; the most widespread MHG with the highest diversity is distributed from western Anatolia to the northern shore of the Caspian Sea, including the type locality of Pelophylax ridibundus. The other two Anatolian MHGs are restricted to south-eastern Turkey, occupying localities west and east of the Amanos mountain range. One of the remaining three MHGs is restricted to Cyprus; a second to the Levant; the third was found in the distribution area of European lake frogs (P. ridibundus group), including the Balkans. Main conclusions Based on geological evidence and estimates of genetic divergence we hypothesize that the water frogs of Cyprus have been isolated from the Anatolian mainland populations since the end of the Messinian salinity crisis (MSC), i.e. since c. 5.5-5.3 Ma, while our divergence time estimates indicate that the isolation of Crete from the mainland populations (Peloponnese, Anatolia) most likely pre-dates the MSC. The observed rates of divergence imply a time window of c. 1.6-1.1 million years for diversification of the largest Anatolian MHG; divergence between the two other Anatolian MHGs may have begun about 3.0 Ma, apparently as a result of uplift of the Amanos Mountains. Our mtDNA data suggest that the Anatolian water frogs and frogs from Cyprus represent several undescribed species. PMID:22473251

  14. Two-step Processing Is Not Essential for the Import and Assembly of Functionally Active Iron-Sulfur Protein into the Cytochrome bc1

    E-print Network

    Trumpower, Bernard L.

    Two-step Processing Is Not Essential for the Import and Assembly of Functionally Active Iron-Sulfur From the Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755 The iron-sulfur for import and assembly of the iron-sulfur protein into the cytochrome bc1 complex, we mutagenized the prese

  15. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    NASA Astrophysics Data System (ADS)

    Liu, M.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J.; Nergui, T.; Guenther, A.; Miller, C.; Reyes, J.; Tague, C.; Choate, J.; Salathé, E. P.; Stöckle, C. O.; Adam, J. C.

    2013-11-01

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables (evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These impact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant differences rise from projected SWE, crop yield from dry lands, and HJ Andrews's ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at region scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies vs. direct modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; e.g., BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality (where VOCs are a primary indicator).

  16. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    NASA Astrophysics Data System (ADS)

    Liu, M.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J.; Nergui, T.; Guenther, A.; Miller, C.; Reyes, J.; Tague, C.; Choate, J.; Salathé, E. P.; Stöckle, C. O.; Adam, J. C.

    2014-05-01

    Regional climate change impact (CCI) studies have widely involved downscaling and bias correcting (BC) global climate model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables (evapotranspiration (ET), runoff, snow water equivalent (SWE), and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ-Andrews). Simulation results from the coupled ECHAM5-MPI-OM model with A1B emission scenario were first dynamically downscaled to 12 km resolution with the WRF model. Then a quantile-mapping-based statistical downscaling model was used to downscale them into 1/16° resolution daily climate data over historical and future periods. Two climate data series were generated, with bias correction (BC) and without bias correction (NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological data sets. These impact models include a macroscale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrological model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant differences rise from projected SWE, crop yield from dry lands, and HJ-Andrews's ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at regional scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies versus directly modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; for example, BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality, for which VOCs are a primary indicator.

  17. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    SciTech Connect

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

    2014-05-16

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant differences rise from projected SWE, crop yield from dry lands, and HJ Andrews’s ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at region scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies vs. direct modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; e.g., BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality (where VOCs are a primary indicator).

  18. Evolution of U fractionation processes through geologic time : consequences for the variation of U deposit types from Early Earth to Present

    NASA Astrophysics Data System (ADS)

    Cuney, M.

    2009-12-01

    U deposits are known at nearly all stages of the geological cycle, but are not known prior to 2.95 Ga. Also, U deposit types vary greatly from Mesoarchean to Present. Most of these changes through time can be attributed to major modifications in the geodynamic evolution of the Earth, in magmatic fractionation processes, in the composition of the Atmosphere and in the nature of life. The first U-rich granites able to crystallize uraninite, appeared at about 3.1 Ga. They correspond to the most fractionated terms of high-K calcalkaline suites, resulting from crystal fractionation of magmas possibly derived from melting of mantle wedges enriched in K, U, Th. Highly fractionated peraluminous leucogranites, able to crystallize uraninite, appeared at about 2.6 Ga. Erosion of these two granite types led to the detrital accumulation of uraninite that formed the first U deposits on Earth: the Quartz Pebble Conglomerates from 2.95 to 2.4 Ga. From 2.3 Ga onwards, uprise of oxygen level in the atmosphere led to the oxidation of U(IV) to U(VI), U transport in solution, and exuberant development of marine algae in epicontinental platform sediments. From 2.3 to 1.8 Ga large amounts of U, previously accumulated as U(IV) minerals, were dissolved and trapped preferentially in passive margin settings, in organic-rich sediments, and which led to the formation of the world’s largest Paleoproterozoic U provinces, e.g. : the Wollaston belt, Canada and the Cahill Formation, Australia. During and after the worldwide 2.1-1.75 Ga orogenic events, responsible for the formation of the Nuna supercontinent, U trapped in these formations was the source for several types of mineralization: (i) metamorphosed U-mineralized graphitic schists, calcsilicates and meta-arkoses, (ii) diagenetic-hydrothermal remobilization with the formation of the first deposits related to redox processes at 2.0 Ga (Oklo, Gabon), (iii) partial melting of U-rich metasediments forming the uraninite disseminations in pegmatoids (Charlebois, Canada), (iv) hydrothermal remobilization in veins (Beaverlodge, Canada) at about 1.75 Ga, and (v) U mineralization related to Na-metasomatism (Lagoa Real, Brazil ; Central Ukraine). After 1.75 Ga, a long period of tectonic quiescence occurred on the Earth, and large intracontinental basins, comprising at their base thick oxidized siliciclastic sequences were formed in many parts of the Nuna. In the Athabasca (Canada) and Kombolgie (Australia) basins, the siliciclastic sediments represented huge aquitards for sodic brines derived from overlying evaporites. The brines became calcic when infiltrated into the basement and leached U dominantly from Paleoproterozoic epicontinental sediments, their anatectic derivatives and high-K-U granites, to form the unconformity related U deposits. By the end of Silurian, with the apparition of land plants, deposits hosted by continental to marginal marine sandstone (roll front, tabular, tectono-lithologic, paleovalleys) became widespread. The largest volcanic related U-deposits are mostly known during the Mesozoic and calcrete are only known during late Caenozoic to Quaternary, but this may by due to the non preservation from erosion of such deposits formed at very shallow levels.

  19. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed. Streamflow conditions observed and measured during the synoptic water-quality study represent summer base-flow conditions and rainfall conditions for July 2007. The lack of large tributary inflows and the spatial distribution of small tributary inflows, seeps, and springs indicate that diffuse and discrete groundwater inflow supports streamflow during low-flow conditions along the entire 18-kilometer stream reach. Concentrations of dissolved selenium within all subreaches of Toll Gate Creek exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter in 2007. Concentrations of selenium in the upper portion of the Toll Gate Headwaters subreach (TGH) remained close to the aquatic-life standard at about 5 micrograms per liter. Downstream from a concrete-lined channel section, inflows with selenium concentrations greater than the stream contribute selenium load to surface water. However, stream selenium concentrations were less than 20 micrograms per liter all along Toll Gate Creek. Concentrations of selenium in groundwater were in general substantially greater than the Colorado aquatic-life standard of 4.6 micrograms per liter and at some locations were greater than the U.S. Environmental Protection Agency primary drinking-water standard for selenium of 50 micrograms per liter. The distribution of selenium concentrations in groundwater, springs, and the 11 inflows with the greatest selenium concentrations indicates that shallow groundwater in surficial materials and the Denver Formation bedrock is a source of selenium loading to Toll Gate Creek and that selenium loading is distributed along the entire length of the study reach downstream from the concrete-lined channel. Water-quality and solids-sampling results from this study indicate weathering processes release water-soluble selenium from the underlying Denver Formation claystone bedrock with subsequent cycling of selenium in the aquatic environment of Toll Gate Creek. Exposure of the Denver Formation selenium-bearing bedrock to oxidizing atmospheric conditions, surface water, and groundwater, oxidizes selenide, held as a trace element in pyrite or in complexes with organic matter, to selenite and selenate. Secondary weathering products including iron oxides and selenium-bearing salts have accumulated in the weathered zone in the semiarid climate and also can serve as sources or sinks of selenium. P

  20. 9 CFR 95.4 - Restrictions on the importation of processed animal protein, offal, tankage, fat, glands, certain...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...this section: (i) Processed animal protein, tankage, offal, and tallow other...and derivatives of processed animal protein, tankage, and offal, regardless of...serocolostrum, amniotic liquids or extracts, and placental liquids derived from...

  1. 9 CFR 95.4 - Restrictions on the importation of processed animal protein, offal, tankage, fat, glands, certain...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...this section: (i) Processed animal protein, tankage, offal, and tallow other...and derivatives of processed animal protein, tankage, and offal, regardless of...serocolostrum, amniotic liquids or extracts, and placental liquids derived from...

  2. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  3. Geological consequences of superplumes

    SciTech Connect

    Larson, R.L. )

    1991-10-01

    Superplumes are suggested to have caused the period of constant normal magnetic polarity in mid-Cretaceous time (124-83 Ma) and, possibly, the period of constant reversed polarity in Pennsylvania-Permian time (323-248 Ma). These times coincide with increases in world temperature, deposition of black shales, oil generation, and eustatic sea level in the mid-Cretaceous, and increased coal generation and gas accumulation in the Pennsylvanian-Permian, accompanied by an intracratonic Pennsylvanian transgression of epicontinental seas. These geologic anomalies are associated with episodes of increased world-wide ocean-crust production and mantle outgassing, especially of carbon and nutrients. These superplumes originated just above the core-mantle boundary, significantly increased convection in the outer core, and stopped the magnetic field reversal process for 41 m.y. in the Cretaceous and 75 m.y. in Pennsylvanian-Permian time.

  4. D Geological Framework Models as a Teaching Aid for Geoscience

    NASA Astrophysics Data System (ADS)

    Kessler, H.; Ward, E.; Geological ModelsTeaching Project Team

    2010-12-01

    3D geological models have great potential as a resource for universities when teaching foundation geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for all students of geology. Today’s earth science students use a variety of skills and processes during their learning experience including the application of schema’s, spatial thinking, image construction, detecting patterns, memorising figures, mental manipulation and interpretation, making predictions and deducing the orientation of themselves and the rocks. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. Learning issues faced by students may also be encountered by experts, policy managers, and stakeholders when dealing with environmental problems. Therefore educational research of student learning in earth science may also improve environmental decision making. 3D geological framework models enhance the learning of Geosciences because they: ? enable a student to observe, manipulate and interpret geology; in particular the models instantly convert two-dimensional geology (maps, boreholes and cross-sections) into three dimensions which is a notoriously difficult geospatial skill to acquire. ? can be orientated to whatever the user finds comfortable and most aids recognition and interpretation. ? can be used either to teach geosciences to complete beginners or add to experienced students body of knowledge (whatever point that may be at). Models could therefore be packaged as a complete educational journey or students and tutor can select certain areas of the model or educational material to incorporate it into an existing area of the syllabus such as a field trip, project work or a certain taxing geological concept such as dip and strike. ? can easily be utilised by students unable to attend university conventionally (illness or disability), distance learning students or for extra curricular activities and continuing professional development courses. ? can be used repeatedly and in such a way as to continually build on geoscience aspects - this practice will improve the student’s geospatial skills. ? can be compared with that seen directly in the field which aids the student in recognising particular patterns or sequences. It also demonstrates how different and complex geology looks in the field and thus how important it is not to rely on models alone. ? are interactive and the accompanying educational material is engaging, dealing with authentic, contemporary scientific problems meaning the student will have to ask questions, think critically and solve problems. ? can often be more practical and better financial alternatives to some teaching methods currently employed. ? incorporate strategies where students first explore, are then introduced to terminology and concepts, finally students apply their knowledge to different, but related problems. This can be further reinforced and explored with fellow students.

  5. Shock compression of geological materials

    NASA Astrophysics Data System (ADS)

    Kirk, S.; Braithwaite, C.; Williamson, D.; Jardine, A.

    2014-05-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  6. Sand Resources, Regional Geology, and Coastal Processes of the Chandeleur Islands Coastal System: an Evaluation of the Breton National Wildlife Refuge

    USGS Publications Warehouse

    2009-01-01

    Breton National Wildlife Refuge, the Chandeleur Islands chain in Louisiana, provides habitat and nesting areas for wildlife and is an initial barrier protecting New Orleans from storms. The U.S. Geological Survey (USGS) in partnership with the University of New Orleans Pontchartrain Institute for Environmental Sciences undertook an intensive study that included (1) an analysis of island change based on historical maps and remotely sensed shoreline and topographic data; (2) a series of lidar surveys at 3- to 4-month intervals after Hurricane Katrina to determine barrier island recovery potential; (3) a discussion of sea level rise and effects on the islands; (4) an analysis of sea floor evolution and sediment dynamics in the refuge over the past 150 years; (5) an assessment of the local sediment transport and sediment resource availability based on the bathymetric and subbottom data; (6) a carefully selected core collection effort to groundtruth the geophysical data and more fully characterize the sediments composing the islands and surrounds; (7) an additional survey of the St. Bernard Shoals to assess their potential as a sand resource; and (8) a modeling study to numerically simulate the potential response of the islands to the low-intensity, intermediate, and extreme events likely to affect the refuge over the next 50 years. Results indicate that the islands have become fragmented and greatly diminished in subaerial extent over time: the southern islands retreating landward as they reorganize into subaerial features, the northern islands remaining in place. Breton Island, because maintenance of the Mississippi River-Gulf Outlet (MRGO) outer bar channel requires dredging, is deprived of sand sufficient to sustain itself. Regional sediment transport trends indicate that large storms are extremely effective in transporting sand and controlling the shoreline development and barrier island geometry. Sand is transported north and south from a divergent zone near Monkey Bayou at the southern end of the Chandeleur Islands. Numerical simulation of waves and sediment transport supports the geophysical results and indicates that vast areas of the lower shoreface are affected and are undergoing erosion during storm events, that there is little or no fair weather mechanism to rework material into the littoral system, and that as a result, there is a net loss of sediment from the system. Lidar surveys revealed that the island chain immediately after Hurricane Katrina lost about 84 percent of its area and about 92 percent of its prestorm volume. Marsh platforms that supported the islands' sand prior to the storm were reduced in width by more than one-half. Repeated lidar surveys document that in places the shoreline has retreated about 100 m under the relatively low-energy waves since Hurricanes Katrina and Rita; however, this retreat is nonuniform. Recent high-resolution geophysical surveys of the sea floor and subsurface within 5-6 km of the Chandeleur Islands during 2006 and 2007 show that, in addition to the sand that is rebuilding portions of the island chain, a large volume of sand is contained in Hewes Point, in an extensive subtidal spit platform that has formed at the northern end of the Chandeleur Islands. Hewes Point appears to be the depositional terminus of the alongshore transport system. In the southern Chandeleurs, sand is being deposited in a broad tabular deposit near Breton Island called the southern offshore sand sheet. These two depocenters account for approximately 70 percent of the estimated sediment volume located in potential borrow sites. An additional large potential source of sand for restoration lies in the St. Bernard Shoals, which are estimated to contain approximately 200 ? 106 m3 of sand. Successful restoration planning for the Breton National Wildlife Refuge should mimic the natural processes of early stages of barrier island evolution including lateral transport to the flanks of the island chain

  7. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...fruits and vegetables (except frozen fruits and vegetables), including cured figs and dates, raisins, nuts, and dried beans and peas, may be imported without permit, phytosanitary certificate, or other compliance with this subpart, except as...

  8. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...fruits and vegetables (except frozen fruits and vegetables), including cured figs and dates, raisins, nuts, and dried beans and peas, may be imported without permit, phytosanitary certificate, or other compliance with this subpart, except as...

  9. The importance of basic factors in innovation processes and their effects on innovation capability of Malaysian-owned manufacturing companies

    NASA Astrophysics Data System (ADS)

    Suradi, Nur Riza Mohd; Omar, Aminuddin; Shahabuddin, Faridatulazna Ahmad

    2015-02-01

    Innovation is the core ingredient in the competitiveness of today's businesses. Any company that cannot innovate will be losing its competitiveness. While the study on innovation at conceptual level is widely available, there is still lack of deep understanding of how innovation factors impact each stage of the processes of innovation that happen in Malaysian companies. This process-factor approach and understanding may help the government focuses its assistance on relevant factors at relevant process according to the size of the company. This study examines how companies are affected by fundamental factors needed in innovation. Based on results of MYTIC Study 2012 on the level of Technological Innovation Capability (TIC) of Malaysian companies using the RDCB framework, the significance of each innovation factor in each innovation process is determined. This study shows that human resource factor gives more impact than other factors in most processes. Also, financial and human resource factors are likely dictated by the size of the company.

  10. Significant achievements in the planetary geology program, 1981

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (editor)

    1981-01-01

    Recent developments in planetology research as reported at the 1981 NASA Planetary Geology Principal Investigators meeting are summarized. The evolution of the solar system, comparative planetology, and geologic processes active on other planets are considered. Galilean satellites and small bodies, Venus, geochemistry and regoliths, volcanic and aeolian processes and landforms, fluvial and periglacial processes, and planetary impact cratering, remote sensing, and cartography are discussed.

  11. Bathymetric terrain model of the Atlantic Margin for marine geological investigations

    USGS Publications Warehouse

    Andrews, Brian D.; Chaytor, Jason D.; ten Brink, Uri S.; Brothers, Daniel S.; Gardner, James V.

    2013-01-01

    Bathymetric terrain models of seafloor morphology are an important component of marine geological investigations. Advances in acquisition and processing technologies of bathymetric data have facilitated the creation of high-resolution bathymetric surfaces that approach the resolution of similar surfaces available for onshore investigations. These bathymetric terrain models provide a detailed representation of the Earth’s subaqueous surface and, when combined with other geophysical and geological datasets, allow for interpretation of modern and ancient geological processes. The purpose of the bathymetric terrain model presented in this report is to provide a high-quality bathymetric surface of the Atlantic margin of the United States that can be used to augment current and future marine geological investigations. The input data for this bathymetric terrain model, covering almost 305,000 square kilometers, were acquired by several sources, including the U.S. Geological Survey, the National Oceanic and Atmospheric Administration National Geophysical Data Center and the Ocean Exploration Program, the University of New Hampshire, and the Woods Hole Oceanographic Institution. These data have been edited using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined terrain model.

  12. CO{sub 2} Geologic Storage: Coupled Hydro-Chemo-Thermo-Mechanical Phenomena - From Pore-scale Processes to Macroscale Implications -

    SciTech Connect

    Santamarina, J. Carlos

    2013-05-31

    Global energy consumption will increase in the next decades and it is expected to largely rely on fossil fuels. The use of fossil fuels is intimately related to CO{sub 2} emissions and the potential for global warming. Geological CO{sub 2} storage aims to mitigate the global warming problem by sequestering CO{sub 2} underground. Coupled hydro-chemo-mechanical phenomena determine the successful operation and long term stability of CO{sub 2} geological storage. This research explores coupled phenomena, identifies different zones in the storage reservoir, and investigates their implications in CO{sub 2} geological storage. In particular, the research: Explores spatial patterns in mineral dissolution and precipitation (comprehensive mass balance formulation); experimentally determines the interfacial properties of water, mineral, and CO{sub 2} systems (including CO{sub 2}-water-surfactant mixtures to reduce the CO{sub 2}- water interfacial tension in view of enhanced sweep efficiency); analyzes the interaction between clay particles and CO{sub 2}, and the response of sediment layers to the presence of CO{sub 2} using specially designed experimental setups and complementary analyses; couples advective and diffusive mass transport of species, together with mineral dissolution to explore pore changes during advection of CO{sub 2}-dissolved water along a rock fracture; upscales results to a porous medium using pore network simulations; measures CO{sub 2} breakthrough in highly compacted fine-grained sediments, shale and cement specimens; explores sealing strategies; and experimentally measures CO{sub 2}-CH{sub 4} replacement in hydrate-bearing sediments during. Analytical, experimental and numerical results obtained in this study can be used to identify optimal CO{sub 2} injection and reservoir-healing strategies to maximize the efficiency of CO{sub 2} injection and to attain long-term storage.

  13. Geologic mapping of Europa

    USGS Publications Warehouse

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W., III; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central, rough inner, and annular massif) and exterior (continuous ejecta) subunits. Structural features and landforms are shown with conventional symbols. Type localities for the units are identified, along with suggestions for portraying the features on geological maps, including colors and letter abbreviations for material units. Implementing these suggestions by the planetary mapping community would facilitate comparisons of maps for different parts of Europa and contribute to an eventual global synthesis of its complex geology. On the basis of initial mapping results, a stratigraphic sequence is suggested in which ridged plains form the oldest unit on Europa, followed by development of band material and individual ridges. Band materials tend to be somewhat older than ridges, but in many areas the two units formed simultaneously. Similarly, the formation of most chaos follows the development of ridged plains; although chaos is among the youngest materials on Europa, some chaos units might have formed contemporaneously with ridged plains. Smooth plains generally embay all other units and are late-stage in the evolution of the surface. C1 craters are superposed on ridged plains but are crosscut by other materials, including bands and ridges. Most c2 craters postdate all other units, but a few c2 craters are cut by ridge material. C3 craters constitute the youngest recognizable material on Europa. Copyright 2000 by the American Geophysical Union.

  14. OneGeology-Europe - The Challenges and progress of implementing a basic geological infrastructure for Europe

    NASA Astrophysics Data System (ADS)

    Asch, Kristine; Tellez-Arenas, Agnes

    2010-05-01

    OneGeology-Europe is making geological spatial data held by the geological surveys of Europe more easily discoverable and accessible via the internet. This will provide a fundamental scientific layer to the European Plate Observation System Rich geological data assets exist in the geological survey of each individual EC Member State, but they are difficult to discover and are not interoperable. For those outside the geological surveys they are not easy to obtain, to understand or to use. Geological spatial data is essential to the prediction and mitigation of landslides, subsidence, earthquakes, flooding and pollution. These issues are global in nature and their profile has also been raised by the OneGeology global initiative for the International Year of Planet Earth 2008. Geology is also a key dataset in the EC INSPIRE Directive, where it is also fundamental to the themes of natural risk zones, energy and mineral resources. The OneGeology-Europe project is delivering a web-accessible, interoperable geological spatial dataset for the whole of Europe at the 1:1 million scale based on existing data held by the European geological surveys. Proof of concept will be applied to key areas at a higher resolution and some geological surveys will deliver their data at high resolution. An important role is developing a European specification for basic geological map data and making significant progress towards harmonising the dataset (an essential first step to addressing harmonisation at higher data resolutions). It is accelerating the development and deployment of a nascent international interchange standard for geological data - GeoSciML, which will enable the sharing and exchange of the data within and beyond the geological community within Europe and globally. The geological dataset for the whole of Europe is not a centralized database but a distributed system. Each geological survey implements and hosts an interoperable web service, delivering their national harmonized geological data. These datasets are registered in a multilingual catalogue, who is one the main part of this system. This catalogue and a common metadata profile allows the discovery of national geological and applied geological maps at all scapes, Such an architecture is facilitating re-use and addition of value by a wide spectrum of users in the public and private sector and identifying, documenting and disseminating strategies for the reduction of technical and business barriers to re-use. In identifying and raising awareness in the user and provider communities, it is moving geological knowledge closer to the end-user where it will have greater societal impact and ensure fuller exploitation of a key data resource gathered at huge public expense. The project is providing examples of best practice in the delivery of digital geological spatial data to users, e.g. in the insurance, property, engineering, planning, mineral resource and environmental sectors. The scientifically attributed map data of the project will provide a pan-European base for science research and, importantly, a prime geoscience dataset capable of integration with other data sets within and beyond the geoscience domain. This presentation will demonstrate the first results of this project and will indicate how OneGeology-Europe is ensuring that Europe may play a leading role in the development of a geoscience spatial data infrastructure (SDI) globally.

  15. A program for mass spectrometer control and data processing analyses in isotope geology; written in BASIC for an 8K Nova 1120 computer

    USGS Publications Warehouse

    Stacey, J.S.; Hope, J.

    1975-01-01

    A system is described which uses a minicomputer to control a surface ionization mass spectrometer in the peak switching mode, with the object of computing isotopic abundance ratios of elements of geologic interest. The program uses the BASIC language and is sufficiently flexible to be used for multiblock analyses of any spectrum containing from two to five peaks. In the case of strontium analyses, ratios are corrected for rubidium content and normalized for mass spectrometer fractionation. Although almost any minicomputer would be suitable, the model used was the Data General Nova 1210 with 8K memory. Assembly language driver program and interface hardware-descriptions for the Nova 1210 are included.

  16. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive processes revealed by the present study have been incorporated not only in scientific investigations elsewhere, but in the practical evaluation of hazards (Bacon and others, 1997b) and geothermal resources (Bacon and Nathenson, 1996) in the Crater Lake region. In addition to papers in scientific journals, field trip guides, and the hazard and geothermal reports, the major product of this long-term study of Mount Mazama is the geologic map. The map is unusual because it portrays bedrock (outcrop), surficial, and lake floor geology. Caldera wall geology is depicted in detail on the accompanying geologic panoramas.

  17. Mineral resources, geological structures, and landform surveys

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1974-01-01

    Since March 1973 there has been a shift in ERTS results in geology from the initial show-and-tell stage to a period in which scientific studies predominated, and now to an emphasis on effective applications having economic benefits and clearcut relevance to national needs. Many years will be spent on geological tasks resulting from ERTS alone; reconnaissance mapping in inaccessible regions, map revisions, regional or synoptic analysis of crustal fractures, assessment of dynamic surficial processes, systematic search for mineral wealth, use of sophisticated enhancement techniques, recognition of potential geologic hazards, and many more applications that still need to be defined.

  18. The Marine Geology Program of the US Geological Survey

    NASA Astrophysics Data System (ADS)

    Edgar, N. T.

    The U.S. Geological Survey and charged it with the responsibility for the classification of public lands and examination of the geologic structure, mineral resources and products of the national domain. The national domain for seabed resources was extended to 200 nautical miles offshore. This United States Exclusive Economic Zone (EEZ), a marine domain surrounding the continental U.S., Hawaii, and U.S. related islands, constitutes an area about one and two thirds larger than the size of the onshore area. In this vast domain lie resources of immense importance to the Nation: an estimated 35 percent of the economically recoverable oil and gas yet to be found in the United States; major resources of strategic metals like cobalt, manganese, and nickel in seafloor crusts, pavements, and modules; massive sulfide deposits actively forming today; and major concentrations of heavy minerals in nearshore sand bodies.

  19. Reports of Planetary Geology Program, 1981

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (compiler)

    1981-01-01

    Abstracts of 205 reports from Principal investigators of NASA's Planetary Geology Program succinctly summarize work conducted and reflect the significant accomplishments. The entries are arranged under the following topics: (1) Saturnian satellites; (2) asteroids, comets and Galilean satellites; (3) cratering processes and landform development; (4) volcanic processes and landforms; (5) Aerolian processes and landforms; (6) fluvial, preglacial, and other processes of landform development; (7) Mars polar deposits, volatiles, and climate; (8) structure, tectonics, and stratigraphy; (9) remote sensing and regolith chemistry; (10) cartography and geologic mapping; and (11) special programs.

  20. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...screenings. (a) Imported seed that is found to contain noxious weed seeds at a level higher than the tolerances set forth in...or by APHIS; if the seed is found to be within the noxious weed tolerances set forth in § 361.6(b), the seed may be...

  1. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...screenings. (a) Imported seed that is found to contain noxious weed seeds at a level higher than the tolerances set forth in...or by APHIS; if the seed is found to be within the noxious weed tolerances set forth in § 361.6(b), the seed may be...

  2. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...screenings. (a) Imported seed that is found to contain noxious weed seeds at a level higher than the tolerances set forth in...or by APHIS; if the seed is found to be within the noxious weed tolerances set forth in § 361.6(b), the seed may be...

  3. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...screenings. (a) Imported seed that is found to contain noxious weed seeds at a level higher than the tolerances set forth in...or by APHIS; if the seed is found to be within the noxious weed tolerances set forth in § 361.6(b), the seed may be...

  4. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...screenings. (a) Imported seed that is found to contain noxious weed seeds at a level higher than the tolerances set forth in...or by APHIS; if the seed is found to be within the noxious weed tolerances set forth in § 361.6(b), the seed may be...

  5. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... otherwise in this section or elsewhere in this part. (b) Acorns and chestnuts. (1) From countries other than Canada and Mexico; treatment required. Acorns and chestnuts intended for purposes other than propagation... 305 of this chapter. 2 2 Acorns and chestnuts imported into Guam are subject to the requirements...

  6. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... otherwise in this section or elsewhere in this part. (b) Acorns and chestnuts. (1) From countries other than Canada and Mexico; treatment required. Acorns and chestnuts intended for purposes other than propagation... 305 of this chapter. 2 2 Acorns and chestnuts imported into Guam are subject to the requirements...

  7. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... otherwise in this section or elsewhere in this part. (b) Acorns and chestnuts. (1) From countries other than Canada and Mexico; treatment required. Acorns and chestnuts intended for purposes other than propagation... 305 of this chapter. 2 2 Acorns and chestnuts imported into Guam are subject to the requirements...

  8. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    NASA Astrophysics Data System (ADS)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.

  9. Phonemic awareness is a more important predictor of orthographic processing than rapid serial naming: Evidence from Russian

    PubMed Central

    Rakhlin, Natalia; Cardoso-Martins, Cláudia; Grigorenko, Elena L.

    2014-01-01

    We studied the relationship between rapid serial naming (RSN) and orthographic processing in Russian, an asymmetrically transparent orthography. Ninety-six students (mean age = 13.73) completed tests of word and pseudoword reading fluency, spelling, orthographic choice, phonological choice, PA and RSN. PA was a better predictor of orthographic skills and pseudoword reading accuracy than RSN, which accounted for more variance in word and pseudoword reading fluency. Controlling for pseudoword reading fluency washed out RSN’s contribution to word reading fluency. These results extend previous findings questioning the role of RSN as an index of orthographic processing skills and support the idea that RSN taps into automaticity/efficiency of processing print-sound mappings. PMID:25435759

  10. Geologic investigations of outer planets satellites

    NASA Technical Reports Server (NTRS)

    Strom, R. G.

    1984-01-01

    Four tests are examined: (1) investigation of volcanism on Io; Interim results of thermal and structural modeling of volcanism on Io are presented, (2) a study of the ancient heavily cratered regions on Ganymede, (3) a geologic comparison of the cratering record on Ganymede and Callisto, and (4) a geological and chemical investigation of internal resurfacing processes on the Saturnian satellites. Tasks 2, 3, and 4 utilize Voyager imaging data.

  11. PROJECT SUMMARY The process of generation, segregation, ascent and emplacement of granite magma during orogeny has important

    E-print Network

    Solar, Gary S.

    PROJECT SUMMARY The process of generation, segregation, ascent and emplacement of granite magma and we also understand well how granite magma is emplaced in both extensional and contractional tectonic, petrography, geochronology and geochemistry of leucosomes in migmatites and in associated granite plutons

  12. Geologic and structural map of eastern Asia

    SciTech Connect

    Letouzey, J.; Sage, L.

    1986-07-01

    A synthesis of the onshore and offshore geologic data of eastern Asia, prepared by the Institut Francais du Petrole (IFP), has allowed the construction of geologic and structural maps for this region. These maps include three color sheets (scale = 1:2.5 million) and three plates of geologic and structural cross sections. Located between lat. 4/sup 0/ and 35/sup 0/N, and long. 106/sup 0/ and 132/sup 0/E, the maps cover the following geographic areas: East and South China Sea, Sulu Sea, West Philippine basin and onshore neighboring terrains, Kyushu and Ryukyu Islands, the China margin, Taiwan Island, Vietnam, North West Borneo, and the Philippines. The maps synthesize seismic interpretations, oil well data, geologic work in south Japan, Taiwan, Borneo, and the Philippines, and recent data published between 1976 and 1985. Twenty-four geologic cross sections (scale = 1:1.25 million, vertical exaggeration x 6) intersect ocean margins, important basins, and the different structural domains. They are based on seismic profiles, well data, and available onshore and offshore geologic data. These cross sections show basement composition and structures, different tectonic and sedimentary domains, and the structure and thickness of different sedimentary deposits (such as age, unconformities, and geologic structures). Maps and cross sections will be published in early 1987.

  13. Glossary of geology

    SciTech Connect

    Bates, R.L.; Jackson, J.A.

    1987-01-01

    This third edition of the Glossary of Geology contains approximately 37,000 terms, or 1,000 more than the second edition. New entries are especially numerous in the fields of carbonate sedimentology, hydrogeology, marine geology, mineralogy, ore deposits, plate tectonics, snow and ice, and stratigraphic nomenclature. Many of the definitions provide background information.

  14. Geologic time scale bookmark

    USGS Publications Warehouse

    U.S. Geological Survey

    2012-01-01

    This bookmark, designed for use with U.S. Geological Survey activities at the 2nd USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

  15. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  16. Geology of the Caribbean.

    ERIC Educational Resources Information Center

    Dillon, William P.; And Others

    1988-01-01

    Describes some of the geologic characteristics of the Caribbean region. Discusses the use of some new techniques, including broad-range swath imaging of the sea floor that produces photograph-like images, and satellite measurement of crustal movements, which may help to explain the complex geology of the region. (TW)

  17. People and Geology.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the many natural resources we extract from the earth's crust, including metals, graphite, and other minerals, as well as fossil fuels. Contains teaching activities such as a geologic scavenger hunt, a geology chronology, and the recycling of aluminum. Includes a reproducible handout for the activity on aluminum.…

  18. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  19. Geol 102 Historical Geology The Geologic Timescale 2015

    E-print Network

    Holtz Jr., Thomas R.

    Geol 102 Historical Geology The Geologic Timescale 2015 EON ERA PERIOD (Special Units) EPOCH Range Proterozoic Mesoproterozoic Paleoproterozoic Carboniferous Phanerozoic CenozoicMesozoicPaleozoic Quaternary

  20. Three important parts of an integrated plant are reactors, separators and a heat exchanger network (HEN) for heat recovery. Within the process engineering community, much

    E-print Network

    Skogestad, Sigurd

    exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has beeni ABSTRACT Three important parts of an integrated plant are reactors, separators and a heat and in particular to optimal operation of HENs. The purpose of heat integration is to save energy, but the HEN also

  1. A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes

    NASA Astrophysics Data System (ADS)

    Saha, Biswajit; Toh, Wei Quan; Liu, Erjia; Beng Tor, Shu; Hardt, David E.; Lee, Junghoon

    2016-01-01

    Micro/nano hot-embossing and injection molding are two promising manufacturing processes for the mass production of workpieces bearing micro/nanoscale features. However, both the workpiece and micro/nano-mold are susceptive to structural damage due to high thermal stress, adhesion and friction, which occur at the interface between the workpiece and the mold during these processes. Hence, major constraints of micro/nano-molds are mainly attributed to improper replication and their inability to withstand a prolonged sliding surface contact because of high sidewall friction and/or high adhesion. Consequently, there is a need for proper surface coating as it can improve the surface properties of micro/nano-molds such as having a low friction coefficient, low adhesion and low wear rate. This review deals with the physical, mechanical and tribological properties of various surface coatings and their impact on the replication efficiency and lifetime of micro/nano-molds that are used in micro/nano hot-embossing and injection molding processes.

  2. Appraising U.S. Geological Survey science records

    USGS Publications Warehouse

    Faundeen, John L.

    2010-01-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has legislative charters to preserve and make accessible land remote sensing records important to the United States. This essay explains the appraisal process developed by EROS to ensure the science records it holds and those offered to it align with those charters. The justifications behind the questions employed to weed and to complement the EROS archive are explained along with the literature reviewed supporting their inclusion. Appraisal results are listed by individual collection and include the recommendations accepted by EROS management. Reprinted by permission of the publisher.

  3. GEOLOGY & GEOPHYSICS 2014-2015

    E-print Network

    Bermúdez, José Luis

    GEOLOGY & GEOPHYSICS 2014-2015 Graduate Student Handbook - 1 · Geology & Geophysics Core Values - 2 · A Message from the Graduate Advisor - 3 · Department Organizations - 60 · Departmental Executive Committee - 61 · Geology& Geophysics Development Advisory Council

  4. Essential Elements of Geologic Reports.

    ERIC Educational Resources Information Center

    Webb, Elmer James

    1988-01-01

    Described is a report outline for geologic reports. Essential elements include title; abstract; introduction; stratigraphy; petrography; geochemistry; petrology; geophysics; structural geology; geologic history; modeling; economics; conclusions; and recommendations. (Author/CW)

  5. The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds – a review of the scientific literature

    USGS Publications Warehouse

    Ranalli, Anthony J.; MacAlady, Donald L.

    2010-01-01

    We reviewed published studies from primarily glaciated regions in the United States, Canada, and Europe of the (1) transport of nitrate from terrestrial ecosystems to aquatic ecosystems, (2) attenuation of nitrate in the riparian zone of undisturbed and agricultural watersheds, (3) processes contributing to nitrate attenuation in riparian zones, (4) variation in the attenuation of nitrate in the riparian zone, and (5) importance of in-stream and hyporheic processes for nitrate attenuation in the stream channel. Our objectives were to synthesize the results of these studies and suggest methodologies to (1) monitor regional trends in nitrate concentration in undisturbed 1st order watersheds and (2) reduce nitrate loads in streams draining agricultural watersheds. Our review reveals that undisturbed headwater watersheds have been shown to be very retentive of nitrogen, but the importance of biogeochemical and hydrological riparian zone processes in retaining nitrogen in these watersheds has not been demonstrated as it has for agricultural watersheds. An understanding of the role of the riparian zone in nitrate attenuation in undisturbed watersheds is crucial because these watersheds are increasingly subject to stressors, such as changes in land use and climate, wildfire, and increases in atmospheric nitrogen deposition. In general, understanding processes controlling the concentration and flux of nitrate is critical to identifying and mapping the vulnerability of watersheds to water quality changes due to a variety of stressors. In undisturbed and agricultural watersheds we propose that understanding the importance of riparian zone processes in 2nd order and larger watersheds is critical. Research is needed that addresses the relative importance of how the following sources of nitrate along any given stream reach might change as watersheds increase in size and with flow: (1) inputs upstream from the reach, (2) tributary inflow, (3) water derived from the riparian zone, (4) groundwater from outside the riparian zone (intermediate or regional sources), and (5) in-stream (hyporheic) processes.

  6. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  7. Fundamentals of Structural Geology

    NASA Astrophysics Data System (ADS)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  8. Geologic effects on groundwater salinity and discharge into an estuary

    USGS Publications Warehouse

    Russonielloa, Christopher J.; Fernandeza, Cristina; Brattonb, John F.; Banaszakc, Joel F.; Krantzc, David E.; Andresd, Scott; Konikowe, Leonard F.; Michaela, Holly A.

    2013-01-01

    Submarine groundwater discharge (SGD) can be an important pathway for transport of nutrients and contaminants to estuaries. A better understanding of the geologic and hydrologic controls on these fluxes is critical for their estimation and management. We examined geologic features, porewater salinity, and SGD rates and patterns at an estuarine study site. Seismic data showed the existence of paleovalleys infilled with estuarine mud and peat that extend hundreds of meters offshore. A low-salinity groundwater plume beneath this low-permeability fill was mapped with continuous resistivity profiling. Extensive direct SGD measurements with seepage meters (n = 551) showed fresh groundwater discharge patterns that correlated well with shallow porewater salinity and the hydrogeophysical framework. Small-scale variability in fresh and saline discharge indicates influence of meter-scale geologic heterogeneity, while site-scale discharge patterns are evidence of the influence of the paleovalley feature. Beneath the paleovalley fill, fresh groundwater flows offshore and mixes with saltwater before discharging along paleovalley flanks. On the adjacent drowned interfluve where low-permeability fill is absent, fresh groundwater discharge is focused at the shoreline. Shallow saltwater exchange was greatest across sandy sediments and where fresh SGD was low. The geologic control of groundwater flowpaths and discharge salinity demonstrated in this work are likely to affect geochemical reactions and the chemical loads delivered by SGD to coastal surface waters. Because similar processes are likely to exist in other estuaries where drowned paleovalleys commonly cross modern shorelines, the existence and implications of complex hydrogeology are important considerations for studies of groundwater fluxes and related management decisions.

  9. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final

    SciTech Connect

    Not Available

    1994-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

  10. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2008-01-01

    Topics discussed include: Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series; Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report; Structural Maps of the V-17 Beta Regio Quadrangle, Venus; Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus; Renewed Mapping of the Nepthys Mons Quadrangle (V-54), Venus; Mapping the Sedna-Lavinia Region of Venus; Geologic Mapping of the Guinevere Planitia Quadrangle of Venus; Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons; Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean; Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training; Geologic Map of the V-1 Snegurochka Planitia Quadrangle: Progress Report; The Fredegonde (V-57) Quadrangle, Venus: Characterization of the Venus Midlands; Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping; Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism; Geologic Mapping of V-19, V-28, and V-53; Lunar Geologic Mapping Program: 2008 Update; Geologic Mapping of the Marius Quadrangle, the Moon; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report; New Geologic Map of the Argyre Region of Mars; Geologic Evolution of the Martian Highlands: MTMs -20002, -20007, -25002, and -25007; Mapping Hesperia Planum, Mars; Geologic Mapping of the Meridiani Region, Mars; Geology of Holden Crater and the Holden and Ladon Multi-Ring Impact Basins, Margaritifer Terra, Mars; Geologic Mapping of Athabasca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region of Mars; Geologic Mapping of the Martian Impact Crater Tooting; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: First Year Results and Second Year Plan; Mars Global Geologic Mapping: Amazonian Results; Recent Geologic Mapping Results for the Polar Regions of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars (MC-8 SE and MC-23 NW) and the Northern Lowlands of Venus (V-16 and V-15); Geologic Mapping of the Zal, Hi'iaka, and Shamshu Regions of Io; Global Geologic Map of Europa; Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M); and Global Geologic Mapping of Io: Preliminary Results.

  11. Formation evaluation: Geological procedures

    SciTech Connect

    Whittaker, A.

    1985-01-01

    This volume goes beyond a discussion of petroleum geology and the techniques of hydrocarbon (oil and gas) logging as a reservoir evaluation tool. It provides the logging geologist with a review of geological techniques and classification systems that will ensure the maximum development of communicable geological information. Contents include: 1. Introduction--cuttings recovery, cutting sampling, core sampling, rock classification; 2. Detrital rocks--classification, description; 3. Carbonate rocks--classification, description; 4. Chemical rocks-introduction, siliceous rocks, ferruginous rocks, aluminous rocks, phosphatic rocks, aluminous rocks, carbonaceous rocks; 5. Igneous and metamorpbic rocks; Appendix; References and Index.

  12. Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation.

    PubMed

    Bargiela, Rafael; Herbst, Florian-Alexander; Martínez-Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M; Ferrer, Manuel; Golyshin, Peter N

    2015-10-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments. PMID:26201687

  13. Unveiling the Importance of ?-Stacking in Borrowing-Hydrogen Processes Catalysed by Iridium Complexes with Pyrene Tags.

    PubMed

    Ruiz-Botella, Sheila; Peris, Eduardo

    2015-10-19

    This work describes the preparation of a series of pyrene-tagged N-heterocyclic carbene complexes of iridium, and their use in two benchmark borrowing hydrogen reactions: the reduction of ketones by transfer hydrogenation and the ?-alkylation of secondary alcohols with primary alcohols. The detailed study of these homogeneously catalysed reactions reveals several important implications regarding the strong influence of the pyrene tags in the catalysts. First, the catalytic activity is partially inhibited by addition of an external amount of pyrene, but only when pyrene-tagged catalysts and aromatic substrates are used. Second, the rate order of the reaction is highly dependent on the nature of the substrates and the ligand. When pyrene-tagged catalysts and aromatic substrates are used, the reaction follows a zero-order dependence on the concentration of the substrate. All other combinations afford a second-order rate in the substrates. And third, the presence or absence of the pyrene functionality in the catalyst also influences the reaction order with respect to the concentration of the catalyst. Pyrene-containing catalysts display a fractional rate order of below 1. Finally, two pyrene-tagged catalysts were supported onto reduced-graphene oxide (rGO), and used as heterogeneous catalysts. While the dimetallic catalyst was effectively recycled 12 times, the monometallic catalyst maintained its activity for only three runs. PMID:26471441

  14. Prediction and quantifying parameter importance in simultaneous anaerobic sulfide and nitrate removal process using artificial neural network.

    PubMed

    Cai, Jing; Zheng, Ping; Qaisar, Mahmood; Luo, Tao

    2015-06-01

    The present investigation deals with the prediction of the performance of simultaneous anaerobic sulfide and nitrate removal in an upflow anaerobic sludge bed (UASB) reactor through an artificial neural network (ANN). Influent sulfide concentration, influent nitrate concentration, S/N mole ratio, pH, and hydraulic retention time (HRT) for 144 days' steady-state condition were the inputs of the model; whereas output parameters were sulfide removal percentage, nitrate removal percentage, sulfate production percentage, and nitrogen production percentage. The prediction performance was evaluated by calculating root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE), and determination coefficient (R (2)) values. Generally, the ANN model exhibited good prediction of the simultaneous sulfide and nitrate removal process. The effect of five input parameters to the performance of the reactor was quantified and compared using the connection weights method, Garson's algorithm method, and partial derivatives (PaD) method. The results showed that HRT markedly affects the performance of the reactor. PMID:25523291

  15. Importance of protamine phosphorylation to histone displacement in spermatids: can the disruption of this process be used for male contraception

    SciTech Connect

    Balhorn, R.; Hud, N.V.; Corzett, M.; Mazrimas, J.

    1995-06-01

    Protamine is a small protein that packages DNA in the sperm of most vertebrates. Shortly after its synthesis, the serine and threonine residues in each protamine are phosphorylated and the modified proteins are deposited onto DNA, displacing the histones and other chromatin proteins. We have hypothesized that the phosphorylation of protamine 1 induces protamine dimerization and these dimers are required for efficient histone displacement. Histone displacement by protamines in late-step spermatids appears to be essential for the production of fertile sperm in man and other mammals, and the disruption of this process could provide a new approach for male contraception. As a first step towards testing this theory, we have initiated a set of in vitro experiments to determine whether of not protamine phosphorylation is essential for histone displacement. Thee results of these experiments, although incomplete, confirm that unphosphorylated protamine cannot effectively displace histone from DNA. Polyarginine molecules twice the size of a protamine molecule and salmine dimer were found to be more effective. These results are consistent with the theory that the disruption of protamine phosphorylation may prove to be a useful new approach for male contraception if it can be shown to facilitate or induce protamine dimerization.

  16. The most frequent interfaces in olivine aggregates: the GBCD and its importance for grain boundary related processes

    NASA Astrophysics Data System (ADS)

    Marquardt, Katharina; Rohrer, Gregory S.; Morales, Luiz; Rybacki, Erik; Marquardt, Hauke; Lin, Brian

    2015-10-01

    Rocks consist of crystal grains separated by grain boundaries that impact the bulk rock properties. Recent studies on metals and ceramics showed that the grain boundary plane orientation is more significant for grain boundary properties than other characteristics such as the sigma value or disorientation (in the Earth's science community more frequently termed misorientation). We determined the grain boundary character distribution (GBCD) of synthetic and natural polycrystalline olivine, the most abundant mineral of Earth's upper mantle. We show that grain boundaries of olivine preferentially contain low index planes, in agreement with recent findings on other oxides (e.g. MgO, TiO2, Al2O3 etc.). Furthermore, we find evidence for a preferred orientation relationship of 90° disorientations about the [001] direction forming tilt and twist grain boundaries, as well as a preference for the 60° disorientation about the [100] axis. Our data indicate that the GBCD, which is an intrinsic property of any mineral aggregate, is fundamental for understanding and predicting grain boundary related processes.

  17. Brine flow in heated geologic salt.

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  18. Geology before Pluto: Pre-encounter considerations

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey M.; Howard, Alan D.; Schenk, Paul M.; McKinnon, William B.; Pappalardo, Robert T.; Ewing, Ryan C.; Bierhaus, Edward B.; Bray, Veronica J.; Spencer, John R.; Binzel, Richard P.; Buratti, Bonnie; Grundy, William M.; Olkin, Catherine B.; Reitsema, Harold J.; Reuter, Dennis C.; Stern, S. Alan; Weaver, Harold; Young, Leslie A.; Beyer, Ross A.

    2015-01-01

    The cameras of New Horizons will provide robust data sets that should be imminently amenable to geological analysis of the Pluto system's landscapes. In this paper, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then we broadly review the major geological processes that could potentially operate on the surfaces of Pluto and its major moon Charon. We first survey exogenic processes (i.e. those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. We conclude with an assessment of the prospects for endogenic activity in the form of tectonics and cryovolcanism.

  19. Planetary Geology and Geophysics Program

    NASA Technical Reports Server (NTRS)

    McGill, George E.

    2004-01-01

    Geological mapping and topical studies, primarily in the southern Acidalia Planitia/Cydonia Mensae region of Mars is presented. The overall objective was to understand geologic processes and crustal history in the northern lowland in order to assess the probability that an ocean once existed in this region. The major deliverable is a block of 6 1:500,000 scale geologic maps that will be published in 2004 as a single map at 1:1,000,000 scale along with extensive descriptive and interpretive text. A major issue addressed by the mapping was the relative ages of the extensive plains of Acidalia Planitia and the knobs and mesas of Cydonia Mensae. The mapping results clearly favor a younger age for the plains. Topical studies included a preliminary analysis of the very abundant small domes and cones to assess the possibility that their origins could be determined by detailed mapping and remote-sensing analysis. We also tested the validity of putative shorelines by using GIs to co-register full-resolution MOLA altimetry data and Viking images with these shorelines plotted on them. Of the 3 proposed shorelines in this area, one is probably valid, one is definitely not valid, and the third is apparently 2 shorelines closely spaced in elevation. Publications supported entirely or in part by this grant are included.

  20. Global geologic map of Ganymede

    USGS Publications Warehouse

    Collins, Geoffrey C.; Patterson, G. Wesley; Head, James W.; Pappalardo, Robert T.; Prockter, Louise M.; Lucchitta, Baerbel K.; Kay, Johnathan P.

    2014-01-01

    Ganymede is the largest satellite of Jupiter, and its icy surface has been formed through a variety of impact cratering, tectonic, and possibly cryovolcanic processes. The history of Ganymede can be divided into three distinct phases: an early phase dominated by impact cratering and mixing of non-ice materials in the icy crust, a phase in the middle of its history marked by great tectonic upheaval, and a late quiescent phase characterized by a gradual drop in heat flow and further impact cratering. Images of Ganymede suitable for geologic mapping were collected during the flybys of Voyager 1 and Voyager 2 (1979), as well as during the Galileo Mission in orbit around Jupiter (1995–2003). This map represents a synthesis of our understanding of Ganymede geology after the conclusion of the Galileo Mission. We summarize the properties of the imaging dataset used to construct the map, previously published maps of Ganymede, our own mapping rationale, and the geologic history of Ganymede. Additional details on these topics, along with detailed descriptions of the type localities for the material units, may be found in the companion paper to this map (Patterson and others, 2010).

  1. Scaling the Geologic Past

    ERIC Educational Resources Information Center

    Gerritts, Mary

    1975-01-01

    Describes construction of a Geologic Time Scale on a 100 foot roll of paper and suggests activities concerning its use. Includes information about fossils and suggestions for conducting a fossil field trip with students. (BR)

  2. Experiencing Structural Geology

    ERIC Educational Resources Information Center

    Davis, George H.

    1978-01-01

    Describes an undergraduate structural geology course that incorporates field lab time and research. Lectures, outside readings, and in-class experimentation are coordinated with the field work to prepare a scientific report. (MA)

  3. Stratigraphy and structural geology

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Wilhelms, D. E.; Greeley, R.; Guest, J. E.

    1976-01-01

    The immediate goal of stratigraphy and structural geology is to reduce the enormous complexity of a planetary surface to comprehensible proportions by dividing the near-surface rocks into units and mapping their distribution and attitude.

  4. Mass Extinctions Geology 331

    E-print Network

    Kammer, Thomas

    ;Stromatoporoids and Corals sarv.gi.ee/geology/photos.html #12;Rugose Corals #12;Victims · Permian ­ about 50 brachiopods ­ All rugose and tabulate corals ­ All remaining trilobites ­ Nearly all crinoids ­ Nearly all

  5. Economic Geology (Oil & Gas)

    ERIC Educational Resources Information Center

    Geotimes, 1972

    1972-01-01

    Briefly reviews the worldwide developments in petroleum geology in 1971, including exploration, new fields, and oil production. This report is condensed from the October Bulletin of the American Association of Petroleum Geologists. (PR)

  6. Assessing the Relative Importance of Local and Regional Processes on the Survival of a Threatened Salmon Population

    PubMed Central

    Miller, Jessica A.; Teel, David J.; Peterson, William T.; Baptista, Antonio M.

    2014-01-01

    Research on regulatory mechanisms in biological populations often focuses on environmental covariates. An integrated approach that combines environmental indices with organismal-level information can provide additional insight on regulatory mechanisms. Survival of spring/summer Snake River Chinook salmon (Oncorhynchus tshawytscha) is consistently low whereas some adjacent populations with similar life histories experience greater survival. It is not known if populations with differential survival respond similarly during early marine residence, a critical period in the life history. Ocean collections, genetic stock identification, and otolith analyses were combined to evaluate the growth-mortality and match-mismatch hypotheses during early marine residence of spring/summer Snake River Chinook salmon. Interannual variation in juvenile attributes, including size at marine entry and marine growth rate, was compared with estimates of survival and physical and biological metrics. Multiple linear regression and multi-model inference were used to evaluate the relative importance of biological and physical metrics in explaining interannual variation in survival. There was relatively weak support for the match-mismatch hypothesis and stronger evidence for the growth-mortality hypothesis. Marine growth and size at capture were strongly, positively related to survival, a finding similar to spring Chinook salmon from the Mid-Upper Columbia River. In hindcast models, basin-scale indices (Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO)) and biological indices (juvenile salmon catch-per-unit-effort (CPUE) and a copepod community index (CCI)) accounted for substantial and similar portions of variation in survival for juvenile emigration years 1998–2008 (R2>0.70). However, in forecast models for emigration years 2009–2011, there was an increasing discrepancy between predictions based on the PDO (50–448% of observed value) compared with those based on the NPGO (68–212%) or biological indices (CPUE and CCI: 83–172%). Overall, the PDO index was remarkably informative in earlier years but other basin-scale and biological indices provided more accurate indications of survival in recent years. PMID:24924741

  7. Assessing the relative importance of local and regional processes on the survival of a threatened salmon population.

    PubMed

    Miller, Jessica A; Teel, David J; Peterson, William T; Baptista, Antonio M

    2014-01-01

    Research on regulatory mechanisms in biological populations often focuses on environmental covariates. An integrated approach that combines environmental indices with organismal-level information can provide additional insight on regulatory mechanisms. Survival of spring/summer Snake River Chinook salmon (Oncorhynchus tshawytscha) is consistently low whereas some adjacent populations with similar life histories experience greater survival. It is not known if populations with differential survival respond similarly during early marine residence, a critical period in the life history. Ocean collections, genetic stock identification, and otolith analyses were combined to evaluate the growth-mortality and match-mismatch hypotheses during early marine residence of spring/summer Snake River Chinook salmon. Interannual variation in juvenile attributes, including size at marine entry and marine growth rate, was compared with estimates of survival and physical and biological metrics. Multiple linear regression and multi-model inference were used to evaluate the relative importance of biological and physical metrics in explaining interannual variation in survival. There was relatively weak support for the match-mismatch hypothesis and stronger evidence for the growth-mortality hypothesis. Marine growth and size at capture were strongly, positively related to survival, a finding similar to spring Chinook salmon from the Mid-Upper Columbia River. In hindcast models, basin-scale indices (Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO)) and biological indices (juvenile salmon catch-per-unit-effort (CPUE) and a copepod community index (CCI)) accounted for substantial and similar portions of variation in survival for juvenile emigration years 1998-2008 (R2>0.70). However, in forecast models for emigration years 2009-2011, there was an increasing discrepancy between predictions based on the PDO (50-448% of observed value) compared with those based on the NPGO (68-212%) or biological indices (CPUE and CCI: 83-172%). Overall, the PDO index was remarkably informative in earlier years but other basin-scale and biological indices provided more accurate indications of survival in recent years. PMID:24924741

  8. Geological research for public outreach and education in Lithuania

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Guobyte, Rimante

    2013-04-01

    Successful IYPE activities and implementation of Geoheritage day in Lithuania increased public awareness in geology. A series of projects introducing geology to the general public and youth, supported by EU funds and local communities, were initiated. Researchers from the scientific and applied geology institutions of Lithuania participated in these projects and provided with the geological data. In one case, the Lithuanian Survey of Protected Areas supported the installation of a series of geological exhibitions in several regional and national parks. An animation demonstrating glacial processes was chosen for most of these because the Lithuanian surface is largely covered with sedimentary deposits of the Nemunas (Weichselian) glaciation. Researchers from the Lithuanian Geological Survey used the mapping results to demonstrate real glacial processes for every chosen area. In another case, 3D models showing underground structures of different localities were based on detailed geological maps and profiles obtained for that area. In case of the Sartai regional park, the results of previous geological research projects provided the possibility to create a movie depicting the ca. 2 Ga geological evolution of the region. The movie starts with the accretion of volcanic island arcs on the earlier continental margin at ca. 2 Ga and deciphers later Precambrian tectonic and magmatic events. The reconstruction is based on numerous scientific articles and interpretation of geophysical data. Later Paleozoic activities and following erosion sculptured the surface which was covered with several ice sheets in Quaternary. For educational purpose, a collection of minerals and rocks at the Forestry Institute was used to create an exhibition called "Cycle of geological processes". Forestry scientists and their students are able to study the interactions of geodiversity and biodiversity and to understand ancient and modern geological processes leading to a soil formation. An aging exposition at the Museum of Erratic Boulders in NW Lithuania is being rearranged for educational purposes, to show the major rock types and their origins more clearly. A new exhibition is supplemented with computer portals presenting geological processes, geological quizzes, animations etc. Magmatism, metamorphism, sedimentation and other geological processes are demonstrated using erratic boulders brought by glaciers from Scandinavia and northern Russia. A part of the exhibition is devoted to glaciation processes and arrival of ice sheets to Lithuania. Visitors are able to examine large erratic boulder groups in a surrounding park and to enjoy beautiful environment. The exhibition also demonstrates mineral resources of Lithuania, different fossils and stones from a human body. In all cases it was recognised that a lack of geological information limits the use of geology for public outreach. Ongoing scientific research is essential in many places as well as a mediator's job for interpreting the results of highly specialised research results and to adapt them for public consumption.

  9. Regional geology subprogram: Geological interpretation of ERTS imagery of the occidental region of Bolivia

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E. (principal investigator); Ayllon, R. B.

    1973-01-01

    The author has identified the following significant results. Using ERTS-1 imagery, it is possible to delimit great lithological units, folds, lineaments, faults, and in lesser degree unconformities. In the morphological aspect, the images show clearly the relief necessary for geological interpretation. The ERTS-1 images are important for the preparation of the geological and tectonic map of Bolivia, on a 1:1 million scale, if conventional methods of work are used as a base.

  10. Geologic exploration of Mars

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1990-01-01

    The scientific objectives and methods involved in a geologic exploration of Mars from a manned outpost are discussed. The constraints on outpost activities imposed by the limited crew size, limited amount of time available for science, the limited diversity of scientific expertise, and the competition between scientific disciplines are addressed. Three examples of possible outpost locations are examined: the Olympus Mons aureole, Mangala Valles/Daedalia Planum, and Candor Chasma. The geologic work that could be done at each site is pointed out.

  11. OneGeology - Access to geoscience for all

    NASA Astrophysics Data System (ADS)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  12. Biological and geological carbon sources in a steppe ecosystem in the SE of Spain

    NASA Astrophysics Data System (ADS)

    Rey, Ana; Belelli-Marchesini, Luca; Etiope, Giuseppe; Papale, Dario

    2015-04-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. However, some processes of soil CO2 production and transport have not received enough attention. In the current soil respiration literature it has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration) but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. We carried out a study in the SE of Spain that showed that wind was the main determinant of the net ecosystem carbon balance with anomalous CO2 fluxes that could not be attributed to biological activity alone and hypothesised the presence of a geo-CO2 source given that the site was located over an tectonic fault in an ancient volcanic area (Rey et al., 2012a). After proving the existence of a geological CO2 source (Rey et al., 2013b), we developed a methodology using parameters of the boundary layer to derive biological (FBIO) and geological (FGEO) components and then partitioned FBIO into gross primary productivity and ecosystem respiration (Rey et al. 2013). We estimated that ca 50% of the carbon emitted annually came from geological sources. Thus these sources can be very important in some regions and confound our estimates of the CO2 exchange attributed to biological activity. This study highlights the need to improve our understanding of the processes involved in ecosystem and soil CO2 efflux and to standardise current methodologies among the scientific community. The complexity of the CO2 production and transport mechanisms will require a much better interdisciplinary integration (Rey 2014). This should be a research priority given the importance of this flux in the global carbon budget.

  13. BRITISH GEOLOGICAL SURVEY TECHNICAL REPORT

    E-print Network

    BRITISH GEOLOGICAL SURVEY TECHNICAL REPORT WM/00/17R Geomagnetism Series TTThhheee. Quinn, 2000. The Derivation of World Magnetic Model 2000. British Geological Survey Technical Report WM and John M. Quinn* (* at United States Geological Survey) #12;#12;BRITISH GEOLOGICAL SURVEY TECHNICAL

  14. Impact, and its implications for geology

    NASA Technical Reports Server (NTRS)

    Marvin, Ursula B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe.

  15. Geocomputing with Geological Field Data: Is there a 'ghost in the machine'?

    E-print Network

    Klippel, Alexander

    are correlation results that indicate the geological mapping process is indeed a mixture of abductive (i.e., tacit; Schumm, 1991). Several have attempted to model aspects of the geological reasoning processGeocomputing with Geological Field Data: Is there a 'ghost in the machine'? BRODARIC, B.1

  16. Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical

    E-print Network

    Farquharson, Colin G.

    process Geophysical Data Geological Data Inversion Earth Model Leli`evre et al., plelievre process Geophysical Data Geological Data Inversion Earth Model More information reduce nonUnstructured grid modelling to create 3-D Earth models that unify geological and geophysical

  17. An Integrated Approach to the Generalisation of Geological Maps Timothy C. Downs and William A. Mackaness

    E-print Network

    can be combined, using a rule base, into a partially automated process to generalise a geological data it is necessary to emphasise essential geological detail whilst repressing the unimportant. This process- 1 - An Integrated Approach to the Generalisation of Geological Maps Timothy C. Downs and William

  18. Core personal competencies important to entering students' success in medical school: what are they and how could they be assessed early in the admission process?

    PubMed

    Koenig, Thomas W; Parrish, Samuel K; Terregino, Carol A; Williams, Joy P; Dunleavy, Dana M; Volsch, Joseph M

    2013-05-01

    Assessing applicants' personal competencies in the admission process has proven difficult because there is not an agreed-on set of personal competencies for entering medical students. In addition, there are questions about the measurement properties and costs of currently available assessment tools. The Association of American Medical College's Innovation Lab Working Group (ILWG) and Admissions Initiative therefore engaged in a multistep, multiyear process to identify personal competencies important to entering students' success in medical school as well as ways to measure them early in the admission process. To identify core personal competencies, they conducted literature reviews, surveyed U.S and Canadian medical school admission officers, and solicited input from the admission community. To identify tools with the potential to provide data in time for pre-interview screening, they reviewed the higher education and employment literature and evaluated tools' psychometric properties, group differences, risk of coaching/faking, likely applicant and admission officer reactions, costs, and scalability. This process resulted in a list of nine core personal competencies rated by stakeholders as very or extremely important for entering medical students: ethical responsibility to self and others; reliability and dependability; service orientation; social skills; capacity for improvement; resilience and adaptability; cultural competence; oral communication; and teamwork. The ILWG's research suggests that some tools hold promise for assessing personal competencies, but the authors caution that none are perfect for all situations. They recommend that multiple tools be used to evaluate information about applicants' personal competencies in deciding whom to interview. PMID:23524928

  19. Applications of ISES for geology

    NASA Technical Reports Server (NTRS)

    Bowker, David E.

    1990-01-01

    The principal applications for onboard data processing and real-time data transmission in the geological sciences are the detection of early warning signs of potential catastrophic events and the rapid assessment of impact and damage following major events. Also, the opportunity for quick look and supporting data during field investigations should not be disregarded. The Eos platforms are ideal for these applications because of the variety of earth sensing instruments and their differing modes of operation. Further study is required to define the role for each instrument and to assess how they can aid each other in establishing an improved output product.

  20. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  1. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    NASA Astrophysics Data System (ADS)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the lithologic character of such units in a meaningful way. A lithogenetic unit category scheme accessible as a GeoSciML-portrayal-based OGC Styled Layer Description resource is key to enabling OneGeology (http://oneGeology.org) geologic map services to achieve a high degree of visual harmonization.

  2. Challenge to Increase Confidence in Geological Evolution Models

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Iwatsuki, T.; Saegusa, H.; Kato, T.; Matsuoka, T.; Yasue, K.; Ohyama, T.; Sasao, E.

    2014-12-01

    The geological evolution models (GEMs) as well as site descriptive models (SDMs) are used to integrate investigation results and to support safety assessment. Even more, enhancing confidence in long-term stability of geological environment is required for geological disposal in Japan where is in active tectonic region. The aim of the study is to provide future direction for increasing GEMs confidence based on review of current GEMs. GEMs has been constructed in following three steps; 1) Features, Events and Processes (FEP) analysis, 2) Scenario development and 3) Numerical modeling. Base on the current status, we looked at the issues for developing GEMs with higher level of confidence. As the result, development of techniques and methodologies for; 1) validation of GEMs, 2) handling uncertainty and 3) digitalization/visualization are identified as open issues. To solve these issues, we specified three approaches. First approach is using multiple lines of evidence. Consistency between various study fields will be important information for validation of the GEMs. Second one is revealing the argument behind GEMs. Confidence/uncertainty of GEMs will be able to be confirmed by synthesizing the basic information behind the GEMs because GEMs are built on many evidences, hypothesis and assumptions. In addition, the optional cases will be needed for demonstrating the level of understanding. Third is development of elemental technology, such as the integrated system between numerical simulation and visualization which can take into account large size of model and composite phenomenon. In the future, we will focus on increasing GEMs confidence in keeping with this notion. This study was carried out under a contract with METI (Ministry of Economy, Trade and Industry) as part of its R&D supporting program for developing geological disposal technology.

  3. United States Geological Survey Yearbook, Fiscal Year 1980

    USGS Publications Warehouse

    U.S. Geological Survey

    1981-01-01

    It is not very often that a single event is so overwhelming that it changes public perceptions of natural hazards for generations. Perhaps for the U.S. Geological Survey, the explosive volcanic activity of Mount St. Helens began such a change. After 101 years of careful science of the Earth's past and meticulous observations and assessments of the present, predictive earth science was in full public view. However vague and faint the glimpse of the future made possible by earth science, it was enough. Warnings were issued, thousands of lives were saved, and the age of real-time geology began. The Survey's basic mission has not changed, but the power of our analytical tools has increased by several orders of magnitude. The Survey's efforts to understand Earth processes and hydrologic principles continued with the collection, during fiscal year 1980, of valuable new data on the geologic origin and framework, seismicity, and mineral and energy resources of the United States. The Survey is also responsible for classification of the leasable minerals on Federal lands and the regulation of mineral exploration and development activities on Federal and Indian lands. As the principal earth science fact-gathering agency, the Survey provides information for sound decisionmaking by government and private industry. Industry uses the Survey's information in exploring for energy and minerals and improving their efforts to make development of energy and minerals compatible with environmental protection standards. Government uses the Survey's information in conducting leasing operations on public lands, in regulating the safe design and siting of nuclear plants, and in establishing guidelines for determining and locating areas that are subject to geologic hazards such as landslides, earthquakes, and volcanic eruptions. The Yearbook reports a broad range of the Survey's accomplishments during the past fiscal year and provides an overview of future directions. Many of the topics covered will continue to be important natural resource and earth science issues of the 1980's.

  4. OneGeology-Europe Plus Initiative

    NASA Astrophysics Data System (ADS)

    Capova, Dana; Kondrova, Lucie

    2014-05-01

    The Geological Surveys of the European countries hold valuable resources of geological data but, to discover, understand and use this data efficiently, a good level of standardization is essential. The OneGeology-Europe project had the aim of making geological maps at a scale 1:1M from Europe discoverable and accessible, available under a common data license and described by multilingual metainformation. A harmonized specification for basic geological map data was developed so that significant progress towards harmonizing the datasets was achieved. Responsibility for the management of the OneGeology-Europe portal has been taken by EuroGeoSurveys and provided by CGS and BRGM. Of the 34 members of EuroGeoSurveys (EGS), only 20 participated in the OneGeology-Europe project (Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Sweden, Spain, United Kingdom), so the European area was not completely covered. At the 33rd General Meeting and Directors Workshop in 2012 it was therefore decided to establish a successor initiative OneGeology Europe Plus (1G-E+) with the purpose of extending the coverage by geological maps at a scale of 1:1 M to all the EGS member countries (including Albania, Austria, Bulgaria, Croatia, Cyprus, Greece, Iceland, Lithuania, Malta, Romania, Russia, Switzerland, Turkey, Ukraine) and also, if possible, to the other European countries (Belorussia, Bosnia and Herzegovina, Faeroe Islands, Kosovo, Latvia, Macedonia, Moldavia, Montenegro, Serbia). In order to achieve the desired result, it has been necessary for the new GSOs who intend to supply the additional 1G-E standardized services to carry out the work using their own staff and resources. The technical guidance and other support have been provided by the 1G-E+ Technical Support Team, funded from the internal budgets of their respective surveys. The team is coordinated by the Czech Geological Survey (CGS) working with the Bureau de Recherches Géologiques et Minières (BRGM), the British Geological Survey (BGS), the Geological Survey of Denmark and Greenland (GEUS) and the Geological Survey of Slovenia (GeoZS). The Geological Survey of the Netherlands (TNO) decided to provide financial support for the initiative. The Technical Support Team has been providing the technical advice required to enable the inclusion of geological maps from new countries in the 1G-E Portal using the standards developed and accepted for 1G-E. Cookbooks, on-line help and a helpdesk are provided during the work. A technical workshop was organized at which all the technical steps required to reach the target solution were presented and discussed. All newcomers must agree the existing common license that was created for downloading the 1G-E data. It should be emphasized that the results will be displayed as part of the 1G-E project and metadata/portal infrastructures. The process is still ongoing because the harmonization work for most of the countries involved has been a demanding process. Some countries are facing difficulties because of the lack of expert personnel or insufficient resources of data. Despite some problems, the 1G-E+ initiative and the work involved has contributed to effective networking and technical cooperation between the GSOs across the wider European region.

  5. Ancient Martian Lakestands and Fluvial Processes in Iani Chaos: Geology of Light-Toned Layered Deposits and their Relationship to Ares Vallis Outflow Channels

    NASA Astrophysics Data System (ADS)

    Guallini, Luca; Gilmore, Martha; Marinangeli, Lucia; Thomas, Nicolas

    2015-04-01

    Iani Chaos is a ~30,000 square kilometers region that lies at the head of the Ares Vallis outflow channel system. Mapping of Ares Vallis reveals multiple episodes of erosion, probably linked to several discharge events from the Iani Chaos aquifer. We present the first detailed geomorphological map of the Iani region. Five chaos units have been distinguished with varying degrees of modification (primarily by erosion and fracturing), starting from a common terrain (Noachian highlands). We observe a general progressive decrease of their mean elevation from the Mesas, Mesas & Knobs and Hummocky (Hy) terrains to the Knobs and Knobby morphologies. This trend is consistent with an initial collapse of the original surface with an increase of the fracturing and/or of the erosion. Light-toned Layered Deposits (LLD) have been also mapped and described in Iani Chaos. These terrains are clearly distinguished by a marked light-toned albedo, high thermal inertia and a pervasively fractured morphology. LLD both fill the basins made by the collapsed chaotic terrains and are found to be partially modified by the chaos formation. LLD also overlap chaos mounds or are themselves eroded into mounds after deposition. These stratigraphic relationships demonstrate that LLD deposition occurred episodically in the Iani region and throughout the history of the development of the chaos. Water seems to have had an active role in the geological history of Iani. The composition and morphologies of the LLD are consistent with deposition in an evaporitic environment and with erosion by outflows, requiring stable water on the surface. For the first time, we have also mapped and analyzed potential fluvial features (i.e., channels, streamlined islands, terraces, grooved surfaces) on the surface of the LLD. These landforms describe a fluvial system that can be traced from central Iani and linked northward to Ares Vallis. Using topographic data, we have compared the elevation of the LLD and channel units and find that their altitudes are remarkably similar to the altitude of the floors of the major Ares Vallis channels. This is decisive evidence of 1) a possible fluvial system within Iani linked to the Ares Vallis outflow system, characterized by five episodes of outflow at least (S1 to S5), and 2) of the existence of the LLD within Iani during the occurrence of the outflows (i.e., the LLD are coeval with or postdate the Ares Vallis outflow channels). On the basis of our analysis, we propose the following formation model for Iani Chaos: 1) Initial fracturing and tectonic subsidence of the pristine Noachian materials and subsequent outflow erosion of the bedrock (Ares Vallis S1 channel origin); 2) Evaporitic deposition of older LLD units on top and between chaotic terrains. Layering suggests cyclic wetting and drying; 3) Tectonic subsidence and fluvial erosion of chaos and LLD (Ares Vallis S2 to S3 channels); 4) Deposition of younger LLD units in central and northern Iani; 5) Tectonic subsidence and outflows, erosion of chaos and LLD (Ares Vallis S4 to S5 channel origin and subsequent downdropping of NW and N(e) Iani).

  6. The geology of Ganymede

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    1982-01-01

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  7. Geology of Io

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Craddock, R. A.; Crown, D. A.; Leshin, L. A.; Schaber, G. G.

    1987-01-01

    Geologic mapping of the Jovian satellite Io has been completed at 1:15,000,000 scale for an area lying between +40 and -90 deg latitude and 230 and 45 deg longitude, which includes portions of the Ruwa Patera quadrangle (Ji2) and the Lerna Region (Ji4) and the westernmost section of the Colchis Region (Ji3). Image resolution in the mapped area is commonly 0.5 to 2 km/pxl. High resolution areas (less than .5 km/pxl) are located near the south pole (Lerna Region) and in eastern Ruwa Patera quadrangle. Geologic maps for the Ruwa Patera quadrangle (Ji2) and the Lerna Region (Ji4) have been produced at 1:5,000,000 scale. The present effort reexamines the previously mapped areas and synthesizes the geology of Io on a global scale.

  8. Geological fakes and frauds

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; Majury, Niall; Brooks, William E.

    2012-02-01

    Some geological fakes and frauds are carried out solely for financial gain (mining fraud), whereas others maybe have increasing aesthetic appeal (faked fossils) or academic advancement (fabricated data) as their motive. All types of geological fake or fraud can be ingenious and sophisticated, as demonstrated in this article. Fake gems, faked fossils and mining fraud are common examples where monetary profit is to blame: nonetheless these may impact both scientific theory and the reputation of geologists and Earth scientists. The substitution or fabrication of both physical and intellectual data also occurs for no direct financial gain, such as career advancement or establishment of belief (e.g. evolution vs. creationism). Knowledge of such fakes and frauds may assist in spotting undetected geological crimes: application of geoforensic techniques helps the scientific community to detect such activity, which ultimately undermines scientific integrity.

  9. Geologic map of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P., III; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  10. Cognitive Factors Affecting Student Understanding of Geologic Time.

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    Presents a model that describes how students reconstruct geological transformations over time. Defines the critical factors influencing reconstructive thinking: (1) the transformation scheme, which influences the other diachronic schemes; (2) knowledge of geological processes; and (3) extracognitive factors. (Author/KHR)

  11. DENISE M. AKOB U.S. Geological Survey

    E-print Network

    DENISE M. AKOB U.S. Geological Survey National Research Program (Water) 430 National Center Reston's College of Maryland, 2002 PROFESSIONAL EXPERIENCE Research Microbiologist, U.S. Geological Survey. Palumbo, J. E. Kostka, and K.-J.Chin. 2012. Gene expression correlates with process rates quantified

  12. A Writing Template for Probing Students' Geological Sense of Place

    ERIC Educational Resources Information Center

    Clary, Renee M.; Wandersee, James H.

    2006-01-01

    Because many incoming geoscience students did not acknowledge their previous personal encounters with the earth's geological processes or products, we developed the Geological Sense of Place (GSP) template as a convenient way to assess students' earth science backgrounds through short answer, mini-essay, and induced associative responses. The GSP…

  13. Geological and mathematical framework for failure modes in granular rock

    E-print Network

    Borja, Ronaldo I.

    Geological and mathematical framework for failure modes in granular rock Atilla Aydina, *, Ronaldo processes in granular rock and provide a geological framework for the corresponding structures. We describe show that sharp structures overlap older narrow tabular structures in the same rock. This switch

  14. Activities in planetary geology for the physical and earth sciences

    NASA Technical Reports Server (NTRS)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  15. The Geology of Earthquakes

    NASA Astrophysics Data System (ADS)

    Wallace, Robert E.

    The Geology of Earthquakes is a major contribution that brings together under one cover the many and complex elements of geology that are fundamental to earthquakes and seismology. Here are described and analyzed the basic causes of earthquakes, the resulting effects of earthquakes and faulting on the surface of the Earth, techniques of analyzing these effects, and engineering and public policy considerations for earthquake hazard mitigation. The three authors have played major roles in developing the fundamentals in both scientific and policy matters; thus they speak with an authority that few others could.

  16. Multiple-Code BenchMaek Simulation Stidy of Coupled THMC Processes IN the EXCAVATION DISTURBED ZONE Associated with Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; X. Feng; J. Hudson; L. Jing; A. Kobayashi; T. Koyama; P.Pan; H. Lee; M. Rinne; E. Sonnenthal; Y. Yamamoto

    2006-05-08

    An international, multiple-code benchmark test (BMT) study is being conducted within the international DECOVALEX project to analyze coupled thermal, hydrological, mechanical and chemical (THMC) processes in the excavation disturbed zone (EDZ) around emplacement drifts of a nuclear waste repository. This BMT focuses on mechanical responses and long-term chemo-mechanical effects that may lead to changes in mechanical and hydrological properties in the EDZ. This includes time-dependent processes such as creep, and subcritical crack, or healing of fractures that might cause ''weakening'' or ''hardening'' of the rock over the long term. Five research teams are studying this BMT using a wide range of model approaches, including boundary element, finite element, and finite difference, particle mechanics, and elasto-plastic cellular automata methods. This paper describes the definition of the problem and preliminary simulation results for the initial model inception part, in which time dependent effects are not yet included.

  17. Geocryological hazards and destructive exogenic geological processes on lines of linear constructions of tundra and forest-tundra zones of Western Siberia

    NASA Astrophysics Data System (ADS)

    Ospennikov, E. N.; Hilimonjuk, V. Z.

    2009-04-01

    Economic development of northern oil-and gas-bearing regions, even by application of shift method, is accompanied by a construction of the linear transport systems including automobile- and railways. Construction of such roads is connected with the risks caused by the whole complex of hazards, defined by the environmental features of the region, including flat surface with strong marshiness, development of a peat, fine-grained and easily eroded friable sedimentations, as well as by complicated geocryological conditions. Geocryological conditions of Western Siberia area are characterized by a rather high heterogeneity. This implies the strong variability of permafrost soils distribution, their thickness and continuity, depths of seasonal thawing and frost penetration, and also intact development of geocryological processes and phenomena. Thermokarst, thermo erosion and thermo-abrasion develop in the natural conditions. These processes are caused by partial degradation of permafrost. A frost heave also occurs during their seasonal or long-term freezing. Failure of an environment, which is always peculiar to construction of the roads, causes reorganization of geocryological systems that is accompanied by occurrence of dangerous geocryological processes, such as technogenic thermokarst (with formation of various negative forms of a relief: from fine subsidence up to small and average sized lakes), frost heave ground (with formation frost mound in height up to 0,5 - 1,5 meters and more), thermal erosion (gullies and ravines with volume of the born material up to several thousand cubic meters). Development of these destructive processes in a road stripes leads to emergencies owing to deformations and destructions of an earthen cloth, and to failure of natural tundra and forest-tundra ecosystems. The methodical approaches based on typification and zoning of the area by its environmental complex have been developed for an estimation of geocryological hazards at linear construction. The estimation was carried out on the basis of the analysis, including features of geocryological processes development in natural conditions and certain types of geocryological conditions; character of the failures caused by construction and operation of roads; hazard severity of destructive processes for certain geotechnical systems of roads. Three categories of territories have been specified as a result on base of hazard severity: very complex, complex and simple. Very complex ones are characterized by close to 0 0C by average annual temperatures of soils, presence massive pore and it is repeated- wedge ices, a wide circulation it is high ice bearing ground and active modern development of processes thermokarst, thermo erosion and frost heave. Simple territories differ in low average annual temperatures of soils (below -4 0?), absence massive underground ices and weak development of geocryological processes. All other territories representing potential hazard at adverse change of an environment are classified as complex territories.

  18. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    SciTech Connect

    Not Available

    1994-09-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  19. Lunar Crustal Magnetism: Correlations with Geology

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Frey, S.; Acuna, M. H.; Hood, L. L.; Binder, A. B.

    2001-01-01

    With Lunar Prospector reflectometry data we now have sufficient surface coverage to allow detailed comparisons between crustal magnetism and geology. We find substantial evidence that lunar magnetism is dominated by the effects of impact processes. Additional information is contained in the original extended abstract.

  20. The Geology of Comet 19/P Borrelly

    NASA Technical Reports Server (NTRS)

    Britt, D. T.; Boice, D. C; Buratti, B. J.; Hicks, M. D.; Nelson, R. M.; Oberst, J.; Sandel, B. R.; Soderblom, L. A.; Stern, S. A.; Thomas, N.

    2002-01-01

    The Deep Space One spacecraft flew by Comet 19P/Borrelly on September 22, 2001 and returned a rich array of imagery with resolutions of up to 48 m/pixel. These images provide a window into the surface structure, processes, and geological history of a comet. Additional information is contained in the original extended abstract.

  1. Aeromagnetic data, processing, and maps of Fort Irwin and vicinity, California: Chapter I in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, Robert C.

    2014-01-01

    Aeromagnetic data help provide the underpinnings of a hydrogeologic framework for Fort Irwin by locating inferred structural features or grain that influence groundwater flow. Magnetization boundaries defined by horizontal-gradient analyses coincide locally with Cenozoic faults and can be used to extend these faults beneath cover. These boundaries also highlight the structural grain within the crystalline rocks and may serve as a proxy for fracturing, an important source of permeability within the generally impermeable basement rocks, thus mapping potential groundwater pathways through and along the mountain ranges in the study area.

  2. Assessment of effectiveness of geologic isolation systems: the AEGIS geologic simulation model

    SciTech Connect

    Foley, M.G.; Petrie, G.M.

    1981-02-01

    Assessment of the post-closure performance of a nuclear waste repository has two basic components: the identification and analysis of potentially disruptive sequences and the pattern of geologic events and processes causing each sequence, and the identification and analysis of the environmental consequences of radionuclide transport and interactions subsequent to disruption of a repository. The AEGIS Scenario Analysis Task is charged with identifying and analyzing potenially disruptive sequences of geologic events and processes. The Geologic Simulation Model (GSM) was developed to evaluate the geologic/hydrologic system surrounding an underground repository, and describe the phenomena that alone, or in concert, could perturb the system and possibly cause a loss of repository integrity. The AEGIS approach is described in this report. It uses an integrated series of models for repository performance analysis; the GSM for a low-resolution, long-term, comprehensive evaluation of the geologic/hydrologic system, followed by more detailed hydrogeologic, radionuclide transport, and dose models to more accurately assess the consequences of disruptive sequences selected from the GSM analyses. This approach is felt to be more cost-effective than an integrated one because the GSM can be used to estimate the likelihoods of different potentially disruptive future evolutionary developments within the geologic/hydrologic system. The more costly consequence models can then be focused on a few disruptive sequences chosen for their representativeness and effective probabilities.

  3. NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information

    USGS Publications Warehouse

    North American Geologic Map Data Model (NADM) Steering Committee Data Model Design Team

    2004-01-01

    Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.

  4. Reports of Planetary Geology and Geophysics Program, 1984

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (compiler); Watters, T. R. (compiler)

    1985-01-01

    Topics include outer planets and satellites; asteroids and comets; Venus; lunar origin and solar dynamics; cratering process; planetary interiors, petrology, and geochemistry; volcanic processes; aeolian processes and landforms; fluvial processes; geomorphology; periglacial and permafrost processes; remote sensing and regolith studies; structure, tectonics, and stratigraphy; geological mapping, cartography, and geodesy; and radar applications.

  5. Statistical approaches to leak detection for geological sequestration

    E-print Network

    Haidari, Arman S

    2011-01-01

    Geological sequestration has been proposed as a way to remove CO? from the atmosphere by injecting it into deep saline aquifers. Detecting leaks to the atmosphere will be important for ensuring safety and effectiveness of ...

  6. doi: 10.1130/G33008.1 2012;40;763-766Geology

    E-print Network

    Meyers, Stephen R.

    ://www.geosociety.org/pubs/copyrt.htm#gsaclick official positions of the Society. citizenship, gender, religion, or political viewpoint. Opinions Geological Society of America on July 23, 2012geology.gsapubs.orgDownloaded from #12;GEOLOGY | August 2012), silicate minerals in skarns provide important records of hydrothermal system dynamics in the crust

  7. Geological assessment of the greenhouse effect

    SciTech Connect

    Crowley, T.J. )

    1993-12-01

    Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

  8. Origins of Sinuous and Braided Channels on Ascraeus Mons, Mars - A Keck Geology Consortium Undergraduate Research Project

    NASA Technical Reports Server (NTRS)

    de Wet, A. P.; Bleacher, J. E.; Garry, W. B.

    2012-01-01

    Water has clearly played an important part in the geological evolution of Mars. There are many features on Mars that were almost certainly formed by fluvial processes -- for example, the channels Kasei Valles and Ares Vallis in the Chryse Planitia area of Mars are almost certainly fluvial features. On the other hand, there are many channel features that are much more difficult to interpret -- and have been variously attributed to volcanic and fluvial processes. Clearly unraveling the details of the role of water on Mars is extremely important, especially in the context of the search of extinct or extant life. In this project we built on our recent work in determining the origin of one channel on the southwest rift apron of Ascraeus Mons. This project, funded by the Keck Geology Consortium and involving 4 undergraduate geology majors took advantage of the recently available datasets to map and analyze similar features on Ascraeus Mons and some other areas of Mars. A clearer understanding of how these particular channel features formed might lead to the development of better criteria to distinguish how other Martian channel features formed. Ultimately this might provide us with a better understanding of the role of volcanic and fluvial processes in the geological evolution of Mars.

  9. Geological and Inorganic Materials.

    ERIC Educational Resources Information Center

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  10. Geology: The Active Earth.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1987-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Geology: The Active Earth." Contents are organized into the following…

  11. Geological impacts on nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  12. Appendix E: Geology

    SciTech Connect

    Reidel, Steve; Chamness, Mickie A.

    2008-01-17

    This appendix provides a detailed description of geology under the Central Plateau of the Hanford Site, emphasizing the areas around tank farms. It is to be published by client CH2M HILL Hanford Group, Inc., as part of a larger, multi-contractor technical report.

  13. Briefing on geological sequestration

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  14. Dinosaur Paleobiology Geology 331

    E-print Network

    Kammer, Thomas

    Dinosaur Paleobiology Geology 331 Paleontology #12;Dinosaurs are popular with the public #12;Jack Horner, Montana State Univ. #12;Field Work in Montana #12;A dinosaur "drumstick" in its field jacket. #12;Abundant vascular canals in dinosaur bone support the warm- blooded theory #12;Thin section of dinosaur

  15. Geologic Data Systems

    USGS Multimedia Gallery

    Several of the systems used for viewing and storing geologic data as it's captured from the onboard instrumentation. The USGS returned from a seafloor data mapping mission offshore of the Delmarva Peninsula (Ocean City, MD) on July 25th, 2014. The data collected is foundational to our continued und...

  16. Life on Guam: Geology.

    ERIC Educational Resources Information Center

    Elkins, Gail

    This unit is part of a series of materials produced by a project to develop locally applicable class, lab, and field materials in ecology and social studies for Guam junior and senior high schools. While the materials were designed for Guam, they can be adapted to other localities. This unit is designed to acquaint the students with the geology of…

  17. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  18. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A wide variety of topics on planetary geology are presented. Subjects include stratigraphy and geomorphology of Copernicus, the Mamers valle region, and other selected regions of Mars and the Moon. Crater density and distribution are discussed for Callisto and the lunar surface. Spectroscopic analysis is described for Europa and Ganymede.

  19. Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    Included are a teacher's guidebook and two filmstrips, "Geology of Wisconsin," and associated materials. The following are described: outline of objectives; suggested use of the filmstrips and guidebook; outline of the filmstrip content; four pages of illustrations suitable for duplication; a test for each filmstrip; and a list of additional…

  20. IDAHO FLUVIAL GEOLOGY

    EPA Science Inventory

    Restricted availability. Major Attributes: Polygons described by geologic type codes & descriptions. May be incorporated into maps at the state/county/basin scale. Probably too coarse for use at the site scale. Scale: 1:500:000. Extent: Idaho. Projection: Albers. Source: ...