Science.gov

Sample records for imprinted gene snurf

  1. [Imprinted genes in plants].

    PubMed

    Zhang, Li-Geng; Yang, Ruo-Fei; Fu, Feng-Ling; Li, Wan-Chen

    2010-12-01

    The expression of imprinted genes is regulated by epigenetic mechanism. In plant endosperm, the allele of imprinted genes is expressed in a pattern of parent-of-origin-dependent. The expression of imprinted genes plays essential roles in the development of embryos and their annexe structures, as well as seed size, reproductive barriers and apomixis. Along with the progress of plant epigenetic research, the exploration of imprinted genes is becoming hotspot in epigenetic research. This review focused on the parental conflict theory about the origin of imprinted genes, and the latest research advances in expression regulation mechanism of plant imprinted genes, using the examples of the important imprinted genes MEA, FIS2, FWA, MPC, and PHE1 in Arabidopsis, and FIEI and FIE2 in maize. PMID:21513148

  2. The imprinted SNRPN gene is associated with a polycistronic mRNA and an imprinting control element

    SciTech Connect

    Saitoh, S.; Nicholls, R.D.; Seip, J.

    1994-09-01

    The small nuclear ribonucleoprotein-associated protein SmN (SNRPN) gene is located in the Prader-Willi syndrome (PWS) critical region in chromosome 15q11-q13. We have previously shown that it is functionally imprinted in humans, being only expressed from the paternal allele and differentially methylated on parental alleles. Therefore, SNRPN may have a role in PWS, although genetic studies suggest that at least two genes may be necessary for the classical PWS phenotype. We have characterized the SNRPN genomic structure, and shown that it comprises ten exons. Surprisingly, we identified an open reading frame (ORF) in the first three exons, 190-bp 5{prime} to the SmN ORF. Notably, the majority of base substitutions bewteen human and rodents in the upstream ORF occurred in the wobble position of codons, suggesting selection for a protein coding function. This ORF, which we name SNURF (SNRPN upstream reading frame) encodes a putative polypeptide of 71 amino acids. By analogy to prokaryotic operons that encode proteins with related functions, it is possible that SNURF may have a role in pre-mRNA splicing.

  3. Imprinting genes associated with endometriosis

    PubMed Central

    Kobayashi, Hiroshi

    2014-01-01

    Purpose: Much work has been carried out to investigate the genetic and epigenetic basis of endometriosis and proposed that endometriosis has been described as an epigenetic disease. The purpose of this study was to extract the imprinting genes that are associated with endometriosis development. Methods: The information on the imprinting genes can be accessed publicly from a web-based interface at http://www.geneimprint.com/site/genes-by-species. Results: In the current version, the database contains 150 human imprinted genes derived from the literature. We searched gene functions and their roles in particular biological processes or events, such as development and pathogenesis of endometriosis. From the genomic imprinting database, we picked 10 genes that were highly associated with female reproduction; prominent among them were paternally expressed genes (DIRAS3, BMP8B, CYP1B1, ZFAT, IGF2, MIMT1, or MIR296) and maternally expressed genes (DVL1, FGFRL1, or CDKN1C). These imprinted genes may be associated with reproductive biology such as endometriosis, pregnancy loss, decidualization process and preeclampsia. Discussion: This study supports the possibility that aberrant epigenetic dysregulation of specific imprinting genes may contribute to endometriosis predisposition. PMID:26417259

  4. Imprinted control of gene activity in Drosophila.

    PubMed

    Golic, K G; Golic, M M; Pimpinelli, S

    1998-11-19

    Genetic imprinting is defined as a reversible, differential marking of genes or chromosomes that is determined by the sex of the parent from whom the genetic material is inherited [1]. Imprinting was first observed in insects where, in some species, most notably among the coccoids (scale insects and allies), the differential marking of paternally and maternally transmitted chromosome sets leads to inactivation or elimination of paternal chromosomes [2]. Imprinting is also widespread in plants and mammals [3,4], in which paternally and maternally inherited alleles may be differentially expressed. Despite imprinting having been discovered in insects, clear examples of parental imprinting are scarce in the model insect species Drosophila melanogaster. We describe a case of imprint-mediated control of gene expression in Drosophila. The imprinted gene - the white+ eye-color gene - is expressed at a low level when transmitted by males, and at a high level when transmitted by females. Thus, in common with coccoids, Drosophila is capable of generating an imprint, and can respond to that imprint by silencing the paternal allele. PMID:9822579

  5. The role of imprinted genes in humans.

    PubMed

    Ishida, Miho; Moore, Gudrun E

    2013-01-01

    Genomic imprinting, a process of epigenetic modification which allows the gene to be expressed in a parent-of-origin specific manner, has an essential role in normal growth and development. Imprinting is found predominantly in placental mammals, and has potentially evolved as a mechanism to balance parental resource allocation to the offspring. Therefore, genetic and epigenetic disruptions which alter the specific dosage of imprinted genes can lead to various developmental abnormalities often associated with fetal growth and neurological behaviour. Over the past 20 years since the first imprinted gene was discovered, many different mechanisms have been implicated in this special regulatory mode of gene expression. This review includes a brief summary of the current understanding of the key molecular events taking place during imprint establishment and maintenance in early embryos, and their relationship to epigenetic disruptions seen in imprinting disorders. Genetic and epigenetic causes of eight recognised imprinting disorders including Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS), and also their association with Assisted reproductive technology (ART) will be discussed. Finally, the role of imprinted genes in fetal growth will be explored by investigating their relationship to a common growth disorder, intrauterine growth restriction (IUGR) and also their potential role in regulating normal growth variation. PMID:22771538

  6. Sexual differences of imprinted genes' expression levels.

    PubMed

    Faisal, Mohammad; Kim, Hana; Kim, Joomyeong

    2014-01-01

    In mammals, genomic imprinting has evolved as a dosage-controlling mechanism for a subset of genes that play critical roles in their unusual reproduction scheme involving viviparity and placentation. As such, many imprinted genes are highly expressed in sex-specific reproductive organs. In the current study, we sought to test whether imprinted genes are differentially expressed between the two sexes. According to the results, the expression levels of the following genes differ between the two sexes of mice: Peg3, Zim1, Igf2, H19 and Zac1. The expression levels of these imprinted genes are usually greater in males than in females. This bias is most obvious in the developing brains of 14.5-dpc embryos, but also detected in the brains of postnatal-stage mice. However, this sexual bias is not obvious in 10.5-dpc embryos, a developmental stage before the sexual differentiation. Thus, the sexual bias observed in the imprinted genes is most likely attributable by gonadal hormones rather than by sex chromosome complement. Overall, the results indicate that several imprinted genes are sexually different in terms of their expression levels, and further suggest that the transcriptional regulation of these imprinted genes may be influenced by unknown mechanisms associated with sexual differentiation. PMID:24125951

  7. Methylation Defect in Imprinted Genes Detected in Patients with an Albright's Hereditary Osteodystrophy Like Phenotype and Platelet Gs Hypofunction

    PubMed Central

    Izzi, Benedetta; Francois, Inge; Labarque, Veerle; Thys, Chantal; Wittevrongel, Christine; Devriendt, Koen; Legius, Eric; Van den Bruel, Annick; D'Hooghe, Marc; Lambrechts, Diether; de Zegher, Francis; Van Geet, Chris; Freson, Kathleen

    2012-01-01

    Background Pseudohypoparathyroidism (PHP) indicates a group of heterogeneous disorders whose common feature is represented by impaired signaling of hormones that activate Gsalpha, encoded by the imprinted GNAS gene. PHP-Ib patients have isolated Parathormone (PTH) resistance and GNAS epigenetic defects while PHP-Ia cases present with hormone resistance and characteristic features jointly termed as Albright's Hereditary Osteodystrophy (AHO) due to maternally inherited GNAS mutations or similar epigenetic defects as found for PHP-Ib. Pseudopseudohypoparathyroidism (PPHP) patients with an AHO phenotype and no hormone resistance and progressive osseous heteroplasia (POH) cases have inactivating paternally inherited GNAS mutations. Methodology/Principal Findings We here describe 17 subjects with an AHO-like phenotype that could be compatible with having PPHP but none of them carried Gsalpha mutations. Functional platelet studies however showed an obvious Gs hypofunction in the 13 patients that were available for testing. Methylation for the three differentially methylated GNAS regions was quantified via the Sequenom EpiTYPER. Patients showed significant hypermethylation of the XL amplicon compared to controls (36±3 vs. 29±3%; p<0.001); a pattern that is reversed to XL hypomethylation found in PHPIb. Interestingly, XL hypermethylation was associated with reduced XLalphaS protein levels in the patients' platelets. Methylation for NESP and ExonA/B was significantly different for some but not all patients, though most patients have site-specific CpG methylation abnormalities in these amplicons. Since some AHO features are present in other imprinting disorders, the methylation of IGF2, H19, SNURF and GRB10 was quantified. Surprisingly, significant IGF2 hypermethylation (20±10 vs. 14±7%; p<0.05) and SNURF hypomethylation (23±6 vs. 32±6%; p<0.001) was found in patients vs. controls, while H19 and GRB10 methylation was normal. Conclusion/Significance In conclusion, this

  8. Roles of imprinted genes in neural stem cells.

    PubMed

    Hoffmann, Anke; Daniel, Guillaume; Schmidt-Edelkraut, Udo; Spengler, Dietmar

    2014-01-01

    Imprinted genes and neural stem cells (NSC) play an important role in the developing and mature brain. A central theme of imprinted gene function in NSCs is cell survival and G1 arrest to control cell division, cell-cycle exit, migration and differentiation. Moreover, genomic imprinting can be epigenetically switched off at some genes to ensure stem cell quiescence and differentiation. At the genome scale, imprinted genes are organized in dynamic networks formed by interchromosomal interactions and transcriptional coregulation of imprinted and nonimprinted genes. Such multilayered networks may synchronize NSC activity with the demand from the niche resembling their roles in adjusting fetal size. PMID:25431944

  9. Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species.

    PubMed

    Waters, Amanda J; Bilinski, Paul; Eichten, Steven R; Vaughn, Matthew W; Ross-Ibarra, Jeffrey; Gehring, Mary; Springer, Nathan M

    2013-11-26

    In plants, a subset of genes exhibit imprinting in endosperm tissue such that expression is primarily from the maternal or paternal allele. Imprinting may arise as a consequence of mechanisms for silencing of transposons during reproduction, and in some cases imprinted expression of particular genes may provide a selective advantage such that it is conserved across species. Separate mechanisms for the origin of imprinted expression patterns and maintenance of these patterns may result in substantial variation in the targets of imprinting in different species. Here we present deep sequencing of RNAs isolated from reciprocal crosses of four diverse maize genotypes, providing a comprehensive analysis that allows evaluation of imprinting at more than 95% of endosperm-expressed genes. We find that over 500 genes exhibit statistically significant parent-of-origin effects in maize endosperm tissue, but focused our analyses on a subset of these genes that had >90% expression from the maternal allele (69 genes) or from the paternal allele (108 genes) in at least one reciprocal cross. Over 10% of imprinted genes show evidence of allelic variation for imprinting. A comparison of imprinting in maize and rice reveals that 13% of genes with syntenic orthologs in both species exhibit conserved imprinting. Genes that exhibit conserved imprinting between maize and rice have elevated nonsynonymous to synonymous substitution ratios compared with other imprinted genes, suggesting a history of more rapid evolution. Together, these data suggest that imprinting only has functional relevance at a subset of loci that currently exhibit imprinting in maize. PMID:24218619

  10. Regulatory links between imprinted genes: evolutionary predictions and consequences

    PubMed Central

    Patten, Manus M.; Cowley, Michael; Oakey, Rebecca J.; Feil, Robert

    2016-01-01

    Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species. PMID:26842569

  11. Genome-wide prediction of imprinted murine genes

    PubMed Central

    Luedi, Philippe P.; Hartemink, Alexander J.; Jirtle, Randy L.

    2005-01-01

    Imprinted genes are epigenetically modified genes whose expression is determined according to their parent of origin. They are involved in embryonic development, and imprinting dysregulation is linked to cancer, obesity, diabetes, and behavioral disorders such as autism and bipolar disease. Herein, we train a statistical model based on DNA sequence characteristics that not only identifies potentially imprinted genes, but also predicts the parental allele from which they are expressed. Of 23,788 annotated autosomal mouse genes, our model identifies 600 (2.5%) to be potentially imprinted, 64% of which are predicted to exhibit maternal expression. These predictions allowed for the identification of putative candidate genes for complex conditions where parent-of-origin effects are involved, including Alzheimer disease, autism, bipolar disorder, diabetes, male sexual orientation, obesity, and schizophrenia. We observe that the number, type, and relative orientation of repeated elements flanking a gene are particularly important in predicting whether a gene is imprinted. PMID:15930497

  12. Characterization of Conserved and Nonconserved Imprinted Genes in Swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic imprinting results in the silencing of a subset of mammalian alleles due to parent-of-origin inheritance. Due to the nature of their expression patterns they play a critical role in placental and early embryonic development. In order to increase our understanding of imprinted genes specifi...

  13. Imprinted genes as potential genetic and epigenetic toxicologic targets.

    PubMed Central

    Murphy, S K; Jirtle, R L

    2000-01-01

    Genomic imprinting is an epigenetic phenomenon in eutherian mammals that results in the differential expression of the paternally and maternally inherited alleles of a gene. Imprinted genes are necessary for normal mammalian development. This requirement has been proposed to have evolved because of an interparental genetic battle for the utilization of maternal resources during gestation and postnatally. The nonrandom requisite for monoallelic expression of a subset of genes has also resulted in the formation of susceptibility loci for neurobehavioral disorders, developmental disorders, and cancer. Since imprinting involves both cytosine methylation within CpG islands and changes in chromatin structure, imprinted genes are potential targets for dysregulation by epigenetic toxicants that modify DNA methylation and histone acetylation. PMID:10698719

  14. The Imprinted Gene DIO3 Is a Candidate Gene for Litter Size in Pigs

    PubMed Central

    Coster, Albart; Madsen, Ole; Heuven, Henri C. M.; Dibbits, Bert; Groenen, Martien A. M.; van Arendonk, Johan A. M.; Bovenhuis, Henk

    2012-01-01

    Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant () additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs. PMID:22393372

  15. Expression and genomic imprinting of the porcine Rasgrf1 gene.

    PubMed

    Ding, Yue-Yun; Liu, Li-Yuan; Zhou, Jie; Zhang, Xiao-Dong; Huang, Long; Zhang, Shu-Jing; Yin, Zong-Jun

    2014-02-25

    Imprinted genes play important roles in mammalian growth, development and behavior. The Rasgrf1 (Ras protein-specific guanine nucleotide exchange factor 1) gene has been identified as an imprinted gene in mouse and rat. In the present study, we detected its sequence, imprinting status and expression pattern in the domestic pigs. A 228 bp partial sequence located in exon 14 and a 193 bp partial sequence located in exon 1 of the Rasgrf1 gene in domestic pigs were obtained. A G/A transition, was identified in Rasgrf1 exon 14, and then, the reciprocal Berkshire × Wannan black F1 hybrid model and the RT-PCR-RFLP method were used to detect the imprinting status of porcine Rasgrf1 gene at the developmental stage of 1-day-old. The expression profile results indicated that the porcine Rasgrf1 mRNA was highly expressed in brain, pituitary and pancreas, followed by kidney, stomach, lung, testis, small intestine, ovary, spleen and liver, and at low levels of expression in longissimus dorsi, heart, and backfat. The expression levels of Rasgrf1 gene in brain, pituitary and pancreas tissues were significantly different between the two reciprocal F1 hybrids. Imprinting analysis showed that porcine Rasgrf1 gene was maternally expressed in the liver, small intestine, paternally expressed in the lung, but biallelically expressed in brain, heart, spleen, kidney, stomach, pancreas, backfat, testis, ovary, longissimus dorsi and pituitary tissues. PMID:24342659

  16. Cell Pluripotency Levels Associated with Imprinted Genes in Human

    PubMed Central

    Yuan, Liyun; Tang, Xiaoyan; Zhang, Binyan; Ding, Guohui

    2015-01-01

    Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs. PMID:26504487

  17. Cell Pluripotency Levels Associated with Imprinted Genes in Human.

    PubMed

    Yuan, Liyun; Tang, Xiaoyan; Zhang, Binyan; Ding, Guohui

    2015-01-01

    Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs. PMID:26504487

  18. Gene interactions in the evolution of genomic imprinting.

    PubMed

    Wolf, J B; Brandvain, Y

    2014-08-01

    Numerous evolutionary theories have been developed to explain the epigenetic phenomenon of genomic imprinting. Here, we explore a subset of theories wherein non-additive genetic interactions can favour imprinting. In the simplest genic interaction--the case of underdominance--imprinting can be favoured to hide effectively low-fitness heterozygous genotypes; however, as there is no asymmetry between maternally and paternally inherited alleles in this model, other means of enforcing monoallelic expression may be more plausible evolutionary outcomes than genomic imprinting. By contrast, more successful interaction models of imprinting rely on an asymmetry between the maternally and paternally inherited alleles at a locus that favours the silencing of one allele as a means of coordinating the expression of high-fitness allelic combinations. For example, with interactions between autosomal loci, imprinting functionally preserves high-fitness genotypes that were favoured by selection in the previous generation. In this scenario, once a focal locus becomes imprinted, selection at interacting loci favours a matching imprint. Uniparental transmission generates similar asymmetries for sex chromosomes and cytoplasmic factors interacting with autosomal loci, with selection favouring the expression of either maternal or paternally derived autosomal alleles depending on the pattern of transmission of the uniparentally inherited factor. In a final class of models, asymmetries arise when genes expressed in offspring interact with genes expressed in one of its parents. Under such a scenario, a locus evolves to have imprinted expression in offspring to coordinate the interaction with its parent's genome. We illustrate these models and explore key links and differences using a unified framework. PMID:24619179

  19. Genes Downregulated in Endometriosis Are Located Near the Known Imprinting Genes

    PubMed Central

    Higashiura, Yumi; Koike, Natsuki; Akasaka, Juria; Uekuri, Chiharu; Iwai, Kana; Niiro, Emiko; Morioka, Sachiko; Yamada, Yuki

    2014-01-01

    There is now accumulating evidence that endometriosis is a disease associated with an epigenetic disorder. Genomic imprinting is an epigenetic phenomenon known to regulate DNA methylation of either maternal or paternal alleles. We hypothesize that hypermethylated endometriosis-associated genes may be enriched at imprinted gene loci. We sought to determine whether downregulated genes associated with endometriosis susceptibility are associated with chromosomal location of the known paternally and maternally expressed imprinting genes. Gene information has been gathered from National Center for Biotechnology Information database geneimprint.com. Several researchers have identified specific loci with strong DNA methylation in eutopic endometrium and ectopic lesion with endometriosis. Of the 29 hypermethylated genes in endometriosis, 19 genes were located near 45 known imprinted foci. There may be an association of the genomic location between genes specifically downregulated in endometriosis and epigenetically imprinted genes. PMID:24615936

  20. A Survey of Imprinted Gene Expression in Mouse Trophoblast Stem Cells

    PubMed Central

    Calabrese, J. Mauro; Starmer, Joshua; Schertzer, Megan D.; Yee, Della; Magnuson, Terry

    2015-01-01

    Several hundred mammalian genes are expressed preferentially from one parental allele as the result of a process called genomic imprinting. Genomic imprinting is prevalent in extra-embryonic tissue, where it plays an essential role during development. Here, we profiled imprinted gene expression via RNA-Seq in a panel of six mouse trophoblast stem lines, which are ex vivo derivatives of a progenitor population that gives rise to the placental tissue of the mouse. We found evidence of imprinted expression for 48 genes, 31 of which had been described previously as imprinted and 17 of which we suggest as candidate imprinted genes. An equal number of maternally and paternally biased genes were detected. On average, candidate imprinted genes were more lowly expressed and had weaker parent-of-origin biases than known imprinted genes. Several known and candidate imprinted genes showed variability in parent-of-origin expression bias between the six trophoblast stem cell lines. Sixteen of the 48 known and candidate imprinted genes were previously or newly annotated noncoding RNAs and six encoded for a total of 60 annotated microRNAs. Pyrosequencing across our panel of trophoblast stem cell lines returned levels of imprinted expression that were concordant with RNA-Seq measurements for all eight genes examined. Our results solidify trophoblast stem cells as a cell culture-based experimental model to study genomic imprinting, and provide a quantitative foundation upon which to delineate mechanisms by which the process is maintained in the mouse. PMID:25711832

  1. The imprinted gene DIO3 is a candidate gene for litter size in pigs.

    PubMed

    Coster, Albart; Madsen, Ole; Heuven, Henri C M; Dibbits, Bert; Groenen, Martien A M; van Arendonk, Johan A M; Bovenhuis, Henk

    2012-01-01

    Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant (q-value < 0.10) additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (q-value > 0.10), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs. PMID:22393372

  2. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting

    PubMed Central

    Pignatta, Daniela; Erdmann, Robert M; Scheer, Elias; Picard, Colette L; Bell, George W; Gehring, Mary

    2014-01-01

    Imprinted gene expression occurs during seed development in plants and is associated with differential DNA methylation of parental alleles, particularly at proximal transposable elements (TEs). Imprinting variability could contribute to observed parent-of-origin effects on seed development. We investigated intraspecific variation in imprinting, coupled with analysis of DNA methylation and small RNAs, among three Arabidopsis strains with diverse seed phenotypes. The majority of imprinted genes were parentally biased in the same manner among all strains. However, we identified several examples of allele-specific imprinting correlated with intraspecific epigenetic variation at a TE. We successfully predicted imprinting in additional strains based on methylation variability. We conclude that there is standing variation in imprinting even in recently diverged genotypes due to intraspecific epiallelic variation. Our data demonstrate that epiallelic variation and genomic imprinting intersect to produce novel gene expression patterns in seeds. DOI: http://dx.doi.org/10.7554/eLife.03198.001 PMID:24994762

  3. Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct

    PubMed Central

    Guo, Jing; He, Hongjuan; Liu, Qi; Zhang, Fengwei; Lv, Jie; Zeng, Tiebo; Gu, Ning; Wu, Qiong

    2015-01-01

    Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5–E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct. PMID:26447138

  4. Transcriptional Profiles of Imprinted Genes in Human Embryonic Stem Cells During In vitro Differentiation

    PubMed Central

    Park, Sang-Wook; Do, Hyo-Sang; Kim, Dongkyu; Ko, Ji-Yun; Lee, Sang-Hun; Han, Yong-Mahn

    2014-01-01

    Background and Objectives: Genomic imprinting is an inheritance phenomenon by which a subset of genes are expressed from one allele of two homologous chromosomes in a parent of origin-specific manner. Even though fine-tuned regulation of genomic imprinting process is essential for normal development, no other means are available to study genomic imprinting in human during embryonic development. In relation with this bottleneck, differentiation of human embryonic stem cells (hESCs) into specialized lineages may be considered as an alternative to mimic human development. Methods and Results: In this study, hESCs were differentiated into three lineage cell types to analyze temporal and spatial expression of imprinted genes. Of 19 imprinted genes examined, 15 imprinted genes showed similar transcriptional level among two hESC lines and two human induced pluripotent stem cell (hiPSC) lines. Expressional patterns of most imprinted genes were varied in progenitors and fully differentiated cells which were derived from hESCs. Also, no consistence was observed in the expression pattern of imprinted genes within an imprinting domain during in vitro differentiation of hESCs into three lineage cell types. Conclusions: Transcriptional expression of imprinted genes is regulated in a cell type- specific manner in hESCs during in vitro differentiation. PMID:25473448

  5. A Mouse Model for Imprinting of the Human Retinoblastoma Gene

    PubMed Central

    Tasiou, Vasiliki; Hiber, Michaela; Steenpass, Laura

    2015-01-01

    The human RB1 gene is imprinted due to integration of the PPP1R26P1 pseudogene into intron 2. PPP1R26P1 harbors the gametic differentially methylated region of the RB1 gene, CpG85, which is methylated in the female germ line. The paternally unmethylated CpG85 acts as promoter for the alternative transcript 2B of RB1, which interferes with expression of full-length RB1 in cis. In mice, PPP1R26P1 is not present in the Rb1 gene and Rb1 is not imprinted. Assuming that the mechanisms responsible for genomic imprinting are conserved, we investigated if imprinting of mouse Rb1 can be induced by transferring human PPP1R26P1 into mouse Rb1. We generated humanized Rb1_PPP1R26P1 knock-in mice that pass human PPP1R26P1 through the mouse germ line. We found that the function of unmethylated CpG85 as promoter for an alternative Rb1 transcript and as cis-repressor of the main Rb1 transcript is maintained in mouse tissues. However, CpG85 is not recognized as a gametic differentially methylated region in the mouse germ line. DNA methylation at CpG85 is acquired only in tissues of neuroectodermal origin, independent of parental transmission of PPP1R26P1. Absence of CpG85 methylation in oocytes and sperm implies a failure of imprint methylation establishment in the germ line. Our results indicate that site-specific integration of a proven human gametic differentially methylated region is not sufficient for acquisition of DNA methylation in the mouse germ line, even if promoter function of the element is maintained. This suggests a considerable dependency of DNA methylation induction on the surrounding sequence. However, our model is suited to determine the cellular function of the alternative Rb1 transcript. PMID:26275142

  6. Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii.

    PubMed

    Griffith, Oliver W; Brandley, Matthew C; Belov, Katherine; Thompson, Michael B

    2016-03-01

    Genomic imprinting is a process that results in the differential expression of genes depending on their parent of origin. It occurs in both plants and live-bearing mammals, with imprinted genes typically regulating the ability of an embryo to manipulate the maternal provision of nutrients. Genomic imprinting increases the potential for selection to act separately on paternally and maternally expressed genes, which increases the number of opportunities that selection can facilitate embryonic control over maternal nutrient provision. By looking for imprinting in an independent matrotrophic lineage, the viviparous lizard Pseudemoia entrecasteauxii (Scincidae), we test the hypothesis that genomic imprinting facilitates the evolution of substantial placental nutrient transport to embryos (matrotrophy). We sequenced transcriptomes from the embryonic component of lizard placentae to determine whether there are parent-of-origin differences in expression of genes that are imprinted in mammals. Of these genes, 19 had sufficiently high expression in the lizard to identify polymorphisms in transcribed sequences. We identified bi-allelic expression in 17 genes (including insulin-like growth factor 2), indicating that neither allele was imprinted. These data suggest that either genomic imprinting has not evolved in this matrotrophic skink or, if it has, it has evolved in different genes to mammals. We outline how these hypotheses can be tested. This study highlights important differences between mammalian and reptile pregnancy and the absence of any shared imprinting genes reflects fundamental differences in the way that pregnancy has evolved in these two lineages. PMID:26943808

  7. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    PubMed

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1. PMID:23226257

  8. Transcriptional Truncation of the Long Coding Imprinted Gene Usp29

    PubMed Central

    He, Hongzhi; Ye, An; Kim, Joomyeong

    2016-01-01

    Usp29 (Ubiquitin-specific protease 29) is a paternally expressed gene located upstream of another imprinted gene Peg3. In the current study, the transcription of this long coding gene spanning a 250-kb genomic distance was truncated using a knockin allele. According to the results, paternal transmission of the mutant allele resulted in reduced body and litter sizes whereas the maternal transmission caused no obvious effects. In the paternal mutant, the expression levels of Usp29 were reduced to 14–18% level of the wild-type littermates due to the Poly-A signal included in the knockin cassette. Expression analyses further revealed an unusual female-specific up-regulation of the adjacent imprinted gene Zfp264 in the mutant. Consistent with this, the promoter of Zfp264 was hypomethylated only in the female mutant. Interestingly, this female-specific hypomethylation by the knockin allele was not detected in the offspring of an interspecific crossing, indicating its sensitivity to genetic background. Overall, the results suggest that the transcription of Usp29 may be involved in DNA methylation setting of Zfp264 promoter in a sex-specific manner. PMID:27327533

  9. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing

    PubMed Central

    Chen, Zhiyuan; Hagen, Darren E.; Wang, Juanbin; Elsik, Christine G.; Ji, Tieming; Siqueira, Luiz G.; Hansen, Peter J.; Rivera, Rocío M.

    2016-01-01

    ABSTRACT Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects. PMID:27245094

  10. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing.

    PubMed

    Chen, Zhiyuan; Hagen, Darren E; Wang, Juanbin; Elsik, Christine G; Ji, Tieming; Siqueira, Luiz G; Hansen, Peter J; Rivera, Rocío M

    2016-07-01

    Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects. PMID:27245094

  11. Brain-expressed imprinted genes and adult behaviour: the example of Nesp and Grb10.

    PubMed

    Dent, Claire L; Isles, Anthony R

    2014-02-01

    Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key "imprinting hot spots" in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally. PMID:23974804

  12. Characterization of Conserved and Non-conserved Imprinted Genes in Swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to increase our understanding of the role of imprinted genes in swine reproduction we used two complementary approaches, analysis of imprinting by pyrosequencing, and expression profiling of parthenogenetic fetuses, to carry out a comprehensive analysis of this gene family in swine. Using A...

  13. Methylation Alterations at Imprinted Genes Detected Among Long Term Shiftworkers

    PubMed Central

    Jacobs, Daniel I.; Hansen, Johnni; Fu, Alan; Stevens, Richard G.; Tjonneland, Anne; Vogel, Ulla B.; Zheng, Tongzhang; Zhu, Yong

    2016-01-01

    Exposure to light at night through shiftwork has been linked to alterations in DNA methylation and increased risk of cancer development. Using an Illumina Infinium Methylation Assay, we analyzed methylation levels of 397 CpG sites in the promoter regions of 56 normally imprinted genes to investigate whether shiftwork is associated with alteration of methylation patterns. Methylation was significantly higher at 20 CpG sites and significantly lower at 30 CpG sites (P < 0.05) in 10 female long-term shiftworkers as compared to 10 female age- and folate intake-matched day workers. The strongest evidence for altered methylation patterns in shiftworkers was observed for DLX5, IGF2AS, and TP73 based on the magnitude of methylation change and consistency in the direction of change across multiple CpG sites, and consistent results were observed using quantitative DNA methylation analysis. We conclude that long-term shiftwork may alter methylation patterns at imprinted genes, which may be an important mechanism by which shiftwork has carcinogenic potential and warrants further investigation. PMID:23193016

  14. Data mining as a discovery tool for imprinted genes.

    PubMed

    Brideau, Chelsea; Soloway, Paul

    2012-01-01

    This chapter serves as an introduction to the collection of genome-wide sequence and epigenomic data, as well as the use of these data in training generalized linear models (glm) to predicted imprinted status. This is meant to be an introduction to the method, so only the most straightforward examples will be covered. For instance, the examples given below refer to 11 classes of genomic regions (the entire gene body, introns, exons, 5' UTR, 3' UTR, and 1, 10, and 100 kb upstream and downstream of each gene). One could also build models based on combinations of these regions. Likewise, models could be built on combinations of epigenetic features, or on combinations of both genomic regions and epigenetic features.This chapter relies heavily on computational methods, including basic programming. However, this chapter is not meant to be an introduction to programming. Throughout the chapter, the reader will be provided with example code in the Perl programming language. PMID:22907493

  15. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    PubMed Central

    2010-01-01

    Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term

  16. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    PubMed Central

    Smeester, Lisa; Yosim, Andrew E.; Nye, Monica D.; Hoyo, Cathrine; Murphy, Susan K.; Fry, Rebecca C.

    2014-01-01

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, and lead. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology. PMID:24921406

  17. Characterization of the differentially methylated region of the Impact gene that exhibits Glires-specific imprinting

    PubMed Central

    Okamura, Kohji; Wintle, Richard F; Scherer, Stephen W

    2008-01-01

    Background Imprinted genes are exclusively expressed from one of the two parental alleles in a parent-of-origin-specific manner. In mammals, nearly 100 genes are documented to be imprinted. To understand the mechanism behind this gene regulation and to identify novel imprinted genes, common features of DNA sequences have been analyzed; however, the general features required for genomic imprinting have not yet been identified, possibly due to variability in underlying molecular mechanisms from locus to locus. Results We performed a thorough comparative genomic analysis of a single locus, Impact, which is imprinted only in Glires (rodents and lagomorphs). The fact that Glires and primates diverged from each other as recent as 70 million years ago makes comparisons between imprinted and non-imprinted orthologues relatively reliable. In species from the Glires clade, Impact bears a differentially methylated region, whereby the maternal allele is hypermethylated. Analysis of this region demonstrated that imprinting was not associated with the presence of direct tandem repeats nor with CpG dinucleotide density. In contrast, a CpG periodicity of 8 bp was observed in this region in species of the Glires clade compared to those of carnivores, artiodactyls, and primates. Conclusions We show that tandem repeats are dispensable, establishment of the differentially methylated region does not rely on G+C content and CpG density, and the CpG periodicity of 8 bp is meaningful to the imprinting. This interval has recently been reported to be optimal for de novo methylation by the Dnmt3a-Dnmt3L complex, suggesting its importance in the establishment of imprinting in Impact and other genes. PMID:19014519

  18. Lack of imprinting of the human dopamine D4 receptor (DRD4) gene

    SciTech Connect

    Cichon, S.; Noethen, M.M.; Propping, P.; Wolf, H.K.

    1996-04-09

    The term genomic imprinting has been used to refer to the differential expression of genetic material depending on whether it has come from the male or female parent. In humans, the chromosomal region 11p15.5 has been shown to contain 2 imprinted genes (H19 and IGF2). The gene for the dopamine D4 receptor (DRD4), which is of great interest for research into neuropsychiatric disorders and psychopharmacology, is also located in this area. In the present study, we have examined the imprinting status of the DRD4 gene in brain tissue of an epileptic patient who was heterozygous for a 12 bp repeat polymorphism in exon 1 of the DRD4 gene. We show that both alleles are expressed in equivalent amounts. We therefore conclude that the DRD4 gene is not imprinted in the human brain. 30 refs., 1 fig.

  19. Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective.

    PubMed

    DeVeale, Brian; van der Kooy, Derek; Babak, Tomas

    2012-01-01

    In contrast to existing estimates of approximately 200 murine imprinted genes, recent work based on transcriptome sequencing uncovered parent-of-origin allelic effects at more than 1,300 loci in the developing brain and two adult brain regions, including hundreds present in only males or females. Our independent replication of the embryonic brain stage, where the majority of novel imprinted genes were discovered and the majority of previously known imprinted genes confirmed, resulted in only 12.9% concordance among the novel imprinted loci. Further analysis and pyrosequencing-based validation revealed that the vast majority of the novel reported imprinted loci are false-positives explained by technical and biological variation of the experimental approach. We show that allele-specific expression (ASE) measured with RNA-Seq is not accurately modeled with statistical methods that assume random independent sampling and that systematic error must be accounted for to enable accurate identification of imprinted expression. Application of a robust approach that accounts for these effects revealed 50 candidate genes where allelic bias was predicted to be parent-of-origin-dependent. However, 11 independent validation attempts through a range of allelic expression biases confirmed only 6 of these novel cases. The results emphasize the importance of independent validation and suggest that the number of imprinted genes is much closer to the initial estimates. PMID:22479196

  20. Critical Evaluation of Imprinted Gene Expression by RNA–Seq: A New Perspective

    PubMed Central

    DeVeale, Brian; van der Kooy, Derek; Babak, Tomas

    2012-01-01

    In contrast to existing estimates of approximately 200 murine imprinted genes, recent work based on transcriptome sequencing uncovered parent-of-origin allelic effects at more than 1,300 loci in the developing brain and two adult brain regions, including hundreds present in only males or females. Our independent replication of the embryonic brain stage, where the majority of novel imprinted genes were discovered and the majority of previously known imprinted genes confirmed, resulted in only 12.9% concordance among the novel imprinted loci. Further analysis and pyrosequencing-based validation revealed that the vast majority of the novel reported imprinted loci are false-positives explained by technical and biological variation of the experimental approach. We show that allele-specific expression (ASE) measured with RNA–Seq is not accurately modeled with statistical methods that assume random independent sampling and that systematic error must be accounted for to enable accurate identification of imprinted expression. Application of a robust approach that accounts for these effects revealed 50 candidate genes where allelic bias was predicted to be parent-of-origin–dependent. However, 11 independent validation attempts through a range of allelic expression biases confirmed only 6 of these novel cases. The results emphasize the importance of independent validation and suggest that the number of imprinted genes is much closer to the initial estimates. PMID:22479196

  1. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm.

    PubMed Central

    Kinoshita, T; Yadegari, R; Harada, J J; Goldberg, R B; Fischer, R L

    1999-01-01

    In flowering plants, two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, which is a tissue that supports embryo development. MEDEA (MEA) encodes an Arabidopsis SET domain Polycomb protein. Inheritance of a maternal loss-of-function mea allele results in embryo abortion and prolonged endosperm production, irrespective of the genotype of the paternal allele. Thus, only the maternal wild-type MEA allele is required for proper embryo and endosperm development. To understand the molecular mechanism responsible for the parent-of-origin effects of mea mutations on seed development, we compared the expression of maternal and paternal MEA alleles in the progeny of crosses between two Arabidopsis ecotypes. Only the maternal MEA mRNA was detected in the endosperm from seeds at the torpedo stage and later. By contrast, expression of both maternal and paternal MEA alleles was observed in the embryo from seeds at the torpedo stage and later, in seedling, leaf, stem, and root. Thus, MEA is an imprinted gene that displays parent-of-origin-dependent monoallelic expression specifically in the endosperm. These results suggest that the embryo abortion observed in mutant mea seeds is due, at least in part, to a defect in endosperm function. Silencing of the paternal MEA allele in the endosperm and the phenotype of mutant mea seeds supports the parental conflict theory for the evolution of imprinting in plants and mammals. PMID:10521524

  2. Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells

    PubMed Central

    Yuan, Beilei; Gu, Hao; Xu, Bo; Tang, Qiuqin; Wu, Wei; Ji, Xiaoli; Xia, Yankai; Hu, Lingqing; Chen, Daozhen; Wang, Xinru

    2016-01-01

    Gold nanorods (GNRs) are among the most commonly used nanomaterials. However, thus far, little is known about their harmful effects on male reproduction. Studies from our laboratory have demonstrated that GNRs could decrease glycine synthesis, membrane permeability, mitochondrial membrane potential and disrupt blood-testis barrier factors in TM-4 Sertoli cells. Imprinted genes play important roles in male reproduction and have been identified as susceptible loci to environmental insults by chemicals because they are functionally haploid. In this original study, we investigated the extent to which imprinted genes become deregulated in TM-4 Sertoli cells when treated with low dose of GNRs. The expression levels of 44 imprinted genes were analyzed by quantitative real-time PCR in TM-4 Sertoli cells after a low dose of (10 nM) GNRs treatment for 24 h. We found significantly diminished expression of Kcnq1, Ntm, Peg10, Slc22a2, Pwcr1, Gtl2, Nap1l5, Peg3 and Slc22a2, while Plagl1 was significantly overexpressed. Additionally, four (Kcnq1, Slc22a18, Pwcr1 and Peg3) of 10 abnormally expressed imprinted genes were found to be located on chromosome 7. However, no significant difference of imprinted miRNA genes was observed between the GNRs treated group and controls. Our study suggested that aberrant expression of imprinted genes might be an underlying mechanism for the GNRs-induced reproductive toxicity in TM-4 Sertoli cells. PMID:26938548

  3. Placental expression of imprinted genes varies with sampling site and mode of delivery

    PubMed Central

    Janssen, A.B.; Tunster, S.J.; Savory, N.; Holmes, A.; Beasley, J.; Parveen, S.A.R.; Penketh, R.J.A.; John, R.M.

    2015-01-01

    Imprinted genes, which are monoallelically expressed by virtue of an epigenetic process initiated in the germline, are known to play key roles in regulating fetal growth and placental development. Numerous studies are investigating the expression of these imprinted genes in the human placenta in relation to common complications of pregnancy such as fetal growth restriction and preeclampsia. This study aimed to determine whether placental sampling protocols or other factors such as fetal sex, gestational age and mode of delivery may influence the expression of imprinted genes predicted to regulate placental signalling. Methods Term placentas were collected from Caucasian women delivering at University Hospital of Wales or Royal Gwent Hospital within two hours of delivery. Expression of the imprinted genes PHLDA2, CDKN1C, PEG3 and PEG10 was assayed by quantitative real time PCR. Intraplacental gene expression was analysed (N = 5). Placental gene expression was compared between male (N = 11) and female (N = 11) infants, early term (N = 8) and late term (N = 10) deliveries and between labouring (N = 13) and non-labouring (N = 21) participants. Results The paternally expressed imprinted genes PEG3 and PEG10 were resilient to differences in sampling site, fetal sex, term gestational age and mode of delivery. The maternally expressed imprinted gene CDKN1C was elevated over 2-fold (p < 0.001) in placenta from labouring deliveries compared with elective caesarean sections. In addition, the maternally expressed imprinted gene PHLDA2 was elevated by 1.8 fold (p = 0.01) in samples taken at the distal edge of the placenta compared to the cord insertion site. Conclusion These findings support the reinterpretation of existing data sets on these genes in relation to complications of pregnancy and further reinforce the importance of optimising and unifying placental collection protocols for future studies. PMID:26162698

  4. Identification of imprinted genes using a novel screening method based on asynchronous DNA replication

    SciTech Connect

    Kawame, H.; Hansen, R.S.; Gartler, S.M.

    1994-09-01

    Genomic imprinting refers to the process of epigenetic change that occurs during germ cell development that results in either maternal- or paternal-specific gene expression. Identification of imprinted genes is of primary importance to the understanding of imprinting mechanisms and the role of specific imprinted genes in human disease. Recently, it has been established that chromosomal regions known to contain imprinted genes replicate asynchronously. We propose a novel screening method to identify imprinted genes based on replication asynchrony as a marker for imprinted domains. Dividing human cells were pulse-labeled with BrdU and separated into different fractions of S-phase by flow cytometry. A library of late-replicating inter-Alu sequences should be enriched in gene-associated sequences that replicate early on one chromosome and late on the other homologue. Clones were analyzed for replication timing by hybridization to inter-Alu replication profiles. Candidates for replication asynchrony exhibited broad or biphasic replication timing, and these were analyzed for chromosomal location by hybridizations to inter-Alu products from a hybrid mapping panel. Initial screening of 123 clones resulted in 3 asynchronously-replicating clones that localized to single chromosomes. Chromosome 17 and chromosome 19 candidates might be located in regions thought to be imprinted by synteny with mouse chromosomes. A chromosome 15 clone was further characterized because of its possible localization to the Prader-Willi/Angelman locus. This sequence was localized outside the region deleted in Prader-Willi patients, and was found to be expressed in human cell lines. Replication asynchrony for this sequence appears to be polymorphic because cells derived from some individuals indicated synchronous replication. This appears to be the first example of a polymorphism in replication asynchrony.

  5. Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos

    PubMed Central

    Park, Chi-Hun; Uh, Kyung-Jun; Mulligan, Brendan P.; Jeung, Eui-Bae; Hyun, Sang-Hwan; Shin, Taeyoung; Ka, Hakhyun; Lee, Chang-Kyu

    2011-01-01

    In the present study quantitative real-time PCR was used to determine the expression status of eight imprinted genes (GRB10, H19, IGF2R, XIST, IGF2, NNAT, PEG1 and PEG10) during preimplantation development, in normal fertilized and uniparental porcine embryos. The results demonstrated that, in all observed embryo samples, a non imprinted gene expression pattern up to the 16-cell stage of development was common for most genes. This was true for all classes of embryo, regardless of parental-origins and the direction of imprint. However, several differentially expressed genes (H19, IGF2, XIST and PEG10) were detected amongst the classes at the blastocyst stage of development. Most interestingly and despite the fact that maternally and paternally expressed genes should not be expressed in androgenones and parthenogenones, respectively, both uniparental embryos expressed these genes when tested for in this study. In order to account for this phenomenon, we compared the expression patterns of eight imprinted genes along with the methylation status of the IGF2/H19 DMR3 in haploid and diploid parthenogenetic embryos. Our findings revealed that IGF2, NNAT and PEG10 were silenced in haploid but not diploid parthenogenetic blastocysts and differential methylation of the IGF2/H19 DMR3 was consistently observed between haploid and diploid parthenogenetic blastocysts. These results appear to suggest that there exists a process to adjust the expression status of imprinted genes in diploid parthenogenetic embryos and that this phenomenon may be associated with altered methylation at an imprinting control region. In addition we believe that imprinted expression occurs in at least four genes, namely H19, IGF2, XIST and PEG10 in porcine blastocyst stage embryos. PMID:21804912

  6. An open-pollinated design for mapping imprinting genes in natural populations.

    PubMed

    Sun, Lidan; Zhu, Xuli; Bo, Wenhao; Xu, Fang; Cheng, Tangren; Zhang, Qixiang; Wu, Rongling

    2015-05-01

    With the increasing recognition of its role in trait and disease development, it is crucial to account for genetic imprinting to illustrate the genetic architecture of complex traits. Genetic mapping can be innovated to test and estimate effects of genetic imprinting in a segregating population derived from experimental crosses. Here, we describe and assess a design for imprinting detection in natural plant populations. This design is to sample maternal plants at random from a natural population and collect open-pollinated (OP) seeds randomly from each maternal plant and germinate them into seedlings. A two-stage hierarchical platform is constructed to jointly analyze maternal and OP progeny markers. Through tracing the segregation and transmission of alleles from the parental to progeny generation, this platform allows parent-of-origin-dependent gene expression to be discerned, providing an avenue to estimate the effect of imprinting genes on a quantitative trait. The design is derived to estimate imprinting effects expressed at the haplotype level. Its usefulness and utilization were validated through computer simulation. This OP-based design provides a tool to detect the genomic distribution and pattern of imprinting genes as an important component of heritable variation that is neglected in traditional genetic studies of complex traits. PMID:24927940

  7. Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells

    PubMed Central

    Sritanaudomchai, Hathaitip; Ma, Hong; Clepper, Lisa; Gokhale, Sumita; Bogan, Randy; Hennebold, Jon; Wolf, Don; Mitalipov, Shoukhrat

    2010-01-01

    BACKGROUND Parthenogenetic embryonic stem cells (PESCs) may have future utilities in cell replacement therapies since they are closely related to the female from which the activated oocyte was obtained. Furthermore, the avoidance of parthenogenetic development in mammals provides the most compelling rationale for the evolution of genomic imprinting, and the biological process of parthenogenesis raises complex issues regarding differential gene expression. METHODS AND RESULTS We describe here homozygous rhesus monkey PESCs derived from a spontaneously duplicated, haploid oocyte genome. Since the effect of homozygosity on PESCs pluripotency and differentiation potential is unknown, we assessed the similarities and differences in pluripotency markers and developmental potential by in vitro and in vivo differentiation of homozygous and heterozygous PESCs. To understand the differences in gene expression regulation between parthenogenetic and biparental embryonic stem cells (ESCs), we conducted microarray analysis of genome-wide mRNA profiles of primate PESCs and ESCs derived from fertilized embryos using the Affymetrix Rhesus Macaque Genome array. Several known paternally imprinted genes were in the highly down-regulated group in PESCs compared with ESCs. Furthermore, allele-specific expression analysis of other genes whose expression is also down-regulated in PESCs, led to the identification of one novel imprinted gene, inositol polyphosphate-5-phosphatase F (INPP5F), which was exclusively expressed from a paternal allele. CONCLUSION Our findings suggest that PESCs could be used as a model for studying genomic imprinting, and in the discovery of novel imprinted genes. PMID:20522441

  8. Clinical features associated with copy number variations of the 14q32 imprinted gene cluster.

    PubMed

    Rosenfeld, Jill A; Fox, Joyce E; Descartes, Maria; Brewer, Fallon; Stroud, Tracy; Gorski, Jerome L; Upton, Sheila J; Moeschler, John B; Monteleone, Berrin; Neill, Nicholas J; Lamb, Allen N; Ballif, Blake C; Shaffer, Lisa G; Ravnan, J Britt

    2015-02-01

    Uniparental disomy (UPD) for imprinted chromosomes can cause abnormal phenotypes due to absent or overexpression of imprinted genes. UPD(14)pat causes a unique constellation of features including thoracic skeletal anomalies, polyhydramnios, placentomegaly, and limited survival; its hypothesized cause is overexpression of paternally expressed RTL1, due to absent regulatory effects of maternally expressed RTL1as. UPD(14)mat causes a milder condition with hypotonia, growth failure, and precocious puberty; its hypothesized cause is absence of paternally expressed DLK1. To more clearly establish how gains and losses of imprinted genes can cause disease, we report six individuals with copy number variations of the imprinted 14q32 region identified through clinical microarray-based comparative genomic hybridization. Three individuals presented with UPD(14)mat-like phenotypes (Temple syndrome) and had apparently de novo deletions spanning the imprinted region, including DLK1. One of these deletions was shown to be on the paternal chromosome. Two individuals with UPD(14)pat-like phenotypes had 122-154kb deletions on their maternal chromosomes that included RTL1as but not the differentially methylated regions that regulate imprinted gene expression, providing further support for RTL1 overexpression as a cause for the UPD(14)pat phenotype. The sixth individual is tetrasomic for a 1.7Mb segment, including the imprinted region, and presents with intellectual disability and seizures but lacks significant phenotypic overlap with either UPD(14) syndrome. Therefore, the 14q32 imprinted region is dosage sensitive, with deletions of different critical regions causing UPD(14)mat- and UPD(14)pat-like phenotypes, while copy gains are likely insufficient to recapitulate these phenotypes. PMID:25756153

  9. Imprinting and evolution of two Kruppel-type zinc-finger genes, ZIM3 and ZNF264, located in the PEG3/USP29 imprinted domain.

    PubMed

    Kim, J; Bergmann, A; Wehri, E; Lu, X; Stubbs, L

    2001-09-01

    We have isolated Kruppel-type (C2H2) zinc-finger genes, ZIM3 (zinc-finger gene 3 from imprinted domain) and ZNF264, located downstream of human and mouse USP29 genes (encoding ubiquitin-specific processing protease 29). In human, both ZIM3 and ZNF264 encode zinc-finger proteins with Kruppel-associated box (KRAB) A and B domains at the amino-terminal regions of the predicted proteins. In contrast, mouse Zim3 and Zfp264 seem to have lost protein-coding capability based on the lack of open reading frames (ORFs) in their cDNA sequences. In particular, the 3' end of the Zim3 transcript overlaps with the coding region of the adjacent gene Usp29 in an antisense orientation, indicating the conversion of mouse Zim3 into an antisense transcript gene for Usp29. The expression patterns of ZIM3 and ZNF264 have been largely conserved between human and mouse, with testis-specific expression of ZIM3 and ubiquitous expression of ZNF264, but high expression levels in adult testes in both species. Our studies also demonstrate that both mouse genes are imprinted with maternal expression of Zim3 in adult testes and paternal expression of Zfp264 in neonatal and adult brain. The reciprocal imprinting of two neighboring mouse genes, Zim3 and Zfp264, is consistent with a pattern observed frequently in other imprinted domains, and suggests that the imprinting of these two genes might be coregulated. PMID:11543637

  10. Methods for detecting interactions between imprinted genes and environmental exposures using birth cohort designs with mother-offspring pairs.

    PubMed

    Wang, Shuang; Yu, Zhaoxia; Miller, Rachel L; Tang, Deliang; Perera, Frederica P

    2011-01-01

    Genomic imprinting is a form of epigenetic regulation in mammals in which the same allele of a gene is expressed differently depending on the parental origin of the allele. Traditionally, the detection of imprinted genes that affect complex diseases has been focused on linkage designs with pedigrees or case-parent designs with case-parent trios. In the past two decades, the birth cohort design with mother-offspring pairs has been applied to understand better the effect of environmental influences during pregnancy and beginning of life on the growth and development of children. No work has been done on the detection of imprinted genes using birth cohort designs. Moreover, although the importance of imprinting has been well recognized, no study has looked at how environmental exposures modify the effects of imprinted genes. In this study, we show that the proposed imprinting test using the birth cohort design with mother-offspring pairs is an efficient test for testing the interactions between imprinted genes and environmental exposures. Through extensive simulation studies and a real data application, the proposed imprinting test has demonstrated much improved power in detecting gene-environment interactions than that of a test assuming the Mendelian dominant model when the true underlying genetic model is imprinting. PMID:21778739

  11. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana

    PubMed Central

    Wolff, Philip; Jiang, Hua; Wang, Guifeng; Santos-González, Juan; Köhler, Claudia

    2015-01-01

    Genomic imprinting is an epigenetic phenomenon causing parent-of-origin specific differential expression of maternally and paternally inherited alleles. While many imprinted genes have been identified in plants, the functional roles of most of them are unknown. In this study, we systematically examine the functional requirement of paternally expressed imprinted genes (PEGs) during seed development in Arabidopsis thaliana. While none of the 15 analyzed peg mutants has qualitative or quantitative abnormalities of seed development, we identify three PEGs that establish postzygotic hybridization barriers in the endosperm, revealing that PEGs have a major role as speciation genes in plants. Our work reveals that a subset of PEGs maintains functional roles in the inbreeding plant Arabidopsis that become evident upon deregulated expression. DOI: http://dx.doi.org/10.7554/eLife.10074.001 PMID:26344545

  12. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana.

    PubMed

    Wolff, Philip; Jiang, Hua; Wang, Guifeng; Santos-González, Juan; Köhler, Claudia

    2015-01-01

    Genomic imprinting is an epigenetic phenomenon causing parent-of-origin specific differential expression of maternally and paternally inherited alleles. While many imprinted genes have been identified in plants, the functional roles of most of them are unknown. In this study, we systematically examine the functional requirement of paternally expressed imprinted genes (PEGs) during seed development in Arabidopsis thaliana. While none of the 15 analyzed peg mutants has qualitative or quantitative abnormalities of seed development, we identify three PEGs that establish postzygotic hybridization barriers in the endosperm, revealing that PEGs have a major role as speciation genes in plants. Our work reveals that a subset of PEGs maintains functional roles in the inbreeding plant Arabidopsis that become evident upon deregulated expression. PMID:26344545

  13. Maintenance of Paternal Methylation and Repression of the Imprinted H19 Gene Requires MBD3

    PubMed Central

    Reese, Kimberly J; Lin, Shu; Verona, Raluca I; Schultz, Richard M; Bartolomei, Marisa S

    2007-01-01

    Paternal repression of the imprinted H19 gene is mediated by a differentially methylated domain (DMD) that is essential to imprinting of both H19 and the linked and oppositely imprinted Igf2 gene. The mechanisms by which paternal-specific methylation of the DMD survive the period of genome-wide demethylation in the early embryo and are subsequently used to govern imprinted expression are not known. Methyl-CpG binding (MBD) proteins are likely candidates to explain how these DMDs are recognized to silence the locus, because they preferentially bind methylated DNA and recruit repression complexes with histone deacetylase activity. MBD RNA and protein are found in preimplantation embryos, and chromatin immunoprecipitation shows that MBD3 is bound to the H19 DMD. To test a role for MBDs in imprinting, two independent RNAi-based strategies were used to deplete MBD3 in early mouse embryos, with the same results. In RNAi-treated blastocysts, paternal H19 expression was activated, supporting the hypothesis that MBD3, which is also a member of the Mi-2/NuRD complex, is required to repress the paternal H19 allele. RNAi-treated blastocysts also have reduced levels of the Mi-2/NuRD complex protein MTA-2, which suggests a role for the Mi-2/NuRD repressive complex in paternal-specific silencing at the H19 locus. Furthermore, DNA methylation was reduced at the H19 DMD when MBD3 protein was depleted. In contrast, expression and DNA methylation were not disrupted in preimplantation embryos for other imprinted genes. These results demonstrate new roles for MBD3 in maintaining imprinting control region DNA methylation and silencing the paternal H19 allele. Finally, MBD3-depleted preimplantation embryos have reduced cell numbers, suggesting a role for MBD3 in cell division. PMID:17708683

  14. Genomic Imprinting

    PubMed Central

    Bajrami, Emirjeta; Spiroski, Mirko

    2016-01-01

    BACKGROUND: Genomic imprinting is the inheritance out of Mendelian borders. Many of inherited diseases and human development violates Mendelian law of inheritance, this way of inheriting is studied by epigenetics. AIM: The aim of this review is to analyze current opinions and options regarding to this way of inheriting. RESULTS: Epigenetics shows that gene expression undergoes changes more complex than modifications in the DNA sequence; it includes the environmental influence on the gametes before conception. Humans inherit two alleles from mother and father, both are functional for the majority of the genes, but sometimes one is turned off or “stamped” and doesn’t show in offspring, that gene is imprinted. Imprinting means that that gene is silenced, and gene from other parent is expressed. The mechanisms for imprinting are still incompletely defined, but they involve epigenetic modifications that are erased and then reset during the creation of eggs and sperm. Genomic imprinting is a process of silencing genes through DNA methylation. The repressed allele is methylated, while the active allele is unmethylated. The most well-known conditions include Prader-Willi syndrome, and Angelman syndrome. Both of these syndromes can be caused by imprinting or other errors involving genes on the long arm of chromosome 15. CONCLUSIONS: Genomic imprinting and other epigenetic mechanisms such as environment is shown that plays role in offspring neurodevelopment and autism spectrum disorder. PMID:27275355

  15. A First-Stage Approximation to Identify New Imprinted Genes through Sequence Analysis of Its Coding Regions

    PubMed Central

    Daura-Oller, Elias; Cabré, Maria; Montero, Miguel A.; Paternáin, José L.; Romeu, Antoni

    2009-01-01

    In the present study, a positive training set of 30 known human imprinted gene coding regions are compared with a set of 72 randomly sampled human nonimprinted gene coding regions (negative training set) to identify genomic features common to human imprinted genes. The most important feature of the present work is its ability to use multivariate analysis to look at variation, at coding region DNA level, among imprinted and non-imprinted genes. There is a force affecting genomic parameters that appears through the use of the appropriate multivariate methods (principle components analysis (PCA) and quadratic discriminant analysis (QDA)) to analyse quantitative genomic data. We show that variables, such as CG content, [bp]% CpG islands, [bp]% Large Tandem Repeats, and [bp]% Simple Repeats, are able to distinguish coding regions of human imprinted genes. PMID:19360135

  16. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    SciTech Connect

    Sherman, L.S.; Bennett, P.R.; Moore, G.E.

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  17. Gene Dosage Effects of the Imprinted Delta-Like Homologue 1 (Dlk1/Pref1) in Development: Implications for the Evolution of Imprinting

    PubMed Central

    Teixeira da Rocha, Simao; Charalambous, Marika; Lin, Shau-Ping; Gutteridge, Isabel; Ito, Yoko; Gray, Dionne; Dean, Wendy; Ferguson-Smith, Anne C.

    2009-01-01

    Genomic imprinting is a normal process that causes genes to be expressed according to parental origin. The selective advantage conferred by imprinting is not understood but is hypothesised to act on dosage-critical genes. Here, we report a unique model in which the consequences of a single, double, and triple dosage of the imprinted Dlk1/Pref1, normally repressed on the maternally inherited chromosome, can be assessed in the growing embryo. BAC-transgenic mice were generated that over-express Dlk1 from endogenous regulators at all sites of embryonic activity. Triple dosage causes lethality associated with major organ abnormalities. Embryos expressing a double dose of Dlk1, recapitulating loss of imprinting, are growth enhanced but fail to thrive in early life, despite the early growth advantage. Thus, any benefit conferred by increased embryonic size is offset by postnatal lethality. We propose a negative correlation between gene dosage and survival that fixes an upper limit on growth promotion by Dlk1, and we hypothesize that trade-off between growth and lethality might have driven imprinting at this locus. PMID:19247431

  18. Gene dosage effects of the imprinted delta-like homologue 1 (dlk1/pref1) in development: implications for the evolution of imprinting.

    PubMed

    da Rocha, Simao Teixeira; Charalambous, Marika; Lin, Shau-Ping; Gutteridge, Isabel; Ito, Yoko; Gray, Dionne; Dean, Wendy; Ferguson-Smith, Anne C

    2009-02-01

    Genomic imprinting is a normal process that causes genes to be expressed according to parental origin. The selective advantage conferred by imprinting is not understood but is hypothesised to act on dosage-critical genes. Here, we report a unique model in which the consequences of a single, double, and triple dosage of the imprinted Dlk1/Pref1, normally repressed on the maternally inherited chromosome, can be assessed in the growing embryo. BAC-transgenic mice were generated that over-express Dlk1 from endogenous regulators at all sites of embryonic activity. Triple dosage causes lethality associated with major organ abnormalities. Embryos expressing a double dose of Dlk1, recapitulating loss of imprinting, are growth enhanced but fail to thrive in early life, despite the early growth advantage. Thus, any benefit conferred by increased embryonic size is offset by postnatal lethality. We propose a negative correlation between gene dosage and survival that fixes an upper limit on growth promotion by Dlk1, and we hypothesize that trade-off between growth and lethality might have driven imprinting at this locus. PMID:19247431

  19. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation.

    PubMed

    Zhang, Meishan; Li, Ning; He, Wenan; Zhang, Huakun; Yang, Wei; Liu, Bao

    2016-02-01

    Imprinting is an epigenetic phenomenon referring to allele-biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species-specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent-of-origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum-specific imprinted genes relative to these three plant species. Allele-biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty-six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT-PCR, and the majority of them showed endosperm-specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5' upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele-differential methylation. PMID:26718755

  20. The role and interaction of imprinted genes in human fetal growth

    PubMed Central

    Moore, Gudrun E.; Ishida, Miho; Demetriou, Charalambos; Al-Olabi, Lara; Leon, Lydia J.; Thomas, Anna C.; Abu-Amero, Sayeda; Frost, Jennifer M.; Stafford, Jaime L.; Chaoqun, Yao; Duncan, Andrew J.; Baigel, Rachel; Brimioulle, Marina; Iglesias-Platas, Isabel; Apostolidou, Sophia; Aggarwal, Reena; Whittaker, John C.; Syngelaki, Argyro; Nicolaides, Kypros H.; Regan, Lesley; Monk, David; Stanier, Philip

    2015-01-01

    Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses

  1. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo

    PubMed Central

    Tran, Diana A; Rivas, Guillermo E; Singh, Purnima; Pfeifer, Gerd P

    2011-01-01

    Environmental endocrine disruptors (EDs) are synthetic chemicals that resemble natural hormones and are known to cause epigenetic perturbations. EDs have profound effects on development and fertility. Imprinted genes had been identified as candidate susceptibility loci to environmental insults because they are functionally haploid, and because the imprints undergo epigenetic resetting between generations. To screen for possible epigenetic perturbations caused by EDs at imprinted loci, we treated pregnant mice daily between 8.5 and 12.5 days post coitum (dpc) with di-(2-ethylhexyl)-phthalate (DEHP), bisphenol A (BPA), vinclozolin (VZ) or control oil vehicle. After isolating RNA from the placenta, yolk sac, amnion, head, body, heart, liver, lung, stomach and intestines of 13.5 dpc embryos we measured the allele-specific expression of 39 imprinted transcripts using multiplex single nucleotide primer extension (SNuPE) assays. In this representative data set we identified only a small number of transcripts that exhibited a substantial relaxation of imprinted expression with statistical significance: Slc22a18 with 10% relaxation in the embryo after BPA treatment; Rtl1as with 11 and 16% relaxation in the lung and placenta, respectively after BPA treatment; and Rtl1 with 12% relaxation in the yolk sac after DEHP treatment. Additionally, the standard deviation of allele-specificity increased in various organs after ED treatment for several transcripts including Igf2r, Rasgrf1, Usp29, Slc38a4 and Xist. Our data suggest that the maintenance of strongly biased monoallelic expression of imprinted genes is generally insensitive to EDs in the 13.5 dpc embryo and extra-embryonic organs, but is not immune to those effects. PMID:21636974

  2. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs.

    PubMed

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun

    2015-12-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8-14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. PMID:26455773

  3. Beckwith-Wiedemann syndrome and imprinted genes on chromosome 11p15.5

    SciTech Connect

    Weksberg, R.; Perlikowski, S.; Squire, J.

    1994-09-01

    Beckwith-Wiedemann syndrome (BWS) is a syndrome characterized by generalized and regional overgrowth as well as a predisposition to specific embryonal tumors. We have previously reported biallelic expression of insulin like growth factor 2 (IGF2) in fibroblasts from sporadic cases of BWS. In these cells, the normal expression pattern for IGF2 is allele-specific and derived from the paternal allele. To determine whether biallelic expression of IGF2 in BWS patients results from aberrant regulation of a single gene or multiple genes in an imprinted domain, we undertook the study of a second gene in the 11p15.5 imprinted region. H19 is normally stringently regulated, expressed primarily from the maternal allele, and in many tissues reciprocal expression of H19 and IGF2 has been documented. Since no protein product for H19 has been identified, the RNA itself may be biologically active and it may have a tumor suppressor function. Moreover, H19 has been suggested as a candidate gene in BWS, especially in autosomal dominant pedigrees. Using an Rsa1 polymorphism in the transcribed region of H19, we found that the expression of H19 in 8 patients with sporadic BWS is consistently nonallelic and in the informative cases is always from the maternal allele. This is also true for the two cases of BWS where biallelic IGF2 expression has been documented. We conclude that IGF2 biallelic expression does not represent a general loss of imprint control. If H19 and IGF2 do normally respond to common signals within an imprinted domain at 11p15.5, we suggest that BWS patients with biallelic IGF2 expression can escape from such imprinting constraints. To study this region in more detail, we have developed a replication timing assay for IGF2 and H19 to determine whether loss of asynchronous replication accompanies biallelic IGF2 expression.

  4. Characterization of the IGF2 Imprinted Gene Methylation Status in Bovine Oocytes during Folliculogenesis

    PubMed Central

    Mendonça, Anelise dos Santos; Guimarães, Ana Luíza Silva; da Silva, Naiara Milagres Augusto; Caetano, Alexandre Rodrigues; Dode, Margot Alves Nunes; Franco, Maurício Machaim

    2015-01-01

    DNA methylation reprogramming occurs during mammalian gametogenesis and embryogenesis. Sex-specific DNA methylation patterns at specific CpG islands controlling imprinted genes are acquired during this window of development. Characterization of the DNA methylation dynamics of imprinted genes acquired by oocytes during folliculogenesis is essential for understanding the physiological and genetic aspects of female gametogenesis and to determine the parameters for oocyte competence. This knowledge can be used to improve in vitro embryo production (IVP), specifically because oocyte competence is one of the most important aspects determining the success of IVP. Imprinted genes, such as IGF2, play important roles in embryo development, placentation and fetal growth. The aim of this study was to characterize the DNA methylation profile of the CpG island located in IGF2 exon 10 in oocytes during bovine folliculogenesis. The methylation percentages in oocytes from primordial follicles, final secondary follicles, small antral follicles, large antral follicles, MII oocytes and spermatozoa were 73.74 ± 2.88%, 58.70 ± 7.46%, 56.00 ± 5.58%, 65.77 ± 5.10%, 56.35 ± 7.45% and 96.04 ± 0.78%, respectively. Oocytes from primordial follicles showed fewer hypomethylated alleles (15.5%) than MII oocytes (34.6%) (p = 0.039); spermatozoa showed only hypermethylated alleles. Moreover, MII oocytes were less methylated than spermatozoa (p<0.001). Our results showed that the methylation pattern of this region behaves differently between mature oocytes and spermatozoa. However, while this region has a classical imprinted pattern in spermatozoa that is fully methylated, it was variable in mature oocytes, showing hypermethylated and hypomethylated alleles. Furthermore, our results suggest that this CpG island may have received precocious reprogramming, considering that the hypermethylated pattern was already found in growing oocytes from primordial follicles. These results may contribute to

  5. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells.

    PubMed

    Boot, Arnoud; Oosting, Jan; de Miranda, Noel Fcc; Zhang, Yinghui; Corver, Willem E; van de Water, Bob; Morreau, Hans; van Wezel, Tom

    2016-09-01

    The genomes of a wide range of cancers, including colon, breast, and thyroid cancers, frequently show copy number gains of chromosome 7 and rarely show loss of heterozygosity. The molecular basis for this phenomenon is unknown. Strikingly, oncocytic follicular thyroid carcinomas can display an extreme genomic profile, with homozygosity of all chromosomes except for chromosome 7. The observation that homozygosity of chromosome 7 is never observed suggests that retention of heterozygosity is essential for cells. We hypothesized that cell survival genes are genetically imprinted on either of two copies of chromosome 7, which thwarts loss of heterozygosity at this chromosome in cancer cells. By employing a DNA methylation screen and gene expression analysis, we identified six imprinted genes that force retention of heterozygosity on chromosome 7. Subsequent knockdown of gene expression showed that CALCR, COPG2, GRB10, KLF14, MEST, and PEG10 were essential for cancer cell survival, resulting in reduced cell proliferation, G1 -phase arrest, and increased apoptosis. We propose that imprinted cell survival genes provide a genetic basis for retention of chromosome 7 heterozygosity in cancer cells. The monoallelically expressed cell survival genes identified in this study, and the cellular pathways that they are involved in, offer new therapeutic targets for the treatment of tumours showing retention of heterozygosity on chromosome 7. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27265324

  6. Genomic imprinting of the human serotonin-receptor (HTR2) gene involved in development of retinoblastoma

    SciTech Connect

    Kato, Mitsuo V.; Nagayoshi, Mariko; Shimuzu, Takashi

    1996-11-01

    Epidemiological and genetic studies of retinoblastoma (RB) suggested that imprinted genes might be genetically linked to the RB gene. In this study, we found that the human serotonin-receptor, HTR2, gene, which had been mapped nearby the RB gene on chromosome 13, was expressed only in human fibroblasts with a maternal allele and not in cells without a maternal allele. The 5{prime} genomic region of the human HTR2 gene was cloned by PCR-mediated method. Only the 5{prime} region of the gene was methylated in cells with the maternal gene, and it was not methylated in cells without the maternal gene. A polymorphism of PvuII site of the gene was also found and useful for the segregation analysis in a family of an RB patient and for analysis of loss of heterozygosity on chromosome 13 in tumor and its parental origin. These results suggest that the human HTR2 gene might be affected by genomic imprinting and that exclusive expression of the maternal HTR2 gene may be associated with the delayed occurrence of RB, which had lost the maternal chromosome 13. 33 refs., 5 figs., 2 tabs.

  7. Monoallelic Loss of the Imprinted Gene Grb10 Promotes Tumor Formation in Irradiated Nf1+/- Mice

    PubMed Central

    Mroue, Rana; Huang, Brian; Braunstein, Steve; Firestone, Ari J.; Nakamura, Jean L.

    2015-01-01

    Imprinted genes are expressed from only one parental allele and heterozygous loss involving the expressed allele is sufficient to produce complete loss of protein expression. Genetic alterations are common in tumorigenesis but the role of imprinted genes in this process is not well understood. In earlier work we mutagenized mice heterozygous for the Neurofibromatosis I tumor suppressor gene (NF1) to model radiotherapy-associated second malignant neoplasms that arise in irradiated NF1 patients. Expression analysis of tumor cell lines established from our mouse models identified Grb10 expression as widely absent. Grb10 is an imprinted gene and polymorphism analysis of cell lines and primary tumors demonstrates that the expressed allele is commonly lost in diverse Nf1 mutant tumors arising in our mouse models. We performed functional studies to test whether Grb10 restoration or loss alter fundamental features of the tumor growth. Restoring Grb10 in Nf1 mutant tumors decreases proliferation, decreases soft agar colony formation and downregulates Ras signaling. Conversely, Grb10 silencing in untransformed mouse embryo fibroblasts significantly increased cell proliferation and increased Ras-GTP levels. Expression of a constitutively activated MEK rescued tumor cells from Grb10-mediated reduction in colony formation. These studies reveal that Grb10 loss can occur during in vivo tumorigenesis, with a functional consequence in untransformed primary cells. In tumors, Grb10 loss independently promotes Ras pathway hyperactivation, which promotes hyperproliferation, an early feature of tumor development. In the context of a robust Nf1 mutant mouse model of cancer this work identifies a novel role for an imprinted gene in tumorigenesis. PMID:26000738

  8. Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor β(2) subunit.

    PubMed

    Pun, F W; Zhao, C; Lo, W-S; Ng, S-K; Tsang, S-Y; Nimgaonkar, V; Chung, W S; Ungvari, G S; Xue, H

    2011-05-01

    Schizophrenia is a complex genetic disorder, the inheritance pattern of which is likely complicated by epigenetic factors yet to be elucidated. In this study, transmission disequilibrium tests with family trios yielded significant differences between paternal and maternal transmissions of the disease-associated single-nucleotide polymorphism (SNP) rs6556547 and its haplotypes. The minor allele (T) of rs6556547 was paternally undertransmitted to male schizophrenic offsprings, and this parent-of-origin effect strongly suggested that GABRB2 is imprinted. 'Flipping' of allelic expression in heterozygotes of SNP rs2229944 (C/T) in GABRB2 or rs2290732 (G/A) in the neighboring GABRA1 was compatible with imprinting effects on gene expression. Clustering analysis of GABRB2 mRNA expressions suggested that imprinting brought about the observed two-tiered distribution of expression levels in controls with heterozygous genotype at the disease-associated SNP rs1816071 (A/G). The deficit of upper-tiered expressions accounted for the lowered expression levels in the schizophrenic heterozygotes. The occurrence of a two-tiered distribution furnished support for imprinting, and also pointed to the necessity of differentiating between two kinds of heterozygotes of different parental origins in disease association studies on GABRB2. Bisulfite sequencing revealed hypermethylation in the neighborhood of SNP rs1816071, and methylation differences between controls and schizophrenia patients. Notably, the two schizophrenia-associated SNPs rs6556547 and rs1816071 overlapped with a CpG dinucleotide, thereby opening the possibility that CpG methylation status of these sites could have an impact on the risk of schizophrenia. Thus multiple lines of evidence pointed to the occurrence of imprinting in the GABRB2 gene and its possible role in the development of schizophrenia. PMID:20404824

  9. Heat-Induced Release of Epigenetic Silencing Reveals the Concealed Role of an Imprinted Plant Gene

    PubMed Central

    Sanchez, Diego H.; Paszkowski, Jerzy

    2014-01-01

    Epigenetic mechanisms suppress the transcription of transposons and DNA repeats; however, this suppression can be transiently released under prolonged heat stress. Here we show that the Arabidopsis thaliana imprinted gene SDC, which is silent during vegetative growth due to DNA methylation, is activated by heat and contributes to recovery from stress. SDC activation seems to involve epigenetic mechanisms but not canonical heat-shock perception and signaling. The heat-mediated transcriptional induction of SDC occurs particularly in young developing leaves and is proportional to the level of stress. However, this occurs only above a certain window of absolute temperatures and, thus, resembles a thermal-sensing mechanism. In addition, the re-silencing kinetics during recovery can be entrained by repeated heat stress cycles, suggesting that epigenetic regulation in plants may conserve memory of stress experience. We further demonstrate that SDC contributes to the recovery of plant biomass after stress. We propose that transcriptional gene silencing, known to be involved in gene imprinting, is also co-opted in the specific tuning of SDC expression upon heat stress and subsequent recovery. It is therefore possible that dynamic properties of the epigenetic landscape associated with silenced or imprinted genes may contribute to regulation of their expression in response to environmental challenges. PMID:25411840

  10. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene

    SciTech Connect

    Glenn, C.C.; Jong, T.C.; Filbrandt, M.M.

    1996-02-01

    The human SNRPN (small nuclear ribonucleoprotein polypeptide N) gene is one of a gene family that encode proteins involved in pre-mRNA splicing and maps to the smallest deletion region involved in the Prader-Willi syndrome (PWS) within chromosome 15q11-q13. Paternal only expression of SNRPN has previously been demonstrated by use of cell lines from PWS patients (maternal allele only) and Angelman syndrome (AS) patients (paternal allele only). We have characterized two previously unidentified 5{prime} exons of the SNRPN gene and demonstrate that exons -1 and 0 are included in the full-length transcript. This gene is expressed in a wide range of somatic tissues and at high, approximately equal levels in all regions of the brain. Both the first exon of SNRPN (exon -1) and the putative transcription start site are embedded within a CpG island. This CpG island is extensively methylated on the repressed maternal allele and is unmethylated on the expressed paternal allele, in a wide range of fetal and adult somatic cells. This provides a quick and highly reliable diagnostic assay for PWS and AS, which is based on DNA-methylation analysis that has been tested on >100 patients in a variety of tissues. Conversely, several CpG sites {approximately}22 kb downstream of the transcription start site in intron 5 are preferentially methylated on the expressed paternal allele in somatic tissues and male germ cells, whereas these same sites are unmethylated in fetal oocytes. These findings are consistent with a key role for DNA methylation in the imprinted inheritance and subsequent gene expression of the human SNRPN gene. 59 refs., 9 figs., 1 tab.

  11. Imprinting analysis of porcine MAGEL2 gene in two fetal stages and association analysis with carcass traits.

    PubMed

    Guo, Ling; Qiao, Mu; Wang, Chao; Zheng, Rong; Xiong, Yuan-Zhu; Deng, Chang-Yan

    2012-01-01

    Imprinted genes play an essential role in the regulation of fetal growth, development and function of the placenta, however only a limited number of imprinted genes have been studied in swine. In this study, we cloned and characterized porcine MAGEL2 (melanoma antigen-like gene 2), and also identified its imprinting status during porcine fetal development. The complete open reading frame (ORF) encoding 1,193 amino acids was isolated and two single nucleotide polymorphisms (SNPs) (g.2592A>C and g.3277T>C) in the coding region were identified. The reciprocal Yorkshire×Meishan F1 hybrid model and the RT-PCR/RFLP method were used to detect the imprinting status of porcine MAGEL2 gene at two developmental stages of day 30 and 65 of gestation. Imprinting analysis showed that porcine MAGEL2 was paternally expressed in day 65 fetal tissues, including heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, brain and placenta. Interestingly, we observed an imprinting variance of MAGEL2 gene in 30 dpc fetuses produced by the cross of Yorkshire boar×Meishan sow, in which seven heterozygous fetuses were monoallelically expressed from the paternal allele but two were biallelically expressed from both the paternal and maternal alleles. Association analysis in a Yorkshire×Meishan F2 resource population showed that the mutation of g.2592A>C was significantly associated with dressed carcass percentage (P<0.05) and buttock fat thickness (P<0.05). Our results suggest that MAGEL2, as a novel imprinted gene in pig, might be a candidate gene affecting carcass traits and could provide important information for the functional study of imprinted genes during porcine development. PMID:21633897

  12. Dynamic expression of imprinted genes associates with maternally controlled nutrient allocation during maize endosperm development.

    PubMed

    Xin, Mingming; Yang, Ruolin; Li, Guosheng; Chen, Hao; Laurie, John; Ma, Chuang; Wang, Dongfang; Yao, Yingyin; Larkins, Brian A; Sun, Qixin; Yadegari, Ramin; Wang, Xiangfeng; Ni, Zhongfu

    2013-09-01

    In angiosperms, the endosperm provides nutrients for embryogenesis and seed germination and is the primary tissue where gene imprinting occurs. To identify the imprintome of early developing maize (Zea mays) endosperm, we performed high-throughput transcriptome sequencing of whole kernels at 0, 3, and 5 d after pollination (DAP) and endosperms at 7, 10, and 15 DAP, using B73 by Mo17 reciprocal crosses. We observed gradually increased expression of paternal transcripts in 3- and 5-DAP kernels. In 7-DAP endosperm, the majority of the genes tested reached a 2:1 maternal versus paternal ratio, suggesting that paternal genes are nearly fully activated by 7 DAP. A total of 116, 234, and 63 genes exhibiting parent-specific expression were identified at 7, 10, and 15 DAP, respectively. The largest proportion of paternally expressed genes was at 7 DAP, mainly due to the significantly deviated parental allele expression ratio of these genes at this stage, while nearly 80% of the maternally expressed genes (MEGs) were specific to 10 DAP and were primarily attributed to sharply increased expression levels compared with the other stages. Gene ontology enrichment analysis of the imprinted genes suggested that 10-DAP endosperm-specific MEGs are involved in nutrient uptake and allocation and the auxin signaling pathway, coincident with the onset of starch and storage protein accumulation. PMID:24058158

  13. Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenetic trophoblast.

    PubMed Central

    Mutter, G L; Stewart, C L; Chaponot, M L; Pomponio, R J

    1993-01-01

    Human uniparental gestations such as gynogenetic ovarian teratomas and androgenetic complete hydatidiform moles provide a model to evaluate the integrity of parent-specific gene expression--i.e., imprinting--in the absence of a complementary parental genetic contribution. We studied expression, in these tissues, of the oppositely imprinted genes H19, which is an embryonic nontranslated RNA, and insulin-like growth factor type 2 (IGF2). Normal gestations only express H19 from the maternal allele and express IGF2 from the paternal allele, whereas neither is expressed from the maternal genome of gynogenetic gestations, and both are expressed from the paternal genome of androgenetic gestations. Coexpression of H19 and IGF2 in the androgenetic tissues was in a single population of cells, mononuclear trophoblast--the same cell type expressing these genes in biparental placentas. These results demonstrate that a biparental genome may be required for expression of the reciprocal IGF2/H19 imprint. Alternatively, biparental expression may be a normal feature of some imprinted genes in specific cell types. Additional experiments with other imprinted genes will clarify whether this reflects global failure of the imprinting process or a change specific to the IGF2/H19 locus. Images Figure 1 Figure 2 Figure 3 PMID:7692725

  14. The product of the imprinted H19 gene is an oncofetal RNA.

    PubMed Central

    Ariel, I.; Ayesh, S.; Perlman, E. J.; Pizov, G.; Tanos, V.; Schneider, T.; Erdmann, V. A.; Podeh, D.; Komitowski, D.; Quasem, A. S.; de Groot, N.; Hochberg, A.

    1997-01-01

    AIMS/BACKGROUND: The H19 gene is an imprinted, maternally expressed gene in humans. It is tightly linked and coregulated with the imprinted, paternally expressed gene of insulin-like growth factor 2. The H19 gene product is not translated into protein and functions as an RNA molecule. Although its role has been investigated for more than a decade, its biological function is still not understood fully. H19 is abundantly expressed in many tissues from early stages of embryogenesis through fetal life, and is down regulated postnatally. It is also expressed in certain childhood and adult tumours. This study was designed to screen the expression of H19 in human cancer and its relation to the expression of H19 in the fetus. METHODS: Using in situ hybridisation with a [35S] labelled probe, H19 mRNA was detected in paraffin wax sections of fetal tissues from the first and second trimesters of pregnancy and of a large array of human adult and childhood tumours arising from these tissues. RESULTS: The H19 gene is expressed in tumours arising from tissues which express this gene in fetal life. Its expression in the fetus and in cancer is closely linked with tissue differentiation. CONCLUSIONS: Based on these and previous data, H19 is neither a tumour suppressor gene nor an oncogene. Its product is an oncofetal RNA. The potential use of this RNA as a tumour marker should be evaluated. Images PMID:9208812

  15. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  16. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes

    PubMed Central

    Reik, Wolf; Constância, Miguel; Fowden, Abigail; Anderson, Neil; Dean, Wendy; Ferguson-Smith, Anne; Tycko, Benjamin; Sibley, Colin

    2003-01-01

    The placenta has evolved in eutherian mammals primarily to provide nutrients for the developing fetus. The genetic control of the regulation of supply and demand for maternal nutrients is not understood. In this review we argue that imprinted genes have central roles in controlling both the fetal demand for, and the placental supply of, maternal nutrients. Recent studies on Igf2 (insulin-like growth factor 2) knockout mouse models provide experimental support for this hypothesis. These show effects on placental transport capacity consistent with a role of IGF-II in modulating both the placental supply and fetal demand for nutrients. Imprinting of genes with such functions may have coevolved with the placenta and new evidence suggests that transporter proteins, as well as the regulators themselves, may also be imprinted. These data and hypotheses are important, as deregulation of supply and demand affects fetal growth and has long term consequences for health in mammals both in the neonatal period and, as a result of fetal programming, in adulthood. PMID:12562908

  17. Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene

    PubMed Central

    2014-01-01

    Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines. PMID:24484454

  18. H19 controls reactivation of the imprinted gene network during muscle regeneration.

    PubMed

    Martinet, Clémence; Monnier, Paul; Louault, Yann; Benard, Matthieu; Gabory, Anne; Dandolo, Luisa

    2016-03-15

    The H19 locus controls fetal growth by regulating expression of several genes from the imprinted gene network (IGN). H19 is fully repressed after birth, except in skeletal muscle. Using loss-of-function H19(Δ3) mice, we investigated the function of H19 in adult muscle. Mutant muscles display hypertrophy and hyperplasia, with increased Igf2 and decreased myostatin (Mstn) expression. Many imprinted genes are expressed in muscle stem cells or satellite cells. Unexpectedly, the number of satellite cells was reduced by 50% in H19(Δ3) muscle fibers. This reduction occurred after postnatal day 21, suggesting a link with their entry into quiescence. We investigated the biological function of these mutant satellite cells in vivo using a regeneration assay induced by multiple injections of cardiotoxin. Surprisingly, despite their reduced number, the self-renewal capacity of these cells is fully retained in the absence of H19. In addition, we observed a better regeneration potential of the mutant muscles, with enhanced expression of several IGN genes and genes from the IGF pathway. PMID:26980793

  19. Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma.

    PubMed

    Shu, Jingmin; Li, Lihua; Sarver, Anne E; Pope, Emily A; Varshney, Jyotika; Thayanithy, Venugopal; Spector, Logan; Largaespada, David A; Steer, Clifford J; Subramanian, Subbaya

    2016-04-19

    Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes. PMID:26802029

  20. Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma

    PubMed Central

    Shu, Jingmin; Li, Lihua; Sarver, Anne E.; Pope, Emily A.; Varshney, Jyotika; Thayanithy, Venugopal; Spector, Logan; Largaespada, David A.; Steer, Clifford J.; Subramanian, Subbaya

    2016-01-01

    Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes. PMID:26802029

  1. Activation of tumor suppressor p53 gene expression by magnetic thymine-imprinted chitosan nanoparticles.

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Chen, Jian-Zhou; Jan, Jeng-Shiung; Lin, Hung-Yin

    2016-02-01

    Chitosan is a natural biodegradable polysaccharide that has been used to enhance gene delivery, owing to the ease with which chitosan nanoparticles enter the nucleus of cells. To study the effects of nuclear delivery of telomeric gene sequences, which contain thymine, we formed magnetic thymine-imprinted chitosan nanoparticles (TIPs) by the precipitation of chitosan, mixed with thymine and magnetic nanoparticles (to aid in separations). The mean size of the TIPS was 116 ± 18 nm; the dissociation constant for thymine was 21.8 mg mL(-1). We then treated human hepatocellular carcinoma (HepG2) with TIPs nanoparticles bearing bound thymine or a bound telomeric DNA sequence. The expression of the tumor suppressor p53 gene increased when TIPs were applied and decreased when telomere-bound TIPs were applied. PMID:26693943

  2. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected].

    PubMed

    Li, Yan; Córdoba-Cañero, Dolores; Qian, Weiqiang; Zhu, Xiaohong; Tang, Kai; Zhang, Huiming; Ariza, Rafael R; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2015-01-01

    Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/-zdp-/- mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis. PMID:25569774

  3. Genomic Imprinting in Mammals

    PubMed Central

    Barlow, Denise P.

    2014-01-01

    Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation. PMID:24492710

  4. Imprints of Natural Selection Along Environmental Gradients in Phenology-Related Genes of Quercus petraea

    PubMed Central

    Alberto, Florian J.; Derory, Jérémy; Boury, Christophe; Frigerio, Jean-Marc; Zimmermann, Niklaus E.; Kremer, Antoine

    2013-01-01

    We explored single nucleotide polymorphism (SNP) variation in candidate genes for bud burst from Quercus petraea populations sampled along gradients of latitude and altitude in Western Europe. SNP diversity was monitored for 106 candidate genes, in 758 individuals from 32 natural populations. We investigated whether SNP variation reflected the clinal pattern of bud burst observed in common garden experiments. We used different methods to detect imprints of natural selection (FST outlier, clinal variation at allelic frequencies, association tests) and compared the results obtained for the two gradients. FST outlier SNPs were found in 15 genes, 5 of which were common to both gradients. The type of selection differed between the two gradients (directional or balancing) for 3 of these 5. Clinal variations were observed for six SNPs, and one cline was conserved across both gradients. Association tests between the phenotypic or breeding values of trees and SNP genotypes identified 14 significant associations, involving 12 genes. The results of outlier detection on the basis of population differentiation or clinal variation were not very consistent with the results of association tests. The discrepancies between these approaches may reflect the different hierarchical levels of selection considered (inter- and intrapopulation selection). Finally, we obtained evidence for convergent selection (similar for gradients) and clinal variation for a few genes, suggesting that comparisons between parallel gradients could be used to screen for major candidate genes responding to natural selection in trees. PMID:23934884

  5. Functional Genomic Approaches for the Study of Fetal/Placental Development in Swine with Special Emphasis on Imprinted Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall focus of this chapter will be the application of functional genomic approaches for the study of the imprinted gene family in swine. While there are varied definitions of “functional genomics” in general they focus on the application of genomic approaches such as DNA microarrays, single n...

  6. Alterations in methylation and expression levels of imprinted genes H19 and Igf2 in the fetuses of diabetic mice.

    PubMed

    Shao, Wei-Juan; Tao, Ling-Yun; Gao, Cheng; Xie, Jian-Yun; Zhao, Ru-Qian

    2008-08-01

    The study aimed to reveal alterations in expression and methylation levels of the growth-related imprinted genes H19 and Igf2 in fetuses of diabetic mice. Diabetes was induced in female mice by intraperitoneal injection of streptozotocin. DNA and total RNA were extracted from fetuses obtained from diabetic and control dams on embryonic day (E) 14. Real-time RT-PCR analysis revealed that the mRNA expression of Igf2 in fetuses from diabetic mice was 0.65-fold of the control counterparts. Bisulfite genomic sequencing demonstrated that the methylation level of the H19-Igf2 imprint control region was 19.1% higher in diabetic fetuses than in those of control dams. In addition, the body weight of pups born to diabetic dams was 26.5% lower than that of the control group. The results indicate that maternal diabetes can affect fetal development by means of altered expression of imprinted genes. The modified genomic DNA methylation status of imprinting genes may account for the change in gene expression. PMID:18724775

  7. Tissue-specific imprinting of the mouse insulin-like growth factor II receptor gene correlates with differential allele-specific DNA methylation.

    PubMed

    Hu, J F; Oruganti, H; Vu, T H; Hoffman, A R

    1998-02-01

    Imprinted genes may be expressed uniparentally in a tissue- and development-specific manner. The insulin-like growth factor II receptor gene (Igf2r), one of the first imprinted genes to be identified, is an attractive candidate for studying the molecular mechanism of genomic imprinting because it is transcribed monoallelically in the mouse but biallelically in humans. To identify the factors that control genomic imprinting, we examined allelic expression of Igf2r at different ages in interspecific mice. We found that Igf2r is not always monoallelically expressed. Paternal imprinting of Igf2r is maintained in peripheral tissues, including liver, kidney, heart, spleen, intestine, bladder, skin, bone, and skeletal muscle. However, in central nervous system (CNS), Igf2r is expressed from both parental alleles. Southern analysis of the Igf2r promoter (region 1) revealed that, outside of the CNS where Igf2r is monoallelically expressed, the suppressed paternal allele is fully methylated while the expressed maternal allele is completely unmethylated. In CNS, however, both parental alleles are unmethylated in region 1. The importance of DNA methylation in the maintenance of the genomic imprint was also confirmed by the finding that Igf2r imprinting was relaxed by 5-azacytidine treatment. The correlation between genomic imprinting and allelic Igf2r methylation in CNS and other tissues thus suggests that the epigenetic modification in the promoter region may function as one of the major factors in maintaining the monoallelic expression of Igf2r. PMID:9482664

  8. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15.

    PubMed Central

    Matsuoka, S; Thompson, J S; Edwards, M C; Bartletta, J M; Grundy, P; Kalikin, L M; Harper, J W; Elledge, S J; Feinberg, A P

    1996-01-01

    Parental origin-specific alterations of chromosome 11p15 in human cancer suggest the involvement of one or more maternally expressed imprinted genes involved in embryonal tumor suppression and the cancer-predisposing Beckwith-Wiedemann syndrome (BWS). The gene encoding cyclin-dependent kinase inhibitor p57KIP2, whose overexpression causes G1 phase arrest, was recently cloned and mapped to this band. We find that the p57KIP2 gene is imprinted, with preferential expression of the maternal allele. However, the imprint is not absolute, as the paternal allele is also expressed at low levels in most tissues, and at levels comparable to the maternal allele in fetal brain and some embryonal tumors. The biochemical function, chromosomal location, and imprinting of the p57KIP2 gene match the properties predicted for a tumor suppressor gene at 11p15.5. However, as the p57KIP2 gene is 500 kb centromeric to the gene encoding insulin-like growth factor 2, it is likely to be part of a large domain containing other imprinted genes. Thus, loss of heterozygosity or loss of imprinting might simultaneously affect several genes at this locus that together contribute to tumor and/or growth- suppressing functions that are disrupted in BWS and embryonal tumors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8610162

  9. Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood

    PubMed Central

    Li, Yue; Xie, Changchun; Murphy, Susan K.; Skaar, David; Nye, Monica; Vidal, Adriana C.; Cecil, Kim M.; Dietrich, Kim N.; Puga, Alvaro; Jirtle, Randy L.; Hoyo, Cathrine

    2015-01-01

    Background: Lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk. Objectives: The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development. Methods: Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study from birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression. Results: Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (β = –0.0014; 95% CI: –0.0023, –0.0005, p = 0.002), stronger in males (β = –0.0024; 95% CI: –0.0038, –0.0009, p = 0.003) than in females (β = –0.0009; 95% CI: –0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (β = –0.0013; 95% CI: –0.0023, –0.0003, p = 0.01) DMR methylation, but primarily in females, (β = –0.0017; 95% CI: –0.0029, –0.0006, p = 0.005) rather than in males, (β = –0.0004; 95% CI: –0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (β = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from

  10. Dynamic Expression of Imprinted Genes Associates with Maternally Controlled Nutrient Allocation during Maize Endosperm Development[W][OPEN

    PubMed Central

    Xin, Mingming; Yang, Ruolin; Li, Guosheng; Chen, Hao; Laurie, John; Ma, Chuang; Wang, Dongfang; Yao, Yingyin; Larkins, Brian A.; Sun, Qixin; Yadegari, Ramin; Wang, Xiangfeng; Ni, Zhongfu

    2013-01-01

    In angiosperms, the endosperm provides nutrients for embryogenesis and seed germination and is the primary tissue where gene imprinting occurs. To identify the imprintome of early developing maize (Zea mays) endosperm, we performed high-throughput transcriptome sequencing of whole kernels at 0, 3, and 5 d after pollination (DAP) and endosperms at 7, 10, and 15 DAP, using B73 by Mo17 reciprocal crosses. We observed gradually increased expression of paternal transcripts in 3- and 5-DAP kernels. In 7-DAP endosperm, the majority of the genes tested reached a 2:1 maternal versus paternal ratio, suggesting that paternal genes are nearly fully activated by 7 DAP. A total of 116, 234, and 63 genes exhibiting parent-specific expression were identified at 7, 10, and 15 DAP, respectively. The largest proportion of paternally expressed genes was at 7 DAP, mainly due to the significantly deviated parental allele expression ratio of these genes at this stage, while nearly 80% of the maternally expressed genes (MEGs) were specific to 10 DAP and were primarily attributed to sharply increased expression levels compared with the other stages. Gene ontology enrichment analysis of the imprinted genes suggested that 10-DAP endosperm-specific MEGs are involved in nutrient uptake and allocation and the auxin signaling pathway, coincident with the onset of starch and storage protein accumulation. PMID:24058158

  11. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  12. Towards the cloning of imprinted genes in the Prader-Willi/Angelman region of chromosome 15q11-q13

    SciTech Connect

    Nakao, M.; Sutcliffe, J.S.; Beaudet, A.L.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct clinical phenotypes resulting from paternal and maternal deficiencies respectively in human chromosome 15q11-q13. The data suggest the presence of oppositely imprinted genes in the region, and the gene for small nuclear ribonucleoprotein-associated polypeptide N (SNRPN) has been identified as a candidate gene for PWS. Previous strategies for positional cloning identified a number of transcripts from the PWS/AS region, and two of them, PAR-5 (D15S226E) and PAR-1 (D15S227E), are paternally expressed in cultured human cells from patients deleted for 15q11-q13 as is SNRPN. Cosmid contig maps have been developed from the following YACs (contained loci in parentheses): 307A12 (D15S13), 457B4 (SNRPN), 132D4 (D15S10), A229A2, and 378A12 (D15S113), to facilitate molecular studies of PWS and AS. Exon trapping has been employed to isolate putative exons from these overlapping cosmids. Two trapped fragments from the D15S113 region and one fragment from the SNRPN region has been isolated. Sequence information is available for all of the fragments. In addition to imprinting analysis in cultured human cells, we have developed a method to detect imprinting in mouse and human using a GC-clamped denaturing gradient gel electrophoresis strategy, in combination with reverse transcription-polymerase chain reaction. The imprinting analyses of putative exons are in progress to investigate their possible candidacy for involvement in PWS or AS phenotypes.

  13. mRNA Levels of Imprinted Genes in Bovine In Vivo Oocytes, Embryos and Cross Species Comparisons with Humans, Mice and Pigs

    PubMed Central

    Jiang, Zongliang; Dong, Hong; Zheng, Xinbao; Marjani, Sadie L.; Donovan, David M.; Chen, Jingbo; Tian, Xiuchun (Cindy)

    2015-01-01

    Twenty-six imprinted genes were quantified in bovine in vivo produced oocytes and embryos using RNA-seq. Eighteen were detectable and their transcriptional patterns were: largely decreased (MEST and PLAGL1); first decreased and then increased (CDKN1C and IGF2R); peaked at a specific stage (PHLDA2, SGCE, PEG10, PEG3, GNAS, MEG3, DGAT1, ASCL2, NNAT, and NAP1L5); or constantly low (DIRAS3, IGF2, H19 and RTL1). These patterns reflect mRNAs that are primarily degraded, important at a specific stage, or only required at low quantities. The mRNAs for several genes were surprisingly abundant. For instance, transcripts for the maternally imprinted MEST and PLAGL1, were high in oocytes and could only be expressed from the maternal allele suggesting that their genomic imprints were not yet established/recognized. Although the mRNAs detected here were likely biallelically transcribed before the establishment of imprinted expression, the levels of mRNA during these critical stages of development have important functional consequences. Lastly, we compared these genes to their counterparts in mice, humans and pigs. Apart from previously known differences in the imprinting status, the mRNA levels were different among these four species. The data presented here provide a solid reference for expression profiles of imprinted genes in embryos produced using assisted reproductive biotechnologies. PMID:26638780

  14. Active and Repressive Chromatin Are Interspersed without Spreading in an Imprinted Gene Cluster in the Mammalian Genome

    PubMed Central

    Regha, Kakkad; Sloane, Mathew A.; Huang, Ru; Pauler, Florian M.; Warczok, Katarzyna E.; Melikant, Balázs; Radolf, Martin; Martens, Joost H.A.; Schotta, Gunnar; Jenuwein, Thomas; Barlow, Denise P.

    2010-01-01

    SUMMARY The Igf2r imprinted cluster is an epigenetic silencing model in which expression of a ncRNA silences multiple genes in cis. Here, we map a 250 kb region in mouse embryonic fibroblast cells to show that histone modifications associated with expressed and silent genes are mutually exclusive and localized to discrete regions. Expressed genes were modified at promoter regions by H3K4me3 + H3K4me2 + H3K9Ac and on putative regulatory elements flanking active promoters by H3K4me2 + H3K9Ac. Silent genes showed two types of nonoverlapping profile. One type spread over large domains of tissue-specific silent genes and contained H3K27me3 alone. A second type formed localized foci on silent imprinted gene promoters and a nonexpressed pseudogene and contained H3K9me3 + H4K20me3 ± HP1. Thus, mammalian chromosome arms contain active chromatin interspersed with repressive chromatin resembling the type of heterochromatin previously considered a feature of centromeres, telomeres, and the inactive X chromosome. PMID:17679087

  15. Angelman syndrome associated with oculocutaneous albinism due to an intragenic deletion of the P gene.

    PubMed

    Fridman, C; Hosomi, N; Varela, M C; Souza, A H; Fukai, K; Koiffmann, C P

    2003-06-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by mental retardation, speech impairment, ataxia, and happy disposition with frequent smiling. AS results from the loss of expression of a maternal imprinted gene, UBE3A, mapped within 15q11-q13 region, due to different mechanisms: maternal deletion, paternal UPD, imprinting center mutation, and UBE3A mutation. Deletion AS patients may exhibit hypopigmentation of skin, eye, and hair correlating with deletion of P gene localized in the distal part of Prader-Willi (PWS)/AS region. Our patient presented developmental delay, severe mental retardation, absence of speech, outbursts of laughter, microcephaly, ataxia, hyperactivity, seizures, white skin, no retinal pigmentation, and gold yellow hair. His parents were of African ancestry. The SNURF-SNRPN methylation analysis confirmed AS diagnosis and microsatellite studies disclosed deletion with breakpoints in BP2 and BP3. All of the 25 exons and flanking introns of the P gene of the patient, his father, and mother were investigated. The patient is hemizygous for the deleted exon 7 of the P gene derived from his father who is a carrier of the deleted allele. Our patient manifests OCA2 associated with AS due to the loss of the maternal chromosome 15 with the normal P allele, and the paternal deletion in the P gene. As various degrees of hypopigmentation are associated with PWS and AS patients, the study of the P gene in a hemizygous state could contribute to the understanding of its effect on human pigmentation during development and to disclose the presence of modifier pigmentation gene(s) in the PWS/AS region. PMID:12749060

  16. Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    SciTech Connect

    Jirtle, Randy L.

    2012-10-11

    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiological terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in

  17. Evolution and function of genomic imprinting in plants

    PubMed Central

    Rodrigues, Jessica A.; Zilberman, Daniel

    2015-01-01

    Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings. PMID:26680300

  18. Genomic imprinting and cancer.

    PubMed

    Brenton, J D; Viville, S; Surani, M A

    1995-01-01

    Imprinting is vital for normal development, and disruption of imprinting mechanisms on syntenic chromosomes gives very similar phenotypes in mouse and humans. In addition, disruption of normal imprinting provides a plausible explanation for preferential LOH in some embryonal tumours. Moreover, there is evidence that in Wilms' tumour, dysregulation of specific imprinted genes may give rise to the cancer phenotype. Many more questions regarding genomic imprinting need to be answered before the associations described in this review can be properly understood. The most basic issues, such as when and how the imprint is established, can still only be speculated upon. Further study of new imprinted genes and the relationship between their domains and differential replication may show us higher control mechanisms than methylation alone. It remains to be seen if these epigenetic modifications are amenable to therapeutic change in the treatment of inherited syndromes and cancer, or if they can be used to assess individuals at risk of disease. Until then it is probably unwise to speculate on a single unifying theory that explains why a subset of the genome shows such a peculiar non-Mendelian form of inheritance. PMID:8718517

  19. Environmental Influences on Genomic Imprinting

    PubMed Central

    Kappil, Maya; Lambertini, Luca; Chen, Jia

    2015-01-01

    Genomic imprinting refers to the epigenetic mechanism that results in the mono-allelic expression of a subset of genes in a parent-of-origin manner. These haploid genes are highly active in the placenta and are functionally implicated in the appropriate development of the fetus. Furthermore, the epigenetic marks regulating imprinted expression patterns are established early in development. These characteristics make genomic imprinting a potentially useful biomarker for environmental insults, especially during the in utero or early development stages, and for health outcomes later in life. Herein, we critically review the current literature regarding environmental influences on imprinted genes and summarize findings that suggest that imprinted loci are sensitive to known teratogenic agents, such as alcohol and tobacco, as well as less established factors with the potential to manipulate the in utero environment, including assisted reproductive technology. Finally, we discuss the potential of genomic imprinting to serve as an environmental sensor during early development. PMID:26029493

  20. The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources

    PubMed Central

    Tunster, S.J.; Creeth, H.D.J.; John, R.M.

    2016-01-01

    Imprinted genes, which are expressed from a single parental allele in response to epigenetic marks first established in the germline, function in a myriad of processes to regulate mammalian development. Recent work suggests that imprinted genes may regulate the signalling function of the placenta by modulating the size of the endocrine compartment. Here we provide in vivo evidence that this hypothesis is well founded. Elevated expression of the imprinted Pleckstrin homology-like domain, family a, member 2 (Phlda2) gene drives a reduction of the spongiotrophoblast endocrine compartment, diminished placental glycogen and asymmetric foetal growth restriction. Using both loss-of-function and gain-in-expression mouse models, here we further show that Phlda2 exclusively modulates the spongiotrophoblast compartment of the placenta without significantly altering the composition of the trophoblast giant cell endocrine lineages that share a common progenitor with this lineage. Additionally, we show that Phlda2 loss-of-function placentae contain nearly three times more placental glycogen than non-transgenic placentae. Remarkably, relative to a fully wild type scenario, wild type placentae also accumulate excessive glycogen. While loss-of-function of Phlda2 increased both placental weight and placental glycogen, the weight of both mutant and non-transgenic fetuses was lower than that found in a fully wild type scenario indicating that excessive glycogen accumulation comes at the cost of foetal growth. This work firstly highlights a novel signalling function for the spongiotrophoblast in stimulating the global accumulation of placental glycogen. Furthermore, this work suggests that Phlda2 manipulates the placenta's demands for maternal resources, a process that must be tightly regulated by epigenetic marks to ensure optimal foetal growth. PMID:26476147

  1. The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources.

    PubMed

    Tunster, S J; Creeth, H D J; John, R M

    2016-01-01

    Imprinted genes, which are expressed from a single parental allele in response to epigenetic marks first established in the germline, function in a myriad of processes to regulate mammalian development. Recent work suggests that imprinted genes may regulate the signalling function of the placenta by modulating the size of the endocrine compartment. Here we provide in vivo evidence that this hypothesis is well founded. Elevated expression of the imprinted Pleckstrin homology-like domain, family a, member 2 (Phlda2) gene drives a reduction of the spongiotrophoblast endocrine compartment, diminished placental glycogen and asymmetric foetal growth restriction. Using both loss-of-function and gain-in-expression mouse models, here we further show that Phlda2 exclusively modulates the spongiotrophoblast compartment of the placenta without significantly altering the composition of the trophoblast giant cell endocrine lineages that share a common progenitor with this lineage. Additionally, we show that Phlda2 loss-of-function placentae contain nearly three times more placental glycogen than non-transgenic placentae. Remarkably, relative to a fully wild type scenario, wild type placentae also accumulate excessive glycogen. While loss-of-function of Phlda2 increased both placental weight and placental glycogen, the weight of both mutant and non-transgenic fetuses was lower than that found in a fully wild type scenario indicating that excessive glycogen accumulation comes at the cost of foetal growth. This work firstly highlights a novel signalling function for the spongiotrophoblast in stimulating the global accumulation of placental glycogen. Furthermore, this work suggests that Phlda2 manipulates the placenta's demands for maternal resources, a process that must be tightly regulated by epigenetic marks to ensure optimal foetal growth. PMID:26476147

  2. Genomic imprinting and cancer.

    PubMed Central

    Joyce, J A; Schofield, P N

    1998-01-01

    Genomic imprinting is the phenomenon by which individual alleles of certain genes are expressed differentially according to their parent of origin. The alleles appear to be differentially marked during gametogenesis or during the early part of development. This mark is heritable but reversible from generation to generation, implying a stable epigenetic modification. Approximately 25 imprinted genes have been identified to date, and dysregulation of a number of these has been implicated in tumour development. The normal physiological role of many imprinted genes is in the control of cell proliferation and fetal growth, indicating potential mechanisms of action in tumour formation. Both dominant and recessive modes of action have been postulated for the role of imprinted genes in neoplasia, as a result of effective gene dosage alterations by epigenetic modification of the normal pattern of allele specific transcription. The aim of this review is to assess the importance of imprinted genes in generating tumours and to discuss the implications for novel mechanisms of transforming mutation. PMID:9893743

  3. NDN is an imprinted tumor suppressor gene that is downregulated in ovarian cancers through genetic and epigenetic mechanisms

    PubMed Central

    Yu, Yinhua; Mao, Weiqun; Wang, Yan; Baggerly, Keith; Wang, Ying; Marquez, Rebecca T.; Bedi, Anuja; Liu, Jinsong; Fishman, David; Lu, Zhen; Bast, Robert C.

    2016-01-01

    NDN is a maternally imprinted gene consistently expressed in normal ovarian epithelium, is dramatically downregulated in the majority of ovarian cancers. Little or no NDN expression could be detected in 73% of 351 epithelial ovarian cancers. NDN was also downregulated in 10 ovarian cancer cell lines with total loss in 6 of 10. Re-expression of NDN decreased Bcl-2 levels and induced apoptosis, which significantly inhibited ovarian cancer cell growth in cell culture and in xenografts. In addition, re-expression of NDN inhibited cell migration by decreasing actin stress fiber and focal adhesion complex formation through deactivation of Src, FAK and RhoA. Loss of NDN expression in ovarian cancers could be attributed to LOH in 28% of 18 informative cases and to hypermethylation of CpG sites 1 and 2 of NDN promoter in 23% and 30% of 43 ovarian cancers, respectively. Promoter hypermethylation was also found in 5 of 10 ovarian cancer cell lines. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored NDN expression in 4 of 7 cell lines with enhanced promoter methylation levels. These observations support the conclusion that NDN is an imprinted tumor suppressor gene which affects cancer cell motility, invasion and growth and that its loss of function in ovarian cancer can be caused by both genetic and epigenetic mechanisms. PMID:26689988

  4. Methylation of KvDMR1 involved in regulating the imprinting of CDKN1C gene in cattle.

    PubMed

    Wang, Mengnan; Li, Dongjie; Zhang, Mingyue; Yang, Wenzhi; Cui, Yali; Li, Shijie

    2015-08-01

    The CDKN1C gene encodes a cyclin-dependent kinase inhibitor and is one of the key genes involved in the development of Beckwith-Wiedemann syndrome and cancer. In this study, using a direct sequencing approach based on a single nucleotide polymorphism (SNP) at genomic DNA and cDNA levels, we show that CDKN1C exhibits monoallelic expression in all seven studied organs (heart, liver, spleen, lung, kidney, muscle and subcutaneous fat) in cattle. To investigate how methylation regulates imprinting of CDKN1C in cattle, allele-specific methylation patterns in two putative differential methylation regions (DMRs), the CDKN1C DMR and KvDMR1, were analyzed in three tissues (liver, spleen and lung) using bisulfite sequencing PCR. Our results show that in the CDKN1C DMR both parental alleles were unmethylated in all three analyzed tissues. In contrast, KvDMR1 was differentially methylated between the two parental alleles in the same tissues. Statistical analysis showed that there is a significant difference in the methylation level between the two parental alleles (P < 0.01), confirming that this region is the DMR of KvDMR1 and that it may be correlated with CDKN1C imprinting. PMID:26059028

  5. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma.

    PubMed Central

    Zhan, S; Shapiro, D N; Helman, L J

    1994-01-01

    The insulin-like growth factor II (IGF2) gene is exclusively silent at the maternal allele in the mouse as well as in normal human tissues and is expressed at a high level in rhabdomyosarcoma (RMS). We report here that the normally imprinted allele of the IGF2 gene is activated in RMS tumors as well as in one RMS cell line. Since overexpression of IGF2 has been shown to be important in the pathogenesis of RMS, our data suggest that loss of imprinting (LOI) may lead to overexpression of IGF2 and play an important role in the onset of RMS. Furthermore, embryonal RMS usually has loss of heterozygosity (LOH) with paternal disomy of the IGF2 locus. One informative embryonal RMS tumor evaluated in this study was heterozygous at the IGF2 allele and had LOI, raising the possibility that LOI may be the functional equivalent of LOH in this tumor with both events leading to overexpression of IGF2. Images PMID:8040287

  6. Diagnosis of an imprinted-gene syndrome by a novel bioinformatics analysis of whole-genome sequences from a family trio.

    PubMed

    Bodian, Dale L; Solomon, Benjamin D; Khromykh, Alina; Thach, Dzung C; Iyer, Ramaswamy K; Link, Kathleen; Baker, Robin L; Baveja, Rajiv; Vockley, Joseph G; Niederhuber, John E

    2014-11-01

    Whole-genome sequencing and whole-exome sequencing are becoming more widely applied in clinical medicine to help diagnose rare genetic diseases. Identification of the underlying causative mutations by genome-wide sequencing is greatly facilitated by concurrent analysis of multiple family members, most often the mother-father-proband trio, using bioinformatics pipelines that filter genetic variants by mode of inheritance. However, current pipelines are limited to Mendelian inheritance patterns and do not specifically address disorders caused by mutations in imprinted genes, such as forms of Angelman syndrome and Beckwith-Wiedemann syndrome. Using publicly available tools, we implemented a genetic inheritance search mode to identify imprinted-gene mutations. Application of this search mode to whole-genome sequences from a family trio led to a diagnosis for a proband for whom extensive clinical testing and Mendelian inheritance-based sequence analysis were nondiagnostic. The condition in this patient, IMAGe syndrome, is likely caused by the heterozygous mutation c.832A>G (p.Lys278Glu) in the imprinted gene CDKN1C. The genotypes and disease status of six members of the family are consistent with maternal expression of the gene, and allele-biased expression was confirmed by RNA-Seq for the heterozygotes. This analysis demonstrates that an imprinted-gene search mode is a valuable addition to genome sequence analysis pipelines for identifying disease-causative variants. PMID:25614875

  7. Diagnosis of an imprinted-gene syndrome by a novel bioinformatics analysis of whole-genome sequences from a family trio

    PubMed Central

    Bodian, Dale L; Solomon, Benjamin D; Khromykh, Alina; Thach, Dzung C; Iyer, Ramaswamy K; Link, Kathleen; Baker, Robin L; Baveja, Rajiv; Vockley, Joseph G; Niederhuber, John E

    2014-01-01

    Whole-genome sequencing and whole-exome sequencing are becoming more widely applied in clinical medicine to help diagnose rare genetic diseases. Identification of the underlying causative mutations by genome-wide sequencing is greatly facilitated by concurrent analysis of multiple family members, most often the mother–father–proband trio, using bioinformatics pipelines that filter genetic variants by mode of inheritance. However, current pipelines are limited to Mendelian inheritance patterns and do not specifically address disorders caused by mutations in imprinted genes, such as forms of Angelman syndrome and Beckwith–Wiedemann syndrome. Using publicly available tools, we implemented a genetic inheritance search mode to identify imprinted-gene mutations. Application of this search mode to whole-genome sequences from a family trio led to a diagnosis for a proband for whom extensive clinical testing and Mendelian inheritance-based sequence analysis were nondiagnostic. The condition in this patient, IMAGe syndrome, is likely caused by the heterozygous mutation c.832A>G (p.Lys278Glu) in the imprinted gene CDKN1C. The genotypes and disease status of six members of the family are consistent with maternal expression of the gene, and allele-biased expression was confirmed by RNA-Seq for the heterozygotes. This analysis demonstrates that an imprinted-gene search mode is a valuable addition to genome sequence analysis pipelines for identifying disease-causative variants. PMID:25614875

  8. Sex- and Diet-Specific Changes of Imprinted Gene Expression and DNA Methylation in Mouse Placenta under a High-Fat Diet

    PubMed Central

    Tost, Jörg; Karimi, Mohsen; Mayeur, Sylvain; Lesage, Jean; Boudadi, Elsa; Gross, Marie-Sylvie; Taurelle, Julien; Vigé, Alexandre; Breton, Christophe; Reusens, Brigitte; Remacle, Claude; Vieau, Didier; Ekström, Tomas J.; Jais, Jean-Philippe; Junien, Claudine

    2010-01-01

    Background Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable. Methods and Findings We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of imprinted genes and local and global DNA methylation patterns in the placenta. Pregnant mice were fed a HFD or a control diet (CD) during the first 15 days of gestation. We compared gene expression patterns in total placenta homogenates, for male and female offspring, by the RT-qPCR analysis of 20 imprinted genes. Sexual dimorphism and sensitivity to diet were observed for nine genes from four clusters on chromosomes 6, 7, 12 and 17. As assessed by in situ hybridization, these changes were not due to variation in the proportions of the placental layers. Bisulphite-sequencing analysis of 30 CpGs within the differentially methylated region (DMR) of the chromosome 17 cluster revealed sex- and diet-specific differential methylation of individual CpGs in two conspicuous subregions. Bioinformatic analysis suggested that these differentially methylated CpGs might lie within recognition elements or binding sites for transcription factors or factors involved in chromatin remodelling. Placental global DNA methylation, as assessed by the LUMA technique, was also sexually dimorphic on the CD, with lower methylation levels in male than in female placentae. The HFD led to global DNA hypomethylation only in female placenta. Bisulphite pyrosequencing showed that neither B1 nor LINE repetitive elements could account for these differences in DNA methylation. Conclusions A HFD during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes important in the control of many cellular, metabolic and physiological functions

  9. Epigenetic consequences of artificial reproductive technologies to the bovine imprinted genes SNRPN, H19/IGF2, and IGF2R

    PubMed Central

    Smith, Lawrence C.; Therrien, Jacinthe; Filion, France; Bressan, Fabiana; Meirelles, Flávio V.

    2015-01-01

    Animal breeders have made widespread use of assisted reproductive technologies to accelerate genetic improvement programs aimed at obtaining more, better and cheaper food products. Selection approaches have traditionally focused on Mendel’s laws of inheritance using parental phenotypic characteristics and quantitative genetics approaches to choose the best parents for the next generation, regardless of their gender. However, apart from contributing DNA sequence variants, male and female gametes carry parental-specific epigenetic marks that play key roles during pre- and post-natal development and growth of the offspring. We herein review the epigenetic anomalies that are associated with artificial reproductive technologies in current use in animal breeding programs. For instance, we demonstrate that bovine embryos and fetuses derived by in vitro culture and somatic cell nuclear transfer show epigenetic anomalies in the differentially methylated regions controlling the expression of some imprinted genes. Although these genomic imprinting errors are undetected in the somatic tissues after birth, further research is warranted to examine potential germ cell transmission of epimutations and the potential risks of reproducing cattle using artificial reproductive technologies. PMID:25763013

  10. mRNA levels of imprinted genes in bovine in vivo oocytes, embryos and cross species comparisons in humans, mice and pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-six confirmed imprinted genes in the bovine were quantified in in vivo produced oocytes and embryos. Eighteen were detectable and their transcriptional abundance were categorized into five patterns: largely decreased (MEST and PLAGL1); first decreased and then increased (CDKN1C and IGF2R); p...

  11. The landscape of genomic imprinting across diverse adult human tissues.

    PubMed

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K; Rivas, Manuel A; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S; Kukurba, Kim R; Zhang, Rui; Eng, Celeste; Torgerson, Dara G; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R; Burchard, Esteban G; Seibold, Max A; MacArthur, Daniel G; Montgomery, Stephen B; Zaitlen, Noah A; Lappalainen, Tuuli

    2015-07-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  12. The landscape of genomic imprinting across diverse adult human tissues

    PubMed Central

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K.; Rivas, Manuel A.; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S.; Kukurba, Kim R.; Zhang, Rui; Eng, Celeste; Torgerson, Dara G.; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R.; Burchard, Esteban G.; Seibold, Max A.; MacArthur, Daniel G.; Montgomery, Stephen B.; Zaitlen, Noah A.; Lappalainen, Tuuli

    2015-01-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  13. ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes.

    PubMed

    Voon, Hsiao P J; Hughes, Jim R; Rode, Christina; De La Rosa-Velázquez, Inti A; Jenuwein, Thomas; Feil, Robert; Higgs, Douglas R; Gibbons, Richard J

    2015-04-21

    Histone H3.3 is a replication-independent histone variant, which replaces histones that are turned over throughout the entire cell cycle. H3.3 deposition at euchromatin is dependent on HIRA, whereas ATRX/Daxx deposits H3.3 at pericentric heterochromatin and telomeres. The role of H3.3 at heterochromatic regions is unknown, but mutations in the ATRX/Daxx/H3.3 pathway are linked to aberrant telomere lengthening in certain cancers. In this study, we show that ATRX-dependent deposition of H3.3 is not limited to pericentric heterochromatin and telomeres but also occurs at heterochromatic sites throughout the genome. Notably, ATRX/H3.3 specifically localizes to silenced imprinted alleles in mouse ESCs. ATRX KO cells failed to deposit H3.3 at these sites, leading to loss of the H3K9me3 heterochromatin modification, loss of repression, and aberrant allelic expression. We propose a model whereby ATRX-dependent deposition of H3.3 into heterochromatin is normally required to maintain the memory of silencing at imprinted loci. PMID:25865896

  14. Imprinted Zac1 in neural stem cells

    PubMed Central

    Daniel, Guillaume; Schmidt-Edelkraut, Udo; Spengler, Dietmar; Hoffmann, Anke

    2015-01-01

    Neural stem cells (NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with an important role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging. PMID:25815116

  15. DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle

    PubMed Central

    2010-01-01

    Background Studies in mice and humans have shown that imprinted genes, whereby expression from one of the two parentally inherited alleles is attenuated or completely silenced, have a major effect on mammalian growth, metabolism and physiology. More recently, investigations in livestock species indicate that genes subject to this type of epigenetic regulation contribute to, or are associated with, several performance traits, most notably muscle mass and fat deposition. In the present study, a candidate gene approach was adopted to assess 17 validated single nucleotide polymorphisms (SNPs) and their association with a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. These SNPs are located proximal to, or within, the bovine orthologs of eight genes (CALCR, GRB10, PEG3, PHLDA2, RASGRF1, TSPAN32, ZIM2 and ZNF215) that have been shown to be imprinted in cattle or in at least one other mammalian species (i.e. human/mouse/pig/sheep). Results Heterozygosities for all SNPs analysed ranged from 0.09 to 0.46 and significant deviations from Hardy-Weinberg proportions (P ≤ 0.01) were observed at four loci. Phenotypic associations (P ≤ 0.05) were observed between nine SNPs proximal to, or within, six of the eight analysed genes and a number of performance traits evaluated, including milk protein percentage, somatic cell count, culled cow and progeny carcass weight, angularity, body conditioning score, progeny carcass conformation, body depth, rump angle, rump width, animal stature, calving difficulty, gestation length and calf perinatal mortality. Notably, SNPs within the imprinted paternally expressed gene 3 (PEG3) gene cluster were associated (P ≤ 0.05) with calving, calf performance and fertility traits, while a single SNP in the zinc finger protein 215 gene (ZNF215) was associated with milk protein percentage (P ≤ 0.05), progeny carcass weight (P ≤ 0.05), culled cow carcass weight (P ≤ 0.01), angularity (P

  16. Fine mapping of an imprinted gene for familial nonchromaffin paragangliomas, on chromosome 11q23.

    PubMed Central

    Baysal, B E; Farr, J E; Rubinstein, W S; Galus, R A; Johnson, K A; Aston, C E; Myers, E N; Johnson, J T; Carrau, R; Kirkpatrick, S J; Myssiorek, D; Singh, D; Saha, S; Gollin, S M; Evans, G A; James, M R; Richard, C W

    1997-01-01

    Hereditary nonchromaffin paragangliomas (PGL; glomus tumors; MIM 168000) are mostly benign, slow-growing tumors of the head and neck region, inherited from carrier fathers in an autosomal dominant fashion subject to genomic imprinting. Genetic linkage analysis in two large, unrelated Dutch families assigned PGL loci to two regions of chromosome 11, at 11q23 (PGL1) and 11q13.1 (PGL2). We ascertained a total of 11 North American PGL families and confirmed maternal imprinting (inactivation). In three of six families, linkage analysis provided evidence of linkage to the PGL1 locus at 11q23. Recombinants narrowed the critical region to an approximately 4.5-Mb interval flanked by markers D11S1647 and D11S622. Partial allelic loss of strictly maternal origin was detected in 5 of 19 tumors. The greatest degree of imbalance was detected at 11q23, distal to D11S1327 and proximal to CD3D. Age at onset of symptoms was significantly different between fathers and children (Wilcoxon rank-sum test, P < .002). Affected children had an earlier age at onset of symptoms in 39 of 57 father-child pairs (chi2 = 7.74, P < .006). However, a more conservative comparison of the number of pairs in which a child had > or = 5 years earlier age at onset (n = 33) vis-a-vis that of complementary pairs (n = 24) revealed no significant difference (chi2 = 1.42, P > .2). Whether these data represent genetic anticipation or ascertainment bias can be addressed only by analysis of a larger number of father-child pairs. PMID:8981955

  17. Deletion of the miR-379/miR-410 gene cluster at the imprinted Dlk1-Dio3 locus enhances anxiety-related behaviour.

    PubMed

    Marty, Virginie; Labialle, Stéphane; Bortolin-Cavaillé, Marie-Line; Ferreira De Medeiros, Gabriela; Moisan, Marie-Pierre; Florian, Cédrick; Cavaillé, Jérôme

    2016-02-15

    The brain-specific miR-379/miR-410 gene cluster at the imprinted Dlk1-Dio3 domain is implicated in several aspects of brain development and function, particularly in fine-tuning the dendritic outgrowth and spine remodelling of hippocampal neurons. Whether it might influence behaviour and memory-related processes has not yet been explored at the whole organism level. We previously reported that constitutive deletion of the miR-379/miR-410 gene cluster affects metabolic adaptation in neonatal mice. Here, we examined the role of this cluster in adult brain functions by subjecting mice with the constitutive deletion to a battery of behavioural and cognitive tests. We found that the lack of miR-379/miR-410 expression is associated with abnormal emotional responses, as demonstrated by increased anxiety-related behaviour in unfamiliar environments. In contrast, spontaneous exploration, general locomotion, mood levels and sociability remained unaltered. Surprisingly, miR-379/miR-410-deficient mice also showed normal learning and spatial (or contextual) memory abilities in hippocampus-dependent tasks involving neuronal plasticity. Taken together, the imprinted miR-379/miR-410 gene cluster thus emerges as a novel regulator of the two main post-natal physiological processes previously associated with imprinted, protein-coding genes: behaviour and energy homeostasis. PMID:26744330

  18. In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle

    PubMed Central

    Suzuki, Joao; Therrien, Jacinthe; Filion, France; Lefebvre, Rejean; Goff, Alan K; Smith, Lawrence C

    2009-01-01

    Background Embryo in vitro manipulations during early development are thought to increase mortality by altering the epigenetic regulation of some imprinted genes. Using a bovine interspecies model with a single nucleotide polymorphism, we assessed the imprinting status of the small nuclear ribonucleoprotein polypeptide N (SNRPN) gene in bovine embryos produced by artificial insemination (AI), in vitro culture (IVF) and somatic cell nuclear transfer (SCNT) and correlated allelic expression with the DNA methylation patterns of a differentially methylated region (DMR) located on the SNRPN promoter. Results In the AI group, SNRPN maternal expression is silenced at day 17 and 40 of development and a third of the alleles analyzed are methylated in the DMR. In the IVF group, maternal transcripts were identified at day 17 but methylation levels were similar to the AI group. However, day-40 fetuses in the IVF group showed significantly less methylation when compared to the AI group and SNRPN expression was mostly paternal in all fetal tissues studied, except in placenta. Finally, the SCNT group presented severe loss of DMR methylation in both day-17 embryos and 40 fetuses and biallelic expression was observed in all stages and tissues analyzed. Conclusion Together these results suggest that artificial reproductive techniques, such as prolonged in vitro culture and SCNT, lead to abnormal reprogramming of imprinting of SNRPN gene by altering methylation levels at this locus. PMID:19200381

  19. In Vitro Culture Increases the Frequency of Stochastic Epigenetic Errors at Imprinted Genes in Placental Tissues from Mouse Concepti Produced Through Assisted Reproductive Technologies1

    PubMed Central

    de Waal, Eric; Mak, Winifred; Calhoun, Sondra; Stein, Paula; Ord, Teri; Krapp, Christopher; Coutifaris, Christos; Schultz, Richard M.; Bartolomei, Marisa S.

    2014-01-01

    ABSTRACT Assisted reproductive technologies (ART) have enabled millions of couples with compromised fertility to conceive children. Nevertheless, there is a growing concern regarding the safety of these procedures due to an increased incidence of imprinting disorders, premature birth, and low birth weight in ART-conceived offspring. An integral aspect of ART is the oxygen concentration used during in vitro development of mammalian embryos, which is typically either atmospheric (∼20%) or reduced (5%). Both oxygen tension levels have been widely used, but 5% oxygen improves preimplantation development in several mammalian species, including that of humans. To determine whether a high oxygen tension increases the frequency of epigenetic abnormalities in mouse embryos subjected to ART, we measured DNA methylation and expression of several imprinted genes in both embryonic and placental tissues from concepti generated by in vitro fertilization (IVF) and exposed to 5% or 20% oxygen during culture. We found that placentae from IVF embryos exhibit an increased frequency of abnormal methylation and expression profiles of several imprinted genes, compared to embryonic tissues. Moreover, IVF-derived placentae exhibit a variety of epigenetic profiles at the assayed imprinted genes, suggesting that these epigenetic defects arise by a stochastic process. Although culturing embryos in both of the oxygen concentrations resulted in a significant increase of epigenetic defects in placental tissues compared to naturally conceived controls, we did not detect significant differences between embryos cultured in 5% and those cultured in 20% oxygen. Thus, further optimization of ART should be considered to minimize the occurrence of epigenetic errors in the placenta. PMID:24337315

  20. Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type ia: new evidence for imprinting of the Gs alpha gene.

    PubMed

    Mantovani, Giovanna; Maghnie, Mohamad; Weber, Giovanna; De Menis, Ernesto; Brunelli, Valeria; Cappa, Marco; Loli, Paola; Beck-Peccoz, Paolo; Spada, Anna

    2003-09-01

    Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteodystrophy. Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action [pseudohypoparathyroidism type Ia (PHP Ia)], recent studies provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad, and pituitary. The aim of this study was to investigate the presence of pituitary resistance to hypothalamic hormones acting via Gs alpha-coupled receptors in patients with PHP Ia. Six of nine patients showed an impaired GH responsiveness to GHRH plus arginine, consistent with a complete GH deficiency (GH peak from 2.6-8.6 microg/liter, normal > 16.5), and partial (GH peak 13.9 and 13.6 microg/liter) and normal responses were found in two and one patient, respectively. Accordingly, IGF-I levels were below and in the low-normal range in seven and two patients. All patients had a normal cortisol response to 1 microg ACTH test, suggesting a normal corticotroph function that was confirmed by a normal ACTH and cortisol response to CRH test in three patients. In conclusion, we report that in addition to PTH and TSH resistance, patients with PHP Ia display variable degrees of GHRH resistance, consistent with Gs alpha imprinting in human pituitary. PMID:12970263

  1. A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies.

    PubMed

    Sun, Jingnan; Li, Wei; Sun, Yunpeng; Yu, Dehai; Wen, Xue; Wang, Hong; Cui, Jiuwei; Wang, Guanjun; Hoffman, Andrew R; Hu, Ji-Fan

    2014-09-01

    Dysregulation of the insulin-like growth factor type I receptor (IGF1R) has been implicated in the progression and therapeutic resistance of malignancies. In acute myeloid leukemia (AML) cells, IGF1R is one of the most abundantly phosphorylated receptor tyrosine kinases, promoting cell growth through the PI3K/Akt signaling pathway. However, little is known regarding the molecular mechanisms underlying IGF1R gene dysregulation in cancer. We discovered a novel intragenic long noncoding RNA (lncRNA) within the IGF1R locus, named IRAIN, which is transcribed in an antisense direction from an intronic promoter. The IRAIN lncRNA was expressed exclusively from the paternal allele, with the maternal counterpart being silenced. Using both reverse transcription-associated trap and chromatin conformation capture assays, we demonstrate that this lncRNA interacts with chromatin DNA and is involved in the formation of an intrachromosomal enhancer/promoter loop. Knockdown of IRAIN lncRNA with shRNA abolishes this intrachromosomal interaction. In addition, IRAIN was downregulated both in leukemia cell lines and in blood obtained from high-risk AML patients. These data identify IRAIN as a new imprinted lncRNA that is involved in long-range DNA interactions. PMID:25092925

  2. Genomic imprinting: mechanism and role in human pathology.

    PubMed Central

    Tycko, B.

    1994-01-01

    Most genes are expressed from two alleles, one maternal and the other paternal. The term "genomic imprinting" refers to a genetic phenomenon which produces some interesting exceptions to this rule. Genes which are subject to imprinting are molecularly marked before fertilization such that they are transcriptionally silenced at one of the parental alleles in the offspring. A growing body of evidence implicates genomic imprinting in the pathogenesis of certain human genetic diseases, inherited tumor syndromes, and sporadic tumors. This review discusses examples of imprinting, theories as to why the phenomenon exists, possible molecular mechanisms of imprinting, and our current understanding of the role of imprinting in human pathology. PMID:8129028

  3. Detection of transcriptional difference of porcine imprinted genes using different microarray platforms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presently, multiple options exist for conducting gene expression profiling studies in swine. In order to determine the performance of some of the existing platforms, Affymetrix Porcine, Affymetrix Human U133+2.0, and the U.S. Pig Genome Coordination Program spotted glass oligonucleotide microarray p...

  4. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  5. Post-natal imprinting: evidence from marsupials.

    PubMed

    Stringer, J M; Pask, A J; Shaw, G; Renfree, M B

    2014-08-01

    Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally. PMID:24595366

  6. The male transmission bias of the insulin (INS) gene in insulin-dependent diabetes (IDD) can not be explained by maternal imprinting

    SciTech Connect

    Bui, M.M.; She, J.X.

    1994-09-01

    A locus contributing to IDD susceptibility has previously been mapped to a region on human chromosome 11p near the INS gene. To fine map the position of this susceptibility locus, polymorphisms in and flanking INS were analyzed in normal and IDD populations by PCR and restriction enzyme digestion. Regions flanking INS were not associated with IDD (p=NS). In contrast, homozygosity for the {open_quotes}+{close_quotes} INS allele was significantly increased in the IDD population (n=197) compared to 159 controls (RR=2.0, p<0.005), indicating an INS association with IDD. Transmission of the IDD-associated INS {open_quotes}+{close_quotes} alleles from parents to children in unaffected families was random (p=NS). However, in 107 multiplex and 15 simplex IDD families, transmission of the INS {open_quotes}+{close_quotes} allele from heterozygous parents to diabetic children revealed linkage of the INS gene to IDD (p<0.003). This linkage was limited to male meioses (p=0.01), suggest the potential for maternal imprinting of INS. The expression of the {open_quotes}+{close_quotes} and {open_quotes}-{close_quotes} INS allele was analyzed by RT-PCR in two normal heterozygous human fetal pancreases. Both transcripts were detected, indicating a lack of INS maternal imprinting in the human pancreas. Our results suggest that the IDD susceptibility locus on 11p is the INS gene, and that male transmission bias of the INS gene in IDD can not be explained by maternal imprinting.

  7. Identification of transgenic cloned dairy goats harboring human lactoferrin and methylation status of the imprinted gene IGF2R in their lungs.

    PubMed

    Zhang, Y L; Zhang, G M; Wan, Y J; Jia, R X; Li, P Z; Han, L; Wang, F; Huang, M R

    2015-01-01

    Dairy goat is a good model for production of transgenic proteins in milk using somatic cell nuclear transfer (SCNT). However, animals produced from SCNT are often associated with lung deficiencies. We recently produced six transgenic cloned dairy goats harboring the human lactoferrin gene, including three live transgenic clones and three deceased transgenic clones that died from respiratory failure during the perinatal period. Imprinted genes are important regulators of lung growth, and may be subjected to faulty reprogramming. In the present study, first, microsatellite analysis, PCR, and DNA sequence identification were conducted to confirm that these three dead kids were genetically identical to the transgenic donor cells. Second, the CpG island methylation profile of the imprinted insulin-like growth factor receptor (IGF2R) gene was assessed in the lungs of the three dead transgenic kids and the normally produced kids using bisulfite sequencing PCR. In addition, the relative mRNA level of IGF2R was also determined by real-time PCR. Results showed that the IGF2R gene in the lungs of the dead cloned kids showed abnormal hypermethylation and higher mRNA expression levels than the control, indicating that aberrant DNA methylation reprogramming is one of the important factors in the death of transgenic cloned animals. PMID:26400340

  8. Epigenetic Mechanisms of Genomic Imprinting: Common Themes in the Regulation of Imprinted Regions in Mammals, Plants, and Insects

    PubMed Central

    MacDonald, William A.

    2012-01-01

    Genomic imprinting is a form of epigenetic inheritance whereby the regulation of a gene or chromosomal region is dependent on the sex of the transmitting parent. During gametogenesis, imprinted regions of DNA are differentially marked in accordance to the sex of the parent, resulting in parent-specific expression. While mice are the primary research model used to study genomic imprinting, imprinted regions have been described in a broad variety of organisms, including other mammals, plants, and insects. Each of these organisms employs multiple, interrelated, epigenetic mechanisms to maintain parent-specific expression. While imprinted genes and imprint control regions are often species and locus-specific, the same suites of epigenetic mechanisms are often used to achieve imprinted expression. This review examines some examples of the epigenetic mechanisms responsible for genomic imprinting in mammals, plants, and insects. PMID:22567394

  9. Pyrosequencing for Accurate Imprinted Allele Expression Analysis

    PubMed Central

    Yang, Bing; Damaschke, Nathan; Yao, Tianyu; McCormick, Johnathon; Wagner, Jennifer; Jarrard, David

    2016-01-01

    Genomic imprinting is an epigenetic mechanism that restricts gene expression to one inherited allele. Improper maintenance of imprinting has been implicated in a number of human diseases and developmental syndromes. Assays are needed that can quantify the contribution of each paternal allele to a gene expression profile. We have developed a rapid, sensitive quantitative assay for the measurement of individual allelic ratios termed Pyrosequencing for Imprinted Expression (PIE). Advantages of PIE over other approaches include shorter experimental time, decreased labor, avoiding the need for restriction endonuclease enzymes at polymorphic sites, and prevent heteroduplex formation which is problematic in quantitative PCR-based methods. We demonstrate the improved sensitivity of PIE including the ability to detect differences in allelic expression down to 1%. The assay is capable of measuring genomic heterozygosity as well as imprinting in a single run. PIE is applied to determine the status of Insulin-like Growth Factor-2 (IGF2) imprinting in human and mouse tissues. PMID:25581900

  10. Genomic imprinting effects on complex traits in domesticated animal species

    PubMed Central

    O’Doherty, Alan M.; MacHugh, David E.; Spillane, Charles; Magee, David A.

    2015-01-01

    Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs. PMID:25964798

  11. Partial Loss of Genomic Imprinting Reveals Important Roles for Kcnq1 and Peg10 Imprinted Domains in Placental Development

    PubMed Central

    Koppes, Erik; Himes, Katherine P.; Chaillet, J. Richard

    2015-01-01

    Mutations in imprinted genes or their imprint control regions (ICRs) produce changes in imprinted gene expression and distinct abnormalities in placental structure, indicating the importance of genomic imprinting to placental development. We have recently shown that a very broad spectrum of placental abnormalities associated with altered imprinted gene expression occurs in the absence of the oocyte–derived DNMT1o cytosine methyltransferase, which normally maintains parent-specific imprinted methylation during preimplantation. The absence of DNMT1o partially reduces inherited imprinted methylation while retaining the genetic integrity of imprinted genes and their ICRs. Using this novel system, we undertook a broad and inclusive approach to identifying key ICRs involved in placental development by correlating loss of imprinted DNA methylation with abnormal placental phenotypes in a mid-gestation window (E12.5-E15.5). To these ends we measured DNA CpG methylation at 15 imprinted gametic differentially methylated domains (gDMDs) that overlap known ICRs using EpiTYPER-mass array technology, and linked these epigenetic measurements to histomorphological defects. Methylation of some imprinted gDMDs, most notably Dlk1, was nearly normal in mid-gestation DNMT1o-deficient placentas, consistent with the notion that cells having lost methylation on these DMDs do not contribute significantly to placental development. Most imprinted gDMDs however showed a wide range of methylation loss among DNMT1o-deficient placentas. Two striking associations were observed. First, loss of DNA methylation at the Peg10 imprinted gDMD associated with decreased embryonic viability and decreased labyrinthine volume. Second, loss of methylation at the Kcnq1 imprinted gDMD was strongly associated with trophoblast giant cell (TGC) expansion. We conclude that the Peg10 and Kcnq1 ICRs are key regulators of mid-gestation placental function. PMID:26241757

  12. Genetic conflicts, multiple paternity and the evolution of genomic imprinting.

    PubMed Central

    Spencer, H G; Feldman, M W; Clark, A G

    1998-01-01

    We present nine diallelic models of genetic conflict in which one allele is imprintable and the other is not to examine how genomic imprinting may have evolved. Imprinting is presumed to be either maternal (i.e., the maternally derived gene is inactivated) or paternal. Females are assumed to be either completely monogamous or always bigamous, so that we may see any effect of multiple paternity. In contrast to previous verbal and quantitative genetic models, we find that genetic conflicts need not lead to paternal imprinting of growth inhibitors and maternal imprinting of growth enhancers. Indeed, in some of our models--those with strict monogamy--the dynamics of maternal and paternal imprinting are identical. Multiple paternity is not necessary for the evolution of imprinting, and in our models of maternal imprinting, multiple paternity has no effect at all. Nevertheless, multiple paternity favors the evolution of paternal imprinting of growth inhibitors and hinders that of growth enhancers. Hence, any degree of multiple paternity means that growth inhibitors are more likely to be paternally imprinted, and growth enhancers maternally so. In all of our models, stable polymorphism of imprinting status is possible and mean fitness can decrease over time. Neither of these behaviors have been predicted by previous models. PMID:9504935

  13. Effect of BIX-01294 on H3K9me2 levels and the imprinted gene Snrpn in mouse embryonic fibroblast cells

    PubMed Central

    Chen, Peng; Yao, Jian-Feng; Huang, Rong-Fu; Zheng, Fang-Fang; Jiang, Xiao-Hong; Chen, Xuan; Chen, Juan; Li, Ming; Huang, Hong-Feng; Jiang, Yi-Ping; Huang, Yan-Fang; Yang, Xiao-Yu

    2015-01-01

    Histone H3 lysine 9 dimethylation (H3K9me2) hypermethylation is thought to be a major influential factor in cellular reprogramming, such as somatic cell nuclear transfer (SCNT) and induction of pluripotent stem cells (iPSCs). The diazepin-quinazolin-amine derivative (BIX-01294) specifically inhibits the activity of histone methyltransferase EHMT2 (euchromatic histone-lysine N-methyltransferase 2) and reduces H3K9me2 levels in cells. The imprinted gene small nuclear ribonucleoprotein N (Snrpn) is of particular interest because of its important biological functions. The objective of the present study was to investigate the effect of BIX-01294 on H3K9me2 levels and changes in Snrpn DNA methylation and histone H3K9me2 in mouse embryonic fibroblasts (MEFs). Results showed that 1.3 μM BIX-01294 markedly reduced global levels of H3K9me2 with almost no cellular toxicity. There was a significant decrease in H3K9me2 in promoter regions of the Snrpn gene after BIX-01294 treatment. A significant increase in methylation of the Snrpn differentially methylated region 1 (DMR1) and slightly decreased transcript levels of Snrpn were found in BIX-01294-treated MEFs. These results suggest that BIX-01294 may reduce global levels of H3K9me2 and affect epigenetic modifications of Snrpn in MEFs. PMID:26285804

  14. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  15. Loss of imprinting of the insulin-like growth factor II gene in mouse hepatocellular carcinoma cell lines.

    PubMed

    Ooasa, T; Karasaki, H; Kanda, H; Nomura, K; Kitagawa, T; Ogawa, K

    1998-12-01

    We investigated expression of insulin-like growth factor II (Igf2) in primary cultured hepatocytes, liver epithelial (LE) cell lines derived from normal hepatocytes, and hepatocellular carcinoma (HCC) cell lines from crosses between C3H/HeJ (C3H) and Mus musculus molossinus mice (MSM). Igf2 mRNA was detected by reverse transcriptase-polymerase chain reaction in primary cultured hepatocytes from 5 d after the start of cultivation and in all 12 LE and 16 HCC cell lines. Analysis of the untranslated region of Igf2 exon 6, which contains polymorphic CA repeats, revealed that 13 of the 16 HCC cell lines had biallelic expression, whereas monoallelic expression was retained in the primary cultured hepatocytes and all 12 LE cell lines. The Igf2 transcripts contained exons 1-3 in all the HCC cell lines but only exons 2 and 3 in cultures of hepatocytes and LE cell lines, indicating difference in promoter use. However, the biallelic HCC cell lines did not have larger amounts of Igf2 mRNA and protein than did the monoallelic lines, suggesting that loss of imprinting may not be directly related to the level of Igf2 expression. PMID:9869454

  16. Genomic imprinting is disrupted in interspecific Peromyscus hybrids.

    PubMed

    Vrana, P B; Guan, X J; Ingram, R S; Tilghman, S M

    1998-12-01

    Genomic imprinting, the unequal expression of gene alleles on the basis of parent of origin, is a major exception to mendelian laws of inheritance. By maintaining one allele of a gene in a silent state, imprinted genes discard the advantages of diploidy, and for this reason the rationale for the evolution of imprinting has been debated. One explanation is the parent-offspring conflict model, which proposes that imprinting arose in polyandrous mammals as the result of a parental conflict over the allocation of maternal resources to embryos. This theory predicts that there should be no selection for imprinting in a monogamous species. Crosses between the monogamous rodent species Peromyscus polionotus and the polyandrous Peromyscus maniculatus yield progeny with parent-of-origin growth defects that could be explained if imprinting was absent in the monogamous species. We find, however, that imprinting is maintained in P. polionotus, but there is widespread disruption of imprinting in the hybrids. We suggest that the signals governing genomic imprinting are rapidly evolving and that disruptions in the process may contribute to mammalian speciation. PMID:9843208

  17. Imprinting in plants as a mechanism to generate seed phenotypic diversity

    PubMed Central

    Bai, Fang; Settles, A. M.

    2015-01-01

    Normal plant development requires epigenetic regulation to enforce changes in developmental fate. Genomic imprinting is a type of epigenetic regulation in which identical alleles of genes are expressed in a parent-of-origin dependent manner. Deep sequencing of transcriptomes has identified hundreds of imprinted genes with scarce evidence for the developmental importance of individual imprinted loci. Imprinting is regulated through global DNA demethylation in the central cell prior to fertilization and directed repression of individual loci with the Polycomb Repressive Complex 2 (PRC2). There is significant evidence for transposable elements and repeat sequences near genes acting as cis-elements to determine imprinting status of a gene, implying that imprinted gene expression patterns may evolve randomly and at high frequency. Detailed genetic analysis of a few imprinted loci suggests an imprinted pattern of gene expression is often dispensable for seed development. Few genes show conserved imprinted expression within or between plant species. These data are not fully explained by current models for the evolution of imprinting in plant seeds. We suggest that imprinting may have evolved to provide a mechanism for rapid neofunctionalization of genes during seed development to increase phenotypic diversity of seeds. PMID:25674092

  18. Genomic imprinting and position-effect variegation in Drosophila melanogaster.

    PubMed Central

    Lloyd, V K; Sinclair, D A; Grigliatti, T A

    1999-01-01

    Genomic imprinting is a phenomenon in which the expression of a gene or chromosomal region depends on the sex of the individual transmitting it. The term imprinting was first coined to describe parent-specific chromosome behavior in the dipteran insect Sciara and has since been described in many organisms, including other insects, plants, fish, and mammals. In this article we describe a mini-X chromosome in Drosophila melanogaster that shows genomic imprinting of at least three closely linked genes. The imprinting of these genes is observed as mosaic silencing when the genes are transmitted by the male parent, in contrast to essentially wild-type expression when the same genes are maternally transmitted. We show that the imprint is due to the sex of the parent rather than to a conventional maternal effect, differential mitotic instability of the mini-X chromosome, or an allele-specific effect. Finally, we have examined the effects of classical modifiers of position-effect variegation on the maintenance and the establishment of the imprint. Factors that modify position-effect variegation alter the somatic expression but not the establishment of the imprint. This suggests that chromatin structure is important in maintenance of the imprint, but a separate mechanism may be responsible for its initiation. PMID:10101173

  19. Maternal and paternal genomes function independently in mouse ova in establishing expression of the imprinted genes Snrpn and Igf2r: no evidence for allelic trans-sensing and counting mechanisms.

    PubMed Central

    Szabó, P E; Mann, J R

    1996-01-01

    It has often been suggested that the parental-specific expression of mammalian imprinted genes might be dependent on maternal-paternal intergenomic or interallelic interactions. Using quantitative allele-specific RT-PCR single nucleotide primer extension assays developed for two imprinted genes, Snrpn and Igf2r, we demonstrate: (i) No role for maternal-paternal allelic interactions: the modes of parental-specific expression of Snrpn and Igf2r in normal ova were unchanged in gynogenetic and androgenetic ova; the latter contain two maternal and two paternal genomes respectively, and cannot undergo maternal-paternal interactions. (ii) No role for allelic counting or exclusion mechanisms: in individual blastomeres of androgenetic ova, both paternal Snrpn alleles were active (Snrpn was not expressed in gynogenetic ova), and in individual gynogenetic and androgenetic blastomeres, both maternal and paternal Igf2r alleles, respectively, were active. (iii) No role for ploidy: the mode of parental-specific expression of Snrpn and Igf2r in normal diploid ova was unchanged in individual blastomeres of triploid and tetraploid ova. Thus, the maternal and paternal genomes function independently in establishing the pre-implantation mode of parental-specific expression of Snrpn and Igf2r, with no role for trans-allelic/genomic interaction phenomena. In addition, the results show that inactive and biallelic modes of expression of imprinted genes are potential mechanisms for the death of gynogenones and androgenones at the peri-implantation stage. Images PMID:8947024

  20. Epigenetic status of H19/IGF2 and SNRPN imprinted genes in aborted and successfully derived embryonic stem cell lines in non-human primates.

    PubMed

    Wianny, Florence; Blachère, Thierry; Godet, Murielle; Guillermas, Rémi; Cortay, Véronique; Bourillot, Pierre-Yves; Lefèvre, Annick; Savatier, Pierre; Dehay, Colette

    2016-05-01

    The imprinted genes of primate embryonic stem cells (ESCs) often show altered DNA methylation. It is unknown whether these alterations emerge while deriving the ESCs. Here we studied the methylation patterns of two differentially methylated regions (DMRs), SNRPN and H19/IGF2 DMRs, during the derivation of monkey ESCs. We show that the SNRPN DMR is characteristically methylated at maternal alleles, whereas the H19/IGF2 DMR is globally highly methylated, with unusual methylation on the maternal alleles. These methylation patterns remain stable from the early stages of ESC derivation to late passages of monkey ESCs and following differentiation. Importantly, the methylation status of H19/IGF2 DMR and the expression levels of IGF2, H19, and DNMT3B mRNAs in early embryo-derived cells were correlated with their capacity to generate genuine ESC lines. Thus, we propose that these markers could be useful to predict the outcomes of establishing an ESC line in primates. PMID:26999759

  1. Applicability of the parentally imprinted allele (PIA) typing of a VNTR upstream the H19 gene to forensic samples of different tissues.

    PubMed

    Sumi, Hirokazu; Naito, Emiko; Dewa, Koji; Fukuda, Masaaki; Xu, Hong-De; Yamanouchi, Haruo

    2005-05-01

    The parentally imprinted allele (PIA) typing that we have recently developed determines parental alleles at a VNTR locus in the differentially methylated region upstream of the human H19 gene. The usefulness of this typing was demonstrated by its application to blood samples in paternity cases. However, its applicability to other tissue DNA remains to be tested. DNA samples from fifteen different postmortem tissues such as cerebrum, skeletal muscle and skin were examined, all of which were obtained from three autopsy cases 2-11h after death. DNA was digested with a methylation-sensitive HhaI enzyme and diluted solutions of the digests were subjected to the first PCR amplification, providing amplification of only the paternal H19 methylated allele. Subsequent VNTR typing was carried out for the amplified products to determine which allele was of paternal origin. No tissue-dependent difference was observed and all the samples examined, though degraded, were successfully used for determining the paternal allele. These results substantiate the usefulness of PIA typing in forensic examinations. Its application to two identity cases, a burned male body and a male body with adipocere formation, was also shown. PMID:15847827

  2. Genomic imprinting in the human placenta.

    PubMed

    Monk, David

    2015-10-01

    With the launch of the National Institute of Child Health and Human Development/National Institutes of Health Human Placenta Project, the anticipation is that this often-overlooked organ will be the subject of much intense research. Compared with somatic tissues, the cells of the placenta have a unique epigenetic profile that dictates its transcription patterns, which when disturbed may be associated with adverse pregnancy outcomes. One major class of genes that is dependent on strict epigenetic regulation in the placenta is subject to genomic imprinting, the parent-of-origin-dependent monoallelic gene expression. This review discusses the differences in allelic expression and epigenetic profiles of imprinted genes that are identified between different species, which reflect the continuous evolutionary adaption of this form of epigenetic regulation. These observations divulge that placenta-specific imprinted gene that is reliant on repressive histone signatures in mice are unlikely to be imprinted in humans, whereas intense methylation profiling in humans has uncovered numerous maternally methylated regions that are restricted to the placenta that are not conserved in mice. Imprinting has been proposed to be a mechanism that regulates parental resource allocation and ultimately can influence fetal growth, with the placenta being the key in this process. Furthermore, I discuss the developmental dynamics of both classic and transient placenta-specific imprinting and examine the evidence for an involvement of these genes in intrauterine growth restriction and placenta-associated complications. Finally, I focus on examples of genes that are regulated aberrantly in complicated pregnancies, emphasizing their application as pregnancy-related disease biomarkers to aid the diagnosis of at-risk pregnancies early in gestation. PMID:26428495

  3. Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm.

    PubMed

    Zhang, Mei; Zhao, Hainan; Xie, Shaojun; Chen, Jian; Xu, Yuanyuan; Wang, Keke; Zhao, Haiming; Guan, Haiying; Hu, Xiaojiao; Jiao, Yinping; Song, Weibin; Lai, Jinsheng

    2011-12-13

    Although genetic imprinting was discovered in maize 40 years ago, its exact extent in the triploid endosperm remains unknown. Here, we have analyzed global patterns of allelic gene expression in developing maize endosperms from reciprocal crosses between inbreds B73 and Mo17. We have defined an imprinted gene as one in which the relative expression of the maternal and paternal alleles differ at least fivefold in both hybrids of the reciprocal crosses. We found that at least 179 genes (1.6% of protein-coding genes) expressed in the endosperm are imprinted, with 68 of them showing maternal preferential expression and 111 paternal preferential expression. Additionally, 38 long noncoding RNAs were imprinted. The latter are transcribed in either sense or antisense orientation from intronic regions of normal protein-coding genes or from intergenic regions. Imprinted genes show a clear pattern of clustering around the genome, with a number of imprinted genes being adjacent to each other. Analysis of allele-specific methylation patterns of imprinted loci in the hybrid endosperm identified 21 differentially methylated regions (DMRs) of several hundred base pairs in length, corresponding to both imprinted genes and noncoding transcripts. All DMRs identified are uniformly hypomethylated in maternal alleles and hypermethylated in paternal alleles, regardless of the imprinting direction of their corresponding loci. Our study indicates highly extensive and complex regulation of genetic imprinting in maize endosperm, a mechanism that can potentially function in the balancing of the gene dosage of this triploid tissue. PMID:22114195

  4. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle?

    PubMed

    Ruhrmann, Sabrina; Stridh, Pernilla; Kular, Lara; Jagodic, Maja

    2015-10-01

    Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease. PMID:26002250

  5. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.

    PubMed

    Suzuki, Shunsuke; Ono, Ryuichi; Narita, Takanori; Pask, Andrew J; Shaw, Geoffrey; Wang, Changshan; Kohda, Takashi; Alsop, Amber E; Marshall Graves, Jennifer A; Kohara, Yuji; Ishino, Fumitoshi; Renfree, Marilyn B; Kaneko-Ishino, Tomoko

    2007-04-13

    Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation. PMID:17432937

  6. DOES NUTRITION DURING INFANCY AND EARLY CHILDHOOD CONTRIBUTE TO LATER OBESITY VIA METABOLIC IMPRINTING OF EPIGENETIC GENE REGULATORY MECHANISMS?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual differences in physiological and behavioral factors affecting body weight regulation may be determined not only by genes, but also by environmental influences during development. This article reviews briefly evidence from human epidemiologic and animal model studies that during infancy an...

  7. Monotreme IGF2 expression and ancestral origin of genomic imprinting.

    PubMed

    Killian, J K; Nolan, C M; Stewart, N; Munday, B L; Andersen, N A; Nicol, S; Jirtle, R L

    2001-08-15

    IGF2 (insulin-like growth factor 2) and M6P/IGF2R (mannose 6-phosphate/insulin-like growth factor 2 receptor) are imprinted in marsupials and eutherians but not in birds. These results along with the absence of M6P/IGF2R imprinting in the egg-laying monotremes indicate that the parental imprinting of fetal growth-regulatory genes may be unique to viviparous mammals. In this investigation, we have cloned IGF2 from two monotreme mammals, the platypus and echidna, to further investigate the origin of imprinting. We report herein that like M6P/IGF2R, IGF2 is not imprinted in monotremes. Thus, although IGF2 encodes for a highly conserved growth factor in chordates, it is only imprinted in therian mammals. These findings support a concurrent origin of IGF2 and M6P/IGF2R imprinting in the late Jurassic/early Cretaceous period. The absence of imprinting in monotremes, despite apparent interparental conflicts over maternal-offspring exchange, argues that a fortuitous congruency of genetic and epigenetic events may have limited the phylogenetic breadth of genomic imprinting to therian mammals. J. Exp. Zool. (Mol. Dev. Evol.) 291:205-212, 2001. PMID:11479919

  8. The Wellcome Prize Lecture. Genetic imprinting: the battle of the sexes rages on.

    PubMed

    Reik, W

    1996-03-01

    Genomic imprinting in mammals is an important genetic mechanism by which genes are expressed or repressed depending on which parent they have been inherited from. Some properties of the imprinting mechanism are already established; notably, some of the effects of imprinting on mammalian development can be explained by the phenotypic effects of a number of specific imprinted genes, which include major fetal growth factors. An evolutionary explanation of imprinting has also been suggested. Some of the molecular mechanisms of imprinting are known, and these include the modification of DNA and chromosomes in the form of DNA methylation and possibly heritable chromatin structures. Loss of imprinting or altered imprinting is implicated in a large number of genetic diseases and cancers. Many important issues remain to be resolved; these include the precise molecular mechanisms and, in particular, the nature of the primary imprints that are inherited from the parental gametes, and the genes that control the imprinting process. Isolation of the majority of imprinted genes and the elucidation of their phenotypic effects and physiology are major goals for the future. These studies will provide important insights into human genetics, and will connect evolutionary understanding with physiology, genetic disease and human behaviour. PMID:8845132

  9. Theory of genomic imprinting conflict in social insects

    PubMed Central

    Queller, David C

    2003-01-01

    Background Genomic imprinting refers to the differential expression of genes inherited from the mother and father (matrigenes and patrigenes). The kinship theory of genomic imprinting treats parent-specific gene expression as products of within-genome conflict. Specifically, matrigenes and patrigenes will be in conflict over treatment of relatives to which they are differently related. Haplodiploid females have many such relatives, and social insects have many contexts in which they affect relatives, so haplodiploid social insects are prime candidates for tests of the kinship theory of imprinting. Results Matrigenic and patrigenic relatednesses are derived for individuals affected in a variety of contexts, including queen competition, sex ratio, worker laying of male eggs and policing, colony fission, and adoption of new queens. Numerous predictions emerge for what contexts should elicit imprinting, which individuals and tissues will show it, and the direction of imprinting effects. The predictions often vary for different genetic structures (varying queen and mate number) and often contrast with predictions for diploids. Conclusion Because the contexts differ from the normal imprinting case, and because nothing is currently known about imprinting in social insects, these predictions can serve as a strong a priori test of the kinship theory of imprinting. If the predictions are correct, then social insects, which have long served as exemplars of cooperation between individuals, will also be shown to be extraordinary examples of competition within individual genomes. PMID:12871603

  10. Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation

    PubMed Central

    Cheong, Clara Y.; Chng, Keefe; Ng, Shilen; Chew, Siew Boom; Chan, Louiza; Ferguson-Smith, Anne C.

    2015-01-01

    Genomic imprinting is an epigenetic mechanism resulting in parental allele-specific gene expression. Defects in normal imprinting are found in cancer, assisted reproductive technologies, and several human syndromes. In mouse models, germline-derived DNA methylation is shown to regulate imprinting. Though imprinting is largely conserved between mammals, species- and tissue-specific domains of imprinted expression exist. Using the cynomolgus macaque (Macaca fascicularis) to assess primate-specific imprinting, we present a comprehensive view of tissue-specific imprinted expression and DNA methylation at established imprinted gene clusters. For example, like mouse and unlike human, macaque IGF2R is consistently imprinted, and the PLAGL1, INPP5F transcript variant 2, and PEG3 imprinting control regions are not methylated in the macaque germline but acquire this post-fertilization. Methylome data from human early embryos appear to support this finding. These suggest fundamental differences in imprinting control mechanisms between primate species and rodents at some imprinted domains, with implications for our understanding of the epigenetic programming process in humans and its influence on disease. PMID:25862382

  11. Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2.

    PubMed

    Raissig, Michael T; Bemer, Marian; Baroux, Célia; Grossniklaus, Ueli

    2013-01-01

    Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots. PMID:24339783

  12. Genomic Imprinting in the Arabidopsis Embryo Is Partly Regulated by PRC2

    PubMed Central

    Raissig, Michael T.; Bemer, Marian; Baroux, Célia; Grossniklaus, Ueli

    2013-01-01

    Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots. PMID:24339783

  13. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci.

    PubMed

    Eggermann, Thomas; Perez de Nanclares, Guiomar; Maher, Eamonn R; Temple, I Karen; Tümer, Zeynep; Monk, David; Mackay, Deborah J G; Grønskov, Karen; Riccio, Andrea; Linglart, Agnès; Netchine, Irène

    2015-01-01

    Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families. PMID:26583054

  14. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    PubMed Central

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  15. Genomic Imprinting and Epigenetic Control of Development

    PubMed Central

    Fedoriw, Andrew; Mugford, Joshua; Magnuson, Terry

    2012-01-01

    Epigenetic mechanisms are extensively utilized during mammalian development. Specific patterns of gene expression are established during cell fate decisions, maintained as differentiation progresses, and often augmented as more specialized cell types are required. Much of what is known about these mechanisms comes from the study of two distinct epigenetic phenomena: genomic imprinting and X-chromosome inactivation. In the case of genomic imprinting, alleles are expressed in a parent-of-origin-dependent manner, whereas X-chromosome inactivation in females requires that only one X chromosome is active in each somatic nucleus. As model systems for epigenetic regulation, genomic imprinting and X-chromosome inactivation have identified and elucidated the numerous regulatory mechanisms that function throughout the genome during development. PMID:22687277

  16. Genomic imprinting and epigenetic control of development.

    PubMed

    Fedoriw, Andrew; Mugford, Joshua; Magnuson, Terry

    2012-07-01

    Epigenetic mechanisms are extensively utilized during mammalian development. Specific patterns of gene expression are established during cell fate decisions, maintained as differentiation progresses, and often augmented as more specialized cell types are required. Much of what is known about these mechanisms comes from the study of two distinct epigenetic phenomena: genomic imprinting and X-chromosome inactivation. In the case of genomic imprinting, alleles are expressed in a parent-of-origin-dependent manner, whereas X-chromosome inactivation in females requires that only one X chromosome is active in each somatic nucleus. As model systems for epigenetic regulation, genomic imprinting and X-chromosome inactivation have identified and elucidated the numerous regulatory mechanisms that function throughout the genome during development. PMID:22687277

  17. GRB10 imprinting is eutherian mammal specific.

    PubMed

    Stringer, Jessica M; Suzuki, Shunsuke; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B

    2012-12-01

    GRB10 is an imprinted gene differently expressed from two promoters in mouse and human. Mouse Grb10 is maternally expressed from the major promoter in most tissues and paternally expressed from the brain-specific promoter within specific regions of the fetal and adult central nervous system. Human GRB10 is biallelically expressed from the major promoter in most tissues except in the placental villus trophoblast where it is maternally expressed, whereas the brain-specific promoter is paternally expressed in the fetal brain. This study characterized the ortholog of GRB10 in a marsupial, the tammar wallaby (Macropus eugenii) to investigate the origin and evolution of imprinting at this locus. The protein coding exons and predicted amino acid sequence of tammar GRB10 were highly conserved with eutherian GRB10. The putative first exon, which is located in the orthologous region to the eutherian major promoter, was found in the tammar, but no exon was found in the downstream region corresponding to the eutherian brain-specific promoter, suggesting that marsupials only have a single promoter. Tammar GRB10 was widely expressed in various tissues including the brain but was not imprinted in any of the tissues examined. Thus, it is likely that GRB10 imprinting evolved in eutherians after the eutherian-marsupial divergence approximately 160 million years ago, subsequent to the acquisition of a brain-specific promoter, which resides within the imprinting control region in eutherians. PMID:22787282

  18. Long noncoding RNAs: Lessons from genomic imprinting.

    PubMed

    Kanduri, Chandrasekhar

    2016-01-01

    Genomic imprinting has been a great resource for studying transcriptional and post-transcriptional-based gene regulation by long noncoding RNAs (lncRNAs). In this article, I overview the functional role of intergenic lncRNAs (H19, IPW, and MEG3), antisense lncRNAs (Kcnq1ot1, Airn, Nespas, Ube3a-ATS), and enhancer lncRNAs (IG-DMR eRNAs) to understand the diverse mechanisms being employed by them in cis and/or trans to regulate the parent-of-origin-specific expression of target genes. Recent evidence suggests that some of the lncRNAs regulate imprinting by promoting intra-chromosomal higher-order chromatin compartmentalization, affecting replication timing and subnuclear positioning. Whereas others act via transcriptional occlusion or transcriptional collision-based mechanisms. By establishing genomic imprinting of target genes, the lncRNAs play a critical role in important biological functions, such as placental and embryonic growth, pluripotency maintenance, cell differentiation, and neural-related functions such as synaptic development and plasticity. An emerging consensus from the recent evidence is that the imprinted lncRNAs fine-tune gene expression of the protein-coding genes to maintain their dosage in cell. Hence, lncRNAs from imprinted clusters offer insights into their mode of action, and these mechanisms have been the basis for uncovering the mode of action of lncRNAs in several other biological contexts. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. PMID:26004516

  19. The evolution of genomic imprinting: theories, predictions and empirical tests

    PubMed Central

    Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

    2014-01-01

    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal–offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal–offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted. PMID:24755983

  20. The evolution of genomic imprinting: theories, predictions and empirical tests.

    PubMed

    Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

    2014-08-01

    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal-offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal-offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted. PMID:24755983

  1. Pervasive polymorphic imprinted methylation in the human placenta

    PubMed Central

    Hanna, Courtney W.; Peñaherrera, Maria S.; Saadeh, Heba; Andrews, Simon; McFadden, Deborah E.; Kelsey, Gavin; Robinson, Wendy P.

    2016-01-01

    The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation. PMID:26769960

  2. Pervasive polymorphic imprinted methylation in the human placenta.

    PubMed

    Hanna, Courtney W; Peñaherrera, Maria S; Saadeh, Heba; Andrews, Simon; McFadden, Deborah E; Kelsey, Gavin; Robinson, Wendy P

    2016-06-01

    The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation. PMID:26769960

  3. Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean

    PubMed Central

    Xu, Wei; Dai, Mengyuan; Li, Fei; Liu, Aizhong

    2014-01-01

    Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, the triploid endosperm is where gene imprinting occurs most often, but aside from studies on Arabidopsis, little is known about gene imprinting in dicotyledons. In this study, we inspected genomic imprinting in castor bean (Ricinus communis) endosperm, which persists throughout seed development. After mapping out the polymorphic SNP loci between accessions ZB306 and ZB107, we generated deep sequencing RNA profiles of F1 hybrid seeds derived from reciprocal crosses. Using polymorphic SNP sites to quantify allele-specific expression levels, we identified 209 genes in reciprocal endosperms with potential parent-of-origin specific expression, including 200 maternally expressed genes and 9 paternally expressed genes. In total, 57 of the imprinted genes were validated via reverse transcriptase-polymerase chain reaction sequencing, and analysis of the genomic DNA methylation distribution between embryo and endosperm tissues showed significant hypomethylation in the endosperm and an enrichment of differentially methylated regions around the identified genes. Curiously, the expression of the imprinted genes was not tightly linked to DNA methylation. These results largely extended gene imprinting information existing in plants, providing potential directions for further research in gene imprinting. PMID:24799438

  4. Transcriptome-wide investigation of genomic imprinting in chicken.

    PubMed

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-04-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken. PMID:24452801

  5. Transcriptome-wide investigation of genomic imprinting in chicken

    PubMed Central

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-01-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken. PMID:24452801

  6. Loss of genomic imprinting in Drosophila clones.

    PubMed

    Haigh, Andrew J; Lloyd, Vett K

    2006-08-01

    Genomic imprinting is a process that genetically distinguishes maternal and paternal genomes, and can result in parent-of-origin-dependent monoallelic expression of a gene that is dependent on the parent of origin. As such, an otherwise functional maternally inherited allele may be silenced so that the gene is expressed exclusively from the paternal allele, or vice versa. Once thought to be restricted to mammals, genomic imprinting has been documented in angiosperm plants (J.L. Kermicle. 1970. Genetics, 66: 69-85), zebrafish (C.C. Martin and R. McGowan. 1995. Genet. Res. 65: 21-28), insects, and C. elegans (C.J. Bean, C.E. Schaner, and W.G. Kelly. 2004. Nat. Genet. 36: 100-105.). In each case, it appears to rely on differential chromatin structure. Aberrant imprinting has been implicated in various human cancers and has been detected in a number of cloned mammals, potentially limiting the usefulness of somatic nuclear transfer. Here we show that genomic imprinting associated with a mini-X chromosome is lost in Drosophila melanogaster clones. PMID:17036079

  7. Hypothesis: gonadal temperature influences sex-specific imprinting

    PubMed Central

    Donti, Emilio

    2014-01-01

    Various explanations have been advanced for the evolution of genomic imprinting, the most popular of these being the parental conflict hypothesis. However, while this theory may explain why there has been selection for imprinting certain genes, it does not explain how the maternal and paternal genomes can be distinguished from each other. Here, we hypothesize that the temperature at which male and female gonads are physiologically exposed could be, at least for some loci, the primary factor leading to the different imprinting between the sexes. PMID:25202325

  8. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans.

    PubMed

    Docherty, Louise E; Rezwan, Faisal I; Poole, Rebecca L; Turner, Claire L S; Kivuva, Emma; Maher, Eamonn R; Smithson, Sarah F; Hamilton-Shield, Julian P; Patalan, Michal; Gizewska, Maria; Peregud-Pogorzelski, Jaroslaw; Beygo, Jasmin; Buiting, Karin; Horsthemke, Bernhard; Soellner, Lukas; Begemann, Matthias; Eggermann, Thomas; Baple, Emma; Mansour, Sahar; Temple, I Karen; Mackay, Deborah J G

    2015-01-01

    Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting. PMID:26323243

  9. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans

    PubMed Central

    Docherty, Louise E.; Rezwan, Faisal I.; Poole, Rebecca L.; Turner, Claire L. S.; Kivuva, Emma; Maher, Eamonn R.; Smithson, Sarah F.; Hamilton-Shield, Julian P.; Patalan, Michal; Gizewska, Maria; Peregud-Pogorzelski, Jaroslaw; Beygo, Jasmin; Buiting, Karin; Horsthemke, Bernhard; Soellner, Lukas; Begemann, Matthias; Eggermann, Thomas; Baple, Emma; Mansour, Sahar; Temple, I. Karen; Mackay, Deborah J. G.

    2015-01-01

    Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting. PMID:26323243

  10. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders.

    PubMed

    Soejima, Hidenobu; Higashimoto, Ken

    2013-07-01

    Genomic imprinting is an epigenetic phenomenon that leads to parent-specific differential expression of a subset of genes. Most imprinted genes form clusters, or imprinting domains, and are regulated by imprinting control regions. As imprinted genes have an important role in growth and development, aberrant expression of imprinted genes due to genetic or epigenetic abnormalities is involved in the pathogenesis of human disorders, or imprinting disorders. Beckwith-Wiedemann syndrome (BWS) is a representative imprinting disorder characterized by macrosomia, macroglossia and abdominal wall defects, and exhibits a predisposition to tumorigenesis. The relevant imprinted chromosomal region in BWS is 11p15.5, which consists of two imprinting domains, IGF2/H19 and CDKN1C/KCNQ1OT1. BWS has five known causative epigenetic and genetic alterations: loss of methylation (LOM) at KvDMR1, gain of methylation (GOM) at H19DMR, paternal uniparental disomy, CDKN1C mutations and chromosomal rearrangements. Opposite methylation defects, GOM and LOM, at H19DMR are known to cause clinically opposite disorders: BWS and Silver-Russell syndrome, respectively. Interestingly, a recent study discovered that loss of function or gain of function of CDKN1C also causes clinically opposite disorders, BWS and IMAGe (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies) syndrome, respectively. Furthermore, several clinical studies have suggested a relationship between assisted reproductive technology (ART) and the risk of imprinting disorders, along with the existence of trans-acting factors that regulate multiple imprinted differentially methylated regions. In this review, we describe the latest knowledge surrounding the imprinting mechanism of 11p15.5, in addition to epigenetic and genetic etiologies of BWS, associated childhood tumors, the effects of ART and multilocus hypomethylation disorders. PMID:23719190

  11. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion

    PubMed Central

    Jang, Hyun Sik; Hong, Yean Ju; Choi, Hyun Woo; Song, Hyuk; Byun, Sung June; Uhm, Sang Jun; Seo, Han Geuk; Do, Jeong Tae

    2016-01-01

    Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs) also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner. PMID:27232503

  12. Maintaining memory of silencing at imprinted differentially methylated regions.

    PubMed

    Voon, Hsiao P J; Gibbons, Richard J

    2016-05-01

    Imprinted genes are an exceptional cluster of genes which are expressed in a parent-of-origin dependent fashion. This allele-specific expression is dependent on differential DNA methylation which is established in the parental germlines in a sex-specific manner. The DNA methylation imprint is accompanied by heterochromatin modifications which must be continuously maintained through development. This review summarises the factors which are important for protecting the epigenetic modifications at imprinted differentially methylated regions (DMRs), including PGC7, ZFP57 and the ATRX/Daxx/H3.3 complex. We discuss how these factors maintain heterochromatin silencing, not only at imprinted DMRs, but also other heterochromatic regions in the genome. PMID:26883803

  13. Different yet similar: evolution of imprinting in flowering plants and mammals

    PubMed Central

    2014-01-01

    Genomic imprinting refers to a form of epigenetic gene regulation whereby alleles are differentially expressed in a parent-of-origin-dependent manner. Imprinting evolved independently in flowering plants and in therian mammals in association with the elaboration of viviparity and a placental habit. Despite the striking differences in plant and animal reproduction, genomic imprinting shares multiple characteristics between them. In both groups, imprinted expression is controlled, at least in part, by DNA methylation and chromatin modifications in cis-regulatory regions, and many maternally and paternally expressed genes display complementary dosage-dependent effects during embryogenesis. This suggests that genomic imprinting evolved in response to similar selective pressures in flowering plants and mammals. Nevertheless, there are important differences between plant and animal imprinting. In particular, genomic imprinting has been shown to be more flexible and evolutionarily labile in plants. In mammals, imprinted genes are organized mainly in highly conserved clusters, whereas in plants they occur in isolation throughout the genome and are affected by local gene duplications. There is a large degree of intra- and inter-specific variation in imprinted gene expression in plants. These differences likely reflect the distinct life cycles and the different evolutionary dynamics that shape plant and animal genomes. PMID:25165562

  14. A CTCF-binding silencer regulates the imprinted genes AWT1 and WT1-AS and exhibits sequential epigenetic defects during Wilms' tumourigenesis.

    PubMed

    Hancock, Anne L; Brown, Keith W; Moorwood, Kim; Moon, Hanlim; Holmgren, Claes; Mardikar, Sudhanshu H; Dallosso, Anthony R; Klenova, Elena; Loukinov, Dmitri; Ohlsson, Rolf; Lobanenkov, Victor V; Malik, Karim

    2007-02-01

    We have shown previously that AWT1 and WT1-AS are functionally imprinted in human kidney. In the adult kidney, expression of both transcripts is restricted to the paternal allele, with the silent maternal allele retaining methylation at the WT1 antisense regulatory region (WT1 ARR). Here, we report characterization of the WT1 ARR differentially methylated region and show that it contains a transcriptional silencer element acting on both the AWT1 and WT1-AS promoters. DNA methylation of the silencer results in increased transcriptional repression, and the silencer is also shown to be an in vitro and in vivo target site for the imprinting regulator protein CTCF. Binding of CTCF is methylation-sensitive and limited to the unmethylated silencer. Potentiation of the silencer activity is demonstrated after CTCF protein is knocked down, suggesting a novel silencer-blocking activity for CTCF. We also report assessment of WT1 ARR methylation in developmental and tumour tissues, including the first analysis of Wilms' tumour precursor lesions, nephrogenic rests. Nephrogenic rests show increases in methylation levels relative to foetal kidney and reductions relative to the adult kidney, together with biallelic expression of AWT1 and WT1-AS. Notably, the methylation status of CpG residues within the CTCF target site appears to distinguish monoallelic and biallelic expression states. Our data suggest that failure of methylation spreading at the WT1 ARR early in renal development, followed by imprint erasure, occurs during Wilms' tumourigenesis. We propose a model wherein imprinting defects at chromosome 11p13 may contribute to Wilms' tumourigenesis. PMID:17210670

  15. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  16. Genomic imprinting, action, and interaction of maternal and fetal genomes

    PubMed Central

    Keverne, Eric B.

    2015-01-01

    Mammalian viviparity (intrauterine development of the fetus) introduced a new dimension to brain development, with the fetal hypothalamus and fetal placenta developing at a time when the fetal placenta engages hypothalamic structures of the maternal generation. Such transgenerational interactions provide a basis for ensuring optimal maternalism in the next generation. This success has depended on genomic imprinting and a biased role of the matriline. Maternal methylation imprints determine parent of origin expression of genes fundamental to both placental and hypothalamic development. The matriline takes a further leading role for transgenerational reprogramming of these imprints. Developmental errors are minimized by the tight control that imprinted genes have on regulation of downstream evolutionary expanded gene families important for placental and hypothalamic development. Imprinted genes themselves have undergone purifying selection, providing a framework of stability for in utero development with most growth variance occurring postnatally. Mothers, not fathers, take the lead in the endocrinological and behavior adaptations that nurture, feed, and protect the infant. In utero coadaptive development of the placenta and hypothalamus has thus required a concomitant development to ensure male masculinization. Only placental male mammals evolved the sex determining SRY, which activates Sox9 for testes formation. SRY is a hybrid gene of Dgcr8 expressed in the developing placenta and Sox3 expressed in hypothalamic development. This hybridization of genes that take their origin from the placenta and hypothalamus has enabled critical in utero timing for the development of fetal Leydig cells, and hence testosterone production for hypothalamic masculinization. PMID:25404322

  17. Detection of Loss of Imprinting by Pyrosequencing®.

    PubMed

    Tabano, Silvia; Bonaparte, Eleonora; Miozzo, Monica

    2015-01-01

    Genomic imprinting is an epigenetically regulated process determining allele-specific expression in a parent-of-origin dependent manner. Altered expression of imprinted genes characterizes numerous congenital diseases including Beckwith-Wiedemann, Silver-Russell, Angelman, and Prader-Willi syndromes as well as acquired disorders such as cancer. The detection of imprinting alterations has important translational implications in clinics and the application of the Pyrosequencing(®) technology offers the possibility to identify accurately also subtle modifications in allele-specific expression and in DNA methylation levels.Here, we describe two methods to investigate genomic imprinting defects (loss of imprinting, LOI) using Pyrosequencing: (1) Allele-specific expression analysis based on single nucleotide polymorphism (SNP), and (2) quantification of DNA methylation.The protocol for the quantification of the allele-specific expression is carried out by analyzing an informative SNP located within the transcribed portion of an imprinted gene. The method includes the cDNA amplification of the region containing the SNP and the Pyrosequencing-based analysis for the quantitative allelic discrimination comparing the ratio of the two alleles.The second protocol allows the accurate quantification of the DNA methylation levels at the Imprinting Control Regions (ICRs). Imprinted genes are clustered in chromosomal regions and their expression is mainly regulated by DNA methylation at CpG sites located within the ICRs. After bisulfite modification of the genomic DNA, the region of interest is amplified by PCR and analyzed by Pyrosequencing. The methylation value at each CpG site is calculated by the CpG software, which determines the ratio of the incorporation of "C" and "T" and converts the value in methylation percentage. PMID:26103904

  18. Genomic imprinting and the evolutionary psychology of human kinship

    PubMed Central

    Haig, David

    2011-01-01

    Genomic imprinting is predicted to influence behaviors that affect individuals to whom an actor has different degrees of matrilineal and patrilineal kinship (asymmetric kin). Effects of imprinted genes are not predicted in interactions with nonrelatives or with individuals who are equally related to the actor's maternally and paternally derived genes (unless a gene also has pleiotropic effects on fitness of asymmetric kin). Long-term mating bonds are common in most human populations, but dissolution of marriage has always affected a significant proportion of mated pairs. Children born in a new union are asymmetric kin of children born in a previous union. Therefore, the innate dispositions of children toward parents and sibs are expected to be sensitive to cues of marital stability, and these dispositions may be subject to effects of imprinted genes. PMID:21690414

  19. Prader-Willi Syndrome: Obesity due to Genomic Imprinting

    PubMed Central

    Butler, Merlin G

    2011-01-01

    Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder due to errors in genomic imprinting with loss of imprinted genes that are paternally expressed from the chromosome 15q11-q13 region. Approximately 70% of individuals with PWS have a de novo deletion of the paternally derived 15q11-q13 region in which there are two subtypes (i.e., larger Type I or smaller Type II), maternal disomy 15 (both 15s from the mother) in about 25% of cases, and the remaining subjects have either defects in the imprinting center controlling the activity of imprinted genes or due to other chromosome 15 rearrangements. PWS is characterized by a particular facial appearance, infantile hypotonia, a poor suck and feeding difficulties, hypogonadism and hypogenitalism in both sexes, short stature and small hands and feet due to growth hormone deficiency, mild learning and behavioral problems (e.g., skin picking, temper tantrums) and hyperphagia leading to early childhood obesity. Obesity is a significant health problem, if uncontrolled. PWS is considered the most common known genetic cause of morbid obesity in children. The chromosome 15q11-q13 region contains approximately 100 genes and transcripts in which about 10 are imprinted and paternally expressed. This region can be divided into four groups: 1) a proximal non-imprinted region; 2) a PWS paternal-only expressed region containing protein-coding and non-coding genes; 3) an Angelman syndrome region containing maternally expressed genes and 4) a distal non-imprinted region. This review summarizes the current understanding of the genetic causes, the natural history and clinical presentation of individuals with PWS. PMID:22043168

  20. Bypassing genomic imprinting allows seed development.

    PubMed

    Nowack, Moritz K; Shirzadi, Reza; Dissmeyer, Nico; Dolf, Andreas; Endl, Elmar; Grini, Paul E; Schnittger, Arp

    2007-05-17

    In developing progeny of mammals the two parental genomes are differentially expressed according to imprinting marks, and embryos with only a uniparental genetic contribution die. Gene expression that is dependent on the parent of origin has also been observed in the offspring of flowering plants, and mutations in the imprinting machinery lead to embryonic lethality, primarily affecting the development of the endosperm-a structure in the seed that nourishes the embryo, analogous to the function of the mammalian placenta. Here we have generated Arabidopsis thaliana seeds in which the endosperm is of uniparental, that is, maternal, origin. We demonstrate that imprinting in developing seeds can be bypassed and viable albeit smaller seedlings can develop from seeds lacking a paternal contribution to the endosperm. Bypassing is only possible if the mother is mutant for any of the FIS-class genes, which encode Polycomb group chromatin-modifying factors. Thus, these data provide functional evidence that the action of the FIS complex balances the contribution of the paternal genome. As flowering plants have evolved a special reproduction system with a parallel fusion of two female with two male gametes, our findings support the hypothesis that only with the evolution of double fertilization did the action of the FIS genes become a requirement for seed development. Furthermore, our data argue for a gametophytic origin of endosperm in flowering plants, thereby supporting a hypothesis raised in 1900 by Eduard Strasburger. PMID:17468744

  1. mRNA imprinting

    PubMed Central

    2011-01-01

    Following its synthesis in the nucleus, mRNA undergoes various stages that are critical for the proper synthesis, localization and possibly functionality of its encoded protein. Recently, we have shown that two RNA polymerase II (Pol II) subunits, Rpb4p and Rpb7p, associate with the nascent transcript co-transcriptionally. This “mRNA imprinting” lasts throughout the mRNA lifetime and is required for proper regulation of all major stages that the mRNA undergoes. Other possible cases of co-transcriptional imprinting are discussed. Since mRNAs can be transported from the synthesizing cell to other cells, we propose that mRNA imprinting can also affect the phenotype of the recipient cells. This can be viewed as “mRNA-based epigenetics.” PMID:21686103

  2. Imprinting artificial magnetic structures.

    SciTech Connect

    Lohstroh, W.

    1998-09-25

    Recently we created La/Fe multilayers with a helical magnetic structure imprinted from the conditions of growth rather than by the magnetic interactions between layers. Each sublayer was 30{angstrom} thick, and during deposition the sample was rotated in an external field of 3 Oe. a field strong enough to magnetize the Fe layer being deposited but not sufficient to perturb the magnetization of the Fe layers already grown. As a result adjacent Fe layers formed a helical structure with a chirality and periodicity determined by the rotational direction and speed of the substrate and the rate of deposition. Following this discovery, an extensive set of experiments (mainly using Kerr effect magnetometry and polarized neutron reflectivity) was undertaken to ascertain the stability of imprinted magnetic structures, and to understand the onset of magnetization during growth. La/Fe imprinted helical magnetic structures (of different La and Fe thicknesses) were found to be stable in time and to be permanently erased only by magnetic fields larger than 90 Oe.

  3. In Pursuit of New Imprinting Syndromes by Epimutation Screening in Idiopathic Neurodevelopmental Disorder Patients.

    PubMed

    Mayo, Sonia; Monfort, Sandra; Roselló, Mónica; Oltra, Silvestre; Orellana, Carmen; Martínez, Francisco

    2015-01-01

    Alterations of epigenetic mechanisms, and more specifically imprinting modifications, could be responsible of neurodevelopmental disorders such as intellectual disability (ID) or autism together with other associated clinical features in many cases. Currently only eight imprinting syndromes are defined in spite of the fact that more than 200 genes are known or predicted to be imprinted. Recent publications point out that some epimutations which cause imprinting disorders may affect simultaneously different imprinted loci, suggesting that DNA-methylation may have been altered more globally. Therefore, we hypothesised that the detection of altered methylation patterns in known imprinting loci will indirectly allow identifying new syndromes due to epimutations among patients with unexplained ID. In a screening for imprinting alterations in 412 patients with syndromic ID/autism we found five patients with altered methylation in the four genes studied: MEG3, H19, KCNQ1OT1, and SNRPN. Remarkably, the cases with partial loss of methylation in KCNQ1OT1 and SNRPN present clinical features different to those associated with the corresponding imprinting syndromes, suggesting a multilocus methylation defect in accordance with our initial hypothesis. Consequently, our results are a proof of concept that the identification of epimutations in known loci in patients with clinical features different from those associated with known syndromes will eventually lead to the definition of new imprinting disorders. PMID:26106604

  4. In Pursuit of New Imprinting Syndromes by Epimutation Screening in Idiopathic Neurodevelopmental Disorder Patients

    PubMed Central

    Mayo, Sonia; Monfort, Sandra; Roselló, Mónica; Oltra, Silvestre; Orellana, Carmen; Martínez, Francisco

    2015-01-01

    Alterations of epigenetic mechanisms, and more specifically imprinting modifications, could be responsible of neurodevelopmental disorders such as intellectual disability (ID) or autism together with other associated clinical features in many cases. Currently only eight imprinting syndromes are defined in spite of the fact that more than 200 genes are known or predicted to be imprinted. Recent publications point out that some epimutations which cause imprinting disorders may affect simultaneously different imprinted loci, suggesting that DNA-methylation may have been altered more globally. Therefore, we hypothesised that the detection of altered methylation patterns in known imprinting loci will indirectly allow identifying new syndromes due to epimutations among patients with unexplained ID. In a screening for imprinting alterations in 412 patients with syndromic ID/autism we found five patients with altered methylation in the four genes studied: MEG3, H19, KCNQ1OT1, and SNRPN. Remarkably, the cases with partial loss of methylation in KCNQ1OT1 and SNRPN present clinical features different to those associated with the corresponding imprinting syndromes, suggesting a multilocus methylation defect in accordance with our initial hypothesis. Consequently, our results are a proof of concept that the identification of epimutations in known loci in patients with clinical features different from those associated with known syndromes will eventually lead to the definition of new imprinting disorders. PMID:26106604

  5. Genomic Imprinting and the Expression of Affect in Angelman Syndrome: What's in the Smile?

    ERIC Educational Resources Information Center

    Oliver, Chris; Horsler, Kate; Berg, Katy; Bellamy, Gail; Dick, Katie; Griffiths, Emily

    2007-01-01

    Background: Kinship theory (or the genomic conflict hypothesis) proposes that the phenotypic effects of genomic imprinting arise from conflict between paternally and maternally inherited alleles. A prediction arising for social behaviour from this theory is that imbalance in this conflict resulting from a deletion of a maternally imprinted gene,…

  6. The origin and evolution of genomic imprinting and viviparity in mammals

    PubMed Central

    Renfree, Marilyn B.; Suzuki, Shunsuke; Kaneko-Ishino, Tomoko

    2013-01-01

    Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells. PMID:23166401

  7. Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.

    PubMed

    Bonakdar, Shahin; Mahmoudi, Morteza; Montazeri, Leila; Taghipoor, Mojtaba; Bertsch, Arnaud; Shokrgozar, Mohammad Ali; Sharifi, Shahriar; Majidi, Mohammad; Mashinchian, Omid; Hamrang Sekachaei, Mohammad; Zolfaghari, Pegah; Renaud, Philippe

    2016-06-01

    Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demonstrated their potential for differentiation, redifferentiation, and transdifferentiation. Analysis of shape and upregulation/downregulation of specific genes of stem cells, which were seeded on these cell-imprinted substrates, confirmed that imprinted substrates have the capability to induce specific shapes and molecular characteristics of the cell types that were used as templates for cell-imprinting. Interestingly, immunofluorescent staining of a specific protein in chondrocytes (i.e., collagen type II) confirmed that adipose-derived stem cells, semifibroblasts, and tenocytes can acquire the chondrocyte phenotype after a 14 day culture on chondrocyte-imprinted substrates. In summary, we propose that common polystyrene tissue culture plates can be replaced by this imprinting technique as an effective and promising way to regulate any cell phenotype in vitro with significant potential applications in regenerative medicine and cell-based therapies. PMID:27196338

  8. Comparative Anatomy of Chromosomal Domains with Imprinted and Non-Imprinted Allele-Specific DNA Methylation

    PubMed Central

    Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L.; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin

    2013-01-01

    Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM. PMID:24009515

  9. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    PubMed

    Paliwal, Anupam; Temkin, Alexis M; Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin

    2013-08-01

    Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM. PMID:24009515

  10. Molecularly imprinted polymers for mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecularly imprinted polymers (MIPs) are a class of synthetic receptors capable of selective recognition of analytes. Recent developments in imprinting technology have made it possible to apply this technology in a range of applications, including mycotoxin detection. Structure-activity relations...

  11. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting

    PubMed Central

    Haig, D

    2014-01-01

    Common misconceptions of the ‘parental conflict' theory of genomic imprinting are addressed. Contrary to widespread belief, the theory defines conditions for cooperation as well as conflict in mother–offspring relations. Moreover, conflict between genes of maternal and paternal origin is not the same as conflict between mothers and fathers. In theory, imprinting can evolve either because genes of maternal and paternal origin have divergent interests or because offspring benefit from a phenotypic match, or mismatch, to one or other parent. The latter class of models usually require maintenance of polymorphism at imprinted loci for the maintenance of imprinted expression. The conflict hypothesis does not require maintenance of polymorphism and is therefore a more plausible explanation of evolutionarily conserved imprinting. PMID:24129605

  12. Imprinting of opossum Igf2r in the absence of differential methylation and air.

    PubMed

    Weidman, Jennifer R; Dolinoy, Dana C; Maloney, Kristin A; Cheng, Jan-Fang; Jirtle, Randy L

    2006-01-01

    Phylogenetic comparison of extant mammals with divergent imprint status is a powerful method for identifying critical components of imprint regulation at individual loci. The entire genomic region of Igf2r in the imprinted marsupials, Didelphis virginiana and Monodelphis domestica, and the non-imprinted monotreme, Ornithorhynchus anatinus, was isolated and sequenced. Genetic and epigenetic comparisons of over 160 kb of sequence were then performed in five distinct mammalian species. Surprisingly, opossum Igf2r is imprinted and maternally expressed despite the absence of the intron 2 CpG island (CpG2), antisense Igf2r RNA (Air) and differential methylation of the promoter (CpG1) required for imprinting of this gene in mice. These findings demonstrate that the genomic elements necessary for imprinted Igf2r expression in eutherians are not required for imprinting of this locus in metatherians. Thus, the regulatory mechanisms of Igf2r imprinting did not evolve convergently within the Therian subclass of mammals. PMID:17998818

  13. Mutations of the Imprinted CDKN1C Gene as a Cause of the Overgrowth Beckwith-Wiedemann Syndrome: Clinical Spectrum and Functional Characterization.

    PubMed

    Brioude, Frederic; Netchine, Irène; Praz, Francoise; Le Jule, Marilyne; Calmel, Claire; Lacombe, Didier; Edery, Patrick; Catala, Martin; Odent, Sylvie; Isidor, Bertrand; Lyonnet, Stanislas; Sigaudy, Sabine; Leheup, Bruno; Audebert-Bellanger, Séverine; Burglen, Lydie; Giuliano, Fabienne; Alessandri, Jean-Luc; Cormier-Daire, Valérie; Laffargue, Fanny; Blesson, Sophie; Coupier, Isabelle; Lespinasse, James; Blanchet, Patricia; Boute, Odile; Baumann, Clarisse; Polak, Michel; Doray, Berenice; Verloes, Alain; Viot, Géraldine; Le Bouc, Yves; Rossignol, Sylvie

    2015-09-01

    Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS. PMID:26077438

  14. Protein imprinting in polyacrylamide-based gels

    PubMed Central

    Zayats, Maya; Brenner, Andrew J.; Searson, Peter C.

    2015-01-01

    Protein imprinting in hydrogels is a method to produce materials capable of selective recognition and capture of a target protein. Here we report on the imprinting of fluorescently-labeled maltose binding protein (MBP) in acrylamide (AAm)/N-isopropylacrylamide (NIPAm) hydrogels. The targeting efficiency and selectivity of protein recognition is usually characterized by the imprinting factor, which in the simplest case is the ratio of protein uptake in an imprinted film divided by the uptake by the corresponding non-imprinted film. Our objective in this work is to study the dynamics of protein binding and elution in imprinted and non-imprinted films to elucidate the processes that control protein recognition. Protein elution from imprinted and non-imprinted films suggests that imprinting results in sites with a distribution of binding energies, and that only a relatively small fraction of these sites exhibit strong binding. PMID:25034963

  15. Protein imprinting in polyacrylamide-based gels.

    PubMed

    Zayats, Maya; Brenner, Andrew J; Searson, Peter C

    2014-10-01

    Protein imprinting in hydrogels is a method to produce materials capable of selective recognition and capture of a target protein. Here we report on the imprinting of fluorescently-labeled maltose binding protein (MBP) in acrylamide (AAm)/N-isopropylacrylamide (NIPAm) hydrogels. The targeting efficiency and selectivity of protein recognition is usually characterized by the imprinting factor, which in the simplest case is the ratio of protein uptake in an imprinted film divided by the uptake by the corresponding non-imprinted film. Our objective in this work is to study the dynamics of protein binding and elution in imprinted and non-imprinted films to elucidate the processes that control protein recognition. Protein elution from imprinted and non-imprinted films suggests that imprinting results in sites with a distribution of binding energies, and that only a relatively small fraction of these sites exhibit strong binding. PMID:25034963

  16. Targeted methylation testing of a patient cohort broadens the epigenetic and clinical description of imprinting disorders.

    PubMed

    Poole, Rebecca L; Docherty, Louise E; Al Sayegh, Abeer; Caliebe, Almuth; Turner, Claire; Baple, Emma; Wakeling, Emma; Harrison, Lucy; Lehmann, Anna; Temple, I Karen; Mackay, Deborah J G

    2013-09-01

    Imprinting disorders are associated with mutations and epimutations affecting imprinted genes, that is those whose expression is restricted by parent of origin. Their diagnosis is challenging for two reasons: firstly, their clinical features, particularly prenatal and postnatal growth disturbance, are heterogeneous and partially overlapping; secondly, their underlying molecular defects include mutation, epimutation, copy number variation, and chromosomal errors, and can be further complicated by somatic mosaicism and multi-locus methylation defects. It is currently unclear to what extent the observed phenotypic heterogeneity reflects the underlying molecular pathophysiology; in particular, the molecular and clinical diversity of multilocus methylation defects remains uncertain. To address these issues we performed comprehensive methylation analysis of imprinted genes in a research cohort of 285 patients with clinical features of imprinting disorders, with or without a positive molecular diagnosis. 20 of 91 patients (22%) with diagnosed epimutations had methylation defects of additional imprinted loci, and the frequency of developmental delay and congenital anomalies was higher among these patients than those with isolated epimutations, indicating that hypomethylation of multiple imprinted loci is associated with increased diversity of clinical presentation. Among 194 patients with clinical features of an imprinting disorder but no molecular diagnosis, we found 15 (8%) with methylation anomalies, including missed and unexpected molecular diagnoses. These observations broaden the phenotypic and epigenetic definitions of imprinting disorders, and show the importance of comprehensive molecular testing for patient diagnosis and management. PMID:23913548

  17. Tissue specificity and variability of imprinted IGF2 expression in humans

    SciTech Connect

    Giannoukakis, N.; Rouleau, G.; Polychronakos, C.

    1994-09-01

    Parental genomic imprinting refers to the phenomenon where expression of a gene copy depends on the sex of the parent from which it is derived. The human insulin-like growth factor II gene, IGF2, is parentally imprinted with the paternal gene copy exclusively expressed in fetal and term placenta as well as in fetal kidney. In mice, imprinted IGF2 expression is tissue-specific. In a preliminary approach to investigate tissue-specific IGF2 imprinting in humans, we evaluated allele-specific expression in four samples of umbilical cord blood leukocytes of fetuses found to imprint IGF2 in placenta. IGF2 mRNA transcripts from the gene copy transmitted from each parent were distinguished using a transcribed ApaI polymorphism by performing reverse transcription-PCR on total RNA from cord blood leukocytes. Postnatal peripheral blood was examined using the same method. Of 77 informative individuals, 68 expressed both IGF2 copies, but 9 individuals showed unambiguous monoallelic expression. Two individuals from each category were screened again and the results were identical. These data indicate that imprinted IGF2 expression is tissue-specific and show variability of IGF2 imprinting among individuals. This variability may be genetic. We are in the process of screening large pedigrees to test this hypothesis.

  18. CRITICAL EXPERIMENTS TO DETERMINE IF EARLY NUTRITIONAL INFLUENCES ON EPIGENETIC MECHANISMS CAUSE METABOLIC IMPRINTING IN HUMANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic imprinting occurs when nutritional influences during critical periods of development cause specific metabolic adaptations that persist to adulthood. Epigenetic mechanisms, which regulate the broad diversity of tissue-specific gene expression, are established during development and largely ...

  19. Detection of imprinting mutations in Angelman syndrome using a probe for exon {alpha} of SNRPN

    SciTech Connect

    Beuten, J.; Sutcliffe, J.S.; Casey, B.M.

    1996-05-17

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct clinical disorders resulting from deficiency of paternal (PWS) or maternal (AS) expression of imprinted genes within chromosome 15q11-q13. 15 refs., 1 fig.

  20. Genomic imprinting proposed as a surveillance mechanism for chromosome loss.

    PubMed Central

    Thomas, J H

    1995-01-01

    One consequence of genomic imprinting is that loss of the transcriptionally active chromosomal homologue causes a change in gene expression that might permit surveillance of chromosome-loss events. Possible selective advantages of such surveillance include protection against cancer and early elimination of monosomic and trisomic fetuses. Potential mechanisms for such surveillance are discussed. PMID:7831314

  1. Conversion of genomic imprinting by reprogramming and redifferentiation.

    PubMed

    Kim, Min Jung; Choi, Hyun Woo; Jang, Hyo Jin; Chung, Hyung Min; Arauzo-Bravo, Marcos J; Schöler, Hans R; Do, Jeong Tae

    2013-06-01

    Induced pluripotent stem cells (iPSCs), generated from somatic cells by overexpression of transcription factors Oct4, Sox2, Klf4 and c-Myc have the same characteristics as pluripotent embryonic stem cells (ESCs). iPSCs reprogrammed from differentiated cells undergo epigenetic modification during reprogramming, and ultimately acquire a similar epigenetic state to that of ESCs. In this study, these epigenetic changes were observed in reprogramming of uniparental parthenogenetic somatic cells. The parthenogenetic pattern of imprinted genes changes during the generation of parthenogenetic maternal iPSCs (miPSCs), a process referred to as pluripotent reprogramming. We determined whether altered imprinted genes are maintained or revert to the parthenogenetic state when the reprogrammed cells are redifferentiated into specialized cell types. To address this question, we redifferentiated miPSCs into neural stem cells (miPS-NSCs) and compared them with biparental female NSCs (fNSCs) and parthenogenetic NSCs (pNSCs). We found that pluripotent reprogramming of parthenogenetic somatic cells could reset parthenogenetic DNA methylation patterns in imprinted genes, and that alterations in DNA methylation were maintained even after miPSCs were redifferentiated into miPS-NSCs. Notably, maternally methylated imprinted genes (Peg1, Peg3, Igf2r, Snrpn and Ndn), whose differentially methylated regions were fully methylated in pNSCs, were demethylated and their expression levels were found to be close to the levels in normal biparental fNSCs after reprogramming and redifferentiation. Our findings suggest that pluripotent reprogramming of parthenogenetic somatic cells followed by redifferentiation leads to changes in DNA methylation of imprinted genes and the reestablishment of gene expression levels to those of normal biparental cells. PMID:23525019

  2. Programmable imprint lithography template

    DOEpatents

    Cardinale, Gregory F.; Talin, Albert A.

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  3. Manganese uptake of imprinted polymers

    DOE Data Explorer

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  4. Polyandry, life-history trade-offs and the evolution of imprinting at Mendelian loci.

    PubMed

    Mills, Walter; Moore, Tom

    2004-12-01

    Genomic imprinting causes parental origin-dependent differential expression of a small number of genes in mammalian and angiosperm plant embryos, resulting in non-Mendelian inheritance of phenotypic traits. The "conflict" theory of the evolution of imprinting proposes that reduced genetic relatedness of paternally, relative to maternally, derived alleles in offspring of polygamous females supports parental sex-specific selection at gene loci that influence maternal investment. While the theory's physiological predictions are well supported by observation, the requirement of polyandry in the evolution of imprinting from an ancestral Mendelian state has not been comprehensively analyzed. Here, we use diallelic models to examine the influence of various degrees of polyandry on the evolution of both Mendelian and imprinted autosomal gene loci that influence trade-offs between maternal fecundity and offspring viability. We show that, given a plausible assumption on the physiological relationship between maternal fecundity and offspring viability, low levels of polyandry are sufficient to reinforce exclusively the fixation of "greedy" paternally imprinted alleles that increase offspring viability at the expense of maternal fecundity and "thrifty" maternally imprinted alleles of opposite effect. We also show that, for all levels of polyandry, Mendelian alleles at genetic loci that influence the trade-off between maternal fecundity and offspring viability reach an evolutionary stable state, whereas pairs of reciprocally imprinted alleles do not. PMID:15611195

  5. Genomic Imprinting of Grb10 : Coadaptation or Conflict?

    PubMed Central

    Wilkins, Jon F.

    2014-01-01

    Mammalian development involves significant interactions between offspring and mother. But is this interaction a carefully coordinated effort by two individuals with a common goal—offspring survival? Or is it an evolutionary battleground (a central idea in our understanding of reproduction). The conflict between parents and offspring extends to an offspring's genes, where paternally inherited genes favor demanding more from the mother, while maternally inherited genes favor restraint. This “intragenomic conflict” (among genes within a genome) is the dominant evolutionary explanation for “genomic imprinting.” But a new study in PLOS Biology provides support for a different perspective: that imprinting might facilitate coordination between mother and offspring. According to this “coadaptation theory,” paternally inherited genes might be inactivated because maternally inherited genes are adapted to function harmoniously with the mother. As discussed in this article, the growth effects associated with the imprinted gene Grb10 are consistent with this idea, but it remains to be seen just how general the pattern is. PMID:24586115

  6. DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation

    PubMed Central

    2013-01-01

    Background Genomic imprinting is an epigenetically regulated process wherein genes are expressed in a parent-of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes. Results Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMT1 and AIM1). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted expression for AIM1 was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the mouse. Conclusions Our study indicates that while there are many genomic regions with allele-specific methylation in tissues like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative functions for such genomic regions. Nonetheless, novel tissue-specific imprinted genes remain to be discovered in humans. Their identification may help us better understand embryonic and fetal development. PMID:24094292

  7. Recent acquisition of imprinting at the rodent Sfmbt2 locus correlates with insertion of a large block of miRNAs

    PubMed Central

    2011-01-01

    Background The proximal region of murine Chr 2 has long been known to harbour one or more imprinted genes from classic genetic studies involving reciprocal translocations. No imprinted gene had been identified from this region until our study demonstrated that the PcG gene Sfmbt2 is expressed from the paternally inherited allele in early embryos and extraembryonic tissues. Imprinted genes generally reside in clusters near elements termed Imprinting Control Regions (ICRs), suggesting that Sfmbt2 might represent an anchor for a new imprinted domain. Results We analyzed allelic expression of approximately 20 genes within a 3.9 Mb domain and found that Sfmbt2 and an overlapping non-coding antisense transcript are the only imprinted genes in this region. These transcripts represent a very narrow imprinted gene locus. We also demonstrate that rat Sfmbt2 is imprinted in extraembryonic tissues. An interesting feature of both mouse and rat Sfmbt2 genes is the presence of a large block of miRNAs in intron 10. Other mammals, including the bovine, lack this block of miRNAs. Consistent with this association, we show that human and bovine Sfmbt2 are biallelic. Other evidence indicates that pig Sfmbt2 is also not imprinted. Further strengthening the argument for recent evolution of Sfmbt2 is our demonstration that a more distant muroid rodent, Peromyscus also lacks imprinting and the block of miRNAs. Conclusions These observations are consistent with the hypothesis that the block of miRNAs are driving imprinting at this locus. Our results are discussed in the context of ncRNAs at other imprinted loci. Accession numbers for Peromyscus cDNA and intron 10 genomic DNA are [Genbank:HQ416417 and Genbank:HQ416418], respectively. PMID:21510876

  8. Rapid Evolution of Genomic Imprinting in Two Species of the Brassicaceae.

    PubMed

    Hatorangan, Marcelinus R; Laenen, Benjamin; Steige, Kim A; Slotte, Tanja; Köhler, Claudia

    2016-08-01

    Genomic imprinting is an epigenetic phenomenon occurring in mammals and flowering plants that causes genes to adopt a parent-of-origin-specific mode of expression. While the imprinting status of genes is well conserved in mammals, clear estimates for the degree of conservation were lacking in plants. We therefore analyzed the genome-wide imprinting status of Capsella rubella, which shared a common recent ancestor with Arabidopsis thaliana ∼10 to 14 million years ago. However, only ∼14% of maternally expressed genes (MEGs) and ∼29% of paternally expressed genes (PEGs) in C. rubella were commonly imprinted in both species, revealing that genomic imprinting is a rapidly evolving phenomenon in plants. Nevertheless, conserved PEGs exhibited signs of selection, suggesting that a subset of imprinted genes play an important functional role and are therefore maintained in plants. Like in Arabidopsis, PEGs in C. rubella are frequently associated with the presence of transposable elements that preferentially belong to helitron and MuDR families. Our data further reveal that MEGs and PEGs differ in their targeting by 24-nucleotide small RNAs and asymmetric DNA methylation, suggesting different mechanisms establishing DNA methylation at MEGs and PEGs. PMID:27465027

  9. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. The imprinting marks are protected from global demethylation taking place during pre-implantation development before being reset in primordial germ cells. However, it...

  10. BENJAMIN FRANKLIN'S MEDICAL IMPRINTS.

    PubMed

    CANTU, J Q

    1965-01-01

    The printing house of Benjamin Franklin produced several works of a medical nature in Colonial America at a time when very few medical treatises were being written or printed. Benjamin Franklin was also indirectly responsible for the founding of the first medical library in this country. For these reasons he was, in addition to his many other talents, an early contributor to American medical literature. Included in this bibliography are all the known medical books, pamphlets, and broadsides in English with Benjamin Franklin's name in the imprint, issued in America. These eighteen titles span the years 1732 to 1765 and are presented chronologically with indications of their relation to the practice and practitioners of Colonial medicine. Benjamin Franklin's press produced as wide a variety of contributions as did his versatile life, and the early history of medicine in this country bears the influence of both.I am pleased with your scheme of a Medical Library at the Hospital, and I fancy I can procure you some donations among my medical friends here, if you will send me a catalogue of what books you already have. Enclosed I send you the only book of the kind in my possession here, having just received it as a present from the author.-Benjamin Franklin to Dr. Cadwallader Evans, London, May 5, 1767 (1). PMID:14223741

  11. Benjamin Franklin's Medical Imprints

    PubMed Central

    Cantu, Jane Quale

    1965-01-01

    The printing house of Benjamin Franklin produced several works of a medical nature in Colonial America at a time when very few medical treatises were being written or printed. Benjamin Franklin was also indirectly responsible for the founding of the first medical library in this country. For these reasons he was, in addition to his many other talents, an early contributor to American medical literature. Included in this bibliography are all the known medical books, pamphlets, and broadsides in English with Benjamin Franklin's name in the imprint, issued in America. These eighteen titles span the years 1732 to 1765 and are presented chronologically with indications of their relation to the practice and practitioners of Colonial medicine. Benjamin Franklin's press produced as wide a variety of contributions as did his versatile life, and the early history of medicine in this country bears the influence of both. I am pleased with your scheme of a Medical Library at the Hospital, and I fancy I can procure you some donations among my medical friends here, if you will send me a catalogue of what books you already have. Enclosed I send you the only book of the kind in my possession here, having just received it as a present from the author.—Benjamin Franklin to Dr. Cadwallader Evans, London, May 5, 1767 (1). PMID:14223741

  12. Relationship between the IQ of People with Prader-Willi Syndrome and that of Their Siblings: Evidence for Imprinted Gene Effects

    ERIC Educational Resources Information Center

    Whittington, J.; Holland, A.; Webb, T.

    2009-01-01

    Background: Genetic disorders occasionally provide the means to uncover potential mechanisms linking gene expression and physical or cognitive characteristics or behaviour. Prader-Willi syndrome (PWS) is one such genetic disorder in which differences between the two main genetic subtypes have been documented (e.g. higher verbal IQ in one vs.…

  13. Evidence for local regulatory control of escape from imprinted X chromosome inactivation.

    PubMed

    Mugford, Joshua W; Starmer, Joshua; Williams, Rex L; Calabrese, J Mauro; Mieczkowski, Piotr; Yee, Della; Magnuson, Terry

    2014-06-01

    X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes. PMID:24653000

  14. Evidence for Local Regulatory Control of Escape from Imprinted X Chromosome Inactivation

    PubMed Central

    Mugford, Joshua W.; Starmer, Joshua; Williams, Rex L.; Calabrese, J. Mauro; Mieczkowski, Piotr; Yee, Della; Magnuson, Terry

    2014-01-01

    X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes. PMID:24653000

  15. Direct Imprinting of Liquid Silicon.

    PubMed

    Masuda, Takashi; Takagishi, Hideyuki; Yamazaki, Ken; Shimoda, Tatsuya

    2016-04-20

    A polymeric precursor solution for semiconducting silicon called "liquid silicon" was synthesized and directly imprinted to form well-defined and fine amorphous silicon patterns. The spin-coated film was cured and imprinted followed by annealing at 380 °C to complete the polymer-to-silicon conversion. A pattern with dimensions of several hundreds of nanometers or less was obtained on a substrate. We demonstrated that the curing step before imprinting is particularly important in the imprinting process. A curing temperature of 140-180 °C was found to be optimal in terms of the film's deformability and molding properties. Fourier transform infrared spectroscopy and thermal analysis clarified that the cross-linking of the polymer due to the 1,2-hydrogen shift reaction was induced exponentially with the release of a large amount of SiH4/H2 gases at temperatures between 140 and 220 °C, leading to the solidification of the film. Consequently, the film completely lost its deformability at higher temperatures. Despite a volume shrinkage as large as 53-56% during the polymer-to-silicon conversion, well-defined angular patterns were preserved. Fine silicon patterns were formed via the direct imprinting of liquid silicon with high resolution and high throughput, demonstrating the usefulness of this technique for the future manufacturing of silicon electronics. PMID:27028558

  16. Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone

    PubMed Central

    2014-01-01

    Background Growing evidence exists that the neoplastic stromal cell population (GCTSC) within giant cell tumors (GCT) originates from mesenchymal stem cells (MSC). In a previous study we identified a microRNA signature that differentiates between these cell types. Five differentially expressed microRNAs are located within the Dlk1-Dio3 region on chromosome 14. Aberrant regulation within this region is known to influence cell growth, differentiation and the development of cancer. The aim of this study was to elucidate the involvement of deregulations within the Dlk1-Dio3 region in GCT pathogenesis. Methods Quantitative gene and microRNA expression analyses were performed on GCTSCs and MSCs with or without treatment with epigenetic modifiers. Methylation analysis of differentially methylated regions was performed by bisulfite sequencing. Results In addition to microRNA silencing we detected a significant downregulation of Dlk1, Meg3 and Meg8 in GCTSCs compared to MSCs. DNA methylation analyses of the Meg3-DMR and IG-DMR revealed a frequent hypermethylation within the IG-DMR in GCTs. Epigenetic modification could restore expression of some but not all analyzed genes and microRNAs suggesting further regulatory mechanisms. Conclusion Epigenetic silencing of genes and microRNAs within the Dlk1-Dio3 region is a common event in GCTSCs, in part mediated by hypermethylation within the IG-DMR. The identified genes, micro RNAs and microRNA target genes might be valuable targets for the development of improved strategies for GCT diagnosis and therapy. PMID:25005035

  17. High Gestational Folic Acid Supplementation Alters Expression of Imprinted and Candidate Autism Susceptibility Genes in a sex-Specific Manner in Mouse Offspring.

    PubMed

    Barua, Subit; Kuizon, Salomon; Ted Brown, W; Junaid, Mohammed A

    2016-02-01

    Maternal nutrients play critical roles in modulating epigenetic events and exert long-term influences on the progeny's health. Folic acid (FA) supplementation during pregnancy has decreased the incidence of neural tube defects in newborns, but the influence of high doses of maternal FA supplementation on infants' brain development is unclear. The present study was aimed at investigating the effects of a high dose of gestational FA on the expression of genes in the cerebral hemispheres (CHs) of 1-day-old pups. One week prior to mating and throughout the entire period of gestation, female C57BL/6J mice were fed a diet, containing FA at either 2 mg/kg (control diet (CD)) or 20 mg/kg (high maternal folic acid (HMFA)). At postnatal day 1, pups from different dams were sacrificed and CH tissues were collected. Quantitative RT-PCR and Western blot analysis confirmed sex-specific alterations in the expression of several genes that modulate various cellular functions (P < 0.05) in pups from the HMFA group. Genomic DNA methylation analysis showed no difference in the level of overall methylation in pups from the HMFA group. These findings demonstrate that HMFA supplementation alters offsprings' CH gene expression in a sex-specific manner. These changes may influence infants' brain development. PMID:26547318

  18. Genomic imprinting and parent-of-origin effects on complex traits

    PubMed Central

    Lawson, Heather A.; Cheverud, James M.

    2014-01-01

    Parent-of-origin effects occur when the phenotypic effect of an allele depends on whether it is inherited from an individual’s mother or father. Several phenomena can cause parent-of-origin effects, with the best characterized being parent-of-origin dependent gene expression associated with genomic imprinting. Imprinting plays a critical role in a diversity of biological processes and in certain contexts it structures epigenetic relationships between DNA sequence and phenotypic variation. The development of new mapping approaches applied to the growing abundance of genomic data has demonstrated that imprinted genes can be important contributors to complex trait variation. Therefore, to understand the genetic architecture and evolution of complex traits, including complex diseases and traits of agricultural importance, it is crucial to account for these parent-of-origin effects. Here we discuss patterns of phenotypic variation associated with imprinting, evidence supporting its role in complex trait variation, and approaches for identifying its molecular signatures. PMID:23917626

  19. MicroRNAs 296 and 298 are imprinted and part of the GNAS/Gnas cluster and miR-296 targets IKBKE and Tmed9

    PubMed Central

    Robson, Joan E.; Eaton, Sally A.; Underhill, Peter; Williams, Debbie; Peters, Jo

    2012-01-01

    Genomic imprinting is the phenomenon whereby a subset of genes is differentially expressed according to parental origin. Imprinted genes tend to occur in clusters, and microRNAs are associated with the majority of well-defined clusters of imprinted genes. We show here that two microRNAs, miR-296 and miR-298, are part of the imprinted Gnas/GNAS clusters in both mice and humans. Both microRNAs show imprinted expression and are expressed from the paternally derived allele, but not the maternal allele. They arise from a long, noncoding antisense transcript, Nespas, with a promoter more than 27 kb away. Nespas had been shown previously to act in cis to regulate imprinted gene expression within the Gnas cluster. Using microarrays and luciferase assays, IKBKE, involved in many signaling pathways, and Tmed9, a protein transporter, were verified as new targets of miR-296. Thus, Nespas has two clear functions: as a cis-acting regulator within an imprinted gene cluster and as a precursor of microRNAs that modulate gene expression in trans. Furthermore, imprinted microRNAs, including miR-296 and miR-298, impose a parental specific modulation of gene expression of their target genes. PMID:22114321

  20. Imprinting and recalling cortical ensembles.

    PubMed

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. PMID:27516599

  1. Maternal Effects as the Cause of Parent-of-Origin Effects That Mimic Genomic Imprinting

    PubMed Central

    Hager, Reinmar; Cheverud, James M.; Wolf, Jason B.

    2008-01-01

    Epigenetic effects are increasingly recognized as an important source of variation in complex traits and have emerged as the focus of a rapidly expanding area of research. Principle among these effects is genomic imprinting, which has generally been examined in analyses of complex traits by testing for parent-of-origin-dependent effects of alleles. However, in most of these analyses maternal effects are confounded with genomic imprinting because they can produce the same patterns of phenotypic variation expected for various forms of imprinting. Distinguishing between the two is critical for genetic and evolutionary studies because they have entirely different patterns of gene expression and evolutionary dynamics. Using a simple single-locus model, we show that maternal genetic effects can result in patterns that mimic those expected under genomic imprinting. We further demonstrate how maternal effects and imprinting effects can be distinguished using genomic data from parents and offspring. The model results are applied to a genome scan for quantitative trait loci (QTL) affecting growth- and weight-related traits in mice to illustrate how maternal effects can mimic imprinting. This genome scan revealed five separate maternal-effect loci that caused a diversity of patterns mimicking those expected under various modes of genomic imprinting. These results demonstrate that the appearance of parent-of-origin-dependent effects (POEs) of alleles at a locus cannot be taken as direct evidence that the locus is imprinted. Moreover, they show that, in gene mapping studies, genetic data from both parents and offspring are required to successfully differentiate between imprinting and maternal effects as the cause of apparent parent-of-origin effects of alleles. PMID:18245362

  2. Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting.

    PubMed

    Hager, Reinmar; Cheverud, James M; Wolf, Jason B

    2008-03-01

    Epigenetic effects are increasingly recognized as an important source of variation in complex traits and have emerged as the focus of a rapidly expanding area of research. Principle among these effects is genomic imprinting, which has generally been examined in analyses of complex traits by testing for parent-of-origin-dependent effects of alleles. However, in most of these analyses maternal effects are confounded with genomic imprinting because they can produce the same patterns of phenotypic variation expected for various forms of imprinting. Distinguishing between the two is critical for genetic and evolutionary studies because they have entirely different patterns of gene expression and evolutionary dynamics. Using a simple single-locus model, we show that maternal genetic effects can result in patterns that mimic those expected under genomic imprinting. We further demonstrate how maternal effects and imprinting effects can be distinguished using genomic data from parents and offspring. The model results are applied to a genome scan for quantitative trait loci (QTL) affecting growth- and weight-related traits in mice to illustrate how maternal effects can mimic imprinting. This genome scan revealed five separate maternal-effect loci that caused a diversity of patterns mimicking those expected under various modes of genomic imprinting. These results demonstrate that the appearance of parent-of-origin-dependent effects (POEs) of alleles at a locus cannot be taken as direct evidence that the locus is imprinted. Moreover, they show that, in gene mapping studies, genetic data from both parents and offspring are required to successfully differentiate between imprinting and maternal effects as the cause of apparent parent-of-origin effects of alleles. PMID:18245362

  3. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.

    PubMed

    Chen, Zhiyuan; Hagen, Darren E; Elsik, Christine G; Ji, Tieming; Morris, Collin James; Moon, Laura Emily; Rivera, Rocío Melissa

    2015-04-14

    Embryos generated with the use of assisted reproductive technologies (ART) can develop overgrowth syndromes. In ruminants, the condition is referred to as large offspring syndrome (LOS) and exhibits variable phenotypic abnormalities including overgrowth, enlarged tongue, and abdominal wall defects. These characteristics recapitulate those observed in the human loss-of-imprinting (LOI) overgrowth syndrome Beckwith-Wiedemann (BWS). We have recently shown LOI at the KCNQ1 locus in LOS, the most common epimutation in BWS. Although the first case of ART-induced LOS was reported in 1995, studies have not yet determined the extent of LOI in this condition. Here, we determined allele-specific expression of imprinted genes previously identified in human and/or mouse in day ∼105 Bos taurus indicus × Bos taurus taurus F1 hybrid control and LOS fetuses using RNAseq. Our analysis allowed us to determine the monoallelic expression of 20 genes in tissues of control fetuses. LOS fetuses displayed variable LOI compared with controls. Biallelic expression of imprinted genes in LOS was associated with tissue-specific hypomethylation of the normally methylated parental allele. In addition, a positive correlation was observed between body weight and the number of biallelically expressed imprinted genes in LOS fetuses. Furthermore, not only was there loss of allele-specific expression of imprinted genes in LOS, but also differential transcript amounts of these genes between control and overgrown fetuses. In summary, we characterized previously unidentified imprinted genes in bovines and identified misregulation of imprinting at multiple loci in LOS. We concluded that LOS is a multilocus LOI syndrome, as is BWS. PMID:25825726

  4. Recognition of Rhodobacter sphaeroides by microcontact-imprinted poly(ethylene-co-vinyl alcohol).

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Li, Ming-Huan; Shih, Ching-Ping; Jan, Jeng-Shiung; Lin, Hung-Yin

    2015-11-01

    The immobilization of cells or microorganisms is important for bioseparations, in bioreactors producing cellular metabolites, and as receptors for biosensing. Cell-imprinted polymers (CIPs) have been shown to have cavities with complementary shapes and also high affinities for the template cells or microorganisms. However, the effects of binding to CIPs on gene expression are only beginning to be studied. In this work, the purple bacteria Rhodobacter sphaeroides was employed as a model for the imprinting of microorganisms. R. sphaeroides was first adsorbed on a glass slide as the stamp and then microcontact-imprinted onto poly(ethylene-co-vinyl alcohol), EVAL. The surfaces of the R. sphaeroides-imprinted (RsIPs) and non-imprinted (NIPs) EVAL thin films were examined by Raman spectrometry and scanning electron microscopy. The expression of the nitrogenase (nitrogen fixation, nifH) gene of R. sphaeroides adsorbed on both the RsIPs and NIPs EVAL thin films was also measured by the quantitative reverse transcription polymerase chain reaction (qRT-PCR); cells grown on imprinted polymer showed dramatic differences in gene expression compared to controls. PMID:26277714

  5. Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line

    PubMed Central

    Sun, Sha; Payer, Bernhard; Namekawa, Satoshi; An, Jee Young; Press, William; Catalan-Dibene, Jovani; Sunwoo, Hongjae; Lee, Jeannie T.

    2015-01-01

    The long noncoding X-inactivation–specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line. PMID:26489649

  6. G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells

    PubMed Central

    Zhang, Tuo; Termanis, Ausma; Özkan, Burak; Bao, Xun X.; Culley, Jayne; de Lima Alves, Flavia; Rappsilber, Juri; Ramsahoye, Bernard; Stancheva, Irina

    2016-01-01

    Summary DNA methylation at imprinting control regions (ICRs) is established in gametes in a sex-specific manner and has to be stably maintained during development and in somatic cells to ensure the correct monoallelic expression of imprinted genes. In addition to DNA methylation, the ICRs are marked by allele-specific histone modifications. Whether these marks are essential for maintenance of genomic imprinting is largely unclear. Here, we show that the histone H3 lysine 9 methylases G9a and GLP are required for stable maintenance of imprinted DNA methylation in embryonic stem cells; however, their catalytic activity and the G9a/GLP-dependent H3K9me2 mark are completely dispensable for imprinting maintenance despite the genome-wide loss of non-imprinted DNA methylation in H3K9me2-depleted cells. We provide additional evidence that the G9a/GLP complex protects imprinted DNA methylation by recruitment of de novo DNA methyltransferases, which antagonize TET dioxygenass-dependent erosion of DNA methylation at ICRs. PMID:27052169

  7. Familiarity interferes with filial imprinting.

    PubMed

    van Kampen, H S; de Vos, G J

    1996-10-01

    The present study was performed to investigate whether and how pre-exposure to an object affects subsequent filial imprinting to that object. In Experiment 1 junglefowl chicks (Gallus gallus spadiceus) were first exposed to either a red object alone (control group), or a red and a yellow object simultaneously (experimental group; phase 1). Subsequently, all chicks were exposed to the yellow object in the presence of a black and blue one (phase 2). At the end of phase 1, most experimental chicks had developed a preference for the red object over the yellow one. At the end of phase 2, preferences of experimental chicks were shifted away from the yellow object towards the novel black and blue object, relative to preferences of control chicks. This shows that pre-exposure may interfere with imprinting. Experiment 2 revealed that when control chicks were tested with the yellow object at the end of phase 1, filial responses were as strong as in experimental chicks. This shows that the yellow object had not acquired control over filial behaviour during phase 1, and also that the relatively impaired imprinting on that object in phase 2 was not due to reduced generalization from the red object. One possible explanation why pre-exposure may interfere with imprinting is that familiarity alters the level of attention attracted by an object, a mechanism suggested to underlie 'latent inhibition' in conditioning. PMID:24897630

  8. Imprinted Polymers in Wastewater Treatment

    SciTech Connect

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  9. Exome sequencing identifies a de novo frameshift mutation in the imprinted gene ZDBF2 in a sporadic patient with Nasopalpebral Lipoma-coloboma syndrome.

    PubMed

    Chacón-Camacho, Oscar F; Sobreira, Nara; You, Jing; Piña-Aguilar, Raul E; Villegas-Ruiz, Vanessa; Zenteno, Juan C

    2016-07-01

    Nasopalpebral lipoma-coloboma syndrome (NPLCS, OMIM%167730) is an uncommon malformation entity with autosomal dominant inheritance characterized by the combination of nasopalpebral lipoma, colobomas in upper and lower eyelids, telecanthus, and maxillary hypoplasia. To date, no genetic defects have been associated with familial or sporadic NPLCS cases and the etiology of the disease remains unknown. In this work, the results of whole exome sequencing in a sporadic NPLCS patient are presented. Exome sequencing identified a de novo heterozygous frameshift dinucleotide insertion c.6245_6246 insTT (p.His2082fs*67) in ZDBF2 (zinc finger, DBF-type containing 2), a gene located at 2q33.3. This variant was absent in parental DNA, in a set of 300 ethnically matched controls, and in public exome variant databases. This is the first genetic variant identified in a NPLCS patient and evidence supporting the pathogenicity of the identified mutation is discussed. © 2016 Wiley Periodicals, Inc. PMID:27139419

  10. Laser imprint studies on Nike

    NASA Astrophysics Data System (ADS)

    Pawley, C. J.; Obenschain, S. P.; Schmitt, A. J.; Colombant, D.; Gardner, J. H.; Fyfe, D. E.; Aglitskiy, Y.; Chan, Y.; Deniz, A. V.

    2000-10-01

    The very uniform Nike laser drive is being used to measure laser imprint on cryogenic and non-cryogenic targets. New 3-d simulations are compared with experimental R-T growth images for the standard Nike cryo-target as well as plastic targets with a variety of surface conditions. The standard Nike cryo-target is 180 μm of RF foam (density 50 mg/cc) mounted on 1.5 μm of improved Kapton. Targets have also been manufactured with 20, 30, and 60 μm wavelength sine waves cast into the Kapton to provide an initial perturbation. Liquid deuterium is wicked up into the foam just before the laser drive. These cryo-targets are similar to the ablator portion of the direct drive pellet design for NIF. Competition between laser imprint and pre-imposed modes is measured in both cryogenic and plastic targets. The results are compared to simulations.

  11. Imprint Reduction with Shaped Pulses

    NASA Astrophysics Data System (ADS)

    Collins, T. J. B.; Skupsky, S.

    2000-10-01

    A novel technique for reducing laser imprint in OMEGA cryogenic targets has been developed. Standard ICF cryogenic targets consist of a shell of DT ice with a thin outer layer of CH. The presence of the CH layer gives rise to a brief period of early-time growth by the Rayleigh-Taylor (RT) instability, which effectively increases the amount of laser imprint by about a factor of 2. Two-dimensional ORCHID simulations show that by introducing a short, high-intensity spike at the start of the implosion, this early-time growth can be significantly reduced with only a small change to the calculated 1-D neutron yield. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  12. Rapid Birth-and-Death Evolution of Imprinted snoRNAs in the Prader-Willi Syndrome Locus: Implications for Neural Development in Euarchontoglires

    PubMed Central

    Zhang, Yi-Jun; Yang, Jian-Hua; Shi, Qiao-Su; Zheng, Ling-Ling; Liu, Jun; Zhou, Hui; Zhang, Hui; Qu, Liang-Hu

    2014-01-01

    Imprinted small nucleolar RNAs (snoRNAs) are only found in eutherian genomes and closely related to brain functions. A complex human neurological disease, Prader-Willi syndrome (PWS), is primarily attributed to the deletion of imprinted snoRNAs in chromosome 15q11-q13. Here we investigated the snoRNA repertoires in the PWS locus of 12 mammalian genomes and their evolution processes. A total of 613 imprinted snoRNAs were identified in the PWS homologous loci and the gene number was highly variable across lineages, with a peak in Euarchontoglires. Lineage-specific gene gain and loss events account for most extant genes of the HBII-52 (SNORD115) and the HBII-85 (SNORD116) gene family, and remarkable high gene-birth rates were observed in the primates and the rodents. Meanwhile, rapid sequence substitution occurred only in imprinted snoRNA genes, rather than their flanking sequences or the protein-coding genes located in the same imprinted locus. Strong selective constraints on the functional elements of these imprinted snoRNAs further suggest that they are subjected to birth-and-death evolution. Our data suggest that the regulatory role of HBII-52 on 5-HT2CR pre-mRNA might originate in the Euarchontoglires through adaptive process. We propose that the rapid evolution of PWS-related imprinted snoRNAs has contributed to the neural development of Euarchontoglires. PMID:24945811

  13. A log-linear approach to case-parent-triad data: assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting.

    PubMed

    Weinberg, C R; Wilcox, A J; Lie, R T

    1998-04-01

    We describe a log-linear method for analysis of case-parent-triad data, based on maximum likelihood with stratification on parental mating type. The method leads to estimates of association parameters, such as relative risks, for a single allele, and also to likelihood ratio chi2 tests (LRTs) of linkage disequilibrium. Hardy-Weinberg equilibrium need not be assumed. Our simulations suggest that the LRT has power similar to that of the chi2 "score" test proposed by Schaid and Sommer and that both can outperform the transmission/disequilibrium test (TDT), although the TDT can perform better under an additive model of inheritance. Because a restricted version of the LRT is asymptotically equivalent to the TDT, the proposed test can be regarded as a generalization of the TDT. The method that we describe generalizes easily to accommodate maternal effects on risk and, in fact, produces powerful and orthogonal tests of the contribution of fetal versus maternal genetic factors. We further generalize the model to allow for effects of parental imprinting. Imprinting effects can be fitted by a simple, iterative procedure that relies on the expectation-maximization algorithm and that uses standard statistical software for the maximization steps. Simulations reveal that LRT tests for detection of imprinting have very good operating characteristics. When a single allele is under study, the proposed method can yield powerful tests for detection of linkage disequilibrium and is applicable to a broader array of causal scenarios than is the TDT. PMID:9529360

  14. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows.

    PubMed

    O'Doherty, Alan M; O'Gorman, Aoife; al Naib, Abdullah; Brennan, Lorraine; Daly, Edward; Duffy, Pat; Fair, Trudee

    2014-09-01

    Ovarian follicle development in post-partum, high-producing dairy cows, occurs in a compromised endogenous metabolic environment (referred to as negative energy balance, NEB). Key events that occur during oocyte/follicle growth, such as the vital process of genomic imprinting, may be detrimentally affected by this altered ovarian environment. Imprinting is crucial for placental function and regulation of fetal growth, therefore failure to establish and maintain imprints during oocyte growth may contribute to early embryonic loss. Using ovum pick-up (OPU), oocytes and follicular fluid samples were recovered from cows between days 20 and 115 post-calving, encompassing the NEB period. In a complimentary study, cumulus oocyte complexes were in vitro matured under high non-esterified fatty acid (NEFA) concentrations and in the presence of the methyl-donor S-adenosylmethionine (SAM). Pyrosequencing revealed the loss of methylation at several imprinted loci in the OPU derived oocytes. The loss of DNA methylation was observed at the PLAGL1 locus in oocytes, following in vitro maturation (IVM) in the presence of elevated NEFAs and SAM. Finally, metabolomic analysis of postpartum follicular fluid samples revealed significant differences in several branched chain amino acids, with fatty acid profiles bearing similarities to those characteristic of lactating dairy cows. These results provide the first evidence that (1) the postpartum ovarian environment may affect maternal imprint acquisition and (2) elevated NEFAs during IVM can lead to the loss of imprinted gene methylation in bovine oocytes. PMID:25084396

  15. Loss of Gnas Imprinting Differentially Affects REM/NREM Sleep and Cognition in Mice

    PubMed Central

    Lassi, Glenda; Ball, Simon T.; Maggi, Silvia; Colonna, Giovanni; Nieus, Thierry; Cero, Cheryl; Bartolomucci, Alessandro; Peters, Jo; Tucci, Valter

    2012-01-01

    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM–linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM–dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes. PMID:22589743

  16. Identification of the control region for tissue-specific imprinting of the stimulatory G protein α-subunit

    PubMed Central

    Liu, Jie; Chen, Min; Deng, Chuxia; Bourc'his, Déborah; Nealon, Julie G.; Erlichman, Beth; Bestor, Timothy H.; Weinstein, Lee S.

    2005-01-01

    Gnas is a complex gene with multiple imprinted promoters. The upstream Nesp and Nespas/Gnasxl promoters are paternally and maternally methylated, respectively. The downstream promoter for the stimulatory G protein α-subunit (Gsα) is unmethylated, although in some tissues (e.g., renal proximal tubules), Gsα is poorly expressed from the paternal allele. Just upstream of the Gsα promoter is a primary imprint mark (1A region) where maternal-specific methylation is established during oogenesis. Pseudohypoparathyroidism type 1B, a disorder of renal parathyroid hormone resistance, is associated with loss of 1A methylation. Analysis of embryos of Dnmt3L–/– mothers (which cannot methylate maternal imprint marks) showed that Nesp, Nespas/Gnasxl, and 1A imprinting depend on one or more maternal primary imprint marks. We generated mice with deletion of the 1A differentially methylated region. These mice had normal Nesp-Nespas/Gnasxl imprinting, indicating that the Gnas locus contains two independent imprinting domains (Nespas-Nespas/Gnasxl and 1A-Gsα) controlled by distinct maternal primary imprint marks. Paternal, but not maternal, 1A deletion resulted in Gsα overexpression in proximal tubules and evidence for increased parathyroid hormone sensitivity but had no effect on Gsα expression in other tissues where Gsα is normally not imprinted. The 1A region is a maternal imprint mark that contains one or more methylation-sensitive cis-acting elements that suppress Gsα expression from the paternal allele in a tissue-specific manner. PMID:15811946

  17. Mitigation of initial imprinting with diamond ablator

    NASA Astrophysics Data System (ADS)

    Kato, Hiroki; Shigemori, Keisuke; Hironaka, Youichirou; Terasaki, Hidenori; Sakaiya, Tatsuhiro; Hosogi, Ryouta; Nakai, Mitsuo; Azechi, Hiroshi

    2014-10-01

    In direct drive inertial confinement fusion, where laser light directly irradiates the target, surface perturbations on the target are seeded by initial imprint due to laser irradiation nonuniformity. It is the initial imprint that become the seed of the hydrodynamic instability, and decisive solutions for the mitigation of initial imprinting is required. We focused on material stiffness of ablator as an idea that was effective for mitigation of imprinting and adopted the diamond with low compressibility as an ablator material. In the imprint experiments, the diamond foils were irradiated with a foot pulse at an intensity of ~ 4.0 × 1012W/cm2 with 1.3 ns width, on which a stationary spatial nonuniformity with sinusoidal shape of 100 μm wavelength was imposed by implementing a grid mask. The foils were subsequently accelerated by a uniform main laser pulse of ~ 1.0 × 1014 W/cm2 and imprinted perturbation were observed to be amplified by Rayleigh-Taylor instability through face-on x-ray backlight measurements. We deduced the equivalent initial surface roughness for the imprinted foil. We verified the mitigation of initial imprinting with diamond from the quantitative evaluation.

  18. Distributed feedback imprinted electrospun fiber lasers.

    PubMed

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips. PMID:25042888

  19. Astrobiological Molecularly Imprinted Polymer Sensors

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Murray, G. M.; van Houten, K. A.; Hofstra, A. A.

    2005-12-01

    Development of Molecularly Imprinted Polymer (MIP) sensors for astrobiology is intended to provide a new class of microlaboratory sensors compatible with other life or biomarker detection. Molecular imprinting is a process for making selective binding sites in synthetic polymers. The process may be approached by designing the recognition site or by simply choosing monomers that may have favorable interactions with the imprinting molecule. We are working to apply this methodology to astrobiology for development of a reliable, low cost, low mass, low power consumption sensor technology for quantitative in-situ analysis of biochemistry, biomarkers, and other indicators of astrobiological importance. Specific goals of the project are: 1) To develop a general methodology and specific methods for MIP-based sensor construction. The overall methodology will guide procedures for design and testing of any desired sensor. Specific methods will be applied to key families and specific species of astrobiological interest, i.e., alkanes (and Polycyclic aromatic hydrocarbons - PAHs), amino acids, steroids, and hopanes; 2) To construct and characterize the general family and specific species sensors. We will test for accuracy, precision, interferences, and limitations of the sensor against blanks, standards, and known terrestrial biological environment samples. Additional testing will determine sturdiness and longevity of sensors after exposure to transit conditions (launch and space environment), and at potential target environments (pressure, temperature, pH, etc.); and 3) To construct and demonstrate the combination of multiple sensors into a viable prototype instrument, and roadmap the expansion of potential instrument capabilities and exploration of the ultimate environmental limitations of the technology, and the necessary changes and additions to create a mission-ready instrument. Initial work has resulted successful detection of aqueous alanine (D and L) with simple MIP

  20. No Evidence for Enrichment in Schizophrenia for Common Allelic Associations at Imprinted Loci

    PubMed Central

    Escott-Price, Valentina; Kirov, George; Rees, Elliott; Isles, Anthony R.; Owen, Michael J.; O’Donovan, Michael C.

    2015-01-01

    Most genetic studies assume that the function of a genetic variant is independent of the parent from which it is inherited, but this is not always true. The best known example of parent-of-origin effects arises with respect to alleles at imprinted loci. In classical imprinting, characteristically, either the maternal or paternal copy is expressed, but not both. Only alleles present in one of the parental copies of the gene, the expressed copy, is likely to contribute to disease. It has been postulated that imprinting is important in central nervous system development, and that consequently, imprinted loci may be involved in schizophrenia. If this is true, allowing for parent-of-origin effects might be important in genetic studies of schizophrenia. Here, we use genome-wide association data from one of the world’s largest samples (N = 695) of parent schizophrenia-offspring trios to test for parent-of-origin effects. To maximise power, we restricted our analyses to test two main hypotheses. If imprinting plays a disproportionate role in schizophrenia susceptibility, we postulated a) that alleles showing robust evidence for association to schizophrenia from previous genome-wide association studies should be enriched for parent-of-origin effects and b) that genes at loci imprinted in humans or mice should be enriched both for genome-wide significant associations, and in our sample, for parent-of-origin effects. Neither prediction was supported in the present study. We have shown, that it is unlikely that parent-of-origin effects or imprinting play particularly important roles in schizophrenia, although our findings do not exclude such effects at specific loci nor do they exclude such effects among rare alleles. PMID:26633303

  1. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment

    PubMed Central

    Court, Franck; Tayama, Chiharu; Romanelli, Valeria; Martin-Trujillo, Alex; Iglesias-Platas, Isabel; Okamura, Kohji; Sugahara, Naoko; Simón, Carlos; Moore, Harry; Harness, Julie V.; Keirstead, Hans; Sanchez-Mut, Jose Vicente; Kaneki, Eisuke; Lapunzina, Pablo; Soejima, Hidenobu; Wake, Norio; Esteller, Manel; Ogata, Tsutomu; Hata, Kenichiro; Nakabayashi, Kazuhiko; Monk, David

    2014-01-01

    Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci. PMID:24402520

  2. Transcription and imprinting dynamics in developing postnatal male germline stem cells

    PubMed Central

    Hammoud, Saher Sue; Low, Diana H.P.; Yi, Chongil; Lee, Chee Leng; Oatley, Jon M.; Payne, Christopher J.; Carrell, Douglas T.; Guccione, Ernesto; Cairns, Bradley R.

    2015-01-01

    Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1+; high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1+; moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT+). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor–ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles. PMID:26545815

  3. Imprinting mutations suggested by abnormal DNA methylation patterns in familial angelman and Prader-Willi syndromes

    SciTech Connect

    Reis, A. ); Dittrich, B.; Buiting, K.; Gillessen-Kaesbach, G.; Horsthemke, B. ); Greger, V.; Lalande, M. ); Anvret, M. )

    1994-05-01

    The D15S9 and D15S63 loci in the Prader-Willi/Angelman syndrome region on chromosome 15 are subject to parent-of-origin-specific DNA methylation. The authors have found two Prader-Willi syndrome families in which the patients carry a maternal methylation imprint on the paternal chromosome. In one of these families, the patients have a small deletion encompassing the gene for the small nuclear ribonucleoprotein polypeptide N, which maps 130 kb telomeric to D15S63. Furthermore, they have identified a pair of nondeletion Angelman syndrome sibs and two isolated Angelman syndrome patients who carry a paternal methylation imprint on the maternal chromosome. These Angelman and Prader-Willi syndrome patients may have a defect in the imprinting process in 15q11-13. The authors propose a model in which a cis-acting mutation prevents the resetting of the imprinting signal in the germ line and thus disturbs the expression of imprinted genes in this region. 39 refs., 4 figs., 1 tab.

  4. Transcription and imprinting dynamics in developing postnatal male germline stem cells.

    PubMed

    Hammoud, Saher Sue; Low, Diana H P; Yi, Chongil; Lee, Chee Leng; Oatley, Jon M; Payne, Christopher J; Carrell, Douglas T; Guccione, Ernesto; Cairns, Bradley R

    2015-11-01

    Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1(+); high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1(+); moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT(+)). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor-ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles. PMID:26545815

  5. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes.

    PubMed

    Court, Franck; Martin-Trujillo, Alex; Romanelli, Valeria; Garin, Intza; Iglesias-Platas, Isabel; Salafsky, Ira; Guitart, Miriam; Perez de Nanclares, Guiomar; Lapunzina, Pablo; Monk, David

    2013-04-01

    Genomic imprinting is the parent-of-origin-specific allelic transcriptional silencing observed in mammals, which is governed by DNA methylation established in the gametes and maintained throughout the development. The frequency and extent of epimutations associated with the nine reported imprinting syndromes varies because it is evident that aberrant preimplantation maintenance of imprinted differentially methylated regions (DMRs) may affect multiple loci. Using a custom Illumina GoldenGate array targeting 27 imprinted DMRs, we profiled allelic methylation in 65 imprinting defect patients. We identify multilocus hypomethylation in numerous Beckwith-Wiedemann syndrome, transient neonatal diabetes mellitus (TNDM), and pseudohypoparathyroidism 1B patients, and an individual with Silver-Russell syndrome. Our data reveal a broad range of epimutations exist in certain imprinting syndromes, with the exception of Prader-Willi syndrome and Angelman syndrome patients that are associated with solitary SNRPN-DMR defects. A mutation analysis identified a 1 bp deletion in the ZFP57 gene in a TNDM patient with methylation defects at multiple maternal DMRs. In addition, we observe missense variants in ZFP57, NLRP2, and NLRP7 that are not consistent with maternal effect and aberrant establishment or methylation maintenance, and are likely benign. This work illustrates that further extensive molecular characterization of these rare patients is required to fully understand the mechanism underlying the etiology of imprint establishment and maintenance. PMID:23335487

  6. Imprinted polymer sensors for contamination detection

    NASA Astrophysics Data System (ADS)

    Murray, George M.; Arnold, Bradley R.; Kelly, Craig A.; Uy, O. Manuel

    2001-03-01

    Molecular imprinting is a useful technique for making a chemically selective binding site. The method involves building a synthetic polymeric scaffold of molecular complements containing the target molecule with subsequent removal of the target to leave a cavity with a structural "memory" of the target. Molecularly imprinted polymers can be employed as selective adsorbents of specific molecules or molecular functional groups. The imprinted polymers can be fashioned into membranes that can be used to form ion selective electrodes for an imprinted ion. By incorporating molecules or metal ions with useful optical properties in the binding sites of imprinted polymers, spectroscopic sensors for the imprinted molecule may be made. A variety of metal ion selective electrodes and a Pb2+ ion optrode based on imprinted polymers have been fabricated and tested.1-4 Additionally, a sensor for the hydrolysis product of the nerve agent Soman has been developed using a luminescent lanthanide ion, Eu(III), as optical transducer.5 Our research continues to explore other means to employ electrochemical and optical transduction.

  7. Ferroelectric capacitor with reduced imprint

    DOEpatents

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  8. A Bayesian Method for Simultaneously Detecting Mendelian and Imprinted Quantitative Trait Loci in Experimental Crosses of Outbred Species

    PubMed Central

    Hayashi, Takeshi; Awata, Takashi

    2008-01-01

    Genomic imprinting is interpreted as a phenomenon, in which some genes inherited from one parent are not completely expressed due to modification of the genome caused during gametogenesis. Subsequently, the expression level of an allele at the imprinted gene is changed dependent on the parental origin, which is referred to as the parent-of-origin effect. In livestock, some QTL for reproductive performance and meat productivity have been reported to be imprinted. So far, methods detecting imprinted QTL have been proposed on the basis of interval mapping, where only a single QTL was tested at a time. In this study, we developed a Bayesian method for simultaneously mapping multiple QTL, allowing the inference about expression modes of QTL in an outbred F2 family. The inference about whether a QTL is Mendelian or imprinted was made using Markov chain Monte Carlo estimation by comparing the goodness-of-fits between models, assuming the presence and the absence of parent-of-origin effect at a QTL. We showed by the analyses of simulated data sets that the Bayesian method can effectively detect both Mendelian QTL and imprinted QTL. PMID:18202392

  9. A Micro-Silicon Chip for in Vivo Cerebral Imprint in Monkey

    PubMed Central

    2012-01-01

    Access to cerebral tissue is essential to better understand the molecular mechanisms associated with neurodegenerative diseases. In this study, we present, for the first time, a new tool designed to obtain molecular and cellular cerebral imprints in the striatum of anesthetized monkeys. The imprint is obtained during a spatially controlled interaction of a chemically modified micro-silicon chip with the brain tissue. Scanning electron and immunofluorescence microscopies showed homogeneous capture of cerebral tissue. Nano-liquid chromatography–tandem mass spectrometry (nano-LC-MS/MS) analysis of proteins harvested on the chip allowed the identification of 1158 different species of proteins. The gene expression profiles of mRNA extracted from the imprint tool showed great similarity to those obtained via the gold standard approach, which is based on post-mortem sections of the same nucleus. Functional analysis of the harvested molecules confirmed the spatially controlled capture of striatal proteins implicated in dopaminergic regulation. Finally, the behavioral monitoring and histological results establish the safety of obtaining repeated cerebral imprints in striatal regions. These results demonstrate the ability of our imprint tool to explore the molecular content of deep brain regions in vivo. They open the way to the molecular exploration of brain in animal models of neurological diseases and will provide complementary information to current data mainly restricted to post-mortem samples. PMID:23509975

  10. Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.

    PubMed

    Santure, Anna W; Spencer, Hamish G

    2006-08-01

    The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components. PMID:16751674

  11. Genomic imprinting effects of the X-chromosome on brain morphology

    PubMed Central

    Lepage, Jean-Francois; Hong, David S.; Mazaika, Paul K.; Raman, Mira; Sheau, Kristen; Marzelli, Matthew J.; Hallmayer, Joachim; Reiss, Allan L.

    2013-01-01

    There is increasing evidence that genomic imprinting, a process by which certain genes are expressed in a parent-of-origin specific manner, can influence neurogenetic and psychiatric manifestations. While some data suggest possible imprinting effects of the X-chromosome on physical and cognitive characteristics in human, there is no compelling evidence that X-linked imprinting affects brain morphology. To address this issue, we investigated regional cortical volume, thickness and surface area in 27 healthy controls and 40 prepubescent girls with Turner syndrome (TS), a condition caused by the absence of one X-chromosome. Of the young girls with TS, 23 inherited their X-chromosome from their mother (Xm) and 17 from their father (Xp). Our results confirm the existence of significant differences in brain morphology between girls with TS and controls, and reveal the presence of a putative imprinting effect among the TS groups: girls with Xp demonstrated thicker cortex than those with Xm in the temporal regions bilaterally, while Xm individuals showed bilateral enlargement of gray matter volume in the superior frontal regions in comparison to Xp. These data suggest the existence of imprinting effects of the X-chromosome that influence both cortical thickness and volume during early brain development, and help to explain variability in cognitive and behavioral manifestations of TS with regard to the parental origin of the X-chromosome. PMID:23658194

  12. Molecularly Imprinted Polymers: Present and Future Prospective

    PubMed Central

    Vasapollo, Giuseppe; Sole, Roberta Del; Mergola, Lucia; Lazzoi, Maria Rosaria; Scardino, Anna; Scorrano, Sonia; Mele, Giuseppe

    2011-01-01

    Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented. PMID:22016636

  13. Imprinted expression in cystic embryoid bodies shows an embryonic and not an extra-embryonic pattern

    PubMed Central

    Kulinski, Tomasz M.; Casari, M. Rita T.; Guenzl, Philipp M.; Wenzel, Daniel; Andergassen, Daniel; Hladik, Anastasiya; Datlinger, Paul; Farlik, Matthias; Theussl, H. -Christian; Penninger, Josef M.; Knapp, Sylvia; Bock, Christoph; Barlow, Denise P.; Hudson, Quanah J.

    2015-01-01

    A large subset of mammalian imprinted genes show extra-embryonic lineage (EXEL) specific imprinted expression that is restricted to placental trophectoderm lineages and to visceral yolk sac endoderm (ysE). Isolated ysE provides a homogenous in vivo model of a mid-gestation extra-embryonic tissue to examine the mechanism of EXEL-specific imprinted gene silencing, but an in vitro model of ysE to facilitate more rapid and cost-effective experiments is not available. Reports indicate that ES cells differentiated into cystic embryoid bodies (EBs) contain ysE, so here we investigate if cystic EBs model ysE imprinted expression. The imprinted expression pattern of cystic EBs is shown to resemble fetal liver and not ysE. To investigate the reason for this we characterized the methylome and transcriptome of cystic EBs in comparison to fetal liver and ysE, by whole genome bisulphite sequencing and RNA-seq. Cystic EBs show a fetal liver pattern of global hypermethylation and low expression of repeats, while ysE shows global hypomethylation and high expression of IAPEz retroviral repeats, as reported for placenta. Transcriptome analysis confirmed that cystic EBs are more similar to fetal liver than ysE and express markers of early embryonic endoderm. Genome-wide analysis shows that ysE shares epigenetic and repeat expression features with placenta. Contrary to previous reports, we show that cystic EBs do not contain ysE, but are more similar to the embryonic endoderm of fetal liver. This explains why cystic EBs reproduce the imprinted expression seen in the embryo but not that seen in the ysE. PMID:25912690

  14. Loss of inherited genomic imprints in mice leads to severe disruption in placental lipid metabolism

    PubMed Central

    Himes, K. P.; Young, A.; Koppes, E.; Stolz, D.; Barak, Y.; Sadovsky, Y.; Chaillet, J.R.

    2015-01-01

    Introduction Monoallelic expression of imprinted genes is necessary for placental development and normal fetal growth. Differentially methylated domains (DMDs) largely determine the parental-specific monoallelic expression of imprinted genes. Maternally derived DNA (cytosine-5-) -methyltransferase 1o (DNMT1o) maintains DMDs during the eight-cell stage of development. DNMT1o-deficient mouse placentas have a generalized disruption of genomic imprints. Previous studies have demonstrated that DNMT1o deficiency alters placental morphology and broadens the embryonic weight distribution in late gestation. Lipids are critical for fetal growth. Thus, we assessed the impact of disrupted imprinting on placental lipids. Methods Lipids were quantified from DNMT1o-deficient mouse placentas and embryos at E17.5 using a modified Folch method. Expression of select genes critical for lipid metabolism was quantified with RT-qPCR. Mitochondrial morphology was assessed by TEM and mitochondrial aconitase and cytoplasmic citrate concentrations quantified. DMD methylation was determined by EpiTYPER. Results We found that DNMT1o deficiency is associated with increased placental triacylglycerol levels. Neither fetal triacylglycerol concentrations nor expression of select genes that mediate placental lipid transport were different from wild type. Placental triacylglycerol accumulation was associated with impaired beta-oxidation and abnormal citrate metabolism with decreased mitochondrial aconitase activity and increased cytoplasmic citrate concentrations. Loss of methylation at the MEST DMD was strongly associated with placental triacylglycerol accumulation. Discussion A generalized disruption of genomic imprints leads to triacylglycerol accumulation and abnormal mitochondrial function. This could stem directly from a loss of methylation at a given DMD, such as MEST, or represent a consequence of abnormal placental development. PMID:25662615

  15. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    PubMed Central

    Bermejo-Álvarez, P.; Ramos-Ibeas, P.; Park, K.E.; Powell, A. P.; Vansandt, L.; Derek, Bickhart; Ramirez, M. A.; Gutiérrez-Adán, A.; Telugu, B. P.

    2015-01-01

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus. PMID:26328763

  16. Abnormal expression of DNA methyltransferases and genomic imprinting in cloned goat fibroblasts.

    PubMed

    Wan, Yongjie; Deng, Mingtian; Zhang, Guomin; Ren, Caifang; Zhang, Hao; Zhang, Yanli; Wang, Lizhong; Wang, Feng

    2016-01-01

    Somatic cell nuclear transfer (SCNT) is a useful way to produce cloned animals. However, SCNT animals exhibit DNA methylation and genomic imprinting abnormalities. These abnormalities may be due to the faulty epigenetic reprogramming of donor cells. To investigate the consequence of SCNT on the genomic imprinting and global methylation in the donor cells, growth patterns and apoptosis of cloned goat fibroblast cells (CGFCs) at passage 7 were determined. Growth patterns in CGFCs were similar to the controls; however, the growth rate in log phase was lower and apoptosis in CGFCs were significantly higher (P < 0.01). In addition, quantitative expression analysis of three DNA methyltransferases (Dnmt) and two imprinted genes (H19, IGF2R) was conducted in CGFCs: Dnmt1 and Dnmt3b expression was significantly reduced (P < 0.01), and H19 expression was decreased sixfold (P < 0.01); however, the expression of Dnmt3a was unaltered and IGF2R expression was significantly increased (P < 0.05). Finally, we used bisulfite sequencing PCR to compare the DNA methylation patterns in differentially methylated regions (DMRs) of H19 and IGF2R. The DMRs of H19 (P < 0.01) and IGF2R (P < 0.01) were both highly methylated in CGFCs. These results indicate that the global genome might be hypomethylated. Moreover, there is an aberrant expression of imprinted genes and DMR methylation in CGFCs. PMID:26314395

  17. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive

    PubMed Central

    Maupetit-Méhouas, Stéphanie; Montibus, Bertille; Nury, David; Tayama, Chiharu; Wassef, Michel; Kota, Satya K.; Fogli, Anne; Cerqueira Campos, Fabiana; Hata, Kenichiro; Feil, Robert; Margueron, Raphael; Nakabayashi, Kazuhiko; Court, Franck; Arnaud, Philippe

    2016-01-01

    Parental allele-specific expression of imprinted genes is mediated by imprinting control regions (ICRs) that are constitutively marked by DNA methylation imprints on the maternal or paternal allele. Mono-allelic DNA methylation is strictly required for the process of imprinting and has to be faithfully maintained during the entire life-span. While the regulation of DNA methylation itself is well understood, the mechanisms whereby the opposite allele remains unmethylated are unclear. Here, we show that in the mouse, at maternally methylated ICRs, the paternal allele, which is constitutively associated with H3K4me2/3, is marked by default by H3K27me3 when these ICRs are transcriptionally inactive, leading to the formation of a bivalent chromatin signature. Our data suggest that at ICRs, chromatin bivalency has a protective role by ensuring that DNA on the paternal allele remains unmethylated and protected against spurious and unscheduled gene expression. Moreover, they provide the proof of concept that, beside pluripotent cells, chromatin bivalency is the default state of transcriptionally inactive CpG island promoters, regardless of the developmental stage, thereby contributing to protect cell identity. PMID:26400168

  18. Molecularly imprinted polymers for biomedical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Dmitrienko, E. V.; Pyshnaya, I. A.; Martyanov, O. N.; Pyshnyi, D. V.

    2016-05-01

    This survey covers main advances in the preparation and application of molecularly imprinted polymers which are capable of specific recognition of biologically active compounds. The principles underlying the production of highly efficient and template-specific molecularly imprinted polymers are discussed. The focus is on the imprinting of highly structured macromolecular and supramolecular templates. The existing and potential applications of molecularly imprinted polymers in various fields of chemistry and molecular biology are considered. The bibliography includes 261 references.

  19. Tissue-specific insulator function at H19/Igf2 revealed by deletions at the imprinting control region.

    PubMed

    Ideraabdullah, Folami Y; Thorvaldsen, Joanne L; Myers, Jennifer A; Bartolomei, Marisa S

    2014-12-01

    Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith-Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [Δ2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, ∼75% of the ICR. Surprisingly, the Δ2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF. PMID:24990148

  20. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... delivered for introduction into interstate commerce unless it is clearly marked or imprinted with a...

  1. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... delivered for introduction into interstate commerce unless it is clearly marked or imprinted with a...

  2. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... delivered for introduction into interstate commerce unless it is clearly marked or imprinted with a...

  3. A search for imprinted quantitative trait loci (QTLs) for birth weight

    SciTech Connect

    Pandya, A.; Llewellyn, B.; Schieken, R.

    1994-09-01

    Previous studies have generally provided strong evidence that maternal effects are a much more important determinant of birth weight than the genes of the fetus. In the past, these findings have been interpreted as reflecting a genetically determined maternal constraint on fetal growth. However, the recognition that the expression of a gene can be influenced by its parental origin has provided an alternative explanation for apparent maternal effects. In the mouse, a growing number of imprinted genes have been identified which can profoundly influence birth weight or body size including IGF-1, IGF-2, and their respective receptor loci. To determine whether any of the loci are QTLs for body size in man, we have used parental typing data to classify dizygotic twins according to their identity by descent (IBD) for polymorphic markers at or near the candidate loci. The contrast between the correlations of DZ pairs sharing both alleles IBD and no alleles IBD can provide evidence for a candidate gene effect while the contrast between twins sharing one maternal or one paternal allele IBD can provide evidence for any effect of imprinting that may exist at the locus. Finally, the inclusion of data on MZ twins in an overall analysis permits the resolution of the imprinting and marker gene effects from other sources of genetic and environmental variation. We have applied this model to birth weight data on 181 pairs of twins who were classified according to their allele sharing at the IGF-1 locus. In keeping with other observations, the data show no evidence that the IGF-1 locus is imprinted in man. Although our results are consistent with the possibility that this locus may account for 15-20% of the genetic variation, the apparent effect is not statistically significant. Partitioned twin analysis appears to be a useful method for detecting the effects of specific candidate gene on continuously distributed traits.

  4. Transfers and transitions: Parent–offspring conflict, genomic imprinting, and the evolution of human life history

    PubMed Central

    Haig, David

    2010-01-01

    Human offspring are weaned earlier than the offspring of other great apes but take longer to reach nutritional independence. An analysis of human disorders of imprinted genes suggests genes of paternal origin, expressed in infants, have been selected to favor more intense suckling than genes of maternal origin. The same analysis suggests that genes of maternal origin may favor slower childhood growth but earlier sexual maturation. These observations are consistent with a hypothesis in which slow maturation was an adaptation of offspring that reduced maternal fitness, whereas early weaning was an adaptation of mothers that reduced the fitness of individual offspring. PMID:19666529

  5. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis

    PubMed Central

    Ferrón, S. R.; Radford, E. J.; Domingo-Muelas, A.; Kleine, I.; Ramme, A.; Gray, D.; Sandovici, I.; Constancia, M.; Ward, A.; Menheniott, T. R.; Ferguson-Smith, A. C.

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  6. Identification of clustered YY1 binding sites in Imprinting Control Regions

    SciTech Connect

    Kim, J D; Hinz, A; Bergmann, A; Huang, J; Ovcharenko, I; Stubbs, L; Kim, J

    2006-04-19

    Mammalian genomic imprinting is regulated by Imprinting Control Regions (ICRs) that are usually associated with tandem arrays of transcription factor binding sites. In the current study, the sequence features derived from a tandem array of YY1 binding sites of Peg3-DMR (differentially methylated region) led us to identify three additional clustered YY1 binding sites, which are also localized within the DMRs of Xist, Tsix, and Nespas. These regions have been shown to play a critical role as ICRs for the regulation of surrounding genes. These ICRs have maintained a tandem array of YY1 binding sites during mammalian evolution. The in vivo binding of YY1 to these regions is allele-specific and only to the unmethylated active alleles. Promoter/enhancer assays suggest that a tandem array of YY1 binding sites function as a potential orientation-dependent enhancer. Insulator assays revealed that the enhancer-blocking activity is detected only in the YY1 binding sites of Peg3-DMR but not in the YY1 binding sites of other DMRs. Overall, our identification of three additional clustered YY1 binding sites in imprinted domains suggests a significant role for YY1 in mammalian genomic imprinting.

  7. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis.

    PubMed

    Ferrón, S R; Radford, E J; Domingo-Muelas, A; Kleine, I; Ramme, A; Gray, D; Sandovici, I; Constancia, M; Ward, A; Menheniott, T R; Ferguson-Smith, A C

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  8. High Sensitivity Imprint Measurements on Nike Laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max

    2005-10-01

    Hydrodynamic instability seeded by laser non-uniformity (laser imprint) is an important factor in performance of direct-drive ICF targets. Most of the imprint occurs during the initial low-intensity (``foot'') part of the pulse, necessary to compress the target to achieve high gain. Experiments are carried out on Nike KrF laser with induced spatial incoherence (ISI) smoothing. The amount of imprint is varied by changing the uniformity the foot of the pulse. The resulting Raleigh-Taylor (RT) amplified areal mass non-uniformity is measured by face-on x-ray radiography using Bragg reflection from a curved crystal coupled to an x-ray streak camera. The streak camera was recently retrofitted with a new high sensitivity CCD camera. The sensitivity of the CCD has enabled it to be fiberoptically coupled directly to the streak camera output, without an image intensifier and lens coupling. This gave an increased overall spatial resolution as well as lower noise. Because of the strong short wavelength component of RT amplified imprint, the increased resolution and lower noise resulted in much lower noise floor in the measurement. Experimental results are compared with 2D simulations using FAST hydrocode for a range of foot uniformities and intensities. Work supported by the U. S. DOE/NNSA.

  9. Atomic-Scale Imprinting into Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo; Li, Rui; Simon, Georg; Kinser, Emely; Liu, Ze; Chen, Zheng; Zhou, Chao; Singer, Jonathan; Osuji, Chinedum; Schroers, Jan

    Nanoimprinting by thermoplastic forming (TPF) has attracted significant attention in recent years due to its promise of low-cost fabrication of nanostructured devices. Usually performed using polymers, amorphous metals have been identified as a material class that might be even better suited for nanoimprinting due to a combination of mechanical properties and processing ability. Commonly referred to as metallic glasses, their featureless atomic structure suggests that there may not be an intrinsic size limit to the material's ability to replicate a mold. To study this hypothesis, we demonstrate atomic-scale imprinting into amorphous metals by TPF under ambient conditions. Atomic step edges of a SrTiO3 (STO) single crystal used as mold were successfully imprinted into Pt-based bulk metallic glasses (BMGs) with high fidelity. Terraces on the BMG replicas possess atomic smoothness with sub-Angstrom roughness that is identical to the one measured on the STO mold. Systematic studies revealed that the quality of the replica depends on the loading rate during imprinting, that the same mold can be used multiple times without degradation of mold or replicas, and that the atomic-scale features on as-imprinted BMG surfaces has impressive long-term stability (months).

  10. Plastic Antibodies: Molecular Recognition with Imprinted Polymers

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Furmanski, Brian; Shimizu, Ken D.

    2005-01-01

    Synthetic polymers are prepared and tested in a study for their molecular recognition properties of an adenine derivative, ethyl adenine-9-acetate (EA9A), within two laboratory periods. The procedure introduces undergraduate chemistry students to noncovalent molecular imprinting as well as the analytical techniques for assessing their recognition…

  11. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    PubMed

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-05-01

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage. PMID:17480121

  12. Otx2 expression and implications for olfactory imprinting in the anemonefish, Amphiprion percula.

    PubMed

    Veilleux, Heather D; Van Herwerden, Lynne; Cole, Nicholas J; Don, Emily K; De Santis, Christian; Dixson, Danielle L; Wenger, Amelia S; Munday, Philip L

    2013-01-01

    The otx2 gene encodes a transcription factor (OTX2) essential in the formation of the brain and sensory systems. Specifically, OTX2-positive cells are associated with axons in the olfactory system of mice and otx2 is upregulated in odour-exposed zebrafish, indicating a possible role in olfactory imprinting. In this study, otx2 was used as a candidate gene to investigate the molecular mechanisms of olfactory imprinting to settlement cues in the coral reef anemonefish, Amphiprion percula. The A. percula otx2 (Ap-otx2) gene was elucidated, validated, and its expression tested in settlement-stage A. percula by exposing them to behaviourally relevant olfactory settlement cues in the first 24 hours post-hatching, or daily throughout the larval phase. In-situ hybridisation revealed expression of Ap-otx2 throughout the olfactory epithelium with increased transcript staining in odour-exposed settlement-stage larval fish compared to no-odour controls, in all scenarios. This suggests that Ap-otx2 may be involved in olfactory imprinting to behaviourally relevant settlement odours in A. percula. PMID:24143277

  13. Otx2 expression and implications for olfactory imprinting in the anemonefish, Amphiprion percula

    PubMed Central

    Veilleux, Heather D.; Van Herwerden, Lynne; Cole, Nicholas J.; Don, Emily K.; De Santis, Christian; Dixson, Danielle L.; Wenger, Amelia S.; Munday, Philip L.

    2013-01-01

    Summary The otx2 gene encodes a transcription factor (OTX2) essential in the formation of the brain and sensory systems. Specifically, OTX2-positive cells are associated with axons in the olfactory system of mice and otx2 is upregulated in odour-exposed zebrafish, indicating a possible role in olfactory imprinting. In this study, otx2 was used as a candidate gene to investigate the molecular mechanisms of olfactory imprinting to settlement cues in the coral reef anemonefish, Amphiprion percula. The A. percula otx2 (Ap-otx2) gene was elucidated, validated, and its expression tested in settlement-stage A. percula by exposing them to behaviourally relevant olfactory settlement cues in the first 24 hours post-hatching, or daily throughout the larval phase. In-situ hybridisation revealed expression of Ap-otx2 throughout the olfactory epithelium with increased transcript staining in odour-exposed settlement-stage larval fish compared to no-odour controls, in all scenarios. This suggests that Ap-otx2 may be involved in olfactory imprinting to behaviourally relevant settlement odours in A. percula. PMID:24143277

  14. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    PubMed

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL

  15. Mycotoxin Analysis Using Imprinted Materials Technology: Recent Developments.

    PubMed

    Appell, Michael; Mueller, Anja

    2016-07-01

    Molecular imprinting technology is an attractive, cost-effective, and robust alternative to address the limitations of highly selective natural receptors, such as antibodies and aptamers. The field of molecular imprinting has seen a recent surge in growth, and several commercially available products are of great interest for sample cleanup to improve mycotoxin analysis. Current research trends are in specific applications of imprinting technology for small-molecule sensing and chromatographic cleanup procedures in new commodities. The choice of components and imprinting template are critical factors for mycotoxin recovery or detection optimization. Template mimics offer a means to reduce toxic exposure during polymer synthesis and address issues of leaching template from the imprinted polymer. Recent reports of molecularly imprinted polymers for aflatoxins, ochratoxins, fumonisins, fusaric acid, citrinin, patulin, zearalenone, deoxynivalenol, and T-2 toxin are reviewed. PMID:27214609

  16. Bolt Cutter Blade's Imprint in Toolmarks Examination.

    PubMed

    Volkov, Nikolai; Finkelstein, Nir; Novoselsky, Yehuda; Tsach, Tsadok

    2015-11-01

    Bolt cutters are known as cutting tools which are used for cutting hard objects and materials, such as padlocks and bars. Bolt cutter blades leave their imprint on the cut objects. When receiving a cut object from a crime scene, forensic toolmarks examiners can determine whether the suspected cutting tool was used in a specific crime or not based on class characteristic marks and individual marks that the bolt cutter blades leave on the cut object. The paper presents preliminary results of a study on ten bolt cutters and suggests a quick preliminary examination-the comparison between the blade thickness and the width of the imprint left by the tool on the cut object. Based on the comparison result, if there is not a match, the examiner can eliminate the feasibility of the use of the suspected cutting tool in a specific crime. This examination simplifies and accelerates the comparison procedure. PMID:26257324

  17. Beckwith-Wiedemann and Silver-Russell syndromes: opposite developmental imbalances in imprinted regulators of placental function and embryonic growth.

    PubMed

    Jacob, K J; Robinson, W P; Lefebvre, L

    2013-10-01

    Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are two congenital disorders with opposite outcomes on fetal growth, overgrowth and growth restriction, respectively. Although both disorders are heterogeneous, most cases of BWS and SRS are associated with opposite epigenetic or genetic abnormalities on 11p15.5 leading to opposite imbalances in the expression levels of imprinted genes. In this article, we review evidence implicating these genes in the developmental regulation of embryonic growth and placental function in mouse models. The emerging picture suggests that both SRS and BWS can be caused by the simultaneous and opposite deregulation of two groups of imprinted genes on 11p15.5. A detailed description of the phenotypic abnormalities associated with each syndrome must take into consideration the developmental functions of each gene involved. PMID:23495910

  18. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R.; Talley, Chad E.

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  19. 77 FR 25082 - Picture Permit Imprint Indicia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ...The Postal Service will revise Mailing Standards of the United States Postal Service, Domestic Mail Manual (DMM[supreg]) 604.5 to add picture permit imprint indicia standards allowing customers to include business-related color images, such as corporate logos, company brand or trademarks, in the permit indicia area of First-Class Mail[supreg] full-service automation letters and postcards, and......

  20. Antagonist Xist and Tsix co-transcription during mouse oogenesis and maternal Xist expression during pre-implantation development calls into question the nature of the maternal imprint on the X chromosome

    PubMed Central

    Deuve, Jane Lynda; Bonnet-Garnier, Amélie; Beaujean, Nathalie; Avner, Philip; Morey, Céline

    2015-01-01

    During the first divisions of the female mouse embryo, the paternal X-chromosome is coated by Xist non-coding RNA and gradually silenced. This imprinted X-inactivation principally results from the apposition, during oocyte growth, of an imprint on the X-inactivation master control region: the X-inactivation center (Xic). This maternal imprint of yet unknown nature is thought to prevent Xist upregulation from the maternal X (XM) during early female development. In order to provide further insight into the XM imprinting mechanism, we applied single-cell approaches to oocytes and pre-implantation embryos at different stages of development to analyze the expression of candidate genes within the Xic. We show that, unlike the situation pertaining in most other cellular contexts, in early-growing oocytes, Xist and Tsix sense and antisense transcription occur simultaneously from the same chromosome. Additionally, during early development, Xist appears to be transiently transcribed from the XM in some blastomeres of late 2-cell embryos concomitant with the general activation of the genome indicating that XM imprinting does not completely suppress maternal Xist transcription during embryo cleavage stages. These unexpected transcriptional regulations of the Xist locus call for a re-evaluation of the early functioning of the maternal imprint on the X-chromosome and suggest that Xist/Tsix antagonist transcriptional activities may participate in imprinting the maternal locus as described at other loci subject to parental imprinting. PMID:26267271

  1. Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification.

    PubMed

    Andaç, Müge; Galaev, Igor Yu; Denizli, Adil

    2016-05-15

    The publications in macro-molecularly imprinted polymers have increased drastically in recent years with the development of water-based polymer systems. The macroporous structure of cryogels has allowed the use of these materials within different applications, particularly in affinity purification and molecular imprinting based methods. Due to their high selectivity, specificity, efficient mass transfer and good reproducibility, molecularly imprinted cryogels (MICs) have become attractive for researchers in the separation and purification of proteins. In this review, the recent developments in affinity based cryogels and molecularly imprinted cryogels in protein purification are reviewed comprehensively. PMID:26454622

  2. Paternal Factors and Schizophrenia Risk: De Novo Mutations and Imprinting

    PubMed Central

    Malaspina, Dolores

    2010-01-01

    There is a strong genetic component for schizophrenia risk, but it is unclear how the illness is maintained in the population given the significantly reduced fertility of those with the disorder. One possibility is that new mutations occur in schizophrenia vulnerability genes. If so, then those with schizophrenia may have older fathers, because advancing paternal age is the major source of new mutations in humans. This review describes several neurodevelopmental disorders that have been associated with de novo mutations in the paternal germ line and reviews data linking increased schizophrenia risk with older fathers. Several genetic mechanisms that could explain this association are proposed, including paternal germ line mutations, trinucleotide repeat expansions, and alterations in genetic imprinting in one or several genes involved in neurodevelopment. Animal models may be useful in exploring these and other explanations for the paternal age effect and they may provide a novel approach for gene identification. Finally, it is proposed that environmental exposures of the father, as well as those of the mother and developing fetus, may be relevant to the etiology of schizophrenia. PMID:11596842

  3. Mammalian viviparity: a complex niche in the evolution of genomic imprinting

    PubMed Central

    Keverne, E B

    2014-01-01

    Evolution of mammalian reproductive success has witnessed a strong dependence on maternal resources through placental in utero development. Genomic imprinting, which has an active role in mammalian viviparity, also reveals a biased role for matrilineal DNA in its regulation. The co-existence of three matrilineal generations as one (mother, foetus and post-meiotic oocytes) has provided a maternal niche for transgenerational co-adaptive selection pressures to operate. In utero foetal growth has required increased maternal feeding in advance of foetal energetic demands; the mammary glands are primed for milk production in advance of birth, while the maternal hypothalamus is hormonally primed by the foetal placenta for nest building and post-natal care. Such biological forward planning resulted from maternal–foetal co-adaptation facilitated by co-expression of the same imprinted allele in the developing hypothalamus and placenta. This co-expression is concurrent with the placenta interacting with the adult maternal hypothalamus thereby providing a transgenerational template on which selection pressures may operate ensuring optimal maternalism in this and the next generation. Invasive placentation has further required the maternal immune system to adapt and positively respond to the foetal allotype. Pivotal to these mammalian evolutionary developments, genomic imprinting emerged as a monoallelic gene dosage regulatory mechanism of tightly interconnected gene networks providing developmental genetic stability for in utero development. PMID:24569636

  4. Transcription Driven Somatic DNA Methylation within the Imprinted Gnas Cluster

    PubMed Central

    Mehta, Stuti; Williamson, Christine M.; Ball, Simon; Tibbit, Charlotte; Beechey, Colin; Fray, Martin; Peters, Jo

    2015-01-01

    Differential marking of genes in female and male gametes by DNA methylation is essential to genomic imprinting. In female gametes transcription traversing differentially methylated regions (DMRs) is a common requirement for de novo methylation at DMRs. At the imprinted Gnas cluster oocyte specific transcription of a protein-coding transcript, Nesp, is needed for methylation of two DMRs intragenic to Nesp, namely the Nespas-Gnasxl DMR and the Exon1A DMR, thereby enabling expression of the Gnas transcript and repression of the Gnasxl transcript. On the paternal allele, Nesp is repressed, the germline DMRs are unmethylated, Gnas is repressed and Gnasxl is expressed. Using mutant mouse models, we show that on the paternal allele, ectopic transcription of Nesp traversing the intragenic Exon1A DMR (which regulates Gnas expression) results in de novo methylation of the Exon1A DMR and de-repression of Gnas just as on the maternal allele. However, unlike the maternal allele, methylation on the mutant paternal allele occurs post-fertilisation, i.e. in somatic cells. This, to our knowledge is the first example of transcript/transcription driven DNA methylation of an intragenic CpG island, in somatic tissues, suggesting that transcription driven de novo methylation is not restricted to the germline in the mouse. Additionally, Gnasxl is repressed on a paternal chromosome on which Nesp is ectopically expressed. Thus, a paternally inherited Gnas cluster showing ectopic expression of Nesp is “maternalised” in terms of Gnasxl and Gnas expression. We show that these mice have a phenotype similar to mutants with two expressed doses of Gnas and none of Gnasxl. PMID:25659103

  5. Maternal–fetal conflict, genomic imprinting and mammalian vulnerabilities to cancer

    PubMed Central

    Haig, David

    2015-01-01

    Antagonistic coevolution between maternal and fetal genes, and between maternally and paternally derived genes may have increased mammalian vulnerability to cancer. Placental trophoblast has evolved to invade maternal tissues and evade structural and immunological constraints on its invasion. These adaptations can be co-opted by cancer in intrasomatic selection. Imprinted genes of maternal and paternal origin favour different degrees of proliferation of particular cell types in which they reside. As a result, the set of genes favouring greater proliferation will be selected to evade controls on cell-cycle progression imposed by the set of genes favouring lesser proliferation. The dynamics of stem cell populations will be a particular focus of this intragenomic conflict. Gene networks that are battlegrounds of intragenomic conflict are expected to be less robust than networks that evolve in the absence of conflict. By these processes, maternal–fetal and intragenomic conflicts may undermine evolved defences against cancer. PMID:26056362

  6. Escape from Genomic Imprinting at the Mouse T-Associated Maternal Effect (Tme) Locus

    PubMed Central

    Tsai, J. Y.; Silver, L. M.

    1991-01-01

    Genomic imprinting occurs at the paternally inherited allele of the mouse T-associated maternal effect (Tme) locus. As a consequence, maternal transmission of a functional Tme gene is normally required for viability and individuals that receive a Tme-deleted chromosome (T(hp) or t(lub2)) from their mother die late in gestation or shortly thereafter. Here we report that a rearranged paternally derived chromosome duplicated for the Tme locus can act to rescue animals that have not received a maternal copy of the Tme locus. Unexpectedly, all rescued animals display an abnormal short/kinky tail phenotype. Somatic transfer of genomic imprinting between homologs by means of a transvection-like process between paired Tme and T loci is proposed as a model to explain the results obtained. PMID:1783296

  7. Generalized disruption of inherited genomic imprints leads to wide-ranging placental defects and dysregulated fetal growth

    PubMed Central

    Himes, K. P.; Koppes, E.; Chaillet, J. Richard

    2012-01-01

    Monoallelic expression of imprinted genes, including ones solely expressed in the placenta, is essential for normal placental development and fetal growth. To better understand the role of placental imprinting in placental development and fetal growth, we examined conceptuses developing in the absence of maternally derived DNA (cytosine-5-)- methyltransferase 1o (DNMT1o). Absence of DNMT1o results in the partial loss of methylation at imprinted differentially methylated domain (DMD) sequences in the embryo and the placenta. Mid-gestation E9.5 DNMT1o-deficient placentas exhibited structural abnormalities of all tissue layers. At E17.5, all examined placentas had aberrant placental morphology, most notably in the spongiotrophoblast and labyrinth layers. Abnormalities included an expanded volume fraction of spongiotrophoblast tissue with extension of the spongiotrophoblast layer into the labyrinth. Many mutant placentas also demonstrated migration abnormalities of glycogen cells. Additionally, the volume fraction of the labyrinth was reduced, as was the surface area for maternal fetal gas exchange. Despite these placental morphologic abnormalities, approximately one-half of DNMT1o-deficient fetuses survived to late gestation (E17.5). Furthermore, DNMT1o- deficient placentas supported a broad range of fetal growth. The ability of some DNMT1o-deficient and morphologically abnormal placentas to support fetal growth in excess of wild type demonstrates the importance of differential methylation of DMDs and proper imprinting of discrete gene clusters to placental morphogenesis and fetal growth. PMID:23085235

  8. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    SciTech Connect

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  9. The preparation of magnetic molecularly imprinted nanoparticles for the recognition of bovine hemoglobin.

    PubMed

    Zhang, Min; Wang, Yuzhi; Jia, Xiaoping; He, Meizhi; Xu, Minli; Yang, Shan; Zhang, Cenjin

    2014-03-01

    The protein imprinted technique combining surface imprinting and nano-sized supports materials is an attractive strategy for protein recognition and rapid separation. In this work, we imprinted bovine hemoglobin (BHb) on magnetic nanoparticles. With itaconic acid (IA) and acrylamide (AAm) as the monomers, the experiment was carried out in aqueous media via surface-imprinting technique. The effects of initial concentration and adsorption time over the adsorption capacity of both imprinted and non-imprinted nanoparticles were analyzed. The maximum adsorption capability of imprinted nanoparticles was found to be 77.6 mg g(-1), which was 3.1-4.3 times higher than that of the non-imprinted nanoparticles prepared at the same conditions. This resulted in the successful formation of imprinting cavities. Moreover, in selective adsorption experiment and competitive batch rebinding test, imprinted nanoparticles exhibited a high specific recognition of the template protein over the non-imprinted protein. PMID:24468385

  10. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters.

    PubMed

    Turco, Antonio; Corvaglia, Stefania; Mazzotta, Elisabetta

    2015-01-15

    The present work describes the development of a simple and cost-effective electrochemical sensor for sulfadimethoxine (SDM) based on molecularly imprinted overoxidized polypyrrole (PPy). An all electrochemical approach is used for sensor fabrication and application consisting in molecularly imprinted polymer (MIP) galvanostatic deposition on a gold electrode and its overoxidation under different experimental conditions and in SDM amperometric detection. Several parameters influencing the imprinting effect are critically discussed and evaluated. A key role of the electrolyte used in electropolymerization (tetrabuthylammonium perchlorate and lithium perchlorate) has emerged demonstrating its effect on sensing performances of imprinted PPy and, related to this, on its morphology, as highlighted by atomic force microscopy (AFM). The effect of different overoxidation conditions in removing template is evaluated by analyzing MIP films before and after the treatment by X-ray photoelectron spectroscopy (XPS) also evidencing the correlation between MIP chemical structure and its rebinding ability. MIP-template interaction is verified also by Fourier Transform Infrared (FT-IR) spectroscopy. Under the selected optimal conditions, MIP sensor shows a linear range from 0.15 to 3.7 mM SDM, a limit of detection of 70 μM, a highly reproducible response (RSD 4.2%) and a good selectivity in the presence of structurally related molecules. SDM was determined in milk samples spiked at two concentration levels: 0.2 mM and 0.4 mM obtaining a satisfactory recovery of (97±3)% and (96±8)%, respectively. PMID:25104433

  11. Mycotoxin analysis using imprinted materials technology: Recent developments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular imprinting technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors, such as antibodies and aptamers. The field of molecular imprinting has seen a recent surge in growth with several commercially available products...

  12. Imprinting can cause a maladaptive preference for infectious conspecifics.

    PubMed

    Stephenson, Jessica F; Reynolds, Michael

    2016-04-01

    Recognizing and associating with specific individuals, such as conspecifics or kin, brings many benefits. One mechanism underlying such recognition is imprinting: the long-term memory of cues encountered during development. Typically, juveniles imprint on cues of nearby individuals and may later associate with phenotypes matching their 'recognition template'. However, phenotype matching could lead to maladaptive social decisions if, for instance, individuals imprint on the cues of conspecifics infected with directly transmitted diseases. To investigate the role of imprinting in the sensory ecology of disease transmission, we exposed juvenile guppies,Poecilia reticulata, to the cues of healthy conspecifics, or to those experiencing disease caused by the directly transmitted parasite Gyrodactylus turnbulli In a dichotomous choice test, adult 'disease-imprinted' guppies preferred to associate with the chemical cues of G. turnbulli-infected conspecifics, whereas 'healthy-imprinted' guppies preferred to associate with cues of uninfected conspecifics. These responses were only observed when stimulus fish were in late infection, suggesting imprinted fish responded to cues of disease, but not of infection alone. We discuss how maladaptive imprinting may promote disease transmission in natural populations of a social host. PMID:27072405

  13. High volume nanoscale roll-based imprinting using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Se Hyun; Miller, Michael; Yang, Shuqiang; Ganapathisubramanian, Maha; Menezes, Marlon; Singh, Vik; Wan, Fen; Choi, Jin; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas J.; Hofemann, Paul; Sreenivasan, S. V.

    2014-03-01

    Extremely large-area roll-to-roll manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. Display applications, including liquid crystal (LCD), organic light emitting diode (OLED) and flexible displays are particularly interesting because of the ability to impact multiple levels in the basic display. Of particular interest are the polarizer, DBEF, thin film transistor and color filter; roll-based imprinting has the opportunity to create high performance components within the display while improving the cost of ownership of the panel. Realization of these devices requires both a scalable imprinting technology and tool. In this paper, we introduce a high volume roll-based nanopatterning system, the LithoFlex 350TM. The LithoFlex 350 uses an inkjet based imprinting process similar to the technology demonstrator tool, the LithoFlex 100, introduced in 2012. The width of the web is 350mm and patterning width is 300mm. The system can be configured either for Plate-to-Roll (P2R) imprinting (in which a rigid template is used to pattern the flexible web material) or for Roll-to-Plate imprinting (R2P) (in which a web based template is used to pattern either wafers or panels). Also described in this paper are improvements to wire grid polarizer devices. By optimizing the deposition, patterning and etch processes, we have been able to create working WGPs with transmittance and extinction ratios as high as 44% and 50,000, respectively.

  14. Olfactory imprinting is triggered by MHC peptide ligands.

    PubMed

    Hinz, Cornelia; Namekawa, Iori; Namekawa, Ri; Behrmann-Godel, Jasminca; Oppelt, Claus; Jaeschke, Aaron; Müller, Anke; Friedrich, Rainer W; Gerlach, Gabriele

    2013-01-01

    Olfactory imprinting on environmental, population- and kin-specific cues is a specific form of life-long memory promoting homing of salmon to their natal rivers and the return of coral reef fish to natal sites. Despite its ecological significance, natural chemicals for olfactory imprinting have not been identified yet. Here, we show that MHC peptides function as chemical signals for olfactory imprinting in zebrafish. We found that MHC peptides consisting of nine amino acids elicit olfactory imprinting and subsequent kin recognition depending on the MHC genotype of the fish. In vivo calcium imaging shows that some olfactory bulb neurons are highly sensitive to MHC peptides with a detection threshold at 1 pM or lower, indicating that MHC peptides are potent olfactory stimuli. Responses to MHC peptides overlapped spatially with responses to kin odour but not food odour, consistent with the hypothesis that MHC peptides are natural signals for olfactory imprinting. PMID:24077566

  15. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    PubMed

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. PMID:26627587

  16. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  17. Band Structure Controlled by Chiral Imprinting

    NASA Astrophysics Data System (ADS)

    Reyes Cervantes, Adrian; Castro-Garay, P.; Ramos-Garcia, Ruben

    2008-03-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, we find the solution of the boundary--value problem for the reflection and transmission of incident optical waves due to the elastomer. We show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested bandgaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  18. The impact of imprinting: Prader-Willi syndrome resulting from chromosome translocation, recombination, and nondisjunction

    SciTech Connect

    Toth-Fejel, S.; Olson, S.; Gunter, K.

    1996-05-01

    Prader-Willi syndrome (PWS) is most often the result of a deletion of bands q11.2-q13 of the paternally derived chromosome 15, but it also occurs either because of maternal uniparental disomy (UPD) of this region or, rarely, from a methylation imprinting defect. A significant number of cases are due to structural rearrangements of the pericentromeric region of chromosome 15. We report two cases of PWS with UPD in which there was a meiosis I nondisjunction error involving an altered chromosome 15 produced by both a translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and recombination. In both cases, high-resolution banding of the long arm was normal, and FISH of probes D15S11, SNRPN, D15S10, and GABRB3 indicated no loss of this material. Chromosome heteromorphism analysis showed that each patient had maternal heterodisomy of the chromosome 15 short arm, whereas PCR of microsatellites demonstrated allele-specific maternal isodisomy and heterodisomy of the long arm. SNRPN gene methylation analysis revealed only a maternal imprint in both patients. We suggest that the chromosome structural rearrangements, combined with recombination in these patients, disrupted normal segregation of an imprinted region, resulting in uniparental disomy and PWS. 30 refs., 6 figs., 1 tab.

  19. Econazole imprinted textiles with antifungal activity.

    PubMed

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections. PMID:26883854

  20. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice.

    PubMed

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-03-31

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene silencing have been the subject of debate. We performed a systematic, single-cell transcriptional analysis to examine the activity of the Xp chromosome for a panel of X-linked genes throughout early preimplantation development in the mouse. Rather than being preinactivated, we found the Xp to be fully active at the time of zygotic gene activation, with silencing beginning from the 4-cell stage onward. X-inactivation patterns were, however, surprisingly diverse between genes. Some loci showed early onset (4-8-cell stage) of X inactivation, and some showed extremely late onset (postblastocyst stage), whereas others were never fully inactivated. Thus, we show that silencing of some X-chromosomal regions occurs outside of the usual time window and that escape from X inactivation can be highly lineage specific. These results reveal that imprinted X inactivation in mice is far less concerted than previously thought and highlight the epigenetic diversity underlying the dosage compensation process during early mammalian development. PMID:19273861

  1. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice

    PubMed Central

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-01-01

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene silencing have been the subject of debate. We performed a systematic, single-cell transcriptional analysis to examine the activity of the Xp chromosome for a panel of X-linked genes throughout early preimplantation development in the mouse. Rather than being preinactivated, we found the Xp to be fully active at the time of zygotic gene activation, with silencing beginning from the 4-cell stage onward. X-inactivation patterns were, however, surprisingly diverse between genes. Some loci showed early onset (4–8-cell stage) of X inactivation, and some showed extremely late onset (postblastocyst stage), whereas others were never fully inactivated. Thus, we show that silencing of some X-chromosomal regions occurs outside of the usual time window and that escape from X inactivation can be highly lineage specific. These results reveal that imprinted X inactivation in mice is far less concerted than previously thought and highlight the epigenetic diversity underlying the dosage compensation process during early mammalian development. PMID:19273861

  2. Studies on molecular recognition of thymidines with molecularly imprinted polymers

    NASA Astrophysics Data System (ADS)

    Chen, Zhen-He; Luo, Ai-Qin; Sun, Li-Quan

    2009-07-01

    Molecularly imprinted polymers (MIPs) with excellent molecular recognition ability have been used in chemical sensors, chromatographic separation and biochemical analyses. Thymidine is an important part of DNA for biomolecular recognition and the intermediate of many medicines. The polymers imprinted with the template of thymidine and 5'-Otosylthymidine have been prepared, using a non-proton solvent, acetonitrile as the porogen. Direct imprinting with thymidine could not form strong molecular interaction sites in this system. Relative MIPs were obtained by bulk polymerization and their adsorption capacities were investigated. The adsorption capacities of MIP (P2) and nonimprinted polymer (P20) for thymidine are 0.120 mg•g-1and 0.103 mg•g-1, respectively. The imprinting factor is 1.17. As 5'-O-tosylthymidine is more soluble than thymidine moiety in acetonitrile and give rise to more sites of molecular recognition. The results demonstrated that the imprinted polymers were able to bind and recognize thymidine moderately in acetonitrile. MIPs imprinted with 5'-O-tosylthymidine like nature enzymes displayed some recognition ability to its analogues. The insoluble derivatives in the non-proton solvent can be an effective template to prepare efficient imprinting recognition sites.

  3. High Frequency of Imprinted Methylation Errors in Human Preimplantation Embryos

    PubMed Central

    White, Carlee R.; Denomme, Michelle M.; Tekpetey, Francis R.; Feyles, Valter; Power, Stephen G. A.; Mann, Mellissa R. W.

    2015-01-01

    Assisted reproductive technologies (ARTs) represent the best chance for infertile couples to conceive, although increased risks for morbidities exist, including imprinting disorders. This increased risk could arise from ARTs disrupting genomic imprints during gametogenesis or preimplantation. The few studies examining ART effects on genomic imprinting primarily assessed poor quality human embryos. Here, we examined day 3 and blastocyst stage, good to high quality, donated human embryos for imprinted SNRPN, KCNQ1OT1 and H19 methylation. Seventy-six percent day 3 embryos and 50% blastocysts exhibited perturbed imprinted methylation, demonstrating that extended culture did not pose greater risk for imprinting errors than short culture. Comparison of embryos with normal and abnormal methylation didn’t reveal any confounding factors. Notably, two embryos from male factor infertility patients using donor sperm harboured aberrant methylation, suggesting errors in these embryos cannot be explained by infertility alone. Overall, these results indicate that ART human preimplantation embryos possess a high frequency of imprinted methylation errors. PMID:26626153

  4. DNA methylation errors in imprinting disorders and assisted reproductive technology.

    PubMed

    Chiba, Hatsune; Hiura, Hitoshi; Okae, Hiroaki; Miyauchi, Naoko; Sato, Fumi; Sato, Akiko; Arima, Takahiro

    2013-10-01

    There have been increased incident reports of rare imprinting disorders associated with assisted reproductive technology (ART). ART is an important treatment for infertile people of reproductive age and is increasingly common. The identification of epigenetic changes at imprinted loci in ART infants has led to the suggestion that the techniques themselves may predispose embryos to acquisition of imprinting errors and disease. It is still unknown, however, at what point(s) these imprinting errors arise, or the risk factors. In this review it was hypothesized that the particular steps of the ART process may be prone to induction of imprinting methylation errors during gametogenesis, fertilization and early embryonic development. In addition, imprinting diseases and their causes are explained. Moreover, using a Japanese nationwide epidemiological study of imprinting diseases, their association with ART is determined. Epigenetic studies are required to understand the pathogenesis of this association; the ART-related risk factor(s); and the precautions that can be taken to prevent the occurrence of these syndromes. It is hoped that the constitution of children born after ART will indicate the safest and most ethical approach to use, which will be invaluable for the future development of standard ART treatment. PMID:23919517

  5. Characterization of the Binding Properties of Molecularly Imprinted Polymers.

    PubMed

    Ansell, Richard J

    2015-01-01

    The defining characteristic of the binding sites of any particular molecularly imprinted material is heterogeneity: that is, they are not all identical. Nonetheless, it is useful to study their fundamental binding properties, and to obtain average properties. In particular, it has been instructive to compare the binding properties of imprinted and non-imprinted materials. This chapter begins by considering the origins of this site heterogeneity. Next, the properties of interest of imprinted binding sites are described in brief: affinity, selectivity, and kinetics. The binding/adsorption isotherm, the graph of concentration of analyte bound to a MIP versus concentration of free analyte at equilibrium, over a range of total concentrations, is described in some detail. Following this, the techniques for studying the imprinted sites are described (batch-binding assays, radioligand binding assays, zonal chromatography, frontal chromatography, calorimetry, and others). Thereafter, the parameters that influence affinity, selectivity and kinetics are discussed (solvent, modifiers of organic solvents, pH of aqueous solvents, temperature). Finally, mathematical attempts to fit the adsorption isotherms for imprinted materials, so as to obtain information about the range of binding affinities characterizing the imprinted sites, are summarized. PMID:25796622

  6. Microdeletions of the 7q32.2 imprinted region are associated with Silver-Russell syndrome features.

    PubMed

    Carrera, Ignacio Arroyo; de Zaldívar, María Solo; Martín, Rebeca; Begemann, Matthias; Soellner, Lukas; Eggermann, Thomas

    2016-03-01

    The association of maternal uniparental disomy of human chromosome 7 (upd(7) mat) and the growth retardation disorder Silver-Russell syndrome (SRS) is well established, but the causative gene or region is currently unknown. However, several observations indicate that molecular alterations of the genomically imprinted MEST region in 7q32.2 are associated with growth retardation and a phenotype reminiscent to SRS. We now report on a second patient with a similar phenotype and a de novo 7q32.2 microdeletion including MEST affecting the paternal allele. This confirms the central role of imprinted genes in 7q32.2 in the etiology of a growth retardation phenotype associated with SRS features. PMID:26663145

  7. Shape recognition of microbial cells by colloidal cell imprints

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2013-08-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.

  8. The disparate maternal aunt-uncle ratio in male transsexuals: an explanation invoking genomic imprinting.

    PubMed

    Green, R; Keverne, E B

    2000-01-01

    A significant skewing in the sex ratio in favour of females has been reported for the families of homosexual men such that there are fewer maternal uncles than aunts. This finding is repeated for a large series of transsexual families in this study. Four hundred and seventeen male-to-female transsexuals and 96 female-to-male transsexuals were assessed. Male-to-female transsexuals have a significant excess of maternal aunts vs. uncles. No differences from the expected parity were found for female-to-male transsexuals or on the paternal side. A posited explanation for these findings invokes X inactivation and genes on the X chromosome that escape inactivation but may be imprinted. Our hypothesis incorporates the known familial traits in the families of homosexuals and transsexuals by way of retention of the grand parental epigenotype on the X chromosome. Generation one would be characterized by a failure to erase the paternal imprints on the paternal X chromosome. Daughters of this second generation would produce sons that are XpY and XmY. Since XpY expresses Xist, the X chromosome is silenced and half of the sons are lost at the earliest stages of pregnancy because of the normal requirement for paternal X expression in extra-embryonic tissues. Females survive by virtue of inheriting two X chromosomes, and therefore the possibility of X chromosome counting and choice during embryonic development. In generation three, sons inheriting the paternal X after its second passage through the female germline survive, but half would inherit the feminizing Xp imprinted genes. These genes could pre-dispose the sons to feminization and subsequent development of either homosexuality or transsexualism. PMID:10623499

  9. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  10. Tunable and stable in time ferroelectric imprint through polarization coupling

    NASA Astrophysics Data System (ADS)

    Ghosh, Anirban; Koster, Gertjan; Rijnders, Guus

    2016-06-01

    Here we demonstrate a method to tune a ferroelectric imprint, which is stable in time, based on the coupling between the non-switchable polarization of ZnO and switchable polarization of PbZrxTi(1-x)O3. SrRuO3/PbZrxTi(1-x)O3/ZnO/SrRuO3 heterostructures were grown with different ZnO thicknesses. It is shown that the coercive voltages and ferroelectric imprint vary linearly with the thickness of ZnO. It is also demonstrated that the ferroelectric imprint remains stable with electric field cycling and electric field stress assisted aging.

  11. Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A.

    PubMed

    Yu, Dan; Hu, Xiaolei; Wei, Shoutai; Wang, Qiang; He, Chiyang; Liu, Shaorong

    2015-05-29

    A novel hybrid dummy imprinting strategy was developed to prepare a mesoporous silica for the solid-phase extraction (SPE) of bisphenol A (BPA). A new covalent template-monomer complex (BPAF-Si) was first synthesized with 2,2-bis(4-hydroxyphenyl)hexafluoropropane (BPAF) as the template. The imprinted silica was obtained through the gelation of BPAF-Si with tetraethoxysilane and the subsequent removal of template by thermal cleavage, and then it was characterized by FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. Results showed that the new silica had micron-level particle size and ordered mesoporous structure. The static binding test verified that the imprinted silica had much higher recognition ability for BPA than the non-imprinted silica. The imprinted silica also showed high extraction efficiencies and high enrichment factor for SPE of BPA. Using the imprinted silica, a SPE-HPLC-UV method was developed and successfully applied for detecting BPA in BPA-spiked tap water and lake water samples with a recovery of 99-105%, a RSD of 2.7-5.0% and a limit of detection (S/N=3) of 0.3ng/mL. The new imprinted silica avoided the interference of the residual template molecules and reduced the non-specific binding sites, and therefore it can be utilized as a good sorbent for SPE of BPA in environmental water samples. PMID:25892637

  12. Improvement of DNA recognition through molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs).

    PubMed

    Brahmbhatt, H; Poma, A; Pendergraff, H M; Watts, J K; Turner, N W

    2016-02-01

    High affinity and specific binding are cardinal properties of nucleic acids in relation to their biological function and their role in biotechnology. To this end, structural preorganization of oligonucleotides can significantly improve their binding performance, and numerous examples of this can be found in Nature as well as in artificial systems. Here we describe the production and characterization of hybrid DNA-polymer nanoparticles (oligoMIP NPs) as a system in which we have preorganized the oligonucleotide binding by molecular imprinting technology. Molecularly imprinted polymers (MIPs) are cost-effective "smart" polymeric materials capable of antibody-like detection, but characterized by superior robustness and the ability to work in extreme environmental conditions. Especially in the nanoparticle format, MIPs are dubbed as one of the most suitable alternatives to biological antibodies due to their selective molecular recognition properties, improved binding kinetics as well as size and dispersibility. Nonetheless, there have been very few attempts at DNA imprinting in the past due to structural complexity associated with these templates. By introducing modified thymine bases into the oligonucleotide sequences, which allow establishing covalent bonds between the DNA and the polymer, we demonstrate that such hybrid oligoMIP NPs specifically recognize their target DNA, and that the unique strategy of incorporating the complementary DNA strands as "preorganized selective monomers" improves the recognition properties without affecting the NPs physical properties such as size, shape or dispersibility. PMID:26509192

  13. Conservation of imprinting of MKRN3 and NAP1L5 in rabbits.

    PubMed

    Yuan, L; Lai, L; Duan, F; Chen, M; Deng, J; Li, Z

    2016-08-01

    Maternally imprinted genes of makorin ring finger protein 3 (MKRN3) and nucleosome assembly protein 1-like 5 (NAP1L5) have been identified in many species but have not yet been investigated in rabbits. In this study, a polymorphism-based approach and bisulfite-sequencing PCR (BSP) were used to determine the imprinting status of MKRN3 and NAP1L5 in rabbits. The single nucleotide polymorphism (SNP)-based sequencing results demonstrated that MKRN3 and NAP1L5 were expressed preferentially from the paternal allele. Furthermore, the BSP results showed the gamete-specific methylation patterns and hemimethylation in brain and full methylation in liver were observed in MKRN3 and NAP1L5 respectively. Thus, we provide the first evidence that MKRN3 and NAP1L5 are paternally expressed genes and that the CpG islands located in the promoter region may be the putative differentially methylated region of these two genes in rabbits. PMID:27091003

  14. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency

    PubMed Central

    Motzek, Antje; Knežević, Jelena; Switzeny, Olivier J.; Cooper, Alexis; Barić, Ivo; Beluzić, Robert; Strauss, Kevin A.; Puffenberger, Erik G.; Vugrek, Oliver; Zechner, Ulrich

    2016-01-01

    S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status. PMID:26974671

  15. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  16. Wiedemann-Beckwith syndrome: Genomic imprinting revisited

    SciTech Connect

    Weksberg, R.

    1994-08-15

    In the study of genetic diseases involving genomic imprinting, Wiedemann-Beckwith syndrome (WBS) has become an important paradigm. Genetic heterogeneity is demonstrated in this condition by the variety of cytogenetic and molecular alterations of the 11p15.5 region. These involve several different patient subgroups with specific parent-of-origin findings. Several lines of evidence suggest that more than one locus underlies the WBS phenotype. This was based on the assumption that the WBS phenotype is caused by a loss-of-function mutation. Although this might be true, an alternative and more parsimonious explanation can account for the autosomal dominant pedigrees using only one locus, e.g., IGF2. 15 refs.

  17. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  18. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  19. Imprintable membranes from incomplete chiral coalescence

    NASA Astrophysics Data System (ADS)

    Zakhary, Mark J.; Gibaud, Thomas; Nadir Kaplan, C.; Barry, Edward; Oldenbourg, Rudolf; Meyer, Robert B.; Dogic, Zvonimir

    2014-01-01

    Coalescence is an essential phenomenon that governs the equilibrium behaviour in a variety of systems from intercellular transport to planetary formation. In this report, we study coalescence pathways of circularly shaped two-dimensional colloidal membranes, which are one rod-length-thick liquid-like monolayers of aligned rods. The chirality of the constituent rods leads to three atypical coalescence pathways that are not found in other simple or complex fluids. In particular, we characterize two pathways that do not proceed to completion but instead produce partially joined membranes connected by line defects—π-wall defects or alternating arrays of twisted bridges and pores. We elucidate the structure and energetics of these defects and ascribe their stability to a geometrical frustration inherently present in chiral colloidal membranes. Furthermore, we induce the coalescence process with optical forces, leading to a robust on-demand method for imprinting networks of channels and pores into colloidal membranes.

  20. Standardized pill imprint codes: a pharma fantasy.

    PubMed

    Schiff, Gordon

    2004-02-01

    To safely use medications, professionals and consumers need usable and reliable methods to identify tablets patients are prescribed and taking. Currently, each manufacturer assigns its own identifying codes and symbols. Standardization of the system for identifying solid dosage forms is a goal that has been widely advocated, yet stubbornly resistant to progress. Physicians, pharmacists, and consumers attempting to identify pills must use various methods which have shortcomings in ease of use, availability, and accuracy. Arguments have been advanced, particularly by pharmaceutical manufacturers, that evidence of unworkability of the current system is not compelling, and costs of retooling current manufacturing processes could be prohibitive. These issues are currently being explored by a task force led by the U.S. Pharmacopeia Safe Medication Use, and Pharmaceutical Forms Dosage Expert Committees. This paper presents a fictitious case study of an elderly patient succumbing to digoxin overdose illustrating the dilemmas posed in the tablet-imprint debate. PMID:15171065

  1. Cell shape recognition by colloidal cell imprints: energy of the cell-imprint interaction.

    PubMed

    Borovička, Josef; Stoyanov, Simeon D; Paunov, Vesselin N

    2015-09-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry

  2. Cell shape recognition by colloidal cell imprints: Energy of the cell-imprint interaction

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2015-09-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry

  3. A synthetic nanomaterial for virus recognition produced by surface imprinting.

    PubMed

    Cumbo, Alessandro; Lorber, Bernard; Corvini, Philippe F-X; Meier, Wolfgang; Shahgaldian, Patrick

    2013-01-01

    Major stumbling blocks in the production of fully synthetic materials designed to feature virus recognition properties are that the target is large and its self-assembled architecture is fragile. Here we describe a synthetic strategy to produce organic/inorganic nanoparticulate hybrids that recognize non-enveloped icosahedral viruses in water at concentrations down to the picomolar range. We demonstrate that these systems bind a virus that, in turn, acts as a template during the nanomaterial synthesis. These virus imprinted particles then display remarkable selectivity and affinity. The reported method, which is based on surface imprinting using silica nanoparticles that act as a carrier material and organosilanes serving as biomimetic building blocks, goes beyond simple shape imprinting. We demonstrate the formation of a chemical imprint, comparable to the formation of biosilica, due to the template effect of the virion surface on the synthesis of the recognition material. PMID:23422671

  4. Evidence for a Peripheral Olfactory Memory in Imprinted Salmon

    NASA Astrophysics Data System (ADS)

    Nevitt, Gabrielle A.; Dittman, Andrew H.; Quinn, Thomas P.; Moody, William J., Jr.

    1994-05-01

    The remarkable homing ability of salmon relies on olfactory cues, but its cellular basis is unknown. To test the role of peripheral olfactory receptors in odorant memory retention, we imprinted coho salmon (Oncorhynchus kisutch) to micromolar concentrations of phenyl ethyl alcohol during parr-smolt transformation. The following year, we measured phenyl ethyl alcohol responses in the peripheral receptor cells using patch clamp. Cells from imprinted fish showed increased sensitivity to phenyl ethyl alcohol compared either to cells from naive fish or to sensitivity to another behaviorally important odorant (L-serine). Field experiments verified an increased behavioral preference for phenyl ethyl alcohol by imprinted salmon as adults. Thus, some component of the imprinted olfactory homestream memory appears to be retained peripherally.

  5. Mechanical strains and electric fields applied to topologically imprinted elastomers

    NASA Astrophysics Data System (ADS)

    Burridge, D. J.; Mao, Y.; Warner, M.

    2006-08-01

    We analyze and predict the behavior of a chirally imprinted elastomer under a mechanical strain and an electric field, applied along the helical axis. As the strain and/or field increases, the system is deformed from a conical or transverse imprinted state towards an ultimately nematic one. At a critical strain and/or field there is a first-order transition to a low imprinting efficiency state. This transition is accompanied by a discontinuous global rotation of the director toward the axis of the imprinted helix, measured by the cone angle, θ . We show that the threshold electric field required for switching this transition can be conveniently low, provided an appropriate prestrain is imposed. We suggest that these properties may give rise to a “chiral pump.”

  6. Rapid preparation of molecularly imprinted polymer by frontal polymerization.

    PubMed

    Zhong, Dan-Dan; Liu, Xin; Pang, Qian-Qian; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-04-01

    Frontal polymerization was successfully applied, for the first time, to obtain molecularly imprinted polymers (MIPs). The method provides a solvent-free polymerization mode, and the reaction can be completed in 30 min. By this approach, MIPs were synthesized using a mixture of levofloxacin (template), methacrylic acid, and divinylbenzene. The effect of template concentration and the amount of comonomer on the imprinting effect of the resulting MIPs was investigated. The textural and morphological parameters of the MIP particles were also characterized by mercury intrusion porosimetry, nitrogen adsorption isotherms, and scanning electron microscopy, providing evidence concerning median pore diameter, pore volumes, and pore size distributions. The levofloxacin-imprinted polymer formed in frontal polymerization mode showed high selectivity, with an imprinting factor of 5.78. The results suggest that frontal polymerization provides an alternative means to prepare MIPs that are difficult to synthesize and may open up new perspectives in the field of MIPs. PMID:23392405

  7. 7. Underside of Roadbed (Interior beams cast horizontal, imprints of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Underside of Roadbed (Interior beams cast horizontal, imprints of timbers used as formwork visible on abutment walls and beams) - North Bridge, Spanning Quarton Lake branch of River Rouge, Birmingham, Oakland County, MI

  8. 7. Underside of Roadbed (Interior beams cast horizontal, imprints of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Underside of Roadbed (Interior beams cast horizontal, imprints of timbers used as formwork visible on abutment walls and beams) - South Bridge, Spanning Quarton Lake branch of River Rouge, Birmingham, Oakland County, MI

  9. Step and flash imprint lithography for manufacturing patterned media

    NASA Astrophysics Data System (ADS)

    Brooks, Cynthia; Schmid, Gerard M.; Miller, Mike; Johnson, Steve; Khusnatdinov, Niyaz; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2009-03-01

    The ever-growing demand for hard drives with greater storage density has motivated a technology shift from continuous magnetic media to patterned media hard disks, which are expected to be implemented in future generations of hard disk drives to provide data storage at densities exceeding 1012 bits per square inch. Step and Flash Imprint Lithography (S-FIL) technology has been employed to pattern the hard disk substrates. This paper discusses the infrastructure required to enable S-FIL in high-volume manufacturing; namely, fabrication of master templates, template replication, high-volume imprinting with precisely controlled residual layers, and dual-sided imprinting. Imprinting of disks is demonstrated with substrate throughput currently as high as 180 disks/hour (dualsided). These processes are applied to patterning hard disk substrates with both discrete tracks and bit-patterned designs.

  10. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... identification than a symbol or logo by itself. Homeopathic drug products are required only to bear an imprint... National Drug Code, or a mark, symbol, logo, or monogram, or a combination of letters, numbers, and...

  11. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... identification than a symbol or logo by itself. Homeopathic drug products are required only to bear an imprint... National Drug Code, or a mark, symbol, logo, or monogram, or a combination of letters, numbers, and...

  12. UV imprinting for thin film solar cell application

    NASA Astrophysics Data System (ADS)

    Escarré, J.; Battaglia, C.; Söderström, K.; Pahud, C.; Biron, R.; Cubero, O.; Haug, F.-J.; Ballif, C.

    2012-02-01

    UV imprinting is an interesting, low cost technique to produce large area thin film solar cells incorporating nanometric textures. Here, we review and present new results confirming that replicas of the most common textures used in photovoltaics can be obtained by UV imprinting with an excellent fidelity. The use of these replicas as substrates for amorphous and micromorph thin film silicon solar cells is also shown, together with a comparison with devices obtained on the original textures.

  13. Full-field imprinting of sub-40 nm patterns

    NASA Astrophysics Data System (ADS)

    Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-03-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL (R)) is a unique patterning method that has been designed from the beginning to enable precise overlay to enable multilevel device fabrication. A photocurable low viscosity resist is dispensed dropwise to match the pattern density requirements of the device, thus enabling patterning with a uniform residual layer thickness across a field and across multiple wafers. Further, S-FIL provides sub-50 nm feature resolution without the significant expense of multi-element projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of imprint masks (templates). For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x imprint masks with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub-32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the imprint mask and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  14. Molecularly Imprinted Polymer Based Sensor for the Detection of Theophylline

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.; del Valle, Manel

    2011-11-01

    A molecularly imprinted polymer (MIP) impedance-based sensor was employed to detect theophylline in distilled water. To evaluate its sensibility, impedance measurements were carried out in a diluted solution of theophylline (1 mM) and distilled water using MIP and NIP (reference non-imprinted polymer) sensors. MIP showed higher sensitivity to theophylline than the NIP. This feature shows their suitability for developing an electronic tongue system for determination of methylxanthines.

  15. Regeneration of imprint molds using vacuum ultraviolet light

    NASA Astrophysics Data System (ADS)

    Nakao, Masashi; Yamaguchi, Masanori; Yabu, Shintaro

    2011-04-01

    Etching characteristics of various resins by a vacuum ultraviolet (VUV, λ=172 nm) light have been examined under conditions of exposure time, substrate temperature, radiation distance and ambient oxygen concentration. The VUV light have used to clean the imprinted molds which are contaminated by organic substances such as ultraviolet-resins through many times of imprinting processes, and it has revealed that the VUV light has effectively regenerated the contaminated molds manufactured by quartz, silicon-carbide and nickel.

  16. Modes of Imprinted Gene Action in Learning Disability

    ERIC Educational Resources Information Center

    Isles, A. R.; Humby, T.

    2006-01-01

    Background: It is now widely acknowledged that there may be a genetic contribution to learning disability and neuropsychiatric disorders, stemming from evidence provided by family, twin and adoption studies, and from explicit syndromic conditions. Recently it has been recognized that in some cases the presentation of genetic syndromes (or discrete…

  17. Synthesis of and recognition by ribonuclease A imprinted polymers

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Yi; Lin, Hung-Yin; Thomas, James L.; Chou, Tse-Chuan

    2006-02-01

    Ribonuclease (RNase), an enzyme which degrades RNA, is ubiquitous in living organisms, can renature after autoclaving, and is difficult to inactivate. The removal of RNase is especially necessary for the reverse transcription-polymerase chain reaction (RT-PCR) and for in vitro transcription and translation. Typically, RNase inhibitors must be added to these reactions nowadays. Molecularly imprinted polymers (MIPs) could offer many advantages for removal of undesired enzymes, including high binding selectivity, stability, low cost, and facile synthesis. Surface imprinting, employing immobilized RNase, was used in this study to make the most effective use of the template molecules—clearly, inaccessible binding sites, no matter how well imprinted, are not useful for target binding. Different monomers and cross-linkers were used to synthesize RNase-templated MIPs, and the rebinding capacity of each composition was characterized. We found that using polyethylene glycol 400 dimethacrylate (PEG400DMA) gave the highest imprinting effectiveness (i.e. the highest RNase binding ratio between imprinted and non-imprinted polymers). However, including styrene monomer (50 wt%) gave polymers with the highest overall affinity for ribonuclease A (RNase A). Finally, isothermal titration calorimetry was used as an auxiliary tool to help elucidate the mechanisms of the binding of monomers to templates, and ligands to MIPs.

  18. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    PubMed

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  19. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  20. Molecular crowding-based imprinted monolithic column for capillary electrochromatography.

    PubMed

    Zong, Hai-Yan; Liu, Xiao; Liu, Zhao-Sheng; Huang, Yan-Ping

    2015-03-01

    Molecular crowding is a new approach to stabilizing binding sites and improving molecular recognition. In this work, the concept was applied to the preparation of imprinted monolithic columns for CEC. The imprinted monolithic column was synthesized using a mixture of d-zopiclone (d-ZOP)(template), methacrylic acid, ethylene glycol dimethacrylate, and poly(methyl methacrylate) (PMMA) (molecular crowding agent). The resulting PMMA-based imprinted capillary was able to separate ZOP enantiomers in CEC mode. The resolution of enantiomer separation achieved on the d-ZOP-imprinted monolithic column was up to 2.09. Some polymerization factors, such as template-monomer molar ratio, functional monomer-cross-linker molar ratio and the composition of the porogen, on the imprinting effect of resulting molecularly imprinted polymer (MIP) monolithic column were systematically investigated. Chromatographic parameters, including pH values, the content of acetonitrile and the salt concentration on chiral separation were also studied. The results indicated the addition of PMMA resulted in MIPs with superior retention properties and excellent selectivity for d-ZOP, as compared to the MIPs prepared without addition of the crowding-inducing agent. The results revealed that molecular crowding is an effective method for the preparation of a highly efficient MIP stationary phase for chiral separation in CEC. PMID:25404035

  1. Uniformity in Patterns Imprinted Using Photo-Curable Liquid Polymer

    NASA Astrophysics Data System (ADS)

    Hiroshima, Hiroshi; Inoue, Seiji; Kasahara, Nobuyuki; Taniguchi, Jun; Miyamoto, Iwao; Komuro, Masanori

    2002-06-01

    Imprint lithography is a candidate for high-resolution, high-throughput lithography using low-cost equipment. In particular, imprinting using photo-induced solidification is very attractive because it eliminates heat-up, cool-down time and avoids thermal expansion problems inherent in conventional thermal imprinting. We demonstrate the replication of uniform 100 nm line and space (L/S) patterns over a 5 mm× 5 mm area at a time, a 60 nm L/S pattern and a 90-nm-wide line with an aspect ratio of 2 by imprinting using photo-induced solidification. We studied the removal of a base layer by O2 reactive ion etching (RIE) and determined the criteria for the base layer and imprinted patterns. Change in line width through O2 RIE is not affected by the base layer thickness but is affected by etching time. We found that granules generated in polymer during O2 RIE are slowly etched and the resulting long removal time of granules degrades the quality of imprinted patterns or prevents patterns from standing. It is necessary to achieve a base layer which is less than 100 nm thick or to change the O2 RIE conditions so that the polymer dose not granulate and/or use granulation-resistant polymers.

  2. Absence of Maternal Methylation in Biparental Hydatidiform Moles from Women with NLRP7 Maternal-Effect Mutations Reveals Widespread Placenta-Specific Imprinting

    PubMed Central

    Sanchez-Delgado, Marta; Martin-Trujillo, Alejandro; Tayama, Chiharu; Vidal, Enrique; Esteller, Manel; Iglesias-Platas, Isabel; Deo, Nandita; Barney, Olivia; Maclean, Ken; Hata, Kenichiro; Nakabayashi, Kazuhiko; Fisher, Rosemary; Monk, David

    2015-01-01

    Familial recurrent hydatidiform mole (RHM) is a maternal-effect autosomal recessive disorder usually associated with mutations of the NLRP7 gene. It is characterized by HM with excessive trophoblastic proliferation, which mimics the appearance of androgenetic molar conceptuses despite their diploid biparental constitution. It has been proposed that the phenotypes of both types of mole are associated with aberrant genomic imprinting. However no systematic analyses for imprinting defects have been reported. Here, we present the genome-wide methylation profiles of both spontaneous androgenetic and biparental NLRP7 defective molar tissues. We observe total paternalization of all ubiquitous and placenta-specific differentially methylated regions (DMRs) in four androgenetic moles; namely gain of methylation at paternally methylated loci and absence of methylation at maternally methylated regions. The methylation defects observed in five RHM biopsies from NLRP7 defective patients are restricted to lack-of-methylation at maternal DMRs. Surprisingly RHMs from two sisters with the same missense mutations, as well as consecutive RHMs from one affected female show subtle allelic methylation differences, suggesting inter-RHM variation. These epigenotypes are consistent with NLRP7 being a maternal-effect gene and involved in imprint acquisition in the oocyte. In addition, bioinformatic screening of the resulting methylation datasets identified over sixty loci with methylation profiles consistent with imprinting in the placenta, of which we confirm 22 as novel maternally methylated loci. These observations strongly suggest that the molar phenotypes are due to defective placenta-specific imprinting and over-expression of paternally expressed transcripts, highlighting that maternal-effect mutations of NLRP7 are associated with the most severe form of multi-locus imprinting defects in humans. PMID:26544189

  3. Absence of Maternal Methylation in Biparental Hydatidiform Moles from Women with NLRP7 Maternal-Effect Mutations Reveals Widespread Placenta-Specific Imprinting.

    PubMed

    Sanchez-Delgado, Marta; Martin-Trujillo, Alejandro; Tayama, Chiharu; Vidal, Enrique; Esteller, Manel; Iglesias-Platas, Isabel; Deo, Nandita; Barney, Olivia; Maclean, Ken; Hata, Kenichiro; Nakabayashi, Kazuhiko; Fisher, Rosemary; Monk, David

    2015-11-01

    Familial recurrent hydatidiform mole (RHM) is a maternal-effect autosomal recessive disorder usually associated with mutations of the NLRP7 gene. It is characterized by HM with excessive trophoblastic proliferation, which mimics the appearance of androgenetic molar conceptuses despite their diploid biparental constitution. It has been proposed that the phenotypes of both types of mole are associated with aberrant genomic imprinting. However no systematic analyses for imprinting defects have been reported. Here, we present the genome-wide methylation profiles of both spontaneous androgenetic and biparental NLRP7 defective molar tissues. We observe total paternalization of all ubiquitous and placenta-specific differentially methylated regions (DMRs) in four androgenetic moles; namely gain of methylation at paternally methylated loci and absence of methylation at maternally methylated regions. The methylation defects observed in five RHM biopsies from NLRP7 defective patients are restricted to lack-of-methylation at maternal DMRs. Surprisingly RHMs from two sisters with the same missense mutations, as well as consecutive RHMs from one affected female show subtle allelic methylation differences, suggesting inter-RHM variation. These epigenotypes are consistent with NLRP7 being a maternal-effect gene and involved in imprint acquisition in the oocyte. In addition, bioinformatic screening of the resulting methylation datasets identified over sixty loci with methylation profiles consistent with imprinting in the placenta, of which we confirm 22 as novel maternally methylated loci. These observations strongly suggest that the molar phenotypes are due to defective placenta-specific imprinting and over-expression of paternally expressed transcripts, highlighting that maternal-effect mutations of NLRP7 are associated with the most severe form of multi-locus imprinting defects in humans. PMID:26544189

  4. Magnetic Zn (II) ion-imprinted polymer prepared by the surface imprinting technique and its adsorption properties.

    PubMed

    Zhang, Hui-xin; Dou, Qian; Jin, Xiu-hong; Zhang, Jie; Yang, Ting-ru; Han, Xu; Wang, Dong-dong

    2015-01-01

    A novel magnetic Zn (II) ion-imprinted polymer was prepared by the surface ion-imprinted technique by using magnetic Fe3O4@SiO2 microspheres as supporter, methacrylic acid and salicylaldoxime as monomers, ethylene glycol dimethacrylate as the crosslinker. The products were characterized by Fourier transform infrared, X-ray photoelectron spectrometer, vibrating sample magnetometer and scanning electron microscope. The adsorption experiments showed that the imprinted polymer was employed successfully in comparison with non-imprinted polymer. When the temperature was in a range of 291-297 K, the maximum adsorption was about 52.69 mg g(-1) with an optimal pH 6.0 for an equilibrium time of 40 min. The imprinted polymer possessed high selectivity and specific recognition towards Zn (II). The Langmuir adsorption model was more favourable than the Freundlich or the Temkin adsorption model. Thermodynamic experiment showed that the adsorption was a spontaneous and endothermic process for Zn (II). The mechanism for Zn (II) adsorption on the imprinted polymer was investigated. PMID:25919981

  5. Genetic Differentiation of Hypothalamus Parentally Biased Transcripts in Populations of the House Mouse Implicate the Prader–Willi Syndrome Imprinted Region as a Possible Source of Behavioral Divergence

    PubMed Central

    Lorenc, Anna; Linnenbrink, Miriam; Montero, Inka; Schilhabel, Markus B.; Tautz, Diethard

    2014-01-01

    paternally expressed Peg13 transcript within the Trappc9 gene region on chromosome 15 to be highly differentiated. Interestingly, both regions have been implicated in Prader–Willi nervous system disorder phenotypes in humans. We suggest that these genomically imprinted regions are candidates for influencing the population-specific mate-choice in mice. PMID:25172960

  6. Genetic differentiation of hypothalamus parentally biased transcripts in populations of the house mouse implicate the Prader-Willi syndrome imprinted region as a possible source of behavioral divergence.

    PubMed

    Lorenc, Anna; Linnenbrink, Miriam; Montero, Inka; Schilhabel, Markus B; Tautz, Diethard

    2014-12-01

    paternally expressed Peg13 transcript within the Trappc9 gene region on chromosome 15 to be highly differentiated. Interestingly, both regions have been implicated in Prader-Willi nervous system disorder phenotypes in humans. We suggest that these genomically imprinted regions are candidates for influencing the population-specific mate-choice in mice. PMID:25172960

  7. Epigenetic imprinting during assisted reproductive technologies: The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state.

    PubMed

    Hoeijmakers, Lianne; Kempe, Hermannus; Verschure, Pernette J

    2016-02-01

    Assisted reproductive technology (ART) exposes gametes and embryos to an artificial environment that does not resemble the conditions of natural conception, and therefore might change epigenetic regulation of genes that are imprinted during development. In the present review, we discuss the relationship between susceptibility of specific genes to receive an altered epigenetic composition during ART processes, possibly via alterations in the biochemical folate and methionine cycle. We provide a comprehensive view of the current state of epigenetic patterning in ART-conceived healthy children and in Angelman syndrome (AS) and Beckwith-Wiedemann syndrome (BWS) patients. We illustrate that similar genes--that is, MEST, KCNQ1OT1, and IGF2--possess an altered DNA methylation profile in animal models, ART-conceived healthy children, and AS and BWS patients. The developmental stage at which these genes receive their epigenetic imprint appears to coincide with the specific moment that ART takes place. We highlight that ART procedures affect physiological levels of enzymes and substrates involved in the folate and methionine cycle thereby altering the DNA methylation state. Moreover, although the DNA methylation rate appears to be robust: (i) temporal imbalances coinciding with defined moments of epigenetic imprinting of specific genes affect the eventual DNA methylation state of those genes and (ii) cumulative ART effects on methionine and folate cycling can alter DNA methylation rates. These observations underscore the necessity to further investigate consequences of ART treatments on the epigenetic profile. PMID:26660493

  8. Isotopic imprints of mountaintop mining contaminants.

    PubMed

    Vengosh, Avner; Lindberg, T Ty; Merola, Brittany R; Ruhl, Laura; Warner, Nathaniel R; White, Alissa; Dwyer, Gary S; Di Giulio, Richard T

    2013-09-01

    Mountaintop mining (MTM) is the primary procedure for surface coal exploration within the central Appalachian region of the eastern United States, and it is known to contaminate streams in local watersheds. In this study, we measured the chemical and isotopic compositions of water samples from MTM-impacted tributaries and streams in the Mud River watershed in West Virginia. We systematically document the isotopic compositions of three major constituents: sulfur isotopes in sulfate (δ(34)SSO4), carbon isotopes in dissolved inorganic carbon (δ(13)CDIC), and strontium isotopes ((87)Sr/(86)Sr). The data show that δ(34)SSO4, δ(13)CDIC, Sr/Ca, and (87)Sr/(86)Sr measured in saline- and selenium-rich MTM impacted tributaries are distinguishable from those of the surface water upstream of mining impacts. These tracers can therefore be used to delineate and quantify the impact of MTM in watersheds. High Sr/Ca and low (87)Sr/(86)Sr characterize tributaries that originated from active MTM areas, while tributaries from reclaimed MTM areas had low Sr/Ca and high (87)Sr/(86)Sr. Leaching experiments of rocks from the watershed show that pyrite oxidation and carbonate dissolution control the solute chemistry with distinct (87)Sr/(86)Sr ratios characterizing different rock sources. We propose that MTM operations that access the deeper Kanawha Formation generate residual mined rocks in valley fills from which effluents with distinctive (87)Sr/(86)Sr and Sr/Ca imprints affect the quality of the Appalachian watersheds. PMID:23909446

  9. The "silent" imprint of musical training.

    PubMed

    Klein, Carina; Liem, Franziskus; Hänggi, Jürgen; Elmer, Stefan; Jäncke, Lutz

    2016-02-01

    Playing a musical instrument at a professional level is a complex multimodal task requiring information integration between different brain regions supporting auditory, somatosensory, motor, and cognitive functions. These kinds of task-specific activations are known to have a profound influence on both the functional and structural architecture of the human brain. However, until now, it is widely unknown whether this specific imprint of musical practice can still be detected during rest when no musical instrument is used. Therefore, we applied high-density electroencephalography and evaluated whole-brain functional connectivity as well as small-world topologies (i.e., node degree) during resting state in a sample of 15 professional musicians and 15 nonmusicians. As expected, musicians demonstrate increased intra- and interhemispheric functional connectivity between those brain regions that are typically involved in music perception and production, such as the auditory, the sensorimotor, and prefrontal cortex as well as Broca's area. In addition, mean connectivity within this specific network was positively related to musical skill and the total number of training hours. Thus, we conclude that musical training distinctively shapes intrinsic functional network characteristics in such a manner that its signature can still be detected during a task-free condition. Hum Brain Mapp 37:536-546, 2016. © 2015 Wiley Periodicals, Inc. PMID:26538421

  10. Imprinting bulk amorphous alloy at room temperature

    DOE PAGESBeta

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  11. Protein crystallization facilitated by molecularly imprinted polymers

    PubMed Central

    Saridakis, Emmanuel; Khurshid, Sahir; Govada, Lata; Phan, Quan; Hawkins, Daniel; Crichlow, Gregg V.; Lolis, Elias; Reddy, Subrayal M.; Chayen, Naomi E.

    2011-01-01

    We present a previously undescribed initiative and its application, namely the design of molecularly imprinted polymers (MIPs) for producing protein crystals that are essential for determining high-resolution 3D structures of proteins. MIPs, also referred to as “smart materials,” are made to contain cavities capable of rebinding protein; thus the fingerprint of the protein created on the polymer allows it to serve as an ideal template for crystal formation. We have shown that six different MIPs induced crystallization of nine proteins, yielding crystals in conditions that do not give crystals otherwise. The incorporation of MIPs in screening experiments gave rise to crystalline hits in 8–10% of the trials for three target proteins. These hits would have been missed using other known nucleants. MIPs also facilitated the formation of large single crystals at metastable conditions for seven proteins. Moreover, the presence of MIPs has led to faster formation of crystals in all cases where crystals would appear eventually and to major improvement in diffraction in some cases. The MIPs were effective for their cognate proteins and also for other proteins, with size compatibility being a likely criterion for efficacy. Atomic force microscopy (AFM) measurements demonstrated specific affinity between the MIP cavities and a protein-functionalized AFM tip, corroborating our hypothesis that due to the recognition of proteins by the cavities, MIPs can act as nucleation-inducing substrates (nucleants) by harnessing the proteins themselves as templates. PMID:21690356

  12. Chemical microsensors with molecularly imprinted sensitive layers

    NASA Astrophysics Data System (ADS)

    Dickert, Franz L.; Greibl, Wolfgang; Sikorski, Renatus; Tortschanoff, Matthias; Weber, K.; Bulst, W. E.; Fischerauer, G.

    1998-12-01

    The bottleneck in the development of chemical sensors is the design of the coatings for chemical recognition of the analyte. One pronounced method is to tailor supramolecular cavities for different analytes. Polyfunctional linkers or the embedding of these materials in a polymeric matrix can improve stability and response time of the sensor. An even more favorable method to synthesize chemically sensitive layers is realized by molecular imprinting, since a rigid polymer can be generated directly on the transducer of interest and may be included in its production process. The analyte of interest acts as a template during the polymerization process and is evaporated or extracted by suitable solvents. Due to the cavities formed this polymer enriches analyte molecules, which can be detected by mass- sensitive devices such as QMB or SAW resonators or by optical measurements. This procedure allows both the detection of polycyclic aromatic hydrocarbons (PAHs) with fluorescence or mass sensitive devices. If the print PAHs are varied the polymers are tuned to the desired analyte. The enrichment of solvent vapors or other uncolored specimen by the layer can also be followed by the embedding of carbenium ions used as optical labels.

  13. Fluorescence measurements of activity associated with a molecularly imprinted polymer imprinted to dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.

    2004-03-01

    Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.

  14. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans.

    PubMed

    Sanchez-Delgado, Marta; Riccio, Andrea; Eggermann, Thomas; Maher, Eamonn R; Lapunzina, Pablo; Mackay, Deborah; Monk, David

    2016-07-01

    Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs). PMID:27235113

  15. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor.

    PubMed Central

    Taniguchi, T; Sullivan, M J; Ogawa, O; Reeve, A E

    1995-01-01

    In most tissues IGF2 is expressed from the paternal allele while H19 is expressed from the maternal allele. We have previously shown that in some Wilms tumors the maternal IGF2 imprint is relaxed such that the gene is expressed biallelically. We have now investigated this subset of tumors further and found that biallelic expression of IGF2 was associated with undetectable or very low levels of H19 expression. The relaxation of IGF2 imprinting in Wilms tumors also involved a concomitant reversal in the patterns of DNA methylation of the maternally inherited IGF2 and H19 alleles. Furthermore, the only specific methylation changes that occurred in tumors with relaxation of IGF2 imprinting were solely restricted to the maternal IGF2 and H19 alleles. These data suggest that there has been an acquisition of a paternal epigenotype in these tumors as the result of a pathologic disruption in the normal imprinting of the IGF2 and H19 genes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7534414

  16. Quercetin-imprinted polymer for anthocyanin extraction from mangosteen pericarp.

    PubMed

    Piacham, Theeraphon; Isarankura-Na-Ayudhya, Chartchalerm; Prachayasittikul, Virapong

    2015-06-01

    Molecular imprinting is a facilitative technology for the production of artificial receptors possessing great endurance with high specificity toward target molecules of interest. The polymers are commonly applied for separation or analysis of substances of interest. In this study, we prepared molecularly imprinted polymers for the purpose of binding specifically to quercetin and related compounds. Quercetin was used as the template molecule, 4-vinylpyridine (4-VP) as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the cross-linking monomer, azobisisobutyronitrile (AIBN) as the polymerization initiator and ethanol as the porogenic solvent. Such 4-VP-based imprinted polymer was found to bind the template molecule greater than that of the control polymer with an approximate 2 folds higher binding using 20mg of polymer in the optimal solvent, ethanol:water (4:1v/v). Quercetin-imprinted polymer (QIP) was found to bind well against its template; approximately 1mg/g polymer. In addition, QIP was applied to bind anthocyanin from the crude extract of mangosteen pericarp. The binding capacity of quercetin-MIP toward anthocyanin was approximately 0.875mg per gram of polymer. This result indicated that quercetin-MIP showed its specific binding to quercetin and related compound particularly anthocyanin. In conclusion, we have demonstrated the successful preparation and utilization of molecularly imprinted polymer for the specific recognition of quercetin as well as structurally related anthocyanins from the mangosteen pericarp with enhanced and robust performance. PMID:25842116

  17. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects

    PubMed Central

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-01-01

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers’ desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed. PMID:26262607

  18. Scalemic and racemic imprinting with a chiral crosslinker.

    PubMed

    Hebert, Britney; Meador, Danielle S; Spivak, David A

    2015-08-26

    The development of molecularly imprinted chiral stationary phases has traditionally been limited by the need for a chiral pure template. Paradoxically, availability of a chiral pure template largely defeats the purpose of developing a chiral stationary phase. To solve this paradox, imprinting of scalemic and racemic template mixtures was investigated using both chiral (N-α-bismethacryloyl-L-alanine) and achiral (N,O-bisacrylamide ethanolamine) crosslinkers. Imprinting of scalemic mixtures provided polymers capable of partial separation of Boc-tyrosine enantiomers with virtually the same results when using either the chiral or achiral crosslinker. However, the chiral crosslinker was required for chiral differentiation by the racemic imprinted polymers which were evaluated in both batch rebinding and chromatographic modes. Batch rebinding analysis revealed intersecting binding isotherms for the L- and D-Boc-tyrosine, indicating bias for the D or L enantiomer is concentration dependent. Partial chromatographic separation was achieved by the racemic imprinted polymers providing variable D or L bias in equal probability over multiple replicates of polymer synthesis. Correlation of enantiomer bias with the batch rebinding results and optimization of HPLC parameters are discussed. PMID:26347178

  19. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. PMID:26520251

  20. Ionic liquid crosslinkers for chiral imprinted nanoGUMBOS.

    PubMed

    Hamdan, Suzana; Moore, Leonard; Lejeune, Jason; Hasan, Farhana; Carlisle, Trevor K; Bara, Jason E; Gin, D L; LaFrate, Andrew L; Noble, R D; Spivak, David A; Warner, Isiah M

    2016-02-01

    Molecularly imprinted polymers (MIPs) are an important class of selective materials for molecular specific sensors and separations. Molecular imprinting using non-covalent interactions in aqueous conditions still remains a difficult challenge due to interruption of hydrogen-bonding or electrostatic interactions water. Newly developed crosslinking ionic liquids are demonstrated herein to overcome problems of synthesizing aqueous MIPs, adding to previous examples of ionic liquids used as monomers in non-aqueous conditions or used as MIP solvents. Vinylimidazole ionic liquid crosslinkers were synthesized and subsequently explored as matrix supports for fabrication of molecularly imprinted polymeric nanoGUMBOS (nanoparticles derived from a group of uniform materials based on organic salts). Each of the four crosslinkers incorporated a unique functional spacer between the vinylimidazole groups, and the performance of the corresponding molecularly imprinted polymers was evaluated using chiral recognition as the diagnostic. High uptake values for l-tryptophan were found in the 13-87μmol/g range; and chiral recognition was determined via binding ratios of l-tryptophan over d-tryptophan that ranged from 5:1 to 13:1 for polymers made using different crosslinkers. Not only are these materials good for chiral recognition, but the results highlight the utility of these materials for imprinting aqueous templates such as biological targets for theranostic agents. PMID:26513734

  1. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.

    PubMed

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-01-01

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed. PMID:26262607

  2. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  3. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits

    PubMed Central

    2011-01-01

    Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following

  4. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form...

  5. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form...

  6. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form...

  7. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form...

  8. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form...

  9. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...

  10. A triple-function zwitterion for preparing water compatible diclofenac imprinted polymers.

    PubMed

    Shen, Feng; Zhang, Qingxi; Ren, Xueqin

    2015-01-01

    A novel zwitterion acting as both a functional monomer and a crosslinker with the protein-resistant ability concomitantly was synthesized for preparing water compatible diclofenac imprinted polymers. This new imprinted polymer showed high imprinting efficiency for template and strong anti-protein adsorption in aqueous medium. PMID:25387988

  11. Loss of Imprinting and Allelic Switching at the DLK1-MEG3 Locus in Human Hepatocellular Carcinoma

    PubMed Central

    Anwar, Sumadi Lukman; Krech, Till; Hasemeier, Britta; Schipper, Elisa; Schweitzer, Nora; Vogel, Arndt; Kreipe, Hans; Lehmann, Ulrich

    2012-01-01

    Deregulation of imprinted genes is an important molecular mechanism contributing to the development of cancer in humans. However, knowledge about imprinting defects in human hepatocellular carcinoma (HCC), the third leading cause of cancer mortality worldwide, is still limited. Therefore, a systematic meta-analysis of the expression of 223 imprinted loci in human HCC was initiated. This screen revealed that the DLK1-MEG3 locus is frequently deregulated in HCC. Deregulation of DLK1 and MEG3 expression accompanied by extensive aberrations in DNA methylation could be confirmed experimentally in an independent series of human HCC (n = 40) in more than 80% of cases. Loss of methylation at the DLK1-MEG3 locus correlates linearly with global loss of DNA methylation in HCC (r2 = 0.63, p<0.0001). Inhibition of DNMT1 in HCC cells using siRNA led to a reduction in MEG3-DMR methylation and concomitant increase in MEG3 RNA expression. Allele-specific expression analysis identified loss of imprinting in 10 out of 31 informative samples (32%), rendering it one of the most frequent molecular defects in human HCC. In 2 cases unequivocal gain of bi-allelic expression accompanied by substantial loss of methylation at the IG-DMR could be demonstrated. In 8 cases the tumour cells displayed allelic switching by mono-allelic expression of the normally imprinted allele. Allelic switching was accompanied by gains or losses of DNA methylation primarily at IG-DMR1. Analysis of 10 hepatocellular adenomas (HCA) and 5 cases of focal nodular hyperplasia (FNH) confirmed that this epigenetic instability is specifically associated with the process of malignant transformation and not linked to increased proliferation per se. This widespread imprint instability in human HCC has to be considered in order to minimize unwanted side-effects of therapeutic approaches targeting the DNA methylation machinery. It might also serve in the future as predictive biomarker and for monitoring response to

  12. [Spectroscopic study of diazepam molecularly imprinted polymers and initiative application to conductimetric sensor based on molecularly imprinted films].

    PubMed

    Liu, Xiao-fang; Li, Feng; Yao, Bing; Wang, Li; Liu, Guo-yan; Chai, Chun-yan

    2010-08-01

    The molecularly imprinted polymers were synthesized using diazepam as the template and molecularly imprinted films (MIF) prepared on screen printed electrodes (SPE). The binding mechanism and recognition characteristics of the molecularly imprinted polymers were studied by ultraviolet (UV) spectra and infrared (IR) spectra. In addition, a conductimetric sensor for diazepam was established preliminarily based on diazepam MIF modified SPE. The results of UV spectra indicated that template molecules and functional monomers had formed 1:2 hydrogen bonding complexes; the results of IR spectra showed that there were some functional groups in the molecularly imprinted polymers which could interact with the template molecules. The molecularly imprinted polymers manifested highly recognition to diazepam. The response of the conductimetric sensor to the concentration of diazepam displayed a linear correlation over a range of 0.04 to 0.62 mg x L(-1) with a detection limit of 0.008 mg x L(-1). The sensor is suitable for on-the-spot detection of diazepam. PMID:20939345

  13. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    SciTech Connect

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.; Wietsma, Thomas W.; Gratton, Enrico; Vasdekis, Andreas

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.

  14. Molecularly imprinted cryogels for carbonic anhydrase purification from bovine erythrocyte.

    PubMed

    Uygun, Murat; Karagözler, A Alev; Denizli, Adil

    2014-04-01

    Molecularly imprinted PHEMAH cryogels were synthesized and used for purification of carbonic anhydrase from bovine erythrocyte. Cryogels were prepared with free radical cryopolymerization of 2-hydroxyethyl methacrylate and methacryloylamido histidine and characterized by swelling degree, macroporosity, FTIR, SEM, surface area and elemental analysis. Maximum carbonic anhydrase adsorption of molecularly imprinted PHEMAH cryogel was found to be 3.16 mg/g. Selectivity of the molecularly imprinted cryogel was investigated using albumin, hemoglobin, IgG, γ-globulin, and lysozyme as competitor proteins and selectivity ratios were found to be 15.26, 60.05, 21.88, 17.61, and 17.42, respectively. Carbonic anhydrase purity was demonstrated by SDS-PAGE and zymogram results. PMID:24528406

  15. 32 nm imprint masks using variable shape beam pattern generators

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Schmid, Gerard; Stacey, Nick; Perez, Joseph; Maltabes, John; Resnick, Douglas J.; Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-05-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the template is discussed and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  16. Defect reduction progress in step and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Selenidis, K.; Maltabes, J.; McMackin, I.; Perez, J.; Martin, W.; Resnick, D. J.; Sreenivasan, S. V.

    2007-10-01

    Imprint lithography has been shown to be an effective method for the replication of nanometer-scale structures from a template mold. Step and Flash Imprint Lithography (S-FIL ®) is unique in its ability to address both resolution and alignment. Recently overlay across a 200 mm wafer of less than 20nm, 3σ has been demonstrated. Current S-FIL resolution and alignment performance motivates the consideration of nano-imprint lithography as Next Generation Lithography (NGL) solution for IC production. During the S-FIL process, a transferable image, an imprint, is produced by mechanically molding a liquid UV-curable resist on a wafer. The novelty of this process immediately raises questions about the overall defectivity level of S-FIL. Acceptance of imprint lithography for CMOS manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This report specifically focuses on this challenge and presents the current status of defect reduction in S-FIL technology and will summarize the result of defect inspections of wafers patterned using S-FIL. Wafer inspections were performed with a KLA Tencor- 2132 (KT-2132) automated patterned wafer inspection tool. Recent results show wafer defectivity to be less 5 cm -2. Mask fabrication and inspection techniques used to obtain low defect template will be described. The templates used to imprint wafers for this study were designed specifically to facilitate automated defect inspection and were made by employing CMOS industry standard materials and exposure tools. A KT-576 tool was used for template defect inspection.

  17. Removal of iron by chelation with molecularly imprinted supermacroporous cryogel.

    PubMed

    Çimen, Duygu; Göktürk, Ilgım; Yılmaz, Fatma

    2016-06-01

    Iron chelation therapy can be used for the selective removal of Fe(3+) ions from spiked human plasma by ion imprinting. N-Methacryloyl-(L)-glutamic acid (MAGA) was chosen as the chelating monomer. In the first step, MAGA was complexed with the Fe(3+) ions to prepare the precomplex, and then the ion-imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-glutamic acid) [PHEMAGA-Fe(3+)] cryogel column was prepared by cryo-polymerization under a semi-frozen temperature of - 12°C for 24 h. Subsequently, the template, of Fe(3+) ions was removed from the matrix by using 0.1 M EDTA solution. The values for the specific surface area of the imprinted PHEMAGA-Fe(3+) and non-imprinted PHEMAGA cryogel were 45.74 and 7.52 m(2)/g respectively, with a pore size in the range of 50-200 μm in diameter. The maximum Fe(3+) adsorption capacity was 19.8 μmol Fe(3+)/g cryogel from aqueous solutions and 12.28 μmol Fe(3+)/g cryogel from spiked human plasma. The relative selectivity coefficients of ion-imprinted cryogel for Fe(3+)/Ni(2+) and Fe(3+)/Cd(2+) were 1.6 and 4.2-fold greater than the non-imprinted matrix, respectively. It means that the PHEMAGA-Fe(3+) cryogel possesses high selectivity to Fe(3+) ions, and could be used many times without significantly decreasing the adsorption capacity. PMID:25727711

  18. Measurements of Laser Imprinting Using 2-D Velocity Interferometry

    NASA Astrophysics Data System (ADS)

    Boehly, T. R.; Fiksel, G.; Hu, S. X.; Goncharov, V. N.; Sangster, T. C.; Celliers, P. M.

    2014-10-01

    Evaluating laser imprinting and its effect on target performance is critical to direct-drive inertial confinement fusion research. Using high-resolution velocity interferometry, we measure modulations in the velocity of shock waves produced by the 351-nm beams on OMEGA. These modulations result from nonuniformities in the drive laser beams. We use these measurements to evaluate the effect on imprinting of multibeam irradiation and metal layers on both plastic and cryogenic deuterium targets driven with 100-ps pulses. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. Production of abiotic receptors by molecular imprinting of proteins

    SciTech Connect

    Braco, L.; Dabulis, K.; Klibanov, A.M. )

    1990-01-01

    When a protein is dissolved in a concentrated aqueous solution of a multifunctional organic compound, freeze-dried, and washed with an anhydrous organic solvent to remove the ligand, the resultant imprinted protein preparation binds up to 30-fold more of the template compound in anhydrous solvents that the nonimprinted protein in the same solvent (and both proteins in water). These artificial receptors exhibit marked ligand selectivity as well as stability in anhydrous media. This phenomenon of molecular imprinting, demonstrated for several unrelated proteins and ligands, may be helpful in the development of unique bioadsorbents and, potentially, new biocatalysts.

  20. Virtual Screening of Receptor Sites for Molecularly Imprinted Polymers.

    PubMed

    Bates, Ferdia; Cela-Pérez, María Concepción; Karim, Kal; Piletsky, Sergey; López-Vilariño, José Manuel

    2016-08-01

    Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of "virtually imprinted receptors" for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems. PMID:27076379

  1. Supramolecular recognition of estrogens via molecularly imprinted polymers

    PubMed Central

    Ričanyová, Júlia; Gadzała-Kopciuch, Renata; Szumski, Michał

    2010-01-01

    The isolation and preconcentration of estrogens from new types of biological samples (acellular and protein-free simulated body fluid) by molecularly imprinted solid-phase extraction has been described. In this technique, supramolecular receptors, namely molecularly imprinted polymers (MIPs) are used as a sorbent material. The recognition sites of MIPs were prepared by non-covalent multiple interactions and formed with the target 17β-estradiol as a template molecule. High-performance liquid chromatography with spectroscopic UV, selective, and a sensitive electrochemical CoulArray detector was used for the determination of 17β-estradiol, estrone, and estriol in simulated body fluid which mimicked human plasma. PMID:20549493

  2. Advancements of molecularly imprinted polymers in the food safety field.

    PubMed

    Wang, Peilong; Sun, Xiaohua; Su, Xiaoou; Wang, Tie

    2016-06-01

    Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement. PMID:26937495

  3. Non-conflict theories for the evolution of genomic imprinting.

    PubMed

    Spencer, H G; Clark, A G

    2014-08-01

    Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci. PMID:24398886

  4. Non-conflict theories for the evolution of genomic imprinting

    PubMed Central

    Spencer, H G; Clark, A G

    2014-01-01

    Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci. PMID:24398886

  5. Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting

    PubMed Central

    Negri, Ilaria; Franchini, Antonella; Gonella, Elena; Daffonchio, Daniele; Mazzoglio, Peter John; Mandrioli, Mauro; Alma, Alberto

    2009-01-01

    Environmental factors can induce significant epigenetic changes that may also be inherited by future generations. The maternally inherited symbiont of arthropods Wolbachia pipientis is an excellent candidate as an ‘environmental’ factor promoting trans-generational epigenetic changes: by establishing intimate relationships with germ-line cells, epigenetic effects of Wolbachia symbiosis would be manifested as a ‘maternal effect’, in which infection of the mother modulates the offspring phenotype. In the leafhopper Zyginidia pullula, Wolbachia feminizes genetic males, leaving them as intersexes. With the exception of male chitinous structures that are present in the last abdominal segment, feminized males display phenotypic features that are typical of females. These include ovaries that range from a typical histological architecture to an altered structure. Methylation-sensitive random amplification of polymorphic DNA profiles show that they possess a female genomic imprint. On the other hand, some rare feminized males bear testes instead of ovaries. These specimens possess a Wolbachia density approximately four orders of magnitude lower than feminized males with ovaries and maintain a male genome—methylation pattern. Our results indicate that Wolbachia infection disrupts male imprinting, which dramatically influences the expression of genes involved in sex differentiation and development, and the alteration occurs only if Wolbachia exceeds a density threshold. Thus, a new Wolbachia's role as an environmental evolutionary force, inducing epigenetic trans-generational changes, should now be considered. PMID:19364731

  6. Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup

    PubMed Central

    Cowley, Michael; Garfield, Alastair S.; Madon-Simon, Marta; Charalambous, Marika; Clarkson, Richard W.; Smalley, Matthew J.; Kendrick, Howard; Isles, Anthony R.; Parry, Aled J.; Carney, Sara; Oakey, Rebecca J.; Heisler, Lora K.; Moorwood, Kim; Wolf, Jason B.; Ward, Andrew

    2014-01-01

    Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk. PMID:24586114

  7. Rapid Diagnosis of Imprinting Disorders Involving Copy Number Variation and Uniparental Disomy Using Genome-Wide SNP Microarrays.

    PubMed

    Liu, Weiqiang; Zhang, Rui; Wei, Jun; Zhang, Huimin; Yu, Guojiu; Li, Zhihua; Chen, Min; Sun, Xiaofang

    2015-01-01

    Imprinting disorders, such as Beckwith-Wiedemann syndrome (BWS), Prader-Willi syndrome (PWS) and Angelman syndrome (AS), can be detected via methylation analysis, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), or other methods. In this study, we applied single nucleotide polymorphism (SNP)-based chromosomal microarray analysis to detect copy number variations (CNVs) and uniparental disomy (UPD) events in patients with suspected imprinting disorders. Of 4 patients, 2 had a 5.25-Mb microdeletion in the 15q11.2q13.2 region, 1 had a 38.4-Mb mosaic UPD in the 11p15.4 region, and 1 had a 60-Mb detectable UPD between regions 14q13.2 and 14q32.13. Although the 14q32.2 region was classified as normal by SNP array for the 14q13 UPD patient, it turned out to be a heterodisomic UPD by short tandem repeat marker analysis. MS-MLPA analysis was performed to validate the variations. In conclusion, SNP-based microarray is an efficient alternative method for quickly and precisely diagnosing PWS, AS, BWS, and other imprinted gene-associated disorders when considering aberrations due to CNVs and most types of UPD. PMID:26184742

  8. Imprinting mutations in Angelman syndrome detected by Southern blotting using a probe containing exon {alpha} of SNRPN

    SciTech Connect

    Beuten, J.; Sutcliffe, J.S.; Nakao, M.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy (UPD), or other mutations. The SNRPN gene maps in this region, is paternally expressed, and is a candidate gene for PWS. Southern blotting using methylation-sensitive enzymes and a genomic DNA probe from the CpG island containing exon {alpha} of the SNRPN gene reveals methylation specific for the maternal allele. In cases of the usual deletions or UPD, the probe detects absence of an unmethylated allele in PWS and absence of a methylated allele in AS. We have analyzed 21 nondeletion/nonUPD AS patients with this probe and found evidence for an imprinting mutation (absence of a methylated allele) in 3 patients. Southern blotting with methylation-sensitive enzymes using the exon {alpha} probe, like use of the PW71 probe, should detect abnormalities in all known PWS cases and in 3 of the 4 forms of AS: deletion, UPD and imprinting mutations. This analysis provides a valuable diagnostic approach for PWS and AS. In efforts to localize the imprinting mutations in AS, one patient was found with failure to inherit a dinucleotide repeat polymorphism near probe 189-1 (D15S13). Analysis of this locus in AS families and CEPH families demonstrates a polymorphism that impairs amplification and a different polymorphism involving absence of hybridization to the 189-1 probe. The functional significance, if any, of deletion of the 189-1 region is unclear.

  9. Synthesis of glycylglycine-imprinted silica microspheres through different water-in-oil emulsion techniques.

    PubMed

    Ornelas, Mariana; Loureiro, Dianne; Araújo, Maria João; Marques, Eduardo; Dias-Cabral, Cristina; Azenha, Manuel; Silva, Fernando

    2013-07-01

    Sol-gel molecularly imprinted materials (MIMs) are traditionally obtained by grinding and sieving of a monolith formed by bulk polymerization. However, this process has several drawbacks that can be overcome if these materials are synthesized directly in the spherical format. This work aimed at the development of two efficient methods to prepare spherical glycylglycine-templated silica ("whole-imprinted" and surface-imprinted) through a combination of sol-gel and emulsion techniques. The synthesis of the microspheres was optimized regarding emulsion and sol-gel parameters. Imprinting efficiency of the prepared materials was studied by solid phase extraction and flow microcalorimetry. The particles prepared with glycylglycine and functional monomer, in basic medium (using cyclohexane as non-polar continuous medium) presented the highest imprinting factor - 2.5 - and the respective surface-imprinted material presented an imprinting factor of 1.5. The results of flow microcalorimetry confirmed the action of different mechanisms of glycylglycine adsorption: entropically-controlled interactions were present for the "whole-imprinted" material, indicating adsorption inside small imprinted pores; enthalpically-controlled interactions were observed for the surface-imprinted material, a behaviour more compatible with a template/surface-only interaction. Globally, the two approaches allowed for a successful imprinting effect which was more extensive for the "whole-imprinted" material, whereas the surface-imprinting feature confers to the surface-imprinted xerogel advantages regarding mass transfer kinetics. Overall, the spherical particles obtained by both approaches presented characteristics, such as sphericity, mesoporosity, easy/fast accessibility to imprinted sites, important indicators that these materials may be candidates for stationary phases for efficient, selective chromatographic separation. PMID:23706547

  10. Ultraviolet Nano Imprint Lithography Using Fluorinated Silicon-Based Resist Materials

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi

    2010-02-01

    Fluorinated silicon-based resist materials have recently been applied as ultraviolet crosslinkable materials for nano imprint lithography. I report and demonstrate the step and flash nano imprint lithography process using the newly fluorinated silicon-based resist materials for next generation technologies. This paper presents progress in the formulation of advanced resist materials design, the development of suitable ultraviolet imprint conditions and etch processes to achieve thin residual resist layers, low volumetric shrinkage of the resist film, and low imprint pressures for defect reduction. High quality imprint images were produced with multiple pattern-structured templates on wafers using these developed fluorinated silicon-based resist materials.

  11. Mitigation of Laser Imprinting with Diamond Ablator for Direct-Drive Inertial Confinement Fusion Targets

    NASA Astrophysics Data System (ADS)

    Shigemori, K.; Kato, H.; Nakai, M.; Hosogi, R.; Sakaiya, T.; Terasaki, H.; Fujioka, S.; Sunahara, A.; Azechi, H.

    2016-03-01

    We propose a novel scheme to mitigate the initial perturbation imprinting due to irradiation non-uniformity. Diamond was potential candidate for the ablator material for ICF targets due to its stiffness. The stiffness is very important parameter for imprint mitigation because the laser imprint is primary as a function of pressure perturbation due to lase irradiation non-uniformity. We measured the imprint amplitude of diamond foils and plastic (CH) foils. The experimental data suggest the initial imprinting is drastically mitigated for the diamond foils.

  12. Early imprinting in wild and game-farm mallards (Anas platyrhynchos): genotype and arousal

    USGS Publications Warehouse

    Cheng, K.M.; Shoffner, R.N.; Phillips, R.E.; Shapiro, L.J.

    1979-01-01

    Early imprinting was studied under laboratory conditions in five lines of mallards (Anas platyrhynchos) with different degrees of wildness obtained through pedigreed breeding. Data were analyzed by the least squares method. Wild ducklings imprinted better than game-farm (domesticated) ducklings, and heterosis was demonstrated to exist in imprinting traits. Nonadditive genetic variations and genotype-environmental interactions are discussed as possible causes for the heterosis observed. Differences in imprinting between genetic lines are attributed, at least partly, to differences in arousal level during the ducklings' first exposure to the imprinting stimulus.

  13. Postnatal survival of mice with maternal duplication of distal chromosome 7 induced by a Igf2/H19 imprinting control region lacking insulator function.

    PubMed

    Han, Li; Szabó, Piroska E; Mann, Jeffrey R

    2010-01-01

    The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)-a chromatin insulator, we introduced a mutant ICR (ICR(Delta)) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome. PMID:20062522

  14. Imprinting in rice: the role of DNA and histone methylation in modulating parent-of-origin specific expression and determining transcript start sites.

    PubMed

    Du, Miru; Luo, Ming; Zhang, Ruofang; Finnegan, E Jean; Koltunow, Anna M G

    2014-07-01

    Over 200 imprinted genes in rice endosperm are known, but the mechanisms modulating their parental allele-specific expression are poorly understood. Here we use three imprinted genes, OsYUCCA11, yellow2-like and ubiquitin hydrolase, to show that differential DNA methylation and tri-methylation of histone H3 lysine 27 (H3K27me3 ) in the promoter and/or gene body influences allele-specific expression or the site of transcript initiation. Paternal expression of OsYUCCA11 required DNA methylation in the gene body whereas the gene body of the silenced maternal allele was hypomethylated and marked with H3K27me3 . These differential markings mirror those proposed to modulate paternal expression of two Arabidopsis genes, PHERES1 and a YUCCA homolog, indicating conservation of imprinting mechanisms. At yellow2-like, DNA hypomethylation in the upstream flanking region resulted in maternal transcripts that were longer than paternal transcripts; the maternal transcript initiation site was marked by DNA methylation in the paternal allele, and transcription initiated ~700 bp downstream. The paternal allele of an ubiquitin hydrolase gene exhibited gene body DNA methylation and produced full-length transcripts, while the maternal allele was hypomethylated in the 5' gene body and transcripts initiated from a downstream promoter. Inhibition of DNA methylation by 5-azacytidine or zebularine activated the long transcripts from yellow2-like and enhanced expression of the short transcripts from the ubiquitin hydrolase in seedlings, indicating that DNA methylation prevents transcript initiation from cryptic promoters. These observations suggest a paradigm whereby maternal genome hypomethylation is associated with the production of distinct transcripts, potentially diversifying the gene products from the two alleles. PMID:24819479

  15. Synthesis of surface protein-imprinted nanoparticles endowed with reversible physical cross-links.

    PubMed

    Yang, Chongchong; Yan, Xianming; Guo, Hao; Fu, Guoqi

    2016-01-15

    Researches on protein molecularly imprinted polymers have been challenged by the difficulties in facilitating biomacromolecular transfer, in particular upon the template removal step, and enhancing their recognition performance. Addressing these issues, herein we report synthesis of core–shell structured surface protein-imprinted nanoparticles with reversible physical cross-links formed in the imprinted nanoshells. The imprinted layers over nanoparticle supports are fabricated via aqueous precipitation polymerization (PP) of di(ethylene glycol) methyl ether methacrylate (MEO2MA), a thermo-responsive monomer bearing no strong H-bond donor, and other functional and cross-linking monomers. During polymerization, physical cross-links together with chemical cross-links are in site produced within the imprinted shells based on hydrophobic association among the PMEO2MA, favoring formation of high-quality imprints. While cooled appropriately below the polymerization temperature, these physical cross-links can be dissociated rapidly, thus facilitating removal of the embedded template. For proof of this concept, lysozyme-imprinted nanoparticles were synthesized at 37 °C over the nanoparticles functionalized with carboxylic and vinyl groups. The template removal from the imprinted nanoparticles was readily achieved by washing with a dilute acidic detergent solution at 4 °C. As-prepared imprinted nanoparticles showed greatly higher imprinting factor and specific rebinding than obtained with the same recipe but by solution polymerization (SP). Moreover, such imprinted nanomaterials exhibited satisfactory rebinding selectivity, kinetics and reusability. PMID:26313422

  16. Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer.

    PubMed

    Haginaka, J; Takehira, H; Hosoya, K; Tanaka, N

    1999-07-23

    A uniform-sized molecularly imprinted polymer (MIP) for (S)-naproxen selectively modified with hydrophilic external layer has been prepared. First, the molecularly imprinted polymer for (S)-naproxen was prepared using 4-vinylpyridine and ethylene glycol dimethacrylate (EDMA) as a functional monomer and cross-linker, respectively, by a multi-step swelling and thermal polymerization method. Next, a 1:1 mixture of glycerol monomethacrylate (GMMA) and glycerol dimethacrylate (GDMA) was used for hydrophilic surface modification, and it was added directly to the molecularly imprinted polymer for (S)-naproxen 4 h after the start of molecular imprinting. The retention factors of all solutes tested were decreased with the surface modified molecularly imprinted polymer, compared with the unmodified molecularly imprinted polymer. However, chiral recognition of racemic naproxen was attained with the surface modified molecularly imprinted polymer as well as the unmodified molecularly imprinted polymer. Further, bovine serum albumin was completely recovered from the surface modified molecularly imprinted polymer. These results revealed that the chiral recognition sites of (S)-naproxen remained unchanged with hydrophilic surface modification, and that the molecularly imprinted polymer for (S)-naproxen was selectively modified with hydrophilic external layer. Preliminary results reveal that the surface modified molecularly imprinted polymer could be applicable to direct serum injection assays of (S)-naproxen. PMID:10457431

  17. Methylation changes of H{sub 19} gene in sperms of X-irradiated mouse and maintenance in offspring

    SciTech Connect

    Zhu Bin; Huang Xinghua; Chen Jindong; Lu Yachao; Chen Ying; Zhao Jingyong . E-mail: sudazhaojy@hotmail.com

    2006-02-03

    The nature of imprinting is just differential methylation of imprinted genes. Unlike the non-imprinted genes, the methylation pattern of imprinted genes established during the period of gametogenesis remains unchangeable after fertilization and during embryo development. It implies that gametogenesis is the key stage for methylation pattern of imprinted genes. The imprinting interfered by exogenous factors during this stage could be inherited to offspring and cause genetic effect. Now many studies have proved that ionizing irradiation could disturb DNA methylation. Here we choose BALB/c mice as a research model and X-ray as interfering source to further clarify it. We discovered that the whole-body irradiation of X-ray to male BALB/c mice could influence the methylation pattern of H{sub 19} gene in sperms, which resulted in some cytosines of partial CpG islands in the imprinting control region could not transform to methylated cytosines. Furthermore, by copulating the interfered male mice with normal female, we analyzed the promoter methylation pattern of H{sub 19} in offspring fetal liver and compared the same to the pattern of male parent in sperms. We found that the majority of methylation changes in offspring liver were related to the ones in their parent sperms. Our data proved that the changes of the H{sub 19} gene methylation pattern interfered by X-ray irradiation could be transmitted and maintained in First-generation offspring.

  18. Imprinting: When Early Life Memories Make Food Smell Bad.

    PubMed

    Rayes, Diego; Alkema, Mark J

    2016-05-01

    A recent study has found that pathogen exposure early in the life of the nematode Caenorhabditis elegans leads to a long-lasting aversion that requires distinct sets of neurons for the formation and retrieval of the imprinted memory. PMID:27166694

  19. Imprinting Chemical and Responsive Micropatterns into Metal–Organic Frameworks

    SciTech Connect

    Han, Shuangbing; Wei, Yanhu; Valente, Cory; Forgan, Ross S.; Gassensmith, Jeremiah J.; Smaldone, Ronald A.; Nakanishi, Hideyuki; Coskun, Ali; Stoddart, J. Fraser; Grzybowski, Bartosz A.

    2010-12-08

    Wet stamping allows metal–organic framework (MOF) crystals to be imprinted with micropatterns of various organic chemicals. Printing the MOFs with photochromic molecules and pH indicators generates stimuli-responsive micropatterns which change their appearance upon contact with specific chemicals, thus reporting the environmental “status” of the crystal.

  20. UV imprint fabrication of polymeric scales for optical rotary encoders

    NASA Astrophysics Data System (ADS)

    Jucius, D.; Grybas, I.; Grigaliūnas, V.; Mikolajūnas, M.; Lazauskas, A.

    2014-03-01

    Optical encoders are one of the most common displacement sensors. Scale gratings for such sensors are usually made of glass. However, polymers can offer several advantages such as lightweight, low cost fabrication and versatility in structures and grades. In this paper application of UV imprint technique to fabricate polymeric scale gratings for rotary encoders is reported. Experiments are performed by imprinting 3 μm layer of UV sensitive photopolymer coated on the substrate made of 200 μm PET film. Process of UV imprinting caused no problems concerned with mould contamination or sticking to the polymer. Optical microscopy and AFM measurements of replicated polymeric scales have demonstrated the absence of macro-defects and good reproducibility of Si mould features with lateral dimensions down to the order of hundreds of nanometers. Measurements of intensity distribution in transmitted diffraction pattern have showed an effective diffraction with most of the diffracted light intensity concentrated in the zero and first diffraction order as it is required for the application in optical rotary encoders employing interferential scanning principle. Commercialization of UV imprint technology would allow replacement of conventional glass scales at least in those applications where lightweight and low price of encoders are of great importance.

  1. PREPARATION AND CHARACTERIZATION OF MOLECULARLY IMPRINTED ELECTROPOLYMERIZED CARBON ELECTRODES

    EPA Science Inventory

    Molecularly imprinted polymers (MIP) selective for fluorescein, rhodamine or 2,4-dichlorophenoxyacetic acid (2,4-D) were electropolymerized onto graphite electrodes using an aqueous solution equimolar in resorsinol/ortho-phenylenediamine and in the presence of the template mole...

  2. Optical scanning apparatus for indicia imprinted about a cylindrical axis

    DOEpatents

    Villarreal, Richard A.

    1987-01-01

    An optical scanner employed in a radioactive environment for reading indicia imprinted about a cylindrical surface of an article by means of an optical system including metallic reflective and mirror surfaces resistant to degradation and discoloration otherwise imparted to glass surfaces exposed to radiation.

  3. Polymer Stamps for Imprinting Nanopatterns in Polymer Substrate.

    PubMed

    Wu, Jiahao; Amirsadeghi, Alborz; Kim, Jinsoo; Park, Sunggook

    2015-01-01

    Using a silicone or metallic stamp for imprinting multiscale patterns comprising micro down to nanoscale patterns into polymer substrates often results in significant deformation in the molded substrate and loss of pattern transfer fidelity for nanopatterns. In the worst case, the expensive stamp can also be damaged. One method to reduce the problem is to use polymer as the stamp material, which will reduce both adhesion and thermal stress generated at the stamp/substrate interface. In this paper, stamps made of three different polymer materials, i.e., polydimethylsiloxane (PDMS), PPGDA-based UV resin and TPGDA-based UV-resin, were fabricated from the same master containing nanofluidic structures and the replication fidelity from the master, polymer stamps, to thermal-imprinted poly(methyl methacrylate) substrate (PMMA) was compared. The largest loss of pattern fidelity occurs in the thermal imprinting step. Polymer stamps with higher Young's moduli result in a better fidelity in pattern transfer. With TPGDA-based UV resin stamps, multiscale structures with a nanochannel with minimum width and height of -70 nm can be imprinted onto PMMA substrate together with macro-scale patterns by a single nanoimprinting processes. PMID:26328384

  4. Imprinting of confining sites for cell cultures on thermoplastic substrates

    NASA Technical Reports Server (NTRS)

    Cone, C. D.; Fleenor, E. N.

    1969-01-01

    Prevention of test cell migration beyond the field of observation involves confining cells or cultures in microlagoons made in either a layer of grease or a thermoplastic substrate. Thermoplastic films or dishes are easily imprinted with specifically designed patterns of microlagoons.

  5. Associations between prenatal physical activity, birth weight, and DNA methylation at genomically imprinted domains in a multiethnic newborn cohort.

    PubMed

    McCullough, Lauren E; Mendez, Michelle A; Miller, Erline E; Murtha, Amy P; Murphy, Susan K; Hoyo, Cathrine

    2015-01-01

    Birth weight is a commonly used indicator of the fetal environment and a predictor of future health outcomes. While the etiology of birth weight extremes is likely multifactorial, epidemiologic data suggest that prenatal physical activity (PA) may play an important role. The mechanisms underlying this association remain unresolved, although epigenetics has been proposed. This study aimed to estimate associations between prenatal PA, birth weight, and newborn DNA methylation levels at differentially methylated regions (DMRs) regulating 4 imprinted genes known to be important in fetal development. Study participants (N = 1281) were enrolled as part of the Newborn Epigenetics Study. Prenatal PA was ascertained using the Pregnancy Physical Activity Questionnaire, and birth weight data obtained from hospital records. Among 484 term mother-infant pairs, imprinted gene methylation levels were measured at DMRs using bisulfite pyrosequencing. Generalized linear and logistic regression models were used to estimate associations. After adjusting for preterm birth and race/ethnicity, we found that infants born to mothers in the highest quartile of total non-sedentary time had lower birth weight compared to infants of mothers in the lowest quartile (β = -81.16, SE = 42.02, P = 0.05). These associations appeared strongest among male infants (β = -125.40, SE = 58.10, P = 0.03). Methylation at the PLAGL1 DMR was related to total non-sedentary time (P < 0.05). Our findings confirm that prenatal PA is associated with reduced birth weight, and is the first study to support a role for imprinted gene plasticity in these associations. Larger studies are required. PMID:25928716

  6. Reversible adsorption of calcium ions by imprinted temperature sensitive gels

    NASA Astrophysics Data System (ADS)

    Alvarez-Lorenzo, Carmen; Guney, Orhan; Oya, Taro; Sakai, Yasuzo; Kobayashi, Masatoshi; Enoki, Takashi; Takeoka, Yukikazu; Ishibashi, Toru; Kuroda, Kenichi; Tanaka, Kazunori; Wang, Guoqiang; Grosberg, Alexander Yu.; Masamune, Satoru; Tanaka, Toyoichi

    2001-02-01

    With the aim of developing polymeric gels sensitive to external stimuli and able to reversibly adsorb and release divalent ions, copolymer gels of N-isopropylacrylamide (NIPA) and methacrylic (MAA) monomers were prepared. We chose calcium as a target divalent ion. Two MAAs form a complex with a calcium ion, and the NIPA component allows the polymers to swell and shrink reversibly in response to temperature. The adsorbing site develops an affinity to target ions when the adsorbing molecules come into proximity, but when they are separated, the affinity diminishes. To enhance the affinity to calcium, an imprinting technique was applied using Ca2+ and Pb2+ ions as templates in methylsulfoxide and dioxane media, respectively. The adsorption capacity of the imprinted gels was compared with that of the nonimprinted gels, and the effects of the templates, the solvents, and the amount of methacrylic monomers used in the synthesis and the medium temperature over the Ca2+ adsorption capacity of the gels from aqueous solutions were evaluated. The analysis of the adsorption revealed that (a) the adsorption can be described by the Langmuir isotherms; (b) there is an approximately linear relationship between saturation and methacrylic monomer concentration; (c) the affinity depends on the degree of gel swelling or shrinkage that can be switched on and off by temperature; (d) in the shrunken state, the affinity depends approximately linearly on the MAA concentration in the imprinted gels, whereas in the nonimprinted gels it is proportional to the square of MAA concentration; (e) the imprinted gels adsorb more than the nonimprinted gels when MAA concentration is less than that of permanent cross linkers. The success of imprinting of CaMAA2 and PbMAA2 complex is evidence for memory of such complex onto the weakly cross-linked gel.

  7. Step and flash imprint lithography for sub-100-nm patterning

    NASA Astrophysics Data System (ADS)

    Colburn, Matthew; Grot, Annette; Amistoso, Marie N.; Choi, Byung J.; Bailey, Todd C.; Ekerdt, John G.; Sreenivasan, S. V.; Hollenhorst, James; Willson, C. Grant

    2000-07-01

    Step and Flash Imprint Lithography (SFIL) is an alternative to photolithography that efficiently generates high aspect-ratio, sub-micron patterns in resist materials. Other imprint lithography techniques based on physical deformation of a polymer to generate surface relief structures have produced features in PMMA as small as 10 nm, but it is very difficult to imprint large depressed features or to imprint a thick films of resist with high aspect-ratio features by these techniques. SFIL overcomes these difficulties by exploiting the selectivity and anisotropy of reactive ion etch (RIE). First, a thick organic 'transfer' layer (0.3 micrometer to 1.1 micrometer) is spin coated to planarize the wafer surface. A low viscosity, liquid organosilicon photopolymer precursor is then applied to the substrate and a quartz template applied at 2 psi. Once the master is in contact with the organosilicon solution, a crosslinking photopolymerization is initiated via backside illumination with broadband UV light. When the layer is cured the template is removed. This process relies on being able to imprint the photopolymer while leaving the minimal residual material in the depressed areas. Any excess material is etched away using a CHF3/He/O2 RIE. The exposed transfer layer is then etched with O2 RIE. The silicon incorporated in the photopolymer allows amplification of the low aspect ratio relief structure in the silylated resist into a high aspect ratio feature in the transfer layer. The aspect ratio is limited only by the mechanical stability of the transfer layer material and the O2 RIE selectivity and anisotropy. This method has produced 60 nm features with 6:1 aspect ratios. This lithography process was also used to fabricate alternating arrays of 100 nm Ti lines on a 200 nm pitch that function as efficient micropolarizers. Several types of optical devices including gratings, polarizers, and sub-wavelength structures can be easily patterned by SFIL.

  8. The H19 Imprinting Control Region Mediates Preimplantation Imprinted Methylation of Nearby Sequences in Yeast Artificial Chromosome Transgenic Mice

    PubMed Central

    Okamura, Eiichi; Matsuzaki, Hitomi; Sakaguchi, Ryuuta; Takahashi, Takuya; Fukamizu, Akiyoshi

    2013-01-01

    In the mouse Igf2/H19 imprinted locus, differential methylation of the imprinting control region (H19 ICR) is established during spermatogenesis and is maintained in offspring throughout development. Previously, however, we observed that the paternal H19 ICR, when analyzed in yeast artificial chromosome transgenic mice (YAC-TgM), was preferentially methylated only after fertilization. To identify the DNA sequences that confer methylation imprinting, we divided the H19 ICR into two fragments (1.7 and 1.2 kb), ligated them to both ends of a λ DNA fragment into which CTCF binding sites had been inserted, and analyzed this in YAC-TgM. The maternally inherited λ sequence, normally methylated after implantation in the absence of H19 ICR sequences, became hypomethylated, demonstrating protective activity against methylation within the ICR. Meanwhile, the paternally inherited λ sequence was hypermethylated before implantation only when a 1.7-kb fragment was ligated. Consistently, when two subfragments of the H19 ICR were individually investigated for their activities in YAC-TgM, only the 1.7-kb fragment was capable of introducing paternal allele-specific DNA methylation. These results show that postfertilization methylation imprinting is conferred by a paternal allele-specific methylation activity present in a 1.7-kb DNA fragment of the H19 ICR, while maternal allele-specific activities protect the allele from de novo DNA methylation. PMID:23230275

  9. Profound parental bias associated with chromosome 14 acquired uniparental disomy indicates targeting of an imprinted locus.

    PubMed

    Chase, A; Leung, W; Tapper, W; Jones, A V; Knoops, L; Rasi, C; Forsberg, L A; Guglielmelli, P; Zoi, K; Hall, V; Chiecchio, L; Eder-Azanza, L; Bryant, C; Lannfelt, L; Docherty, L; White, H E; Score, J; Mackay, D J G; Vannucchi, A M; Dumanski, J P; Cross, N C P

    2015-10-01

    Acquired uniparental disomy (aUPD) is a common finding in myeloid malignancies and typically acts to convert a somatically acquired heterozygous mutation to homozygosity. We sought to identify the target of chromosome 14 aUPD (aUPD14), a recurrent abnormality in myeloid neoplasms and population cohorts of elderly individuals. We identified 29 cases with aUPD14q that defined a minimal affected region (MAR) of 11.2 Mb running from 14q32.12 to the telomere. Exome sequencing (n=7) did not identify recurrently mutated genes, but methylation-specific PCR at the imprinted MEG3-DLK1 locus located within the MAR demonstrated loss of maternal chromosome 14 and gain of paternal chromosome 14 (P<0.0001), with the degree of methylation imbalance correlating with the level of aUPD (r=0.76; P=0.0001). The absence of driver gene mutations in the exomes of three individuals with aUPD14q but no known haematological disorder suggests that aUPD14q may be sufficient to drive clonal haemopoiesis. Analysis of cases with both aUPD14q and JAK2 V617F (n=11) indicated that aUPD14q may be an early event in some cases but a late event in others. We conclude that aUPD14q is a recurrent abnormality that targets an imprinted locus and may promote clonal haemopoiesis either as an initiating event or as a secondary change. PMID:26114957

  10. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development

    PubMed Central

    Ito, Mitsuteru; Sferruzzi-Perri, Amanda N.; Edwards, Carol A.; Adalsteinsson, Bjorn T.; Allen, Sarah E.; Loo, Tsui-Han; Kitazawa, Moe; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi; Stewart, Colin L.; Ferguson-Smith, Anne C.

    2015-01-01

    The paternally expressed imprinted retrotransposon-like 1 (Rtl1) is a retrotransposon-derived gene that has evolved a function in eutherian placentation. Seven miRNAs, including miR-127, are processed from a maternally expressed antisense Rtl1 transcript (Rtl1as) and regulate Rtl1 levels through RNAi-mediated post-transcriptional degradation. To determine the relative functional role of Rtl1as miRNAs in Rtl1 dosage, we generated a mouse specifically deleted for miR-127. The miR-127 knockout mice exhibit placentomegaly with specific defects within the labyrinthine zone involved in maternal-fetal nutrient transfer. Although fetal weight is unaltered, specific Rtl1 transcripts and protein levels are increased in both the fetus and placenta. Phenotypic analysis of single (ΔmiR-127/Rtl1 or miR-127/ΔRtl1) and double (ΔmiR-127/ΔRtl1) heterozygous miR-127- and Rtl1-deficient mice indicate that Rtl1 is the main target gene of miR-127 in placental development. Our results demonstrate that miR-127 is an essential regulator of Rtl1, mediated by a trans-homologue interaction between reciprocally imprinted genes on the maternally and paternally inherited chromosomes. PMID:26138477

  11. A Novel Mutation in the Maternally Imprinted PEG3 Domain Results in a Loss of MIMT1 Expression and Causes Abortions and Stillbirths in Cattle (Bos taurus)

    PubMed Central

    Flisikowski, Krzysztof; Venhoranta, Heli; Nowacka-Woszuk, Joanna; McKay, Stephanie D.; Flyckt, Antti; Taponen, Juhani; Schnabel, Robert; Schwarzenbacher, Hermann; Szczerbal, Izabela; Lohi, Hannes; Fries, Ruedi; Taylor, Jeremy F.; Switonski, Marek; Andersson, Magnus

    2010-01-01

    Congenital malformations resulting in late abortions and stillbirths affect the economic wellbeing of producers and the welfare of cattle in breeding programs. An extremely high incidence of stillbirths of “half-sized” calves of normal karyotype and uninflated lungs was diagnosed in the progeny of the Finnish Ayrshire (Bos taurus) bull - YN51. No other visible anatomical abnormalities were apparent in the stillborn calves. We herein describe the positional identification of a 110 kb microdeletion in the maternally imprinted PEG3 domain that results in a loss of paternal MIMT1 expression and causes late term abortion and stillbirth in cattle. Using the BovineSNP50 BeadChip we performed a genome-wide half-sib linkage analysis that identified a 13.3 Mb associated region on BTA18 containing the maternally imprinted PEG3 domain. Within this cluster we found a 110 kb microdeletion that removes a part of the non-protein coding MER1 repeat containing imprinted transcript 1 gene (MIMT1). To confirm the elimination of gene expression in calves inheriting this deletion, we examined the mRNA levels of the three maternally imprinted genes within the PEG3 domain, in brain and cotyledon tissue collected from eight fetuses sired by the proband. None of the fetuses that inherited the microdeletion expressed MIMT1 in either tissue. The mutation, when inherited from the sire, is semi-lethal for his progeny with an observed mortality rate of 85%. The survival of 15% is presumably due to the incomplete silencing of maternally inherited MIMT1 alleles. We designed a PCR-based assay to confirm the existence of the microdeletion in the MIMT1 region that can be used to assist cattle breeders in preventing the stillbirths. PMID:21152099

  12. Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells

    PubMed Central

    Miyoshi, Norikatsu; Stel, Jente M.; Shioda, Keiko; Qu, Na; Odahima, Junko; Mitsunaga, Shino; Zhang, Xiangfan; Nagano, Makoto; Hochedlinger, Konrad; Isselbacher, Kurt J.; Shioda, Toshi

    2016-01-01

    The genome-wide depletion of 5-methylcytosines (5meCs) caused by passive dilution through DNA synthesis without daughter strand methylation and active enzymatic processes resulting in replacement of 5meCs with unmethylated cytosines is a hallmark of primordial germ cells (PGCs). Although recent studies have shown that in vitro differentiation of pluripotent stem cells (PSCs) to PGC-like cells (PGCLCs) mimics the in vivo differentiation of epiblast cells to PGCs, how DNA methylation status of PGCLCs resembles the dynamics of 5meC erasure in embryonic PGCs remains controversial. Here, by differential detection of genome-wide 5meC and 5-hydroxymethylcytosine (5hmeC) distributions by deep sequencing, we show that PGCLCs derived from mouse PSCs recapitulated the process of genome-wide DNA demethylation in embryonic PGCs, including significant demethylation of imprint control regions (ICRs) associated with increased mRNA expression of the corresponding imprinted genes. Although 5hmeCs were also significantly diminished in PGCLCs, they retained greater amounts of 5hmeCs than intragonadal PGCs. The genomes of both PGCLCs and PGCs selectively retained both 5meCs and 5hmeCs at a small number of repeat sequences such as GSAT_MM, of which the significant retention of bisulfite-resistant cytosines was corroborated by reanalysis of previously published whole-genome bisulfite sequencing data for intragonadal PGCs. PSCs harboring abnormal hypermethylation at ICRs of the Dlk1-Gtl2-Dio3 imprinting cluster diminished these 5meCs upon differentiation to PGCLCs, resulting in transcriptional reactivation of the Gtl2 gene. These observations support the usefulness of PGCLCs in studying the germline epigenetic erasure including imprinted genes, epimutations, and erasure-resistant loci, which may be involved in transgenerational epigenetic inheritance. PMID:27486249

  13. The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith–Wiedemann syndrome and Silver–Russell syndrome cases

    PubMed Central

    Chiesa, Nicoletta; De Crescenzo, Agostina; Mishra, Kankadeb; Perone, Lucia; Carella, Massimo; Palumbo, Orazio; Mussa, Alessandro; Sparago, Angela; Cerrato, Flavia; Russo, Silvia; Lapi, Elisabetta; Cubellis, Maria Vittoria; Kanduri, Chandrasekhar; Cirillo Silengo, Margherita; Riccio, Andrea; Ferrero, Giovanni Battista

    2012-01-01

    A cluster of imprinted genes at chromosome 11p15.5 is associated with the growth disorders, Silver–Russell syndrome (SRS) and Beckwith–Wiedemann syndrome (BWS). The cluster is divided into two domains with independent imprinting control regions (ICRs). We describe two maternal 11p15.5 microduplications with contrasting phenotypes. The first is an inverted and in cis duplication of the entire 11p15.5 cluster associated with the maintenance of genomic imprinting and with the SRS phenotype. The second is a 160 kb duplication also inverted and in cis, but resulting in the imprinting alteration of the centromeric domain. It includes the centromeric ICR (ICR2) and the most 5′ 20 kb of the non-coding KCNQ1OT1 gene. Its maternal transmission is associated with ICR2 hypomethylation and the BWS phenotype. By excluding epigenetic mosaicism, cell clones analysis indicated that the two closely located ICR2 sequences resulting from the 160 kb duplication carried discordant DNA methylation on the maternal chromosome and supported the hypothesis that the ICR2 sequence is not sufficient for establishing imprinted methylation and some other property, possibly orientation-dependent, is needed. Furthermore, the 1.2 Mb duplication demonstrated that all features are present for correct imprinting at ICR2 when this is duplicated and inverted within the entire cluster. In the individuals maternally inheriting the 160 kb duplication, ICR2 hypomethylation led to the expression of a truncated KCNQ1OT1 transcript and to down-regulation of CDKN1C. We demonstrated by chromatin RNA immunopurification that the KCNQ1OT1 RNA interacts with chromatin through its most 5′ 20 kb sequence, providing a mechanism likely mediating the silencing activity of this long non-coding RNA. PMID:21920939

  14. Enhanced adsorption of atrazine from aqueous solution by molecularly imprinted TiO2 film

    NASA Astrophysics Data System (ADS)

    Zhang, Chunjing; Yan, Jinlong; Zhang, Chunxiao; Yang, Zhengpeng

    2012-07-01

    TiO2 film imprinted by atrazine molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted TiO2 film was characterized by scanning electron microscopy and cyclic voltammetry, and the atrazine adsorption was investigated by quartz crystal microbalance (QCM) technique. In comparison with non-imprinted TiO2 film, the molecularly imprinted TiO2 film exhibits high selectivity for atrazine, better reversibility and a much higher adsorption capacity for the target molecule, the adsorption equilibrium constant estimated from the in situ frequency measurement is about 6.7 × 104 M-1, which is thirteen times higher than that obtained on non-imprinted TiO2 film.

  15. Characterization and optimization of residual layer thickness during UV imprint process for singlemode waveguide fabrication

    NASA Astrophysics Data System (ADS)

    An, Shinmo; Lee, Hyun-Shik; Park, Se-Guen; O, Beom-Hoan; Lee, Seung-Gol; Lee, El-Hang

    2009-02-01

    We report on the fabrication and characterization of a residual layer resulting from UV imprinting of singlemode optical waveguide. We have measured the residual thickness formed from the imprinting process for several-um-size singlemode waveguide fabrication using the parameters of the imprinting pressure, dropped volume, and viscosity of the used polymer. We found that the residual layer thickness is dependent on both the initial polymer volume and process pressure and the initial polymer volume is more critical than process pressure. Viscosity of polymer also affects the residual layer thickness, the lowest residual layer thickness of 29nm is achieved with nano-imprinting resin, 0.3uL volume, and imprint pressure more than 20bar. Even with optical resin, the residual layer thickness of 60nm is achieved with 0.3uL volume and imprinting pressure of 30bar.

  16. Thyroid hormone determines the start of the sensitive period of imprinting and primes later learning

    PubMed Central

    Yamaguchi, Shinji; Aoki, Naoya; Kitajima, Takaaki; Iikubo, Eiji; Katagiri, Sachiko; Matsushima, Toshiya; Homma, Koichi J.

    2012-01-01

    Filial imprinting in precocial birds is the process of forming a social attachment during a sensitive or critical period, restricted to the first few days after hatching. Imprinting is considered to be part of early learning to aid the survival of juveniles by securing maternal care. Here we show that the thyroid hormone 3,5,3′-triiodothyronine (T3) determines the start of the sensitive period. Imprinting training in chicks causes rapid inflow of T3, converted from circulating plasma thyroxine by Dio2, type 2 iodothyronine deiodinase, in brain vascular endothelial cells. The T3 thus initiates and extends the sensitive period to last more than 1 week via non-genomic mechanisms and primes subsequent learning. Even in non-imprinted chicks whose sensitive period has ended, exogenous T3 enables imprinting. Our findings indicate that T3 determines the start of the sensitive period for imprinting and has a critical role in later learning. PMID:23011135

  17. Ducklings imprint on the relational concept of "same or different".

    PubMed

    Martinho, Antone; Kacelnik, Alex

    2016-07-15

    The ability to identify and retain logical relations between stimuli and apply them to novel stimuli is known as relational concept learning. This has been demonstrated in a few animal species after extensive reinforcement training, and it reveals the brain's ability to deal with abstract properties. Here we describe relational concept learning in newborn ducklings without reinforced training. Newly hatched domesticated mallards that were briefly exposed to a pair of objects that were either the same or different in shape or color later preferred to follow pairs of new objects exhibiting the imprinted relation. Thus, even in a seemingly rigid and very rapid form of learning such as filial imprinting, the brain operates with abstract conceptual reasoning, a faculty often assumed to be reserved to highly intelligent organisms. PMID:27418508

  18. Novel resist for replica preparation of mold for imprint lithography

    NASA Astrophysics Data System (ADS)

    Matsukawa, Daisaku; Wakayama, Hiroyuki; Mitsukura, Kazuyuki; Okamura, Haruyuki; Hirai, Yoshihiko; Shirai, Masamitsu

    2009-03-01

    Two types of dimethacrylate which have hemiacetal ester moiety in a molecule were synthesized from difunctional vinyl ethers and methacrylic acid. UV curing of the monomers and photo-induced degradation of the UV cured resins were investigated. On UV irradiation at 365 nm under N2 atmosphere, these dimethacrylates containing 2,2-dimethoxy-2-phenylacetophenone and triphenylsulfonium triflate became insoluble in methanol. The UV cured resins degraded if acids were generated in the system. Present resins were applied to make a plastic replica of mold for imprint lithography and the plastic replica was prepared in good form. The effect of imprint conditions on volume shrinkage of methacrylates was investigated. Dimethacrylate that has adamantyl unit showed a low-shrinkage property.

  19. Site-isolated porphyrin catalysts in imprinted polymers.

    PubMed

    Burri, Estelle; Ohm, Margarita; Daguenet, Corinne; Severin, Kay

    2005-08-19

    A meso-tetraaryl ruthenium porphyrin complex having four polymerizable vinylbenzoxy groups (2) has been synthesized by reaction of pyrrole with 4-(vinylbenzoxy)benzaldehyde and subsequent metalation with [Ru3(CO)12]. The porphyrin complex was immobilized by copolymerization with ethylene glycol dimethacrylate. The resulting polymer P2 was found to catalyze the oxidation of alcohols and alkanes with 2,6-dichloropyridine N-oxide without activation by mineral acids. Under similar conditions, the homogeneous catalyst 2 was completely inefficient. By using diphenylaminomethane and 1-aminoadamantane as coordinatively bound templates during the polymerization procedure, the molecularly imprinted polymers P3 and P4 have been synthesized. Compared with the polymer P2, the imprinted catalysts displayed a significantly increased activity with rate enhancements of up to a factor of 16. PMID:15977282

  20. Magnetization dynamics of imprinted non-collinear spin textures

    SciTech Connect

    Streubel, Robert Kopte, Martin; Makarov, Denys; Fischer, Peter; Schmidt, Oliver G.

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.

  1. Experimental demonstration of laser imprint reduction using underdense foams

    NASA Astrophysics Data System (ADS)

    Delorme, B.; Olazabal-Loumé, M.; Casner, A.; Nicolaï, Ph.; Michel, D. T.; Riazuelo, G.; Borisenko, N.; Breil, J.; Fujioka, S.; Grech, M.; Orekhov, A.; Seka, W.; Sunahara, A.; Froula, D. H.; Goncharov, V.; Tikhonchuk, V. T.

    2016-04-01

    Reducing the detrimental effect of the Rayleigh-Taylor (RT) instability on the target performance is a critical challenge. In this purpose, the use of targets coated with low density foams is a promising approach to reduce the laser imprint. This article presents results of ablative RT instability growth measurements, performed on the OMEGA laser facility in direct-drive for plastic foils coated with underdense foams. The laser beam smoothing is explained by the parametric instabilities developing in the foam and reducing the laser imprint on the plastic (CH) foil. The initial perturbation pre-imposed by the means of a specific phase plate was shown to be smoothed using different foam characteristics. Numerical simulations of the laser beam smoothing in the foam and of the RT growth are performed with a suite of paraxial electromagnetic and radiation hydrodynamic codes. They confirmed the foam smoothing effect in the experimental conditions.

  2. Study on the resin temperature developments during UV imprinting process.

    PubMed

    Jeon, Jongduk; Jang, Siyoul

    2012-02-01

    During the imprinting process, the temperature of the UV resin increases as the phase of the resin changes from fluid into solid. During UV curing, some amount of heat is released from inside the resin and transferred into contacting materials. The heat flow is measured with photo-DSC, and other related thermal and mechanical properties of the resin. With the measured material properties, the temperature developments both inside of the resin layer and along the interfaces of the contacting materials are computed. During the UV exposure period, the thermal deformation of the mold, which directly influences the pattern distortion are investigated. Under this condition, the developments of strain and temperature inside the mold structure including the UV resin of 3-D shape are computed with the transient time scale during UV curing according to the thickness of resin layer. These computational results are expected to provide useful information for better designs of the imprinting mold and the process condition. PMID:22629908

  3. [Molecularly imprinted polymers in electro analysis of proteins].

    PubMed

    Shumyantseva, V V; Bulko, T V; Baychorov, I Kh; Archakov, A I

    2015-01-01

    In the review the main approaches to creation of recognition materials capable of competing with biological specific receptors, (polymeric analogs of antibodies or molecularly imprinted polymers, MIP) for the electro analysis of functionally significant proteins such as a myoglobin, troponin T, albumin, human ferritin, calmodulin are considered. The main types of monomers for MIP fabrication, and methods for MIP/protein interactions, such as a surface plasmon resonance (SPR), nanogravimetry with use of the quartz crystal resonator (QCM), spectral and electrochemical methods are discussed. Experimental data on electrochemical registration of a myoglobin using MIP/electrode are presented. For a development of electrochemical sensor systems based on MIPs, o-phenylenediamine (1,2-diaminobenzene was used as a monomer. It was shown that the imprinting factor Imax(MIP)/Imax(NIP), calculated as a myoglobin signal ratio when embedding in MIP to a myoglobin signal when embedding in the polymer received without molecular template (NIP) corresponds 2-4. PMID:26215409

  4. Preparation and characterization of macroporous monoliths imprinted with erythromycin.

    PubMed

    Vlakh, E G; Stepanova, M A; Pisarev, O A; Tennikova, T B

    2015-08-01

    The synthesis of macroporous molecularly imprinted monoliths was performed using the monomers system 2-hydroxyethyl methacrylate-ethylene glycol dimethacrylate and erythromycin as a template. The copolymerization was carried out in situ inside 50 mm × 4.6 mm i.d. stainless-steel tubing. The morphology of the monoliths was examined with scanning electron microscopy. The porous characteristics were determined both from the data of hydrodynamic permeability of monoliths and by means of mercury intrusion porosimetry. The retention parameters of target substance (erythromycin), values of calculated imprinting factors and apparent dynamic dissociation constants were obtained for monoliths prepared with the application of different amount of template (4, 8 and 12 mol%). The separations of the mixtures azithromycin/erythromycin and ciprofloxacin/erythromycin were demonstrated. Additionally, the possibility of erythromycin quantification in human blood plasma was shown. PMID:26033867

  5. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    NASA Astrophysics Data System (ADS)

    Kan, Xianwen; Geng, Zhirong; Zhao, Yao; Wang, Zhilin; Zhu, Jun-Jie

    2009-04-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe3O4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  6. Composite vascular repair grafts via micro-imprinting and electrospinning

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Xiang, Ke; Chen, Haiping; Li, Yu; Hu, Qingxi

    2015-04-01

    Composite vascular grafts formed by micro-imprinting and electrospinning exhibited improved mechanical properties relative to those formed by electrospinning alone. The three-layered composite grafts mimic the three-layered structure of natural blood vessels. The middle layer is made by micro-imprinting poly-p-dioxanone (PPDO), while the inner and outer layers are electrospun mixtures of chitosan and polyvinyl alcohol. The graft morphology is characterized with scanning electron microscopy. For constant graft thicknesses, the PPDO increases the mechanical strength. Cells cultivated on the vascular grafts adhere and proliferate better because of the natural, biological chitosan in the inner and outer layers. Overall, the composite scaffolds could be good candidates for blood vessel repair.

  7. Composite vascular repair grafts via micro-imprinting and electrospinning

    SciTech Connect

    Liu, Yuanyuan Hu, Qingxi; Xiang, Ke Chen, Haiping Li, Yu

    2015-04-15

    Composite vascular grafts formed by micro-imprinting and electrospinning exhibited improved mechanical properties relative to those formed by electrospinning alone. The three-layered composite grafts mimic the three-layered structure of natural blood vessels. The middle layer is made by micro-imprinting poly-p-dioxanone (PPDO), while the inner and outer layers are electrospun mixtures of chitosan and polyvinyl alcohol. The graft morphology is characterized with scanning electron microscopy. For constant graft thicknesses, the PPDO increases the mechanical strength. Cells cultivated on the vascular grafts adhere and proliferate better because of the natural, biological chitosan in the inner and outer layers. Overall, the composite scaffolds could be good candidates for blood vessel repair.

  8. Holographic molecularly imprinted polymers for label-free chemical sensing.

    PubMed

    Fuchs, Yannick; Soppera, Olivier; Mayes, Andrew G; Haupt, Karsten

    2013-01-25

    Holographic molecularly imprinted polymer films for the use in chemical sensors are obtained in one step through photopolymerization with interfering laser beams. This results in hierarchical structuring at four length scales: micrometer-scale patterning of millimeter- to centimeter- size polymer objects with holographic optical properties, exhibiting nanometer-scale porosity and specific molecular recognition properties at the molecular scale through self-assembly. Specific binding of the target analyte testosterone is measured by diffraction analysis. PMID:23080512

  9. Quantification of the memory imprint effect for a charged particle environment

    NASA Technical Reports Server (NTRS)

    Bhuva, B. L.; Johnson, R. L., Jr.; Gyurcsik, R. S.; Kerns, S. E.; Fernald, K. W.

    1987-01-01

    The effects of total accumulated dose on the single-event vulnerability of NMOS resistive-load SRAMs are investigated. The bias-dependent shifts in device parameters can imprint the memory state present during exposure or erase the imprinted state. Analysis of these effects is presented along with an analytic model developed for the quantification of these effects. The results indicate that the imprint effect is dominated by the difference in the threshold voltage of the n-channel devices.

  10. Organo-mineral imprints in fossil cyanobacterial mats of an Antarctic lake

    NASA Astrophysics Data System (ADS)

    Javaux, E.; Lepot, K.; Deremiens, L.; Namsaraev, Z.; Compere, P.; Gerard, E.; Verleyen, E.; Tavernier, I.; Hodgson, D.; Vyverman, W.; Wilmotte, A.

    2010-12-01

    Lacustrine microbial mats in Antarctic ice-free oases are considered to be modern analogues of early microbial ecosystems because they are dominated by cyanobacteria that need to cope with elevated UV radiation during summer by producing protective compounds such as UV-screening pigments. These microbial consortia offer a unique opportunity to (i) identify biogeochemical signatures to study the fossil record of microorganisms, and (ii) better understand their imprint mineral record. We studied sediment cores from a meromictic brackish-water lake, Kobachi Ike, Skarvsnes Peninsula, Lützow Holm Bay, East Antarctica, where primary production is dominated by photosynthetic benthic communities. The faintly to finely laminated (stromatolitic) sediments include variable amounts of organic-rich laminae, micritic carbonate, clays and silicate sand. We studied the microstructure and chemistry of organo-mineral associations in a suite of sediments ranging in age from several tens to ca. 3500 years. We examined Os- and U- stained polished resin-embedded sediments in a scanning electron microscope (SEM). We imaged photosynthetic pigments of microorganisms in fluorescence by confocal laser scanning microscopy (CLSM). We analyzed organic matter chemistry in demineralized sediments and cultured cyanobacteria using Fourier-Transform Infrared (FTIR) spectromicroscopy. Molecular analyses of fossil cyanobacterial DNA were performed using Denaturating Gradient Gel Electrophoresis of partial 16S rRNA genes and sequencing. SEM revealed an intimate association between nanostructured Ca-carbonate peloids, fossil cell clusters resembling colonies of unicellular coccoid cyanobacteria, and cell-like imprints preserved in nanocarbonates. Diffuse organic matter (kerogen or EPS) is associated with nanoclays to form a laminae-building network around the carbonates. These organo-mineral microstructures strongly resemble those of the 2.7 Gyrs old Tumbiana stromatolites. CLSM imaging and fossil DNA

  11. Morpho peleides butterfly wing imprints as structural colour stamp.

    PubMed

    Zobl, Sigrid; Salvenmoser, Willi; Schwerte, Thorsten; Gebeshuber, Ille C; Schreiner, Manfred

    2016-02-01

    This study presents the replication of a color-causing nanostructure based on the upper laminae of numerous cover scales of Morpho peleides butterfly wings and obtained solely by imprinting their upper-wing surfaces. Our results indicate that a simple casting technique using a novel integrated release agent can obtain a large positive replica using negative imprints via Polyvinylsiloxane. The developed method is low-tech and high-yield and is thus substantially easier and less expensive than previous methods. The microstructures were investigated with light microscopy, the nanostructures with both scanning and transmission electron microscopy, and the reflections with UV visible spectrometry. The influence of the release agent and the quality of the master stamp were determined by comparing measurements of the cover-scale sizes and their chromaticity values obtained by their images and with their positive imprints. The master stamp provided multiple positive replicas up to 3 cm(2) in just 1 h with structural coloration effects visible to the naked eye. Thus, the developed method proves the accuracy of the replicated nanostructure and its potential industrial application as a color-producing nanostamp. PMID:26835900

  12. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins.

    PubMed

    Szumski, Michał; Grzywiński, Damian; Prus, Wojciech; Buszewski, Bogusław

    2014-10-17

    Monolithic molecularly imprinted polymers extraction columns have been prepared in fused-silica capillaries by UV or thermal polymerization in a two-step process. First, a poly-(trimethylolpropane trimethacrylate) (polyTRIM) core monolith was synthesized either by UV or thermal polymerization. Then it was grafted with the mixture of methacrylic acid (MAA) as a functional monomer, ethylene dimethacrylate (EDMA) as a cross-linking agent, 5,7-dimethoxycoumarin (DMC) as an aflatoxin-mimicking template, toluene as a porogen solvent and 2,2-azobis-(2-methylpropionitrile) (AIBN) as an initiator of the polymerization reaction. Different thermal condition of the photografting and different concentrations of the grafting mixture were tested during polymerization. The extraction capillary columns were evaluated in the terms of their hydrodynamic and chromatographic properties. Retention coefficients for aflatoxin B1 and DMC were used for assessment of the selectivity and imprinting factor. The obtained results indicate that the temperature of photografting and concentration of the grafting mixture are key parameters that determine the quality of the prepared MIPs. From the MIP columns characterized by the highest permeability the column of the highest imprinting factor was applied for isolation of aflatoxins B1, B2, G1 and G2 from the model aqueous sample followed by on-line chromatographic separation. The process was performed using a micro-MISPE-microLC-LIF system of a novel design, which allowed for detection of the eluates from the sample preparation part as well as from the chromatographic separation. PMID:25218633

  13. Shape-Engineered multifunctional porous silicon nanoparticles by direct imprinting

    NASA Astrophysics Data System (ADS)

    Mares, Jeremy W.; Fain, Joshua S.; Beavers, Kelsey R.; Duvall, Craig L.; Weiss, Sharon M.

    2015-07-01

    A versatile and scalable method for fabricating shape-engineered nano- and micrometer scale particles from mesoporous silicon (PSi) thin films is presented. This approach, based on the direct imprinting of porous substrates (DIPS) technique, facilitates the generation of particles with arbitrary shape, ranging in minimum dimension from approximately 100 nm to several micrometers, by carrying out high-pressure (>200 MPa) direct imprintation, followed by electrochemical etching of a sub-surface perforation layer and ultrasonication. PSi particles (PSPs) with a variety of geometries have been produced in quantities sufficient for biomedical applications (≫10 μg). Because the stamps can be reused over 150 times, this process is substantially more economical and efficient than the use of electron beam lithography and reactive ion etching for the fabrication of nanometer-scale PSPs directly. The versatility of this fabrication method is demonstrated by loading the DIPS-imprinted PSPs with a therapeutic peptide nucleic acid drug molecule, and by vapor deposition of an Au coating to facilitate the use of PSPs as a photothermal contrast agent.

  14. Surface imprinting of proteins: from mechanism to application

    NASA Astrophysics Data System (ADS)

    Wang, Yantian; Mueller, Steffen; Sokolov, Jonathan; Levon, Kalle; Rigas, Basil; Rafailovich, Miriam

    2009-03-01

    Protein adsorption properties on different surfaces have been of great interest due to their importance in biomedical applications. In this study, adsorption of proteins on gold, thiol self-assembled monolayer (SAM), and molecularly imprinted thiol SAM was studied. Alkaline phosphatase (AP), an enzyme that can catalyze p-nitrophenyl phosphate and produce a yellow end product which has light absorbance at 405nm, was co-adsorbed with 11-mercapto-1-undecanol to fabricate the imprinted surface. Different washing methods were used to remove AP and create re-adsorption sites. The adsorption amount of AP before and after washing was measured by spectrophotometer after enzyme reaction. Re-adsorption of AP onto the three surfaces was compared and showed that the imprinted surface re-bound the protein molecules at the template site. Potentiometric response of the three substrates to AP was measured at different pH, the charge effect on the potential response was studied. The selective binding of the template proteins made it a useful technique as a protein sensor.

  15. Molecularly imprinted polymer based enantioselective sensing devices: a review.

    PubMed

    Tiwari, Mahavir Prasad; Prasad, Amrita

    2015-01-01

    Chiral recognition is the fundamental property of many biological molecules and is a quite important field in pharmaceutical analysis because of the pharmacologically different activities of enantiomers in living systems. Enantio-differentiating signal of the sensor requires specific interaction between the chiral compounds (one or a mixture of enantiomers) in question and the selector. This type of interaction is controlled normally by at least three binding centers, whose mutual arrangement and interacting characteristics with one of the enantiomers effectively control the selectivity of recognition. Molecular imprinting technology provides a unique opportunity for the creation of three-dimensional cavities with tailored recognition properties. Over the past decade, this field has expanded considerably across the variety of disciplines, leading to novel transduction approaches and many potential applications. The state-of-art of molecularly imprinted polymer-based chiral recognition might set an exotic trend toward the development of chiral sensors. The objective of this review is to provide comprehensive knowledge and information to all researchers who are interested in exploiting molecular imprinting technology toward the rational design of chiral sensors operating on different transduction principles, ranging from electrochemical to piezoelectric, being used for the detection of chiral compounds as they pose significant impact on the understanding of the origin of life and all processes that occur in living organisms. PMID:25467446

  16. Molecularly imprinted silica-silver nanowires for tryptophan recognition

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, T.; Díaz-García, M. E.; Badía-Laíño, R.

    2014-10-01

    We report on silver nanowires (AgNWs) coated with molecularly imprinted silica (MIP SiO2) for recognition of tryptophan (Trp). The use of AgNWs as a template confers an imprinted material with adequate mechanical strength and with a capability of recognizing Trp due to its nanomorphology when compared to spherical microparticles with a similar surface-to-volume ratio. Studies on adsorption isotherms showed the MIP-SiO2-AgNWs to exhibit homogeneous affinity sites with narrow affinity distribution. This suggests that the synthesized material behaves as a 1D nanomaterial with a large area and small thickness with very similar affinity sites. Trp release from MIP-SiO2-AgNWs was demonstrated to be dominated by the diffusion rate of Trp as controlled by the specific interactions with the imprinted silica shell. Considering these results and the lack of toxicity of silica sol-gel materials, the material offers potential in the field of drug or pharmaceutical controlled delivery, but also in optoelectronic devices, electrodes and sensors.

  17. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection.

    PubMed

    Osman, Bilgen; Uzun, Lokman; Beşirli, Necati; Denizli, Adil

    2013-10-01

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-l-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. PMID:23910256

  18. Feature detection on 3D images of dental imprints

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Laurendeau, Denis

    1994-09-01

    A computer vision approach for the extraction of feature points on 3D images of dental imprints is presented. The position of feature points are needed for the measurement of a set of parameters for automatic diagnosis of malocclusion problems in orthodontics. The system for the acquisition of the 3D profile of the imprint, the procedure for the detection of the interstices between teeth, and the approach for the identification of the type of tooth are described, as well as the algorithm for the reconstruction of the surface of each type of tooth. A new approach for the detection of feature points, called the watershed algorithm, is described in detail. The algorithm is a two-stage procedure which tracks the position of local minima at four different scales and produces a final map of the position of the minima. Experimental results of the application of the watershed algorithm on actual 3D images of dental imprints are presented for molars, premolars and canines. The segmentation approach for the analysis of the shape of incisors is also described in detail.

  19. Shape-engineered multifunctional porous silicon nanoparticles by direct imprinting.

    PubMed

    Mares, Jeremy W; Fain, Joshua S; Beavers, Kelsey R; Duvall, Craig L; Weiss, Sharon M

    2015-07-10

    A versatile and scalable method for fabricating shape-engineered nano- and micrometer scale particles from mesoporous silicon (PSi) thin films is presented. This approach, based on the direct imprinting of porous substrates (DIPS) technique, facilitates the generation of particles with arbitrary shape, ranging in minimum dimension from approximately 100 nm to several micrometers, by carrying out high-pressure (>200 MPa) direct imprintation, followed by electrochemical etching of a sub-surface perforation layer and ultrasonication. PSi particles (PSPs) with a variety of geometries have been produced in quantities sufficient for biomedical applications (≫10 μg). Because the stamps can be reused over 150 times, this process is substantially more economical and efficient than the use of electron beam lithography and reactive ion etching for the fabrication of nanometer-scale PSPs directly. The versatility of this fabrication method is demonstrated by loading the DIPS-imprinted PSPs with a therapeutic peptide nucleic acid drug molecule, and by vapor deposition of an Au coating to facilitate the use of PSPs as a photothermal contrast agent. PMID:26081802

  20. Modeling prepolymerization step of a serotonin imprinted polymer.

    PubMed

    Gündeğer, Ersin; Selçuki, Cenk; Okutucu, Burcu

    2016-07-01

    Studies on generating artificial macromolecular receptors by molecular imprinting of synthetic polymers significantly emerged in the literature during last decades. The non-covalent approach, one of the three methods used in MIP synthesis, is more flexible for the choice of functional monomers, possible target molecules, and use of the imprinted materials. This study aims to investigate a serotonin imprinted polymer prepared by non-covalent approach using molecular modeling. The calculations were carried out by using density functional theory at ωB97XD/6-31++G(d,p) level and the polarizable continuum model was used for solvent calculations. Computational results showed that DMSO plays an important role in the MIP formation as it seems to control the size and the shape of the cavity. DMSO performs these tasks through hydrogen bonding and dispersive interactions. Although experimental IR could not verify the specific interaction modes because of broadband structure, computational IR results showed these modes clearly indicating the interactions leading to MIP formation. This model is specific to the studied serotonin-acrylamide-DMSO system but further studies may reveal a general computational protocol for other MIP systems. PMID:27262576

  1. Absorption performance of iodixanol-imprinted polymers in aqueous and blood plasma media.

    PubMed

    Liu, Zhan; Bucknall, David G; Allen, Mark G

    2010-06-01

    This paper presents the preparation and absorption performance of iodixanol-imprinted polymers in aqueous and blood plasma media in vitro for biomedical applications. The imprinted polymers were prepared by non-covalent imprinting of iodixanol in a matrix of poly(4-vinylpyridine) crosslinked by ethylene glycol dimethacrylate. The binding capacities (BCs) were investigated as a function of template-to-monomer, as well as monomer-to-crosslinker, ratios in the polymerization, and the solvent type. The highest BC of iodixanols achieved from the optimized imprinted polymer in the aqueous solution is 284mgg(-1) dry polymer with an imprinting effect (IE) 8.8 times higher than that of the non-imprinted polymer. In blood plasma, the BC of this polymer is slightly reduced to 232mgg(-1) with a smaller IE 4.3 times higher than that of the control polymer. The BCs of molecularly imprinted polymers as a function of the initial assay solution concentration as well as the examination time are also addressed. Surface analyses were additionally performed to characterize the surface morphologies and porosities of synthetic polymers. This work has demonstrated the feasibility of molecular imprinting of iodixanol, and the observed absorption performance of the imprinted polymers is encouraging for biomedical applications. PMID:19925890

  2. Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks

    PubMed Central

    Kozak, Genevieve M.; Head, Megan L.; Boughman, Janette W.

    2011-01-01

    During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such ‘magic traits’ easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity. PMID:21270044

  3. Touch imprint cytology: a rapid diagnostic tool for oral squamous cell carcinoma.

    PubMed

    Geetha, L; Astekar, M; Ashok, K N; Sowmya, G V

    2015-07-01

    Techniques for intraoperative pathologic examination of oral squamous cell carcinoma are rare in the literature. We evaluated the advantages and limitations of touch imprint cytology for intraoperative diagnosis of oral squamous cell carcinoma. We used 30 incisional biopsies of clinically diagnosed oral squamous cell carcinoma and compared touch imprint cytology to histopathological sections. Touch imprint cytology showed 24 specimens positive for malignancy, two suspicious for malignancy and four inadequate specimens. The accuracy of the test was 93.2%. Touch imprint cytology is an accurate, simple, rapid and cost-effective method that aids diagnosis of oral squamous cell carcinoma during operation, but it does not replace incisional biopsy. PMID:25801179

  4. From 3D to 2D: A Review of the Molecular Imprinting of Proteins

    PubMed Central

    Turner, Nicholas W.; Jeans, Christopher W.; Brain, Keith R.; Allender, Christopher J.; Hlady, Vladimir; Britt, David W.

    2008-01-01

    Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight <1500, while extending the technique to larger molecules such as proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches. PMID:17137293

  5. Synthesis of a pH dependent covalent imprinted polymer able to recognize organotin species.

    PubMed

    Gallego-Gallegos, Mercedes; Muñoz-Olivas, Riansares; Cámara, C; Mancheño, María J; Sierra, Miguel A

    2006-01-01

    The covalent imprinting approach has for the first time been successfully applied for the synthesis of an imprinted polymer able to recognize organotin species. The synthesis has been accomplished by co-polymerization of the complex Bu(2)SnO-m-vinylbenzoin as the imprinting template plus co-monomer sodium methacrylate, and ethylene glycol dimethacrylate as cross-linker. The imprinting effect has been evidenced within the narrow pH range 2.5< pH< 3.5. At lower pH values, the imprinting effect is prevented by the exclusive existence of non-specific interactions, whereas pH>3.5 provokes a strong rebind of the template in both imprinted and non-imprinted polymers. This pH dependency can be explained as a selective chemical modification which reduces bind diversity following a model based on enolization by protonation of the specific cavities. Characterization of the adsorption isotherms showed good agreement with the Langmuir-Freundlich (LF) model, presenting quite homogeneous binding sites for a bulk material and high capacity in the imprinting pH range. In addition, the affinity spectrum (AS) method has been represented showing the typical profiles of LF isotherm for both sub-saturation and saturation levels, being in general agreement with the encountered values for fitting coefficients. The covalent molecular imprinted polymer has been successfully evaluated in a SPE process for further OTC determination in the certified mussel tissue (CRM 477). PMID:16365669

  6. Imprinting Salmon and Steelhead Trout for Homing, 1983 Annual Report of Research.

    SciTech Connect

    Slatick, Emil

    1984-09-01

    The National Marine Fisheries Service (NMFS), under contract to the Bonneville Power Administration, began conducting research on imprinting Pacific salmon and steelhead for homing in 1978. In the juvenile marking phase, over 4 million juvenile salmon and steelhead were marked and released in 23 experiments. The primary objectives were to determine a triggering mechanism to activate the homing imprint, if a single imprint or a sequential imprint is necessary to assure homing, and the relationship between the physiological condition of fish and their ability to imprint. Ten experimental studies are discussed. Six of the studies employed a variety of techniques for imprinting fish. The remaining four tested the feasibility of imprinting fish by a short-distance voluntary migration before transport. In five experiments, survival was enhanced by the imprint-transportation procedures, and homing to the homing site area was partly successful. Returns from the Astoria, Oregon, release of fall chinook salmon from Big Creek Hatchery (Knappa, Oregon), for example, showed that limited short distance migration imprinting should provide 2-3 time more fish to the various fisheries while providing adequate returns to the hatchery for egg take each year. 21 refs., 12 figs, 12 tabs.

  7. Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks.

    PubMed

    Kozak, Genevieve M; Head, Megan L; Boughman, Janette W

    2011-09-01

    During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such 'magic traits' easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity. PMID:21270044

  8. Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1.

    PubMed

    Leung, Danny; Du, Tingting; Wagner, Ulrich; Xie, Wei; Lee, Ah Young; Goyal, Preeti; Li, Yujing; Szulwach, Keith E; Jin, Peng; Lorincz, Matthew C; Ren, Bing

    2014-05-01

    During mammalian development, DNA methylation patterns need to be reset in primordial germ cells (PGCs) and preimplantation embryos. However, many LTR retrotransposons and imprinted genes are impervious to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that a subset of such genomic regions are resistant to widespread erasure of DNA methylation in mouse embryonic stem cells (mESCs) lacking the de novo DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b. Intriguingly, these loci are enriched for H3K9me3 in mESCs, implicating this mark in DNA methylation homeostasis. Indeed, deletion of the H3K9 methyltransferase SET domain bifurcated 1 (Setdb1) results in reduced H3K9me3 and DNA methylation levels at specific loci, concomitant with increased 5-hydroxymethylation (5hmC) and ten-eleven translocation 1 binding. Taken together, these data reveal that Setdb1 promotes the persistence of DNA methylation in mESCs, likely reflecting one mechanism by which DNA methylation is maintained at LTR retrotransposons and imprinted genes during developmental stages when DNA methylation is reprogrammed. PMID:24757056

  9. Involvement of hormones in olfactory imprinting and homing in chum salmon

    PubMed Central

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-01-01

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker. PMID:26879952

  10. Involvement of hormones in olfactory imprinting and homing in chum salmon.

    PubMed

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-01-01

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker. PMID:26879952

  11. Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method.

    PubMed

    Tang, Yiwei; Lan, Jianxing; Gao, Xue; Liu, Xiuying; Zhang, Defu; Wei, Liqiao; Gao, Ziyuan; Li, Jianrong

    2016-01-01

    A novel molecularly imprinted polymer (MIP) for efficient separation and concentration of clenbuterol (CLB) was synthesized by covalent imprinting approach using CLB derivative as functional monomer. The MIPs synthesized were characterized by scanning electron microscope, nitrogen adsorption analysis, Fourier transform infrared spectrometer, and thermo-gravimetric analysis. The binding experimental results showed that the MIPs synthesized had fast adsorption kinetic (20 min at 25 mg L(-1)), high adsorption capacity and specific recognition ability for the analyte. In addition, the MIPs synthesized were successfully used as solid-phase sorbent for CLB sample preparation to be analyzed by high performance liquid chromatography with ultraviolet detector. Under optimized experimental conditions, the linear range of the calibration curve was 5-80 μg L(-1) (R(2) = 0.9938). The proposed method was also applied to the analysis of CLB in pork and potable water samples. PMID:26213061

  12. The Genome of a Mongolian Individual Reveals the Genetic Imprints of Mongolians on Modern Human Populations

    PubMed Central

    Wu, Qizhu; Yin, Ye; Zhou, Huanmin

    2014-01-01

    Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]–1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians. PMID:25377941

  13. The genome of a Mongolian individual reveals the genetic imprints of Mongolians on modern human populations.

    PubMed

    Bai, Haihua; Guo, Xiaosen; Zhang, Dong; Narisu, Narisu; Bu, Junjie; Jirimutu, Jirimutu; Liang, Fan; Zhao, Xiang; Xing, Yanping; Wang, Dingzhu; Li, Tongda; Zhang, Yanru; Guan, Baozhu; Yang, Xukui; Yang, Zili; Shuangshan, Shuangshan; Su, Zhe; Wu, Huiguang; Li, Wenjing; Chen, Ming; Zhu, Shilin; Bayinnamula, Bayinnamula; Chang, Yuqi; Gao, Ying; Lan, Tianming; Suyalatu, Suyalatu; Huang, Hui; Su, Yan; Chen, Yujie; Li, Wenqi; Yang, Xu; Feng, Qiang; Wang, Jian; Yang, Huanming; Wang, Jun; Wu, Qizhu; Yin, Ye; Zhou, Huanmin

    2014-12-01

    Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]-1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians. PMID:25377941

  14. Sol-gel-based molecularly imprinted xerogel for capillary microextraction.

    PubMed

    Bagheri, Habib; Piri-Moghadam, Hamed

    2012-09-01

    A novel molecularly imprinted xerogel (MIX) based on organically modified silica (ORMOSIL) was successfully prepared for on-line capillary microextraction (CME) coupled with high-performance liquid chromatography (HPLC). The sol-gel-based xerogel was prepared using only one precursor and exhibited extensive selectivity towards triazines along with significant thermal and chemical stability. Atrazine was selected as a model template molecule and 3-(trimethoxysilyl)propylmethacrylate (TMSPMA) as a precursor in which the propylmethacrylate moiety was responsible for van der Waals, dipole-dipole, and hydrogen-bond interactions with the template. This moiety plays a key role in creation of selective sites while methoxysilyl groups in TMSPMA acted as crosslinkers between the template and the propylmethacrylate moiety. Moreover, a non-imprinted xerogel (NIX) was also prepared in the absence of the template for evaluating the extraction efficiency of the prepared MIX. Then, the prepared imprinted and non-imprinted xerogels were used for extraction of three selected analytes of triazines class including atrazine, ametryn, and terbutryn, which have rather similar structures. The extraction efficiency of the prepared xerogel for atrazine, the template molecule, was found to be ten times greater than the efficiency achieved by the non-imprinted one. In the meantime, the extraction efficiency ratio of MIX to NIX for ametryn and terbutryn was also rather significant (eight times). Moreover, other compounds from different classes including dicamba, mecoprop, and estriol were also analyzed to evaluate the selectivity of the prepared MIX towards triazines. The ratio of enrichment factors (EF) of MIX to NIX for atrazine, ametryn, terbutryn, dicamba, mecoprop, and estriol were about 10, 8, 8, 2, 2, and 3, respectively. The linearity for the analytes was in the range of 5-700 μg L(-1). Limit of detection was in the range of 1-5 μg L(-1) and the RSD% values (n = 5) were all below 6

  15. The Impact of First Trimester Phthalate and Phenol Exposure on IGF2/H19 Genomic Imprinting and Birth Outcomes

    PubMed Central

    LaRocca, Jessica; Binder, Alexandra; McElrath, Thomas F.; Michels, Karin B.

    2014-01-01

    Genomic imprinting leads to parent-of-origin specific gene expression and is determined by epigenetic modification of genes. The paternally expressed gene insulin-like growth-factor 2 (IGF2) is located about ∼100 kb from the maternally expressed non-coding gene H19 on human chromosome 11, and both genes play major roles in embryonic and placental growth. Given adverse gestational environments can influence DNA methylation patterns in extra-embryonic tissues, we hypothesized that prenatal exposure to endocrine disrupting chemicals (EDCs) alters H19 and IGF2 methylation in placenta. Our study was restricted to a total of 196 women co-enrolled in the Predictors of Preeclampsia Study and the Harvard Epigenetic Birth Cohort. First trimester urine concentrations of 8 phenols and 11 phthalate metabolites were measured and used to characterize EDC exposure profiles. We assessed methylation of differentially methylated regions (DMRs) by pyrosequencing of H19, IGF2DMR0, and IGF2DMR2 and correlated values with phenol and phthalate metabolites. We also assessed overall expression and allele-specific expression of H19 and IGF2. We found several significant associations between DNA methylation and additive biomarker measurements. A significant decrease in H19 methylation was associated with high level of the sum (Σ) of phthalate metabolites and metabolites of low molecular weight (LMW) phthalates. Σphthalate and LMW phthalate concentrations were inversely associated with IGF2DMR0 methylation values. Variation in methylation was not associated with changes in allele-specific expression. However increased deviation of allele-specific expression of H19 was associated with Σ di(2-ethylhexyl) phthalate metabolites and high molecular weight phthalates. Neither methylation nor expression of these imprinted regions had a significant impact on birth length or birth weight. Overall, our study provides new insight into an epigenetic mechanism that occurs following EDC exposure. PMID

  16. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes.

    PubMed

    LaRocca, Jessica; Binder, Alexandra M; McElrath, Thomas F; Michels, Karin B

    2014-08-01

    Genomic imprinting leads to parent-of-origin specific gene expression and is determined by epigenetic modification of genes. The paternally expressed gene insulin-like growth-factor 2 (IGF2) is located about ~100kb from the maternally expressed non-coding gene H19 on human chromosome 11, and both genes play major roles in embryonic and placental growth. Given adverse gestational environments can influence DNA methylation patterns in extra-embryonic tissues, we hypothesized that prenatal exposure to endocrine disrupting chemicals (EDCs) alters H19 and IGF2 methylation in placenta. Our study was restricted to a total of 196 women co-enrolled in the Predictors of Preeclampsia Study and the Harvard Epigenetic Birth Cohort. First trimester urine concentrations of 8 phenols and 11 phthalate metabolites were measured and used to characterize EDC exposure profiles. We assessed methylation of differentially methylated regions (DMRs) by pyrosequencing of H19, IGF2DMR0, and IGF2DMR2 and correlated values with phenol and phthalate metabolites. We also assessed overall expression and allele-specific expression of H19 and IGF2. We found several significant associations between DNA methylation and additive biomarker measurements. A significant decrease in H19 methylation was associated with high levels of the sum (Σ) of phthalate metabolites and metabolites of low molecular weight (LMW) phthalates. Σphthalate and LMW phthalate concentrations were inversely associated with IGF2DMR0 methylation values. Variation in methylation was not associated with changes in allele-specific expression. However increased deviation of allele-specific expression of H19 was associated with Σdi(2-ethylhexyl) phthalate metabolites and high molecular weight phthalates. Neither methylation nor expression of these imprinted regions had a significant impact on birth length or birth weight. Overall, our study provides new insight into an epigenetic mechanism that occurs following EDC exposure. PMID

  17. Identification and characterization of paternal-preferentially expressed gene NF-YC8 in maize endosperm.

    PubMed

    Mei, Xiupeng; Liu, Chaoxian; Yu, Tingting; Liu, Xiaoli; Xu, De; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2015-10-01

    Gene imprinting describes an epigenetic phenomenon, whereby genetically identical alleles are differentially expressed dependent on parent-of-origin. Some imprinted genes belonged to NUCLEAR FACTOR Y (NF-Y) transcription factors, which were involved in many important metabolic processes in plant. The characterizations of imprinted genes are of great importance for their function exploration. In this paper, 15 non-redundant NF-YC genes were identified in the maize genome and the paternally expressed gene NF-YC8 was further analyzed. NF-YC8 primarily expressed in maize immature ear and tassel and phylogenetic analysis showed that NF-YC8 was highly homologous with Arabidopsis thaliana NF-YC2 genes which function in regulation of the flowering processes, ER stress response. Furthermore, NF-YC8 was a differential, gene-specific imprinted gene at 14 DAP and persistently imprinted throughout later endosperm development in the B73/Mo17 genetic background. Bisulfite sequencing for NF-YC8 in maize endosperm showed that the paternal alleles were higher methylated (CG, CHG and CHH contexts) than maternal alleles in the 5' upstream region, and the coding region was highly methylated in CG context. Additionally, TE (CG, CHG and CHH contexts) and repetitive region (CG and CHG contexts) were all highly methylated. These results are the first description of evolution and molecular characterization of maize NF-YC8 and will provide new references for maize NF-YC genetic analysis. PMID:25851237

  18. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9.

    PubMed

    Han, Jinxiong; Zhang, Jun; Chen, Li; Shen, Bin; Zhou, Jiankui; Hu, Bian; Du, Yinan; Tate, Peri H; Huang, Xingxu; Zhang, Wensheng

    2014-01-01

    Recent genome-wide studies have revealed that the majority of the mouse genome is transcribed as non-coding RNAs (ncRNAs) and growing evidence supports the importance of ncRNAs in regulating gene expression and epigenetic processes. However, the low efficiency of conventional gene targeting strategies has hindered the functional study of ncRNAs in vivo, particularly in generating large fragment deletions of long non-coding RNAs (lncRNAs) with multiple expression variants. The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has recently been applied as an efficient tool for engineering site-specific mutations of protein-coding genes in the genome. In this study, we explored the potential of using the CRISPR/Cas9 system to generate large genomic deletions of lncRNAs in mice. We developed an efficient one-step strategy to target the maternally expressed lncRNA, Rian, on chromosome 12 in mice. We showed that paired sgRNAs can precisely generate large deletions up to 23kb and the deletion efficiency can be further improved up to 33% by combining multiple sgRNAs. The deletion successfully abolished the expression of Rian from the maternally inherited allele, validating the biological relevance of the mutations in studying an imprinted locus. Mutation of Rian has differential effects on expression of nearby genes in different somatic tissues. Taken together, we have established a robust one-step method to engineer large deletions to knockout lncRNA genes with the CRISPR/Cas9 system. Our work will facilitate future functional studies of other lncRNAs in vivo. PMID:25137067

  19. Perspective: maternal kin groups and the origins of asymmetric genetic systems-genomic imprinting, haplodiploidy, and parthenogenesis.

    PubMed

    Normark, Benjamin B

    2006-04-01

    The genetic systems of animals and plants are typically eumendelian. That is, an equal complement of autosomes is inherited from each of two parents, and at each locus, each parent's allele is equally likely to be expressed and equally likely to be transmitted. Genetic systems that violate any of these eumendelian symmetries are termed asymmetric and include parent-specific gene expression (PSGE), haplodiploidy, thelytoky, and related systems. Asymmetric genetic systems typically arise in lineages with close associations between kin (gregarious siblings, brooding, or viviparity). To date, different explanatory frameworks have been proposed to account for each of the different asymmetric genetic systems. Haig's kinship theory of genomic imprinting argues that PSGE arises when kinship asymmetries between interacting kin create conflicts between maternally and paternally derived alleles. Greater maternal than paternal relatedness within groups selects for more "abstemious" expression of maternally derived alleles and more "greedy" expression of paternally derived alleles. Here, I argue that this process may also underlie origins of haplodiploidy and many origins of thelytoky. The tendency for paternal alleles to be more "greedy" in maternal kin groups means that maternal-paternal conflict is not a zero-sum game: the maternal optimum will more closely correspond to the optimum for family groups and demes and for associated entities such as symbionts. Often in these circumstances, partial or complete suppression of paternal gene expression will evolve (haplodiploidy, thelytoky), or other features of the life cycle will evolve to minimize the conflict (monogamy, inbreeding). Maternally transmitted cytoplasmic elements and maternally imprinted nuclear alleles have a shared interest in minimizing agonistic interactions between female siblings and may cooperate to exclude the paternal genome. Eusociality is the most dramatic expression of the conflict-reducing effects of

  20. Polycarbonate as an elasto-plastic material model for simulation of the microstructure hot imprint process.

    PubMed

    Narijauskaitė, Birutė; Palevičius, Arvydas; Gaidys, Rimvydas; Janušas, Giedrius; Sakalys, Rokas

    2013-01-01

    The thermal imprint process of polymer micro-patterning is widely applied in areas such as manufacturing of optical parts, solar energy, bio-mechanical devices and chemical chips. Polycarbonate (PC), as an amorphous polymer, is often used in thermoforming processes because of its good replication characteristics. In order to obtain replicas of the best quality, the imprint parameters (e.g., pressure, temperature, time, etc.) must be determined. Therefore finite element model of the hot imprint process of lamellar periodical microstructure into PC has been created using COMSOL Multiphysics. The mathematical model of the hot imprint process includes three steps: heating, imprinting and demolding. The material properties of amorphous PC strongly depend on the imprint temperature and loading pressure. Polycarbonate was modelled as an elasto-plastic material, since it was analyzed below the glass transition temperature. The hot imprint model was solved using the heat transfer and the solid stress-strain application modes with thermal contact problem between the mold and polycarbonate. It was used for the evaluation of temperature and stress distributions in the polycarbonate during the hot imprint process. The quality of the replica, by means of lands filling ratio, was determined as well. PMID:23974153

  1. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    PubMed

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor. PMID:27145145

  2. Synthesis, characterization and adsorption behavior of molecularly imprinted nanospheres for erythromycin using precipitation polymerization.

    PubMed

    Kou, Xing; Lei, Jiandu; Geng, Liyuan; Deng, Hongquan; Jiang, Qiying; Zhang, Guifeng; Ma, Guanghui; Su, Zhiguo

    2012-09-01

    Preparation of uniform size molecularly imprinted nanospheres for erythromycin with good selectivity and high binding capacity by precipitation polymerization were presented, in which erythromycin, methacrylic acid and ethylene glycol dimethacrylate are used as template molecule, functional monomer and cross-linker, respectively. The synthesis conditions of molecularly imprinted nanospheres were optimized and the optimal molar ratio of erythromycin to functional monomer is 1:3. The molecularly imprinted polymers were characterized by scanning electron microscope, laser particle size analyzer and BET, respectively. The results suggested that molecularly imprinted nanospheres for erythromycin exhibited spherical shape and good monodispersity. Selectivity analysis indicated that the imprinted nanospheres could specifically recognize erythromycin from its structure analogues. Furthermore, adsorption kinetics and adsorption isotherm of the imprinted nanospheres were employed to investigate the binding characteristics of the imprinted nanospheres. The results showed that the imprinted nanospheres have high adsorption capacity for erythromycin, and the maximum theoretical static binding capacity is up to 267.0188 mg g(-1). PMID:23035481

  3. Removal of Toxic Mercury from Petroleum Oil by Newly Synthesized Molecularly-Imprinted Polymer

    PubMed Central

    Khairi, Nor Ain Shahera; Yusof, Nor Azah; Abdullah, Abdul Halim; Mohammad, Faruq

    2015-01-01

    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity. PMID:26006226

  4. Protein imprinting and recognition via forming nanofilms on microbeads surfaces in aqueous media

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Yan, Chang-Ling; Wang, Xue-Jing; Wang, Gong-Ke

    2009-12-01

    In this paler, we present a technique of forming nanofilms of poly-3-aminophenylboronic acid (pAPBA) on the surfaces of polystyrene (PS) microbeads for proteins (papain and trypsin) in aqueous. Papain was chosen as a model to study the feasibility of the technique and trypsin as an extension. Obtained core-shell microbeads were characterized using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and BET methods. The results show that pAPBA formed nanofilms (60-100 nm in thickness) on the surfaces of PS microbeads. The specific surface area of the papain-imprinted beads was about 180 m 2 g -1 and its pore size was 31 nm. These imprinted microbeads exhibit high recognition specificity and fast mass transfer kinetics. The specificity of these imprinted beads mainly originates from the spatial effect of imprinted sites. Because the protein-imprinted sites were located at, or close to, the surface, the imprinted beads have good site accessibility toward the template molecules. The facility of the imprinting protocol and the high recognition properties of imprinted microbeads make the approach an attractive solution to problems in the field of biotechnology.

  5. Preparation and evaluation of spore-specific affinity- augmented bio-imprinted beads

    SciTech Connect

    Harvey, Scott D.; Mong, Gary M.; Ozanich, Rich M.; Mclean, Jeffrey S.; Goodwin, Shannon M.; Valentine, Nancy B.; Fredrickson, Jim K.

    2006-09-01

    The procedures previously described for imprinting bead surfaces with bacteria were applied to create novel affinity-augmented bacterial spore-imprinted beads. The imprinted beads are intended as a front-end spore capture/concentration stage of an integrated biological detection system. Our approach involves embedding bead surfaces with Bacillus thuringiensis kurstaki (Bt) spores (as a surrogate for Bacillus anthracis) during synthesis. Subsequent steps involved lithographic deactivation using a perfluoroether, spore removal to create imprint sites, and coating imprints with the lectin, concanavalin A, to provide general affinity. The synthesis of the intended material with the desired imprints was verified by scanning electron and confocal laser-scanning microscopy. The material was evaluated using spore-binding assays with either Bt or Bacillus subtilis (Bs) spores. The binding assays indicated strong spore-binding capability and a robust imprinting effect that accounted for 25 percent additional binding over nonimprinted controls. The binding assay results also indicated that further refinement of the surface deactivation procedure would enhance the performance of the imprinted substrate.

  6. Removal of toxic mercury from petroleum oil by newly synthesized molecularly-imprinted polymer.

    PubMed

    Khairi, Nor Ain Shahera; Yusof, Nor Azah; Abdullah, Abdul Halim; Mohammad, Faruq

    2015-01-01

    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity. PMID:26006226

  7. The imprint of crustal density heterogeneities on seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Plonka, A.; Fichtner, A.

    2015-12-01

    We present the results of a set of numerical experiments designed to observe the imprint of three-dimensional density heterogeneities on a seismogram. To compute the full seismic wavefield in a three-dimensional heterogeneous medium, we use numerical wave propagation based on a spectral-element discretization of the seismic wave equation. We consider a 2000 by 1000 km wide and 500 km deep spherical section, with the one-dimensional Earth model PREM, altered so that the crust is 40 km thick and all the parameters in the crust are constant, as a background. Onto the uppermost 40 km of the underlying one-dimensional model we superimpose three-dimensional randomly generated velocity and density heterogeneities of various correlation lengths. We use different random realizations of heterogeneity distribution. We compare the synthetic seismograms for three-dimensional velocity and density structure with three-dimensional velocity structure and one-dimensional density kept as PREM, calculating relative amplitude differences and time shifts as functions of time and frequency. The misfits in time shift and amplitude for different frequency bands, epicentral distances and medium complexities are then stacked into histograms and statistically analysed. We observe strong dependency on frequency of density-related amplitude difference. We also conclude potential sensitivity to distant density structures, and that scattering is essential to observe significant density imprint on a seismogram. The possible density-related bias in velocity and attenuation for regional tomographic models is calculated using mean misfit values for given epicentral distances. Whereas the bias in velocity does not exceed 0.5% of the model value, the density-related change in attenuation may be as big as 71% of the model value for the mean amplitude difference in the highest frequency band. The results suggest that density imprint on a seismogram is not negligible and with further theoretical

  8. Nicotine molecularly imprinted polymer: synergy of coordination and hydrogen bonding.

    PubMed

    Huynh, Tan-Phat; B K C, Chandra; Sosnowska, Marta; Sobczak, Janusz W; Nesterov, Vladimir N; D'Souza, Francis; Kutner, Wlodzimierz

    2015-02-15

    Two new bis(2,2'-bithienyl)methane derivatives, one with the zinc phthalocyanine substituent (ZnPc-S16) and the other with the 2-hydroxyethyl substituent (EtOH-S4), were synthesized to serve as functional monomers for biomimetic recognition of nicotine (Nic) by molecular imprinting. Formation of a pre-polymerization complex of the Nic template with ZnPc-S16 and EtOH-S4 was confirmed by both the high negative Gibbs free energy gain, ΔG = -115.95 kJ/mol, calculated using the density functional theory at the B3LYP/3-21G* level, and the high stability constant, Ks = 4.67 × 10(5) M(-1), determined by UV-vis titration in chloroform. A solution of this complex was used to deposit a Nic-templated molecularly imprinted polymer (MIP-Nic) film on an Au electrode of a quartz crystal resonator of EQCM by potentiodynamic electropolymerization. The imprinting factor was as high as ~9.9. Complexation of the Nic molecules by the MIP cavities was monitored with X-ray photoelectron spectroscopy (XPS), as manifested by a negative shift of the binding energy of the Zn 2p3/2 electron of ZnPc-S16 after Nic templating. For sensing applications, simultaneous chronoamperometry (CA) and piezoelectric microgravimetry (PM) measurements were performed under flow-injection analysis conditions. The limit of detection of the CA and PM chemosensing was as low as 40 and 12 µM, respectively. Among them, the CA chemosensing was more selective to the cotinine and myosmine interferences due to the 1.10 V vs. Ag/AgCl discriminating potential of nicotine electro-oxidation applied. Differences in selectivity to the analyte and interferences were interpreted by modeling complexation of Nic and, separately, each of the interferences with a "frozen" MIP-Nic molecular cavity. PMID:25441415

  9. Multiepitope Templates Imprinted Particles for the Simultaneous Capture of Various Target Proteins.

    PubMed

    Yang, Kaiguang; Li, Senwu; Liu, Jianxi; Liu, Lukuan; Zhang, Lihua; Zhang, Yukui

    2016-06-01

    To achieve the simultaneous capture of various target proteins, the multiepitope templates imprinted particles were developed by phase inversion-based poly(ether sulfone) (PES) self-assembly. Herein, with the top three high-abundance proteins in the human plasma, serum albumin, immunoglobulin G, and transferrin, as the target proteins, their N-terminal peptides were synthesized as the epitope templates. After the preorganization of three epitopes and PES in dimethylacetamide, the multiepitope templates imprinted particles were formed in water through self-assembly, by which the simultaneous recognition of three target proteins in human plasma was achieved with high selectivity. Furthermore, the binding kinetics study proved that the adsorption mechanism in this imprinting system toward three epitope templates was the same as that on the single-epitope imprinting polymer. These results demonstrate that our proposed multiepitope templates imprinting strategy might open a new era of artificial antibodies to achieve the recognition of various targets simultaneously. PMID:27186657

  10. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOEpatents

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  11. Synthesis and characterization of oxytetracycline imprinted magnetic polymer for application in food

    NASA Astrophysics Data System (ADS)

    Aggarwal, Sneha; Rajput, Yudhishthir Singh; Singh, Gulab; Sharma, Rajan

    2016-02-01

    Magnetic imprinted polymer was prepared by polymerization of methacrylate and ethyleneglycoldimethacrylate in the presence of oxytetracycline on the surface of iron magnetite. Selectivity of prepared polymer was calculated from ratio of partition coefficient of oxytetracycline for imprinted and non- imprinted polymer in water, acetonitrile, methanol and at different pH in aqueous buffer. pH of solvent exhibited pronounced effect on selectivity. Selectivity at pH 7.0, 6.0 and 5.0 was 36.0, 2.25 and 1.61 fold higher than at pH 4.0. Imprinted polymer was not selective for oxytetracycline in methanol. However, selectivity in water and acetonitrile was 19.42 and 2.86, respectively. Oxytetracycline did bind to imprinted polymer in water or aqueous buffer (pH 7.0) and could be eluted with methanol. Prepared polymer extracted 75-80 % oxytetracycline from water, honey and egg white.

  12. Molecularly Imprinted Polymers: Thermodynamic and Kinetic Considerations on the Specific Sorption and Molecular Recognition

    PubMed Central

    Li, Songjun; Huang, Xing; Zheng, Mingxia; Li, Wuke; Tong, Kejun

    2008-01-01

    This article presents a work aiming at thermodynamically and kinetically interpreting the specific sorption and recognition by a molecularly imprinted polymer. Using Boc-L-Phe-OH as a template, the imprinted material was prepared. The result indicates that the prepared polymer can well discriminate the imprint species from its analogue (Boc-D-Phe-OH), so as to adsorb more for the former but less for the latter. Kinetic analysis indicates that this specific sorption, in nature, can be a result of a preferential promotion. The imprint within the polymer causes a larger adsorption rate for the template than for the analogue. Thermodynamic study also implies that the molecular induction from the specific imprint to the template is larger than to the analogue, which thus makes the polymer capable of preferentially alluring the template to bind.

  13. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers.

    PubMed

    Lv, Yongqin; Qin, Yating; Svec, Frantisek; Tan, Tianwei

    2016-06-15

    Molecularly imprinted plasmonic nanosensor has been prepared via the rational design of an ultrathin polymer layer on the surface of gold nanorods imprinted with the target protein. This nanosensor enabled selective fishing-out of the target protein biomarker even from a complex real sample such as human serum. Sensitive SERS detection of the protein biomarkers with a strong Raman enhancement was achieved by formation of protein imprinted gold nanorods aggregates, stacking of protein imprinted gold nanorods onto a glass plate, or self-assembly of protein imprinted gold nanorods into close-packed array. High specificity and sensitivity of this method were demonstrated with a detection limit of at least 10(-8)mol/L for the target protein. This could provide a promising alternative for the currently used immunoassays and fluorescence detection, and offer an ultrasensitive, non-destructive, and label-free technique for clinical diagnosis applications. PMID:26874111

  14. A taste sensor based on surface imprinted TiO2 membrane

    NASA Astrophysics Data System (ADS)

    Xiao, Wenxiang; Chen, Zhencheng; Jiang, Xingguo; Zhao, Hongtian; Chu, Fugang; Hou, Hongbin

    2012-03-01

    Surface imprinted TiO2 membranes had been prepared and used as sensing membranes for basic tastes discrimination. Four basic taste molecules (citric acid, D-glucose, quinine hydrochloride and sodium L-glutamate for sour, sweet, bitter and umami respectively) were used as templates for imprinting. The sensor was fabricated in light-addressable potentiometric principle. Experimental results show that membranes imprinted by citric acid and quinine hydrochloride exhibit similar response behaviors towards four taste substances, that is citric acid > quinine hydrochloride > sodium L-glutamate > D-glucose. Membrane imprinted by sodium L-glutamate is sensitive towards quinine hydrochloride. Except for D-glucose imprinting membrane, other three membranes are inert to glucose. Combined with principal component analysis, four basic tastes can be well distinguished.

  15. A taste sensor based on surface imprinted TiO2 membrane

    NASA Astrophysics Data System (ADS)

    Xiao, Wenxiang; Chen, Zhencheng; Jiang, Xingguo; Zhao, Hongtian; Chu, Fugang; Hou, Hongbin

    2011-11-01

    Surface imprinted TiO2 membranes had been prepared and used as sensing membranes for basic tastes discrimination. Four basic taste molecules (citric acid, D-glucose, quinine hydrochloride and sodium L-glutamate for sour, sweet, bitter and umami respectively) were used as templates for imprinting. The sensor was fabricated in light-addressable potentiometric principle. Experimental results show that membranes imprinted by citric acid and quinine hydrochloride exhibit similar response behaviors towards four taste substances, that is citric acid > quinine hydrochloride > sodium L-glutamate > D-glucose. Membrane imprinted by sodium L-glutamate is sensitive towards quinine hydrochloride. Except for D-glucose imprinting membrane, other three membranes are inert to glucose. Combined with principal component analysis, four basic tastes can be well distinguished.

  16. Known unknowns for allele-specific expression and genomic imprinting effects

    PubMed Central

    2014-01-01

    Recent studies have provided evidence for non-canonical imprinting effects that are associated with allele-specific expression biases at the tissue level in mice. These imprinting effects have features that are distinct from canonical imprinting effects that involve allele silencing. Here, I discuss some of the evidence for non-canonical imprinting effects in the context of random X-inactivation and epigenetic allele-specific expression effects on the autosomes. I propose several mechanisms that may underlie non-canonical imprinting effects and outline future directions and approaches to study these effects at the cellular level in vivo. The growing evidence for complex allele-specific expression effects that are cell- and developmental stage-specific has opened a new frontier for study. Currently, the function of these effects and the underlying regulatory mechanisms are largely unknown. PMID:25343032

  17. Influence of the Prader-Willi syndrome imprinting center on the DNA methylation landscape in the mouse brain.

    PubMed

    Brant, Jason O; Riva, Alberto; Resnick, James L; Yang, Thomas P

    2014-11-01

    Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ~3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ~2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5' CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ~750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain. PMID:25482058

  18. Manipulating stored images with phase imprinting at low light levels.

    PubMed

    Zhao, L; Yang, Guojian; Duan, Wenhui

    2012-07-15

    Coherent manipulation of stored images is performed at low light levels based on enhanced cross-Kerr nonlinearity in a four-level N-type electromagnetically induced transparency (EIT) system. Using intensity masks in the signal pulse, quadratic phase shifts with low nonlinear absorption can be efficiently imprinted on the Fraunhofer diffraction patterns already stored in the EIT system. Fast-Fourier-transform-based numerical simulations clearly demonstrate that the far-field images of the retrieved probe light can be flexibly modulated by applying different signal fields. Our studies could help advance the goals of nonlinear all-optical processing for spatial information coherently stored in EIT systems. PMID:22825156

  19. Promoter-restricted histone code, not the differentially methylated DNA regions or antisense transcripts, marks the imprinting status of IGF2R in human and mouse.

    PubMed

    Vu, Thanh H; Li, Tao; Hoffman, Andrew R

    2004-10-01

    Imprinting of the mouse Igf2r depends upon an intronic differentially methylated DNA region (DMR) and the presence of the Air antisense transcript. However, biallelic expression of mouse Igf2r in brain occurs despite the presence of Air, and biallelic expression of human IGF2R in peripheral tissues occurs despite the presence of an intronic DMR. We examined histone modifications throughout the mouse and human Igf2r/IGF2R using chromatin immuno-precipitation (ChIP) assays in combination with quantitative real time PCR. Methylation of Lys4 and Lys9 of histone H3 in the promoter regions marks the active and silenced alleles, respectively. We measured di- and tri-methyl Lys4 and Lys9 across the Igf2r and Air promoters. While both di- and tri-methyl Lys4 marked the active Igf2r and the active Air allele, tri-methyl Lys9, but not di-methyl Lys9, marked the suppressed Air allele. We show here that enrichment of parental allele-specific histone modifications in the promoter region, rather than the presence of DNA methylation or antisense transcription, correctly identifies the tissue- and species- specific imprinting status of Igf2r/IGF2R. We discuss these findings in light of recent progress in identifying specific components of the epigenetic marks in imprinted genes. PMID:15294879

  20. The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice

    PubMed Central

    Fukuda, Atsushi; Tomikawa, Junko; Miura, Takumi; Hata, Kenichiro; Nakabayashi, Kazuhiko; Eggan, Kevin; Akutsu, Hidenori; Umezawa, Akihiro

    2014-01-01

    Maintaining a single active X-chromosome by repressing Xist is crucial for embryonic development in mice. Although the Xist activator RNF12/RLIM is present as a maternal factor, maternal Xist (Xm-Xist) is repressed during preimplantation phases to establish imprinted X-chromosome inactivation (XCI). Here we show, using a highly reproducible chromatin immunoprecipitation method that facilitates chromatin analysis of preimplantation embryos, that H3K9me3 is enriched at the Xist promoter region, preventing Xm-Xist activation by RNF12. The high levels of H3K9me3 at the Xist promoter region are lost in embryonic stem (ES) cells, and ES-cloned embryos show RNF12-dependent Xist expression. Moreover, lack of Xm-XCI in the trophectoderm, rather than loss of paternally expressed imprinted genes, is the primary cause of embryonic lethality in 70–80% of parthenogenotes immediately after implantation. This study reveals that H3K9me3 is involved in the imprinting that silences Xm-Xist. Our findings highlight the role of maternal-specific H3K9me3 modification in embryo development. PMID:25394724

  1. A novel de novo point mutation of the OCT-binding site in the IGF2/H19-imprinting control region in a Beckwith-Wiedemann syndrome patient.

    PubMed

    Higashimoto, K; Jozaki, K; Kosho, T; Matsubara, K; Fuke, T; Yamada, D; Yatsuki, H; Maeda, T; Ohtsuka, Y; Nishioka, K; Joh, K; Koseki, H; Ogata, T; Soejima, H

    2014-12-01

    The IGF2/H19-imprinting control region (ICR1) functions as an insulator to methylation-sensitive binding of CTCF protein, and regulates imprinted expression of IGF2 and H19 in a parental origin-specific manner. ICR1 methylation defects cause abnormal expression of imprinted genes, leading to Beckwith-Wiedemann syndrome (BWS) or Silver-Russell syndrome (SRS). Not only ICR1 microdeletions involving the CTCF-binding site, but also point mutations and a small deletion of the OCT-binding site have been shown to trigger methylation defects in BWS. Here, mutational analysis of ICR1 in 11 BWS and 12 SRS patients with ICR1 methylation defects revealed a novel de novo point mutation of the OCT-binding site on the maternal allele in one BWS patient. In BWS, all reported mutations and the small deletion of the OCT-binding site, including our case, have occurred within repeat A2. These findings indicate that the OCT-binding site is important for maintaining an unmethylated status of maternal ICR1 in early embryogenesis. PMID:24299031

  2. Interruption of intrachromosomal looping by CCCTC binding factor decoy proteins abrogates genomic imprinting of human insulin-like growth factor II

    PubMed Central

    Zhang, He; Niu, Beibei; Ge, Shengfang; Wang, Haibo; Li, Tao; Ling, Jianqun; Steelman, Brandon N.; Qian, Guanxiang

    2011-01-01

    Monoallelic expression of IGF2 is regulated by CCCTC binding factor (CTCF) binding to the imprinting control region (ICR) on the maternal allele, with subsequent formation of an intrachromosomal loop to the promoter region. The N-terminal domain of CTCF interacts with SUZ12, part of the polycomb repressive complex-2 (PRC2), to silence the maternal allele. We synthesized decoy CTCF proteins, fusing the CTCF deoxyribonucleic acid–binding zinc finger domain to CpG methyltransferase Sss1 or to enhanced green fluorescent protein. In normal human fibroblasts and breast cancer MCF7 cell lines, the CTCF decoy proteins bound to the unmethylated ICR and to the IGF2 promoter region but did not interact with SUZ12. EZH2, another part of PRC2, was unable to methylate histone H3-K27 in the IGF2 promoter region, resulting in reactivation of the imprinted allele. The intrachromosomal loop between the maternal ICR and the IGF2 promoters was not observed when IGF2 imprinting was lost. CTCF epigenetically governs allelic gene expression of IGF2 by orchestrating chromatin loop structures involving PRC2. PMID:21536749

  3. Imprinting superconducting vortex footsteps in a magnetic layer

    NASA Astrophysics Data System (ADS)

    Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I.; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M.; Veerapandian, Savita K. P.; Colson, Pierre; Vanderheyden, Benoît; Vanderbemden, Philippe; Ortiz, Wilson A.; Nguyen, Ngoc Duy; Kramer, Roman B. G.; Silhanek, Alejandro V.

    2016-06-01

    Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.

  4. Imprinting superconducting vortex footsteps in a magnetic layer.

    PubMed

    Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M; Veerapandian, Savita K P; Colson, Pierre; Vanderheyden, Benoît; Vanderbemden, Philippe; Ortiz, Wilson A; Nguyen, Ngoc Duy; Kramer, Roman B G; Silhanek, Alejandro V

    2016-01-01

    Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories. PMID:27263660

  5. Imprinting superconducting vortex footsteps in a magnetic layer

    PubMed Central

    Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I.; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M.; Veerapandian, Savita K. P.; Colson, Pierre; Vanderheyden, Benoît; Vanderbemden, Philippe; Ortiz, Wilson A.; Nguyen, Ngoc Duy; Kramer, Roman B. G.; Silhanek, Alejandro V.

    2016-01-01

    Local polarization