Science.gov

Sample records for improved adenovirus type

  1. Improving gene transfer in human renal carcinoma cells: Utilization of adenovirus vectors containing chimeric type 5 and type 35 fiber proteins

    PubMed Central

    ACHARYA, BISHNU; TERAO, SHUJI; SUZUKI, TORU; NAOE, MICHIO; HAMADA, KATSUYUKI; MIZUGUCHI, HIROYUKI; GOTOH, AKINOBU

    2010-01-01

    The transduction efficacy of adenovirus serotype 5 (Ad5) vector in human renal carcinoma cells is generally low due to the down-regulated expression of Coxsackie and adenovirus receptor (CAR) in target cells. By contrast, the infectivity of adenovirus serotype 35 vectors depends on the binding rate to CD46 receptor, independent of CAR. In this study, we examined whether an adenovirus vector containing chimeric type 5 and type 35 fiber proteins (Ad5/F35) increases transduction efficiency compared to Ad5 vector in human renal carcinoma cells in vitro. The expression of CAR was much lower in the human renal carcinoma cells than in control HEK293 cells. By contrast, the expression of CD46 was similar and perhaps at a higher level in the human renal carcinoma cells than in the HEK293 cells. The transduction efficacy of Ad5/F35 vector was dramatically higher compared to that of Ad5 in human renal carcinoma cells, and was correlated to the expression of CD46. Thus, Ad5/35 vector may be useful for the development of novel gene therapy approaches to renal cell carcinoma. PMID:22993573

  2. Aerosol stability of bovine adenovirus type 3.

    PubMed Central

    Elazhary, M A; Derbyshire, J B

    1979-01-01

    The WBR-1 strain of bovine adenovirus type 3 was suspended in Eagle's medium or bovine nasal secretion and atomized into a rotating drum at temperatures of 6 degrees C or 32 degrees C and relative humidities of 30% or 90%. Impinger samples of the aerosols were collected seven minutes, one, two and three hours postgeneration, and titrated for infectivity in embryonic bovine kidney cell cultures. Under certain conditions of temperature and relative humidity, the virus was more stable in aerosols of Eagle's medium than in nasal secretion. The bovine adenovirus was usually inactivated more rapidly at 30% relative humidity than at 90% relative humidity and during aging of the aerosols the virus was inactivated more rapidly at 32 degrees C than at 6 degrees C. PMID:226247

  3. Improved real-time PCR assay for detection and quantification of all 54 known types of human adenoviruses in clinical samples

    PubMed Central

    Bil-Lula, Iwona; De Franceschi, Nicola; Pawlik, Krzysztof; WoŸniak, Mieczysław

    2012-01-01

    Summary Background Detection and quantification of adenoviruses (AdVs) causing life-threatening complications are important abilities in recognition of infection and management of immunocompromised patients. Due to the rapid increase in the number of known AdV types, most commercial tests for detection and identification of AdVs are outdated. Material/Methods We designed an improved, easier and faster real-time quantitative polymerase chain reaction (RQ-PCR) method for detection and quantification of 54 types of human AdVs. A wide validation effort was undertaken to ensure confidence in highly sensitive and specific detection of AdVs in compromised patients. The validation process included evaluation of the method’s suitability and reliability for use in routine diagnostics. Results Due to high sensitivity (9.2×102 copies/ml) and broad dynamic range (7 log) we are able to detect specific viral DNA in large amounts of cell-free body fluids. The new assay is characterized by high precision and low variation within and between individual virus tests (CV=0.036%, CV=1.29%), low bias error (4%) and no cross-reactivity with other pathogens. Conclusions The implementation of this new assay in clinical and laboratory practice provides a rapid, reliable and less laborious method for detection and monitoring of AdV replication in immunocompromised patients. Moreover, it offers the ability to distinguish between active and latent infection and assess treatment efficiency. PMID:22648243

  4. Human Adenovirus Type 2 but Not Adenovirus Type 12 Is Mutagenic at the Hypoxanthine Phosphoribosyltransferase Locus of Cloned Rat Liver Epithelial Cells

    PubMed Central

    Paraskeva, Christos; Roberts, Carl; Biggs, Paul; Gallimore, Phillip H.

    1983-01-01

    Using resistance to the base analog 8-azaguanine as a genetic marker, we showed that adenovirus type 2, but not adenovirus type 12, is mutagenic at the hypoxanthine phosphoribosyltransferase locus of cloned diploid rat liver epithelial cells. Adenovirus type 2 increased the frequency of 8-azaguanine-resistant colonies by up to ninefold over the spontaneous frequency, depending on expression time and virus dose. PMID:6572280

  5. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Canine Hepatitis and Canine Adenovirus... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing...

  6. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  7. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing...

  8. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  9. New human adenovirus isolated from a renal transplant recipient: description and characterization of candiate adenovirus type 34.

    PubMed Central

    Hierholzer, J C; Atuk, N O; Gwaltney, J M

    1975-01-01

    An antigenically distinct adenovirus is described which was isolated in March 1972 from the urine of a 17-year-old Caucasian male who was experiencing fever after receiving a kidney transplant from a cadaver in February. The adenovirus could not be isolated in April from a pharyngeal swab which yielded cytomegalovirus. Complement-fixation, hemagglutination-inhibition, and/or serum-neutralization tests on sequential serum specimens from the patient confirmed that the adenovirus infection occurred during March and showed that infections with cytomegalovirus and respiratory syncytial virus also occurred during late March and April. The patient's persistent fever, for which other causes could not be found, may have been associated with one or more of these infections. Upper respiratory symptoms and lung involvement were not found during this period. Mild liver dysfunction during this time could not be clearly related to adenovirus infection because of the presence of multiple other causes. The adenovirus may have been latent in the donor kidney and become active in the new host as a consequence of immunological impairment. The adenovirus, purified by terminal dilution and plaque procedures, has antigenic, morphological, biophysical, host susceptibility, and hemagglutinating properties characteristic of adenovirus group IA. Buoyant densities in CsCl are 1.340 g/ml for the virion, 1.304 g/ml for the group CF antigen (hexon), 1.295 g/ml for the major soluble complete hemagglutinin (dodecon), and 1.206 g/ml for the minor soluble complete hemagglutinin (tentatively, fiber dimer). The virus does not cross-react in reciprocal hemagglutination-inhibition and serum-neutralization tests with antisera to adenovirus types 1 to 33. We propose this virus as candidate adenovirus type 34 (Compton). Images PMID:170313

  10. Adenovirus type 3 pneumonia causing lung damage in childhood.

    PubMed Central

    Herbert, F. A.; Wilkinson, D.; Burchak, E.; Morgante, O.

    1977-01-01

    An outbreak of adenovirus type 3 infection occurred in a hospital in 19 North American Indian infants and young children who were being treated for unrelated problems. Pneumonia occurred in 14 and was usually severe, with persistent signs of airway obstruction. Eleven of the 14 were followed periodically and complete medical reviews were conducted 8 to 10 years later. Ten had abnormal chest radiographs, and bronchography revealed bronchiectasis and minor airways changes in seven. In three cases there was clear evidence that these changes were directly related to the adenovirus type 3 infection. Pulmonary function studies showed a combination of restrictive and obstructive changes with minimal hypoxemia in most. Despite the presence of a persistent productive cough all were able to carry on a relatively normal life. Images FIG. 1 FIG. 2 FIG. 3 PMID:189889

  11. Adenovirus hexon modifications influence in vitro properties of pseudotyped human adenovirus type 5 vectors.

    PubMed

    Solanki, Manish; Zhang, Wenli; Jing, Liu; Ehrhardt, Anja

    2016-01-01

    Commonly used human adenovirus (HAdV)-5-based vectors are restricted by their tropism and pre-existing immunity. Here, we characterized novel HAdV-5 vectors pseudotyped with hypervariable regions (HVRs) and surface domains (SDs) of other HAdV types. Hexon-modified HAdV-5 vectors (HV-HVR5, HV-HVR12, HV-SD12 and HV-SD4) could be reconstituted and amplified in human embryonic kidney cells. After infection of various cell lines, we measured transgene expression levels by performing luciferase reporter assays or coagulation factor IX (FIX) ELISA. Dose-dependent studies revealed that luciferase expression levels were comparable for HV-HVR5, HV-SD12 and HV-SD4, whereas HV-HVR12 expression levels were significantly lower. Vector genome copy numbers (VCNs) from genomic DNA and nuclear extracts were then determined by quantitative real-time PCR. Surprisingly, determination of cell- and nuclear fraction-associated VCNs revealed increased VCNs for HV-HVR12 compared with HV-SD12 and HV-HVR5. Increased nuclear fraction-associated HV-HVR12 DNA molecules and decreased transgene expression levels were independent of the cell line used, and we observed the same effect for a hexon-modified high-capacity adenoviral vector encoding canine FIX. In conclusion, studying hexon-modified adenoviruses in vitro demonstrated that HVRs but also flanking hexon regions influence uptake and transgene expression of adenoviral vectors. PMID:26519158

  12. Canine adenovirus type 1 in a fennec fox (Vulpes zerda).

    PubMed

    Choi, Jeong-Won; Lee, Hyun-Kyoung; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Kyoung-Ki; Lee, Myoung-Heon; Oem, Jae-Ku

    2014-12-01

    A 10-mo-old female fennec fox (Vulpes zerda) with drooling suddenly died and was examined postmortem. Histologic examination of different tissue samples was performed. Vacuolar degeneration and diffuse fatty change were observed in the liver. Several diagnostic methods were used to screen for canine parvovirus, canine distemper virus, canine influenza virus, canine coronavirus, canine parainfluenza virus, and canine adenovirus (CAdV). Only CAdV type 1 (CAdV-1) was detected in several organs (liver, lung, brain, kidney, spleen, and heart), and other viruses were not found. CAdV-1 was confirmed by virus isolation and nucleotide sequencing. PMID:25632689

  13. Acute respiratory distress syndrome in adenovirus type 4 pneumonia: A case report.

    PubMed

    Narra, R; Bono, P; Zoccoli, A; Orlandi, A; Piconi, S; Grasselli, G; Crotti, S; Girello, A; Piralla, A; Baldanti, F; Lunghi, G

    2016-08-01

    Human adenoviruses (HAdVs) cause a wide spectrum of clinical syndromes, depending on species and types, from mild respiratory infections to deadly pneumonia: in particular, severe infections occur in immunocompromised patients. In this report, we describe the case of a 36 years-old woman admitted to our intensive care unit (ICU) with severe respiratory distress syndrome caused by adenovirus pneumonia, that required invasive respiratory support (mechanical ventilation and extracorporeal membrane oxygenation). Molecular assays detected the virus in respiratory and plasma specimen and sequencing procedure identified HAdV type 4. Patient improved after cidofovir administration. Leukopenia and subsequent bacterial infection occurred, but the patient recovered completely and was discharged from the hospital after 54days. PMID:27354307

  14. Functional Heterogeneity of Virions in Human Adenovirus Types 2 and 12

    PubMed Central

    Rainbow, Andrew J.; Mak, Stanley

    1970-01-01

    Purified preparations of adenovirus types 2 and 12 were used to infect KB cells at different input multiplicities. The resulting infected cultures were scored for inclusion body formation, production of infectious centers, and cloning efficiency. Both preparations were found to contain some defective particles capable of preventing a cell from cloning but unable to induce inclusion bodies or form plaques. The proportion of such defective particles in adenovirus 12 was about 10 times that in adenovirus 2. At high input multiplicities, the percentage of cells displaying an inclusion body was less than that predicted by the Poisson distribution and reached a maximum of 40 to 60% for adenovirus 2 and 12 to 15% for adenovirus 12. This reduction may be due to interference by large numbers of non-plaque-producing particles infecting each cell. The per cent of cells forming infectious centers was substantially greater for adenovirus 2 than for adenovirus 12 when compared at the same input plaque-forming units, reaching a maximum of 35 to 73% for adenovirus 2 and 5 to 10% for adenovirus 12. The low value for adenovirus 12 may be a result of the same interference phenomenon. Images PMID:4194167

  15. Adenovirus Type 7 Pneumonia in Children Who Died from Measles-Associated Pneumonia, Hanoi, Vietnam, 2014

    PubMed Central

    Hai, Le Thanh; Thach, Hoang Ngoc; Tuan, Ta Anh; Nam, Dao Huu; Dien, Tran Minh; Sato, Yuko; Kumasaka, Toshio; Suzuki, Tadaki; Hanaoka, Nozomu; Fujimoto, Tsuguto; Katano, Harutaka; Hasegawa, Hideki; Kawachi, Shoji

    2016-01-01

    During a 2014 measles outbreak in Vietnam, postmortem pathologic examination of hospitalized children who died showed that adenovirus type 7 pneumonia was a contributory cause of death in children with measles-associated immune suppression. Adenovirus type 7 pneumonia should be recognized as a major cause of secondary infection after measles. PMID:26926035

  16. Adenovirus Type 7 Genomic-Type Variant, New York City, 1999

    PubMed Central

    Erdman, Dean D.; Ackelsberg, Joel; Cato, Stephen William; Deutsch, Vicki-Jo; Lechich, Anthony John; Schofield, Barbara Susan

    2004-01-01

    An outbreak of respiratory illness occurred in a long-term care facility in New York City. Investigation of the outbreak identified confirmed or suspected adenoviral infection in 84% of the residents from October 19 to December 18, 1999. Further identification by type-specific neutralization and restriction analysis identified a new genomic variant of adenovirus type 7. PMID:15078614

  17. PREPARATION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES TO ENTERIC ADENOVIRUS TYPES 40 AND 41

    EPA Science Inventory

    The authors have prepared monoclonal antibodies to each of the enteric adenoviruses types 40 and 41. Three different hybridoma cell lines were selected which produced antibody found to react by radioimmunoprecipitation with adenovirus (Ad) hexon antigens. One was specific for Ad4...

  18. Intermediates in the Synthesis of Type 2 Adenovirus Deoxyribonucleic Acid

    PubMed Central

    Horwitz, Marshall S.

    1971-01-01

    Intermediates in the synthesis of adenovirus type 2 deoxyribonucleic acid (DNA) were studied in HeLa cells. Pieces of DNA smaller than the viral genome were demonstrated after labeling with 3H-thymidine for 10 to 240 sec. Intermediates as small as the Okazaki fragments (8 to 10S) do not predominate at any of the above times. No detectable addition of nucleotides to parental genome could be shown, nor was there any breakdown of recently synthesized viral DNA. The DNA intermediates were of viral origin for they hybridized to viral DNA and were made at a stage of the cell cycle (G2) when host DNA is not synthesized. PMID:5132696

  19. Safety evaluation of adenovirus type 4 and type 7 vaccine live, oral in military recruits.

    PubMed

    Choudhry, Azhar; Mathena, Julie; Albano, Jessica D; Yacovone, Margaret; Collins, Limone

    2016-08-31

    Before the widespread adoption of vaccination, adenovirus type 4 and type 7 were long associated with respiratory illnesses among military recruits. When supplies were depleted and vaccination was suspended in 1999 for approximately a decade, respiratory illnesses due to adenovirus infections resurged. In March 2011, a new live, oral adenovirus vaccine was licensed by the US Food and Drug Administration and was first universally administered to military recruits in October 2011, leading to rapid, dramatic elimination of the disease within a few months. As part of licensure, a postmarketing study (Sentinel Surveillance Plan) was performed to detect potential safety signals within 42days after immunization of military recruits. This study retrospectively evaluated possible adverse events related to vaccination using data from the Armed Forces Health Surveillance Branch Defense Medical Surveillance System (DMSS) database. Among 100,000 recruits who received the adenovirus vaccine, no statistically significant greater risk of prespecified medical events was observed within 42days after vaccination when compared with a historical cohort of 100,000 unvaccinated recruits. In an initial statistical analysis of International Classification of Disease, 9th Revision, Clinical Modification codes, a statistically significant higher risk for 19 other (not prespecified) medical events occurring in 5 or more recruits was observed among vaccinated compared with unvaccinated groups. After case record data abstraction for attribution and validation, two events (psoriasis [21 vs 7 cases] and serum reactions [12 vs 4 cases]) occurred more frequently in the vaccinated cohort. A causal relation of these rare events with adenovirus vaccination could not be established given confounding factors in the DMSS, such as coadministration of other vaccines and incomplete or inaccurate medical information, for some recruits. Prospective surveillance assessing these uncommon, but potentially

  20. Adenovirus vectors targeting distinct cell types in the retina.

    PubMed

    Sweigard, J Harry; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2010-04-01

    Purpose. Gene therapy for a number of retinal diseases necessitates efficient transduction of photoreceptor cells. Whereas adenovirus (Ad) serotype 5 (Ad5) does not transduce photoreceptors efficiently, previous studies have demonstrated improved photoreceptor transduction by Ad5 pseudotyped with Ad35 (Ad5/F35) or Ad37 (Ad5/F37) fiber or by the deletion of the RGD domain in the Ad5 penton base (Ad5DeltaRGD). However, each of these constructs contained a different transgene cassette, preventing the evaluation of the relative performance of these vectors, an important consideration before the use of these vectors in the clinic. The aim of this study was to evaluate these vectors in the retina and to attempt photoreceptor-specific transgene expression. Methods. Three Ad5-based vectors containing the same expression cassette were generated and injected into the subretinal space of adult mice. Eyes were analyzed for green fluorescence protein expression in flat-mounts, cross-sections, quantitative RT-PCR, and a modified stereological technique. A 257-bp fragment derived from the mouse opsin promoter was analyzed in the context of photoreceptor-specific transgene expression. Results. Each virus tested efficiently transduced the retinal pigment epithelium. The authors found no evidence that Ad5/F35 or Ad5/F37 transduced photoreceptors. Instead, they found that Ad5/F37 transduced Müller cells. Robust photoreceptor transduction by Ad5DeltaRGD was detected. Photoreceptor-specific transgene expression from the 257-bp mouse opsin promoter in the context of Ad5DeltaRGD vectors was found. Conclusions. Adenovirus vectors may be designed with tropism to distinct cell populations. Robust photoreceptor-specific transgene expression can be achieved in the context of Ad5DeltaRGD vectors. PMID:19892875

  1. Adenovirus type 2 expresses fiber in monkey-human hybrids and reconstructed cells

    SciTech Connect

    Zorn, G.A.; Anderson, C.W.

    1981-02-01

    Adenovirus type 2 protein expression was measured by indirect immunofluorescence in monkey-human hybrids and in cells reconstructed from monkey and human cell karyoplasts and cytoplasts. Monkey-human hybrid clones infected with adenovirus type 2 expressed fiber protein, whereas infected monkey cells alone did not. Hybrids constructed after the parental monkey cells were infected with adenovirus type 2 demonstrated that fiber synthesis in these cells could be rescued by fusion to uninfected human cells. Thus, human cells contain a dominant factor that acts in trans and overcomes the inability of monkey cells to synthesize fiber. These results are consistent with the hypothesis that the block to adenovirus replication in monkey cells involves a nuclear event that prevents the formation of functional mRNA for some late viral proteins including fiber polypeptide.

  2. Adenovirus Type 2-Simian Virus 40 Hybrid Population: Evidence for a Hybrid Deoxyribonucleic Acid Molecule and the Absence of Adenovirus-Encapsidated Circular Simian Virus 40 Deoxyribonucleic Acid

    PubMed Central

    Crumpacker, Clyde S.; Levin, Myron J.; Wiese, William H.; Lewis, Andrew M.; Rowe, Wallace P.

    1970-01-01

    The deoxyribonucleic acid (DNA) from the adenovirus-encapsidated particles of the adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid population plaque variant (Ad2++ HEY), known to yield SV40 virus with high efficiency, was studied by equilibrium density centrifugation followed by ribonucleic acid-DNA hybridization employing virus-specific complementary ribonucleic acids synthesized in vitro. These techniques establish linkage between the Ad2 and SV40 components in the adenovirus-encapsidated particles of this population. The linkage is alkali-resistant and presumably covalent; thus, the Ad2 DNA and SV40 DNA are present in a hybrid molecule. Velocity centrifugation studies in alkaline sucrose gradients eliminated the possibility that supercoiled circular SV40 DNA is present in the adenovirus capsids. The DNA obtained from the adenovirus-encapsidated particles of the Ad2++ HEY population appears to consist of nonhybrid Ad2 DNA and Ad2-SV40 hybrid DNA molecules. PMID:4322081

  3. Adenovirus type 2 terminal protein: purification and comparison of tryptic peptides with known adenovirus-coded proteins.

    PubMed Central

    Harter, M L; Lewis, J B; Anderson, C W

    1979-01-01

    The protein covalently bound to the 5' termini of adenovirus type 2 DNA has been purified from virus labeled with [35S]methionine, using exclusion chromatography of disrupted virions to isolate the DNA-protein complex, which is then digested with DNase. The terminal protein isolated from mature virus is most effectively labeled if the cells are exposed to [35S]methionine during the "intermediate" period of 13 to 21 h postinfection, suggesting that the protein is synthesized during this interval. The tryptic peptides of the terminal protein were compared with those of several known adenovirus-coded proteins and found to be unrelated. In particular, the terminal protein is not related to the 38-50K early proteins encoded by the leftmost 4.4% of the adenovirus genome, one region essential for the transforming activity of the virus. Neither is it related to the 72K single-strand-specific DNA binding protein, the minor virion component IVa2, or the major capsid component hexon. Images PMID:513195

  4. Adenovirus type 2 encoded early 11 kDa protein

    SciTech Connect

    Murthy, S.V.K.N.; Kapoor, Q.S.

    1986-05-01

    Several adenovirus type 2 (Ad2) encoded early proteins have been identified in viral infected human KB cells. These proteins are of great interest as they play key roles in cell transformation, viral DNA synthesis and gene expression. They have partially purified an AD2 encoded early polypeptide of an apparent molecular weight of 11 kilodaltons from the nuclei of viral infected cells labelled with /sup 35/S-methionine. After DNA removal from the nuclear extracts, the polypeptide was isolated using DEAE-Sephacel anion exchange and Biogel P-10 gel filtration columns. This simple two step procedure yielded several fold purification of the polypeptide. Antisera raised in mice against an Ad2 transformed rat cell line 8617 was found to immunoprecipitate the 11 kDa polypeptide from the nuclear extract of Ad2 infected KB cells. After relating this protein to an open reading frame of an Ad2 early gene block by matching the amino acid sequences to the nucleotide sequences of early genes, they plan to functionally characterize this protein by using monoclonal antibodies in in vivo and in vitro experiments.

  5. EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene

    PubMed Central

    Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine

    2013-01-01

    We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032

  6. Biosynthesis of adenovirus type 2 i-leader protein.

    PubMed Central

    Symington, J S; Lucher, L A; Brackmann, K H; Virtanen, A; Pettersson, U; Green, M

    1986-01-01

    The i-leader is a 440-base-pair sequence located between 21.8 and 23.0 map units on the adenovirus type 2 genome and is spliced between the second and third segments of the major tripartite leader in certain viral mRNA molecules. The i-leader contains an open translational reading frame for a hypothetical protein of Mr about 16,600, and a 16,000-Mr polypeptide (16K protein) has been translated in vitro on mRNA selected with DNA containing the i-leader (A. Virtanen, P. Aleström, H. Persson, M. G. Katze, and U. Pettersson, Nucleic Acids Res. 10:2539-2548, 1982). To determine whether the i-leader protein is synthesized during productive infection and to provide an immunological reagent to study the properties and functions of the i-leader protein, we prepared antipeptide antibodies directed to a 16-amino acid synthetic peptide which is encoded near the N terminus of the hypothetical i-leader protein and contains a high acidic amino acid and proline content. Antipeptide antibodies immunoprecipitated from extracts of adenovirus type 2-infected cells a major 16K protein that comigrated with a 16K protein translated in vitro. Partial N-terminal amino acid sequence analysis by Edman degradation of radiolabeled 16K antigen showed that methionine is present at residue 1 and leucine is present at residues 8 and 10, as predicted from the DNA sequence, establishing that the 16K protein precipitated by this antibody is indeed the i-leader protein. Thus, the i-leader protein is a prominent species that is synthesized during productive infection. The i-leader protein is often seen as a doublet on polyacrylamide gels, suggesting that either two related forms of i-leader protein are synthesized in infected cells or that a posttranslational modification occurs. Time course studies using immunoprecipitation analysis with antipeptide antibodies revealed that the E1A 289R T antigen and the E1B-19K (175R) T antigen are synthesized beginning at 2 to 3 and 4 to 5 h postinfection

  7. Adenovirus type 5 interactions with human blood cells may compromise systemic delivery.

    PubMed

    Lyons, Mark; Onion, David; Green, Nicky K; Aslan, Kriss; Rajaratnam, Ratna; Bazan-Peregrino, Miriam; Phipps, Sue; Hale, Sarah; Mautner, Vivien; Seymour, Leonard W; Fisher, Kerry D

    2006-07-01

    Intravenous delivery of adenovirus vectors requires that the virus is not inactivated in the bloodstream. Serum neutralizing activity is well documented, but we show here that type 5 adenovirus also interacts with human blood cells. Over 90% of a typical virus dose binds to human (but not murine) erythrocytes ex vivo, and samples from a patient administered adenovirus in a clinical trial showed that over 98% of viral DNA in the blood was cell associated. In contrast, nearly all viral genomes in the murine bloodstream are free in the plasma. Adenovirus bound to human blood cells fails to infect A549 lung carcinoma cells, although dilution to below 1.7 x 10(7) blood cells/ml relieves this inhibition. Addition of blood cells can prevent infection by adenovirus that has been prebound to A549 cells. Adenovirus also associates with human neutrophils and monocytes ex vivo, particularly in the presence of autologous plasma, giving dose-dependent transgene expression in CD14-positive monocytes. Finally, although plasma with a high neutralizing titer (defined on A549 cells) inhibits monocyte infection, weakly neutralizing plasma can actually enhance monocyte transduction. This may increase antigen presentation following intravenous injection, while blood cell binding may both decrease access of the virus to extravascular targets and inhibit infection of cells to which the virus does gain access. PMID:16580883

  8. Human adenovirus type 8 epidemic keratoconjunctivitis with large corneal epithelial full-layer detachment: an endemic outbreak with uncommon manifestations

    PubMed Central

    Lee, Yueh-Chang; Chen, Nancy; Huang, I-Tsong; Yang, Hui-Hua; Huang, Chin-Te; Chen, Li-Kuang; Sheu, Min-Muh

    2015-01-01

    Epidemic viral conjunctivitis is a highly contagious disease that is encountered year-round. The causative agents are mainly adenoviruses and enteroviruses. It occurs most commonly upon infection with subgroup D adenoviruses of types 8, 19, or 37. For common corneal involvement of human adenovirus type 8 epidemic keratoconjunctivitis, full-layer epithelial detachment is rarely seen. Herein, we report three cases of epidemic keratoconjunctivitis during an outbreak which manifested as large corneal epithelial full-layer detachment within a few days. The lesions healed without severe sequelae under proper treatment. The unique manifestation of this outbreak may indicate the evolution of human adenovirus type 8. PMID:26060391

  9. Chlorine Inactivation of Adenovirus Type 40 and Feline Calicivirus

    PubMed Central

    Thurston-Enriquez, Jeanette A.; Haas, Charles N.; Jacangelo, Joseph; Gerba, Charles P.

    2003-01-01

    Ct values, the concentration of free chlorine multiplied by time of contact with virus, were determined for free-chlorine inactivation experiments carried out with chloroform-extracted (dispersed) and non-chloroform-extracted (aggregated) feline calicivirus (FCV), adenovirus type 40 (AD40), and polio virus type 1 (PV-1). Experiments were carried out with high and low pH and temperature conditions. Ct values were calculated directly from bench-scale free-chlorine inactivation experiments and from application of the efficiency factor Hom model. For each experimental condition, Ct values were higher at pH 8 than at pH 6, higher at 5°C than at 15°C, and higher for dispersed AD40 (dAD40) than for dispersed FCV (dFCV). dFCV and dAD40 were more sensitive to free chlorine than dispersed PV-1 (dPV-1). Cts for 2 log inactivation of aggregated FCV (aFCV) and aggregated PV-1 (aPV-1) were 31.0 and 2.8 orders of magnitude higher than those calculated from experiments carried out with dispersed virus. Cts for 2 log inactivation of dFCV and dAD40 in treated groundwater at 15°C were 1.2 and 13.7 times greater than in buffered-demand-free (BDF) water experiments at 5°C. Ct values listed in the U.S. Environmental Protection Agency (EPA) Guidance Manual were close to, or lower than, Ct values generated for experiments conducted with dispersed and aggregated viruses suspended in BDF water and for dispersed viruses suspended in treated groundwater. Since the state of viruses in water is most likely to be aggregated and associated with organic or inorganic matter, reevaluation of the EPA Guidance Manual Ct values is necessary, since they would not be useful for ensuring inactivation of viruses in these states. Under the tested conditions, dAD40, dFCV, aFCV, dPV-1, and aPV-1 particles would be inactivated by commonly used free chlorine concentrations (1 mg/liter) and contact times (60 to 237 min) applied for drinking water treatment in the United States. PMID:12839771

  10. Simultaneous detection of astrovirus, rotavirus, reovirus and adenovirus type I in broiler chicken flocks.

    PubMed

    Roussan, D A; Shaheen, I A; Khawaldeh, G Y; Totanji, W S; Al-Rifai, R H

    2012-01-01

    Enteric diseases cause substantial economic losses to the poultry industry. Astroviruses, rotaviruses, reoviruses, and adenovirus type 1 have been reported as a significant cause of intestinal symptoms in poultry. In the present study, intestinal samples from 70 commercial broiler chicken flocks were examined for the presence of astroviruses, rotavirus, and reovirus by reverse transcription-polymerase chain reaction, and for the presence of group I adenovirus by polymerase chain reaction. Astroviruses were identified in 38.6% of samples tested. Both avian nephritis virus and chicken astrovirus were identified in the astrovirus positive flocks, where 74.1% of these flocks were positive for only one type of astrovirus, whereas, 25.9% of these flocks were positive for both types of astrovirus. Reoviruses, rotaviruses, and adenoviruses were identified in 21.4, 18.6, and 14.3% of these flocks, respectively. Concomitant infection with two or more viruses in the same flock were also prominent, where 5.7, 5.7, 2.9, 2.9, 1.4, and 1.4% of these flocks were positive with both astrovirus and rotavirus; astrovirus and adenovirus; astrovirus and reovirus; rotavirus and adenovirus; rotavirus and reovirus; and reovirus and adenovirus respectively. Moreover, 4.3 and 2.7% of these flocks were positive for astrovirus, reovirus, and adenovirus; and astrovirus, reovirus, and rotavirus, respectively. Further studies will focus on identifying specific viral factors or subtypes/subgroups associated with disease through pathogenesis studies, economic losses caused by infections and co-infections of these pathogens, and the costs and benefits of countermeasures. PMID:22844713

  11. Identification and Application of Neutralizing Epitopes of Human Adenovirus Type 55 Hexon Protein

    PubMed Central

    Tian, Xingui; Ma, Qiang; Jiang, Zaixue; Huang, Junfeng; Liu, Qian; Lu, Xiaomei; Luo, Qingming; Zhou, Rong

    2015-01-01

    Human adenovirus type 55 (HAdV55) is a newly identified re-emergent acute respiratory disease (ARD) pathogen with a proposed recombination of hexon gene between HAdV11 and HAdV14 strains. The identification of the neutralizing epitopes is important for the surveillance and vaccine development against HAdV55 infection. In this study, four type-specific epitope peptides of HAdV55 hexon protein, A55R1 (residues 138 to 152), A55R2 (residues 179 to 187), A55R4 (residues 247 to 259) and A55R7 (residues 429 to 443), were predicted by multiple sequence alignment and homology modeling methods, and then confirmed with synthetic peptides by enzyme-linked immunosorbent assay (ELISA) and neutralization tests (NT). Finally, the A55R2 was incorporated into human adenoviruses 3 (HAdV3) and a chimeric adenovirus rAd3A55R2 was successfully obtained. The chimeric rAd3A55R2 could induce neutralizing antibodies against both HAdV3 and HAdV55. This current study will contribute to the development of novel adenovirus vaccine candidate and adenovirus structural analysis. PMID:26516903

  12. Adenovirus type 7 associated with severe and fatal acute lower respiratory infections in Argentine children

    PubMed Central

    Carballal, Guadalupe; Videla, Cristina; Misirlian, Alicia; Requeijo, Paula V; Aguilar, María del Carmen

    2002-01-01

    Background Adenoviruses are the second most prevalent cause of acute lower respiratory infection of viral origin in children under four years of age in Buenos Aires, Argentina. The purpose of this study was to analyze the clinical features and outcome of acute lower respiratory infection associated with different adenovirus genotypes in children. Methods Twenty-four cases of acute lower respiratory infection and adenovirus diagnosis reported in a pediatric unit during a two-year period were retrospectively reviewed. Adenovirus was detected by antigen detection and isolation in HEp-2 cells. Adenovirus DNA from 17 isolates was studied by restriction enzyme analysis with Bam HI and Sma I. Results Subgenus b was found in 82.3% of the cases, and subgenus c in 17.7%. Within subgenus b, only genotype 7 was detected, with genomic variant 7h in 85.7% (12/14) and genomic variant 7i in 14.3% (2/14). Mean age was 8.8 ±; 6 months, and male to female ratio was 3.8: 1. At admission, pneumonia was observed in 71% of the cases and bronchiolitis in 29%. Malnutrition occurred in 37% of the cases; tachypnea in 79%; chest indrawing in 66%; wheezing in 58%; apneas in 16%; and conjunctivitis in 29%. Blood cultures for bacteria and antigen detection of other respiratory viruses were negative. During hospitalization, fatality rate was 16.7% (4 /24). Of the patients who died, three had Ad 7h and one Ad 7i. Thus, fatality rate for adenovirus type 7 reached 28.6% (4/14). Conclusions These results show the predominance of adenovirus 7 and high lethality associated with the genomic variants 7h and 7i in children hospitalized with acute lower respiratory infection. PMID:12184818

  13. Reference equine antisera to 33 human adenovirus types: homologous and heterologous titers.

    PubMed Central

    Hierholzer, J C; Gamble, W C; Dowdle, W R

    1975-01-01

    Equine antisera to human adenovirus types 1 to 33 were prepared and evaluated by hemagglutination-inhibition and serum neutralization tests. Detailed data on the potency and purity of the immunizing antigens were tabulated as one means of evaluating the antisera. Most of the 52 hemagglutination-inhibition and 25 serum neutralization major or minor heterotypic responses among the equine antisera were observed at similar levels in previous studies with rabbit antisera and appeared to represent genuine antigenic relationships among the human adenoviruses. Equine antisera to human adenoviruses 1 to 33 and a similarly packaged normal horse serum served as lots of fully tested sera for definitive typing of isolates and as reference standards for evaluating other antisera. PMID:1236869

  14. Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli.

    PubMed Central

    Henry, L J; Xia, D; Wilke, M E; Deisenhofer, J; Gerard, R D

    1994-01-01

    The adenovirus fiber protein is used for attachment of the virus to a specific receptor on the cell surface. Structurally, the protein consists of a long, thin shaft that protrudes from the vertex of the virus capsid and terminates in a globular domain termed the knob. To verify that the knob is the domain which interacts with the cellular receptor, we have cloned and expressed the knob from adenovirus type 5 together with a single repeat of the shaft in Escherichia coli. The protein was purified by conventional chromatography and functionally characterized for its interaction with the adenovirus receptor. The recombinant knob domain bound about 4,700 sites per HeLa cell with an affinity of 3 x 10(9) M-1 and blocked adenovirus infection of human cells. Antibodies raised against the knob also blocked virus infection. By gel filtration and X-ray diffraction analysis of protein crystals, the knob was shown to consist of a homotrimer of 21-kDa subunits. The results confirm that the trimeric knob is the ligand for attachment to the adenovirus receptor. Images PMID:8035520

  15. Permissive growth of human adenovirus type 4 vaccine strain-based vector in porcine cell lines.

    PubMed

    Gao, Dong-Sheng; Li, Xiao-Jing; Wan, Wen-Yan; Li, Hong-Jie; Wang, Xiao-Xue; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-02-01

    In recent years, there has been considerable interest in using adenoviruses as live vectors to develop recombinant vaccines. Previous studies have demonstrated the safety and effectiveness of HIV/SIV and influenza vaccine candidates based on human adenovirus type 4 (Ad4) replication-competent vectors in rhesus macaque and human model. To explore the possibility of human Ad4 vaccine strain used as a vector in developing porcine vaccines, the growth properties of replication-competent human Ad4 vaccine strain recombinant encoding EGFP in different porcine cell lines were investigated. All tested cell lines are permissive for Ad4 vaccine strain vector with varied replication efficiency. Thus, human Ad4 based vectors would be promising supplement to adenovirus vectors as a delivery vehicle for recombinant vaccines in swine industry. PMID:26850542

  16. Initial assessment of impact of adenovirus type 4 and type 7 vaccine on febrile respiratory illness and virus transmission in military basic trainees, March 2012.

    PubMed

    Hoke, Charles H; Hawksworth, Anthony; Snyder, Clifford E

    2012-03-01

    After a 12-year hiatus, military recruit training centers resumed administration of adenovirus type 4 and type 7 vaccine, live, oral (adenovirus vaccine) to trainees beginning in October of 2011. Subsequently, rates of febrile respiratory illnesses (FRI) and adenovirus isolations markedly declined. These findings are consistent with those of a placebo-controlled efficacy trial conducted prior to the vaccine's licensure by the U.S. Food and Drug Administration. Continued surveillance will clarify the longer term impact of vaccine use. PMID:22452712

  17. Synthesis of type 2 Adenovirus DNA in the Presence of Cycloheximide

    PubMed Central

    Horwitz, Marshall S.; Brayton, Carol; Baum, Stephen G.

    1973-01-01

    Adenovirus type 2 DNA synthesis, either in permissive human cells or nonpermissive monkey cells, becomes independent of protein synthesis after the appearance of progeny viral DNA. In the presence of cycloheximide, semiconservative replication and initiation of progeny molecules can occur. PMID:4349494

  18. Disruption of Adenovirus Type 7 by Lithium Iodide Resulting in the Release of Viral Deoxyribonucleic Acid

    PubMed Central

    Neurath, A. Robert; Stasny, John T.; Rubin, Benjamin A.

    1970-01-01

    Adenovirus type 7 exposed to solutions of LiI was progressively converted into slower sedimenting deoxyribonucleic acid (DNA)-containing particles, and, ultimately, under proper conditions, DNA free or almost free from protein was released from the virus. The degree of viral degradation was dependent on the time of treatment, on the temperature, and on the concentration of the reagent. PMID:4988267

  19. Human adenovirus type 7 outbreak in Police Training Center, Malaysia, 2011.

    PubMed

    Yusof, Mohd Apandi; Rashid, Tengku Rogayah Tengku Abdul; Thayan, Ravindran; Othman, Khairul Azuan; Hasan, Norhasnida Abu; Adnan, Norfaezah; Saat, Zainah

    2012-05-01

    In March 2011, an outbreak of acute respiratory disease was reported at the Kuala Lumpur (Malaysia) Police Training Centre. Approximately 100 trainees were hospitalized and 5 were admitted to the intensive care unit. Three of these 5 trainees died. Human adenovirus type 7 was identified as the etiologic agent. PMID:22515984

  20. Replication of type 5 adenovirus promotes middle ear infection by Streptococcus pneumoniae in the chinchilla model of otitis media.

    PubMed

    Murrah, Kyle A; Turner, Roberta L; Pang, Bing; Perez, Antonia C; Reimche, Jennifer L; King, Lauren B; Wren, John; Gandhi, Uma; Swords, W Edward; Ornelles, David A

    2015-03-01

    Adenoviral infection is a major risk factor for otitis media. We hypothesized that adenovirus promotes bacterial ascension into the middle ear through the disruption of normal function in the Eustachian tubes due to inflammation-induced changes. An intranasal infection model of the chinchilla was used to test the ability of type 5 adenovirus to promote middle ear infection by Streptococcus pneumoniae. The hyperinflammatory adenovirus mutant dl327 and the nonreplicating adenovirus mutant H5wt300ΔpTP were used to test the role of inflammation and viral replication, respectively, in promotion of pneumococcal middle ear infection. Precedent infection with adenovirus resulted in a significantly greater incidence of middle ear disease by S. pneumoniae as compared to nonadenovirus infected animals. Infection with the adenovirus mutant dl327 induced a comparable degree of bacterial ascension into the middle ear as did infection with the wild-type virus. By contrast, infection with the nonreplicating adenovirus mutant H5wt300ΔpTP resulted in less extensive middle ear infection compared to the wild-type adenovirus. We conclude that viral replication is necessary for adenoviral-induced pneumococcal middle ear disease. PMID:25251686

  1. Survival of adenovirus types 2 and 41 in surface and ground waters measured by a plaque assay.

    PubMed

    Rigotto, C; Hanley, K; Rochelle, P A; De Leon, R; Barardi, C R M; Yates, M V

    2011-05-01

    To manage artificial recharge systems, it is necessary to understand the inactivation process of microorganisms within aquifers so that requirements regarding storage times and treatment strategies for ground and surface waters can be developed and modeled to improve water management practices. This study was designed to investigate the survival of representative adenoviruses in surface- and groundwaters using a cell culture plaque assay with human lung carcinoma cells (A549) to enumerate surviving viruses. Adenovirus types 2 (Ad2) and 41 (Ad41) were seeded into 50 mL of three sterilized surface waters and groundwaters, and incubated at 10 and 19 °C for up to 301 days. Concentrations of Ad2 and Ad41 were relatively stable in all waters at 10 °C for at least 160 days and in some instances up to 301 days. At 19 °C, virus concentrations were reduced by 99.99% (4 log) after 301 days in surface water. There was approximately 90% (1 log) reduction of both viruses at 19 °C after 160 days of incubation in groundwater samples. There was no overall difference in survival kinetics in surface waters compared to groundwaters. The relatively high stability and long-term survival of adenoviruses in environmental waters at elevated temperatures should be considered in risk assessment models and drinking water management strategies. PMID:21480609

  2. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    PubMed

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-01-01

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo. PMID:24326926

  3. Comparison of 17 genome types of adenovirus type 3 identified among strains recovered from six continents.

    PubMed Central

    Li, Q G; Wadell, G

    1988-01-01

    Restriction endonucleases BamHI, BclI, BglI, BglII, BstEII, EcoRI, HindIII, HpaI, SalI, SmalI, XbalI, and XholI were used to analyze 61 selected strains of adenovirus type 3 (Ad3) isolated from Africa, Asia, Australia, Europe, North America, and South America. It was noted that the use of BamHI, BclI, BglII, HpaI, SalI, and SmaI was sufficient to distinguish 17 genome types; 13 of them were newly identified. All 17 Ad3 genome types could be divided into three genomic clusters. Genome types of Ad3 cluster 1 occurred in Africa, Europe, South America, and North America. Genomic cluster 2 was identified in Africa; genomic cluster 3 was identified in Africa, Asia, Australia, Europe (a few), and North America. This was of interest because 15 identified genome types of Ad7 could also be divided into three genomic clusters. The degree of genetic relatedness between the 17 Ad3 and the 15 Ad7 genome types was analyzed and was expressed in a three-dimensional model. Images PMID:2838500

  4. Transforming Potential of the Adenovirus Type 5 E4orf3 Protein

    PubMed Central

    Nevels, Michael; Täuber, Birgitt; Kremmer, Elisabeth; Spruss, Thilo; Wolf, Hans; Dobner, Thomas

    1999-01-01

    Previous observations that the adenovirus type 5 (Ad5) E4orf6 and E4orf3 gene products have redundant effects in viral lytic infection together with the recent findings that E4orf6 possesses transforming potential prompted us to investigate the effect of E4orf3 expression on the transformation of primary rat cells in combination with adenovirus E1 oncogene products. Our results demonstrate for the first time that E4orf3 can cooperate with adenovirus E1A and E1A plus E1B proteins to transform primary baby rat kidney cells, acting synergistically with E4orf6 in the presence of E1B gene products. Transformed rat cells expressing E4orf3 exhibit morphological alterations, higher growth rates and saturation densities, and increased tumorigenicity compared with transformants expressing E1 proteins only. Consistent with previous results for adenovirus-infected cells, the E4orf3 protein is immunologically restricted to discrete nuclear structures known as PML oncogenic domains (PODs) in transformed rat cells. As opposed to E4orf6, the ability of E4orf3 to promote oncogenic cell growth is probably not linked to a modulation of p53 functions and stability. Instead, our results indicate that the transforming activities of E4orf3 are due to combinatorial effects that involve the binding to the adenovirus 55-kDa E1B protein and the colocalization with PODs independent from interactions with the PML gene product. These data fit well with a model in which the reorganization of PODs may trigger a cascade of processes that cause uncontrolled cell proliferation and neoplastic growth. In sum, our results provide strong evidence for the idea that interactions with PODs by viral proteins are linked to oncogenic transformation. PMID:9882365

  5. A double-regulated oncolytic adenovirus with improved safety for adenocarcinoma therapy

    SciTech Connect

    Wei, Na; Fan, Jun Kai; Gu, Jin Fa; He, Ling Feng; Tang, Wen Hao; Cao, Xin; Liu, Xin Yuan

    2009-10-16

    Safety and efficiency are equally important to be considered in developing oncolytic adenovirus. Previously, we have reported that ZD55, an oncolytic adenovirus with the deletion of E1B-55K gene, exhibited potent antitumor activity. In this study, to improve the safety of ZD55, we utilized MUC1 promoter to replace the native promoter of E1A on the basis of ZD55, and generated a double-regulated adenovirus, named MUD55. Our data demonstrated that the expression of early and late genes of MUD55 was both reduced in MUC1-negative cells, resulting in its stricter glandular-tumor selective progeny production. The cytopathic effect of MUD55 was about 10-fold lower than mono-regulated adenovirus ZD55 or Ad.MUC1 in normal cells and not obviously attenuated in glandular tumor cells. Moreover, MUD55 showed the least liver toxicity when administrated by intravenous injection in nude mice. These results indicate that MUD55 could be a promising candidate for the treatment of adenocarcinoma.

  6. Adenovirus type 5 E1A sensitizes hepatocellular carcinoma cells to gemcitabine.

    PubMed

    Lee, Wei-Ping; Tai, Dar-In; Tsai, Sun-Lung; Yeh, Chau-Ting; Chao, Yee; Lee, Shou-Dong; Hung, Mien-Chie

    2003-10-01

    Hepatocellular carcinoma (HCC) is resistant to conventional chemotherapy. A few clinical trials have shown that the cytidine analogue gemcitabine appears to have antitumor activity for HCC, but the overall survival times remain to be improved. In this study, we examined the synergistic effect of adenovirus type 5 E1A (E1A) and gemcitabine on HCC and found that E1A sensitized J5, J7, Huh7, and HepG2 HCC cells to gemcitabine. To further study the E1A-mediated chemosensitization, we established stable cell lines that expressed the E1A gene and then examined whether E1A could have proapoptotic activity while expressed in HCC cells. Our results clearly showed that E1A sensitized HCC cells to gemcitabine through induction of apoptosis. To study the underlying mechanism, we tested nuclear factor (NF)-kappaB activity and found that NF-kappaB was activated in HCC cells treated with gemcitabine but not in HCC cells that expressed E1A. Occurrence of apoptosis entails cleavage of poly (ADP-ribose) polymerase (PARP), a nuclear protein involved in DNA repair, genome stability, and maintenance of telomere length. Our study showed that gemcitabine enhanced PARP expression. However, E1A did not induce PARP cleavage but rather suppressed PARP expression at the transcriptional level. Further study showed that both NF-kappaB and PARP played protective roles in the prevention of E1A+gemcitabine-induced apoptosis. PMID:14559808

  7. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    PubMed

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers. PMID:26792800

  8. Intranuclear location of the adenovirus type 5 E1B 55-kilodalton protein.

    PubMed Central

    Smiley, J K; Young, M A; Flint, S J

    1990-01-01

    The intracellular location of the adenovirus type 5 E1B 55-kilodalton (kDa) protein, particularly the question of whether it is associated with nuclear pore complexes, was examined. Fractionation of adenovirus type 5-infected HeLa cell nuclei by an established procedure (N. Dwyer and G. Blobel, J. Cell. Biol. 70:581-591, 1976) yielded one population of E1B 55-kDa protein molecules released by digestion of nuclei with RNase A and a second population recovered in the pore complex-lamina fraction. Free and E1B 55-kDa protein-bound forms of the E4 34-kDa protein (P. Sarnow, C. A. Sullivan, and A. J. Levine, Virology 120:387-394, 1982) were largely recovered in the pore complex-lamina fraction. Nevertheless, the association of E1B 55-kDa protein molecules with this nuclear envelope fraction did not depend on interaction of the E1B 55-kDa protein with the E4 34-kDa protein. Comparison of the immunofluorescence patterns observed with antibodies recognizing the E1B 55-kDa protein or cellular pore complex proteins and of the behavior of these viral and cellular proteins during in situ fractionation suggests that the E1B 55-kDa protein does not become intimately or stably associated with pore complexes in adenovirus-infected cells. Images PMID:2143545

  9. RAD51 and BRCA2 enhance oncolytic adenovirus type 5 activity in ovarian cancer

    PubMed Central

    Tookman, Laura A.; Browne, Ashley K.; Connell, Claire M.; Bridge, Gemma; Ingemarsdotter, Carin K.; Dowson, Suzanne; Shibata, Atsushi; Lockley, Michelle; Martin, Sarah A.; McNeish, Iain A.

    2015-01-01

    Homologous Recombination (HR) function is critically important in High Grade Serous Ovarian Cancer (HGSOC). HGSOC with intact HR has a worse prognosis and is less likely to respond to platinum chemotherapy and PARP inhibitors. Oncolytic adenovirus, a novel therapy for human malignancies, stimulates a potent DNA damage response that influences overall anti-tumor activity. Here, the importance of HR was investigated by determining the efficacy of adenovirus type 5 (Ad5) vectors in ovarian cancer. Using matched BRCA2 mutant and wild-type HGSOC cells, it was demonstrated that intact HR function promotes viral DNA replication and augments overall efficacy, without influencing viral DNA processing. These data were confirmed in a wider panel of HR competent and defective ovarian cancer lines. Mechanistically, both BRCA2 and RAD51 localize to viral replication centers within the infected cell nucleus and that RAD51 localization occurs independently of BRCA2. In addition, a direct interaction was identified between RAD51 and adenovirus E2 DNA binding protein. Finally, using functional assays of HR competence, despite inducing degradation of MRE11, Ad5 infection does not alter cellular ability to repair DNA double strand break damage via HR. These data reveal that Ad5 redistributes critical HR components to viral replication centers and enhances cytotoxicity. Implications Oncolytic adenoviral therapy may be most clinically relevant in tumors with intact HR function. PMID:26452665

  10. Verapamil Enhances the Antitumoral Efficacy of Oncolytic Adenoviruses

    PubMed Central

    Gros, Alena; Puig, Cristina; Guedan, Sonia; Rojas, Juan José; Alemany, Ramon; Cascallo, Manel

    2010-01-01

    The therapeutic potential of oncolytic adenoviruses is limited by the rate of adenovirus release. Based on the observation that several viruses induce cell death and progeny release by disrupting intracellular calcium homeostasis, we hypothesized that the alteration in intracellular calcium concentration induced by verapamil could improve the rate of virus release and spread, eventually enhancing the antitumoral activity of oncolytic adenoviruses. Our results indicate that verapamil substantially enhanced the release of adenovirus from a variety of cell types resulting in an improved cell-to-cell spread and cytotoxicity. Furthermore, the combination of the systemic administration of an oncolytic adenovirus (ICOVIR-5) with verapamil in vivo greatly improved its antitumoral activity in two different tumor xenograft models without affecting the selectivity of this virus. Overall, our findings indicate that verapamil provides a new, safe, and versatile way to improve the antitumoral potency of oncolytic adenoviruses in the clinical setting. PMID:20179683

  11. Construction of an adenovirus type 7a E1A- vector.

    PubMed Central

    Abrahamsen, K; Kong, H L; Mastrangeli, A; Brough, D; Lizonova, A; Crystal, R G; Falck-Pedersen, E

    1997-01-01

    A strategy for constructing replication-defective adenovirus vectors from non-subgroup C viruses has been successfully demonstrated with adenovirus type 7 strain a (Ad7a) as the prototype. An E1A-deleted Ad7a reporter virus expressing the chloramphenicol acetyltransferase (CAT) gene from the cytomegalovirus promoter enhancer was constructed with DNA fragments isolated from Ad7a, an Ad7a recombination reporter plasmid, and the 293 cell line. The Ad7a-CAT virus particle transduces A549 cells as efficiently as Ad5-based vectors. Intravenous infections in a murine model indicate that the Ad7a-CAT virus infects a variety of tissues, with maximal levels of CAT gene expression found in the liver. The duration of Ad7a-CAT transgene expression in the liver was maximally maintained 2 weeks postinfection, with a decline to baseline activity by the week 4 postinfection. Ad7a-CAT represents the first example of a non-subgroup C E1A- adenovirus gene transfer vector. PMID:9343264

  12. Multiple proteins bind to VA RNA genes of adenovirus type 2.

    PubMed Central

    Van Dyke, M W; Roeder, R G

    1987-01-01

    Using fractionated HeLa cell nuclear extracts and both nuclease (DNase I) cleavage and chemical cleavage (methidiumpropyl-EDTA X Fe(II) protection methodologies, we demonstrated the presence of three proteins which interacted specifically, yet differentially, with the two VA genes of adenovirus type 2. One, previously identified as transcription initiation factor TFIIIC, bound to a site centered on the transcriptionally essential B-block concensus element of the VAI gene and, with a lower affinity, to the analogous site in the VAII gene. Another, identified as the cellular protein involved in adenovirus replication, nuclear factor I, bound to sites immediately downstream from the two VAI terminators (at approximately +160 and +200). The third, a previously unrecognized VA gene binding protein termed VBP, bound immediately upstream of the B-block element in the VAI gene but showed no binding to VAII. Possible roles for these proteins in VA gene transcription were investigated in in vitro assay systems reconstituted with partially purified transcription factors (RNA polymerase III, TFIIIB, and TFIIIC). Although TFIIIC activity was present predominantly in fractions containing B-block binding activity, there was not complete correspondence between functional and DNA binding activities. The nuclear factor I-like protein had no effect when added to a complete transcription reaction. The presence of VBP appeared to depress the intrinsic ratio of VAI-VAII synthesis, thereby simulating the relative transcription levels observed early in adenovirus infection of HeLa cells. These observations suggest a model, involving both intragenic binding factors (VBP and TFIIIC) and variable template concentrations, for the differential regulation of VA transcription during the course of adenovirus infection. Images PMID:3561405

  13. Genetic organization, size, and complete sequence of early region 3 genes of human adenovirus type 41.

    PubMed Central

    Yeh, H Y; Pieniazek, N; Pieniazek, D; Luftig, R B

    1996-01-01

    The complete nucleotide and predicted amino acid sequences for open reading frames (ORFs) of the human adenovirus type 41 (Ad41) early region 3 (E3) gene have been determined. The sequence of the Ad41 E3 gene (map units 74 to 83.9) consists of 3,373 nucleotides and has one TATA box and two polyadenylation signals (AATAAA). Analysis of the nucleotide sequence reveals that the E3 gene can encode six ORFs, designated RL1 to RL6. These are all expressed at the mRNA level, as determined by reverse transcription-PCR analysis of AD41-infected cell RNA. When compared with known E3 sequences of most other human adenoviruses deposited in GenBank, the sequences of RL1 to RL3 were found to be unique to subgroup F adenoviruses (Ad40 and Ad41). They encode putative proteins of 173 amino acids (19.4 kDa) and 276 amino acids (31.6 kDa) in one reading frame as well as a 59- amino-acid (6.7 kDa) protein in an overlapping reading frame. RL4 encodes a 90-amino-acid protein (10.1 kDa) with 40% homology to the Ad2 E3 10.4-kDa protein, which induces degradation of the epidermal growth factor receptor and functions together with the Ad2 E3 14.5-kDa protein to protect mouse cell lines against lysis. RL5 encodes a protein of 107 amino acid residues (12.3 kDa) and is analogous to the Ad E3 14.5-kDa protein. RL6 codes for a protein of 122 amino acids (14.7 kDa) that is analogous to the Ad2 14.7-kDa protein, which functions to protect Ad-infected cells from tumor necrosis factor-induced cytolysis. This finding of three unique (RL1 to RL3) E3 gene ORFs may explain why subgroup F adenoviruses differ substantially from other human adenoviruses in their host range; i.e., they replicate predominantly in the host's gastrointestinal rather than respiratory tract. A recent phylogenetic study that compared subgroup F Ad40 DNA sequences with representatives of subgroups B (Ad3), C (Ad2), and E (Ad4) reached a similar conclusion about the uniqueness of RL1 and RL2. PMID:8642703

  14. Epithelial Junction Opener Improves Oncolytic Adenovirus Therapy in Mouse Tumor Models.

    PubMed

    Yumul, Roma; Richter, Maximilian; Lu, Zhuo-Zhuang; Saydaminova, Kamola; Wang, Hongjie; Wang, Chung-Huei Katherine; Carter, Darrick; Lieber, André

    2016-04-01

    A central resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. Human adenoviruses (Ads) have evolved mechanisms to breach epithelial barriers. For example, during Ad serotype 3 (Ad3) infection of epithelial tumor cells, massive amounts of subviral penton-dodecahedral particles (PtDd) are produced and released from infected cells to trigger the transient opening of epithelial junctions, thus facilitating lateral virus spread. We show here that an Ad3 mutant that is disabled for PtDd production is significantly less effective in killing of epithelial human xenograft tumors than the wild-type Ad3 virus. Intratumoral spread and therapeutic effect of the Ad3 mutant was enhanced by co-administration of a small recombinant protein (JO; produced in Escherichia coli) that incorporated the minimal junction opening domains of PtDd. We then demonstrated that co-administration of JO with replication-competent Ads that do not produce PtDd (Ad5, Ad35) resulted in greater attenuation of tumor growth than virus injection alone. Furthermore, we genetically modified a conditionally replicating Ad5-based oncolytic Ad (Ad5Δ24) to express a secreted form of JO upon replication in tumor cells. The JO-expressing virus had a significantly greater antitumor effect than the unmodified AdΔ24 version. Our findings indicate that epithelial junctions limit the efficacy of oncolytic Ads and that this problem can be address by co-injection or expression of JO. JO has also the potential for improving cancer therapy with other types of oncolytic viruses. PMID:26993072

  15. Adenovirus type 35, but not type 5, stimulates NK cell activation via plasmacytoid dendritic cells and TLR9 signaling.

    PubMed

    Pahl, Jens H W; Verhoeven, Dirk H J; Kwappenberg, Kitty M C; Vellinga, Jort; Lankester, Arjan C; van Tol, Maarten J D; Schilham, Marco W

    2012-05-01

    In hematopoietic stem cell transplant (HSCT) recipients, disseminated adenoviral infections during the first two months after HSCT can lead to severe complications and fatal outcome. Since NK cells are usually the first lymphocytes to reconstitute after HSCT and have been implicated in the clearance of adenovirus-infected cells, it was investigated whether NK cells are activated by adenovirus in vitro. Exposure of PBMC to human adenovirus type 5 (HAdV5) or HAdV35 resulted in the up-regulation of the activation marker CD69 on NK cells and enhanced the cytolytic activity of NK cells. HAdV5-induced NK cell activation relied on the contribution of T cells as the depletion of T cells from PBMC abolished NK cell activation. In contrast, NK cell activation in response to HAdV35 occurred in the absence of T cells. Plasmacytoid dendritic cells (pDC) were necessary and sufficient to mediate NK cell activation. HAdV35 induced significantly more interferon-α (IFN-α) production by pDC than HAdV5. The increased IFN-α production and NK cell activation correlated with a higher infection efficiency of viruses with the type 35 fiber. The IFN-α response of pDC was enhanced by the presence of NK cells, suggesting a reciprocal interaction between pDC and NK cells. Incubation with a TLR9 antagonist impaired the IFN-α production by pDC as well as NK cell activation, implying that TLR9 signaling is critically involved in the IFN-α response of pDC and NK cell activation after HAdV35 exposure. In conclusion, two human adenovirus serotypes from two different species differ considerably in their capacity to stimulate pDC and NK cells. PMID:22424784

  16. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... dilution in a varying serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus... virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) A geometric mean titer of...

  17. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... dilution in a varying serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus... virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) A geometric mean titer of...

  18. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... dilution in a varying serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus... virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) A geometric mean titer of...

  19. Simian adenovirus type 35 has a recombinant genome comprising human and simian adenovirus sequences, which predicts its potential emergence as a human respiratory pathogen

    PubMed Central

    Dehghan, Shoaleh; Seto, Jason; Jones, Morris S.; Dyer, David W.; Chodosh, James; Seto, Donald

    2013-01-01

    Emergent human and simian adenoviruses (HAdVs) may arise from genome recombination. Computational analysis of SAdV type 35 reveals a genome comprising a chassis with elements mostly from two simian adenoviruses, SAdV-B21 and -B27, and regions of high sequence similarity shared with HAdV-B21 and HAdV-B16. Although recombination direction cannot be determined, the presence of these regions suggests prior infections of humans by an ancestor of SAdV-B35, and/or vice versa. Absence of this virus in humans may reflect non-optimal conditions for zoonosis. The presence of both a critical viral replication element found in HAdV genomes and genes that are highly similar to ones in HAdVs suggest the potential to establish in a human host. This allows a prediction that this virus may be a nascent human respiratory pathogen. The recombination potential of human and simian adenovirus genomes should be considered in the use of SAdVs as vectors for gene delivery in humans. PMID:24210123

  20. Development of recombinant canine adenovirus type-2 expressing the Gn glycoprotein of Seoul virus.

    PubMed

    Yuan, Ziguo; Zhang, Xiuxiang; Zhang, Shoufeng; Liu, Ye; Gao, Shengyan; Zhang, Fei; Xu, Huijuan; Wang, Xiaohu; Hu, Rongliang

    2008-05-01

    Seoul virus glycoprotein Gn is a major structural protein and candidate antigen of hantavirus that induces a highly immunogenic response for hantavirus vaccine. In this study, a replication-competent recombinant canine adenovirus type-2 expressing Gn was constructed by the in vitro ligation method. The Gn expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the SV40 early mRNA polyadenylation signal, was cloned into the SspI site of the E3 region which is not essential for proliferation of CAV-2. Expression of Gn was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. PMID:18249007

  1. The nucleotide sequence at the termini of adenovirus type 5 DNA.

    PubMed Central

    Steenbergh, P H; Maat, J; van Ormondt, H; Sussenbach, J S

    1977-01-01

    The sequences of the first 194 base pairs at both termini of adenovirus type 5 (Ad5) DNA have been determined, using the chemical degradation technique developed by Maxam and Gilbert (Proc. Nat. Acad. Sci. USA 74 (1977), pp. 560-564). The nucleotide sequences 1-75 were confirmed by analysis of labeled RNA transcribed from the terminal HhaI fragments in vitro. The sequence data show that Ad5 DNA has a perfect inverted terminal repetition of 103 base pairs long. Images PMID:600799

  2. Production of canine adenovirus type 2 in serum-free suspension cultures of MDCK cells.

    PubMed

    Castro, R; Fernandes, P; Laske, T; Sousa, M F Q; Genzel, Y; Scharfenberg, K; Alves, P M; Coroadinha, A S

    2015-09-01

    The potential of adherent Madin Darby Canine Kidney (MDCK) cells for the production of influenza viruses and canine adenovirus type 2 (CAV-2) for vaccines or gene therapy approaches has been shown. Recently, a new MDCK cell line (MDCK.SUS2) that was able to grow in suspension in a fully defined system was established. In this work, we investigated whether the new MDCK.SUS2 suspension cell line is suitable for the amplification of CAV-2 under serum-free culture conditions. Cell growth performance and CAV-2 production were evaluated in three serum-free media: AEM, SMIF8, and EXCELL MDCK. CAV-2 production in shake flasks was maximal when AEM medium was used, resulting in an amplification ratio of infectious particles (IP) of 142 IP out/IP in and volumetric and cell-specific productivities of 2.1 × 10(8) IP/mL and 482 IP/cell, respectively. CAV-2 production was further improved when cells were cultivated in a 0.5-L stirred tank bioreactor. To monitor infection and virus production, cells were analyzed by flow cytometry. A correlation between the side scatter measurement and CAV-2 productivity was found, which represents a key feature to determine the best harvesting time during process development of gene therapy vectors that do not express reporter genes. This work demonstrates that MDCK.SUS2 is a suitable cell substrate for CAV-2 production, constituting a step forward in developing a production process transferable to industrial scales. This could allow for the production of high CAV-2 titers either for vaccination or for gene therapy purposes. PMID:25994255

  3. History of the restoration of adenovirus type 4 and type 7 vaccine, live oral (Adenovirus Vaccine) in the context of the Department of Defense acquisition system.

    PubMed

    Hoke, Charles H; Snyder, Clifford E

    2013-03-15

    Respiratory pathogens cause morbidity and mortality in US military basic trainees. Following the influenza pandemic of 1918, and stimulated by WWII, the need to protect military personnel against epidemic respiratory disease was evident. Over several decades, the US military elucidated etiologies of acute respiratory diseases and invented and deployed vaccines to prevent disease caused by influenza, meningococcus, and adenoviruses. In 1994, the Adenovirus Vaccine manufacturer stopped its production. By 1999, supplies were exhausted and adenovirus-associated disease, especially serotype 4-associated febrile respiratory illness, returned to basic training installations. Advisory bodies persuaded Department of Defense leaders to initiate restoration of Adenovirus Vaccine. In 2011, after 10 years of effort by government and contractor personnel and at a cost of about $100 million, the Adenovirus Vaccine was restored to use at all military basic training installations. Disease and adenovirus serotype 4 isolation rates have fallen dramatically since vaccinations resumed in October 2011 and remain very low. Mindful of the adage that "The more successful a vaccine is, the more quickly the need for it will be forgotten.", sustainment of the supply of the Adenovirus Vaccine may be a challenge, and careful management will be required for such sustainment. PMID:23291475

  4. Genetic mapping of a major site of phosphorylation in adenovirus type 2 E1A proteins

    SciTech Connect

    Tsukamotot, A.S.; Ponticelli, A.; Berk, A.J.; Gaynor, R.B.

    1986-07-01

    Adenovirus early region 1A (E1A) encodes two acidic phosphoproteins which are required for transactivation of viral transcription, efficient viral DNA replication in phase G/sub 0/-arrested human cells, and oncogenic transformation of rodent cells. Biochemical analysis of in vivo /sup 32/P-labeled adenovirus type 2 E1A proteins purified with monoclonal antibodies demonstrated that these proteins were phosphorylated at multiple serine residues. Two-dimensional phosphotryptic peptide maps of wild-type and mutant E1A proteins were used to locate a major site of E1A protein phosphorylation at serine-219 of the large E1A protein. Although this serine fell within a consensus sequence for phosphorylation by the cyclic AMP-dependent protein kinases, experiments with mutant CHO cells defective in these enzymes indicated that it was not. Oligonucleotide-directed mutagenesis was used to substitute an alanine for serine-219. This mutation prevented phosphorylation at this site. Nonetheless, the mutant was indistinguishable from the wild type for early gene transactivation, replication on G/sub 0/-arrested WI-38 cells, and transformation of cloned rat embryo fibroblast cells.

  5. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    SciTech Connect

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin; Xiong, Wei; Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying; Liu, Hongrong; Huang, Xiaojun; Ji, Gang; Sun, Fei; Zheng, Congyi; Zhu, Ping

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.

  6. Canine adenovirus type 1 and Pasteurella pneumotropica co‑infection in a puppy.

    PubMed

    Pintore, Maria Domenica; Corbellini, Debora; Chieppa, Maria Novella; Vallino Costassa, Elena; Florio, Caterina Lucia; Varello, Katia; Bozzetta, Elena; Adriano, Daniela; Decaro, Nicola; Casalone, Cristina; Iulini, Barbara

    2016-03-31

    In 2008, a 2 months-old male German shepherd was presented with fever, depression, and evident organic wasting. The puppy died within 48 hours after the onset of clinical signs. A complete necropsy was performed. Bacteriological examination of samples from the brain, lung, liver, spleen, and bone marrow tested positive for Pasteurella pneumotropica. Histopathology demonstrated in ammatory and vascular lesions in the central nervous system and internal organs. Canine adenovirus type 1 nucleic acid was detected by polymerase chain reaction in the frozen brain but not in the formalin- xed, para n-embedded liver and lung samples. The positive PCR was subsequently con rmed by indirect uorescent antibody testing of the para n-embedded brain and liver sections. Although the liver is the primary site of viral damage, these laboratory ndings suggest that Canine adenovirus type 1 infection should be included in the di erential diagnosis of neuropathological diseases in dogs and that adenoviral infections could promote septicaemia caused by opportunistic pathogens. PMID:27033531

  7. Limited Effects of Muc1 Deficiency on Mouse Adenovirus Type 1 Respiratory Infection

    PubMed Central

    Nguyen, Y; Procario, Megan C.; Ashley, Shanna L.; O'Neal, Wanda K.; Pickles, Raymond J.; Weinberg, Jason B.

    2011-01-01

    Muc1 (MUC1 in humans) is a membrane-tethered mucin that exerts anti-inflammatory effects in the lung during bacterial infection. Muc1 and other mucins are also likely to form a protective barrier in the lung. We used mouse adenovirus type 1 (MAV-1, also known as MAdV-1) to determine the role of Muc1 in the pathogenesis of an adenovirus in its natural host. Following intranasal inoculation of wild type mice, we detected increased TNF-α, a cytokine linked to Muc1 production, but no consistent changes in the production of lung Muc1, Muc5ac or overall lung mucus production. Viral loads were modestly higher in the lungs of Muc1−/− mice compared to Muc1+/+ mice at several early time points but decreased to similar levels by 14 days post infection in both groups. However, cellular inflammation and the expression of CXCL1, CCL5, and CCL2 did not significantly differ between Muc1−/− and Muc1+/+ mice. Our data therefore suggest that Muc1 may contribute to a physical barrier that protects against MAV-1 respiratory infection. However, our data do not reveal an anti-inflammatory effect of Muc1 that contributes to MAV-1 pathogenesis.. PMID:21816184

  8. Mouse Adenovirus Type 1 Infection of Natural Killer Cell-Deficient Mice

    PubMed Central

    Welton, Amanda R.; Gralinski, Lisa E.; Spindler, Katherine R.

    2008-01-01

    Natural killer (NK) cells contribute to the initial nonspecific response to viral infection, and viruses exhibit a range of sensitivities to NK cells in vivo. We investigated the role of NK cells in infection of mice by mouse adenovirus type 1 (MAV-1) using antibody-mediated depletion and knockout mice. MAV-1 causes encephalomyelitis and replicates to highest levels in brains. NK cell-depleted mice infected with MAV-1 showed brain viral loads 8-20 days p.i. that were similar to wild-type control non-depleted mice. Mice genetically deficient for NK cells behaved similarly to wild-type control mice with respect to brain viral loads and survival. We conclude that NK cells are not required to control virus replication in the brains of MAV-1-infected mice. PMID:18155121

  9. Enteric immunization with live adenovirus type 21 vaccine. II. Systemic and local immune responses following immunization.

    PubMed

    Scott, R M; Dudding, B A; Romano, S V; Russell, P K

    1972-03-01

    Studies of the immunologic responses following administration of a live, enteric-coated adenovirus (ADV) type 21 vaccine showed that nine of ten vaccinees and none of five controls developed neutralizing antibody. Antibody activity of serum and secretory immunoglobulins was assayed by using a (14)C-labeled ADV-21 antigen in a radioimmunodiffusion system. Increases in immunoglobulin M, A and G (IgM, IgA, IgG) activity were detected in sera from vaccinees but not in those from controls. IgA copro antibody activity was also shown in vaccinees but not in controls. Nasal secretions showed no detectable IgA antibody responses by this method. These studies show marked differences in serum and local IgA antibody activity in induced enteric ADV infection compared to previously reported responses after natural infection. The protective role of secretory IgA in adenovirus infections is obscure. However, absence of nasal IgA responses may indicate that protection against disease with enteric ADV vaccines depends primarily upon humoral antibody. PMID:4629075

  10. Tracking novel adenovirus in environmental and human clinical samples: no evidence of endemic human adenovirus type 58 circulation in Córdoba city, Argentina.

    PubMed

    Ferreyra, L J; Giordano, M O; Martínez, L C; Barril, P A; Masachessi, G; Isa, M B; Poma, R; Rajal, V; Biganzoli, P; Nates, S V; Pavan, J V

    2015-05-01

    In recent years, several types of human adenovirus (HAdV) have arisen from the recombination between two or more previously known HAdV types, but their epidemiology is poorly understood. In this study, we investigated the circulation of HAdV-58, a recently described HAdV isolated from an HIV-positive patient in Córdoba city, Argentina. For this purpose, a 30-month survey was conducted to study the presence of this type of adenovirus in sewage samples collected at the inlet from a wastewater treatment plant in Córdoba city, Argentina. Complementarily, the virus was sought in stools of HIV-positive patients. Although HAdVs were detected in human stool samples and in a high percentage of sewage samples, no evidence of HAdV-58 circulation was detected. We suggest that there is no endemic circulation of HAdV-58 in the geographical local area. The trend is that the number of identified HAdVs increases over time. In this context, understanding the current circulating HAdVs may be biologically relevant. PMID:25165987

  11. Prostaglandin E2 Production and T Cell Function in Mouse Adenovirus Type 1 Infection following Allogeneic Bone Marrow Transplantation

    PubMed Central

    McCarthy, Mary K.; Procario, Megan C.; Wilke, Carol A.; Moore, Bethany B.; Weinberg, Jason B.

    2015-01-01

    Adenovirus infections are important complications of bone marrow transplantation (BMT). We demonstrate delayed clearance of mouse adenovirus type 1 (MAV-1) from lungs of mice following allogeneic BMT. Virus-induced prostaglandin E2 (PGE2) production was greater in BMT mice than in untransplanted controls, but BMT using PGE2-deficient donors or recipients failed to improve viral clearance, and treatment of untransplanted mice with the PGE2 analog misoprostol did not affect virus clearance. Lymphocyte recruitment to the lungs was not significantly affected by BMT. Intracellular cytokine staining of lung lymphocytes demonstrated impaired production of INF-γ and granzyme B by cells from BMT mice, and production of IFN-γ, IL-2, IL-4, and IL-17 following ex vivo stimulation was impaired in lymphocytes obtained from lungs of BMT mice. Viral clearance was not delayed in untransplanted INF-γ-deficient mice, suggesting that delayed viral clearance in BMT mice was not a direct consequence of impaired IFN-γ production. However, lung viral loads were higher in untransplanted CD8-deficient mice than in controls, suggesting that delayed MAV-1 clearance in BMT mice is due to defective CD8 T cell function. We did not detect significant induction of IFN-β expression in lungs of BMT mice or untransplanted controls, and viral clearance was not delayed in untransplanted type I IFN-unresponsive mice. We conclude that PGE2 overproduction in BMT mice is not directly responsible for delayed viral clearance. PGE2-independent effects on CD8 T cell function likely contribute to the inability of BMT mice to clear MAV-1 from the lungs. PMID:26407316

  12. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy

    PubMed Central

    Ulasov, Ilya V.; Shah, Nameeta; Kaverina, Natalya V.; Lee, Hwahyang; Lin, Biaoyang; Lieber, Andre; Kadagidze, Zaira G.; Yoon, Jae-Guen; Schroeder, Brett; Hothi, Parvinder; Ghosh, Dhimankrishna; Baryshnikov, Anatoly Y.; Cobbs, Charles S.

    2015-01-01

    Oncolytic gene therapy using viral vectors may provide an attractive therapeutic option for malignant gliomas. These viral vectors are designed in a way to selectively target tumor cells and spare healthy cells. To determine the translational impact, it is imperative to assess the factors that interfere with the anti-glioma effects of the oncolytic adenoviral vectors. In the current study, we evaluated the efficacy of survivin-driven oncolytic adenoviruses pseudotyping with adenoviral fiber knob belonging to the adenoviral serotype 3, 11 and 35 in their ability to kill glioblastoma (GBM) cells selectively without affecting normal cells. Our results indicate that all recombinant vectors used in the study can effectively target GBM in vitro with high specificity, especially the 3 knob-modified vector. Using intracranial U87 and U251 GBM xenograft models we have also demonstrated that treatment with Conditionally Replicative Adenovirus (CRAd-S-5/3) vectors can effectively regress tumor. However, in several patient-derived GBM cell lines, cells exhibited resistance to the CRAd infection as evident from the diminishing effects of autophagy. To improve therapeutic response, tumor cells were pretreated with tamoxifen. Our preliminary data suggest that tamoxifen sensitizes glioblastoma cells towards oncolytic treatment with CRAd-S-5/3, which may prove useful for GBM in future experimental therapy. PMID:25738357

  13. Human Adenovirus Type 7 Infection Associated with Severe and Fatal Acute Lower Respiratory Illness and Nosocomial Transmission

    PubMed Central

    Cui, Xianyan; Wen, Liang; Wu, Zhihao; Liu, Nan; Yang, Chaojie; Liu, Wei; Ba, Zhongwei; Wang, Jian; Yi, Shengjie; Li, Hao; Liang, Beibei; Li, Peng; Jia, Leili; Hao, Rongzhang; Wang, Ligui; Hua, Yuejin; Wang, Yong

    2014-01-01

    A 23-year-old male died of severe pneumonia and respiratory failure in a tertiary hospital in Beijing, and 4 out of 55 close contacts developed fever. Molecular analysis confirmed human adenovirus type 7 (HAdV7) as the causative agent. We highlight the importance of early diagnosis and treatment and proper transmission control of HAdV7. PMID:25520444

  14. [Functional activity of lymphoblastoid cells infected by human adenovirus type 2 and Epstein-Barr virus].

    PubMed

    Povnitsa, O Iu; Diachenko, N S; Nosach, L N; Olevinskaia, Z M; Zhovnovataia, V L; Polishchuk, V N; Spivak, N Ia

    2005-01-01

    The paper deals with the influence of the adenovirus (Ad) and Epstein-Barr virus (EBV) on functional activity of lymphocytes, in particular, the production of alpha- and gamma-interferons, tumor necrosis factor (TNF) in conditions of mono- or double infection of B- and T-phenotype (CEM) lymphoblastoid cells. It is shown, that Ad, EBV or both viruses induce high enough levels of interferon on both lines of cells and in control epithelial cells. The lymphoblastoid cells infected by viruses deep ability to synthesize alpha- and gamma-interferons under the influence of the corresponding inducers (Newcastle disease virus and hemagglutinine). Nevertheless, the levels of their formation are not high. Rather high parameters of activity of the tumor necrosis factor (TNF) were revealed during a day in the initial B95-8 cells and superinfected Ad after the effect of LPS of E. coli. Their activity in CEM cells also did not depend on the infection type. PMID:16018208

  15. Adenovirus type 12-specific RNA sequences during productive infection of KB cells.

    PubMed Central

    Smiley, J R; Mak, S

    1976-01-01

    The complementary strands of adenovirus type 12 DNA were separated, and virus-specific RNA was analyzed by saturation hybridization in solution. Late during infection whole cell RNA hybridized to 75% of the light (1) strand and 15% of the heavy (H) strand, whereas cytoplasmic RNA hybridized to 65% of the 1 strand and 15% of the h strand. Late nuclear RNA hybridized to about 90% of the 1 strand and at least 36% of the h strand. Double-stranded RNA was isolated from infected cells late after infection, which annealed to greater than 30% of each of the two complementary DNA strands. Early whole cell RNA hybridized to 45 to 50% of the 1 strand and 15% of the h strand, whereas early cytoplasmic RNA hybridized to about 15% of each of the complementary strands. All early cytoplasmic sequences were present in the cytoplasm at late times. PMID:950688

  16. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    PubMed Central

    Gout, E.; Schoehn, G.; Fenel, D.; Lortat-Jacob, H.; Fender, P.

    2010-01-01

    Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases) features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs) and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS) oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant) and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS) dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors. PMID:20224646

  17. Inactivation of Feline Calicivirus and Adenovirus Type 40 by UV Radiation

    PubMed Central

    Thurston-Enriquez, Jeanette A.; Haas, Charles N.; Jacangelo, Joseph; Riley, Kelley; Gerba, Charles P.

    2003-01-01

    Little information regarding the effectiveness of UV radiation on the inactivation of caliciviruses and enteric adenoviruses is available. Analysis of human calicivirus resistance to disinfectants is hampered by the lack of animal or cell culture methods that can determine the viruses' infectivity. The inactivation kinetics of enteric adenovirus type 40 (AD40), coliphage MS-2, and feline calicivirus (FCV), closely related to the human caliciviruses based on nucleic acid organization and capsid architecture, were determined after exposure to low-pressure UV radiation in buffered demand-free (BDF) water at room temperature. In addition, UV disinfection experiments were also carried out in treated groundwater with FCV and AD40. AD40 was more resistant than either FCV or coliphage MS-2 in both BDF water and groundwater. The doses of UV required to achieve 99% inactivation of AD40, coliphage MS-2, and FCV in BDF water were 109, 55, and 16 mJ/cm2, respectively. The doses of UV required to achieve 99% inactivation of AD40, coliphage MS-2, and FCV in groundwater were slightly lower than those in BDF water. FCV was inactivated by 99% by 13 mJ/cm2 in treated groundwater. A dose of 103 mJ/cm2 was required for 99% inactivation of AD40 in treated groundwater. The results of this study indicate that if FCV is an adequate surrogate for human caliciviruses, then their inactivation by UV radiation is similar to those of other single-stranded RNA enteric viruses, such as poliovirus. In addition, AD40 appears to be more resistant to UV disinfection than previously reported. PMID:12514044

  18. Computational analysis of four human adenovirus type 4 genomes reveals molecular evolution through two interspecies recombination events

    PubMed Central

    Dehghan, Shoaleh; Seto, Jason; Liu, Elizabeth B.; Walsh, Michael P.; Dyer, David W.; Chodosh, James; Seto, Donald

    2013-01-01

    Computational analysis of human adenovirus type 4 (HAdV-E4), a pathogen that is the only HAdV member of species E, provides insights into its zoonotic origin and molecular adaptation. Its genome encodes a domain of the major capsid protein, hexon, from HAdV-B16 recombined into the genome chassis of a simian adenovirus. Genomes of two recent field strains provide a clue to its adaptation to the new host: recombination of a NF-I binding site motif, which is required for efficient viral replication, from another HAdV genome. This motif is absent in the chimpanzee adenoviruses and the HAdV-E4 prototype, but is conserved amongst other HAdVs. This is the first report of an interspecies recombination event for HAdVs, and the first documentation of a lateral partial gene transfer from a chimpanzee AdV. The potential for such recombination events are important when considering chimpanzee adenoviruses as candidate gene delivery vectors for human patients. PMID:23763770

  19. Genome variability of human adenovirus type 8 causing epidemic keratoconjunctivitis during 1986-2003 in Japan

    PubMed Central

    Jin, Xue-Hai; Aoki, Koki; Ariga, Toshihide; Ishida, Susumu; Ohno, Shigeaki

    2011-01-01

    Purpose Epidemic keratoconjunctivitis (EKC) is a contagious acute conjunctivitis associated with community-acquired infection. Human adenovirus type 8 (HAdV-8) is one of the major serotypes isolated from patients with EKC. DNA restriction enzyme analyses were performed to investigate the genetic characteristics of the isolates and their chronological pattern. Methods Viral samples were taken from 11 strains isolated from sporadic cases of EKC and identified as HAdV-8 by the neutralization method with type-specific antiserum against HAdV-8 between 1986 and 2003 in Japan. DNA restriction enzyme analysis included six restriction enzymes: BamHI, HindIII, PstI, SacI, SalI, and SmaI. Results The restriction patterns revealed that the genome types were HAdV-8A and HAdV-8B in 1986, HAdV-8K in 1991, and HAdV-8E in 1996. HAdV-8K was a new genome type revealed with the enzyme SacI. Two strains isolated in 2003 exhibited identical restriction patterns as HAdV-54, which was described in 2008 and collected from Japanese patients in 2000. Conclusions Genetic changes might occur chronologically in HAdV-8. HAdV-8 displays considerable variability. The investigations of these variants might be helpful for defining the evolutionary tendency and to predict future outbreaks of HAdV infection. PMID:22171158

  20. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control.

    PubMed

    Toth, Karoly; Lee, Sang R; Ying, Baoling; Spencer, Jacqueline F; Tollefson, Ann E; Sagartz, John E; Kong, Il-Keun; Wang, Zhongde; Wold, William S M

    2015-08-01

    Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as animal models. PMID

  1. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control

    PubMed Central

    Spencer, Jacqueline F.; Tollefson, Ann E.; Sagartz, John E.; Kong, Il-Keun; Wang, Zhongde; Wold, William S. M.

    2015-01-01

    Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as animal models. PMID

  2. [Preparation of monoclonal antibodies against enterovirus type 71 with an epitope-incorporated adenovirus type 3 vector].

    PubMed

    Fan, Ye; Tian, Xingui; Xue, Chunyan; Liu, Minglong; Zhou, Zhichao; Li, Xiao; Li, Chenyang; Zhou, Rong

    2016-08-01

    Objective To develop the monoclonal antibodies (mAbs) against enterovirus type 71 (EV71). Methods Two neutralization epitopes, SP70 and SP55, from EV71 were cloned into the hexon gene of adenovirus type 3 to generate a recombinant adenovirus type 3 (R1R2A3) presenting SP70 and SP55 antigens. BALB/c mice were immunized with the R1R2A3. The mAbs were developed with hybridoma technology and were analyzed with microneutralizing assay, indirect ELISA, Western blotting and direct immunofluorescence assay (DFA). Results The study obtained four hybridoma cell clones, 2C4, D2C9, I2G2 and I12C3. ELISA showed that the titer of D2C9 against EV71 was 1:8 000 000 and the titers of 2C4, I2G2, and I12C3 all were 1:500 000. ELISA and Western blotting demonstrated that all mAbs could specifically recognize the VP1 of EV71. In addition, D2C9 recognized the SP70 epitope, and 2C4, I12C3 and I2G2 all recognized the SP55 epitope. DFA revealed that all mAbs could react with EV71, but not with Coxsackie virus A16 (CoxA16). Conclusion Four mAbs against EV71 have been developed successfully, and all of them could react with EV71 rather than CoxA16. PMID:27412945

  3. [Morphogenetic study of human adenovirus type 41 in 293TE cells].

    PubMed

    Song, Jing-Dong; Wang, Min; Zou, Xiao-Hui; Qu, Jian-Guo; Lu, Zhuo-Zhuang; Hong, Tao

    2014-03-01

    To investigate the morphogenetic process of human adenovirus type 41 (HAdV-41), 293TE cells were infected with purified wild-type HAdV-41, and ultrathin sections of infected cells were prepared and observed under a transmission electron microscope. Results showed that HAdV-41 entered host cells mainly through three ways: non-clathrin-coated pit, clathrin-coated pit, and direct penetration of plasma membrane. In addition, cell microvilli might help HAdV-41 enter cells. After entering into cells, HAdV-41 virus particles could be found in vacuoles or lysosomes or be in a free state in cytoplasm. Only free virus particles could be found near nuclear pores (NP), suggesting that the virus needed to escape from lysosomes for effective infection and viral nucleoprotein entered the nucleus through NP. Progeny viruses were as-sembled in the nucleus. Three types of inclusion bodies, which were termed as fibrillous inclusion body, condense inclusion body, and stripped condense inclusion body, were involved in HAdV-41 morphogenesis. In the late phase of viral replication, the membrane integrity of the infected cells was lost and viral particles were released extracellularly. This study reveals the partial process of HAdV-41 morphogenesis and provides more biological information on HAdV-41. PMID:24923169

  4. Mouse Adenovirus Type 1 Early Region 1A Effects on the Blood-Brain Barrier

    PubMed Central

    Tirumuru, Nagaraja; Pretto, Carla D.; Castro Jorge, Luiza A.

    2016-01-01

    ABSTRACT Mouse adenovirus type 1 (MAV-1) infects endothelial cells and disrupts the blood-brain barrier (BBB), causing encephalitis in inbred and outbred mice. Using a virus mutant that does not produce the early region 1A protein E1A, we investigated whether the activity of this known viral transcriptional regulator is needed for BBB disruption and other phenotypes associated with encephalitis. The wild-type (wt) virus and E1A mutant virus caused similar levels of permeability of sodium fluorescein in brains of infected mice. In an in vitro assay of BBB integrity, wt and mutant virus caused similar decreases in transendothelial electrical resistance in primary mouse brain endothelial cell monolayers. These results indicate that E1A protein does not contribute to disruption of BBB integrity in animals or cultured cells. Both wt and E1A mutant virus infection of mice led to similar increases in the activity of two matrix metalloproteinases known to correlate with BBB disruption, MMP2 and MMP9, while causing no increase in the steady-state expression of MMP2 or MMP9 mRNA. In contrast, the amount of MMP3 transcripts increased upon infection by both viruses and to a higher level in infections by the mutant virus lacking E1A protein production. There was no difference in the levels of steady-state expression of mRNA for tight junction proteins among mock virus, wt virus, and mutant virus infections. Thus, the MAV-1 E1A protein does not measurably affect BBB integrity in the parameters assayed, although it reduces the amount of MMP3 mRNA steady-state expression induced in brains upon infection. IMPORTANCE Encephalitis can be caused by viruses, and it is potentially life-threatening because of the vital nature of the brain and the lack of treatment options. MAV-1 produces viral encephalitis in its natural host, providing a model for investigating factors involved in development of encephalitis. MAV-1 infection disrupts the BBB and increases activity of matrix

  5. Mouse Adenovirus Type 1 Early Region 1A Effects on the Blood-Brain Barrier.

    PubMed

    Tirumuru, Nagaraja; Pretto, Carla D; Castro Jorge, Luiza A; Spindler, Katherine R

    2016-01-01

    Mouse adenovirus type 1 (MAV-1) infects endothelial cells and disrupts the blood-brain barrier (BBB), causing encephalitis in inbred and outbred mice. Using a virus mutant that does not produce the early region 1A protein E1A, we investigated whether the activity of this known viral transcriptional regulator is needed for BBB disruption and other phenotypes associated with encephalitis. The wild-type (wt) virus and E1A mutant virus caused similar levels of permeability of sodium fluorescein in brains of infected mice. In an in vitro assay of BBB integrity, wt and mutant virus caused similar decreases in transendothelial electrical resistance in primary mouse brain endothelial cell monolayers. These results indicate that E1A protein does not contribute to disruption of BBB integrity in animals or cultured cells. Both wt and E1A mutant virus infection of mice led to similar increases in the activity of two matrix metalloproteinases known to correlate with BBB disruption, MMP2 and MMP9, while causing no increase in the steady-state expression of MMP2 or MMP9 mRNA. In contrast, the amount of MMP3 transcripts increased upon infection by both viruses and to a higher level in infections by the mutant virus lacking E1A protein production. There was no difference in the levels of steady-state expression of mRNA for tight junction proteins among mock virus, wt virus, and mutant virus infections. Thus, the MAV-1 E1A protein does not measurably affect BBB integrity in the parameters assayed, although it reduces the amount of MMP3 mRNA steady-state expression induced in brains upon infection. IMPORTANCE Encephalitis can be caused by viruses, and it is potentially life-threatening because of the vital nature of the brain and the lack of treatment options. MAV-1 produces viral encephalitis in its natural host, providing a model for investigating factors involved in development of encephalitis. MAV-1 infection disrupts the BBB and increases activity of matrix metalloproteinases in

  6. Central Nervous System Delivery of Helper-Dependent Canine Adenovirus Corrects Neuropathology and Behavior in Mucopolysaccharidosis Type VII Mice

    PubMed Central

    Ariza, Lorena; Giménez-Llort, Lydia; Cubizolle, Aurélie; Pagès, Gemma; García-Lareu, Belén; Serratrice, Nicolas; Cots, Dan; Thwaite, Rosemary; Chillón, Miguel; Kremer, Eric J.

    2014-01-01

    Abstract Canine adenovirus type 2 vectors (CAV-2) are promising tools to treat global central nervous system (CNS) disorders because of their preferential transduction of neurons and efficient retrograde axonal transport. Here we tested the potential of a helper-dependent CAV-2 vector expressing β-glucuronidase (HD-RIGIE) in a mouse model of mucopolysaccharidosis type VII (MPS VII), a lysosomal storage disease caused by deficiency in β-glucuronidase activity. MPS VII leads to glycosaminoglycan accumulation into enlarged vesicles in peripheral tissues and the CNS, resulting in peripheral and neuronal dysfunction. After intracranial administration of HD-RIGIE, we show long-term expression of β-glucuronidase that led to correction of neuropathology around the injection site and in distal areas. This phenotypic correction correlated with a decrease in secondary-elevated lysosomal enzyme activity and glycosaminoglycan levels, consistent with global biochemical correction. Moreover, HD-RIGIE-treated mice show significant cognitive improvement. Thus, injections of HD-CAV-2 vectors in the brain allow a global and sustained expression and may have implications for brain therapy in patients with lysosomal storage disease. PMID:24299455

  7. Molecular Epidemiology of Adenovirus Type 7 in the United States, 1966–20001

    PubMed Central

    Xu, Wanhong; Gerber, Susan I.; Gray, Gregory C.; Schnurr, David; Kajon, Adriana E.; Anderson, Larry J.

    2002-01-01

    Genetic variation among 166 isolates of human adenovirus 7 (Ad7) obtained from 1966 to 2000 from the United States and Eastern Ontario, Canada, was determined by genome restriction analysis. Most (65%) isolates were identified as Ad7b. Two genome types previously undocumented in North America were also identified: Ad7d2 (28%), which first appeared in 1993 and was later identified throughout the Midwest and Northeast of the United States and in Canada; and Ad7h (2%), which was identified only in the U.S. Southwest in 1998 and 2000. Since 1996, Ad7d2 has been responsible for several civilian outbreaks of Ad7 disease and was the primary cause of a large outbreak of respiratory illness at a military recruit training center. The appearance of Ad7d2 and Ad7h in North America represents recent introduction of these viruses from previously geographically restricted areas and may herald a shift in predominant genome type circulating in the United States. PMID:11927024

  8. Immunological and Chemical Identification of Intracellular Forms of Adenovirus Type 2 Terminal Protein

    PubMed Central

    Green, Maurice; Symington, Janey; Brackmann, Karl H.; Cartas, Maria A.; Thornton, Helen; Young, Leann

    1981-01-01

    Highly purified adenovirus type 2 terminal protein (TP) with an apparent Mr of 55,000 (55K) was prepared in quantities of 10 to 30 μg from guanidine hydrochloride- or sodium dodecyl sulfate-disrupted virions (60 to 120 mg). Guinea pigs were immunized with 14 to 20 injections of TP in amounts of 1 to 2 μg. Antiserum to TP was used to study the intracellular polypeptides related to adenovirus type 2 TP. By immunoprecipitation with anti-TP serum, we identified 80K and 76K polypeptides in the nucleoplasmic and cytoplasmic S100 fractions of [35S]methionine-labeled cells early and late after infection with Ad2. By immunoautoradiographic analysis which eliminates coprecipitation of unrelated proteins, we identified an 80K polypeptide (probably an 80K-76K doublet) in unlabeled, late infected cells, using anti-TP serum and 125I-labeled staphylococcal protein A. About two- to threefold-higher levels of the 80K and 76K polypeptides were present in the nucleoplasm than in the S100 fraction, and two- to threefold-higher levels were found in late infected cells than in early infected cells (cycloheximide enhanced, arabinofuranosylcytosine treated). We did not detect the 80K or 76K polypeptide in uninfected cells, indicating that these polypeptides are virus coded. Tryptic peptide map analysis showed that the 80K and 76K polypeptides are very closely related and that they share peptides with the DNA-bound 55K TP. Our data provide the first direct demonstration of intracellular 80K and 76K forms of TP. The intracellular 80K and 76K polypeptides are closely related or identical to the 80K polypeptide that Challberg and co-workers (Proc. Natl. Acad. Sci. U.S.A. 77:5105-5109, 1980) detected at the termini of adenovirus DNA synthesized in vitro and to the 87K polypeptide that Stillman and co-workers (Cell 23:497-508, 1981) translated in vitro. We did not detect the 55K TP in early or late infected cells, consistent with the proposal by Challberg and co-workers that the 80K

  9. Structure of the C-terminal head domain of the fowl adenovirus type 1 short fibre

    SciTech Connect

    El Bakkouri, Majida; Seiradake, Elena; Cusack, Stephen; Ruigrok, Rob W.H. Schoehn, Guy

    2008-08-15

    There are more than 100 known adenovirus serotypes, including 50 human serotypes. They can infect all 5 major vertebrate classes but only Aviadenovirus infecting birds and Mastadenovirus infecting mammals have been well studied. CELO (chicken embryo lethal orphan) adenovirus is responsible for mild respiratory pathologies in birds. Most studies on CELO virus have focussed on its genome sequence and organisation whereas the structural work on CELO proteins has only recently started. Contrary to most adenoviruses, the vertices of CELO virus reveal pentons with two fibres of different lengths. The distal parts (or head) of those fibres are involved in cellular receptor binding. Here we have determined the atomic structure of the short-fibre head of CELO (amino acids 201-410) at 2.0 A resolution. Despite low sequence identity, this structure is conserved compared to the other adenovirus fibre heads. We have used the existing CELO long-fibre head structure and the one we show here for a structure-based alignment of 11 known adenovirus fibre heads which was subsequently used for the construction of an evolutionary tree. Both the fibre head sequence and structural alignments suggest that enteric human group F adenovirus 41 (short fibre) is closer to the CELO fibre heads than the canine CAdV-2 fibre head, that lies closer to the human virus fibre heads.

  10. Transcription of the genome of adenovirus type 12. I. Viral mRNA in abortively infected and transformed cells.

    PubMed Central

    Ortin, J; Doerfler, W

    1975-01-01

    In baby hamster kidney (BKH-21) cells abortively infected with adenovirus type 12, polysome-associated, virus-specific RNA could be detected starting 5 to 7 h after infection. The amount of this RNA reached a maximum between 10 to 12 h after infection and continued to be synthesized at a reduced level until late in infection (48 to 50 h.). In BHK-21 cells transformed by adenovirus type 12 (HB cells), 0.26% of the polysome-associated mRNA was virus specific. The size of the virus-specific mRNA isolated from polysomes of BHK-21 cells abortively infected with, or transformed by adenovirus type 12 was determined by electrophoresis in polyacrylamide gels in 98% formamide, i.e., under conditions which eliminated secondary structure or aggregation of RNA. In abortively infected hamster cells viral mRNA size classes of molecular weights 0.9 times 10-6 and 0.65 times 10-6 to 0.67 times 10-6 were predominant. A minor fraction of 1.5 times 10-6 daltons was consistently found and increased with time after infection. Late after infection (24 to 26 h), viral mRNA of 1.9 times 10-6 daltons was also observed. The size distribution of adenovirus type 12-specific mRNA from transformed hamster cells (HB line) was very similar to that in abortively infected cells, except that the relative amount of the viral mRNA fraction of 1.5 times 10-6 daltons was much higher. It is uncertain whether the viral mRNA of high-molecular-weight represents mixed transcripts derived from integrated viral genomes and adjacent host genes. PMID:1167602

  11. Evaluation and Implementation of FilmArray Version 1.7 for Improved Detection of Adenovirus Respiratory Tract Infection

    PubMed Central

    Lacey, Damon; Huang, Rong; Haag, Crissie

    2013-01-01

    The BioFire FilmArray respiratory panel is a multiplex PCR technology capable of detecting a number of bacteria and viruses that cause respiratory tract infection. The assay is technically simple to perform and provides rapid results, making it an appealing option for physicians and laboratorians. The initial product released by BioFire (version 1.6) was reported to have poor sensitivity for adenovirus detection and was therefore of concern when testing immunocompromised patients. This study evaluates the redesigned FilmArray assay (version 1.7) for detection of adenovirus. In this evaluation, we performed both retrospective and prospective verification studies, as well as a detailed serotype analysis. We found that version 1.7 demonstrated improved adenovirus sensitivity. In retrospective studies, sensitivity improved from 66.6% to 90.5%, and in prospective studies, it improved from 42.7% to 83.3%. In addition, when 39 clinically relevant serotypes were tested, 8 were not detected by version 1.6 and only 1 was not detected by version 1.7. The limit of detection remained the same when tested against serotype 4 but improved by 2 log units for serotype 7. Lastly, turnaround time analyses showed that the FilmArray assay was completed 3 h and 9 min after collection, which was more than a 37-h improvement over the previous multiplex PCR assay performed in our laboratory. PMID:24068007

  12. Adenovirus type 12-induced rat tumor cells of neuroepithelial origin: persistence and expression of the viral genome.

    PubMed Central

    Ibelgaufts, H; Doerfler, W; Scheidtmann, K H; Wechsler, W

    1980-01-01

    Four cell lines derived from adenovirus type 12-induced rat brain tumors were studied. The polyploid cells displayed neuroepithelial characteristics and were transplantable into syngeneic rats and nude mice. In tissue culture the cells grew in monolayers and multilayers. A very high saturation density was reached, and the cells plated in agar and were easily agglutinated with low concentrations of concanavalin A. Between 2 and 11 copies of the viral genome per diploid cellular genome were detected by reassociation kinetics analysis in the different lines. The patterns of distribution of viral DNA sequences in these lines, as revealed by blot analysis, suggest colinear integration of the intact viral genome into the cellular DNA. The patterns of integration were stable after more than 15 months of prolonged tissue culture and after animal reimplantation. Integration patterns were identical in three of the tumor lines and different in another line. Viral sequences were transcribed. The extent of homology found toward adenovirus type 12 DNA in polyadenylated polysome-associated mRNA isolated from the tumor lines suggests that the early and some of the late genes of adenovirus type 12 DNA are transcribed in these tumor cells. Infectious virus was not rescuable from these lines. Images PMID:7365869

  13. Adenovirus type 5 early region 4 is responsible for E1A-induced p53-independent apoptosis.

    PubMed Central

    Marcellus, R C; Teodoro, J G; Wu, T; Brough, D E; Ketner, G; Shore, G C; Branton, P E

    1996-01-01

    In the absence of E1B, the 289- and 243-residue E1A products of human adenovirus type 5 induce p53-dependent apoptosis. However, our group has shown recently that the 289-residue E1A protein is also able to induce apoptosis by a p53-independent mechanism (J. G. Teodoro, G. C. Shore, and P. E. Branton, Oncogene 11:467-474, 1995). Preliminary results suggested that p53-independent cell death required expression of one or more additional adenovirus early gene products. Here we show that both the E1B 19-kDa protein and cellular Bcl-2 inhibit or significantly delay p53-independent apoptosis. Neither early region E2 or E3 appeared to be necessary for such cell death. Analysis of a series of E1A mutants indicated that mutations in the transactivation domain and other regions of E1A correlated with E1A-mediated transactivation of E4 gene expression. Furthermore, p53-deficient human SAOS-2 cells infected with a mutant which expresses E1B but none of the E4 gene products remained viable for considerably longer times than those infected with wild-type adenovirus type 5. In addition, an adenovirus vector lacking both E1 and E4 was unable to induce DNA degradation and cell killing in E1A-expressing cell lines. These data showed that an E4 product is essential for E1A-induced p53-independent apoptosis. PMID:8709247

  14. Structural and functional determinants in adenovirus type 2 penton base recombinant protein.

    PubMed Central

    Karayan, L; Hong, S S; Gay, B; Tournier, J; d'Angeac, A D; Boulanger, P

    1997-01-01

    Discrete domains involved in structural and functional properties of adenovirus type 2 (Ad2) penton base were investigated with site-directed mutagenesis of the recombinant protein expressed in baculovirus-infected cells. Seventeen substitution mutants were generated and phenotyped for various functions in insect and human cells as follows. (i) Pentamerization of the penton base protein was found to be dependent on three amino acid side chains, the indole ring of Trp119, the hydroxylic group of Tyr553, and the basic group of Lys556. (ii) Arg254, Cys432, and Trp439, the stretch of basic residues at positions 547 to 556, and Arg340 of the RGD motif played a critical role in stable fiber-penton base interactions in vivo. (iii) Nuclear localization of penton base in Sf9 cells was negatively affected in mutants W119H or W165H, and, to a lesser extent, by substitutions in the consensus polybasic signal at positions 547 to 549. (iv) Penton base mutants were also assayed for HeLa cell binding, cell detachment, plasmid DNA internalization, and Ad-mediated gene delivery. The results obtained suggested that the previously identified integrin-binding motifs RGD340 and LDV287 were functionally and/or topologically related to other discrete regions which include Trp119, Trp165, Cys246, Cys432, and Trp439, all of which were involved in penton base-cell surface recognition, endocytosis, and postendocytotic steps of the virus life cycle. PMID:9343226

  15. Genetic variability of human adenovirus type 8 causing epidemic and sporadic cases of keratoconjunctivitis.

    PubMed

    Fedaoui, Nadia; Ayed, Narjess Ben; Yahia, Ahlem Ben; Hammami, Walid; Touzi, Henda; Triki, Henda

    2016-06-01

    Human adenovirus type 8 (HAdV-8) is a main aetiological agent of keratoconjunctivitis. It has been reported from both epidemic and sporadic cases. The aim of our study was to investigate the genetic characteristics and chronological pattern of HAdV-8 strains that have been circulating in Tunisia over a 14-year period. Fourteen HAdV-8 isolates from a keratoconjunctivitis outbreak that occurred in 2000 and from sporadic cases between 2001 and 2013 were studied. Nucleotide sequences from the hexon, fiber and penton base genes were determined, including hypervariable regions of the hexon (loops 1 and 2), the fiber (knob) and the penton base (HVR 1 and RGD loops). The sequences were compared to each other and to those of HAdV-8 strains. The Tunisian sequences were unique when compared to the previously published sequences. Also, despite a relatively low degree of genetic variation in the three genomic regions, phylogenetic analysis and alignment of amino acid sequences showed that the sequence from the year 2000 and two other sequences from the year 2013 were similar to each other and differed from the isolates that circulated in the intervening year by two main amino acid changes in the loop 1 hexon gene and the knob-fiber gene. Our results confirm the genetic variability of HAdV-8 and document the chronological changes of circulating genetic variants. PMID:26957298

  16. Delivery of improved oncolytic adenoviruses by mesenchymal stromal cells for elimination of tumorigenic pancreatic cancer cells

    PubMed Central

    Kaczorowski, Adam; Hammer, Katharina; Liu, Li; Villhauer, Sabine; Nwaeburu, Clifford; Fan, Pei; Zhao, Zhefu; Gladkich, Jury; Groß, Wolfgang; Nettelbeck, Dirk M.; Herr, Ingrid

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies and has poor therapeutic options. We evaluated improved oncolytic adenoviruses (OAds), in which the adenoviral gene E1B19K was deleted or a TRAIL transgene was inserted. Bone marrow mesenchymal stromal cells (MSCs) served as carriers for protected and tumor-specific virus transfers. The infection competence, tumor migration, and oncolysis were measured in cancer stem cell (CSC) models of primary and established tumor cells and in tumor xenografts. All OAds infected and lysed CSCs and prevented colony formation. MSCs migrated into PDA spheroids without impaired homing capacity. Xenotransplantation of non-infected PDA cells mixed with infected tumor cells strongly reduced the tumor volume and the expression of the proliferation marker Ki67 along with a necrotic morphology. Adenoviral capsid protein was detected in tumor xenograft tissue after intravenous injection of infected MSCs, but not in normal tissue, implying tumor-specific migration. Likewise, direct in vivo treatment correlated with a strongly reduced tumor volume, lower expression of Ki67 and CD24, and enhanced activity of caspase 3. These data demonstrate that the improved OAds induced efficient oncolysis with the OAd-TRAIL as most promising candidate for future clinical application. PMID:26824985

  17. CAP37-derived antimicrobial peptides have in vitro antiviral activity against adenovirus and herpes simplex virus type 1

    PubMed Central

    Gordon, Y. Jerold; Romanowski, Eric G.; Shanks, Robert M. Q.; Yates, Kathleen A.; Hinsley, Heather; Pereira, H. Anne

    2009-01-01

    Purpose The antiviral activity of an established antibacterial CAP37 domain and its extracellular mechanism of action were investigated. Methods CAP37-derived peptides modified to assess the importance of disulfide bonds were evaluated in cytotoxicity, and antiviral assays (direct time kill, dose-dependency and TOTO-1) for adenovirus (Ad) and herpes simplex virus type 1 (HSV-1). Results Variable virus, adenovirus serotype-dependant, and dose-dependent inhibition were demonstrated without cytotoxicity. For Peptide A (CAP3720-44), TOTO-1 dye uptake was demonstrated for Ad5 and HSV-1. Conclusions Unlike the antibacterial activity of this CAP37 domain, its antiviral activity is not fully dependent upon disulfide bond formation. Viral inhibition appears to result, in part, from disruption of the envelope and/or capsid. PMID:19274533

  18. Adenovirus type 2 preferentially stimulates polymerase III transcription of Alu elements by relieving repression: a potential role for chromatin.

    PubMed Central

    Russanova, V R; Driscoll, C T; Howard, B H

    1995-01-01

    The number of Alu transcripts that accumulate in HeLa and other human cells is normally very low; however, infection with adenovirus type 5 increases the expression of Alu elements dramatically, indicating that the potential for polymerase III (pol III)-dependent Alu transcription in vivo is far greater than generally observed (B. Panning and J.R. Smiley, Mol. Cell. Biol. 13:3231-3244, 1993). In this study, we employed nuclear run-on in combination with a novel RNase H-based assay to investigate transcription from uninfected and adenovirus type 2-infected nuclei, as well as genomic DNAs from uninfected and infected cells. When performed in the presence of excess uninfected nuclear extract, such assays revealed that (i) the vast majority of transcriptionally competent Alu elements in nuclei are masked from the pol III transcriptional machinery and (ii) the induction of Alu expression upon adenovirus infection can be largely accounted for by an increased availability of these elements to the pol III transcription machinery. We also investigated the role of H1 histone for silencing of Alu genes and, in comparison, mouse B2 repetitive elements. Depletion of H1 led to an approximately 17-fold activation of B2 repetitive elements but did not change Alu transcription relative to that of constitutively expressed 5S rRNA genes. These results are consistent with the view that Alu repeats are efficiently sequestered by chromatin proteins, that such masking cannot be accounted for by nonspecific H1-dependent repression, and that adenovirus infection at least partially overrides the repressive mechanism(s). PMID:7623822

  19. Differential Specificity and Immunogenicity of Adenovirus Type 5 Neutralizing Antibodies Elicited by Natural Infection or Immunization▿

    PubMed Central

    Cheng, Cheng; Gall, Jason G. D.; Nason, Martha; King, C. Richter; Koup, Richard A.; Roederer, Mario; McElrath, M. Juliana; Morgan, Cecilia A.; Churchyard, Gavin; Baden, Lindsey R.; Duerr, Ann C.; Keefer, Michael C.; Graham, Barney S.; Nabel, Gary J.

    2010-01-01

    A recent clinical trial of a T-cell-based AIDS vaccine delivered with recombinant adenovirus type 5 (rAd5) vectors showed no efficacy in lowering viral load and was associated with increased risk of human immunodeficiency virus type 1 (HIV-1) infection. Preexisting immunity to Ad5 in humans could therefore affect both immunogenicity and vaccine efficacy. We hypothesized that vaccine-induced immunity is differentially affected, depending on whether subjects were exposed to Ad5 by natural infection or by vaccination. Serum samples from vaccine trial subjects receiving a DNA/rAd5 AIDS vaccine with or without prior immunity to Ad5 were examined for the specificity of their Ad5 neutralizing antibodies and their effect on HIV-1 immune responses. Here, we report that rAd5 neutralizing antibodies were directed to different components of the virion, depending on whether they were elicited by natural infection or vaccination in HIV vaccine trial subjects. Neutralizing antibodies elicited by natural infection were directed largely to the Ad5 fiber, while exposure to rAd5 through vaccination elicited antibodies primarily to capsid proteins other than fiber. Notably, preexisting immunity to Ad5 fiber from natural infection significantly reduced the CD4 and CD8 cell responses to HIV Gag after DNA/rAd5 vaccination. The specificity of Ad5 neutralizing antibodies therefore differs depending on the route of exposure, and natural Ad5 infection compromises Ad5 vaccine-induced immunity to weak immunogens, such as HIV-1 Gag. These results have implications for future AIDS vaccine trials and the design of next-generation gene-based vaccine vectors. PMID:19846512

  20. Selective induction of toxicity to human cells expressing human immunodeficiency virus type 1 Tat by a conditionally cytotoxic adenovirus vector.

    PubMed Central

    Venkatesh, L K; Arens, M Q; Subramanian, T; Chinnadurai, G

    1990-01-01

    The human immunodeficiency viruses (HIVs) primarily infect CD4+ T lymphocytes, leading eventually to the development of a systemic immune dysfunction termed acquired immunodeficiency syndrome (AIDS). An attractive strategy to combat HIV-mediated pathogenesis would be to eliminate the initial pool of infected cells and thus prevent disease progression. We have engineered a replication-defective, conditionally cytotoxic adenovirus vector, Ad-tk, whose action is dependent on the targeted expression of the herpes simplex virus type 1 thymidine kinase gene (tk), cloned downstream of the HIV-1 long terminal repeat, in human cells expressing the HIV-1 transcriptional activator Tat. Infection of Tat-expressing human HeLa or Jurkat cells with Ad-tk resulted in high-level tk expression, which was not deleterious to the viability of these cells. However, in the presence of the antiherpetic nucleoside analog ganciclovir, Ad-tk infection resulted in a massive reduction in the viability of these Tat-expressing cell lines. As adenoviruses are natural passengers of the human lymphoid system, our results suggest adenovirus vector-based strategies for the targeted expression, under the control of cis-responsive HIV regulatory elements, of cytotoxic agents in HIV-infected cells for the therapy of HIV-mediated pathogenesis. Images PMID:2247444

  1. [Mutagenic effect of human adenovirus type I on the somatic and sex cells of male mice].

    PubMed

    Podol'skaia, S V

    1986-01-01

    Human adenovirus 1 was studied for its effect on the chromosomal apparatus both in bone marrow cells and male sex cells of mice. Chromosome aberrations were most early detected in spermatocytes of the 1st order mice infected with human adenovirus 1. In bone marrow cells of mice the highest level of chromosome aberrations was observed 30, 60, 90 days after the inoculation, which corresponds to a more frequent detection of the adenoviral antigen. The UV-irradiated-virus caused chromosome aberrations in the later periods after the inoculation which might be induced by the virus reactivation in a cell. PMID:3705168

  2. Sequence-independent autoregulation of the adenovirus type 5 E1A transcription unit.

    PubMed Central

    Hearing, P; Shenk, T

    1985-01-01

    The adenovirus E1A gene is known to be autoregulated at the level of transcription. Autoregulation was found to be mediated by products of the E1A 13S mRNA, which induced a fivefold increase in E1A transcription rate. Deletion analysis suggested that the autoregulation did not require any specific sequence in the E1A transcriptional control region. This conclusion was reinforced by the demonstration that a cellular alpha-globin gene substituted for the E1A gene on the adenovirus chromosome was also positively regulated by E1A gene products. Images PMID:2943984

  3. Characteristics of Noncultivable Adenoviruses Associated with Diarrhea in Infants: A New Subgroup of Human Adenoviruses

    PubMed Central

    Gary, G. William; Hierholzer, John C.; Black, Robert E.

    1979-01-01

    Virus particles morphologically resembling adenovirus were found in fecal specimens from infants and were examined for cultivability with standard cell culture techniques and for characteristics of human adenoviruses. Specimens from 13 of 15 infants could not be cultivated in cell cultures. The two adenoviruses that were cultivated, types 1 and 31, reacted in the expected manner in all tests. Counterimmunoelectrophoresis with group-specific anti-hexon serum confirmed that the observed particles in the 15 specimens were human adenoviruses. The buoyant density in sucrose of five of the noncultivable adenoviruses in original stool suspensions averaged 1.335 g/cm3 and that of the two cultivable ones averaged 1.332 g/cm3; both groups had typical adenovirus morphology by electron microscopy. Treatment of the specimens and of a variety of tissue culture cells with proteolytic and other enzymes did not improve cultivability. Examination of partially purified virus by immunoelectron microscopy did not reveal evidence of immunoglobulin A, G, or M coating on the particles, an indication that coproantibody inhibition was not the cause of noncultivability. Fluorescent-antibody studies with an antihexon conjugate and counterimmunoelectrophoresis studies of serially passaged noncultivable viruses indicated that the viruses are infecting cells but are not undergoing effective replication. Antisera to three of the noncultivable viruses demonstrated homologous reactions in counterimmunoelectrophoresis with the respective immunizing antigens but showed only low levels of hemagglutination-inhibiting and neutralizing activity to a few of the known human adenoviruses. We concluded that the noncultivable viruses in these infant diarrhea cases were indeed human adenoviruses, were not defective particles, were not bound to coproantibody, were infectious but incapable of effective relication in conventional cell cultures, were serologically related to types 11, 17, 32, and 33, and should be

  4. Adenovirus type 2 VAI RNA transcription by polymerase III is blocked by sequence-specific methylation.

    PubMed Central

    Jüttermann, R; Hosokawa, K; Kochanek, S; Doerfler, W

    1991-01-01

    Sequence-specific methylation of the promoter and adjacent regions in mammalian genes transcribed by RNA polymerase II leads to the inhibition of these genes. So far, RNA polymerase III-transcribed genes have not been investigated in depth. We therefore studied methylation effects on the RNA polymerase III-transcribed VAI gene of adenovirus type 2 DNA. The VAI gene contains 20 5'-CG-3' dinucleotides, of which 4 (20%) can be methylated by HpaII (5'-CCGG-3') and HhaI (5'-GCGC-3'). Three of these 5'-CG-3' sequences are located close to the internal regulatory region of the VAI segment. An unmethylated, a 5'-CCGG-3'- and 5'-GCGC-3'-methylated, and a 5'-CG-3'-methylated pUC18 construct containing the VAI and VAII regions were transfected into mammalian cells. In many experiments, an inactivating effect of 5'-CCGG-3' and 5'-GCGC-3' DNA methylation on the VAI region was not observed. In contrast, methylation of all 20 5'-CG-3' sequences in the VAI region by a CpG-specific DNA methyltransferase from Spiroplasma species did interfere with VAI transcription. Transcription of the VAI- and VAII- and of the VAI-containing constructs was also shown to be inhibited in an in vitro cell-free transcription system after the constructs had been methylated at the 5'-CCGG-3' and 5'-GCGC-3' sequences or at all 5'-CG-3' sequences. When an oligodeoxyribonucleotide which carried the internal control block A of the VAI region was methylated at three 5'-CG-3' sequences, the formation of a complex with HeLa nuclear proteins was abrogated. The results presented support the notion that the VAI gene transcribed by the DNA-dependent RNA polymerase III is also inactivated by methylation of the decisive 5'-CG-3' sequences. Images PMID:2002541

  5. Development and assessment of human adenovirus type 11 as a gene transfer vector.

    PubMed

    Stone, Daniel; Ni, Shaoheng; Li, Zong-Yi; Gaggar, Anuj; DiPaolo, Nelson; Feng, Qinghua; Sandig, Volker; Lieber, André

    2005-04-01

    Adenovirus vectors based on human serotype 5 (Ad5) have successfully been used as gene transfer vectors in many gene therapy-based approaches to treat disease. Despite their widespread application, many potential therapeutic applications are limited by the widespread prevalence of vector-neutralizing antibodies within the human population and the inability of Ad5-based vectors to transduce important therapeutic target cell types. In an attempt to circumvent these problems, we have developed Ad vectors based on human Ad serotype 11 (Ad11), since the prevalence of neutralizing antibodies to Ad11 in humans is low. E1-deleted Ad11 vector genomes were generated by homologous recombination in 293 cells expressing the Ad11-E1B55K protein or by recombination in Escherichia coli. E1-deleted Ad11 genomes did not display transforming activity in rodent cells. Transduction of primary human CD34+ hematopoietic progenitor cells and immature dendritic cells was more efficient with Ad11 vectors than with Ad5 vectors. Thirty minutes after intravenous injection into mice that express one of the Ad11 receptors (CD46), we found, in a pattern and at a level comparable to what is found in humans, Ad11 vector genomes in all analyzed organs, with the highest amounts in liver, lung, kidney, and spleen. Neither Ad11 genomes nor Ad11 vector-mediated transgene expression were, however, detected at 72 h postinfusion. A large number of Ad11 particles were also found to be associated with circulating blood cells. We also discovered differences in in vitro transduction efficiencies and in vivo biodistributions between Ad11 vectors and chimeric Ad5 vectors possessing Ad11 fibers, indicating that Ad11 capsid proteins other than fibers influence viral infectivity and tropism. Overall, our study provides a basis for the application of Ad11 vectors for in vitro and in vivo gene transfer and for gaining an understanding of the factors that determine Ad tropism. PMID:15795294

  6. CD46-Mediated Transduction of a Species D Adenovirus Vaccine Improves Mucosal Vaccine Efficacy

    PubMed Central

    Camacho, Zenaido T.; Turner, Mallory A.; Barry, Michael A.

    2014-01-01

    Abstract The high levels of preexisting immunity against Adenovirus type 5 (Ad5) have deemed Ad5 unusable for translation as a human vaccine vector. Low seroprevalent alternative viral vectors may be less impacted by preexisting immunity, but they may also have significantly different phenotypes from that of Ad5. In this study we compare species D Ads (26, 28, and 48) to the species C Ad5. In vitro transduction studies show striking differences between the species C and D viruses. Most notably, Ad26 transduced human dendritic cells much more effectively than Ad5. In vivo imaging studies showed strikingly different transgene expression profiles. The Ad5 virus was superior to the species D viruses in BALB/c mice when delivered intramuscularly. However, the inverse was true when the viruses were delivered mucosally via the intranasal epithelia. Intramuscular transduction was restored in mice that ubiquitously expressed human CD46, the primary receptor for species D viruses. We analyzed both species C and D Ads for their ability to induce prophylactic immunity against influenza in the CD46 transgenic mouse model. Surprisingly, the species D vaccines again failed to induce greater levels of protective immunity as compared with the species C Ad5 when delivered intramuscularly. However, the species D Ad vaccine vector, Ad48, induced significantly greater protection as compared with Ad5 when delivered mucosally via the intranasal route in CD46 transgenic mice. These data shed light on the complexities between the species and types of Ad. Our findings indicate that more research will be required to identify the mechanisms that play a key role in the induction of protective immunity induced by species D Ad vaccines. PMID:24635714

  7. CD46-mediated transduction of a species D adenovirus vaccine improves mucosal vaccine efficacy.

    PubMed

    Camacho, Zenaido T; Turner, Mallory A; Barry, Michael A; Weaver, Eric A

    2014-04-01

    The high levels of preexisting immunity against Adenovirus type 5 (Ad5) have deemed Ad5 unusable for translation as a human vaccine vector. Low seroprevalent alternative viral vectors may be less impacted by preexisting immunity, but they may also have significantly different phenotypes from that of Ad5. In this study we compare species D Ads (26, 28, and 48) to the species C Ad5. In vitro transduction studies show striking differences between the species C and D viruses. Most notably, Ad26 transduced human dendritic cells much more effectively than Ad5. In vivo imaging studies showed strikingly different transgene expression profiles. The Ad5 virus was superior to the species D viruses in BALB/c mice when delivered intramuscularly. However, the inverse was true when the viruses were delivered mucosally via the intranasal epithelia. Intramuscular transduction was restored in mice that ubiquitously expressed human CD46, the primary receptor for species D viruses. We analyzed both species C and D Ads for their ability to induce prophylactic immunity against influenza in the CD46 transgenic mouse model. Surprisingly, the species D vaccines again failed to induce greater levels of protective immunity as compared with the species C Ad5 when delivered intramuscularly. However, the species D Ad vaccine vector, Ad48, induced significantly greater protection as compared with Ad5 when delivered mucosally via the intranasal route in CD46 transgenic mice. These data shed light on the complexities between the species and types of Ad. Our findings indicate that more research will be required to identify the mechanisms that play a key role in the induction of protective immunity induced by species D Ad vaccines. PMID:24635714

  8. Canine recombinant adenovirus vector induces an immunogenicity-related gene expression profile in skin-migrated CD11b⁺ -type DCs.

    PubMed

    Contreras, Vanessa; Urien, Céline; Jouneau, Luc; Bourge, Mickael; Bouet-Cararo, Coraline; Bonneau, Michel; Zientara, Stephan; Klonjkowski, Bernard; Schwartz-Cornil, Isabelle

    2012-01-01

    Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b(+) -type and CD103(+) -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b(+) -type DCs was far higher and broader than in the CD103(+) -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b(+) -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b(+) DC type is more responsive to CAV2 than the CD103(+) DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness. PMID:23300693

  9. Canine Recombinant Adenovirus Vector Induces an Immunogenicity-Related Gene Expression Profile in Skin-Migrated CD11b+ -Type DCs

    PubMed Central

    Jouneau, Luc; Bourge, Mickael; Bouet-Cararo, Coraline; Bonneau, Michel; Zientara, Stephan; Klonjkowski, Bernard; Schwartz-Cornil, Isabelle

    2012-01-01

    Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b+ -type and CD103+ -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b+ -type DCs was far higher and broader than in the CD103+ -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b+ -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b+ DC type is more responsive to CAV2 than the CD103+ DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness. PMID:23300693

  10. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) The 20 dogs to... negative at a 1:2 final serum dilution in a varying serum-constant virus neutralization test using 50 to.... (2) Potency test for canine hepatitis—serum neutralization test. Bulk or final container samples...

  11. Simian adenovirus type 7 (SA-7) induces tumours of nerve-supporting or paraneural cell origin in newborn hamsters.

    PubMed Central

    Ohtaki, S.; Kato, K.

    1989-01-01

    Simian adenovirus type 7 (SA-7) was found to induce tumours originating from nerve-supporting or paraneural cells in newborn hamsters, regardless of injection site or tissues. SA-7 induces glioblastomas characterized by definite localization (subependymal regions) and its main cell type, bipolar spongioblast-like cells, in the brain of hamsters inoculated as newborns. When the eyes of newborn hamsters were directly inoculated, SA-7 failed to induce retinoblastoma (0/27), but retro or peri-bulbar SA-7 tumours frequently occurred in tissues closely related to the peripheral nerve apparatus, including the oculomotor nerve or ciliary ganglion. These tumour cells were situated like stromal cells in these nerve tissues. The histological features of the orbital tumours were similar to those of SA-7-induced subcutaneous tumours but not to brain tumours. In contrast with other hamster brain tumours induced by human adenovirus type 12 or human papova JC virus, medulloepithelioma or medulloblastoma, SA-7 induced tumours exhibit distinctive histological and localization characteristics. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6a Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12a PMID:2765394

  12. Vaccines within vaccines: the use of adenovirus types 4 and 7 as influenza vaccine vectors.

    PubMed

    Weaver, Eric A

    2014-01-01

    Adenovirus Types 4 and 7 (Ad4 and Ad7) are associated with acute respiratory distress (ARD). In order to prevent widespread Ad-associated ARD (Ad-ARD) the United States military immunizes new recruits using a safe and effective lyophilized wildtype Ad4 and Ad7 delivered orally in an enteric-coated capsule. We cloned Ad4 and Ad7 and modified them to express either a GFP-Luciferase (GFPLuc) fusion gene or a centralized influenza H1 hemagglutinin (HA1-con). BALB/c mice were injected with GFPLuc expressing viruses intramuscularly (i.m.) and intranasally (i.n.). Ad4 induced significantly higher luciferase expression levels as compared with Ad7 by both routes. Ad7 transduction was restored using a human CD46+ transgenic mouse model. Mice immunized with serial dilutions of viruses expressing the HA1-con influenza vaccine gene were challenged with 100 MLD 50 of influenza virus. Ad4 protected BALB/c mice at a lower dose by i.m. immunization as compared with Ad7. Unexpectedly, there was no difference in protection by i.n. immunization. Although Ad7 i.m. transduction was restored in CD46+ transgenic mice, protection against influenza challenge required even higher doses as compared with the BALB/c mice. However, Ad7 i.n. immunized CD46+ transgenic mice were better protected as compared with Ad4. Interestingly, the restoration of Ad7 transduction in CD46+ mice did not increase vaccine efficacy and indicates that Ad7 may transduce a different subset of cells through alternative receptors in the absence of CD46. These data indicate that both Ad4 and Ad7 can effectively induce anti-H1N1 immunity against a heterologous challenge using a centralized H1 gene. Future studies in non-human primates or human clinical trials will determine the overall effectiveness of Ad4 and Ad7 as vaccines for influenza. PMID:24280656

  13. The structure of adenovirus type 12 DNA integration sites in the hamster cell genome.

    PubMed Central

    Knoblauch, M; Schröer, J; Schmitz, B; Doerfler, W

    1996-01-01

    Foreign DNA can integrate into the genomes of mammalian cells, and this process plays major roles in viral oncogenesis and in the generation of transgenic organisms and will be important in evolving regimens for human somatic gene therapy. In the present study, the insertion sites of adenovirus type 12 (Ad12) DNA genomes have been analyzed in detail in the Ad12-transformed hamster cell line T637, its revertants, which have lost most of the >20 Ad12 genome equivalents integrated chromosomally in cell line T637, and in the Ad12-induced tumor T191. Some of these junction sites have been molecularly cloned, and the nucleotide sequences at the sites of transition between viral and cellular DNAs have been determined. The sites of linkage between the hamster cellular and the foreign (viral) DNA are characterized by the frequent occurrence of patch homologies between the recombination partners. The cellular junction sites investigated here are not transcriptionally active. One of the cellular DNA sequences abutting the right Ad12 DNA terminus in cell line T637 (os2) is represented only once in the hamster genome and has a strikingly low abundance of 5'-CG-3' dinucleotide sequences. One 5'-GCGC-3' sequence close to the Ad12 DNA integration site is heavily methylated in normal cells, Ad12-transformed cells, and Ad12-induced tumor cells. The second such sequence is more remote from the junction site, is partly methylated in BHK21 hamster cells, and shows differences in methylation in different Ad12-transformed cell lines. This site is unmethylated in liver DNA. The cellular DNA sequence at the site of Ad12 linkage in the tumor T191 exhibits homologies to highly repetitive sequences of the Alu family and to an origin of hamster DNA replication containing an Alu element. A number of junction sites between Ad12 DNA and hamster or mouse DNA in Ad12-transformed cell lines or Ad12-induced tumor cell lines, investigated here and previously, are characterized by stem-loop structures

  14. Multiple methylated cap sequences in adenovirus type 2 early mRNA.

    PubMed Central

    Hashimoto, S I; Green, M

    1976-01-01

    The methylated constituents of early adenovirus 2 mRNA were studied. RNA was isolated from polyribosomes of cells double labeled with [methyl-3H]methionine and 32PO4 from 2 to 7 g postinfection in the presence of cycloheximide. Cycloheximide ensures that methylation and processing are performed by preexisting host cell enzymes. RNA was fractionated into polyadenylic [poly(A)]+ and poly(A)- molecules using poly(U)-Sepharose, and undergraded virus-specific RNA was isolated by hybridization to viral DNA in 50% formamide at 37 degrees C. Viral mRNA was digested with RNase T2 and chromatographed on DEAE-Sephadex in 7 M urea. Two 3H-labeled RNase T2-resistant oligonucleotide fractions with charges between -5 and -6 were obtained, consistent with two classes of 5' terminal methyl "cap" structures, m7G(5')ppp(5')NmpNp (cap 1) and m7G(5')ppp(5')NmNmpNp (cap 2) (Nm is a ribose 2'-O-methylation). The putative cap 1 contains all the methylated constituents of cap 1 plus Cm. The molar ratios of m7G to 2'-O-methylnucleosides is about 1.0 for cap 1 and 0.5 for cap 2, consistent with the proposed cap structures. Most significant, compositional analysis indicates four different cap 1 structures and at least three different cap 2 structures. Thus there is a minimum of seven early viral mRNA species with different cap structures, unless each type of mRNA can have more than one 5' terminus. In addition to methylated caps, early mRNA contains internal base methylations, exclusively as m6A, as shown by analyses of the mononucleotide (-2 charge) fraction. m6A was present in the ratio of 1 mol of m6Ap per 450 nucleotides. Thus viral mRNA molecules contain two to three internal m6A residues per methyl cap, since there is on the average 1 cap per 1,250 nucleotides. PMID:978798

  15. Calcium Gluconate in Phosphate Buffered Saline Increases Gene Delivery with Adenovirus Type 5

    PubMed Central

    Ahonen, Marko T.; Diaconu, Iulia; Pesonen, Sari; Kanerva, Anna; Baumann, Marc; Parviainen, Suvi T.; Spiller, Brad

    2010-01-01

    Background Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. Methods/Results We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. Conclusion In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline. PMID:20927353

  16. Adenovirus 36 Attenuates Weight Loss from Exercise but Improves Glycemic Control by Increasing Mitochondrial Activity in the Liver

    PubMed Central

    Ye, Michael B.; Park, Sooho; Kim, In-Beom; Nam, Jae-Hwan

    2014-01-01

    Human adenovirus type 36 (Ad36) as an obesity agent induces adiposity by increasing glucose uptake and promoting chronic inflammation in fat tissues; in contrast, exercise reduces total body fat and inflammation. Our objective was to determine the association between Ad36 and the effects of exercise on inflammation and glycemic control. In the human trials (n = 54), Korean children (aged 12–14 years) exercised for 60 min on three occasions each week for 2 months. We compared the body mass index (BMI) Z-scores before and after exercise. C57BL/6 mice were infected with Ad36 and Ad2 as a control, and these mice exercised for 12 weeks postinfection. After the exercise period, we determined the serum parameters and assessed the presence of inflammation and the mitochondrial function in the organs. Ad36-seropositive children who were subjected to a supervised exercise regimen had high BMI Z-scores whereas Ad36-seronegative children had lower scores. Similarly, Ad36-infected mice were resistant to weight loss and exhibited chronic inflammation of their adipose tissues despite frequent exercise. However, Ad36 combined with exercise reduced the levels of serum glucose, nonesterified fatty acids, total cholesterol, and insulin in virus-infected mice. Interestingly, virus infection increased the mitochondrial function in the liver, as demonstrated by the numbers of mitochondria, cytochrome c oxidase activity, and transcription of key mitochondrial genes. Therefore Ad36 counteracts the weight-loss effect of exercise and maintains the chronic inflammatory state, but glycemic control is improved by exercise synergistically because of increased mitochondrial activity in the liver. PMID:25479564

  17. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity.

    PubMed Central

    Teodoro, J G; Halliday, T; Whalen, S G; Takayesu, D; Graham, F L; Branton, P E

    1994-01-01

    The 55-kDa product of early region 1B (E1B) of human adenoviruses is required for viral replication and participates in cell transformation through complex formation with and inactivation of the cellular tumor suppressor p53. We have used both biochemical and genetic approaches to show that this 496-residue (496R) protein of adenovirus type 5 is phosphorylated at serine and threonine residues near the carboxy terminus within sequences characteristic of substrates of casein kinase II. Mutations which converted serines 490 and 491 to alanine residues decreased viral replication and greatly reduced the efficiency of transformation of primary baby rat kidney cells. Such mutant 496R proteins interacted with p53 at efficiencies similar to those of wild-type 496R but only partially inhibited p53 transactivation activity. These results indicated that phosphorylation at these carboxy-terminal sites either regulates the inhibition of p53 or regulates some other 496R function required for cell transformation. Images PMID:8289381

  18. Improved Hall type thruster

    NASA Astrophysics Data System (ADS)

    Wetch, Joseph R.; See-pok Wong, Britt, Edward J.; McCracken, Kevin J.; Lin, Raymond; Petrosov, Valeri; Koroteev, Anatoli

    1995-01-01

    An improved design of the Hall type stationary plasma thruster has been tested in 1994. The test results are presented. The test measures performance, EMI and beam divergence of two models of thrusters from the Russian Keldysh Scientific-Research Institute of Thermal Processes. The first of these engines, T-100 produces 80 mN thruster with power of 1.35 kWe. The other thruster, T-160 is larger and produces 280 nM thrust with 4.5 kWe. Endurance testing of the T-100 for 2000 hours was completed at NIITP. Post operation wear measurements indicate that the insulator life expectency will exceed the 8000 hour design life objective. Improved efficiencies of 48 to 52% were measured for the T-100 and 58-62% (with elevated tank pressure) for the T-160 at specific impulse Isp of 1600 seconds and 2000 seconds respectively.

  19. Combination of adenovirus and cross-linked low molecular weight PEI improves efficiency of gene transduction

    NASA Astrophysics Data System (ADS)

    Han, Jianfeng; Zhao, Dong; Zhong, Zhirong; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2010-03-01

    Recombinant adenovirus (Ad)-mediated gene therapy is an exciting novel strategy in cancer treatment. However, poor infection efficiency with coxsackievirus and adenovirus receptor (CAR) down-regulated cancer cell lines is one of the major challenges for its practical and extensive application. As an alternative method of viral gene delivery, a non-viral carrier using cationic materials could compensate for the limitation of adenovirus. In our study, adenovectors were complexed with a new synthetic polymer PEI-DEG-bis-NPC (PDN) based on polyethylenimine (PEI), and then the properties of the vehicle were characterized by measurement of size distribution, zeta potential and transmission electron microscopy (TEM). Enhancement of gene transduction by Ad/PDN complexes was observed in both CAR-overexpressing cell lines (A549) and CAR-lacking cell lines (MDCK, CHO, LLC), as a result of facilitating binding and cell uptake of adenoviral particles by the cationic component. Ad/PDN complexes also promoted the inhibition of tumor growth in vivo and prolonged the survival time of tumor-bearing mice. These data suggest that a combination of viral and non-viral gene delivery methods may offer a new approach to successful cancer gene therapy.

  20. Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis.

    PubMed Central

    Babiss, L E; Ginsberg, H S

    1984-01-01

    To determine the role adenovirus 5 early region 1b-encoded 21- and 55-kilodalton proteins play in adenovirus productive infection, mutants have been isolated which were engineered to contain small deletions or insertions at 5.8, 7.9, or 9.6 map units. By using an overlap recombination procedure involving H5dl314 (delta 3.7 to 4.6 map units) DNA cleaved at 2.6 map units with ClaI and the adenovirus 5 XhoI-C (0 to 15.5 map units) fragment containing the desired mutation, viral mutants were isolated by their ability to produce plaques on KB cell line 18, which constitutively expresses only viral early region 1b functions (Babiss et al., J. Virol. 46:454-465, 1983). DNA sequence analysis of the viral mutants isolated (H5dl118, H5dl110, H5in127, and H5dl163) indicates that all of the viruses contain mutations which affect the 55-kilodalton protein, whereas dl118 should also produce a truncated form of the 21-kilodalton protein. When analyzed for their replication characteristics in HeLa cells, all of the mutant viruses exhibited extended eclipse periods and effected yields that were reduced to 10% or less of that produced by H5sub309 (parent virus of the mutants which is phenotypically identical to wild-type adenovirus 5). When compared with characteristics of sub309, the early and late transcription and DNA replication of the mutants were similar, but synthesis of late polypeptides and late cytoplasmic mRNAs was greatly reduced. Quantitation of mutant virus-specific late mRNAs associated with polysomes revealed a threefold reduction when compared with that of sub309. Analysis of infected cell extracts further revealed that these mutants were incapable of efficiently shutting off host cell protein synthesis, suggesting that the 55-kilodalton protein plays a role in this process. These data suggest that early region 1b products may function by interacting with additional viral or host cell macromolecules to modulate host cell shutoff or that some late viral mRNA or

  1. HUMAN ADENOVIRUS TYPE 37 AND THE BALB/C MOUSE: PROGRESS TOWARD A RESTRICTED ADENOVIRUS KERATITIS MODEL (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    Chodosh, James

    2006-01-01

    Purpose To establish a mouse model of adenovirus keratitis in order to study innate immune mechanisms in the adenovirus-infected cornea. Methods Balb/c 3T3 fibroblasts were inoculated with human adenovirus (HAdV) serotypes 8, 19, or 37 and observed for cytopathic effect. Viral growth titers were performed, and apoptosis was measured by TUNEL assay. Viral and host cytokine gene expression was assessed by RT-PCR in cultured Balb/c 3T3 fibroblasts and in the corneas of virus-injected Balb/c mice. Western blot analysis was performed to detect cell signaling in the virus-infected cornea. Results Only HAdV37 induced cytopathic effect in mouse cells. Viral gene expression was limited, and viral replication was not detected. Apoptotic cell death in HAdV37-infected Balb/c cells was evident 48 and 72 hours postinfection (P < .01). MCP-1, IL-6, KC, and IP-10 mRNA levels were increased maximally by 8.4, 9.6, 10.5, and 20.0-fold, respectively, at 30 to 90 minutes after HAdV37 infection. Similar cytokine elevations were observed in the corneas of Balb/c mice 4 hours after stromal injection of HAdV37, when viral gene expression for the viral capsid protein IIIa was not detected. Western blot showed increased phosphorylation of ERK1/2 at 4 and 24 hours after corneal infection. Conclusions Despite limited viral gene expression, HAdV37 infection of Balb/c 3T3 fibroblasts results in increased proinflammatory gene expression. A similar pattern of cytokine expression in the corneas of HAdV37-infected Balb/c mice suggests the mouse adenoviral keratitis model may be useful for the study of early innate immune responses in the adenovirus-infected corneal stroma. PMID:17471351

  2. Silk-elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors

    PubMed Central

    Greish, Khaled; Frandsen, Jordan; Scharff, Stephanie; Gustafson, Joshua; Cappello, Joseph; Li, Daqing; O’Malley, Bert W.; Ghandehari, Hamidreza

    2010-01-01

    Background Adenoviral directed enzyme prodrug therapy is a promising approach for head and neck cancer gene therapy. Challenges with this approach however are transient gene expression and dissemination of viruses to distant organs. Methods We used recombinant silk-elastinlike protein copolymer (SELP) matrices for intratumoral delivery of adenoviruses containing both thymidine kinase-1, and luciferase genes in a nude mice model of JHU-022 head and neck tumor. Hydrogels made from two SELP analogues (47K and 815K) with similar silk to elastinlike block ratios but different block lengths were studied for intratumoral viral delivery. Tumor bearing mice were followed up for tumor progression and luciferase gene expression concomitantly for five weeks. Polymer’s safety was evaluated through body weight change, blood count, liver and kidney functions in addition to gross and microscopic histological examination. Results SELP 815K analogues efficiently controlled the duration and extent of transfection in tumors for up to 5 weeks with no detectable spread to the liver. About five-fold greater reduction in tumor volume was obtained with matrix-mediated delivery compared to intra-tumoral injection of adenoviruses in saline. SELP matrix proved safe in all injected mice compared to control group. Conclusion SELP- controlled gene delivery approach could potentially improve the anticancer activity of virus-mediated gene therapy while limiting viral spread to normal organs. PMID:20603862

  3. The human papillomavirus type 16 E7 protein complements adenovirus type 5 E1A amino-terminus-dependent transactivation of adenovirus type 5 early genes and increases ATF and Oct-1 DNA binding activity.

    PubMed Central

    Wong, H K; Ziff, E B

    1996-01-01

    We have previously shown that conserved region 1 (CR1) of the adenovirus type 5 (Ad5) E1A protein synergizes with CR3 in the transactivation of Ad5 early genes (H.K. Wong and E. B. Ziff, J. Virol. 68:4910-4920, 1994). CR1 lies within the E1A amino terminus and binds host regulatory proteins such as the RB protein, p107, p130, and p300. Since simian virus 40 (SV40) large T antigen and human papillomavirus type 16 (HPV16) E7 protein also bind host regulatory factors, we investigated whether these viral proteins can complement E1A mutants which are defective in early gene activation. We show that the HPV16 E7 protein but not SV40 T antigen can complement mutations in the Ad5 E1A CR1 in the transactivation of viral early promoters. The inability of SV40 T antigen to complement suggests that RB binding on its own is not sufficient for early promoter transactivation by the E1A amino terminus. Nuclear runoff assays show that complementation by HPV16 E7 restores the ability of the E1A mutants to stimulate early gene expression at the level of transcription. Furthermore, nuclear extracts from the E7-transformed cells show increased binding activity of ATF and Oct-1, factors that can recognize the elements of Ad5 early genes, consistent with gene activation by E1A and E7 at the transcriptional level. PMID:8523545

  4. DNA affinity labeling of adenovirus type 2 upstream promoter sequence-binding factors identifies two distinct proteins

    SciTech Connect

    Safer, B.; Cohen, R.B.; Garfinkel, S.; Thompson, J.A.

    1988-01-01

    A rapid affinity labeling procedure with enhanced specificity was developed to identify DNA-binding proteins. /sup 32/P was first introduced at unique phosphodiester bonds within the DNA recognition sequence. UV light-dependent cross-linking of pyrimidines to amino acid residues in direct contact at the binding site, followed by micrococcal nuclease digestion, resulted in the transfer of /sup 32/P to only those specific protein(s) which recognized the binding sequence. This method was applied to the detection and characterization of proteins that bound to the upstream promoter sequence (-50 to -66) of the human adenovirus type 2 major late promoter. We detected two distinct proteins with molecular weights of 45,000 and 116,000 that interacted with this promoter element. The two proteins differed significantly in their chromatographic and cross-linking behaviors.

  5. Effect of protein synthesis inhibitors on viral mRNA's synthesized early in adenovirus type 2 infection.

    PubMed Central

    Eggerding, F; Raskas, H J

    1978-01-01

    Viral mRNA species synthesized early in adenovirus type 2 infection in the presence of cycloheximide were compared with those synthesized in the absence of drug or in the presence of the DNA synthesis inhibitor 1-beta-D-arabinofuranosylcytosine. Cycloheximide caused approximately a 10-fold stimulation in the accumulation of [3H]uridine into early viral mRNA species. The only exception was a 24s mRNA transcribed from the transforming end of the genome; in the presence of cycloheximide, accumulation of this mRNA species was stimulated no more than 2-fold. Treatment with cycloheximide also resulted in the accumulation of polyadenylated RNAs transcribed from EcoRI-C that are heterogeneous and smaller than the 20S mRNA. Other translation inhibitors were shown to have similar effects, suggesting that inhibition of protein synthesis early after infection induces alterations in the metabolism of specific RNA sequences. PMID:621786

  6. Epidemiology and transmission characteristics of human adenovirus type 7 caused acute respiratory disease outbreak in military trainees in East China

    PubMed Central

    Cheng, Jun; Qi, Xiaoping; Chen, Dawei; Xu, Xujian; Wang, Guozheng; Dai, Yuzhu; Cui, Dawei; Chen, Qingyong; Fan, Ping; Ni, Liuda; Liu, Miao; Zhu, Feiyan; Yang, Mei; Wang, Changjun; Li, Yuexi; Sun, Changgui; Wang, Zhongyong

    2016-01-01

    Background: Human adenovirus type 7 (HAdV7) is globally attracting great concern as its high morbidity and severity in respiratory diseases, especially in Asia. Objective: To investigate the clinical and epidemiologic characteristics of HAdV7 infection outbreak in East China. Methods: The clinical samples were collected from the patients of an ARD outbreak in East Chinafor the detection of causative pathogens by multiplex PCR. The molecular type of human adenovirus isolates were identified by sequencing and homologous comparison based on their hexon genes. The spatiotemporal dynamics of global HAdV7 was investigated using the phylogenetic and phylogeographic analyses. Total 67 referenced HAdV7 hexon sequences (>800 bp) from GenBank were selected for constructing the maximum likelihood tree by MEGA 5.1.0, grouped according to the tree topology for the further migration analysis by PAUP* 4.0 and MigraPhyla 1.0 b to understand the transmission patterns of HAdV7 in global epidemics. Results: The results showed HAdV7 as the causative pathogen in this outbreak, and the outbreak strains had the hexon sequences highly identical with the isolates in Shaanxi (2012). The origin of HAdV7 was inferred as California, meanwhile a total of 21 migration routes were acquired. HAdV7 in this outbreak was statistically proven dispersed from Shaanxi province (2012). Conclusions: The analyses of epidemiology and transmission pattern of HAdV7 would not only enrich the molecular biological basic database but also provide theoretical basis for HAdV7 prevention and control strategy. PMID:27347341

  7. Structure of human adenovirus

    SciTech Connect

    Nemerow, Glen R.; Stewart, Phoebe L.; Reddy, Vijay S.

    2012-07-11

    A detailed structural analysis of the entire human adenovirus capsid has been stymied by the complexity and size of this 150 MDa macromolecular complex. Over the past 10 years, the steady improvements in viral genome manipulation concomitant with advances in crystallographic techniques and data processing software has allowed structure determination of this virus by X-ray diffraction at 3.5 {angstrom} resolution. The virus structure revealed the location, folds, and interactions of major and minor (cement proteins) on the inner and outer capsid surface. This new structural information sheds further light on the process of adenovirus capsid assembly and virus-host cell interactions.

  8. An Adenovirus Type 5 Mutant with the Preterminal Protein Gene Deleted Efficiently Provides Helper Functions for the Production of Recombinant Adeno-Associated Virus

    PubMed Central

    Maxwell, Ian H.; Maxwell, Francoise; Schaack, Jerome

    1998-01-01

    Production of recombinant adeno-associated virus (rAAV) requires helper functions that have routinely been provided by infection of the producer cells with adenovirus. Complete removal and/or inactivation of progeny adenovirus, present in such rAAV preparations, presents significant difficulty. Here, we report that an adenovirus type 5 (Ad5) mutant with the preterminal protein (pTP) gene deleted can provide helper function for the growth of rAAV. At high multiplicity, Ad5dl308ΔpTP was as efficient as the phenotypically wild-type Ad5dl309 in permitting growth of rAAV. Use of Ad5dl308ΔpTP, which is incapable of replication in the absence of complementation for pTP, as a helper avoids the need to remove contaminating adenovirus infectious activity by heat inactivation or by purification. Comparison of the transducing ability of rAAV generated with either Ad5dl308ΔpTP or Ad5dl309 as a helper demonstrated that the heat inactivation protocol generally used does not remove all of the helper Ad5dl309 function. PMID:9733887

  9. Human Adenovirus 52 Uses Sialic Acid-containing Glycoproteins and the Coxsackie and Adenovirus Receptor for Binding to Target Cells

    PubMed Central

    Lenman, Annasara; Liaci, A. Manuel; Liu, Yan; Årdahl, Carin; Rajan, Anandi; Nilsson, Emma; Bradford, Will; Kaeshammer, Lisa; Jones, Morris S.; Frängsmyr, Lars; Feizi, Ten; Stehle, Thilo; Arnberg, Niklas

    2015-01-01

    Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR) protein. Human adenovirus type 52 (HAdV-52) is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK) binds to CAR, and the knob domain of the short fiber (52SFK) binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy. PMID:25674795

  10. Retargeted oncolytic adenovirus displaying a single variable domain of camelid heavy-chain-only antibody in a fiber protein

    PubMed Central

    van Erp, Elisabeth A; Kaliberova, Lyudmila N; Kaliberov, Sergey A; Curiel, David T

    2015-01-01

    Conditionally replicative adenoviruses are promising agents for oncolytic virotherapy. Various approaches have been attempted to retarget adenoviruses to tumor-specific antigens to circumvent deficiency of receptor for adenoviral binding and to provide an additional level of tumor specificity. Functional incorporation of highly specific targeting molecules into the viral capsid can potentially retarget adenoviral infection. However, conventional antibodies are not compatible with the cytoplasmic adenovirus capsid synthesis. The goal of this study was to evaluate the utility of single variable domains derived from heavy chain camelid antibodies for retargeting of adenovirus infection. We have combined transcriptional targeting using a tumor-specific promoter with transductional targeting through viral capsid incorporation of antihuman carcinoembryonic antigen single variable domains. Obtained data demonstrated that employment of a single variable domain genetically incorporated into an adenovirus fiber increased specificity of infection and efficacy of replication of single variable domain-targeted oncolytic adenovirus. The double targeting, both transcriptional through the C-X-C chemokine receptor type 4 promoter and transductional using the single variable domain, is a promising means to improve the therapeutic index for these advanced generation conditionally replicative adenoviruses. A successful strategy to transductional retargeting of oncolytic adenovirus infection has not been shown before and therefore we believe this is the first employment of transductional targeting using single variable domains derived from heavy chain camelid antibodies to enhance specificity of conditionally replicative adenoviruses. PMID:27119101

  11. Prevalence, quantification, and typing of human adenoviruses detected in river water in Taiwan.

    PubMed

    Huang, Zhon-Min; Hsu, Bing-Mu; Kao, Po-Min; Chang, Tien-Yu; Hsu, Tsui-Kang; Ho, Ying-Ning; Yang, Yi-Chun; Huang, Yu-Li

    2015-06-01

    The prevalence of human adenoviruses (HAdV) in river waters was investigated in this study. Water samples were collected from 13 rivers in Taiwan, concentrated, and assessed for the presence of HAdVs using nested polymerase chain reaction (PCR). Human AdV positive samples were then subjected to real-time PCR (qPCR) to quantify the viral genomes and further subjected to primer-based genotyping to identify the various serotypes present. For each water sample, several water quality parameters were evaluated, including heterotrophic plate count, total coliform, Escherichia coli, water temperature, pH, conductivity, and dissolved oxygen. Among the 13 rivers examined, four rivers (30.8 %) were found to contain HAdVs. The major genotype was F species HAdV serotype 41. The mean HAdVs concentrations ranged from 6.10 × 10(2) to 8.51 × 10(2) copies/L. No significant differences were observed between the presence of HAdVs, and all of the water quality parameters evaluated (heterotrophic plate count, total coliform, E. coli, water temperature, pH, conductivity, and dissolved oxygen). Given the potential health risks posed by the presence of enteric viruses in environmental waters, further assessment is desirable with respect to possible sources, virus transport, and survival of viruses in the aquatic environment. PMID:25537289

  12. Nucleosome-like structural subunits of intranuclear parental adenovirus type 2 DNA.

    PubMed Central

    Sergeant, A; Tigges, M A; Raskas, H J

    1979-01-01

    The intranuclear structure of parental adenovirus 2 DNA was studied using digestion with micrococcal nuclease as a probe. When cultures were infected with 32P-labeled virions, at a multiplicity of 3,000 particles per cell, 14 to 21% of parental DNA penetrated the cell and reached the nucleus. Of this parental DNA, 60% could be solubilized by extensive digestion with micrococcal nuclease. The nuclease-resistant fraction contained viral deoxyribonucleoprotein monomers and oligomers. These nucleosome-like structures contained DNA fragments which are integral multiples of a unit-length DNA of approximately 185 base pairs. The monomeric DNA is similar in length to the unit-length DNA contained in cellular nucleosomes. However, the viral oligomers are slightly smaller than their cellular counterparts. DNA-DNA hybridization demonstrated that all segments of the viral genome, including those expressed as mRNA only at late times, are represented in the nucleosomal viral DNA. The amount of early intranuclear viral chromatin was proportional to multiplicity of infection up to multiplicities of 4,000 particles per cell. However, viral transcriptional activity did not increase in direct proportion to the amount of viral chromatin. Maximum accumulation of intranuclear viral chromatin was achieved by 3 h after infection. The intranuclear parental viral chromatin remained resistant to nuclease digestion even at late times in infection, after viral DNA replication had begun. Images PMID:448800

  13. The role of human adenoviruses type 41 in acute diarrheal disease in Minas Gerais after rotavirus vaccination

    PubMed Central

    Reis, Thaís Aparecida Vieira; Assis, Andrêssa Silvino Ferreira; do Valle, Daniel Almeida; Barletta, Vívian Honorato; de Carvalho, Iná Pires; Rose, Tatiana Lundgren; Portes, Silvana Augusta Rodrigues; Leite, José Paulo Gagliardi; da Rosa e Silva, Maria Luzia

    2016-01-01

    Human adenovirus species F (HAdV-F) type 40 and 41 are commonly associated with acute diarrheal disease (ADD) across the world. Despite being the largest state in southeastern Brazil and having the second largest number of inhabitants, there is no information in the State of Minas Gerais regarding the role of HAdV-F in the etiology of ADD. This study was performed to determine the prevalence, to verify the epidemiological aspects of infection, and to characterize the strains of human adenoviruses (HAdV) detected. A total of 377 diarrheal fecal samples were obtained between January 2007 and August 2011 from inpatient and outpatient children of age ranging from 0 to 12 years. All samples were previously tested for rotavirus, norovirus, and astrovirus, and 314 of 377 were negative. The viral DNA was extracted, amplified using the polymerase chain reaction and the HAdV-positive samples were sequenced and phylogenetically analyzed. Statistical analyses were performed using the Chi-square test (p < 0.05), considering two conditions: the total of samples tested (377) and the total of negative samples for the remaining viruses tested (314). The overall prevalence of HAdV was 12.47% (47/377); and in 76.60% (36/47) of the positive samples, this virus was the only infectious agent detected. The phylogenetic analysis of partial sequences of 32 positive samples revealed that they all clustered with the HAdV-F type 41. The statistical analysis showed that there was no correlation between the onset of the HAdV infection and the origin of the samples (inpatients or outpatients) in the two conditions tested: the total of samples tested (p = 0.598) and the total of negative samples for the remaining viruses tested (p = 0.614). There was a significant association in the occurrence of infection in children aged 0–12 months for the condition 1 (p = 0.030) as well as condition 2 (p = 0.019). The occurrence of infections due to HAdV did not coincide with a pattern of seasonal

  14. Organization of early region 1B of human adenovirus type 2: identification of four differentially spliced mRNAs.

    PubMed Central

    Virtanen, A; Pettersson, U

    1985-01-01

    The mRNAs from early region 1B of adenovirus type 2 have been studied by Northern blot, S1 nuclease, and cDNA analysis. Two novel mRNAs, designated 14S and 14.5S, have been observed in addition to the previously identified 9S, 13S, and 22S mRNAs. They are 1.26 and 1.31 kilobases long and differ from the 13S and 22S mRNAs in being composed of three exons instead of two. Their two terminal exons are the same as those present in the 13S mRNA, whereas the middle exon is unique to each of the two novel mRNA species. The structures of the 14S and 14.5S mRNAs allow the prediction of their coding capacities: both mRNA species, like the 22S and 13S mRNAs, contain an uninterrupted translational reading frame encoding a 21,000-molecular-weight (21K) polypeptide. The 14S mRNA can, in addition, encode a 16.5K polypeptide which shares N-terminal and C-terminal sequences with the 55K polypeptide, known to be encoded by the 22S mRNA. The 14.5S mRNA species encodes a hypothetical 9.2K polypeptide which has the same N terminus as the 55K polypeptide but a unique C terminus. The two mRNAs differ in their kinetics of appearance; the 14.5S mRNA is preferentially expressed late after infection in contrast to the 14S mRNA, which is present in approximately equal amounts early and late after infection. Taken together with previously published information the results suggest that early region 1B of adenovirus type 2 encodes five proteins in addition to virion polypeptide IX. These have predicted molecular weights of 55,000, 21,000, 16,500, 9,200, and 8,100. Images PMID:3989911

  15. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    PubMed

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine. PMID:23867013

  16. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  17. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  18. A duplex real-time PCR assay based on TaqMan technology for simultaneous detection and differentiation of canine adenovirus types 1 and 2.

    PubMed

    Dowgier, Giulia; Mari, Viviana; Losurdo, Michele; Larocca, Vittorio; Colaianni, Maria Loredana; Cirone, Francesco; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio; Decaro, Nicola

    2016-08-01

    Canine adenoviruses are a major cause of disease in dogs, coyotes, red foxes and wolves, as well as in other carnivores and marine mammals. Canine adenovirus type 1 (CAdV-1) and canine adenovirus type 2 (CAdV-2) cause infectious canine hepatitis (ICH) and infectious tracheobronchitis (ITB), respectively. In this study, a duplex real-time PCR assay for simultaneous detection and characterisation of CAdV-1 and CAdV-2 was developed by using a single primer pair and virus-specific probes. The assay was validated testing standard DNAs produced on purpose and clinical samples of various matrices known to be positive for CAdV-1, CAdV-2 or both viruses. Precise calculation of DNA loads in samples containing a wide range of viral amounts was allowed by generating a standard curve for absolute quantification. The assay was proven to be highly specific, since no cross-reactions with the different CAdV type was observed, and sensitive, being able to detect less than 10 copies of CAdV-1/CAdV-2 DNA. The low intra-assay and interassay coefficient of variations demonstrated a high repeatability, thus confirming the potential use of this assay for quantitative detection of CAdV-1 and CAdV-2 for rapid diagnosis and epidemiological investigations. PMID:27040113

  19. Adenovirus type 12 E1A protein expressed in Escherichia coli is functional upon transfer by microinjection or protoplast fusion into mammalian cells.

    PubMed Central

    Krippl, B; Andrisani, O; Jones, N; Westphal, H; Rosenberg, M; Ferguson, B

    1986-01-01

    We efficiently expressed, in Escherichia coli, and purified the protein product encoded by the human adenovirus type 12 (Ad12) 13S mRNA. The functional properties of the E1A protein were analyzed by introducing the protein by microinjection or protoplast fusion into living mammalian cells. We showed that the E. coli-expressed E1A protein induces gene expression of the adenovirus type 5 (Ad5) E1A deletion mutant Ad5dl312. The purified E1A protein rapidly and quantitatively localized to the cell nucleus after microinjection into the cytoplasm. In addition, we raised high-titered monospecific antibodies to the purified Ad12 E1A protein. Using deleted forms of an adenovirus type 2 and Ad5 hybrid (Ad2/5) E1A protein, we showed that all of the epitopes conserved between Ad2/5 E1A and Ad12 E1A protein that are recognized by the Ad12 E1A-specific antiserum map to within the first exon-encoded amino-terminal half of the protein. Images PMID:2942704

  20. [The reproductive characteristics of human adenovirus type 2 in cultures of lymphoblastoid cells with B and T phenotypes].

    PubMed

    Povnitsa, O Iu; Diachenko, N S; Chernomaz, A A; Nosach, L N; Rybalko, S L; Gritsak, T F; Beregovenko, V N; Diadiun, S T

    1997-01-01

    A comparative characteristic of the reproduction process of type 2 human adenovirus in several lines of lymphoblastoid cells of B- and T-phenotype is presented. Formation of hexone and infectious virus in the cells of Jurkat, MT4, Raji lines was rather intensive and approached to that in the culture of the permissive epithelium cells Hep-2. These indices were much lower in the cultures of cells B 95-8 and MT4/BIII LBK which were chronically infected by VEB and HIV, accordingly and produced them that can evidence for the interference of Ad and VEB or Ad and HIV under superinfection of cells. Cells of SEM line possessing T-phenotype, were apparently semi-permissive for Ad h2, though the low almost unchanged content of hexone and infectious virus remains in them for a rather long time: about 15 days. Thus, obtained data within analyzed series of experiments expand the present ideas about lymphotropicity of Ad as their important property realized at the level of cell and infected macroorganism. PMID:9511371

  1. Acylation of the 176R (19-kilodalton) early region 1B protein of human adenovirus type 5.

    PubMed Central

    McGlade, C J; Tremblay, M L; Yee, S P; Ross, R; Branton, P E

    1987-01-01

    Antipeptide sera were prepared in rabbits against synthetic peptides corresponding to the predicted amino and carboxy termini of the early region 1B 176R (19-kilodalton [kDa]) protein of human adenovirus type 5. Both antisera specifically immunoprecipitated the 19- and 18.5-kDa forms of the 176R protein observed previously with antitumor sera. These data suggested that both species are full-length molecules of 176 residues. To identify posttranslational modifications that could explain the formation of these multiple species and possibly their known association with membranes, studies were carried out to determine whether they are glycosylated or acylated. Neither the 19- nor the 18.5-kDa species appeared to be a glycoprotein, however, they were labeled with [3H]palmitate and [3H]myristate, indicating that both species are acylated. Thus, whereas acylation does not appear to be the cause of the multiple species, it could play a role in the membrane association of these viral proteins. The acylation of 176R was found to be unusual. The fatty acid linkage was resistant to treatment with hydroxylamine or methanol-KOH, suggesting that acylation was through an amide bond. In addition, both palmitate and myristate were present in 176R, suggesting either a lack of specificity in the acylation reaction or the existence of more than one acylation site. Images PMID:2957509

  2. Triazole linker-based trivalent sialic acid inhibitors of adenovirus type 37 infection of human corneal epithelial cells.

    PubMed

    Caraballo, Rémi; Saleeb, Michael; Bauer, Johannes; Liaci, A Manuel; Chandra, Naresh; Storm, Rickard J; Frängsmyr, Lars; Qian, Weixing; Stehle, Thilo; Arnberg, Niklas; Elofsson, Mikael

    2015-09-21

    Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis (EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory properties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 = 2.9 nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was concluded that repeated eye administration did not cause any adverse effects. PMID:26177934

  3. [Identification and typing of adenovirus from acute respiratory infections in pediatric patients in Beijing from 2003 to 2012].

    PubMed

    Deng, Jie; Qian, Yuan; Zhao, Lin-Qing; Zhu, Ru-Nan; Sun, Yu; Tian, Run

    2013-11-01

    Adenovirus (ADV) is one of the most common causes of acute respiratory infections for infants and children. The objective of this study was to understand the prevalence of ADV in acute respiratory infections in infants and children in Beijing and the types of the circulating ADVs. Clinical specimens were collected from patients with acute respiratory infections in a consecutive period of 10 years from Jan 2003 to Dec 2012. ADVs were detected from the collected clinical specimens by tissue culture and/or immunofluorescence assay and typed by nested-PCR based on the sequence of hexon gene for ADV types 3 and 7. For those strains which could not be typed by the nest-PCR, the gene fragment was amplified by a universal primer pair for all ADV types from group A to F and the PCR products were sequenced directly and analyzed with sequence comparison. Out of 39214 clinical specimens collected, including 7198 throat swabs from outpatients and 32016 nasopharyngeal aspirates from hospitalized patients, 884 were ADV positive by tissue culture and/or immunofluorescence assay, the overall positive rate was 2.25% (884/39214). The positive rate of ADV from the hospitalized was 2.08% (665/32016), while from the outpatients was 3.04% (219/7198). The ADV positive rate for year 2010 was 3.69%, which was the highest among the 10 years. The types of the ADVs were tested for 848 out of the 884 patients by using the nest-PCR and sequence analysis. It was showed that AD3 was the most prevalent with the rate of 53.18% (451/848), followed by AD7 36.79% (312/848), AD2 3.78% (32/848), AD55 2.24% (19/848), AD1 2.0% (17/848), AD5 0.94% (8/848), AD14 0.47% (4/848), AD6 0.35% (3/848) and AD4 0.24% (2/848). AD3 was the most predominant in most of the years among these 10 years, except 2012, 2003 and 2007. AD7 was the most predominant in 2012, and AD3 and AD7 were co-circulated in 2003 and 2007. Among 26 ADV infected severe pneumonia cases with pulmonary failure, 23 (88.5%) were AD7 positive, while

  4. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies.

    PubMed

    Ryu, Hodon; Cashdollar, Jennifer L; Fout, G Shay; Schrantz, Karen A; Hayes, Samuel

    2015-01-01

    Practical difficulties of the traditional adenovirus infectivity assay such as intensive labor requirements and longer turnaround period limit the direct use of adenovirus as a testing microorganism for systematic, comprehensive disinfection studies. In this study, we attempted to validate the applicability of integrated cell culture quantitative PCR (ICC-qPCR) as an alternative to the traditional cell culture method with human adenovirus type 2 (HAdV2) in a low-pressure UV disinfection study and to further optimize the procedures of ICC-qPCR for 24-well plate format. The relatively high stability of the hexon gene of HAdV2 was observed after exposure to UV radiation, resulting in a maximum gene copy reduction of 0.5 log10 at 280 mJ cm(-2). Two-day post-inoculation incubation period and a maximum spiking level of 10(5) MPN mL(-1) were selected as optimum conditions of ICC-qPCR with the tested HAdV2. An approximate 1:1 correlation of virus quantities by the traditional and ICC-qPCR cell culture based methods suggested that ICC-qPCR is a satisfactory alternative for practical application in HAdV2 disinfection studies. ICC-qPCR results, coupled with a first-order kinetic model (i.e., the inactivation rate constant of 0.0232 cm(2) mJ(-1)), showed that an UV dose of 172 mJ cm(-2) achieved a 4-log inactivation credit for HAdV2. This estimate is comparable to other studies with HAdV2 and other adenovirus respiratory types. The newly optimized ICC-qPCR shows much promise for further study on its applicability of other slow replicating viruses in disinfection studies. PMID:26030683

  5. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice

    PubMed Central

    Gao, Peng

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  6. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice.

    PubMed

    Xie, Yinli; Gao, Peng; Li, Zhiyong

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  7. Efficacy of helper-dependent adenovirus vector-mediated gene therapy in murine glycogen storage disease type Ia.

    PubMed

    Koeberl, Dwight D; Sun, B; Bird, A; Chen, Y T; Oka, K; Chan, L

    2007-07-01

    Genetic deficiency of glucose-6-phosphatase (G6Pase) underlies glycogen storage disease type Ia (GSD-Ia, also known as von Gierke disease; MIM 232200), an autosomal recessive disorder of metabolism associated with life-threatening hypoglycemia and growth retardation. We tested whether helper-dependent adenovirus (HDAd)-mediated hepatic delivery of G6Pase would lead to prolonged survival and sustained correction of the metabolic abnormalities in G6Pase knockout (KO) mice, a model for a severe form of GSD-Ia. An HDAd vector encoding G6Pase was administered intravenously (2 or 5 x 10(12)vector particles/kg) to 2-week-old (w.o.) G6Pase-KO mice. Following HDAd vector administration survival was prolonged to a median of 7 months, in contrast to untreated affected mice that did not survive past 3 weeks of age. G6Pase levels increased more than tenfold between 3 days and 28 weeks after HDAd injection (P < 0.03). The weights of untreated 2 w.o. G6Pase-KO mice were approximately half those of their unaffected littermates, and treatment stimulated their growth to the size of wild-type mice. Severe hypoglycemia and hypercholesterolemia, which are hallmarks of GSD-Ia both in humans and in mice, were also restored to normalcy by the treatment. Glycogen accumulation in the liver was markedly reduced. The efficacy of HDAd-G6Pase treatment in reversing the physiological and biochemical abnormalities associated with GSD-Ia in affected G6Pase-KO mice justifies further preclinical evaluation in murine and canine models of GSD-Ia. PMID:17505475

  8. The dual effect of adenovirus type 5 E1A 13S protein on NF-kappaB activation is antagonized by E1B 19K.

    PubMed Central

    Schmitz, M L; Indorf, A; Limbourg, F P; Städtler, H; Traenckner, E B; Baeuerle, P A

    1996-01-01

    The genomes of human adenoviruses encode several regulatory proteins, including the two differentially spliced gene products E1A and E1B. Here, we show that the 13S but not the 12S splice variant of E1A of adenovirus type 5 can activate the human transcription factor NF-kappaB in a bimodal fashion. One mode is the activation of NF-kappaB containing the p65 subunit from the cytoplasmic NF-kappaB-IkappaB complex. This activation required reactive oxygen intermediates and the phosphorylation of IkappaBalpha at serines 32 and 36, followed by IkappaBalpha degradation and the nuclear uptake of NF-kappaB. In addition, 13S E1A stimulated the transcriptional activity of the C-terminal 80 amino acids of p65 at a core promoter with either a TATA box or an initiator (INR) element. The C-terminal 80 amino acids of p65 were found to associate with E1A in vitro. The activation of NF-kappaB-dependent reporter gene transcription by E1A was potently suppressed upon coexpression of the E1B 19-kDa protein (19K). E1B 19K prevented both the activation of NF-kappaB and the E1A-mediated transcriptional enhancement of p65. These inhibitory effects were not found for the 55-kDa splice variant of the E1B protein. We suggest that the inductive effect of E1A 13S on the host factor NF-kappaB, whose activation is important for the transcription of various adenovirus genes, must be counteracted by the suppressive effect of E1B 19K so that the adenovirus-infected cell can escape the immune-stimulatory and apoptotic effects of NF-kappaB. PMID:8754803

  9. Molecular Typing and Epidemiology Profiles of Human Adenovirus Infection among Paediatric Patients with Severe Acute Respiratory Infection in China

    PubMed Central

    Li, Yamin; Zhou, Weimin; Zhao, Yanjie; Wang, Yanqun; Xie, Zhengde; Lou, Yongliang; Tan, Wenjie

    2015-01-01

    Background Human adenoviruses (HAdVs) have been recognised as pathogens that cause a broad spectrum of diseases. The studies on HAdV infection among children with severe acute respiratory infection (SARI) are limited. Objective To investigate the prevalence, epidemiology, and genotype of HAdV among children with SARI in China. Study Design Nasopharyngeal aspirates (NPAs) or induced sputum (IS) was collected from hospitalised children with SARIs in Beijing (representing Northern China; n = 259) and Zhejiang Province (representing Eastern China; n = 293) from 2007 to 2010. The prevalence of HAdV was screened by polymerase chain reaction (PCR), followed by sequence typing of PCR fragments that targeted the second half of the hexon gene. In addition, co-infection with other human respiratory viruses, related epidemiological profiles and clinical presentations were investigated. Results and Conclusions In total, 76 (13.8%) of 552 SARI patients were positive for HAdV, and the infection rates of HAdV in Northern and Eastern China were 20.1% (n = 52) and 8.2% (n = 24), respectively. HAdV co-infection with other respiratory viruses was frequent (infection rates: Northern China, 90.4%; Eastern China, 70.8%). The peak seasons for HAdV-B infection was winter and spring. Additionally, members of multiple species (Human mastadenovirus B, C, D and E) were circulating among paediatric patients with SARI, of which HAdV-B (34/52; 65.4%) and HAdV-C (20/24, 83.3%) were the most predominant in Northern and Eastern China, respectively. These findings provide a benchmark for future epidemiology and prevention strategies for HAdV. PMID:25856575

  10. Outbreak of Epidemic Keratoconjunctivitis Caused by Human Adenovirus Type 56, China, 2012

    PubMed Central

    Yu, Wei; Mao, Lingling; Sun, Haibo; Yao, Wei; Tian, Jiang; Wang, Ling; Bo, Zhijian; Zhu, Zhen; Zhang, Yan; Zhao, Zhuo; Xu, Wenbo

    2014-01-01

    HAdV-56 is a new recombinant type isolated from epidemic keratoconjunctivitis (EKC) patients and has been sporadically isolated in Japan several times. Here, an outbreak of EKC in the city of Dalian, China involving a large number of workers in two factories was reported; this was the first outbreak of EKC associated with HAdV-56 worldwide. PMID:25343525

  11. Posttranslational modification at the N terminus of the human adenovirus type 12 E1A 235R tumor antigen.

    PubMed Central

    Lucher, L A; Brackmann, K H; Symington, J S; Green, M

    1986-01-01

    The adenovirus E1A transforming region, which encodes immortalization, partial cell transformation, and gene activation functions, expresses two early mRNAs, 13S and 12S. Multiple-T antigen species with different electrophoretic mobilities are formed from each mRNA, presumably by unknown posttranslational modifications. The adenovirus type 12 (Ad12) 13S and 12S mRNAs encode E1A T antigens of 266 and 235 amino acid residues (266R and 235R), respectively. To study possible posttranslational processing at the N and C termini and to distinguish between the Ad12 266R and 235R T antigens, we prepared antibodies targeted to synthetic peptides encoded at the common C (peptide 204) and N (peptide 202) termini of the 266R and 235R T antigens and at the unique internal domain of the 266R T antigen (peptide 206). The specificity of each anti-peptide antibody was confirmed by immunoprecipitation of the 266R and 235R T antigens produced in Escherichia coli. Immunoprecipitation analysis of the E1A T antigens synthesized in Ad12-infected KB cells revealed the following. Antibody to the common C terminus recognized three T antigens with apparent Mrs of 43,000, 42,000, and 39,000 (43K, 42K, and 39K). All three forms were phosphorylated and were present in both the nucleus and the cytoplasm. The 43K and 42K T antigens were rapidly synthesized during a 10-min pulse with [35S]methionine in Ad12-infected cells. The 43K T antigen had a half-life of 20 min, the 42K T antigen had a longer half-life of about 40 min, and the 39K T antigen became the predominant E1A T antigen. Antibodies to the unique region immunoprecipitated the 43K T antigen but not the 42K and 39K T antigens. Antibody to the N terminus immunoprecipitated the 43K and 42K T antigens but not the 39K T antigen, suggesting that the 39K T antigen possessed a modified N terminus. Partial N-terminal amino acid sequence analysis showed that the 43K and 42K T antigens contain methionine at residues 1 and 5, as predicted from the

  12. Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma

    PubMed Central

    Liu, Cang; Gu, Zheng; Chen, Shizhang; Guo, Ying; Fan, Zhong; Wang, Xiao; Chen, Jianfei; Zhao, Yanyan; Zhou, Jianfeng; Wang, Jisheng; Ma, Ding; Li, Ning

    2016-01-01

    Background This randomized, open-label, multicenter, phase II clinical trial was conducted to assess the anti-tumor efficacy and safety of replication-deficient adenovirus mutant thymidine kinase (ADV-TK) in combination with ganciclovir administration in patients with recurrent high-grade glioma (HGG). Patients and Methods 53 patients with recurrent HGG were randomly allocated to receive intra-arterial cerebral infusion of ADV-TK or conventional treatments. The primary end point was 6-month progression-free survival (PFS-6). Secondary end points included progression-free survival (PFS), overall survival (OS), safety, and clinical benefit. This trial is registered with Clinicaltrials.gov, NCT00870181. Results In ADV-TK group, PFS-6 was 54.5%, the median PFS was 29.6 weeks, the median OS was 45.4 weeks, and better survivals were achieved when compared with control group. The one-year PFS and OS were 22.7% and 44.6% in ADV-TK group respectively, and clinical benefit was 68.2%. There are 2 patients alive for more than 4 years without progression in ADV-TK group. In the subgroup of glioblastoma received ADV-TK, PFS-6 was 71.4%, median PFS was 34.9 weeks, median OS was 45.7 weeks respectively, much better than those in control group. The one-year PFS and OS were 35.7% and 50.0% in ADV-TK group respectively. ADV-TK/ganciclovir gene therapy was well tolerated, and no treatment-related severe adverse events were noted. Conclusion Our study demonstrated a notable improvement of PFS-6, PFS and OS in ADV-TK treated group, and the efficacy and safety appear to be comparable to other reported treatments used for recurrent HGG. ADV-TK gene therapy is therefore a valuable therapeutic option for recurrent HGG. PMID:26716896

  13. Three-year serologic immunity against canine parvovirus type 2 and canine adenovirus type 2 in dogs vaccinated with a canine combination vaccine.

    PubMed

    Larson, L J; Schultz, R D

    2007-01-01

    A group of client-owned dogs and a group of dogs at a commercial kennel were evaluated for duration of antibody responses against canine parvovirus type 2 (CPV-2) and canine adenovirus type 1 (CAV-1) after receiving a combination vaccine containing recombinant canarypox-vectored canine distemper virus (CDV) and modified-live CPV-2, CAV-2, and canine parainfluenza virus, with (C6) or without (C4) two serovars of Leptospira (Recombitek C4 or C6, Merial). Duration of antibody, which correlates with protective immunity, was found to be at least 36 months in both groups. Recombitek combination vaccines can confidently be given every 3 years with assurance of protection in immunocompetent dogs against CPV-2 and CAV-1 as well as CDV. This allows this combination vaccine, like other, similar modified- live virus combination products containing CDV, CAV-2, and CPV-2, to be administered in accordance with the recommendations of the American Animal Hospital Association Canine Vaccine Task Force. PMID:18183549

  14. Autoregulation of Adenovirus Type 5 Early Gene Expression II. Effect of Temperature-Sensitive Early Mutations on Virus RNA Accumulation

    PubMed Central

    Carter, T. H.; Blanton, R. A.

    1978-01-01

    The kinetics of accumulation of early virus RNA in the cytoplasm of KB cells infected at 40.5°C by wild-type (WT) adenovirus type 5 and a temperature-sensitive “early” mutant, H5ts125 (ts125), were compared by hybridization of unlabeled RNA in solution to the 3H-labeled l strand of Ad5 DNA HindIII restriction endonuclease fragment A. In the presence of 1-β-d-arabinofuranosylcytosine, Al RNA accumulated in WT-infected cells for 9 h and then decreased in concentration to 6% of the 9-h concentration by 18 h. In ts125-infected cells, Al RNA accumulated for 12 h and then remained at the same concentration for at least 6 h thereafter. The concentrations of virus RNA from the four early transcription regions of the genome were measured at 15 h in cells infected at 40.5°C in the presence of 1-β-d-arabinofuranosylcytosine by: (i) ts125 and WT; (ii) two other ts early mutants, ts107 and ts149; and (iii) a revertant of ts125. The revertant and ts149, a mutant from a different complementation group than ts125, both accumulated all early virus cytoplasmic RNA species in amounts similar to, or less than, WT. However, both ts125 and ts107, independently isolated mutations in the 72,000-molecular-weight (72K) DNA-binding protein gene, accumulated cytoplasmic early RNA in excess of that found in WT infection. This pattern of RNA accumulation with the mutants and WT virus was the same in the nuclei as in the cytoplasm at 40.5°C. At 32°C, however, the abundance of nuclear virus RNA from all four early regions was the same in cells infected by either ts125 or WT. Differences in the relative abundance of nuclear RNA from the four early regions were observed in cells infected at 40.5 and 32°C, but were not dependent upon the infecting virus genotype. These results are consistent with autoregulation of early gene expression by the 72K protein and support the hypothesis that the 72K protein either decreases the rate of early virus transcription or increases the rate of virus

  15. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway.

    PubMed

    Nagai, Y; Limberis, M P; Zhang, H

    2014-02-01

    Virus vector-mediated gene transfer has been developed as a treatment for cystic fibrosis (CF) airway disease, a lethal inherited disorder caused by somatic mutations in the cystic fibrosis transmembrane conductance regulator gene. The pathological proinflammatory environment of CF as well as the naïve and adaptive immunity induced by the virus vector itself limits the effectiveness of gene therapy for CF airway. Here, we report the use of an HDAC inhibitor, valproic acid (VPA), to enhance the activity of the regulatory T cells (T(reg)) and to improve the expression of virus vector-mediated gene transfer to the respiratory epithelium. Our study demonstrates the potential utility of VPA, a drug used for over 50 years in humans as an anticonvulsant and mood-stabilizer, in controlling inflammation and improving the efficacy of gene transfer in CF airway. PMID:24385144

  16. [Construction of recombinant adenovirus co-expressing M1 and HA genes of influenza virus type A].

    PubMed

    Guo, Jian-Qiang; Yao, Li-Hong; Chen, Ai-Jun; Xu, Yi; Jia, Run-Qing; Bo, Hong; Dong, Jie; Zhou, Jian-Fang; Shu, Yue-Long; Zhang, Zhi-Qing

    2009-03-01

    Based on the human H5N1 influenza virus strain A/Anhui/1/2005, recombinant adenovirus co-expressing M1 and HA genes of H5N1 influenza virus was constructed using an internal ribosome entry site (IRES) sequence to link the two genes. The M1 and HA genes of H5N1 influenza virus were amplified by PCR and subcloned into pStar vector separately. Then the M1-IRES-HA fragment was amplified and subcloned into pShuttle-CMV vector, the shuttle plasmid was then linearized and transformed into BJ5183 bacteria which contained backbone vector pAd-Easy. The recombinant vector pAd-Easy was packaged in 293 cells to get recombinant adenovirus Ad-M1/HA. CPE was observed after 293 cells were transfected by Ad-M1/HA. The co-expression of M1 and HA genes was confirmed by Western-blot and IFA (immunofluorescence assay). The IRES containing recombinant adenovirus allowed functional co-expression of M1 and HA genes and provided the foundation for developing new influenza vaccines with adenoviral vector. PMID:19678564

  17. Canine adenovirus based rabies vaccines.

    PubMed

    Tordo, N; Foumier, A; Jallet, C; Szelechowski, M; Klonjkowski, B; Eloit, M

    2008-01-01

    Adenovirus based vectors are very attractive candidates for vaccination purposes as they induce in mammalian hosts potent humoral, mucosal and cellular immune responses to antigens encoded by the inserted genes. We have generated E1-deleted and replication-competent recombinant canine type-2 adenoviruses expressing the rabies virus glycoprotein (G). The effectiveness of both vectors to express a native G protein has been characterized in vitro in permissive cell lines. We compared the humoral and cellular immune responses induced in mice by intramuscular injection of the recombinant canine adenovirus vectors with those induced by a human (Ad5) E1-deleted virus expressing the same rabies G protein. Humoral responses specific to the adenoviruses or the rabies glycoprotein antigens were studied. The influence of the mouse strain was observed using replication-competent canine adenovirus. A high level of rabies neutralizing antibody was observed upon i.m. inoculation, and 100% of mice survived lethal challenge. These results are very promising in the perspective of oral vaccine for dog rabies control. PMID:18634509

  18. Adenoviruses in the immunocompromised host.

    PubMed Central

    Hierholzer, J C

    1992-01-01

    Adenoviruses are among the many pathogens and opportunistic agents that cause serious infection in the congenitally immunocompromised, in patients undergoing immunosuppressive treatment for organ and tissue transplants and for cancers, and in human immunodeficiency virus-infected patients. Adenovirus infections in these patients tend to become disseminated and severe, and the serotypes involved are clustered according to the age of the patient and the nature of the immunosuppression. Over 300 adenovirus infections in immunocompromised patients, with an overall case fatality rate of 48%, are reviewed in this paper. Children with severe combined immunodeficiency syndrome and other primary immunodeficiencies are exposed to the serotypes of subgroups B and C that commonly infect young children, and thus their infections are due to types 1 to 7 and 31 of subgenus A. Children with bone marrow and liver transplants often have lung and liver adenovirus infections that are due to an expanded set of subgenus A, B, C, and E serotypes. Adults with kidney transplants have viruses of subgenus B, mostly types 11, 34, and 35, which cause cystitis. This review indicates that 11% of transplant recipients become infected with adenoviruses, with case fatality rates from 60% for bone marrow transplant patients to 18% for renal transplant patients. Patients with AIDS become infected with a diversity of serotypes of all subgenera because their adult age and life-style expose them to many adenoviruses, possibly resulting in antigenically intermediate strains that are not found elsewhere. Interestingly, isolates from the urine of AIDS patients are generally of subgenus B and comprise types 11, 21, 34, 35, and intermediate strains of these types, whereas isolates from stool are of subgenus D and comprise many rare, new, and intermediate strains that are untypeable for practical purposes. It has been estimated that adenoviruses cause active infection in 12% of AIDS patients and that 45% of

  19. Late nonstructural 100,000- and 33,000-dalton proteins of adenovirus type 2. I. Subcellular localization during the course of infection.

    PubMed Central

    Gambke, C; Deppert, W

    1981-01-01

    We analyzed the subcellular locations of the late adenovirus type 2 nonstructural 100,000-dalton (100K) and 33K proteins in adenovirus type 2-infected HeLa cells both by biochemical cell fractionation and by immunofluorescence microscopy, using specific antisera against purified sodium dodecyl sulfate-denatured 100K and 33K polypeptides. Both methods showed that the 100K protein was present in the cytoplasm as well as in the nuclei of infected cells and that it accumulated in the nuclei during the course of infection. Phosphorylated 100K protein also was found both in the cytoplasm and in nuclei. However, the nuclear 100K protein pool was phosphorylated to a higher degree than the cytoplasmic pool. In all experiments the 33K protein, which also is a phosphoprotein, was present exclusively in the nuclei of infected cells. The 100K and 33K proteins were associated with different nuclear substructures; this was demonstrated serologically by an analysis of infected cells in which double color immunofluorescence microscopy was used. In these experiments antibodies against the 100K protein decorated different nuclear structures than antibodies against the 33K protein. Images PMID:7321097

  20. Macropinocytotic Uptake and Infection of Human Epithelial Cells with Species B2 Adenovirus Type 35▿ †

    PubMed Central

    Kälin, Stefan; Amstutz, Beat; Gastaldelli, Michele; Wolfrum, Nina; Boucke, Karin; Havenga, Menzo; DiGennaro, Fabienne; Liska, Nicole; Hemmi, Silvio; Greber, Urs F.

    2010-01-01

    Human adenovirus serotype 35 (HAdV-35; here referred to as Ad35) causes kidney and urinary tract infections and infects respiratory organs of immunocompromised individuals. Unlike other adenoviruses, Ad35 has a low seroprevalence, which makes Ad35-based vectors promising candidates for gene therapy. Ad35 utilizes CD46 and integrins as receptors for infection of epithelial and hematopoietic cells. Here we show that infectious entry of Ad35 into HeLa cells, human kidney HK-2 cells, and normal human lung fibroblasts strongly depended on CD46 and integrins but not heparan sulfate and variably required the large GTPase dynamin. Ad35 infections were independent of expression of the carboxy-terminal domain of AP180, which effectively blocks clathrin-mediated uptake. Ad35 infections were inhibited by small chemicals against serine/threonine kinase Pak1 (p21-activated kinase), protein kinase C (PKC), sodium-proton exchangers, actin, and acidic organelles. Remarkably, the F-actin inhibitor jasplakinolide, the Pak1 inhibitor IPA-3, or the sodium-proton exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) blocked endocytic uptake of Ad35. Dominant-negative proteins or small interfering RNAs against factors driving macropinocytosis, including the small GTPase Rac1, Pak1, or the Pak1 effector C-terminal binding protein 1 (CtBP1), potently inhibited Ad35 infection. Confocal laser scanning microscopy, electron microscopy, and live cell imaging showed that Ad35 colocalized with fluid-phase markers in large endocytic structures that were positive for CD46, αν integrins, and also CtBP1. Our results extend earlier observations with HAdV-3 (Ad3) and establish macropinocytosis as an infectious pathway for species B human adenoviruses in epithelial and hematopoietic cells. PMID:20237079

  1. Repression in vitro, by human adenovirus E1A protein domains, of basal or Tat-activated transcription of the human immunodeficiency virus type 1 long terminal repeat.

    PubMed Central

    Song, C Z; Loewenstein, P M; Green, M

    1995-01-01

    Human adenovirus E1A proteins can repress the expression of several viral and cellular genes. By using a cell-free transcription system, we demonstrated that the gene product of the E1A 12S mRNA, the 243-residue protein E1A243R, inhibits basal transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). The HIV-1 transactivator protein Tat greatly stimulates transcription from the viral promoter in vitro. However, E1A243R can repress Tat-activated transcription in vitro. Strong repression of both basal and Tat-activated transcriptions requires only E1A N-terminal amino acid residues 1 to 80. Deletion analysis showed that E1A N-terminal amino acids 4 to 25 are essential for repression, whereas amino acid residues 30 to 49 and 70 to 80 are dispensable. Transcriptional repression by E1A in the cell-free transcription system is promoter specific, since under identical conditions, transcription of the adenovirus major late promoter and the Rous sarcoma virus LTR promoter was unaffected. The repression of transcription by small E1A peptides in vitro provides an assay for investigation of molecular mechanisms governing E1A-mediated repression of both basal and Tat-activated transcriptions of the HIV-1 LTR promoter. PMID:7707515

  2. Binding sites of HeLa cell nuclear proteins on the upstream region of adenovirus type 5 E1A gene.

    PubMed Central

    Yoshida, K; Narita, M; Fujinaga, K

    1989-01-01

    Twenty one binding sites of HeLa cell nuclear proteins were identified on the upstream region of adenovirus type 5 E1A gene using DNase I footprint assay. The proximal promoter region contained five binding sites that overlapped the cap site, TATA box, TATA-like sequence, CCAAT box, and -100 region relative to the E1A cap site(+1). The -190 region was a potential site for octamer-motif binding proteins, such as NFIII and OBP100. An upstream copy of the E1A enhancer element 1 was the site for a factor (E1A-F) with the binding specificity of XGGAYGT (X = A, C; Y = A, T). E1A-F factor also bound to three other sites, one of which coincided with the distal E1A enhancer element. The distal element also contained a potential site for ATF factor. The adenovirus minimal origin of DNA replication competed for DNA-protein complex formation on the CCAAT and TATA box region and the -190 region, suggesting that these regions interacted with a common or related factor. Images PMID:2532319

  3. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection.

    PubMed

    Yawata, N; Selva, K J; Liu, Y-C; Tan, K P; Lee, A W L; Siak, J; Lan, W; Vania, M; Arundhati, A; Tong, L; Li, J; Mehta, J S; Yawata, M

    2016-01-01

    The most severe form of virus-induced inflammation at the ocular surface is epidemic keratoconjunctivitis (EKC), often caused by group D human adenoviruses (HAdVs). We investigated the dynamics and mechanisms of changes in natural killer (NK) cell types in the human ocular mucosal surface in situ over the course of infection. In the acute phase of infection, the mature CD56(dim)NK cells that comprise a major subpopulation in the normal human conjunctiva are replaced by CD56(bright)NK cells recruited to the ocular surface by chemokines produced by the infected epithelium, and NKG2A-expressing CD56(dim) and CD56(bright) NK cells become the major subpopulations in severe inflammation. These NK cells attracted to the mucosal surface are however incapable of mounting a strong antiviral response because of upregulation of the inhibitory ligand human leukocyte antigen-E (HLA-E) on infected epithelium. Furthermore, group D HAdVs downregulate ligands for activating NK cell receptors, thus rendering even the mature NKG2A(-)NK cells unresponsive, an immune-escape mechanism distinct from other adenoviruses. Our findings imply that the EKC-causing group D HAdVs utilize these multiple pathways to inhibit antiviral NK cell responses in the initial stages of the infection. PMID:26080707

  4. An outbreak of adenovirus keratoconjunctivitis in bristol.

    PubMed Central

    Tullo, A B; Higgins, P G

    1979-01-01

    Nineteen cases of keratoconjunctivitis caused by an adenovirus serologically related to types 10 and 19 are described. Seventeen of the patients presented over a period of 7 weeks and included 4 who were involved in a minor outbreak at a factory. The presentation and clinical features closely resembled those caused by adenoviruses types 8 and 19. Mild to severe follicular conjunctivitis, superficial punctate keratitis, discrete subepithelial opacities, membrane formation, and conjunctival scarring were all observed. Images PMID:226115

  5. Interaction of Adenovirus Type 5 E4orf4 with the Nuclear Pore Subunit Nup205 Is Required for Proper Viral Gene Expression

    PubMed Central

    Lu, YiQing; Kucharski, Thomas J.; Gamache, Isabelle; Blanchette, Paola; Branton, Philip E.

    2014-01-01

    ABSTRACT Adenovirus type 5 E4orf4 is a multifunctional protein that regulates viral gene expression. The activities of E4orf4 are mainly mediated through binding to protein phosphatase 2A (PP2A). E4orf4 recruits target phosphoproteins into complexes with PP2A, resulting in dephosphorylation of host factors, such as SR splicing factors. In the current study, we utilized immunoprecipitation followed by mass spectrometry to identify novel E4orf4-interacting proteins. In this manner we identified Nup205, a component of the nuclear pore complex (NPC) as an E4orf4 interacting partner. The arginine-rich motif (ARM) of E4orf4 was required for interaction with Nup205 and for nuclear localization of E4orf4. ARMs are commonly found on viral nuclear proteins, and we observed that Nup205 interacts with three different nuclear viral proteins containing ARMs. E4orf4 formed a trimolecular complex containing both Nup205 and PP2A. Furthermore, Nup205 complexed with E4orf4 was hypophosphorylated, suggesting that the protein is specifically targeted for dephosphorylation. An adenovirus mutant that does not express E4orf4 (Orf4−) displayed elevated early and reduced late gene expression relative to that of the wild type. We observed that knockdown of Nup205 resulted in the same phenotype as that of the Orf4− virus, suggesting that the proteins function as a complex to regulate viral gene expression. Furthermore, knockdown of Nup205 resulted in a more than a 4-fold reduction in the replication of wild-type adenovirus. Our data show for first time that Ad5 E4orf4 interacts with and modifies the NPC and that Nup205-E4orf4 binding is required for normal regulation of viral gene expression and viral replication. IMPORTANCE Nuclear pore complexes (NPCs) are highly regulated conduits in the nuclear membrane that control transport of macromolecules between the nucleus and cytoplasm. Viruses that replicate in the nucleus must negotiate the NPC during nuclear entry, and viral DNA, mRNA, and

  6. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F.

    PubMed

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G Eric; Dobner, Thomas; Branton, Philip E; Blanchette, Paola

    2016-01-01

    The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  7. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  8. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    PubMed

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642

  9. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points.

    PubMed

    Sauthoff, Harald; Hu, Jing; Maca, Cielo; Goldman, Michael; Heitner, Sheila; Yee, Herman; Pipiya, Teona; Rom, William N; Hay, John G

    2003-03-20

    Oncolytic replicating adenoviruses are a promising new modality for the treatment of cancer. Despite the assumed biologic advantage of continued viral replication and spread from infected to uninfected cancer cells, early clinical trials demonstrate that the efficacy of current vectors is limited. In xenograft tumor models using immune-incompetent mice, wild-type adenovirus is also rarely able to eradicate established tumors. This suggests that innate immune mechanisms may clear the virus or that barriers within the tumor prevent viral spread. The aim of this study was to evaluate the kinetics of viral distribution and spread after intratumoral injection of virus in a human tumor xenograft model. After intratumoral injection of wild-type virus, high levels of titratable virus persisted within the xenograft tumors for at least 8 weeks. Virus distribution within the tumors as determined by immunohistochemistry was patchy, and virus-infected cells appeared to be flanked by tumor necrosis and connective tissue. The close proximity of virus-infected cells to the tumor-supporting structure, which is of murine origin, was clearly demonstrated using a DNA probe that specifically hybridizes to the B1 murine DNA repeat. Importantly, although virus was cleared from the circulation 6 hr after intratumoral injection, after 4 weeks systemic spread of virus was detected. In addition, vessels of infected tumors were surrounded by necrosis and an advancing rim of virus-infected tumor cells, suggesting reinfection of the xenograft tumor through the vasculature. These data suggest that human adenoviral spread within tumor xenografts is impaired by murine tumor-supporting structures. In addition, there is evidence for continued viral replication within the tumor, with subsequent systemic dissemination and reinfection of tumors via the tumor vasculature. Despite the limitations of immune-incompetent models, an understanding of the interactions between the virus and the tumor

  10. Molecular Characterization of a Lizard Adenovirus Reveals the First Atadenovirus with Two Fiber Genes and the First Adenovirus with Either One Short or Three Long Fibers per Penton

    PubMed Central

    Pénzes, Judit J.; Menéndez-Conejero, Rosa; Condezo, Gabriela N.; Ball, Inna; Papp, Tibor; Doszpoly, Andor; Paradela, Alberto; Pérez-Berná, Ana J.; López-Sanz, María; Nguyen, Thanh H.; van Raaij, Mark J.; Marschang, Rachel E.; Harrach, Balázs; Benkő, Mária

    2014-01-01

    base. This observation raises new intriguing questions on virus structure. How can the triple fiber attach to a pentameric vertex? What determines the number and location of each vertex type in the icosahedral particle? Since fibers are responsible for primary attachment to the host, this novel architecture also suggests a novel mode of cell entry for LAdV-2. Adenoviruses have a recognized potential in nanobiomedicine, but only a few of the more than 200 types found so far in nature have been characterized in detail. Exploring the taxonomic wealth of adenoviruses should improve our chances to successfully use them as therapeutic tools. PMID:25056898

  11. ANTIGEN DETECTION WITH MONOCLONAL ANTIBODIES FOR THE DIAGNOSIS OF ADENOVIRUS GASTROENTERITIS

    EPA Science Inventory

    The authors have developed a monoclonal antibody-based enzyme immunoassay (EIA) for direct detection of enteric adenoviruses in stool specimens from patients with gastroenteritis. Tests specific for each of the enteric adenoviruses, adenovirus type 40 (Ad40) and type 41 (Ad41) we...

  12. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A

    PubMed Central

    Stylianou, E.; Griffiths, K.L.; Poyntz, H.C.; Harrington-Kandt, R.; Dicks, M.D.; Stockdale, L.; Betts, G.; McShane, H.

    2015-01-01

    A replication-deficient chimpanzee adenovirus expressing Ag85A (ChAdOx1.85A) was assessed, both alone and in combination with modified vaccinia Ankara also expressing Ag85A (MVA85A), for its immunogenicity and protective efficacy against a Mycobacterium tuberculosis (M.tb) challenge in mice. Naïve and BCG-primed mice were vaccinated or boosted with ChAdOx1.85A and MVA85A in different combinations. Although intranasally administered ChAdOx1.85A induced strong immune responses in the lungs, it failed to consistently protect against aerosol M.tb challenge. In contrast, ChAdOx1.85A followed by MVA85A administered either mucosally or systemically, induced strong immune responses and was able to improve the protective efficacy of BCG. This vaccination regime has consistently shown superior protection over BCG alone and should be evaluated further. PMID:26478198

  13. Generation of Neutralizing Monoclonal Antibodies against a Conformational Epitope of Human Adenovirus Type 7 (HAdv-7) Incorporated in Capsid Encoded in a HAdv-3-Based Vector

    PubMed Central

    Li, Xiao; Zhou, Zhichao; Li, Chenyang; Zhou, Rong

    2014-01-01

    The generation of monoclonal antibodies (MAbs) by epitope-based immunization is difficult because the immunogenicity of simple peptides is poor and T cells must be potently stimulated and immunological memory elicited. A strategy in which antigen is incorporated into the adenoviral capsid protein has been used previously to develop antibody responses against several vaccine targets and may offer a solution to this problem. In this study, we used a similar strategy to develop HAdv-7-neutralizing MAbs using rAdMHE3 virions into which hexon hypervariable region 5 (HVR5) of adenovirus type 7 (HAdv-7) was incorporated. The epitope mutant rAdMHE3 was generated by replacing HVR5 of Ad3EGFP, a recombinant HAdv-3-based vector expressing enhanced green fluorescence protein, with HVR5 of HAdv-7. We immunized BALB/c mice with rAdMHE3 virions and produced 22 different MAbs against them, four of which showed neutralizing activity against HAdv-7 in vitro. Using an indirect enzyme-linked immunosorbent assay (ELISA) analysis and an antibody-binding-competition ELISA with Ad3EGFP, HAdv-7, and a series of chimeric adenoviral particles containing epitope mutants, we demonstrated that the four MAbs recognize the neutralization site within HVR5 of the HAdv-7 virion. Using an immunoblotting analysis and ELISA with HAdv-7, recombinant peptides, and a synthetic peptide, we also showed that the neutralizing epitope within HVR5 of the HAdv-7 virion is a conformational epitope. These findings suggest that it is feasible to use a strategy in which antigen is incorporated into the adenoviral capsid protein to generate neutralizing MAbs. This strategy may also be useful for developing therapeutic neutralizing MAbs and designing recombinant vector vaccines against HAdv-7, and in structural analysis of adenoviruses. PMID:25054273

  14. Adenovirus-mediated delivery into myocytes of muscle glycogen phosphorylase, the enzyme deficient in patients with glycogen-storage disease type V.

    PubMed Central

    Baqué, S; Newgard, C B; Gerard, R D; Guinovart, J J; Gómez-Foix, A M

    1994-01-01

    The feasibility of using adenovirus as a vector for the introduction of glycogen phosphorylase activity into myocytes has been examined. We used the C2C12 myoblast cell line to assay the impact of phosphorylase gene transfer on myocyte glycogen metabolism and to reproduce in vitro the two strategies proposed for the treatment of muscle genetic diseases, myoblast transplantation and direct DNA delivery. In this study, a recombinant adenovirus containing the muscle glycogen phosphorylase cDNA transcribed from the cytomegalovirus promoter (AdCMV-MGP) was used to transduce both differentiating myoblasts and nondividing mature myotube cells. Muscle glycogen phosphorylase mRNA levels and total phosphorylase activity were increased in both cell types after viral treatment although more efficiently in the differentiated myotubes. The increase in phosphorylase activity was transient (15 days) in myoblasts whereas in myotubes higher levels of phosphorylase gene expression and activity were reached, which remained above control levels for the duration of the study (20 days). The introduction of muscle phosphorylase into myotubes enhanced their glycogenolytic capacity. AdCMV MGP-transduced myotubes had lower glycogen levels under basal conditions. In addition, these engineered cells showed more extensive glycogenolysis in response to both adrenaline, which stimulates glycogen phosphorylase phosphorylation, and carbonyl cyanide m-chlorophenylhydrazone, a metabolic uncoupler. In conclusion, transfer of the muscle glycogen phosphorylase cDNA into myotubes confers an enhanced and regulatable glycogenolytic capacity. Thus this system might be useful for delivery of muscle glycogen phosphorylase and restoration of glycogenolysis in muscle cells from patients with muscle phosphorylase deficiency (McArdle's disease). Images Figure 1 Figure 2 Figure 5 PMID:7818463

  15. Effective Apical Infection of Differentiated Human Bronchial Epithelial Cells and Induction of Proinflammatory Chemokines by the Highly Pneumotropic Human Adenovirus Type 14p1

    PubMed Central

    Lam, Elena; Ramke, Mirja; Warnecke, Gregor; Schrepfer, Sonja; Kopfnagel, Verena; Dobner, Thomas; Heim, Albert

    2015-01-01

    Background Only a few pneumotropic types of the human adenoviruses (e.g. type B14p1) cause severe lower respiratory tract infections like pneumonia and acute respiratory distress syndrome (ARDS) even in immunocompetent patients. By contrast, many other human adenovirus (HAdV) types (e.g. HAdV-C5) are associated mainly with upper respiratory tract infections. This is in accordance with a highly physiological cell culture system consisting of differentiated primary human bronchial epithelial cells which are little susceptible for apical HAdV-C5 infections. Objective and Methods We hypothesized that a pneumotropic and highly pathogenic HAdV type infects differentiated human bronchial epithelial cells efficiently from the apical surface and also induces proinflammatory cytokines in order to establish ARDS and pneumonia. Therefore, the apical infection of differentiated primary human bronchial epithelial cells with the pneumotropic and virulent type HAdV-B14p1 was investigated in comparison to the less pneumotropic HAdV-C5 as a control. Results Binding of HAdV-B14p1 to the apical surface of differentiated human bronchial epithelial cells and subsequent internalization of HAdV DNA was 10 fold higher (p<0.01) compared to the less-pneumotropic HAdV-C5 one hour after infection. Overall, the replication cycle of HAdV-B14p1 following apical infection and including apical release of infectious virus progeny was about 1000-fold more effective compared to the non-pneumotropic HAdV-C5 (p<0.001). HAdV-B14p1 infected cells expressed desmoglein 2 (DSG2), which has been described as potential receptor for HAdV-B14p1. Moreover, HAdV-B14p1 induced proinflammatory chemokines IP-10 and I-Tac as potential virulence factors. Interestingly, IP-10 has already been described as a marker for severe respiratory infections e.g. by influenza virus A H5N1. Conclusions The efficient "apical to apical" replication cycle of HAdV-B14p1 can promote endobronchial dissemination of the infection from the

  16. Evaluation of apoptogenic adenovirus type 5 oncolytic vectors in a Syrian hamster head and neck cancer model.

    PubMed

    Vijayalingam, S; Kuppuswamy, M; Subramanian, T; Strebeck, F F; West, C L; Varvares, M; Chinnadurai, G

    2014-06-01

    Human adenovirus (HAdV) vectors are intensely investigated for virotherapy of a wide variety of human cancers. Here, we have evaluated the effect of two apoptogenic HAdV5 vectors in an immunocompetent Syrian hamster animal model of head and neck cancer. We established two cell lines of hamster cheek pouch squamous cell carcinomas, induced by treatment with 9,10-dimethyl-1,2-benzanthracene. These cell lines, when infected with HAdV5 mutants lp11w and lp11w/Δ55 K (which are defective in the expression of either E1B-19 K alone or both E1B-19 K and E1B-55 K proteins) exhibited enhanced apoptotic and cytotoxic responses. The cheek pouch tumor cells transplanted either subcutaneously at the flanks or in the cheek pouches of hamsters readily formed tumors. Intratumoral administration of HAdV5-E1B mutants efficiently suppressed the growth of tumors at both sites. Histological examination of orthotopic tumors revealed reduced vascularity and the expression of the viral fiber antigen in virus-administered cheek pouch tumors. These tumors also exhibited increased caspase-3 levels, suggesting that virus-induced apoptosis may contribute to tumor growth suppression. Our results suggest that the apoptogenic HAdV5 vectors may have utility for the treatment of human head and neck cancers. PMID:24874842

  17. Evaluation of apoptogenic adenovirus type 5 oncolytic vectors in a Syrian hamster head and neck cancer model

    PubMed Central

    Subramanian, T.; Strebeck, Frank F.; West, Cheri L.; Varvares, Mark; Chinnadurai, G.

    2015-01-01

    Human adenovirus (HAdV) vectors are intensely investigated for virotherapy of a wide variety of human cancers. Here, we have evaluated the effect of two apoptogenic HAdV5 vectors in an immunocompetent Syrian hamster animal model of head and neck cancer. We established two cell lines of hamster cheek pouch squamous cell carcinomas, induced by treatment with 9, 10-dimethyl-1, 2-benzanthracene (DMBA). These cell lines, when infected with HAdV5 mutants lp11w and lp11w/Δ55K (which are defective in the expression of either E1B-19K alone or both E1B-19K and E1B-55K proteins) exhibited enhanced apoptotic and cytotoxic responses. The cheek pouch tumor cells transplanted either subcutaneously at the flanks or in the cheek pouches of hamsters readily formed tumors. Intra-tumoral administration of HAdV5 E1B mutants efficiently suppressed the growth of tumors at both sites. Histological examination of orthotopic tumors revealed reduced vascularity and the expression of the viral fiber antigen in virus-administered cheek pouch tumors. These tumors also exhibited increased caspase-3 levels, suggesting virus-induced apoptosis may contribute to tumor growth suppression. Our results suggest that the apoptogenic HAdV5 vectors may have utility for the treatment of human head and neck cancers. PMID:24874842

  18. Functional characterization of a PEI-CyD-FA-coated adenovirus as delivery vector for gene therapy.

    PubMed

    Yao, Hong; Chen, Shih-Chi; Shen, Zan; Huang, Yun-Chao; Zhu, Xiao; Wang, Xiao-mei; Jiang, Wenqi; Wang, Zi-Feng; Bian, Xiu-Wu; Ling, Eng-Ang; Kung, Hsiang-fu; Lin, Marie C

    2013-01-01

    The recombinant adenovirus is evolving as a promising gene delivery vector for gene therapy due to its efficiency in transducing different genes into most types of cells. However, the host-immune response elicited by primary inoculation of an adenovirus can cause rapid clearance of the vector, impairing the efficacy of the adenovirus and hence obstructing its clinical application. We have previously synthesized a biodegradable co-polymer consisting of a low molecular weight PEI (MW 600 Da), cross-linked with β-cyclodextrin, and conjugated with folic acid (PEI-CyD-FA, named H1). Here we report that coating the adenovirus vector (Adv) with H1 (H1/rAdv) could significantly improve both the efficacy and biosafety of Adv. Enhanced transfection efficiency as well as prolonged duration of gene expression were clearly demonstrated either by intratumoral or systemic injection of a single dose of H1/rAdv in immunocompetent mice. Importantly, repeated injections of H1/rAdv did not reduce the transfection efficiency in immunocompetent mice. Furthermore, H1 transformed the surface charge of the adenovirus capsomers from negative to positive in physiological solution, suggesting that H1 coated the capsid protein of the adenovirus. This could shelter the epitopes of capsid proteins of the adenovirus, resulting in a reduced host-immune response and enhanced transfection efficiency. Taken together, these findings suggest that H1/rAdv is an effective gene delivery system superior to the adenovirus alone and that it could be considered as a preferred vehicle for gene therapy. PMID:23531212

  19. Innate Immunity to Adenovirus

    PubMed Central

    Hendrickx, Rodinde; Stichling, Nicole; Koelen, Jorien; Kuryk, Lukasz; Lipiec, Agnieszka

    2014-01-01

    Abstract Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate–adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features. PMID:24512150

  20. Cross-sectional study of the relationship of peripheral blood cell profiles with severity of infection by adenovirus type 55

    PubMed Central

    2014-01-01

    Background The immunologic profiles of patients with human adenovirus serotype 55 (HAdV-55) infections were characterized in subjects diagnosed with silent infections (n = 30), minor infections (n = 27), severe infections (n = 34), and healthy controls (n = 30) during a recent outbreak among Chinese military trainees. Methods Blood was sampled at the disease peak and four weeks later, and samples were analyzed to measure changes in leukocyte and platelet profiles in patients with different severities of disease. Differential lymphocyte subsets and cytokine profiles were measured by flow cytometry and Luminex xMAP®, and serum antibodies were analyzed by ELISA and immunofluorescence staining. Results Patients with severe HAdV infections had higher proportions of neutrophils and reduced levels of lymphocytes (p < 0.005 for both). Patients with minor and severe infections had significantly lower platelet counts (p < 0.005 for both) than those with silent infections. The silent and minor infection groups had higher levels of dendritic cells than the severe infection group. Relative to patients with silent infections, patients with severe infections had significantly higher levels of IL-17+CD4+ cells, decreased levels of IL-17+CD8+ cells, and higher levels of IFN-γ, IL-4, IL-10, and IFN-α2 (p < 0.001 for all comparisons). Conclusions Patients with different severities of disease due to HAdV-55 infection had significantly different immune responses. These data provide an initial step toward the identification of patients at risk for more severe disease and the development of treatments against HAdV-55 infection. PMID:24646014

  1. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  2. Canine adenovirus downstream processing protocol.

    PubMed

    Puig, Meritxell; Piedra, Jose; Miravet, Susana; Segura, María Mercedes

    2014-01-01

    Adenovirus vectors are efficient gene delivery tools. A major caveat with vectors derived from common human adenovirus serotypes is that most adults are likely to have been exposed to the wild-type virus and exhibit active immunity against the vectors. This preexisting immunity limits their clinical success. Strategies to circumvent this problem include the use of nonhuman adenovirus vectors. Vectors derived from canine adenovirus type 2 (CAV-2) are among the best-studied representatives. CAV-2 vectors are particularly attractive for the treatment of neurodegenerative disorders. In addition, CAV-2 vectors have shown great promise as oncolytic agents in virotherapy approaches and as vectors for recombinant vaccines. The rising interest in CAV-2 vectors calls for the development of scalable GMP compliant production and purification strategies. A detailed protocol describing a complete scalable downstream processing strategy for CAV-2 vectors is reported here. Clarification of CAV-2 particles is achieved by microfiltration. CAV-2 particles are subsequently concentrated and partially purified by ultrafiltration-diafiltration. A Benzonase(®) digestion step is carried out between ultrafiltration and diafiltration operations to eliminate contaminating nucleic acids. Chromatography purification is accomplished in two consecutive steps. CAV-2 particles are first captured and concentrated on a propyl hydrophobic interaction chromatography column followed by a polishing step using DEAE anion exchange monoliths. Using this protocol, high-quality CAV-2 vector preparations containing low levels of contamination with empty viral capsids and other inactive vector forms are typically obtained. The complete process yield was estimated to be 38-45 %. PMID:24132487

  3. [Construction and experimental immunity of recombinant replication-competent canine adenovirus type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus].

    PubMed

    Gao, Yu-Wei; Xia, Xian-Zhu; Wang, Li-Gang; Liu, Dan; Huang, Geng

    2006-04-01

    H5N1 highly pathogenic avian influenza virus was highly pathogenic and sometimes even fatal for tigers and cats. To develop a new type of vaccine for Felidae influenza prevention, recombinant replication-competent canine adenovirus Type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus was constructed. A/tiger/Harbin/01/2003 (HSN1) HA gene was cloned into PVAX1. The HA expression cassette which included CMV and HA and PolyA was ligated into the E3 deletion region of pVAXdeltaE. The recombinant plasmid was named pdeltaEHA. The pdelta EHA and the pPoly2-CAV2 were digested with Nru I /Sal I, respectively. The purified Nru I/Sal I DNA fragment containing the HA expression cassette was cloned into pPoly2-CAV2 to generate the recombinant plasmid pCAV-2/HA. The recombinant genome was released from pCAV-2/HA, and was transfected into MDCK cells by Lipofectamine. The recombinant virus named CAV2/HA was gained. Anti-H5N1 influenza virus HI antibody (1:8 - 1:16) was detected in the cat immunized with CAV-2/HA. PMID:16736595

  4. Re-emergent human adenovirus genome type 7d caused an acute respiratory disease outbreak in Southern China after a twenty-one year absence.

    PubMed

    Zhao, Suhui; Wan, Chengsong; Ke, Changwen; Seto, Jason; Dehghan, Shoaleh; Zou, Lirong; Zhou, Jie; Cheng, Zetao; Jing, Shuping; Zeng, Zhiwei; Zhang, Jing; Wan, Xuan; Wu, Xianbo; Zhao, Wei; Zhu, Li; Seto, Donald; Zhang, Qiwei

    2014-01-01

    Human adenoviruses (HAdVs) are highly contagious pathogens causing acute respiratory disease (ARD), among other illnesses. Of the ARD genotypes, HAdV-7 presents with more severe morbidity and higher mortality than the others. We report the isolation and identification of a genome type HAdV-7d (DG01_2011) from a recent outbreak in Southern China. Genome sequencing, phylogenetic analysis, and restriction endonuclease analysis (REA) comparisons with past pathogens indicate HAdV-7d has re-emerged in Southern China after an absence of twenty-one years. Recombination analysis reveals this genome differs from the 1950s-era prototype and vaccine strains by a lateral gene transfer, substituting the coding region for the L1 52/55 kDa DNA packaging protein from HAdV-16. DG01_2011 descends from both a strain circulating in Southwestern China (2010) and a strain from Shaanxi causing a fatality and outbreak (Northwestern China; 2009). Due to the higher morbidity and mortality rates associated with HAdV-7, the surveillance, identification, and characterization of these strains in population-dense China by REA and/or whole genome sequencing are strongly indicated. With these accurate identifications of specific HAdV types and an epidemiological database of regional HAdV pathogens, along with the HAdV genome stability noted across time and space, the development, availability, and deployment of appropriate vaccines are needed. PMID:25482188

  5. Re-emergent Human Adenovirus Genome Type 7d Caused an Acute Respiratory Disease Outbreak in Southern China After a Twenty-one Year Absence

    PubMed Central

    Zhao, Suhui; Wan, Chengsong; Ke, Changwen; Seto, Jason; Dehghan, Shoaleh; Zou, Lirong; Zhou, Jie; Cheng, Zetao; Jing, Shuping; Zeng, Zhiwei; Zhang, Jing; Wan, Xuan; Wu, Xianbo; Zhao, Wei; Zhu, Li; Seto, Donald; Zhang, Qiwei

    2014-01-01

    Human adenoviruses (HAdVs) are highly contagious pathogens causing acute respiratory disease (ARD), among other illnesses. Of the ARD genotypes, HAdV-7 presents with more severe morbidity and higher mortality than the others. We report the isolation and identification of a genome type HAdV-7d (DG01_2011) from a recent outbreak in Southern China. Genome sequencing, phylogenetic analysis, and restriction endonuclease analysis (REA) comparisons with past pathogens indicate HAdV-7d has re-emerged in Southern China after an absence of twenty-one years. Recombination analysis reveals this genome differs from the 1950s-era prototype and vaccine strains by a lateral gene transfer, substituting the coding region for the L1 52/55 kDa DNA packaging protein from HAdV-16. DG01_2011 descends from both a strain circulating in Southwestern China (2010) and a strain from Shaanxi causing a fatality and outbreak (Northwestern China; 2009). Due to the higher morbidity and mortality rates associated with HAdV-7, the surveillance, identification, and characterization of these strains in population-dense China by REA and/or whole genome sequencing are strongly indicated. With these accurate identifications of specific HAdV types and an epidemiological database of regional HAdV pathogens, along with the HAdV genome stability noted across time and space, the development, availability, and deployment of appropriate vaccines are needed. PMID:25482188

  6. Cloning and Large-Scale Production of High-Capacity Adenoviral Vectors Based on the Human Adenovirus Type 5.

    PubMed

    Ehrke-Schulz, Eric; Zhang, Wenli; Schiwon, Maren; Bergmann, Thorsten; Solanki, Manish; Liu, Jing; Boehme, Philip; Leitner, Theo; Ehrhardt, Anja

    2016-01-01

    High-capacity adenoviral vectors (HCAdV) devoid of all viral coding sequences represent one of the most advanced gene delivery vectors due to their high packaging capacity (up to 35 kb), low immunogenicity and low toxicity. However, for many laboratories the use of HCAdV is hampered by the complicated procedure for vector genome construction and virus production. Here, a detailed protocol for efficient cloning and production of HCAdV based on the plasmid pAdFTC containing the HCAdV genome is described. The construction of HCAdV genomes is based on a cloning vector system utilizing homing endonucleases (I-CeuI and PI-SceI). Any gene of interest of up to 14 kb can be subcloned into the shuttle vector pHM5, which contains a multiple cloning site flanked by I-CeuI and PI-SceI. After I-CeuI and PI-SceI-mediated release of the transgene from the shuttle vector the transgene can be inserted into the HCAdV cloning vector pAdFTC. Because of the large size of the pAdFTC plasmid and the long recognition sites of the used enzymes associated with strong DNA binding, careful handling of the cloning fragments is needed. For virus production, the HCAdV genome is released by NotI digest and transfected into a HEK293 based producer cell line stably expressing Cre recombinase. To provide all adenoviral genes for adenovirus amplification, co-infection with a helper virus containing a packing signal flanked by loxP sites is required. Pre-amplification of the vector is performed in producer cells grown on surfaces and large-scale amplification of the vector is conducted in spinner flasks with producer cells grown in suspension. For virus purification, two ultracentrifugation steps based on cesium chloride gradients are performed followed by dialysis. Here tips, tricks and shortcuts developed over the past years working with this HCAdV vector system are presented. PMID:26863087

  7. Low-Dose Adenovirus Vaccine Encoding Chimeric Hepatitis B Virus Surface Antigen-Human Papillomavirus Type 16 E7 Proteins Induces Enhanced E7-Specific Antibody and Cytotoxic T-Cell Responses

    PubMed Central

    Báez-Astúa, Andrés; Herráez-Hernández, Elsa; Garbi, Natalio; Pasolli, Hilda A.; Juárez, Victoria; zur Hausen, Harald; Cid-Arregui, Angel

    2005-01-01

    Induction of effective immune responses may help prevent cancer progression. Tumor-specific antigens, such as those of human papillomaviruses involved in cervical cancer, are targets with limited intrinsic immunogenicity. Here we show that immunization with low doses (106 infectious units/dose) of a recombinant human adenovirus type 5 encoding a fusion of the E7 oncoprotein of human papillomavirus type 16 to the carboxyl terminus of the surface antigen of hepatitis B virus (HBsAg) induces remarkable E7-specific humoral and cellular immune responses. The HBsAg/E7 fusion protein assembled efficiently into virus-like particles, which stimulated antibody responses against both carrier and foreign antigens, and evoked antigen-specific kill of an indicator cell population in vivo. Antibody and T-cell responses were significantly higher than those induced by a control adenovirus vector expressing wild-type E7. Such responses were not affected by preexisting immunity against either HBsAg or adenovirus. These data demonstrate that the presence of E7 on HBsAg particles does not interfere with particle secretion, as it occurs with bigger proteins fused to the C terminus of HBsAg, and results in enhancement of CD8+-mediated T-cell responses to E7. Thus, fusion to HBsAg is a convenient strategy for developing cervical cancer therapeutic vaccines, since it enhances the immunogenicity of E7 while turning it into an innocuous secreted fusion protein. PMID:16188983

  8. Phosphorylation in vitro of Escherichia coli-produced 235R and 266R tumor antigens encoded by human adenovirus type 12 early transformation region 1A.

    PubMed Central

    Lucher, L A; Loewenstein, P M; Green, M

    1985-01-01

    The tumor (T) antigens encoded by the human adenovirus early transforming region 1A (E1A) are gene regulatory proteins whose functions can immortalize cells. We have recently described the synthesis in Escherichia coli and the purification of the complete T antigens encoded by the adenovirus type 12 (Ad12) E1A 12S mRNA (235-residue [235R] T antigen) and 13S mRNA (266R T antigen). In this study, we show that the Ad12 E1A T antigens are extensively phosphorylated in Ad12-infected mammalian cells but are not phosphorylated in E. coli. Inasmuch as posttranslational phosphorylation at specific amino acid sites may be important for biological activity, we have studied the phosphorylation of the E. coli-produced T antigens in vitro by using a kinase activity isolated from cultured human KB cells. The kinase was purified about 300-fold and appears to be a cyclic AMP-independent, Ca2+-independent protein kinase requiring only ATP and Mg2+ for activity. To determine which amino acids are phosphorylated and whether phosphorylation in vitro occurs at the same amino acid sites that are phosphorylated in vivo, the Ad12 E1A T-antigen species synthesized by infected cells were metabolically labeled with 32Pi and compared with the E. coli-produced E1A T antigens labeled in vitro with [gamma-32P]ATP by using the partially purified kinase. Partial V8 proteolysis analysis gave similar patterns for in vivo- and in vitro-phosphorylated T antigen. Two-dimensional maps of tryptic phosphopeptides and of chymotryptic phosphopeptides suggested that mainly the same amino acid sites are phosphorylated in vitro and in vivo and that phosphorylation occurred at multiple sites distributed throughout the T-antigen molecule. Serine was the only amino acid that was phosphorylated both in vivo and in vitro, and, surprisingly, most serines appeared to be phosphorylated. The feasibility of faithfully phosphorylating T antigens in vitro suggests that the E. coli-produced Ad12 E1A 235R and 266R T antigens

  9. Different Patterns of Expansion, Contraction and Memory Differentiation of HIV-1 Gag-Specific CD8 T Cells Elicited by Adenovirus Type 5 and Modified Vaccinia Ankara Vaccines

    PubMed Central

    Pillai, Vinod Kumar Bhaskara; Kannanganat, Sunil; Penaloza-MacMaster, Pablo; Chennareddi, Lakshmi; Robinson, Harriet L.; Blackwell, Jerry; Amara, Rama Rao

    2011-01-01

    The magnitude and functional quality of antiviral CD8 T cell responses are critical for the efficacy of T cell based vaccines. Here, we investigate the influence of two popular viral vectors, adenovirus type 5 (Ad5) and modified vaccinia Ankara (MVA), on expansion, contraction and memory differentiation of HIV-1 Gag insert-specific CD8 T cell responses following immunization and show different patterns for the two recombinant viral vectors. The Ad5 vector primed 6-fold higher levels of insert-specific CD8 effector T cells than the MVA vector. The Ad5-primed effector cells also underwent less contraction (< 2-fold) than the MVA-primed cells (>5-fold). The Ad5-primed memory cells were predominantly CD62L negative (effector memory) whereas the MVA-primed memory cells were predominantly CD62L positive (central memory). Consistent with their memory phenotype, MVA-primed CD8 T cells underwent higher fold expansion than Ad5-primed CD8 T cells following a homologous or heterologous boost. Impressively, the Ad5 boost changed the quality of MVA-primed memory response such that they undergo less contraction with effector memory phenotype. However, the MVA boost did not influence the contraction and memory phenotype of Ad5-primed response. In conclusion, our results demonstrate that vaccine vector strongly influences the expansion, contraction and the functional quality of insert-specific CD8 T cell responses and have implications for vaccine development against infectious diseases. PMID:21651938

  10. Rescue administration of a helper-dependent adenovirus vector with long-term efficacy in dogs with glycogen storage disease type Ia.

    PubMed

    Crane, B; Luo, X; Demaster, A; Williams, K D; Kozink, D M; Zhang, P; Brown, T T; Pinto, C R; Oka, K; Sun, F; Jackson, M W; Chan, L; Koeberl, D D

    2012-04-01

    Glycogen storage disease type Ia (GSD-Ia) stems from glucose-6-phosphatase (G6Pase) deficiency and causes hypoglycemia, hepatomegaly, hypercholesterolemia and lactic acidemia. Three dogs with GSD-Ia were initially treated with a helper-dependent adenovirus encoding a human G6Pase transgene (HDAd-cG6Pase serotype 5) on postnatal day 3. Unlike untreated dogs with GSD-Ia, all three dogs initially maintained normal blood glucose levels. After 6-22 months, vector-treated dogs developed hypoglycemia, anorexia and lethargy, suggesting that the HDAd-cG6Pase serotype 5 vector had lost efficacy. Liver biopsies collected at this time revealed significantly elevated hepatic G6Pase activity and reduced glycogen content, when compared with affected dogs treated only by frequent feeding. Subsequently, the HDAd-cG6Pase serotype 2 vector was administered to two dogs, and hypoglycemia was reversed; however, renal dysfunction and recurrent hypoglycemia complicated their management. Administration of a serotype 2 HDAd vector prolonged survival in one GSD-Ia dog to 12 months of age and 36 months of age in the other, but the persistence of long-term complications limited HDAd vectors in the canine model for GSD-Ia. PMID:21654821

  11. Hexon Hypervariable Region-Modified Adenovirus Type 5 (Ad5) Vectors Display Reduced Hepatotoxicity but Induce T Lymphocyte Phenotypes Similar to Ad5 Vectors

    PubMed Central

    Teigler, Jeffrey E.; Penaloza-MacMaster, Pablo; Obeng, Rebecca; Provine, Nicholas M.; Larocca, Rafael A.; Borducchi, Erica N.

    2014-01-01

    Hexon modification of adenovirus type 5 (Ad5) vectors with the hypervariable regions (HVRs) of Ad48 has been shown to allow Ad5HVR48 vectors to circumvent the majority of the preexisting Ad5-neutralizing antibodies. However, it remains unclear whether modifying hexon HVRs impacts innate or adaptive immune responses elicited by this vector. In this study, we investigated the influence of the HVR substitution of Ad5 on innate and adaptive immune responses following vaccination. Ad5HVR48 displayed an intermediate level of innate immune cytokines and chemokines relative to those of Ad5 and Ad48, consistent with its chimeric nature. Hepatotoxicity was observed after Ad5 immunization but not after Ad5HVR48 or Ad48 immunization. However, the CD8+ T-cell responses elicited by Ad5HVR48 vectors displayed a partially exhausted phenotype, as evidenced by the sustained expression of programmed death 1 (PD-1), decreased effector-to-central memory conversion, and reduced memory recall responses, similar to those elicited by Ad5 vectors and in contrast to those induced by Ad48 vectors. Taken together, these results indicate that although Ad5HVR48 largely bypasses preexisting Ad5 neutralizing antibodies and shows reduced hepatotoxicity compared to that of Ad5, it induces adaptive immune phenotypes that are functionally exhausted similar to those elicited by Ad5. PMID:24943382

  12. High-level production of replication-defective human immunodeficiency type 1 virus vector particles using helper-dependent adenovirus vectors

    PubMed Central

    Hu, Yani; O’Boyle, Kaitlin; Palmer, Donna; Ng, Philip; Sutton, Richard E

    2015-01-01

    Gene transfer vectors based upon human immunodeficiency virus type 1 (HIV) are widely used in bench research applications and increasingly in clinical investigations, both to introduce novel genes but also to reduce expression of unwanted genes of the host and pathogen. At present, the vast majority of HIV-based vector supernatants are produced in 293T cells by cotransfection of up to five DNA plasmids, which is subject to variability and difficult to scale. Here we report the development of a HIV-based vector production system that utilizes helper-dependent adenovirus (HDAd). All necessary HIV vector components were inserted into one or more HDAds, which were then amplified to very high titers of ~1013 vp/ml. These were then used to transduce 293-based cells to produce HIV-based vector supernatants, and resultant VSV G-pseudotyped lentiviral vector (LV) titers and total IU were 10- to 30-fold higher, compared to plasmid transfection. Optimization of HIV-based vector production depended upon maximizing expression of all HIV vector components from HDAd. Supernatants contained trace amounts of HDAd but were free of replication-competent lentivirus. This production method should be applicable to other retroviral vector systems. Scalable production of HIV-based vectors using this two-step procedure should facilitate their clinical advancement. PMID:26029715

  13. Integrated adenovirus type 12 DNA in the transformed hamster cell line T637: sequence arrangements at the termini of viral DNA and mode of amplification.

    PubMed Central

    Eick, D; Doerfler, W

    1982-01-01

    Approximately 20 to 22 copies of adenovirus type 12 (Ad12) DNA per cell were integrated into the genome of the cell line T637. Only a few of these copies seemed to remain intact and colinear with virion DNA. All other persisting viral genomes exhibited deletions or inversions or both in the right-hand part of Ad12 DNA. Spontaneously arising morphological revertants of T637 cells has lost viral DNA. In most of the revertant cell lines only the intact or a part of the intact viral genome was preserved; other revertant cell lines has lost all viral DNA. In three other Ad12-transformed hamster cell lines, HA12/7, A2497-3, and CLAC3 (Stabel et al., J. Virol. 36:22-40, 1980), major rearrangements at the right end of the integrated Ad12 DNA were not found. These studies were performed to investigate the phenomena of amplification, rearrangements, and deletions of Ad12 DNA in hamster cells. Images PMID:6283150

  14. Hexon Modification to Improve the Activity of Oncolytic Adenovirus Vectors against Neoplastic and Stromal Cells in Pancreatic Cancer

    PubMed Central

    Lucas, Tanja; Benihoud, Karim; Vigant, Frédéric; Schmidt, Christoph Q. Andreas; Simmet, Thomas; Kochanek, Stefan

    2015-01-01

    Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFβ receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety. PMID:25692292

  15. Capturing and concentrating adenovirus using magnetic anionic nanobeads.

    PubMed

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  16. Capturing and concentrating adenovirus using magnetic anionic nanobeads

    PubMed Central

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  17. Importance of the Ser-132 phosphorylation site in cell transformation and apoptosis induced by the adenovirus type 5 E1A protein.

    PubMed Central

    Whalen, S G; Marcellus, R C; Barbeau, D; Branton, P E

    1996-01-01

    The 289-residue (289R) and 243R early region 1A (E1A) proteins of human adenovirus type 5 induce cell transformation in cooperation with either E1B or activated ras. Here we report that Ser-132 in both E1A products is a site of phosphorylation in vivo and is the only site phosphorylated in vitro by purified casein kinase II. Ser-132 is located in conserved region 2 near the primary binding site for the pRB tumor suppressor and, in 289R, just upstream of the conserved region 3 transactivation domain involved in regulation of early viral gene expression. Mutants containing alanine or glycine in place of Ser-132 interacted with pRB-related proteins at somewhat reduced efficiency; however, all Ser-132 mutants transformed primary rat cells in cooperation with E1B as well as or better than the wild type when both major E1A proteins were expressed. Such was not the case with mutants expressing only 289R. In cooperation with E1B, the Asp-132 and Gly-132 mutants yielded reduced numbers of smaller transformed foci. With activated ras, all Ser-132 mutants were significantly defective for transformation and the rare foci produced were small and contained extensive areas populated by low densities of flat cells. In the absence of E1B, all Ser-132 mutants induced p53-independent cell death more readily than virus expressing wild-type 289R. These results suggested that phosphorylation at Ser-132 may enhance the binding of pRB and related proteins and also reduce the toxicity of E1A 289R, thus increasing transforming activity. PMID:8764048

  18. Retrograde Ductal Administration of the Adenovirus-mediated NDRG2 Gene Leads to Improved Sialaden Hypofunction in Estrogen-deficient Rats

    PubMed Central

    Li, Yan; Liu, Changhao; Hou, Wugang; Li, Yang; Ma, Ji; Lin, Kaifeng; Situ, Zhenqiang; Xiong, Lize; Li, Shaoqing; Yao, Libo

    2014-01-01

    One of the most common oral manifestations of menopause is xerostomia. Oral dryness can profoundly affect quality of life and interfere with basic daily functions, such as chewing, deglutition, and speaking. Although the feeling of oral dryness can be ameliorated after estrogen supplementation, the side effects of estrogen greatly restrict its application. We previously found that N-myc downstream-regulated gene 2 (NDRG2) is involved in estrogen-mediated ion and fluid transport in a cell-based model. In the present study, we used an ovariectomized rat model to mimic xerostomia in menopausal women and constructed two adenovirus vectors bearing NDRG2 to validate their therapeutic potential. Ovariectomized rats exhibited severe sialaden hypofunction, including decreased saliva secretion and ion reabsorption as well as increased water intake. Immunohistochemistry revealed that the expression of NDRG2 and Na+ reabsorption-related Na+/K+-ATPase and epithelial sodium channels (EnaC) decreased in ovariectomized rat salivary glands. We further showed that the localized delivery of NDRG2 improved the dysfunction of Na+ and Cl− reabsorption. In addition, the saliva flow rate and water drinking recovered to normal. This study elucidates the mechanism of estrogen deficiency-mediated xerostomia or sialaden hypofunction and provides a promising strategy for therapeutic intervention. PMID:24343104

  19. Organization of multiple regulatory elements in the control region of the adenovirus type 2-specific VARNA1 gene: fine mapping with linker-scanning mutants.

    PubMed

    Railey, J F; Wu, G J

    1988-03-01

    The adenovirus type 2-specific virus-associated RNA 1 (VARNA1) gene is transcribed by eucaryotic RNA polymerase III. Previous studies using deletion mutants for transcription have shown that the VARNA1 gene has a large control region which is composed of several regulatory elements. Twenty-five exact linker-scanning mutations in the control region, from -33 to +77, of this gene were used for definition of the number and boundaries of these elements. The effects of these mutations on transcription and competition for transcription factors in human KB cell extracts revealed five positive regulatory elements. The essential element, which coincided with the B block, was absolutely required for both transcription and formation of stable complexes. A second element, which included the A block, was also required for both transcription and formation of stable complexes. Although this element is not as essential as the B-block element, together with the B-block element it may be necessary for formation of the most basal form of transcription machinery. Therefore, these two elements are the promoter elements in this gene. In addition, one possible element in the interblock region and two elements in the 5' flanking region were also required for efficient transcription, but they were moderately required for formation of stable complexes. Transcription of these mutants and the wild-type gene using an extract of 293 cells was stimulated at least threefold over that with the KB cell extract, as expected. Similar regulatory elements of this gene were revealed, however, when the 293 cell extract was used for transcription of these mutants, suggesting that the E1A-mediated specific transcription factors act on the transcription machinery in a sequence-nonspecific manner. PMID:3367906

  20. Organization of multiple regulatory elements in the control region of the adenovirus type 2-specific VARNA1 gene: fine mapping with linker-scanning mutants.

    PubMed Central

    Railey, J F; Wu, G J

    1988-01-01

    The adenovirus type 2-specific virus-associated RNA 1 (VARNA1) gene is transcribed by eucaryotic RNA polymerase III. Previous studies using deletion mutants for transcription have shown that the VARNA1 gene has a large control region which is composed of several regulatory elements. Twenty-five exact linker-scanning mutations in the control region, from -33 to +77, of this gene were used for definition of the number and boundaries of these elements. The effects of these mutations on transcription and competition for transcription factors in human KB cell extracts revealed five positive regulatory elements. The essential element, which coincided with the B block, was absolutely required for both transcription and formation of stable complexes. A second element, which included the A block, was also required for both transcription and formation of stable complexes. Although this element is not as essential as the B-block element, together with the B-block element it may be necessary for formation of the most basal form of transcription machinery. Therefore, these two elements are the promoter elements in this gene. In addition, one possible element in the interblock region and two elements in the 5' flanking region were also required for efficient transcription, but they were moderately required for formation of stable complexes. Transcription of these mutants and the wild-type gene using an extract of 293 cells was stimulated at least threefold over that with the KB cell extract, as expected. Similar regulatory elements of this gene were revealed, however, when the 293 cell extract was used for transcription of these mutants, suggesting that the E1A-mediated specific transcription factors act on the transcription machinery in a sequence-nonspecific manner. Images PMID:3367906

  1. Organization of multiple regulatory elements in the control region of the adenovirus type 2-specific VARNA1 gene: Fine mapping with linker-scanning mutants

    SciTech Connect

    Railey, J.F.; Wu, G.J.

    1988-03-01

    The adenovirus type 2-specific virus-associated RNA 1 (VARNA1) gene is transcribed by eucaryotic RNA polymerase III. Previous studies using deletion mutants for transcription have shown that the VARNA1 gene has a large control region which is composed of several regulatory elements. Twenty-five exact linker-scanning mutations in the control region, from -33 to +77, of this gene were used for definition of the number and boundaries of these elements. The effects of these mutations on transcription and competition for transcription factors in human KB cell extracts revealed five positive regulatory elements. The essential element, which coincided with the B block, was absolutely required for both transcription and formation of stable complexes. A second element, which included the A block, was also required for both transcription and formation of stable complexes. Although this element is not as essential as the B-block element, together with the B-block element it may be necessary for formation of the most basal form of transcription machinery. Therefore, these two elements are the promoter elements in this gene. In addition, one possible element in the interblock region and two elements in the 5' flanking region were also required for efficient transcription, but they were moderately required for formation of stable complexes. Transcription of these mutants and the wild-type genes using an extract of 293 cells was stimulated at least threefold over that with the KB cell extract, as expected. Similar regulatory elements of this gene were revealed, however, when the 292 cell extract was used for transcription of these mutants, suggesting that the E1A-mediated specific transcription factors act on the transcription machinery in a sequence-nonspecific manner.

  2. Possible role of the 72,000 dalton DNA-binding protein in regulation of adenovirus type 5 early gene expression.

    PubMed Central

    Carter, T H; Blanton, R A

    1978-01-01

    Relative abundances of early virus RNA species in the cytoplasm of cells infected with wild-type adenovirus type 5 (WT Ad5) and a temperature-sensitive "early" mutant, H5ts125 (ts125), were compared by hybridization kinetics using separated strands of HindIII restriction endonuclease fragments of Ad5 DNA. 1-beta-D-Arabinofuranosylcytosine (ara-C) was used to limit transcription to early virus genes in cells infected by WT virus. At 40.5 degrees C, a restrictive temperature for ts125, three to seven times as much virus RNA from all four early regions of the genome accumulated in the cytoplasm of cells infected by the mutant as accumulated in cells infected by WT. At 32 degrees C, no such difference in the relative abundances of cytoplasmic virus RNA was observed. The capacity to synthesize a 72,000-dalton (72K) virus polypeptide, presumably the single-stranded DNA-binding protein that is defective in ts125 at restrictive temperatures, was compared in cells infected at 40.5 degrees C in the presence of ara-C with the mutant or WT Ad5. The rate of 72K polypeptide synthesis, measured by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis of [35S]methionine-labeled polypeptides and autoradiography, was greater at 15 h after infection in ts125-infected cells than in cells infected by WT. A time course experiment showed that the rate of synthesis of the 72K polypeptide increased continuously in ts125-infected cells during the first 15 h of infection, relative to the rate in WT-infected cells. These data are consistent with the hypothesis that Ad5 early gene expression is modulated by the product of an early gene, the 72K DNA-binding protein. Images PMID:203722

  3. Replication-competent adenoviruses with the type 35-derived fiber-knob region achieve reactive oxygen species-dependent cytotoxicity and produce greater toxicity than those with the type 5-derived region in pancreatic carcinoma.

    PubMed

    Yamauchi, Suguru; Kawamura, Kiyoko; Okamoto, Shinya; Morinaga, Takao; Jiang, Yuanyuan; Shingyoji, Masato; Sekine, Ikuo; Kubo, Shuji; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Tagawa, Masatoshi

    2015-12-01

    Pancreatic carcinoma is relatively resistant to chemotherapy and cell death induced by replication of adenoviruses (Ad) can be one of the therapeutic options. Transduction efficacy of conventional type 5 Ad (Ad5) is however low and the cytotoxic mechanism by replication-competent Ad was not well understood. We constructed replication-competent Ad5 of which the E1A promoter region was replaced with a transcriptional regulatory region of the midkine, the survivin or the cyclooxygenase-2 gene, all of which were expressed at a high level in human tumors. We also prepared replication-competent Ad5 that were activated with the same region but had the type 35 Ad-derived fiber-knob region (AdF35) to convert the major cellular receptor for Ad infection from the coxsackie adenovirus receptor to CD46 molecules. Replication-competent AdF35 that were activated with the exogenous region produced cytotoxic effects on human pancreatic carcinoma cells greater than the corresponding Ad5 bearing with the same regulatory region. Cells infected with the AdF35 showed cytopathic effects and increased sub-G1 fractions. Caspase-9, less significantly caspase-8 and poly (ADP-ribose) polymerase, but not caspase-3 was cleaved and expression of molecules involved in autophagy and caspase-independent cell death pathways remained unchanged. Nevertheless, H2A histone family member X molecules were phosphorylated, and N-acetyl-L-cystein, an inhibitor for reactive oxygen species, suppressed the AdF35-mediated cytotoxicity. These data indicated a novel mechanism of Ad-mediated cell death and suggest a possible clinical application of the fiber-knob modified Ad. PMID:26373551

  4. Reactivation of the methylation-inactivated late E2A promoter of adenovirus type 2 by E1A (13 S) functions.

    PubMed

    Weisshaar, B; Langner, K D; Jüttermann, R; Müller, U; Zock, C; Klimkait, T; Doerfler, W

    1988-07-20

    The inactivating effect of sequence-specific promoter methylations was extensively studied by using the late E2A promoter of adenovirus type 2 (Ad2) DNA. The modification of the three 5' CCGG 3' sequences at nucleotides +24, +6 and -215, relative to the cap site in this promoter, sufficed to silence the gene in transient expression either in Xenopus laevis oocytes or in mammalian cells, and after the fixation of the E2A promoter-chloramphenicol-acetyltransferase (CAT) gene construct in the genome of hamster cells. It will now be demonstrated that the inactivation of the late promoter of Ad2 DNA can be reversed by transactivating functions that are encoded in the 13S messenger RNA of the E1A region of Ad2 DNA. The reactivation of a methylation-inactivated eukaryotic promoter by transactivating functions has general significance in that the value of a regulatory signal can be fully realized only by its controlled reversibility. It was demonstrated in transient expression experiments that the 5' CCGG 3'-methylated late E2A promoter was at least partly reactivated in cell lines constitutively expressing the E1 region of Ad2 or of adenovirus type 5 (Ad5) DNA. The reactivation led to transcriptional initiation at the authentic cap sites of the late E2A promoter and was not associated with promoter demethylation, at least not in both DNA complements. Reactivation of the methylation-inactivated E2A promoter could also be demonstrated in two BHK21 cell lines (mc14 and mc20), which carried the late E2A promoter-CAT gene assembly in an integrated form. In these cell lines the late E2A promoter was methylated and the CAT gene was not expressed. By transfection of cell lines mc14 and mc20, the reactivating functions were shown to reside in the pAd2E1A-13 S cDNA clone of Ad2 DNA. The pAd2E1A-12 S cDNA clone or the pAd2E1B clone showed no reactivating function. These findings implicated the E1A 289 amino acid residue protein of Ad2, a well-known transactivator, as the

  5. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2007-01-02

    Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.

  6. The CR1 and CR3 domains of the adenovirus type 5 E1A proteins can independently mediate activation of ATF-2.

    PubMed Central

    Duyndam, M C; van Dam, H; van der Eb, A J; Zantema, A

    1996-01-01

    The adenovirus 12S E1A protein can stimulate the activity of the c-jun promoter through a conserved region 1 (CR1)-dependent mechanism. The effect is mediated by two AP-1/ATF-like elements, jun1 and jun2, that preferentially bind c-Jun-ATF-2 heterodimers. In this study, we show that the ATF-2 component of the c-Jun-ATF-2 heterodimer is the primary target for 12S E1A: 12S E1A can enhance the transactivating activity of the N terminus of ATF-2 when fused to a heterologous DNA-binding domain, whereas the transactivating activity of the c-Jun N terminus is not significantly affected. Activation of the ATF-2 N terminus by 12S E1A is dependent on CR1. In the context of the 13S E1A protein, CR1 and CR3 can both contribute to activation of ATF-2, and their relative contributions are dependent on the cell type. In contrast to activation of ATF-2 by stress-inducing agents, CR1-dependent activation of ATF-2 was found not to depend strictly on the presence of threonines 69 and 71 in the N terminus of ATF-2, which are targets for phosphorylation by stress-activated protein kinases (SAPKs). In agreement with this observation, we did not observe phosphorylation of threonines 69 and 71 or constitutively enhanced SAPK activity in E1A- plus E1B-transformed cell lines. These data suggest that CR1-dependent activation of ATF-2 by 12S E1A does not require phosphorylation of threonines 69 and 71 by SAPK. PMID:8709204

  7. Tumorigenic Adenovirus Type 12 E1A Inhibits Phosphorylation of NF-κB by PKAc, Causing Loss of DNA Binding and Transactivation▿

    PubMed Central

    Guan, Hancheng; Jiao, Junfang; Ricciardi, Robert P.

    2008-01-01

    Human adenovirus type 12 (Ad12) E1A protein (E1A-12) is the key determinant of viral tumorigenesis. E1A-12 mediates major histocompatibility complex class I (MHC-I) shutoff by inhibiting the DNA binding of the transcriptional activator NF-κB (p50/p65) to the class I enhancer. This enables Ad12 tumorigenic cells to avoid class I recognition and lysis by cytotoxic T lymphocytes. In this study, we demonstrate that the phosphorylation of p50 and p65 by the catalytic subunit of protein kinase A (PKAc) is essential for NF-κB DNA binding and transactivation activity. Treatment with H89 and knockdown of PKAc in cells led to the inhibition of phosphorylation at p50 Ser337 and p65 Ser276 and loss of DNA binding by NF-κB. Importantly, NF-κB phosphorylation by PKAc was repressed by tumorigenic E1A-12, but not by nontumorigenic Ad5 E1A (E1A-5). The stable introduction of E1A-12 into Ad5 nontumorigenic cells resulted in a decrease in the phosphorylation of NF-κB, loss of NF-κB DNA binding, and the failure of NF-κB to activate a target promoter, as well as diminution of MHC-I transcription and cell surface expression. Significantly, the amount and enzymatic activity of PKAc were not altered in Ad12 tumorigenic cells relative to its amount and activity in nontumorigenic Ad5 cells. These results demonstrate that E1A-12 specifically prevents NF-κB from being phosphorylated by PKAc. PMID:17959673

  8. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins

    PubMed Central

    WU, JIE; CHEN, KE-DA; GAO, MENG; CHEN, GANG; JIN, SU-FENG; ZHUANG, FANG-CHENG; WU, XIAO-HONG; JIANG, YUN-SHUI; LI, JIAN-BO

    2015-01-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×109 IU/ml and 3.0×109 IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 109 IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ2MSB=20.00 and χ2WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development. PMID:25780403

  9. Structure of the Adenovirus Type 4 (Species E) E3-19K/HLA-A2 Complex Reveals Species-Specific Features in MHC Class I Recognition.

    PubMed

    Li, Lenong; Santarsiero, Bernard D; Bouvier, Marlene

    2016-08-15

    Adenoviruses (Ads) subvert MHC class I Ag presentation and impair host anti-Ad cellular activities. Specifically, the Ad-encoded E3-19K immunomodulatory protein targets MHC class I molecules for retention within the endoplasmic reticulum of infected cells. We report the x-ray crystal structure of the Ad type 4 (Ad4) E3-19K of species E bound to HLA-A2 at 2.64-Å resolution. Structural analysis shows that Ad4 E3-19K adopts a tertiary fold that is shared only with Ad2 E3-19K of species C. A comparative analysis of the Ad4 E3-19K/HLA-A2 structure with our x-ray structure of Ad2 E3-19K/HLA-A2 identifies species-specific features in HLA-A2 recognition. Our analysis also reveals common binding characteristics that explain the promiscuous, and yet high-affinity, association of E3-19K proteins with HLA-A and HLA-B molecules. We also provide structural insights into why E3-19K proteins do not associate with HLA-C molecules. Overall, our study provides new information about how E3-19K proteins selectively engage with MHC class I to abrogate Ag presentation and counteract activation of CD8(+) T cells. The significance of MHC class I Ag presentation for controlling viral infections, as well as the threats of viral infections in immunocompromised patients, underline our efforts to characterize viral immunoevasins, such as E3-19K. PMID:27385781

  10. Identification of adenovirus type 2 early region 1B proteins that share the same amino terminus as do the 495R and 155R proteins.

    PubMed Central

    Lewis, J B; Anderson, C W

    1987-01-01

    Adenovirus type 2 early region 1B (E1B) proteins synthesized in vitro were fractionated chromatographically and characterized by peptide and sequence analysis and by reaction with peptide-specific antisera targeted to either the N or C terminus of either of two overlapping E1B reading frames (175 or 495 codons). In addition to the previously identified E1B-495R, E1B-175R, and E1B-155R species, two other E1B proteins of similar electrophoretic mobility to the 175R protein were identified. E1B-82R is an abundant product in vitro and in vivo that has the same N terminus as that of the 495R and 155R proteins but a different C terminus. The structure of 82R is predicted by the structure of the abundant 13S (1.02-kilobase) E1B mRNA. E1B-168R is a novel minor species consisting of the 24 amino-terminal residues of the 495R protein fused to the entire polypeptide IX sequence. An additional, minor 16,000-molecular-weight polypeptide was detected that may correspond to a predicted 92R E1B protein, but definitive identification was not possible. These observations establish that the leftmost portion (78 codons) of the 495-codon reading frame, which overlaps the right half of the 175-codon reading frame, is expressed as an abundant protein that does not contain other 495R sequences. This region, which may participate in the regulation of region E1A expression, may thus constitute a functional domain distinct from the rightward portion of the 495R protein. Images PMID:2960832

  11. Characterization of an Adenovirus Vector Containing a Heterologous Peptide Epitope in the HI Loop of the Fiber Knob

    PubMed Central

    Krasnykh, Victor; Dmitriev, Igor; Mikheeva, Galina; Miller, C. Ryan; Belousova, Natalya; Curiel, David T.

    1998-01-01

    The utility of the present generation of recombinant adenovirus vectors for gene therapy applications could potentially be improved by designing targeted vectors capable of gene delivery to selected cell types in vivo. In order to achieve such targeting, we are investigating the possibilities of incorporation of ligands in the adenovirus fiber protein, which mediates primary binding of adenovirus to its cell surface receptor. Based on the proposed structure of the cell-binding domain of the fiber, we hypothesized that the HI loop of the fiber knob can be utilized as a convenient locale for incorporation of heterologous ligands. In this study, we utilized recombinant fiber proteins expressed in baculovirus-infected insect cells to demonstrate that the incorporation of the FLAG octapeptide into the HI loop does not ablate fiber trimerization and does not disturb formation of the cell-binding site localized in the knob. We then generated a recombinant adenovirus containing this modified fiber and showed that the short peptide sequence engineered in the knob is compatible with the biological functions of the fiber. In addition, by using a ligand-specific antibody, we have shown that the peptide incorporated into the knob remains available for binding in the context of mature virions containing modified fibers. These findings suggest that heterologous ligands can be incorporated into the HI loop of the fiber knob and that this locale possesses properties consistent with its employment in adenovirus retargeting strategies. PMID:9499035

  12. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob.

    PubMed

    Krasnykh, V; Dmitriev, I; Mikheeva, G; Miller, C R; Belousova, N; Curiel, D T

    1998-03-01

    The utility of the present generation of recombinant adenovirus vectors for gene therapy applications could potentially be improved by designing targeted vectors capable of gene delivery to selected cell types in vivo. In order to achieve such targeting, we are investigating the possibilities of incorporation of ligands in the adenovirus fiber protein, which mediates primary binding of adenovirus to its cell surface receptor. Based on the proposed structure of the cell-binding domain of the fiber, we hypothesized that the HI loop of the fiber knob can be utilized as a convenient locale for incorporation of heterologous ligands. In this study, we utilized recombinant fiber proteins expressed in baculovirus-infected insect cells to demonstrate that the incorporation of the FLAG octapeptide into the HI loop does not ablate fiber trimerization and does not disturb formation of the cell-binding site localized in the knob. We then generated a recombinant adenovirus containing this modified fiber and showed that the short peptide sequence engineered in the knob is compatible with the biological functions of the fiber. In addition, by using a ligand-specific antibody, we have shown that the peptide incorporated into the knob remains available for binding in the context of mature virions containing modified fibers. These findings suggest that heterologous ligands can be incorporated into the HI loop of the fiber knob and that this locale possesses properties consistent with its employment in adenovirus retargeting strategies. PMID:9499035

  13. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies

    EPA Science Inventory

    Human adenovirus is relatively resistant to UV radiation and has been used as a conservative testing microbe for evaluations of UV disinfection systems as components of water treatment processes. In this study, we attempted to validate the applicability of integrated cell culture...

  14. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2004-05-18

    Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method, residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.

  15. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, R.J.

    1985-12-23

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  16. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, Richard J.

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  17. Phylogenetic analysis of adenovirus sequences.

    PubMed

    Harrach, Balázs; Benko, Mária

    2007-01-01

    Members of the family Adenoviridae have been isolated from a large variety of hosts, including representatives from every major vertebrate class from fish to mammals. The high prevalence, together with the fairly conserved organization of the central part of their genomes, make the adenoviruses one of (if not the) best models for studying viral evolution on a larger time scale. Phylogenetic calculation can infer the evolutionary distance among adenovirus strains on serotype, species, and genus levels, thus helping the establishment of a correct taxonomy on the one hand, and speeding up the process of typing new isolates on the other. Initially, four major lineages corresponding to four genera were recognized. Later, the demarcation criteria of lower taxon levels, such as species or types, could also be defined with phylogenetic calculations. A limited number of possible host switches have been hypothesized and convincingly supported. Application of the web-based BLAST and MultAlin programs and the freely available PHYLIP package, along with the TreeView program, enables everyone to make correct calculations. In addition to step-by-step instruction on how to perform phylogenetic analysis, critical points where typical mistakes or misinterpretation of the results might occur will be identified and hints for their avoidance will be provided. PMID:17656792

  18. Adenovirus Improves the Efficacy of Adoptive T-cell Therapy by Recruiting Immune Cells to and Promoting Their Activity at the Tumor.

    PubMed

    Tähtinen, Siri; Grönberg-Vähä-Koskela, Susanna; Lumen, Dave; Merisalo-Soikkeli, Maiju; Siurala, Mikko; Airaksinen, Anu J; Vähä-Koskela, Markus; Hemminki, Akseli

    2015-08-01

    Despite the rapid progress in the development of novel adoptive T-cell therapies, the clinical benefits in treatment of established tumors have remained modest. Several immune evasion mechanisms hinder T-cell entry into tumors and their activity within the tumor. Of note, oncolytic adenoviruses are intrinsically immunogenic due to inherent pathogen-associated molecular patterns. Here, we studied the capacity of adenovirus to overcome resistance of chicken ovalbumin-expressing B16.OVA murine melanoma tumors to adoptive ovalbumin-specific CD8(+) T-cell (OT-I) therapy. Following intraperitoneal transfer of polyclonally activated OT-I lymphocytes, control of tumor growth was superior in mice given intratumoral adenovirus compared with control mice, even in the absence of oncolytic virus replication. Preexisting antiviral immunity against serotype 5 did not hinder the therapeutic efficacy of the combination treatment. Intratumoral adenovirus injection was associated with an increase in proinflammatory cytokines, CD45(+) leukocytes, CD8(+) lymphocytes, and F4/80(+) macrophages, suggesting enhanced tumor immunogenicity. The proinflammatory effects of adenovirus on the tumor microenvironment led to expression of costimulatory signals on CD11c(+) antigen-presenting cells and subsequent activation of T cells, thus breaking the tumor-induced peripheral tolerance. An increased number of CD8(+) T cells specific for endogenous tumor antigens TRP-2 and gp100 was detected in combination-treated mice, indicating epitope spreading. Moreover, the majority of virus/T-cell-treated mice rejected the challenge of parental B16.F10 tumors, suggesting that systemic antitumor immunity was induced. In summary, we provide proof-of-mechanism data on combining adoptive T-cell therapy and adenovirotherapy for the treatment of cancer. PMID:25977260

  19. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5.

    PubMed Central

    Teodoro, J G; Branton, P E

    1997-01-01

    The adenovirus type 5 55-kDa E1B protein (E1B-55kDa) cooperates with E1A gene products to induce cell transformation. E1A proteins stimulate DNA synthesis and cell proliferation; however, they also cause rapid cell death by p53-dependent and p53-independent apoptosis. It is believed that the role of the E1B-55kDa protein in transformation is to protect against p53-dependent apoptosis by binding to and inactivating p53. It has been shown previously that the 55-kDa polypeptide abrogates p53-mediated transactivation and that mutants defective in p53 binding are unable to cooperate with E1A in transformation. We have previously mapped phosphorylation sites near the carboxy terminus of the E1B-55kDa protein at Ser-490 and Ser-491, which lie within casein kinase II consensus sequences. Conversion of these sites to alanine residues greatly reduced transforming activity, and although the mutant 55-kDa protein was found to interact with p53 at normal levels, it was somewhat defective for suppression of p53 transactivation activity. We now report that a nearby residue, Thr-495, also appears to be phosphorylated. We demonstrate directly that the wild-type 55-kDa protein is able to block E1A-induced p53-dependent apoptosis, whereas cells infected by mutant pm490/1/5A, which contains alanine residues at all three phosphorylation sites, exhibited extensive DNA fragmentation and classic apoptotic cell death. The E1B-55kDa product has been shown to exhibit intrinsic transcriptional repression activity when localized to promoters, such as by fusion with the GAL4 DNA-binding domain, even in the absence of p53. Such repression activity was totally absent with mutant pm490/1/5A. These data suggested that inhibition of p53-dependent apoptosis may depend on the transcriptional repression function of the 55-kDa protein, which appears to be regulated be phosphorylation at the carboxy terminus. PMID:9094635

  20. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity.

    PubMed

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G Eric; Dobner, Thomas; Branton, Philip E; Blanchette, Paola

    2016-01-01

    Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new function for

  1. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new

  2. Identification of Adenoviruses in Specimens from High-Risk Pediatric Stem Cell Transplant Recipients and Controls▿

    PubMed Central

    Zheng, Xiaotian; Lu, Xiaoyan; Erdman, Dean D.; Anderson, Evan J.; Guzman-Cottrill, Judith A.; Kletzel, Morris; Katz, Ben Z.

    2008-01-01

    Adenovirus infection is an important cause of morbidity and mortality in stem cell transplant recipients. We report species and type-specific analysis from a prospective study of high-risk adenovirus infections following hematopoietic progenitor cell transplantation prior to, during, and after treatment with cidofovir, as well as species analysis of contemporaneously collected samples from control patients. Nine different adenovirus types representing all six recognized species were identified, and mixed infections were commonly found in this group of patients. PMID:17989198

  3. Group D Adenoviruses Infect Primary Central Nervous System Cells More Efficiently than Those from Group C

    PubMed Central

    Chillon, Miguel; Bosch, Assumpció; Zabner, Joseph; Law, Lane; Armentano, Donna; Welsh, Michael J.; Davidson, Beverly L.

    1999-01-01

    Group C adenovirus-mediated gene transfer to central nervous system cells is inefficient. We found that wild-type group D viruses, or recombinant adenovirus type 2 (Ad2) (group C) modified to contain Ad17 (group D) fiber, were more efficient in infecting primary cultures of neurons. Together with studies on primary vascular endothelial cells and tissue culture cell lines, our results indicate that there is not a universally applicable adenovirus serotype for use as a gene transfer vector. PMID:9971839

  4. Functions of and interactions between the A and B blocks in adenovirus type 2-specific VARNA1 gene.

    PubMed

    Cannon, R E; Wu, G J; Railey, J F

    1986-03-01

    The internal transcriptional control region (ITCR) of VARNA1 gene consists of a 33-base-pair (bp) interblock sequence and two 12-bp sequence blocks that are highly conserved in most of the genes transcribed by RNA polymerase III. To define the functions of and study the interactions between the two blocks, we have constructed mutants with altered interblock sequence or spacing for transcription. The results of transcription efficiencies and competing strengths indicated that the interblock sequence was dispensable and the A and B blocks were essential for transcription control. One of the major functions of the interblock sequence was to maintain an optimal spacing for an intimate interaction between the two essential blocks. Shortening or elongating the interblock spacing in the mutants beyond this range drastically decreased the transcription efficiencies and competing strengths of these mutated genes. To further study how the interaction between the two blocks leads to initiation, the start sites and sizes of RNA products of the mutants were determined. When the interblock spacing was less than 105 bp, the wild-type start site was dictated by the A block after an interaction with the B block through proteins. However, when the interblock spacing was longer than 105 bp, several new start sites located closer to the B block were preferentially used. This suggests that new start sites may be dictated by the B block when its interaction with the A block is weakened by longer spacing. The mechanisms of interaction between the bipartite domain in this gene leading to initiation are different from those in tRNAs and Alu-family RNA genes. PMID:3456587

  5. Functions of and interactions between the A and B blocks in adenovirus type 2-specific VARNA1 gene.

    PubMed Central

    Cannon, R E; Wu, G J; Railey, J F

    1986-01-01

    The internal transcriptional control region (ITCR) of VARNA1 gene consists of a 33-base-pair (bp) interblock sequence and two 12-bp sequence blocks that are highly conserved in most of the genes transcribed by RNA polymerase III. To define the functions of and study the interactions between the two blocks, we have constructed mutants with altered interblock sequence or spacing for transcription. The results of transcription efficiencies and competing strengths indicated that the interblock sequence was dispensable and the A and B blocks were essential for transcription control. One of the major functions of the interblock sequence was to maintain an optimal spacing for an intimate interaction between the two essential blocks. Shortening or elongating the interblock spacing in the mutants beyond this range drastically decreased the transcription efficiencies and competing strengths of these mutated genes. To further study how the interaction between the two blocks leads to initiation, the start sites and sizes of RNA products of the mutants were determined. When the interblock spacing was less than 105 bp, the wild-type start site was dictated by the A block after an interaction with the B block through proteins. However, when the interblock spacing was longer than 105 bp, several new start sites located closer to the B block were preferentially used. This suggests that new start sites may be dictated by the B block when its interaction with the A block is weakened by longer spacing. The mechanisms of interaction between the bipartite domain in this gene leading to initiation are different from those in tRNAs and Alu-family RNA genes. Images PMID:3456587

  6. Defining the functional domains in the control region of the adenovirus type 2 specific VARNA1 gene.

    PubMed

    Wu, G J; Railey, J F; Cannon, R E

    1987-04-01

    The outer boundaries of the internal transcriptional control region in the VARNA1 gene have been located from positions +10 to +69. To further define the detailed organization of the functional domains in this region and the function(s) of the 5' flanking sequence, and to obtain a more detailed insight into other transcriptionally important sequences, we have constructed 77 mutants with deletion endpoints at almost every one to five base-pairs in the entire region from -30 to +160 for transcriptional studies. Using our highly active crude extract under our assay conditions, and quantitatively measuring the transcriptional efficiency and competing strength of each mutant, we have revealed new features of important transcriptional control sequences and defined the transcriptional functions of several functional domains in this gene. The essential domain is from +59/+63 to +66/+68, which corresponds to the B block sequence. This is smaller than that defined previously. The second most important domain is the region from +12/14 to +40, which includes the A block sequence that dictates the wild-type major start site and amplifies the events started by the B block region, mediated through factors and RNA polymerase III. Furthermore, the domain from -5 to +11 affects the use of certain start site(s). Moreover, the 5' flanking region from -30 to +1 contributes 80 to 90% of the overall transcriptional efficiency of the gene. Finally, our transcriptional studies of mutants deleted of the A block sequence and all of the upstream sequence indicated that an intimate interaction between the two blocks is essential for initiation of transcription. Furthermore, the B block sequence is more important than the A block sequence in the transcription reaction. The mechanism and control of transcriptional initiation in the VARNA1 gene is similar to that in some tRNA genes, but differs from that in others. PMID:3625769

  7. Fluorescent antibody responses to adenoviruses in humans.

    PubMed

    Ariyawansa, J P; Tobin, J O

    1976-05-01

    Specific IgG, IgA, and IgM immunoglobulin antibody responses to adenovirus infections were studied by the indirect immunofluorescent technique in six pairs of human sera obtained during acute and convalescent phases of the illness. In addition, 70 single specimens of sera showing adenovirus IgG antibody from different age groups from birth to the 60th year of life were titrated for the same antibody to adenovirus types 1, 2, 3, 5, and 7, and 170 serum specimens from the same age groups were screened for specific immunoglobulin antibodies against types 1 and 5. Specific immunoglobulin antibodies lacked type specificity and in acute infections measured heterologous antibody response as well. On the other hand, IgG antibodies detected in single specimens of sera by immunofluorescence correlate with surveys of the isolation of virus from patients and neutralizing antibody studies by other workers. Fluorescent antibodies appeared in all three fractions of the immunoglobulins in acute adenovirus infections. Although this technique may be used in the diagnosis of adenovirus infections there is no advantage compared to complement-fixation testing. However, the use of sera absorbed with group antigen may have a more useful place in serological epidemiology than in diagnostic work. In five pairs of sera obtained during acute and convalescent phases of adenoviral illness and in 70 random single specimens from different age groups, "T" antibodies were detected only in the IgG fraction. The paired sera did not show a significant rise to indicate the usefulness of "T" antibody study in diagnosis. PMID:180061

  8. Fluorescent antibody responses to adenoviruses in humans.

    PubMed Central

    Ariyawansa, J P; Tobin, J O

    1976-01-01

    Specific IgG, IgA, and IgM immunoglobulin antibody responses to adenovirus infections were studied by the indirect immunofluorescent technique in six pairs of human sera obtained during acute and convalescent phases of the illness. In addition, 70 single specimens of sera showing adenovirus IgG antibody from different age groups from birth to the 60th year of life were titrated for the same antibody to adenovirus types 1, 2, 3, 5, and 7, and 170 serum specimens from the same age groups were screened for specific immunoglobulin antibodies against types 1 and 5. Specific immunoglobulin antibodies lacked type specificity and in acute infections measured heterologous antibody response as well. On the other hand, IgG antibodies detected in single specimens of sera by immunofluorescence correlate with surveys of the isolation of virus from patients and neutralizing antibody studies by other workers. Fluorescent antibodies appeared in all three fractions of the immunoglobulins in acute adenovirus infections. Although this technique may be used in the diagnosis of adenovirus infections there is no advantage compared to complement-fixation testing. However, the use of sera absorbed with group antigen may have a more useful place in serological epidemiology than in diagnostic work. In five pairs of sera obtained during acute and convalescent phases of adenoviral illness and in 70 random single specimens from different age groups, "T" antibodies were detected only in the IgG fraction. The paired sera did not show a significant rise to indicate the usefulness of "T" antibody study in diagnosis. PMID:180061

  9. Protective role of adenovirus vector-mediated interleukin-10 gene therapy on endogenous islet β-cells in recent-onset type 1 diabetes in NOD mice

    PubMed Central

    LI, CHENG; ZHANG, LIJUAN; CHEN, YANYAN; LIN, XIAOJIE; LI, TANG

    2016-01-01

    The aim of the present study was to provide an animal experimental basis for the protective effect of the adenoviral vector-mediated interleukin-10 (Ad-mIL-10) gene on islet β-cells during the early stages of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. A total of 24 female NOD mice at the onset of diabetes were allocated at random into three groups (n=8 per group): Group 1, intraperitoneally injected with 0.1 ml Ad-mIL-10; group 2, intraperitoneally injected with 0.1 ml adenovirus vector; and group 3, was a diabetic control. In addition to groups 1, 2 and 3, 8 age- and gender-matched NOD mice were intraperitoneally injected with 0.1 ml PBS and assigned to group 4 as a normal control. All mice were examined weekly for body weight, urine glucose and blood glucose values prior to onset of diabetes, and at 1, 2 and 3 weeks after that, and all mice were sacrificed 3 weeks after injection. Serum levels of interleukin (IL)-10, interferon (IFN)-γ, IL-4, insulin and C-peptide were evaluated, and in addition the degree of insulitis and the local expression of IL-10 gene in the pancreas were detected. The apoptosis rate of pancreatic β-cells was determined using a TUNEL assay. Compared with groups 2 and 3, IL-10 levels in the serum and pancreas were elevated in group 1. Serum IFN-γ levels were decreased while serum IL-4 levels and IFN-γ/IL-4 ratio were significantly increased in group 1 (P<0.01). C-peptide and insulin levels were higher in group 1 compared with groups 2 and 3, (P<0.01). Furthermore, compared with groups 2 and 3, the degree of insulitis, islet β-cell apoptosis rate and blood glucose values did not change significantly (P>0.05). The administration of the Ad-mIL-10 gene induced limited immune regulatory and protective effects on islet β-cell function in NOD mice with early T1D, while no significant reduction in insulitis, islet β-cell apoptosis rate and blood glucose was observed. PMID:27168782

  10. Mouse adenovirus type 1 causes a fatal hemorrhagic encephalomyelitis in adult C57BL/6 but not BALB/c mice.

    PubMed Central

    Guida, J D; Fejer, G; Pirofski, L A; Brosnan, C F; Horwitz, M S

    1995-01-01

    Mouse adenovirus type 1 (MAV-1) produces a lethal disease in newborn or suckling mice characterized by infectious virus and viral lesions in multiple organs. Previous reports of MAV-1 infection of adult mice generally described serologic evidence of infection without morbidity or mortality. However, our current results demonstrate that MAV-1 causes a fatal illness in adult C57BL/6(B6) mice (50% lethal dose, [LD50], 10(3.0) PFU) but not in adult BALB/c mice at all of the doses tested (LD50, > or = 10(5.0) PFU). Adult (BALB/c x B6)F1 mice were intermediately susceptible (LD50, 10(4.5) PFU). Clinically, the sensitive B6 mice showed symptoms of acute central nervous system (CNS) disease, including tremors, seizures, ataxia, and paralysis. Light microscopic examination of CNS tissue from the B6 animals revealed petechial hemorrhages, edema, neovascularization, and mild inflammation in the brain and spinal cord. Analysis by electron microscopy showed evidence of inflammation, such as activated microglia, as well as swollen astrocytic endfeet and perivascular lipid deposition indicative of blood-brain barrier dysfunction. Outside of the CNS, the only significant pathological findings were foci of cytolysis in the splenic white pulp. Assessment of viral replication from multiple tissues was performed by using RNase protection assays with an antisense MAV-1 early region 1a probe. The greatest amounts of viral mRNA in MAV-1-infected B6 animals were located in the brain and spinal cord. Less viral message was detected in the spleen, lungs, and heart. No viral mRNA was detected in BALB/c mouse tissue, with the exception of low levels in the heart. Viral titers of organ tissues were also determined and were concordant with RNase protection findings on the brain and spinal cord but failed to demonstrate significant infectious virus in additional organs. Our experiments demonstrate that MAV-1 has a striking tropism for the CNS that is strain dependent, and this provides an

  11. Structure and Uncoating of Immature Adenovirus

    SciTech Connect

    Perez-Berna, A.J.; Mangel, W.; Marabini, R.; Scheres, S. H. W., Menendez-Conejero, R.; Dmitriev, I. P.; Curiel, D. T.; Flint, S. J.; San Martin, C.

    2009-09-18

    Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particles as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.

  12. Labeling of Adenovirus Particles with PARACEST Agents

    PubMed Central

    Vasalatiy, Olga; Gerard, Robert D; Zhao, Piyu; Sun, Xiankai; Sherry, A. Dean

    2009-01-01

    Recombinant adenovirus type 5 particles (AdCMVLuc) were labeled with two different bifunctional ligands capable of forming stable complexes with paramagnetic lanthanide ions. The number of covalently attached ligands varied between 630 and 1960 per adenovirus particle depending upon the chemical reactivity of the bifunctional ligand (NHS ester versus isothiocyanide), the amount of excess ligand added, and the reaction time. The bioactivity of each labeled adenovirus derivative, as measured by the ability of the virus to infect cells and express luciferase, was shown to be highly dependent upon the number of covalently attached ligands. This indicates that certain amino groups, likely on the surface of the adenovirus fiber protein where cell binding is known to occur, are critical for viral attachment and infection. Addition of 177Lu3+ to chemically modified versus control viruses demonstrated a significant amount of nonspecific binding of 177Lu3+ to the virus particles that could not be sequestered by addition of excess DTPA. Thus, it became necessary to implement a prelabeling strategy for conjugation of preformed lanthanide ligand chelates to adenovirus particles. Using preformed Tm3+-L2, a large number of chelates having chemical exchange saturation transfer (CEST) properties were attached to the surface residues of AdCMVLuc without nonspecific binding of metal ions elsewhere on the virus particle. The potential of such conjugates to act as PARACEST imaging agents was tested using an on-resonance WALTZ sequence for CEST activation. A 12% decrease in bulk water signal intensity was observed relative to controls. This demonstrates that viral particles labeled with PARACEST-type imaging agents can potentially serve as targeted agents for molecular imaging. PMID:18254605

  13. Heterogeneity of adenovirus type 5 E1A proteins: multiple serine phosphorylations induce slow-migrating electrophoretic variants but do not affect E1A-induced transcriptional activation or transformation.

    PubMed Central

    Richter, J D; Slavicek, J M; Schneider, J F; Jones, N C

    1988-01-01

    The 289-amino-acid product encoded by the adenovirus E1A 13S mRNA has several pleiotropic activities, including transcriptional activation, transcriptional repression, and when acting in concert with certain oncogene products, cell transformation. In all cell types in which E1A has been introduced (except bacteria), E1A protein is extensively posttranslationally modified to yield several isoelectric and molecular weight variants. The most striking variant is one that has a retarded mobility, by about Mr = 2,000, in sodium dodecyl sulfate gels. We have investigated the nature of this modification and have assessed its importance for E1A activity. Phosphorylation is responsible for the altered mobility of E1A, since acid phosphatase treatment eliminates the higher apparent molecular weight products. By using several E1A deletion mutants, we show that at least two seryl residues, residing between residues 86 and 120 and 224 and 289, are the sites of phosphorylation and that each phosphorylation can independently induce the mobility shift. However, E1A mutants lacking these seryl residues transcriptionally activate the adenovirus E3 and E2A promoters and transform baby rat kidney cells to near wild-type levels. Images PMID:2835499

  14. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  15. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  16. The Arg279Glu Substitution in the Adenovirus Type 11p (Ad11p) Fiber Knob Abolishes EDTA-Resistant Binding to A549 and CHO-CD46 Cells, Converting the Phenotype to That of Ad7p

    PubMed Central

    Gustafsson, Dan J.; Segerman, Anna; Lindman, Kristina; Mei, Ya-Fang; Wadell, Göran

    2006-01-01

    The major determinant of adenovirus (Ad) attachment to host cells is the C-terminal knob domain of the trimeric fiber protein. Ad type 11p (Ad11p; species B2) in contrast to Ad7p (species B1) utilizes at least two different cellular attachment receptors, designated sBAR (species B adenovirus receptor) and sB2AR (species B2 adenovirus receptor). CD46 has recently been identified as one of the Ad11p attachment receptors. However, CD46 did not seem to constitute a functional receptor for Ad7p. Although Ad7p shares high knob amino acid identity with Ad11p, Ad7p is deficient in binding to both sB2AR and CD46. To determine what regions of the Ad11p fiber knob are necessary for sB2AR-CD46 interaction, we constructed recombinant fiber knobs (rFK) with Ad11p/Ad7p chimeras and Ad11p sequences having a single amino acid substitution from Ad7p. Binding of the constructs to A549 and CHO-CD46 BC1 isoform-expressing cells was analyzed by flow cytometry. Our results indicate that an Arg279Glu substitution is sufficient to convert the Ad11p receptor-interaction phenotype to that of Ad7p and abolish sB2AR and CD46 interaction. Also a Glu279Arg substitution in Ad7p rFKs increases CD46 binding. Thus, the lateral HI loop of the Ad11p fiber knob seems to be the key determinant for Ad11p sB2AR-CD46 interaction. This result is comparable to another non-coxsackie-adenovirus receptor binding Ad (Ad37p), where substitution of one amino acid abolishes virus-cell interaction. In conjunction with previous results, our findings also strongly suggest that sB2AR is equivalent to CD46. PMID:16439545

  17. Subgenomic viral DNA species synthesized in simian cells by human and simian adenoviruses.

    PubMed Central

    Daniell, E

    1981-01-01

    DNA synthesized after infection of simian tissue culture cells (BSC-1 or CV-1) with human adenovirus type 2 or 5 or with simian adenovirus 7 was characterized. It was demonstrated that as much as 40% of the virus-specific DNA in nuclei of infected monkey cells consists of subgenomic pieces. No subgenomic viral DNA species were detected in the nuclei of human (HeLa) cells infected with these adenovirus types. Restriction analysis showed that these short viral DNA molecules contain normal amounts of the sequences from the ends of the viral genome, whereas internal regions are underrepresented. The production of subgenomic DNAs is not correlated with semipermissive infection. Although adenovirus types 2 and 5 are restricted in monkey cells, these cells are fully permissive for simian adenovirus 7. HR404, an adenovirus type 5 mutant which is not restricted in monkey cells, produced the same percentage of subgenomic DNAs as did its wild type (restricted) parent, and coinfection of monkey cells with adenovirus type 5 DNAs. The array of predominant size classes among the heterogeneously sized short DNAs is serotype specific. Extensive plaque purification and comparison of wild-type adenovirus type 5 with several viral mutants indicated that the distribution of aberrant sizes of DNA is characteristic of the virus and not a result of random replicative errors and then enrichment of particular species. Images PMID:6261009

  18. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  19. The Evaluation of Polyhexamethylene Biguanide (PHMB) as a Disinfectant for Adenovirus

    PubMed Central

    Romanowski, Eric G.; Yates, Kathleen A.; O’Connor, Katherine E.; Mah, Francis S.; Shanks, Robert M. Q.; Kowalski, Regis P.

    2013-01-01

    Purpose Swimming pools can be a vector for transmission of adenovirus ocular infections. Polyhexamethylene biguanide (PHMB) is a disinfectant used in swimming pools and hot tubs. The current study determined whether PHMB is an effective disinfectant against ocular adenovirus serotypes at a concentration used to disinfect swimming pools and hot tubs. Methods The direct disinfecting activity of PHMB was determined in triplicate assays by incubating nine human adenovirus types (1, 2, 3, 4, 5, 7a, 8, 19, and 37) with 50 and 0 PPM (µg/ml) of PHMB for 24 hours at room temperature, to simulate swimming pool temperatures, or 40°C, to simulate hot tub temperatures. Plaque assays determined adenovirus titers after incubation. Titers were Log10 converted and mean ± standard deviation Log10 reductions from controls were calculated. Virucidal (greater than 99.9%) decreases in mean adenovirus titers after PHMB treatment were determined for each adenovirus type and temperature tested. Results At room temperature, 50 PPM of PHMB produced mean reductions in titers less than 1 Log10 for all adenovirus types tested. At 40°C, 50 PPM of PHMB produced mean reductions in titers less than 1 Log10 for two adenovirus types and greater than 1 Log10, but less than 3 Log10, for seven of nine adenovirus types. Conclusions 50 PPM of PHMB was not virucidal against adenovirus at temperatures consistent with swimming pools or hot tubs. Clinical Relevance Recreational water maintained and sanitized with PHMB has the potential to serve as a vector for the transmission of ocular adenovirus infections. PMID:23450376

  20. In vivo expression of adenovirus-mediated lacZ gene in murine nasal mucosa.

    PubMed

    Arimoto, Yukiko; Nagata, Hiroshi; Isegawa, Naohisa; Kumahara, Keiichiro; Isoyama, Kyoko; Konno, Akiyoshi; Shirasawa, Hiroshi

    2002-09-01

    Adenovirus is a good tool for transferring exogenous genes into various organs because the virus has a wide spectrum of infection. In this report, we demonstrate that a recombinant adenovirus, Ax1CAlacZ, can transfer an exogenous lacZ gene into murine nasal mucosa in vivo. The efficiency of the exogenous gene expression varied for different cell types and was improved by optimizing the method of administration. In the olfactory region, the olfactory epithelia, sustentacular cells and olfactory nerve efficiently expressed lacZ gene transferred by Ax1CAlacZ using either of two administration methods, dripping or injecting. In contrast, in the respiratory region, the respiratory epithelia but not the subepithelial tissues expressed lacZ gene transferred by Ax1CAlacZ, and the efficiency of the gene transfer, which was low when the virus was administered by nasal drops, was improved when the virus was administered by injection. Our study demonstrated that gene transfer mediated by adenovirus is more efficient in the olfactory epithelia than in the respiratory epithelia, and may be applicable to nasal or paranasal diseases such as olfactory epithelial disturbances. PMID:12403125

  1. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    PubMed

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines. PMID:25479556

  2. Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated protection conferred by mucosal vaccination with replication competent adenovirus (RCA)-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene (AdTW68.H5ck). Commercial layer-type chicken groups were singly vaccinated ocularly at 5 days of age, or singly v...

  3. Typing of human adenoviruses in specimens from immunosuppressed patients by PCR-fragment length analysis and real-time quantitative PCR.

    PubMed

    Ebner, Karin; Rauch, Margit; Preuner, Sandra; Lion, Thomas

    2006-08-01

    Currently, 51 human adenovirus (AdV) serotypes, which are divided into six species (A to F), are known. AdV infections are a major cause of morbidity and mortality in immunosuppressed individuals, particularly in allogeneic stem cell transplant (SCT) recipients. Any AdV species may cause life-threatening disease, but little information is available on the clinical relevance of individual serotypes. The use of serological testing for serotype identification is limited due to the impaired immune response during the posttransplant period. A new molecular approach to serotype identification is presented here that exploits variable regions within the hexon gene. All serotypes belonging to the species A, B, C, E, and F can be determined by fragment length analysis of a single PCR product. For species C, which is the most prevalent in many geographic regions, an alternative technique based on serotype-specific real-time quantitative PCR was established. Of 135 consecutive pediatric patients screened for AdV infections after allogeneic SCT, 40 tested positive. Detailed analysis revealed the presence of 10 different serotypes; serotypes 1 and 2 from species C (C01 and C02) showed the highest prevalence, accounting for 77% of the AdV-positive cases. Representatives of other species were observed less commonly: serotype A12 in 6.5%; serotype A31 in 4.5%; and B03, B16, C05, C06, D19, and F41 in 2%. The approach to rapid molecular serotype analysis presented here provides a basis for detailed studies on adenovirus epidemiology and on the transmission of nosocomial infections. Moreover, in view of the increasing importance of tailored therapy approaches, serotype identification may in the future have implications for the selection of the most appropriate antiviral treatment. PMID:16891496

  4. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis.

    PubMed

    Walsh, Douglas S; Owira, Victorine; Polhemus, Mark; Otieno, Lucas; Andagalu, Ben; Ogutu, Bernhards; Waitumbi, John; Hawkridge, Anthony; Shepherd, Barbara; Pau, Maria Grazia; Sadoff, Jerald; Douoguih, Macaya; McClain, J Bruce

    2016-05-01

    In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects. PMID:27026148

  5. Randomized, placebo-controlled trial to assess the safety and immunogenicity of an adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults.

    PubMed

    Creech, C Buddy; Dekker, Cornelia L; Ho, Dora; Phillips, Shanda; Mackey, Sally; Murray-Krezan, Cristina; Grazia Pau, Maria; Hendriks, Jenny; Brown, Valerie; Dally, Leonard G; Versteege, Isabella; Edwards, Kathryn M

    2013-12-01

    Malaria results in over 650,000 deaths each year; thus, there is an urgent need for an effective vaccine. Pre-clinical studies and recently reported human trials suggest that pre-erythrocytic stage vaccines can provide protection against infection. A Phase 1, randomized, placebo-controlled, dose-escalation study was conducted with a vaccine composed of a replication-deficient adenovirus-35 backbone with P. falciparum circumsporozoite (CS) surface antigen (Ad35.CS.01). Healthy adult subjects received three doses of 10 (8), 10 (9), 10 (10), or 10 (11) vp/mL Ad35.CS.01 vaccine or saline placebo intramuscularly at 0, 1, and 6-mo intervals. Adverse events were assessed and anti-CS antibody responses were determined by ELISA. Seventy-two individuals were enrolled, with age, gender, and ethnicity similar across each study arm. While the vaccine was generally well tolerated, adverse events were more frequent in the highest dose groups (10 (10) and 10 (11) vp/mL). More robust humoral responses were also noted at the highest doses, with 73% developing a positive ELISA response after the three dose series of 10 (11) vp/mL. The Ad35.CS.01 vaccine was most immunogenic at the highest dosages (10 (10) and 10 (11) vp/mL). Reactogenicity findings were more common after the 10 (11) vp/mL dose, although most were mild or moderate in nature and resolved without therapy. PMID:23955431

  6. Randomized, placebo-controlled trial to assess the safety and immunogenicity of an adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults

    PubMed Central

    Creech, C Buddy; Dekker, Cornelia L; Ho, Dora; Phillips, Shanda; Mackey, Sally; Murray-Krezan, Cristina; Grazia Pau, Maria; Hendriks, Jenny; Brown, Valerie; Dally, Leonard G; Versteege, Isabella; Edwards, Kathryn M

    2013-01-01

    Malaria results in over 650 000 deaths each year; thus, there is an urgent need for an effective vaccine. Pre-clinical studies and recently reported human trials suggest that pre-erythrocytic stage vaccines can provide protection against infection. A Phase 1, randomized, placebo-controlled, dose-escalation study was conducted with a vaccine composed of a replication-deficient adenovirus-35 backbone with P. falciparum circumsporozoite (CS) surface antigen (Ad35.CS.01). Healthy adult subjects received three doses of 108, 109, 1010, or 1011 vp/mL Ad35.CS.01 vaccine or saline placebo intramuscularly at 0, 1, and 6-mo intervals. Adverse events were assessed and anti-CS antibody responses were determined by ELISA. Seventy-two individuals were enrolled, with age, gender, and ethnicity similar across each study arm. While the vaccine was generally well tolerated, adverse events were more frequent in the highest dose groups (1010 and 1011 vp/mL). More robust humoral responses were also noted at the highest doses, with 73% developing a positive ELISA response after the three dose series of 1011 vp/mL. The Ad35.CS.01 vaccine was most immunogenic at the highest dosages (1010 and 1011 vp/mL). Reactogenicity findings were more common after the 1011 vp/mL dose, although most were mild or moderate in nature and resolved without therapy. PMID:23955431

  7. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity.

    PubMed

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R

    2009-10-30

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We previously reported the use of a novel Ad5 platform to induce cellular immune responses (CMI) against HIV-1 Gag in Ad5 hyper immune mice. Here, the effectiveness of the Ad5 [E1-, E2b-] vaccine platform was evaluated using a triad mixture of HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced following vaccination with the HIV-1 expressing vectors in Ad5 naïve and Ad5 immunized mice. A mixture of the three vaccines induced CMI against each transgene product even in the presence of hyper Ad5 immunity. These studies revealed that CMI responses to immunization with Ad5 [E1-, E2b-]-gag, Ad5 [E1-, E2b-]-pol or Ad5 [E1-, E2b-]-nef vectors were transgene specific and did not induce CMI responses against irrelevant antigens such as carcinoembryonic antigen (CEA), herpes simplex virus glycoprotein B (HSV), cytomegalovirus (CMV) or influenza virus antigens. We are evaluating this recombinant triad viral vector as an HIV-1 vaccine in a non-human primate model and the data indicate that the vaccine is worthy of clinical evaluation. PMID:19559110

  8. Specific binding of the adenovirus terminal protein precursor-DNA polymerase complex to the origin of DNA replication.

    PubMed Central

    Rijnders, A W; van Bergen, B G; van der Vliet, P C; Sussenbach, J S

    1983-01-01

    Initiation of adenovirus DNA replication is dependent on a complex of the precursor of the terminal protein and the adenovirus-coded DNA polymerase (pTP-pol complex). This complex catalyzes the formation of a covalent linkage between dCMP and pTP in the presence of a functional origin of DNA replication residing in the terminal nucleotide sequence of adenovirus DNA. We have purified the pTP-pol complex of adenovirus type 5 and studied its binding to double-stranded DNA. Using DNA-cellulose chromatography it could be shown that the pTP-pol complex has a higher affinity for adenovirus DNA than for calf thymus or pBR322 DNA. From the differential binding of the pTP-pol complex to plasmids containing adenovirus terminal sequences with different deletions, it has been concluded that a sequence of 14 nucleotide pairs at positions 9-22 plays a crucial role in the binding of pTP-pol to adenovirus DNA. This region is conserved in the DNA's of all human adenovirus serotypes and is obviously an important structural element of the adenovirus origin of DNA replication. Comparative binding studies with adenovirus DNA polymerase and pTP-pol indicated that pTP is responsible for the binding. The nature of the binding of pTP-pol to the conserved sequence will be discussed. Images PMID:6672772

  9. Physical organization of subgroup B human adenovirus genomes.

    PubMed Central

    Tibbetts, C

    1977-01-01

    Cleavage sites of nine bacterial restriction endonucleases were mapped in the DNA of adenovirus type 3 (Ad3) and Ad7, representative serotypes of the "weakly oncogenic" subgroup B human adenoviruses. Of 94 sites mapped, 82 were common to both serotypes, in accord with the high overall sequence homology of DNA among members of the same subgroups. Of the sites in Ad3 and Ad7 DNA, fewer than 20% corresponded to mapped restriction sites in the DNA of Ad2 or Ad5. The latter serotypes represent the "nononcogenic" subgroup C, having only 10 to 20% overall sequence homology with the DNA of subgroup B adenoviruses. Hybridization mapping of viral mRNA from Ad7-infected cells resulted in a complex physical map that was nearly identical to the map of early and late gene clusters in Ad2 DNA. Thus the DNA sequences of human adenoviruses of subgroups B and C have significantly diverged in the course of viral evolution, but the complex organization of the adenovirus genome has been rigidly conserved. Images PMID:916027

  10. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus

    SciTech Connect

    Steel, Jason C.; Morrison, Brian J.; Mannan, Poonam; Abu-Asab, Mones S.; Wildner, Oliver; Miles, Brian K.; Yim, Kevin C.; Ramanan, Vijay; Prince, Gregory A.; Morris, John C.

    2007-12-05

    Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the study of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses.